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Abstract. We introduce multi-valued Buchi and Muller automata ovistributive lattices and a
multi-valued MSO logic for infinite words. For this logic, warove the expressive equivalence
of w-recognizable and MSO-definable infinitary formal poweieseover distributive lattices with
negation function. Then we consider multi-valued Mullexetrautomata and a multi-valued MSO
logic for trees over distributive lattices. For this logige establish a version of Rabin’s theorem for
infinitary tree series.
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1. Introduction

In 1962, Buchi [12], motivated by decision problems in mgshowed that the languages of infinite
words accepted by finite automata coincide with the langadgénable in monadic second order (MSO)
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logic. Buchi's fundamental theorem led to important picadtapplications for model checking of non-
terminating processes (cf. [1, 38, 41, 45, 53, 54]). Regetite concept of multi-valued logics over De
Morgan or quasi-Boolean algebras has played a centralndteei development of new tools for model
checking techniques (cf. [10, 13, 32, 37]). In this approdlea values of the atomic formulas are given
as elements of an underlying De Morgan algebra, thereby Iimgglencertainty or partial information
which often occurs when analyzing or specifying propertésystems. This has led to multi-valued
practical tools [13, 32, 37]; for a survey, see [29].

It is the goal of this paper to establish Buchi's theorem domulti-valued MSO logic. We will
assume that the values of our logic are taken in an arbitramdbed distributive lattice. The class of
these lattices is much larger than the class of De Morgarbedge We will also introduce multi-valued
Biichi and Muller automata acting on infinite words, and wanstheir mutual equivalence in expressive
power with our multi-valued logic.

Next we describe our approach in some more detail. The syftanr multi-valued MSO logic is
enriched withA, Va, VX. In order to cope with negation of formulas, we assume thautigerlying
bounded lattice has an arbitrary negation function whighss supposed to interchange the largest and
smallest elements of the lattice, respectively. Since amnbed distributive lattice carries such a func-
tion, this is no essential restriction of our class of l&siconsidered. In a first result, we show that the
behaviors of multi-valued Buchi or Muller automata oveubded distributive lattices and infinite words
admit a simple characterization. In our main result, we hsedescription to show the expressive equiva-
lence of our logic with the automata models. Since all oupfg@are constructive, we obtain decidability
procedures for the equality and (multi-valued) implicatfiroblems for sentences of our logic.

We also indicate that our methods can be extended to covei-valled logics and automata on
infinite trees. Here we provide an example using a latticd wégation function which isot a De
Morgan algebra. Finally, we phrase our results for a loggedeon De Morgan algebras, and we give a
characterization of De Morgan algebras in terms of sensrimigh complement functions.

For the closely related strand of weighted automata see7[223, 28, 33, 36, 49] for monographs
and surveys. Recently, several authors have been intéreskSO logic equipped with weights from
semirings. More precisely, Droste and Gastin [16] considea weighted MSO logic and proved its
expressive equivalence with weighted automata on finitedsyathereby generalizing Bichi's and EI-
got's theorem [11, 24]. Droste and Rahonis [19] considehedsame logics and established the afore-
mentioned fundamental result of Biichi for infinitary seridt is clear that in this case the underlying
semirings have to satisfy special completeness propgréasitting infinite sums and countably infi-
nite products. More recently, in [20] the authors considameighted automata and a weighted logics
with discounting eliminating the completeness axioms efuhderlying semirings. For further work on
weighted logics and automata for trees, pictures, traegts,tand distributive systems we refer the reader
to [5, 21, 22, 30, 39, 40, 42, 48]. In our paper, we develop beoty for arbitrary bounded distributive
lattices with negation function, without any further regument of completeness axioms. Also, here
negation can be applied to all formulas, whereas in [16, @Pnégation is restricted to atomic formulas.

2. Preliminaries

Let (L, <) be a partially ordered set andb € L (resp.S C L). We denotethe least upper boun¢br
supremumof a andb (resp. ofS), if it exists in L, by a VvV b (resp.V.S) and thegreatest lower boungor
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infimum), if it exists in L, by a A b (resp.AS). If S = (a; | i € I) then we also use the notationga;

i€l
and A a;, respectively. If the order relatiof is understood, then we simply denote a partially ordered
iel
set byL.

A partially ordered sel is called alattice, if for all a,b € L, a V b anda A b exist. A latticeL is
calleddistributiveif it satisfies, for alla, b, ¢ € L, the equations

aN(bVe)=(aAb)V(aAc)and(aVb)Ac=(aNc)V (bAc).

It is well-known that if L is any distributive lattice and” C L a finite subset, then the sublattiéé
of L generated by is finite. In fact, if F = {AI | I C F}, due to the distributivity laws we have
L'={vJ|JCF'}.

A partially ordered setL, <) is boundedf it contains two distinguished elemeriisl € L such that
0<a<1,foralla € L. An elementa # 0 of a lattice L is calledjoin-irreducibleif a = b Vv ¢ implies
a=>bora = cforallbc e L. We denote by/(L) the set of all join-irreducible elements éf If the
lattice L is finite, then

a=Vv{be J(L)|b<a}

foranya € L. Moreover, if L is distributive, any join-irreducible elemeatc L is prime i.e. whenever
a<bVcwithb,ce L,thena <bora < c(cf. [4, 14]).

