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Abstract. We introduce multi-valued Büchi and Muller automata over distributive lattices and a
multi-valued MSO logic for infinite words. For this logic, weprove the expressive equivalence
of ω-recognizable and MSO-definable infinitary formal power series over distributive lattices with
negation function. Then we consider multi-valued Muller tree automata and a multi-valued MSO
logic for trees over distributive lattices. For this logic,we establish a version of Rabin’s theorem for
infinitary tree series.
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1. Introduction

In 1962, Büchi [12], motivated by decision problems in logic, showed that the languages of infinite
words accepted by finite automata coincide with the languages definable in monadic second order (MSO)
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logic. Büchi’s fundamental theorem led to important practical applications for model checking of non-
terminating processes (cf. [1, 38, 41, 45, 53, 54]). Recently, the concept of multi-valued logics over De
Morgan or quasi-Boolean algebras has played a central role in the development of new tools for model
checking techniques (cf. [10, 13, 32, 37]). In this approach, the values of the atomic formulas are given
as elements of an underlying De Morgan algebra, thereby modelling uncertainty or partial information
which often occurs when analyzing or specifying propertiesof systems. This has led to multi-valued
practical tools [13, 32, 37]; for a survey, see [29].

It is the goal of this paper to establish Büchi’s theorem fora multi-valued MSO logic. We will
assume that the values of our logic are taken in an arbitrary bounded distributive lattice. The class of
these lattices is much larger than the class of De Morgan algebras. We will also introduce multi-valued
Büchi and Muller automata acting on infinite words, and we show their mutual equivalence in expressive
power with our multi-valued logic.

Next we describe our approach in some more detail. The syntaxof our multi-valued MSO logic is
enriched with∧, ∀x, ∀X. In order to cope with negation of formulas, we assume that theunderlying
bounded lattice has an arbitrary negation function which isjust supposed to interchange the largest and
smallest elements of the lattice, respectively. Since any bounded distributive lattice carries such a func-
tion, this is no essential restriction of our class of lattices considered. In a first result, we show that the
behaviors of multi-valued Büchi or Muller automata over bounded distributive lattices and infinite words
admit a simple characterization. In our main result, we use this description to show the expressive equiva-
lence of our logic with the automata models. Since all our proofs are constructive, we obtain decidability
procedures for the equality and (multi-valued) implication problems for sentences of our logic.

We also indicate that our methods can be extended to cover multi-valued logics and automata on
infinite trees. Here we provide an example using a lattice with negation function which isnot a De
Morgan algebra. Finally, we phrase our results for a logic based on De Morgan algebras, and we give a
characterization of De Morgan algebras in terms of semirings with complement functions.

For the closely related strand of weighted automata see [2, 17, 23, 28, 33, 36, 49] for monographs
and surveys. Recently, several authors have been interested in MSO logic equipped with weights from
semirings. More precisely, Droste and Gastin [16] considered a weighted MSO logic and proved its
expressive equivalence with weighted automata on finite words, thereby generalizing Büchi’s and El-
got’s theorem [11, 24]. Droste and Rahonis [19] considered the same logics and established the afore-
mentioned fundamental result of Büchi for infinitary series. It is clear that in this case the underlying
semirings have to satisfy special completeness propertiespermitting infinite sums and countably infi-
nite products. More recently, in [20] the authors considered weighted automata and a weighted logics
with discounting eliminating the completeness axioms of the underlying semirings. For further work on
weighted logics and automata for trees, pictures, traces, texts, and distributive systems we refer the reader
to [5, 21, 22, 30, 39, 40, 42, 48]. In our paper, we develop our theory for arbitrary bounded distributive
lattices with negation function, without any further requirement of completeness axioms. Also, here
negation can be applied to all formulas, whereas in [16, 19, 20] negation is restricted to atomic formulas.

2. Preliminaries

Let (L,≤) be a partially ordered set anda, b ∈ L (resp.S ⊆ L). We denotethe least upper bound(or
supremum) of a andb (resp. ofS), if it exists inL, by a∨ b (resp.∨S) and thegreatest lower bound(or



M. Droste et al. / Multi-Valued MSO Logics Over Words and Trees 307

infimum), if it exists inL, by a ∧ b (resp.∧S). If S = (ai | i ∈ I) then we also use the notations
∨

i∈I

ai

and
∧

i∈I

ai, respectively. If the order relation≤ is understood, then we simply denote a partially ordered

set byL.
A partially ordered setL is called alattice, if for all a, b ∈ L, a ∨ b anda ∧ b exist. A latticeL is

calleddistributive if it satisfies, for alla, b, c ∈ L, the equations

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c).

It is well-known that ifL is any distributive lattice andF ⊆ L a finite subset, then the sublatticeL′

of L generated byF is finite. In fact, ifF ′ = {∧I | I ⊆ F}, due to the distributivity laws we have
L′ = {∨J | J ⊆ F ′}.

A partially ordered set(L,≤) is boundedif it contains two distinguished elements0, 1 ∈ L such that
0 ≤ a ≤ 1, for all a ∈ L. An elementa 6= 0 of a latticeL is calledjoin-irreducible if a = b ∨ c implies
a = b or a = c for all b, c ∈ L. We denote byJ(L) the set of all join-irreducible elements ofL. If the
latticeL is finite, then

a = ∨{b ∈ J(L) | b ≤ a}

for anya ∈ L. Moreover, ifL is distributive, any join-irreducible elementa ∈ L is prime, i.e. whenever
a ≤ b ∨ c with b, c ∈ L, thena ≤ b or a ≤ c (cf. [4, 14]).

Let (L,≤) be a bounded distributive lattice and− : L → L be any function with0 = 1 and1 = 0.
Then we call− a (general) negation functionand(L,≤,− ) a bounded distributive lattice with negation
function. Note that any bounded distributive latticeL can be equipped with a negation function− by
letting, e.g.,0 = 1 andx = 0 for eachx ∈ L \ {0}. The more particular class of De Morgan algebras
will be considered in Section 6 (see there for a more detaileddiscussion and comparison). Other well-
investigated classes of distributive lattices with negation function include Heyting-algebras and variants
of pseudocomplemented lattices.

Given two bounded lattices(L,≤), (L′,≤), a mappingf : L → L′ is called alattice morphismif f
preserves the greatest and smallest elements, respectively, and for anya, b ∈ L we have

f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b).

Thena ≤ b impliesf(a) ≤ f(b) for all a, b ∈ L.

Now we turn to semirings. By asemiringwe mean a setA together with two binary operations+
and· and two constant elements0 and1 such that

(i) (A,+, 0) is a commutative monoid,

(ii) (A, ·, 1) is a monoid,

(iii) the distributivity lawsa · (b+ c) = a · b+ a · c and(a+ b) · c = a · c+ b · c hold for alla, b, c ∈ A,

(iv) 0 · a = a · 0 = 0 for all a ∈ A.

If the operations and the constant elements ofA are understood, then we denote the semiring simply
byA. Otherwise, we use the notation(A,+, ·, 0, 1).
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A semiringA is calledcommutativeif a·b = b·a for everya, b ∈ A. Clearly, any bounded distributive
lattice with operations supremum as addition and infimum as multiplication constitutes an idempotent,
commutative semiring. Particular examples are provided bythefuzzy semiring([0, 1],∨,∧, 0, 1) and the
Boolean semiringB = ({0, 1},∨,∧, 0, 1).