Let (L, <) be a bounded distributive lattice and: . — L be any function witl) = 1 and1 = 0.
Then we call” a (genera) negation functiorand (L, <, ) abounded distributive lattice with negation
function. Note that any bounded distributive lattidecan be equipped with a negation functiorby
letting, e.g.,0 = 1 andZ = 0 for eachz € L\ {0}. The more particular class of De Morgan algebras
will be considered in Section 6 (see there for a more detaliscussion and comparison). Other well-
investigated classes of distributive lattices with namgafunction include Heyting-algebras and variants
of pseudocomplemented lattices.

Given two bounded latticeld., <), (L', <), a mappingf : L — L'’ is called aattice morphisnif f
preserves the greatest and smallest elements, respgdiindlfor anya, b € L we have

flavb) = fla) Vv f(b) and flanb) = f(a)Af(b).
Thena < bimplies f(a) < f(b) forall a,b € L.

Now we turn to semirings. By aemiringwe mean a setl together with two binary operations
and- and two constant elemersand1 such that

(i) (A,+,0)is a commutative monoid,

(i) (A4,-,1)isamonoid,
(iii) the distributivity lawsa - (b+c¢) =a-b+a-cand(a+b)-c=a-c+b-choldforalla,b,c € A,
(iv) 0-a=a-0=0foralla € A.

If the operations and the constant elementd @fre understood, then we denote the semiring simply
by A. Otherwise, we use the notatioA, +, -, 0, 1).
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A semiring A is calledcommutativéf a-b = b-a for everya, b € A. Clearly, any bounded distributive
lattice with operations supremum as addition and infimum aliplication constitutes an idempotent,
commutative semiring. Particular examples are providethbjuzzy semiring|0, 1], V, A,0, 1) and the
Boolean semirin@® = ({0,1},V,A,0,1).

In the following, we introduce infinitary formal power sesiever distributive lattices.

Let X be an alphabet. We denote the set of infinite words avby . Let w = xgx1... € X¥,
with zg, 21, ... € 3. We shall use the notation = w(0)w(1) ..., with w(i) = z;,fori =0,1,....

Furthermore, le{L, <) be a bounded distributive lattice. A mappisg: ¥ — L is called an
infinitary formal power seriegor seriesfor short)over and L. The values of5 are denoted bysS, w),
wherew € ¥¢, and are also referred to as tbeefficientsof the series. The serigscan be written as a
formal supremum

S = \/ (S, w)w.
wedw

The supportof a seriesS : 3¢ — L is the setsupp(S) = {w € ¥“ | (S,w) # 0}. The collection
of all infinitary formal power series over and L is denoted byL ((3¢)). Then(L ((¥¥)),<) is a
bounded distributive lattice where f6f, 7" € L ((3¢)) the partial orderS < T'is defined byS < T’ iff
(S,w) < (T,w) for all w € £¢. Then, the supremurfi V T, the infimumsS A T and the scalar infimum
kNS (k € L) are defined elementwise

(SVT,w)=(S,w)V (T,w)
(SAT,w) = (S,w) A (T,w)
(kNS w)=kA(S,w)

foranyw € X%,

If (L, <,”)is abounded distributive lattice with negation functidren(L ((X“)) , <,” ) constitutes
also a bounded distributive lattice with negation functiéor any seriesS € L ((¥¢)) its negation
S € L{(x¥)) is defined by

foranyw € X%,

Let (L, <), (L', <) be two bounded distributive lattices arid: L — L’ be a mapping. Theif is
extended to a mappinfj: L ((X¢)) — L' ((X¢)) in the following way. For any serieS € L ((X“)) the
seriesf(S) € L' ((3*)) is determined by

(f(5),w)) = F((S,w))

forall w € Xv.

In the sequel, we recall notions and results from classigaladic second order logic (MSO logic
for short) over infinite words. LeX be an alphabet. The syntax of formulas of the MSO logic ovés
given by:

p=Py(z)|r<ylzeX|-p|lpeVY|[Tw.p[IX.p
wherea € ¥, z, y are first order variables and is a second order (set) variable.

We shall denote the set of natural numbiEralso byw. An infinite wordw = w(0)w(1)... € ¥“is
represented by the structufe, <, (R,).cx) WhereR, = {i | w(i) = a} for a € . LetV be a finite set
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of first and second order variables.(#&, V)-assignment is a mapping assigning elementsuofo first
order variables fron), and subsets ab to second order variables frob If x is a first order variable
andi € w, theno[z — i] denotes théw,V U {z})-assignment which assigrido = and acts as on
V \ {z}. For a second order variablé andI C w, the notationo[X — I] has a similar meaning.

In order to encode pair@w, o) for all w € ¥ and any(w, V)-assignment, we use the extended
alphabetsy, = ¥ x {0,1}Y. Each word inX$ can be considered as a péiv, o) wherew is the
projection over: ando is the projection ovef0,1}Y. Theno is avalid (w, V)-assignment if for each
first order variabler € V the z-row contains exactly oné. In this case, we identifg with the (w, V)-
assignment so that for each first order variabke V, o(x) is the position of thé on thez-row, and for
each second order variahlé € V, o(X) is the set of positions labelled withalong theX -row.

It is well-known that the set

Ny = {(w,0) € 5 | o is avalid(w, V)-assignmerit

is w-recognizable.
Let ¢ be an MSO-formula. We shall writg,, for X p;..¢(,) and Ny = Npyee(,)- Furthermore, for
Free(p) CV we set
Ly(p) ={(w,0) € Ny | (w,0) = ¢}

for the language defined by overX,,. We simply write L() = Lpycc(y) (). Then, the fundamen-
tal theorem of Biichi [12] states that for each MSO-formul¢he languageCy,(y) is w-recognizable;
conversely, eacly-recognizable language C ¢ is definable by an MSO-sentengei.e. R = L(y).