In the following, we introduce infinitary formal power series over distributive lattices.
Let Σ be an alphabet. We denote the set of infinite words overΣ by Σω. Let w = x0x1 . . . ∈ Σω,

with x0, x1, . . . ∈ Σ. We shall use the notationw = w(0)w(1) . . . , with w(i) = xi, for i = 0, 1, . . . .
Furthermore, let(L,≤) be a bounded distributive lattice. A mappingS : Σω → L is called an

infinitary formal power series(or seriesfor short)overΣ andL. The values ofS are denoted by(S,w),
wherew ∈ Σω, and are also referred to as thecoefficientsof the series. The seriesS can be written as a
formal supremum

S =
∨

w∈Σω

(S,w)w.

The supportof a seriesS : Σω → L is the setsupp(S) = {w ∈ Σω | (S,w) 6= 0}. The collection
of all infinitary formal power series overΣ andL is denoted byL 〈〈Σω〉〉. Then(L 〈〈Σω〉〉 ,≤) is a
bounded distributive lattice where forS, T ∈ L 〈〈Σω〉〉 the partial orderS ≤ T is defined byS ≤ T iff
(S,w) ≤ (T,w) for all w ∈ Σω. Then, the supremumS ∨ T, the infimumS ∧ T and the scalar infimum
k ∧ S (k ∈ L) are defined elementwise

(S ∨ T,w) = (S,w) ∨ (T,w)

(S ∧ T,w) = (S,w) ∧ (T,w)

(k ∧ S,w) = k ∧ (S,w)

for anyw ∈ Σω.
If (L,≤,− ) is a bounded distributive lattice with negation function, then(L 〈〈Σω〉〉 ,≤,− ) constitutes

also a bounded distributive lattice with negation function; for any seriesS ∈ L 〈〈Σω〉〉 its negation
S ∈ L 〈〈Σω〉〉 is defined by

(S,w) = (S,w)

for anyw ∈ Σω.
Let (L,≤), (L′,≤) be two bounded distributive lattices andf : L → L′ be a mapping. Thenf is

extended to a mappingf : L 〈〈Σω〉〉 → L′ 〈〈Σω〉〉 in the following way. For any seriesS ∈ L 〈〈Σω〉〉 the
seriesf(S) ∈ L′ 〈〈Σω〉〉 is determined by

(f(S), w)) = f((S,w))

for all w ∈ Σω.
In the sequel, we recall notions and results from classical monadic second order logic (MSO logic

for short) over infinite words. LetΣ be an alphabet. The syntax of formulas of the MSO logic overΣ is
given by:

ϕ := Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ψ | ∃x � ϕ | ∃X � ϕ

wherea ∈ Σ, x, y are first order variables andX is a second order (set) variable.
We shall denote the set of natural numbersN also byω. An infinite wordw = w(0)w(1) . . . ∈ Σω is

represented by the structure(ω,≤, (Ra)a∈Σ) whereRa = {i | w(i) = a} for a ∈ Σ. LetV be a finite set
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of first and second order variables. A(w,V)-assignmentσ is a mapping assigning elements ofω to first
order variables fromV, and subsets ofω to second order variables fromV. If x is a first order variable
andi ∈ ω, thenσ[x → i] denotes the(w,V ∪ {x})-assignment which assignsi to x and acts asσ on
V \ {x}. For a second order variableX andI ⊆ ω, the notationσ[X → I] has a similar meaning.

In order to encode pairs(w, σ) for all w ∈ Σω and any(w,V)-assignmentσ, we use the extended
alphabetΣV = Σ × {0, 1}V . Each word inΣω

V can be considered as a pair(w, σ) wherew is the
projection overΣ andσ is the projection over{0, 1}V . Thenσ is avalid (w,V)-assignment if for each
first order variablex ∈ V thex-row contains exactly one1. In this case, we identifyσ with the(w,V)-
assignment so that for each first order variablex ∈ V, σ(x) is the position of the1 on thex-row, and for
each second order variableX ∈ V, σ(X) is the set of positions labelled with1 along theX-row.

It is well-known that the set

NV = {(w, σ) ∈ Σω
V | σ is a valid(w,V)-assignment}

is ω-recognizable.
Let ϕ be an MSO-formula. We shall writeΣϕ for ΣFree(ϕ) andNϕ = NFree(ϕ). Furthermore, for

Free(ϕ) ⊆ V we set
LV(ϕ) = {(w, σ) ∈ NV | (w, σ) |= ϕ}

for the language defined byϕ over ΣV . We simply writeL(ϕ) = LFree(ϕ)(ϕ). Then, the fundamen-
tal theorem of Büchi [12] states that for each MSO-formulaϕ the languageLV(ϕ) is ω-recognizable;
conversely, eachω-recognizable languageR ⊆ Σω is definable by an MSO-sentenceϕ, i.e.R = L(ϕ).

3. Multi-valued automata

In this section, we introduce multi-valued Büchi and Muller automata over distributive lattices. LetΣ be
an alphabet andL be a bounded distributive lattice.

Definition 3.1. (a) A multi-valued Muller automaton(MVMA for short) overΣ andL is a quadruple
A = (Q, in,wt,F), whereQ is thefinite state set,in : Q → L is the initial distribution, wt :
Q×Σ×Q→ L is a mapping assigningweightsto the transitions of the automaton, andF ⊆ P(Q)
is thefamily of final state sets.

(b) An MVMA A is amulti-valued B̈uchi automaton(MVBA for short) if there is a setF ⊆ Q such
thatF = {S ⊆ Q | S ∩ F 6= ∅}.

Letw = a0a1 . . . ∈ Σω. A path ofA overw is an infinite sequence of transitionsPw := (ti)i≥0 , so
thatti = (qi, ai, qi+1) for all i ≥ 0. Theweight ofPw is defined by

weight(Pw) := in(q0) ∧
∧

i≥0

wt(ti).

Observe that the set{wt(t) | t ∈ Q×Σ×Q} is finite and thusweight(Pw) is well-defined. Furthermore,
weight(Pw) ∈ L′ whereL′ is the (finite) sublattice ofL generated by{0, 1, in(q), wt(t) | q ∈ Q, t ∈
Q× Σ ×Q}. We denote byInQ(Pw) the set of states which appear infinitely many times inPw, i.e.,

InQ(Pw) = {q ∈ Q | ∃ωi : ti = (q, ai, qi+1)}.
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The pathPw is calledsuccessfulif the set of states that appear infinitely often alongPw constitute a final
state set, i.e.,InQ(Pw) ∈ F . Thebehaviorof A is the infinitary formal power series

‖A‖ : Σω → L

which is defined by
(‖A‖ , w) =

∨

Pw

weight(Pw)

for w ∈ Σω, where the supremum is taken over all successful pathsPw of A overw. SinceL′ is finite,
(‖A‖ , w) exists and(‖A‖ , w) ∈ L′ for eachw ∈ Σω.

An infinitary seriesS : Σω → L is said to beMuller recognizable(resp. Büchi recognizableor ω-
recognizable)if there is an MVMA (resp. an MVBA)A so thatS = ‖A‖ .We shall denote the family of
all Muller recognizable (resp.ω-recognizable) series overΣ by LM−rec 〈〈Σω〉〉 (resp.Lω−rec 〈〈Σω〉〉).
So, trivially we haveLω−rec 〈〈Σω〉〉 ⊆ LM−rec 〈〈Σω〉〉 . In fact:

Theorem 3.1. [19] Let Σ be an alphabet andL be a bounded distributive lattice. Then

Lω−rec 〈〈Σω〉〉 = LM−rec 〈〈Σω〉〉 .

Proof:
Choose any MVMAA. LetL′ be the sublattice ofL generated by0, 1 and the weights ofA. ThenL′ is
a finite bounded distributive lattice which in turn means that the semiring(L′,∨,∧, 0, 1) satisfies all the
technical assumptions of [19] (cf. [19], Example 1), i.e. itis totally commutative complete. By Theorem
25 in [19], we obtain‖A‖ ∈ L′ω−rec 〈〈Σω〉〉 ⊆ Lω−rec 〈〈Σω〉〉. ut

Proposition 3.1. [19, 26, 27] The class ofω-recognizable power seriesLω−rec 〈〈Σω〉〉 is closed under
supremum, infimum and scalar infimum.

Next we obtain the following Proposition by a standard automaton construction. Using this result,
we will derive a generalization of it below in Proposition 3.4.

Proposition 3.2. Let (L,≤), (L′,≤) be two bounded distributive lattices andf : L → L′ be a lattice
morphism. Then for anyω-recognizable seriesS in L 〈〈Σω〉〉 the seriesf(S) ∈ L′ 〈〈Σω〉〉 is again
ω-recognizable.

Proof:
LetA be an MVBA acceptingS. Define the MVBAA′ overL′ by replacing inA all weightsk by f(k).
Sincef is a lattice morphism, it is easy to check that then‖A′‖ = f(S). ut

For any languageR ⊆ Σω, thecharacteristic series1R ∈ L 〈〈Σω〉〉 of R, is defined by

(1R, w) =

{

1 if w ∈ R

0 otherwise

for all w ∈ Σω.
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Proposition 3.3. [19] LetR ⊆ Σω be anω-recognizable language. Then the characteristic series1R is
ω-recognizable.

Assume now thatR1, . . . , Rn ⊆ Σω areω-recognizable languages andk1, . . . , kn ∈ L. Then by
Propositions 3.1 and 3.3 the series

S =
∨

1≤i≤n

ki ∧ 1Ri

is ω-recognizable. Such a seriesS is calledω-recognizable step function[19]. Since the class ofω-
recognizable languages overΣω is closed under the Boolean operations, here we may assume the sets
(Ri)1≤i≤n to form a partition ofΣω. HenceS is anω-recognizable step function iff the image ofS is
finite and for eachk ∈ L, the languageS−1(k) = {w ∈ Σω | (S,w) = k} is ω-recognizable.

Next, in our first main result, we show thatω-recognizable series are the same asω-recognizable step
functions in the context of distributive lattices.

Theorem 3.2. Let (L,≤) be any bounded distributive lattice. Then, an infinitary power seriesS ∈
L 〈〈Σω〉〉 is ω-recognizable iff it is anω-recognizable step function.

Proof:
First, assume thatS is ω-recognizable and letA = (Q, in,wt,F) be an MVMA overΣ such that
S = ‖A‖ . LetL′ = {k1, . . . , kn} be the sublattice ofL generated by0, 1 and the weights ofA. For any
1 ≤ i ≤ n we set

Ri = {w ∈ Σω | (S,w) = ki}.

Then
S =

∨

1≤i≤n

ki ∧ 1Ri
.

We show that the languagesRi (1 ≤ i ≤ n) areω-recognizable. LetB = ({0, 1},≤) be the two-
valued Boolean algebra. For each join-irreducible elementp of L′, we define a mappingfp : L′ → {0, 1}
by putting

fp(a) =

{

1 if p ≤ a

0 otherwise

for anya ∈ L.

We claim thatfp is a lattice morphism. Clearly,fp(0) = 0 asp 6= 0, andfp(1) = 1. Next, note that
if a, a′ ∈ L′ andfp(a ∨ a′) = 1, thenp ≤ a ∨ a′, hencep ≤ a or p ≤ a′ sincep is prime, proving
fp(a ∨ a

′) = fp(a) ∨ fp(a
′). Clearly,fp(a ∧ a

′) = fp(a) ∧ fp(a
′). By Proposition 3.2, the seriesfp(S)

of B 〈〈Σω〉〉 is ω-recognizable and therefore the languagesupp(fp(S)) = {w ∈ Σω | p ≤ (S,w)} is
ω-recognizable. Now let1 ≤ i ≤ n. Since the elementki of L′ is the supremum of the join-irreducible
elements ofL′ below ki, the infinitary languageRi is obtained as the intersection of the languages
supp(fp(S)) (p ≤ ki and join-irreducible) and of the complements of the languagessupp(fp(S)) (p � ki

and join-irreducible). Since the class ofω-recognizable languages is closed under Boolean operations,
we conclude thatRi is anω-recognizable language, as required.

The converse is immediate as noted before, by Propositions 3.1 and 3.3. ut
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The reader should observe that the above proof is effective.Indeed, starting form the weights of the
automatonA, we compute the sublatticeL′ in finitely many steps. Then following our proof, we obtain
Büchi automata for the languagesRi (1 ≤ i ≤ n).

Consider two alphabetsΣ,∆ and a non-deleting homomorphismh : Σ∗ → ∆∗, i.e.,h(a) 6= ε for
eacha ∈ Σ. Thenh can be extended to a mappingh : Σω → ∆ω in the obvious way. For any infinitary
seriesS ∈ L 〈〈Σω〉〉 having finite image, and any infinitary languageR ⊆ Σω, we can define the series
hR(S) ∈ L 〈〈∆ω〉〉 by

(hR(S), u) =
∨

w∈h−1(u)∩R

(S,w)

for all u ∈ ∆ω. We denote the serieshΣω simply byh.
Furthermore, ifT ∈ L 〈〈∆ω〉〉 then the seriesh−1(T ) ∈ L 〈〈Σω〉〉 is specified by

(h−1(T ), w) = (T, h(w))

for anyw ∈ Σω.
Next, we show that given two distributive latticesL,L′, any mappingf : L → L′ preserves the

ω-recognizability property of formal power series. This generalizes Proposition 3.2. Furthermore, we
show that theω-recognizability property of infinitary series is preserved by non-deleting and inverse
non-deleting homomorphisms.

Proposition 3.4. (a) Let (L,≤), (L′,≤) be two distributive lattices andf : L → L′ be any map-
ping. Then for anyω-recognizable seriesS in L 〈〈Σω〉〉 the seriesf(S) ∈ L′ 〈〈Σω〉〉 is again
ω-recognizable.

(b) Leth : Σω → ∆ω be a non-deleting homomorphism andR ⊆ Σω be anω-recognizable language.
ThenhR : L 〈〈Σω〉〉 → L 〈〈∆ω〉〉 andh−1 : L 〈〈∆ω〉〉 → L 〈〈Σω〉〉 preserve theω-recognizability
property of formal power series.

Proof:
Due to Theorem 3.2,S is anω-recognizable step function, i.e.,S =

∨

1≤i≤n

ki ∧1Ri
, where for1 ≤ i ≤ n,

ki ∈ L andRi is ω-recognizable. Then

f(S) =
∨

1≤i≤n

f(ki) ∧ 1Ri

and thusf(S) is anω-recognizable step function.
On the other hand, for anyu ∈ ∆ω we have

(hR(S), u) =
∨

w∈h−1(u)∩R

(S,w)

=
∨

1≤i≤n



ki ∧
∨

w∈h−1(u)∩R

(1Ri
, w)





=
∨

1≤i≤n

ki ∧
(

1h(Ri∩R), u
)
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and hence
hR(S) =

∨

1≤i≤n

ki ∧ 1h(Ri∩R).

Since the class ofω-recognizable languages is closed under non-deleting homomorphisms [45], we ob-
tain that the serieshR(S) is ω-recognizable.

Finally, assume thatT =
∨

1≤j≤m

k′j ∧ 1R′
j

is anω-recognizable series over∆ andL, where for

1 ≤ j ≤ m, k′j ∈ L andR′
j ⊆ ∆ω is ω-recognizable. Then

h−1(T ) =
∨

1≤j≤m

k′j ∧ 1h−1(R′
j)
.