3. Multi-valued automata

In this section, we introduce multi-valued Biichi and Mub&itomata over distributive lattices. Létbe
an alphabet and be a bounded distributive lattice.

Definition 3.1. (a) Amulti-valued Muller automato(MVMA for short) overX and L is a quadruple
A = (Q,in,wt, F), whereQ is thefinite state setin :  — L is theinitial distribution, wt :
Q x X xQ — Lis amapping assigningeightsto the transitions of the automaton, ahdC P(Q)
is thefamily of final state sets

(b) An MVMA A is amulti-valued Richi automator{MVBA for short) if there is a sef” C @ such
that F ={SCQ|SNF#0}.

Letw = aga; ... € X¥. A path of A overw is an infinite sequence of transitiof, := (ti)izo , SO
thatt; = (g, a;, gi+1) for all i > 0. Theweight of P,, is defined by
weight(Py) = in(qo) /\wt
>0

Observe that the s¢tvt(t) | t € Q x X x Q} is finite and thusveight( P, ) is well-defined. Furthermore,
weight(P,) € L' whereL’ is the (finite) sublattice of. generated by0, 1,in(q),wt(t) | ¢ € Q,t €
Q x X x Q}. We denote bynQ( w) the set of states which appear infinitely many time®&jni.e.,

In%(P,) ={q€ Q|3 :t;=(qai,qi+1)}
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The pathP,, is calledsuccessfuf the set of states that appear infinitely often aldpgconstitute a final
state set, i.e[n%(P,) € F. Thebehaviorof A is the infinitary formal power series

IA] = 3% — L

which is defined by
(Il w) = \/weight(P,)

Py
for w € X¥, where the supremum is taken over all successful pBthef A overw. SincelL’ is finite,
(Al ,w) exists and || A|| ,w) € L’ for eachw € ¥¥.

An infinitary seriesS : ¥ — L is said to beMuller recognizablgresp. Buchi recognizableor w-
recognizable)f there is an MVMA (resp. an MVBAM so thatS = ||.A| . We shall denote the family of
all Muller recognizable (respu-recognizable) series over by LM =7¢¢ ((3«)) (resp. LY ((£9))).
So, trivially we haveL~—"¢¢ ((x@)) C LM=ree ((x@)) | In fact:

Theorem 3.1. [19] Let X be an alphabet anHl be a bounded distributive lattice. Then
[wTec <<Ew>> _ LM—rec <<Ew>> )

Proof:

Choose any MVMAA. Let L’ be the sublattice of generated by, 1 and the weights ofd. Then’ is

a finite bounded distributive lattice which in turn meang tha semiring(L’, v/, A, 0, 1) satisfies all the
technical assumptions of [19] (cf. [19], Example 1), i.dsitotally commutative complete. By Theorem
25in [19], we obtain|A|| € L~"¢ ((X«)) C LY~ ((3¥)). O

Proposition 3.1. [19, 26, 27] The class ab-recognizable power serids’~"<¢ ((3)) is closed under
supremum, infimum and scalar infimum.

Next we obtain the following Proposition by a standard awttom construction. Using this result,
we will derive a generalization of it below in Propositior# 3.

Proposition 3.2. Let (L, <), (L', <) be two bounded distributive lattices ayfid: L — L’ be a lattice
morphism. Then for anw-recognizable serie§ in L ((X“)) the seriesf(S) € L' ((X¥)) is again
w-recognizable.

Proof:
Let.4 be an MVBA accepting. Define the MVBA A’ over L’ by replacing inA all weightsk by f (k).
Sincef is a lattice morphism, it is easy to check that thietf|| = f(.9). O

For any languagé? C ¢, thecharacteristic seried € L ((X“)) of R, is defined by

a1 ) 1 ifwe R
7w — .
R 0 otherwise

for all w € Xv.
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Proposition 3.3. [19] Let R C X be anw-recognizable language. Then the characteristic séfjds
w-recognizable.

Assume now thaR?,..., R, C X¢ arew-recognizable languages agq,...,k, € L. Then by
Propositions 3.1 and 3.3 the series
S = \/ k; N\ 1g,
1<i<n

is w-recognizable. Such a seriésis calledw-recognizable step functiofl9]. Since the class af-
recognizable languages ovEr is closed under the Boolean operations, here we may assunsets
(Ri)1 <<y, to form a partition of“. HencesS is anw-recognizable step function iff the image 8fis
finite and for eaclk € L, the languages— (k) = {w € ¥ | (S, w) = k} is w-recognizable.

Next, in our first main result, we show thatrecognizable series are the samevagcognizable step
functions in the context of distributive lattices.

Theorem 3.2. Let (L, <) be any bounded distributive lattice. Then, an infinitary poweriesS <
L ((¥¥)) isw-recognizable iff it is anv-recognizable step function.

Proof:
First, assume tha$ is w-recognizable and ledl = (Q,in,wt,F) be an MVMA overX such that
S =||A|l.LetL' = {kq,...,k,} be the sublattice of generated by, 1 and the weights afl. For any
1 <1 < nwe set

R, ={w e X¥| (S,w) = k;}.

Then
S = \/ kji/\lRi.

1<i<n

We show that the languagé®; (1 < i < n) arew-recognizable. LeB = ({0, 1}, <) be the two-
valued Boolean algebra. For each join-irreducible elemeft.’, we define a mapping, : L' — {0,1}

by putting
1 ifp<a
Jola) = { 0 otherwise

for anya € L.

We claim thatf,, is a lattice morphismClearly, f,,(0) = 0 asp # 0, and f,(1) = 1. Next, note that
if a,a’ € L' and fy(a vV a') = 1, thenp < a Vv d’, hencep < a orp < «a sincep is prime, proving
fplaVvd) = fy(a)V fp(d’). Clearly, fy(a A d') = fy(a) A fp(a’). By Proposition 3.2, the serig(S)
of B ((X¥)) is w-recognizable and therefore the languagep(f,(S)) = {w € ¥¥ | p < (S,w)} is
w-recognizable. Now let < i < n. Since the elemeri; of L’ is the supremum of the join-irreducible
elements ofL’ below k;, the infinitary languageR; is obtained as the intersection of the languages
supp(fp(9)) (p < k; and join-irreducible) and of the complements of the langsagpp(f,(5)) (p £ ki
and join-irreducible). Since the classwfrecognizable languages is closed under Boolean opesation
we conclude thaR; is anw-recognizable language, as required.

The converse is immediate as noted before, by Propositidnari#l 3.3. O
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The reader should observe that the above proof is effedtideed, starting form the weights of the
automatonA, we compute the sublattick in finitely many steps. Then following our proof, we obtain
Buchi automata for the languagé&s (1 < i < n).

Consider two alphabefs, A and a non-deleting homomorphisim: ¥* — A*, i.e., h(a) # ¢ for
eacha € . Thenh can be extended to a mappihg >“ — A% in the obvious way. For any infinitary
seriesS € L ((X“)) having finite image, and any infinitary languageC ¢, we can define the series
hr(S) € L{(A*)) by

(hr(S),w) = \/  (S.w)
weh~L(u)NR
for all w € A“. We denote the seriés,. simply by h.
Furthermore, ifl" € L ({A“)) then the serieg~!(T') € L ((xv)) is specified by

(hHT),w) = (T, h(w))

for anyw € >¢.

Next, we show that given two distributive latticés L', any mappingf : L — L’ preserves the
w-recognizability property of formal power series. This gelizes Proposition 3.2. Furthermore, we
show that thew-recognizability property of infinitary series is presaivi@y non-deleting and inverse
non-deleting homomorphisms.

Proposition 3.4. (a) Let(L, <), (L, <) be two distributive lattices andl : L — L’ be any map-
ping. Then for anyw-recognizable serie§ in L ((¥“)) the seriesf(S) € L’ ((¥¥)) is again
w-recognizable.

(b) Leth : X¥ — A“ be a non-deleting homomorphism aRdC >“ be anw-recognizable language.
Thenhg : L (%)) — L {(A®)) andh™! : L ((A%)) — L ((X*)) preserve thes;-recognizability
property of formal power series.

Proof:
Due to Theorem 3.25 is anw-recognizable step function, i.&8,= \/ ki N1g,, where forl <i <n,
1<i<n
k; € L andR; is w-recognizable. Then
F8)="\ f(k)Alg
1<i<n
and thusf (S) is anw-recognizable step function.
On the other hand, for any € A“ we have
(hr(S),w) = \/  (Sw)
weh~1(u)NR
= \/ ki N \/ (IR“U))
1<i<n weh~1(u)NR

- \/ ki A (lh(RiﬂR)vu)

1<i<n
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and hence
hr(S) = \/ ki A n(rinR)-
1<i<n

Since the class ab-recognizable languages is closed under non-deleting heorhisms [45], we ob-
tain that the serieb(.S) is w-recognizable.

Finally, assume thal’ = \/ k:; A 1p is anw-recognizable series ovekx and L, where for

1<j<m ’

1<j<m, k:; el andR; C A¥ isw-recognizable. Then

h_l(T) = \/ k‘; AN 1h—1(Rg).

1<j<m

The class ofu-recognizable languages is closed under inverse nonitpledmomorphisms [45], there-
fore h=1(T) is w-recognizable and our proof is completed. O

As an immediate consequence of Proposition 3.4(a), werobtai

Corollary 3.1. Let (L,<,” ) be a bounded distributive lattice with negation functionddet S <
L¥=ree ((3%)) . Then alsaS € L¥~7e¢ ((X¢)) .

4. Multi-valued MSO logic

In this section, we introduce our multi-valued monadic setorder logic over words, and we state our
multi-valued Buchi theorem in the context of distributilatices with negation function. Throughout
this section, we assume thats an alphabet and., <,~ ) is a bounded distributive lattice with negation
function.