The class ofω-recognizable languages is closed under inverse non-deleting homomorphisms [45], there-
foreh−1(T ) is ω-recognizable and our proof is completed. ut

As an immediate consequence of Proposition 3.4(a), we obtain:

Corollary 3.1. Let (L,≤,− ) be a bounded distributive lattice with negation function, and let S ∈
Lω−rec 〈〈Σω〉〉 . Then alsoS ∈ Lω−rec 〈〈Σω〉〉 .

4. Multi-valued MSO logic

In this section, we introduce our multi-valued monadic second order logic over words, and we state our
multi-valued Büchi theorem in the context of distributivelattices with negation function. Throughout
this section, we assume thatΣ is an alphabet and(L,≤,− ) is a bounded distributive lattice with negation
function.

Definition 4.1. The syntax of formulas of the multi-valued MSO logic overΣ andL is given by:

ϕ := k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ∃x � ϕ | ∃X � ϕ | ∀x � ϕ | ∀X � ϕ

wherek ∈ L, a ∈ Σ. We shall denote byMSO(L,Σ) the set of all such multi-valued MSO-formulasϕ.

Next, we represent the semantics of the formulas inMSO(L,Σ), as infinitary formal power series
over the extended alphabetΣV and the latticeL.Here, our definition of semantics is slightly more general
than the one used in [19]. In [19], the authors assigned to each atomic formulaPa(x), x ≤ y or x ∈ X,
respectively, the characteristic series of its associatedMSO-language. Since these series take on only0, 1
as values, they can be viewed as ”crisp” assignments. Here, in the general flavor of multi-valued logic,
we wish to be more flexible. In the following, we assume that there is a functionf assigning to each
atomic formulaϕ of the formPa(x), x ≤ y or x ∈ X, respectively, a seriesf(ϕ) in L

〈〈

Σω
ϕ

〉〉

. The
assignmentf is calledω-recognizableif the seriesf(ϕ) is ω-recognizable for any atomic formulaϕ.
Later on, we always require thatf is anω-recognizable assignment. As noted after Definition 3.1, then
f(ϕ) takes on only finitely many values, for any atomic formulaϕ. In general, we need and make the
following assumption: We will callf a multi-valued atomic assignment overΣ, if f(ϕ) takes on only
finitely many values, for any atomic formulaϕ.
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Definition 4.2. Let ϕ ∈ MSO(L,Σ), V be a finite set of variables containingFree(ϕ), andf be a
multi-valued atomic assignment overΣV . We define thef -semanticsof ϕ to be an infinitary series
‖ϕ‖f

V ∈ L 〈〈Σω
V〉〉 in the following way. Let (w, σ) ∈ Σω

V . If σ is not a valid(w,V)-assignment, then we

put
(

‖ϕ‖f
V , (w, σ)

)

= 0. Otherwise, we inductively define
(

‖ϕ‖f
V , (w, σ)

)

∈ L as follows:

-
(

‖k‖f
V , (w, σ)

)

= k

-
(

‖ϕ‖f
V , (w, σ)

)

=
(

f(ϕ),
(

w, σ|Free(ϕ)

)) if ϕ is an atomic formula of

the formPa(x), x ≤ y or x ∈ X

-
(

‖¬ϕ‖f
V , (w, σ)

)

=
(

‖ϕ‖f
V , (w, σ)

)

-
(

‖ϕ ∨ ψ‖f
V , (w, σ)

)

=
(

‖ϕ‖f
V , (w, σ)

)

∨
(

‖ψ‖f
V , (w, σ)

)

-
(

‖ϕ ∧ ψ‖f
V , (w, σ)

)

=
(

‖ϕ‖f
V , (w, σ)

)

∧
(

‖ψ‖f
V , (w, σ)

)

-
(

‖∃x � ϕ‖f
V , (w, σ)

)

=
∨

i∈ω

(

‖ϕ‖f
V∪{x} , (w, σ[x → i])

)

-
(

‖∃X � ϕ‖f
V , (w, σ)

)

=
∨

I⊆ω

(

‖ϕ‖f
V∪{X} , (w, σ[X → I])

)

-
(

‖∀x � ϕ‖f
V , (w, σ)

)

=
∧

i∈ω

(

‖ϕ‖f
V∪{x} , (w, σ[x → i])

)

-
(

‖∀X � ϕ‖f
V , (w, σ)

)

=
∧

I⊆ω

(

‖ϕ‖f
V∪{X} , (w, σ[X → I])

)

.

We claim that in Definition 4.2, all the occurring infinite suprema and infima exist inL (without any
further completeness assumption). For this, one can show byinduction on the structure of formulasϕ,
that‖ϕ‖f

V takes on only finitely many values. Indeed, for atomic formulas this is clear by assumption,
and the property is preserved by negation, disjunction and conjunction. SinceL is a lattice, the property
is also preserved by infinite suprema and infima, proving our claim.

If the multi-valued atomic assignment is well-known, then we omit the superscriptf from ‖ϕ‖f
V .

Furthermore, we simply write‖ϕ‖ for ‖ϕ‖Free(ϕ) . If ϕ has no free variables, i.e., if it is a sentence, then
‖ϕ‖ ∈ L 〈〈Σω〉〉 .

An infinitary power seriesS ∈ L 〈〈Σω〉〉 is called MSO-f -definableif there is a sentenceϕ ∈
MSO(L,Σ) such thatS = ‖ϕ‖f . We letLf−mso 〈〈Σω〉〉 comprise all series fromL 〈〈Σω〉〉 which are
f -definable by some sentence inMSO(L,Σ). Our goal will be to derive a relationship between the
classesLf−mso 〈〈Σω〉〉 andLω−rec 〈〈Σω〉〉 .

Next, we give two examples of possible interpretations of multi-valued MSO-formulas.
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Example 4.1. We consider the bounded distributive lattice(N ∪ {∞},≤,− ) (whereN is the set of
natural numbers and− is an arbitrary negation function). LetΣ = {a, b, c} andf be the multi-valued
atomic assignment overΣ, determined in the following way. For eachw ∈ Σω and each valid(w, {x})-
assignmentσ we set

- (f(Pa(x)), (w, σ)) = 0

- (f(Pb(x)), (w, σ)) =

{

1 if w(σ(x)) = b

0 otherwise

- (f(Pc(x)), (w, σ)) =

{

2 if w(σ(x)) = c

0 otherwise
.

For any other atomic formulaϕ, f(ϕ) is the constant function0. Letϕ = ∀x�(Pa(x)∨Pb(x)∨Pc(x)).
In factϕ is a sentence, and for any wordw ∈ Σω the semantics‖ϕ‖f returns the value0 if the lettera
occurs at least once inw, the value1 if no a appears inw but b occurs at least once, and it returns the
value2 if w = cω.

Example 4.2. Let againΣ = {a, b, c}. Let also(P(Σ),⊆,− ) be the bounded distributive lattice of sub-
sets ofΣ, with union as supremum and intersection as infimum, and− any negation function. Consider
the multi-valued atomic assignmentf overΣ given by

- (f(Pa(x)), (w, σ)) =

{

{a} if w(σ(x)) = a

∅ otherwise

- (f(Pb(x)), (w, σ)) =

{

{b} if w(σ(x)) = b

∅ otherwise

- (f(Pc(x)), (w, σ)) =

{

Σ if w(σ(x)) = c

∅ otherwise
.