Definition 4.1. The syntax of formulas of the multi-valued MSO logic oveand L is given by:
pi=k|FP(z)|z<ylzeX|-ploVvi|ond|Tr.p|IX. o |Vr.p|VX.p
wherek € L,a € ¥. We shall denote by/ SO(L, X)) the set of all such multi-valued MSO-formulas

Next, we represent the semantics of the formula8/ifO(L, ), as infinitary formal power series
over the extended alphal®{, and the latticd.. Here, our definition of semantics is slightly more general
than the one used in [19]. In [19], the authors assigned th atmmic formulaP,(z),x < yorz € X,
respectively, the characteristic series of its associsliB@-languageSince these series take on oflyl
as values, they can be viewed as "crisp” assignments. Hetbeigeneral flavor of multi-valued logic,
we wish to be more flexible. In the following, we assume thatr¢his a functionf assigning to each
atomic formulayp of the form P,(z),z < y orz € X, respectively, a serieg(y) in L ((X%)). The
assignmentf is calledw-recognizableif the seriesf(y) is w-recognizable for any atomic formula
Later on, we always require thdtis anw-recognizable assignment. As noted after Definition 3.dnth
f(p) takes on only finitely many values, for any atomic formylaln general, we need and make the
following assumption: We will callf a multi-valued atomic assignment ovEr if f(y) takes on only
finitely many values, for any atomic formula
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Definition 4.2. Let ¢ € MSO(L,%), V be a finite set of variables containingree(y), and f be a
multi-valued atomic assignment ov&r,. We define thef-semanticsof ¢ to be an infinitary series
||g0||{, € L ((¥%)) in the following way Let (w, o) € 3. If o is not a valid(w, V)-assignment, then we

put (ng”{,  (w, a)) = 0. Otherwise, we inductively definéHapH{; , (w,a)) € L as follows:

g
Q

(Il (w,0)) = &

if ¢ is an atomic formula of
the formP,(z),z <yorz € X

HSOva w,o > = (f(‘P)v (WU\Free(so)))

I=¢ll}» (w,0)) = (gl (w, )

lle Al (

lov el (w.0)) = (Il (w,0)) v (Il (w,0)
(w,0)) = (el (w,0)) A (el (w,0)

(
(
(
(
(1B llf, (w,0)) =\ (Il 0y - (w0l — 1))
(
(
(

1Ew

13X ol (w,0)) =/ (Nl » (wsolX = 1)

ICw

12 ol (w,0)) = A (19l » (ws 0l — 1))

S

19X ol (w,0)) = A (lelgn » (wiolX = 1)

ICw

We claim that in Definition 4.2, all the occurring infinite sgma and infima exist ik (without any
further completeness assumption). For this, one can shawdogtion on the structure of formulas
that\|gp||{, takes on only finitely many values. Indeed, for atomic forasuthis is clear by assumption,
and the property is preserved by negation, disjunction anglaction. Sincd. is a lattice, the property
is also preserved by infinite suprema and infima, proving tainc

If the multi-valued atomic assignment is well-known, thea amit the superscripf from \|gp||{:.
Furthermore, we simply writgp|| for [|¢|| 7., - If ¥ has no free variables, i.e., ifit is a sentence, then
loll € L{(=+)).

An infinitary power seriesS € L ((¥¢)) is called MSO-f-definableif there is a sentence <
MSO(L,Y) such thatS = ||¢||/ . We let L/ =s° (%)) comprise all series fron ()} which are
f-definable by some sentence M.SO(L,3). Our goal will be to derive a relationship between the
classed./ ™5 ((£«)) and L¥~"¢ ((£)) .

Next, we give two examples of possible interpretations oftrvalued MSO-formulas.
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Example 4.1. We consider the bounded distributive lattid U {oo}, <,” ) (whereN is the set of
natural numbers and is an arbitrary negation function). L& = {a,b,c} and f be the multi-valued
atomic assignment ovét, determined in the following way. For eache >“ and each validw, {x})-
assignment we set

- (f(Pa(@)), (w,0)) =0

if w(o(z))=">b
0 otherwise

2 ifw(o(x)) =c
0 otherwise )

For any other atomic formula, f (i) is the constant functio®. Lety = Va.(P,(z)V Py(z)V P.(x)).
In fact ¢ is a sentence, and for any wortle X the semanticgy||’ returns the valug if the lettera
occurs at least once i, the valuel if no a appears inv butb occurs at least once, and it returns the
value2 if w = ¢~.

Example 4.2. Let againX = {a, b, c}. Letalso(P(X), C,” ) be the bounded distributive lattice of sub-
sets ofY, with union as supremum and intersection as infimum, armahy negation function. Consider
the multi-valued atomic assignmefboverX given by

{a} fw(o(x))=a

® otherwise

{b} fw(o(z)) =0

® otherwise

- (f(Pa(®)), (w,0)) = {

- (f(Pp()), (w,0)) = {

Y ifw(o(x)) =c
0 otherwise '

- (f(PC(m))v (’U],O')) - {
For any other atomic formula, f(¢) takes the constaffit Let p = Jz. (Py(x) V Py(z) V (P.(z) A
{c})). Then for any wordv € 3* the semantics ap onw returns the set of letters that appeatin

Observe that the above definition of semantics is valid fehdarmulay € M SO(L,¥) and each
finite set) of variables containing'ree(y). As we show next, the semantikt@H{; is in fact independent
of the setV; it depends only otF'ree(yp). More precisely,

Proposition 4.1. For anyp € MSO(L,Y), any finite set of variable¥ with Free(¢) C V, and any
multi-valued atomic assignmelftover Xy, it holds that

(el (w,0)) = (Il s (w, 0lrrece))

for each(w,0) € X5, whereos is a valid (w, V)-assignment. Furthermore, the serles||” is w-
recognizable iff the seridiapH{; is w-recognizable.



316 M. Droste et al./ Multi-Valued MSO Logics Over Words and $ree

Proof:

We establish our first claim by induction on the structure mhfulasy € MSO(L,X). For atomic
formulas it is trivial, whereas for negation, disjunctiomdaconjunction it follows directly by induction.
For the case of quantifications and for our second claim, weoaceed almost literally in the same way
as for Proposition 3.3 in [16], replacing sums by supremapaaducts by infima. We provide the details
for the second claim for the convenience of the reader. Boghd, we consider the projectian X, —
Y, With h(w, o) = (w0, 0| pree(y)) for any (w, o) € ¥%,. Thenh is a non-deleting homomorphism. We
havengH{, = hY(||¢|) A 1ng, and if the seried ||/ is w-recognizable, themapH{; is w-recognizable
by Propositions 3.1, 3.3 and 3.4(b). Also, we hdvel’ = h(|¢%,). Thus, if |¢||J, is w-recognizable,
by Proposition 3.4(b) the seriﬂsanf is alsow-recognizable. O

Next, we derive a further closure property of the class-wécognizable series.

Lemmad4.l. Leth : ¥ — AY be a non-deleting homomorphistR, C ¥ be anw-recognizable lan-
guage, and' € L7 ((¥¢)) be anw-recognizable series. Thenthe sefgs,(S) € L ((A¥)) defined
by (/\th(S),u) = A (S,w) isw-recognizable.

weh~H(u)NR

Proof:

By Theorem 3.2 the serigs is anw-recognizable step function. Now I(aLd, gd) = (L,>), the dual
lattice of L, which is obtained by interchanging suprema and infima. SH@ssumes only finitely
many values and each value onwamecognizable languags, is also anv-recognizable step function
over L4 andx. For the transformation?, : L? (X)) — L% ((A“)), by Proposition 3.4(b) we obtain
hh(S) € (L) ((A¥)), andhd(S) is anw-recognizable step function ovér, hence again also
over L. Since suprema ii¢ equal infima inZ, we havehd(S) = A r(S) which implies the result. O

Proposition 4.2. Let p, v € MSO(L, %) such thaqyapH{; , Hsz{; arew-recognizable series whefeis a
multi-valued atomic assignment, aids a finite set of variables with'ree(p) U Free(y)) C V. Then
the seriegjo V |],, o A vl 132 oll],, 13X - ¢ll],, |V« ||, and|[ VX . ¢||{, arew-recognizable.

Proof:
The semantics of disjunction and conjunctiongoénd+) arew-recognizable by Proposition 3.1. Next,
we deal with existential and universal quantifiers. By agstion \|<p\|{; is w-recognizable. By Theorem

3.2, we have¢|<p\|{, = \/ ki A\ 1g,, with k; € L andR; is w-recognizable for any < i < n. Let
1<i<n

be the non-deleting homomorphisms erasingathiew and theX -row, respectively. Then, it holds that
132 elty = b (Ileldoes ) 13+l = & (el )
f_ f f_ f
vz el = A, v (I9100) Xl = Ay (90

We conclude our proof by Proposition 3.4(b) and Lemma 4.1. O
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Next we obtain the first half of our main goal, an implicatioetleen MSOf-definable andu-
recognizable series.

Proposition 4.3. Let X be an alphabet antdbe a bounded distributive lattice with any negation mapping
Let f be anyw-recognizable multi-valued atomic assignment. Then

Lffmso <<Ew>> C Jw—rec <<Ew>> )

Proof:

We use induction on the structure &f SO (L, ¥)-formulas. First, assume that= k € L. We consider
the one state MVMAA = ({¢},in,wt,{{q}}) with in(q) = k andwt(q,a,q) = 1 for eacha € ¥.
Obviously, || A|| = k A 1s» and thus||¢|| is w-recognizable. For the remaining atomic formulas
the semanticﬁapr arew-recognizable by our assumption for tlerecognizability property off. For
negation we take into account Corollary 3.1, whereas fquadgions, conjunctions and quantifications
the proof comes by Proposition 4.2. O

The crisp atomic assignmentf for atomic formulas is defined in the following way. Letbe an
atomic formula of the forn®, (z),z < y orx € X. Then for any(w, o) € ¢ with o a valid assignment
we set

- (cf (Pa(2)), (w,0)) = { é I;:ﬁéfv(fs)c)e: '
1 if o(z) < o(y)
0 otherwise

- (ef (z <), (w,0)) :{

- (ef (zeX),(w0)) = 0 otherwise

{ 1 if o(z) € o(X)

Note that ifp is an atomic formula of this form the(mepHCf , (w, o)) = (cf(p), (w,0)) for each

(w,0) € N,, and by the property of thatl = 0 and0 = 1, our semantics of.p coincides with the
one given in [19].

It is not difficult to see that the crisp atomic assignment-iecognizable (cf. [19]). We shall denote
the classLe/ =™ (($%)) simply by L™ ((3¢)).

Proposition 4.4. Let Y. be an alphabet anbe a bounded distributive lattice with any negation furrctio

Then
warec <<Ew>> g LmSO <<Eu}>> .

Proof:

LetA = (Q,in,wt, F) be an MVMA overX andL, and L’ be the finite sublattice of generated by the
set{in(q), wt(t) | ¢ € Q,t € Q x X x Q} . Then, the semiringL’, v, A, 0, 1) satisfies all the technical
assumptions of [19] (cf.[19], Example 1), i.e. it is totalgmmutative complete. Following the proof of
Proposition 21 of [19], we can effectively construct 6 O(L, X)-formula such that|o||* = ||.A]|.

O
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Now we are ready to state our second main result.