For any other atomic formulaϕ, f(ϕ) takes the constant∅. Letϕ = ∃x � (Pa(x)∨Pb(x)∨ (Pc(x) ∧
{c})). Then for any wordw ∈ Σω the semantics ofϕ onw returns the set of letters that appear inw.

Observe that the above definition of semantics is valid for each formulaϕ ∈ MSO(L,Σ) and each
finite setV of variables containingFree(ϕ). As we show next, the semantics‖ϕ‖f

V is in fact independent
of the setV; it depends only onFree(ϕ). More precisely,

Proposition 4.1. For anyϕ ∈ MSO(L,Σ), any finite set of variablesV with Free(ϕ) ⊆ V, and any
multi-valued atomic assignmentf overΣV , it holds that

(

‖ϕ‖f
V , (w, σ)

)

=
(

‖ϕ‖f , (w, σ|Free(ϕ))
)

for each(w, σ) ∈ Σω
V , whereσ is a valid (w,V)-assignment. Furthermore, the series‖ϕ‖f is ω-

recognizable iff the series‖ϕ‖f
V is ω-recognizable.
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Proof:
We establish our first claim by induction on the structure of formulasϕ ∈ MSO(L,Σ). For atomic
formulas it is trivial, whereas for negation, disjunction and conjunction it follows directly by induction.
For the case of quantifications and for our second claim, we can proceed almost literally in the same way
as for Proposition 3.3 in [16], replacing sums by suprema andproducts by infima. We provide the details
for the second claim for the convenience of the reader. To this end, we consider the projectionh : ΣV →
Σϕ with h(w, σ) = (w, σ|Free(ϕ)) for any(w, σ) ∈ Σω

V . Thenh is a non-deleting homomorphism. We

have‖ϕ‖f
V = h−1(‖ϕ‖f ) ∧ 1Nω

V
, and if the series‖ϕ‖f is ω-recognizable, then‖ϕ‖f

V is ω-recognizable

by Propositions 3.1, 3.3 and 3.4(b). Also, we have‖ϕ‖f = h(‖ϕ‖f
V). Thus, if‖ϕ‖f

V is ω-recognizable,
by Proposition 3.4(b) the series‖ϕ‖f is alsoω-recognizable. ut

Next, we derive a further closure property of the class ofω-recognizable series.

Lemma 4.1. Let h : Σω → ∆ω be a non-deleting homomorphism,R ⊆ Σω be anω-recognizable lan-
guage, andS ∈ Lω−rec 〈〈Σω〉〉 be anω-recognizable series. Then the series

∧

h,R(S) ∈ L 〈〈∆ω〉〉 defined

by
(

∧

h,R(S), u
)

=
∧

w∈h−1(u)∩R

(S,w) is ω-recognizable.

Proof:
By Theorem 3.2 the seriesS is anω-recognizable step function. Now let

(

Ld,≤d
)

= (L,≥), the dual
lattice ofL, which is obtained by interchanging suprema and infima. SinceS assumes only finitely
many values and each value on anω-recognizable language,S is also anω-recognizable step function
overLd andΣω. For the transformationhd

R : Ld 〈〈Σω〉〉 → Ld 〈〈∆ω〉〉, by Proposition 3.4(b) we obtain

hd
R(S) ∈

(

Ld
)ω−rec

〈〈∆ω〉〉 , andhd
R(S) is anω-recognizable step function overLd, hence again also

overL. Since suprema inLd equal infima inL,we havehd
R(S) =

∧

h,R(S) which implies the result. ut

Proposition 4.2. Letϕ,ψ ∈MSO(L,Σ) such that‖ϕ‖f
V , ‖ψ‖

f
V areω-recognizable series wheref is a

multi-valued atomic assignment, andV is a finite set of variables withFree(ϕ) ∪ Free(ψ) ⊆ V. Then
the series‖ϕ ∨ ψ‖f

V , ‖ϕ ∧ ψ‖f
V , ‖∃x � ϕ‖f

V , ‖∃X � ϕ‖f
V , ‖∀x � ϕ‖f

V and‖∀X � ϕ‖f
V areω-recognizable.

Proof:
The semantics of disjunction and conjunction ofϕ andψ areω-recognizable by Proposition 3.1. Next,
we deal with existential and universal quantifiers. By assumption ‖ϕ‖f

V is ω-recognizable. By Theorem

3.2, we have‖ϕ‖f
V =

∨

1≤i≤n

ki ∧ 1Ri
, with ki ∈ L andRi is ω-recognizable for any1 ≤ i ≤ n. Let

h : Σω
V∪{x} → Σω

V and h′ : Σω
V∪{X} → Σω

V

be the non-deleting homomorphisms erasing thex-row and theX-row, respectively. Then, it holds that

‖∃x � ϕ‖f
V = h

(

‖ϕ‖f

V∪{x}

)

‖∃X � ϕ‖f
V = h′

(

‖ϕ‖f

V∪{X}

)

‖∀x � ϕ‖f
V =

∧

h,NV∪{x}

(

‖ϕ‖f

V∪{x}

)

‖∀X � ϕ‖f
V =

∧

h′,Σω
V∪{X}

(

‖ϕ‖f

V∪{X}

)

.

We conclude our proof by Proposition 3.4(b) and Lemma 4.1. ut
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Next we obtain the first half of our main goal, an implication between MSO-f -definable andω-
recognizable series.

Proposition 4.3. LetΣ be an alphabet andL be a bounded distributive lattice with any negation mapping.

Let f be anyω-recognizable multi-valued atomic assignment. Then

Lf−mso 〈〈Σω〉〉 ⊆ Lω−rec 〈〈Σω〉〉 .

Proof:
We use induction on the structure ofMSO(L,Σ)-formulas. First, assume thatϕ = k ∈ L. We consider
the one state MVMAA = ({q}, in,wt, {{q}}) with in(q) = k andwt(q, a, q) = 1 for eacha ∈ Σ.
Obviously, ‖A‖ = k ∧ 1Σω and thus‖ϕ‖ is ω-recognizable. For the remaining atomic formulasϕ
the semantics‖ϕ‖f areω-recognizable by our assumption for theω-recognizability property off . For
negation we take into account Corollary 3.1, whereas for disjunctions, conjunctions and quantifications
the proof comes by Proposition 4.2. ut

The crisp atomic assignmentcf for atomic formulas is defined in the following way. Letϕ be an
atomic formula of the formPa(x), x ≤ y or x ∈ X. Then for any(w, σ) ∈ Σω

ϕ with σ a valid assignment
we set

- (cf (Pa(x)) , (w, σ)) =

{

1 if w(σ(x)) = a

0 otherwise
,

- (cf (x ≤ y) , (w, σ)) =

{

1 if σ(x) ≤ σ(y)

0 otherwise
,

- (cf (x ∈ X) , (w, σ)) =

{

1 if σ(x) ∈ σ(X)

0 otherwise
.

Note that ifϕ is an atomic formula of this form then
(

‖¬ϕ‖cf , (w, σ)
)

= (cf(ϕ), (w, σ)) for each

(w, σ) ∈ Nϕ, and by the property of− that1 = 0 and0 = 1, our semantics of¬ϕ coincides with the
one given in [19].

It is not difficult to see that the crisp atomic assignment isω-recognizable (cf. [19]). We shall denote
the classLcf−mso 〈〈Σω〉〉 simply byLmso 〈〈Σω〉〉.

Proposition 4.4. LetΣ be an alphabet andL be a bounded distributive lattice with any negation function.
Then

Lω−rec 〈〈Σω〉〉 ⊆ Lmso 〈〈Σω〉〉 .