Theorem 4.1. Let X be an alphabet anfl be a bounded distributive lattice with any negation furnrctio
Then
Lemree () = (LI {(24)) = L™= ((5))
f
where the union is taken over allrecognizable multi-valued atomic assignments.

Proof:
We combine Propositions 4.3 and 4.4. O

This result shows that for any formula € M SO(L,Y), whose semantics is defined with aay
recognizable multi-valued atomic assignment, we can cocishn equivalend/ SO(L, X)-formula with
the crisp atomic assignment.

In the sequel, we deal with decidability results éerecognizable formal power series over distribu-
tive lattices with negation function.

Theorem 4.2. Let X be an alphabet anfl be a bounded distributive lattice with any negation furrctio
For any two sentences, ¢ € M SO(L, X)) the following relations are decidable:

- el < 9l
- el =l
- el =0
- el = 1.

Proof:

We assume that the multi-valued atomic assignment is coispdth the sentencesands) or else that
we are given MVMA for the series of the atomic formulas. By @f@am 3.2, then we compute for the
atomic formulas occurring i respectivelyy, their representations asrecognizable step functions.
By induction onyp, ¢ we can effectively construct their decompositions usirgptoofs of Propositions

3.1, 3.4 and Lemma 4.1. So, we obtdip| = \/ ki A 1g, and|]| = \/ K} A 1g, where
1<i<n 1<j<m
ki, k:; el andRi,R3 arew-recognizable languages ovet for anyl < i < n, 1 < j < m for which
we have constructed Biichi automata. Moreover, assumeé &t ,,, and (R;) L<ie,, OTE partitions
<i< <j<m
of ¥¥. Then, in case of equality, we check that wheneklen R’ # (), thenk; = k. To decide whether
Il < [[¥]l, we check that wheneve?; N R}, # 0, thenk; < k. 0

We conclude this section with some remarks concerning tlite fimords case. In this paper, we
considered multi-valued automata consuming only infinibeds. One can define multi-valued automata
over bounded distributive lattices acting on finite wordsthe same manner as weighted automata over
arbitrary semirings (cf. [2, 33, 36, 49, 50]). Then, by caesing the same multi-valued MSO logic,
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we can state weighted generalizations of Biichi’'s and Egesults [11, 24], i.e., the equivalence of
recognizability and definability of finitary formal powerrges over bounded distributive lattices with
negation function. This result has been already provedgh Jhdeed, Droste and Gastin in [16] showed
that a series is recognizable iff it is definable by some seetén their weighted MSO logic over locally
finite semirings. Now one only has to observe that the bouddgdbutive lattice induced by the weights
of a multi-valued automaton or al SO(L, 3)-formula is a finite semiring, hence the results of [16]

apply.

5. Multi-valued tree automata and multi-valued MSO logic

In this section, we deal with multi-valued Muller tree autmm and we introduce a multi-valued MSO
logic over infinite trees. The main result of this section isalti-valued version of Rabin’s theorem
in the setting of bounded distributive lattices with negatfunction. Most of the proof techniques are
literally the same as the corresponding ones for words. fbi, our presentation here is brief.

First, we recall notions concerning infinite trees. Debe the set of natural numbers aNd =
N\ {0}. The prefix relation< over N* is a partial order defined in the usual way: for anyv € N*,

w < v iff there existsu € N* such thatwu = v. A set A C N* is calledprefix-closedf wu € A implies
w € A.

A ranked alphabek is a pair(X, rk) (simply denoted by) whereX is a finite set anak : ¥ — N.
Asusual, we sety, = {0 € X | rk(c) = k}, k > 0 anddeg(X) = max{k € N | ) # 0}.

A treet over X is a partial mapping : N — X such that the domaidomn(t) of ¢ is a non-empty
prefix-closed set, andif{w) € ¥, k£ > 0then fori € N, wi € dom(t) iff 1 < i < k. Atreet is called
infinite if its domain is infinite. Any element idom(t) is called anode oft. We shall denote b§y’ the
set of all infinite trees ovex.

Next we recall elements from classical MSO logic over trées: be a ranked alphabet. The syntax
of formulas of the MSO logic oveX is given by:

¢ = label,(z) | edgei(z,y) |z € X | —p | VY| Tz.p|IX . p

wheres € ¥, 1 <i < deg(X), =,y are first order variables antl is a second order variable
Aninfinite treet € Ty; is represented by the relational struct(@em(t), edges, . . ., edgeqeg(s),
(Rs)ocx) WhereR, = {w € dom(t) | t(w) = o} for o € 3, and for eachw, u € dom(t), edge;(w, )
holds true iffu = wy, for 1 < j < deg(X). Given a finite set of first and second order variables
a (t,V)-assignmenp is a mapping assigning elements dafm(t) to first order variables fromy and
subsets oflom(t) to second order variables from Let z be a first order variable and € dom(t).
Thenp[z — w] denotes thét,V U {z})-assignment which associatesto = and acts ap onV \ {z}.
The notatiorp[X — I] for a second order variabl& and a sef C dom(t) has a similar meaning.
Now, we consider the ranked alphabgt = ¥ x {0, 1}Y with rk(o, f) = rk(o) for eacho € ¥ and
f € {0,1}Y. For any(c, f) € ¥y we denote byo, f); and (o, f), the symbolsr and f, respectively.
An infinite trees € Tgv is calledvalid if for each first order variable € V, there is exactly one node
w of s such tha(s(w)2) (v) = 1. The set of all valid infinite trees ovety is denoted byry; . Every
valid trees € T3, corresponds to a paft, p) wheret € T3 andp is a valid(t, V)-assignment, such that
t = s1, and for every first order variable, second order variabl&, and any nodev € dom(s), we have
thatp(x) = wiff (s(w)z2) (z) = 1, andw € p(X) iff (s(w)2) (X) = 1. Then, we say that and(t, p)
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correspond to each othem the following, we identify a valid infinite tree with its corresponding pair
(t, p). The following result is well-known.