Proof:
LetA = (Q, in,wt,F) be an MVMA overΣ andL, andL′ be the finite sublattice ofL generated by the
set{in(q), wt(t) | q ∈ Q, t ∈ Q× Σ ×Q} . Then, the semiring(L′,∨,∧, 0, 1) satisfies all the technical
assumptions of [19] (cf.[19], Example 1), i.e. it is totallycommutative complete. Following the proof of
Proposition 21 of [19], we can effectively construct anMSO(L,Σ)-formulaϕ such that‖ϕ‖cf = ‖A‖ .

ut
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Now we are ready to state our second main result.

Theorem 4.1. Let Σ be an alphabet andL be a bounded distributive lattice with any negation function.
Then

Lω−rec 〈〈Σω〉〉 =
⋃

f

Lf−mso 〈〈Σω〉〉 = Lmso 〈〈Σω〉〉

where the union is taken over allω-recognizable multi-valued atomic assignments.

Proof:
We combine Propositions 4.3 and 4.4. ut

This result shows that for any formulaϕ ∈ MSO(L,Σ), whose semantics is defined with anyω-
recognizable multi-valued atomic assignment, we can construct an equivalentMSO(L,Σ)-formula with
the crisp atomic assignment.

In the sequel, we deal with decidability results forω-recognizable formal power series over distribu-
tive lattices with negation function.

Theorem 4.2. Let Σ be an alphabet andL be a bounded distributive lattice with any negation function.
For any two sentencesϕ,ψ ∈MSO(L,Σ) the following relations are decidable:

- ‖ϕ‖ ≤ ‖ψ‖

- ‖ϕ‖ = ‖ψ‖

- ‖ϕ‖ = 0

- ‖ϕ‖ = 1.

Proof:
We assume that the multi-valued atomic assignment is crisp for both the sentencesϕ andψ or else that
we are given MVMA for the series of the atomic formulas. By Theorem 3.2, then we compute for the
atomic formulas occurring inϕ respectivelyψ, their representations asω-recognizable step functions.
By induction onϕ,ψ we can effectively construct their decompositions using the proofs of Propositions
3.1, 3.4 and Lemma 4.1. So, we obtain‖ϕ‖ =

∨

1≤i≤n

ki ∧ 1Ri
and ‖ψ‖ =

∨

1≤j≤m

k′j ∧ 1R′
i
, where

ki, k
′
j ∈ L andRi, R

′
j areω-recognizable languages overΣω for any1 ≤ i ≤ n, 1 ≤ j ≤ m for which

we have constructed Büchi automata. Moreover, assume that(Ri)1≤i≤n and
(

R′
j

)

1≤j≤m
are partitions

of Σω. Then, in case of equality, we check that wheneverRi ∩R
′
j 6= ∅, thenki = k′j. To decide whether

‖ϕ‖ ≤ ‖ψ‖, we check that wheneverRi ∩R
′
j 6= ∅, thenki ≤ k′j . ut

We conclude this section with some remarks concerning the finite words case. In this paper, we
considered multi-valued automata consuming only infinite words. One can define multi-valued automata
over bounded distributive lattices acting on finite words, in the same manner as weighted automata over
arbitrary semirings (cf. [2, 33, 36, 49, 50]). Then, by considering the same multi-valued MSO logic,
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we can state weighted generalizations of Büchi’s and Elgot’s results [11, 24], i.e., the equivalence of
recognizability and definability of finitary formal power series over bounded distributive lattices with
negation function. This result has been already proved in [16]. Indeed, Droste and Gastin in [16] showed
that a series is recognizable iff it is definable by some sentence in their weighted MSO logic over locally
finite semirings. Now one only has to observe that the boundeddistributive lattice induced by the weights
of a multi-valued automaton or anMSO(L,Σ)-formula is a finite semiring, hence the results of [16]
apply.

5. Multi-valued tree automata and multi-valued MSO logic

In this section, we deal with multi-valued Muller tree automata and we introduce a multi-valued MSO
logic over infinite trees. The main result of this section is amulti-valued version of Rabin’s theorem
in the setting of bounded distributive lattices with negation function. Most of the proof techniques are
literally the same as the corresponding ones for words. Therefore, our presentation here is brief.

First, we recall notions concerning infinite trees. LetN be the set of natural numbers andN+ =
N \ {0}. Theprefix relation≤ overN∗ is a partial order defined in the usual way: for anyw, v ∈ N∗,

w ≤ v iff there existsu ∈ N∗ such thatwu = v. A setA ⊆ N∗ is calledprefix-closedif wu ∈ A implies
w ∈ A.

A ranked alphabetΣ is a pair(Σ, rk) (simply denoted byΣ) whereΣ is a finite set andrk : Σ → N.
As usual, we setΣk = {σ ∈ Σ | rk(σ) = k}, k ≥ 0 anddeg(Σ) = max{k ∈ N | Σk 6= ∅}.

A tree t over Σ is a partial mappingt : N∗
+ → Σ such that the domaindom(t) of t is a non-empty

prefix-closed set, and ift(w) ∈ Σk, k ≥ 0 then fori ∈ N+,wi ∈ dom(t) iff 1 ≤ i ≤ k. A treet is called
infinite if its domain is infinite. Any element indom(t) is called anode oft. We shall denote byTω

Σ the
set of all infinite trees overΣ.

Next we recall elements from classical MSO logic over trees.Let Σ be a ranked alphabet. The syntax
of formulas of the MSO logic overΣ is given by:

ϕ := labelσ(x) | edgei(x, y) | x ∈ X | ¬ϕ | ϕ ∨ ψ | ∃x � ϕ | ∃X � ϕ

whereσ ∈ Σ, 1 ≤ i ≤ deg(Σ), x, y are first order variables andX is a second order variable.
An infinite treet ∈ Tω

Σ is represented by the relational structure(dom(t), edge1 , . . . , edgedeg(Σ),

(Rσ)σ∈Σ) whereRσ = {w ∈ dom(t) | t(w) = σ} for σ ∈ Σ, and for eachw, u ∈ dom(t), edgej(w, u)
holds true iffu = wj, for 1 ≤ j ≤ deg(Σ). Given a finite set of first and second order variablesV,
a (t,V)-assignmentρ is a mapping assigning elements ofdom(t) to first order variables fromV and
subsets ofdom(t) to second order variables fromV. Let x be a first order variable andw ∈ dom(t).
Thenρ[x → w] denotes the(t,V ∪ {x})-assignment which associatesw to x and acts asρ onV \ {x}.
The notationρ[X → I] for a second order variableX and a setI ⊆ dom(t) has a similar meaning.

Now, we consider the ranked alphabetΣV = Σ×{0, 1}V with rk(σ, f) = rk(σ) for eachσ ∈ Σ and
f ∈ {0, 1}V . For any(σ, f) ∈ ΣV we denote by(σ, f)1 and(σ, f)2 the symbolsσ andf , respectively.
An infinite trees ∈ Tω

ΣV
is calledvalid if for each first order variablex ∈ V, there is exactly one node

w of s such that(s(w)2) (x) = 1. The set of all valid infinite trees overΣV is denoted byTω,v
ΣV

. Every
valid trees ∈ Tω

ΣV
corresponds to a pair(t, ρ) wheret ∈ Tω

Σ andρ is a valid(t,V)-assignment, such that
t = s1, and for every first order variablex, second order variableX, and any nodew ∈ dom(s), we have
thatρ(x) = w iff (s(w)2) (x) = 1, andw ∈ ρ(X) iff (s(w)2) (X) = 1. Then, we say thats and(t, ρ)
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correspond to each other. In the following, we identify a valid infinite trees with its corresponding pair
(t, ρ). The following result is well-known.

Proposition 5.1. The infinitary tree languageTω,v
ΣV

is ω-recognizable.

Letϕ be an MSO-formula over trees [53, 54]. As usual we shall writeΣϕ instead ofΣFree(ϕ). Then
for Free(ϕ) ⊆ V, the fundamental theorem of Rabin (cf. [46]) states that theinfinitary tree language

LV(ϕ) = {(t, ρ) ∈ Tω,v
ΣV

| (t, ρ) |= ϕ}

is ω-recognizable; conversely, for eachω-recognizable tree languageR ⊆ Tω
Σ there exists an MSO-

sentenceϕ such thatR = L(ϕ).

Throughout this section,Σ will denote a ranked alphabet andL a bounded distributive lattice. Next,
we introduce our multi-valued Muller tree automata overΣ andL.

Definition 5.1. A multi-valued Muller tree automaton(MVMTA for short) overΣ andL is a quadruple
M = (Q, in,wt,F), whereQ is the finite state set,in : Q → L is the initial distribution, wt :
⋃

k≥0

Q×Σk×Q
k → L is amapping assigning weights to the transitionsof the automaton, andF ⊆ P(Q)

is thefamily of final state sets.

Let t ∈ Tω
Σ . A run of M overt is a partial mappingrt : N∗

+ → Q such thatdom(rt) = dom(t). The
weight ofrt at w ∈ dom(t) is the value

wt(rt, w) := wt (rt(w), t(w), (rt(w1), . . . , rt(w · rk(t(w))))).

Then theweight ofrt is defined by

weight(rt) := in(rt(ε)) ∧
∧

w∈dom(t)

wt(rt, w).

Observe that the set

{

wt(t) | t ∈
⋃

k≥0

Q× Σk ×Qk

}

is finite; therefore the valueweight(rt) is well-

defined. Moreover, ifL′ is the (finite) sublattice ofL generated by
{

in(q), wt(t) | q ∈ Q, t ∈
⋃

k≥0

Q× Σk ×Qk

}

thenweight(rt) ∈ L′.

Any infinite prefix-closed chainπ ⊆ dom(rt) is called aninfinite path ofrt. Then, the runrt is called
successfulif for each infinite pathπ of rt, the setInQ(rt|π) of states that appear infinitely often alongπ
constitute a final state set, i.e.,InQ(rt|π) ∈ F . Thebehaviorof M is the infinitary formal power tree
series

‖M‖ : Tω
Σ → L

whose coefficients are given by
(‖M‖ , t) =

∨

rt

weight(rt)

for t ∈ Tω
Σ , where the supremum is taken over all successful runsrt of M overt.



M. Droste et al. / Multi-Valued MSO Logics Over Words and Trees 321

An infinitary tree seriesS : Tω
Σ → L is said to beMuller recognizableif there is a MVMTAM,

such thatS = ‖M‖ . The family of all Muller recognizable tree series overΣ andL is denoted by
LM−rec 〈〈Tω

Σ 〉〉 .
In the following, we introduce our multi-valued monadic second order logic over trees.

Definition 5.2. The syntax of formulas of the multi-valued MSO logic for trees overΣ andL is given
by:

ϕ := k | labelσ(x) | edgei(x, y) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ

| ∃x � ϕ | ∃X � ϕ | ∀x � ϕ | ∀X � ϕ

wherek ∈ L, σ ∈ Σ and1 ≤ i ≤ deg(Σ). We shall denote byMSO(L,Σ) the set of all such multi-
valued MSO-formulasϕ.

Now, we represent the semantics of the formulas inMSO(L,Σ) as infinitary tree series over the
extended alphabetΣV and the latticeL.

Definition 5.3. Let ϕ ∈ MSO(L,Σ), V be a finite set of variables containingFree(ϕ), and f be
a multi-valued atomic assignment overΣV . The f -semanticsof ϕ is an infinitary formal power tree

series‖ϕ‖f
V ∈ L

〈〈

Tω
ΣV

〉〉

. Let (t, ρ) ∈ Tω
ΣV
. If ρ is not a valid(t,V)-assignment, then we set

(‖ϕ‖f
V , (t, ρ)) = 0. Otherwise, we inductively define(‖ϕ‖f

V , (t, ρ)) ∈ L literally as in Definition 4.2,
replacing(w, σ) by (t, ρ) and the domainω of w by dom(t).

The following example presents an interpretation of a multi-valued MSO-sentence over trees.

Example 5.1. Let Σ be a ranked alphabet withΣ3 = {γ}, Σ2 = {σ, δ} andΣ0 = {a, b}. Let also
({0, 1, 2, 3, 4},≤,− ) be a bounded distributive lattice with negation mapping, where≤ is the natural
order and0 = 4, 1 = 2 = 0, 3 = 3 and4 = 0. Note that this structure is not a De Morgan algebra, since
− is not injective (see Section 6). We consider the multi-valued atomic assignmentf as follows. For any
(t, ρ) ∈ T

ω,v
Σlabelσ(x)

we let

(f (labelσ(x)) , (t, ρ)) =

{

2 if t(ρ(x)) = σ

0 otherwise
,

for any(t, ρ) ∈ T
ω,v
Σlabelδ(x)

we let

(f (labelδ(x)) , (t, ρ)) =

{

3 if t(ρ(x)) = δ

0 otherwise
,

and for any other atomic formulaϕ and any(t, ρ) ∈ T
ω,v
Σϕ

we set
(f (ϕ) , (t, ρ)) = 3.

We define now the sentence

ϕ = (∀x � labelσ(x)) ∨ (∀x � labelδ(x)) .

Then for anyt ∈ Tω
Σ the coefficient

(

‖ϕ‖f , t
)

= 2 if t is the infinite binaryσ-tree,
(

‖ϕ‖f , t
)

= 3 if t

is the infinite binaryδ-tree, and
(

‖ϕ‖f , t
)

= 0 otherwise.
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An infinitary tree seriesS ∈ L 〈〈Tω
Σ 〉〉 is calledMSO-f-definableif there is a sentenceϕ ∈MSO(L,Σ)

such thatS = ‖ϕ‖f .We letLf−mso 〈〈Tω
Σ 〉〉 comprise all formal power tree series fromL 〈〈Tω

Σ 〉〉 , which
aref -definable by some sentence inMSO(L,Σ). If we consider the crisp atomic assignment, then we
simply denote the classLcf−mso 〈〈Tω

Σ 〉〉 byLmso 〈〈Tω
Σ 〉〉

The next theorem states a multi-valued version of Rabin’s result for infinitary tree series.

Theorem 5.1. Let Σ be a ranked alphabet andL be a bounded distributive lattice with any negation
function. Then

LM−rec 〈〈Tω
Σ 〉〉 =

⋃

f

Lf−mso 〈〈Tω
Σ 〉〉 = Lmso 〈〈Tω

Σ 〉〉

where the union is taken over all Muller recognizable multi-valued atomic assignments.

As noted before, in the proof we can proceed almost exactly asin the case of infinite words. A deci-
dability result analogous to Theorem 4.2 also holds forMSO(L,Σ)-sentences over trees.

One can consider multi-valued tree automata over bounded distributive lattices consuming finite trees
as a special case of weighted tree automata over semirings (cf. [3, 6, 7, 8, 9, 18, 21, 25, 34, 44, 51]). Then,
using the same multi-valued MSO logic, but now over finite trees, we can state the results of Thatcher
and Wright [52] and Doner [15] for the equivalence of tree recognizability with MSO-definability, in the
framework of finitary formal power trees series over boundeddistributive lattices with negation function.
This result has been already established in [21]. Indeed, Droste and Vogler proved the aforementioned
equivalence for locally finite semirings. Note that the weights of a multi-valued tree automaton or a
MSO(L,Σ)-formula induce a finite semiring.

6. De Morgan algebras

In this section, we consider De Morgan algebras. Recently, De Morgan algebras have been investigated
intensively in the literature for multi-valued model-checking, see [13, 29, 32, 37].

A distributive lattice(L,≤,− ) is aDe Morgan(or quasi-Boolean) algebra, if it is equipped with a
complement mapping− : L→ L which satisfies the involution and De Morgan laws, i.e.,

a = a,

a ∨ b = a ∧ b,

a ∧ b = a ∨ b

for all a, b ∈ L. Note that thena ≤ b impliesb ≤ a for anya, b ∈ L. Furthermore, ifL is bounded then
0 = 1 and1 = 0. So,− : (L,≤) → (L,≥) is an order-isomorphism. Hence, if(ai | i ∈ I) ⊆ L is a
family of elements ofL for which

∨

i∈I

ai exists, then
∨

i∈I

ai =
∧

i∈I

ai.

For instance, the lattice(F,≤,− ) whereF = [0, 1], the unit interval,≤ is the usual order of real
numbers, anda = 1 − a for anya ∈ F is a De Morgan algebra. We refer the reader to [43] for many
more examples.

However, since any bounded distributive lattice can be endowed with a negation function, it is clear
that lattices with negation function constitute a much larger class than De Morgan algebras. In particular,
any bounded distributive lattice which is not anti-isomorphic to itself carries no complement operation
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making it a De Morgan algebra. The easiest finite example of this is provided by the four element
Boolean algebra{a, b, c, d} with an additional elemente added as new0 below it:

a

b c

d

e

Note that ifL is a De Morgan algebra, then clearly the collection of power series(L 〈〈Σω〉〉 ,≤) also
forms a De Morgan algebra.

In case of De Morgan algebras an alternative simpler syntax of formulas of our multi-valued MSO
logic overΣ andL can be given by

ϕ := k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ψ | ∃x � ϕ | ∃X � ϕ.

We define the semantics‖ϕ‖ of formulasϕ of this syntax exactly as in Definition 4.2. Given a multi-
valued atomic assignmentf , letLdm−f−mso 〈〈Σω〉〉 be the collection of all series definable in this logic.

Then conjunction and universal quantifiers can be defined by letting

- ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ)

- ∀x � ϕ = ¬(∃x � ¬ϕ)

- ∀X � ϕ = ¬(∃X � ¬ϕ)

for eachϕ,ψ ∈ MSO(L,Σ). Then, using the De Morgan laws, it is easy to see that we have the
following equalities for any(w, σ) ∈ Σω

V whereσ is a valid assignment:

-
(

‖ϕ ∧ ψ‖f
V , (w, σ)

)

=
(

‖ϕ‖f
V , (w, σ)

)

∧
(

‖ψ‖f
V , (w, σ)

)

-
(

‖∀x � ϕ‖f
V , (w, σ)

)

=
∧

i∈ω

(

‖ϕ‖f
V∪{x} , (w, σ[x → i])

)

-
(

‖∀X � ϕ‖f
V , (w, σ)

)

=
∧

I⊆ω

(

‖ϕ‖f
V∪{X} , (w, σ[X → I])

)

.

The crisp atomic assignmentcf is also defined as before, and we denote again the class
Ldm−cf−mso 〈〈Σω〉〉 byLdm−mso 〈〈Σω〉〉. As an immediate consequence of Theorem 4.1 and the above
equalities we obtain:

Corollary 6.1. Let Σ be an alphabet and(L,≤,− ) be a De Morgan algebra. Then

Lω−rec 〈〈Σω〉〉 =
⋃

f

Ldm−f−mso 〈〈Σω〉〉 = Ldm−mso 〈〈Σω〉〉

where the union is taken over allω-recognizable multi-valued atomic assignments.
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Recall that any bounded distributive lattice(L,≤) can be considered as a semiring(L,+, ·, 0, 1) with
supremum as addition and infimum as multiplication operation. In view of our results (and the wealth
of results in the literature on weighted automata having weights in arbitrary semirings) one could ask
whether we could obtain our results for an arbitrary semiring with some complement function. By the
above, the complement function should interconnect addition and multiplication. Therefore we consider
the following concept:

Let (A,+, ·, 0, 1) be a semiring andf : A → A be a function. We callf a complement function, if
the following hold:

(i) f is aninvolution, i.e. f(f(a)) = a for eacha ∈ L,

(ii) f is a monoid morphism from(A,+, 0) to (A, ·, 1), i.e. f(0) = 1 andf(a+ b) = f(a) · f(b) for
anya, b ∈ A.

Note that then alsof(1) = 0 andf(a · b) = f(a) + f(b) for any a, b ∈ A, andf is a monoid
isomorphism from(A,+, 0) to (A, ·, 1) and from(A, ·, 1) to (A,+, 0).

Clearly, any De Morgan algebra(L,≤,− ) constitutes a semiring with complement function, letting
again addition be the supremum and multiplication be the infimum operation inL. Next we show the
converse:

Proposition 6.1. Let (A,+, ·, 0, 1) be a commutative semiring with complement functionf. For any
a, b ∈ A, put

a ≤ b iff a+ b = b

Then(A,≤, f) is a De Morgan algebra.

Proof:
We havef(0) = 1, f is an involution,f(a+b) = f(a) ·f(b) andf(a ·b) = f(a)+f(b). Hence,0 ·0 = 0
implies1 + 1 = 1, so(A,+, 0) and hence also(A, ·, 1) are idempotent. Thus,≤ is a partial order onA
(cf. Proposition 20.19 in [31]) anda+ b is the supremum ofa andb in this partial order. Also,0 ≤ a for
anya ∈ A, anda · 0 = 0 impliesf(a) + 1 = 1, sof(a) ≤ 1, showing alsoa ≤ 1 for anya ∈ A.

Next note that ifa ≤ b, then by distributivity we obtaina · c ≤ b · c, for anya, b, c ∈ A. We claim
thata · b is the infimum ofa andb in (A,≤), for anya, b ∈ A. Since,a ≤ 1, the previous remark implies
a ·b ≤ b and similarlya ·b ≤ a. Now if c ∈ A with c ≤ a andc ≤ b, thenc = c ·c ≤ a ·c ≤ a ·b, proving
our claim. Hence(A,≤) is a distributive lattice with+ being the operation supremum and· being the
infimum. Moreover,(A,≤) is bounded, andf is a complement mapping satisfying De Morgan laws.
Thus, our proof is completed. ut

This result shows that semirings with complement functionsand De Morgan algebras provide actu-
ally the same class of structures.

7. Conclusion

We considered a multi-valued MSO logic over bounded distributive lattices and we proved a multi-valued
generalization of Büchi’s fundamental theorem for infinite words over bounded distributive lattices with
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any negation function. We showed that our methods can be extended to a multi-valued logic over infinite
trees, proving a generalization of Rabin’s theorem. Finally, we dealt with De Morgan algebras showing
that they coincide with semirings with complement mapping.In case of De Morgan algebras our logic
has a simpler syntax due to the De Morgan laws. If we consider the special case of thefuzzy semiring
([0, 1],∨,∧, 0, 1) (which is a De Morgan algebra with complementa = 1−a for anya ∈ [0, 1]), then we
obtain afuzzy MSO logic. In this case the fundamental theorem of Büchi states the expressive equivalence
of ω-recognizable fuzzy languages(cf. [35, 43, 47]) withfuzzy MSO-definable series.Similar results are
obtained forfuzzy Muller recognizable tree languagesover infinite trees.
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