Proposition 5.1. The infinitary tree Ianguagﬁg{f is w-recognizable.

Let ¢ be an MSO-formula over trees [53, 54]. As usual we shall vititeinstead o ,...(,)- Then
for Free(p) C V, the fundamental theorem of Rabin (cf. [46]) states thatrifieitary tree language

Ly(p) ={(t,p) €Ty, | (t.p) F ¢}

is w-recognizable; conversely, for eachrecognizable tree language C T3 there exists an MSO-
sentencep such thatk = L(y).

Throughout this sectior, will denote a ranked alphabet adida bounded distributive lattice. Next,
we introduce our multi-valued Muller tree automata oXeand L.

Definition 5.1. A multi-valued Muller tree automatofMVMTA for short) over X and L is a quadruple
M = (Q,in,wt,F), where@ is thefinite state setin : @ — L is theinitial distribution, wt :

U Qx X, xQF — L is amapping assigning weights to the transitimfshe automaton, anéf C P(Q)
k>0
is thefamily of final state sets

Lett € 7. A run of M overt is a partial mapping; : N} — @ such thatlom(r;) = dom(t). The
weight of r, at w € dom(t) is the value

wt(ry, w) := wt (r(w), t(w), (re(wl), ... ry(w - rk(t(w))))).
Then theweight of r; is defined by

weight(ry) == in(ry(e)) A /\ wt(re, w).
wedom(t)

Observe that the sgtwt(t) |t € |J Q x Ii x QF 3 is finite; therefore the valueeight(r;) is well-
k>0
defined. Moreover, if/ is the (finite) sublattice of. generated by

{in(q),wt(t) lgeQ,te |JQ x Iy x QF » thenweight(ry) € L.
k>0

Any infinite prefix-closed chaimr C dom(r;) is called aninfinite path ofr;. Then, the run, is called
successfuif for each infinite pathr of r;, the setfn®(r;|,) of states that appear infinitely often alomg
constitute a final state set, i.65%(r|,;) € F. Thebehaviorof M is the infinitary formal power tree
series

IM|| - T¥ — L

whose coefficients are given by
(M ,t) = \Jweight(r,)

Tt

fort € T¥, where the supremum is taken over all successful ry$ M overt.
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An infinitary tree seriesS : Ty — L is said to beMuller recognizableif there is a MVMTA M,
such thatS = || M]||. The family of all Muller recognizable tree series overand L is denoted by
LM=ree ((Tg)).

In the following, we introduce our multi-valued monadic ged order logic over trees.

Definition 5.2. The syntax of formulas of the multi-valued MSO logic for semverX and L is given
by:

=k | label,(x) | edge;(x,y) |[r=y |z e X |~p |V |poAD
|z | IX @ | Voo | VX p

wherek € L, o € ¥ andl < i < deg(X). We shall denote by SO(L, ¥) the set of all such multi-
valued MSO-formulasp.

Now, we represent the semantics of the formulagd8O(L, ) as infinitary tree series over the
extended alphabét,, and the latticel.

Definition 5.3. Let ¢ € MSO(L,Y), V be a finite set of variables containingree(y), and f be
a multi-valued atomic assignment ovEs,. The f-semanticof ¢ is an infinitary formal power tree

seriengoH{, € L<<Tgv>>. Let (t,p) € Ty,. If pis not a valid (¢, V)-assignment, then we set

(H@H{, , (t,p)) = 0. Otherwise, we inductively defin@|<p\|{, ,(t,p)) € L literally as in Definition 4.2,
replacing(w, o) by (¢, p) and the domai of w by dom(t).

The following example presents an interpretation of a mudtued MSO-sentence over trees.

Example 5.1. Let X be a ranked alphabet with; = {v}, X5 = {0,d} andXy = {a,b}. Let also
({0,1,2,3,4},<,7 ) be a bounded distributive lattice with negation mappingeseh is the natural
orderand) = 4,1 =2 = 0, 3 = 3 and4 = 0. Note that this structure is not a De Morgan algebra, since
~ is not injective (see Section 6). We consider the multi-gdlatomic assignmerjtas follows. For any
(t,p) € TS we let

Zlabely (z)
(f (abelg(x)) , (£, p)) = { (2) Ztm)s)e: ’

forany (t, p) € Ty" we let

els(z)
(f (labels(x)) , (t, p)) = { 3 Z;Z’ii?ie: ’

and for any other atomic formulaand any(¢, p) € Tgf we set

(f (gp) ’ (t,p)) =3.

We define now the sentence

o = (Vo .labely(x)) V (Va . labels(x)) .

Then for anyt € T the coefﬁcient(ngHf ,t) — 2if ¢ is the infinite binaryo-tree, <||<pr ,t) = 3if ¢
is the infinite binary-tree, and<||<p\|f ,t) = 0 otherwise.
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Aninfinitary tree serie$ € L ((Ty)) is calledMSO-f-definabléf there is a sentence € M SO(L, X))
such thats = ||| . We letL/—ms° ((Ty)) comprise all formal power tree series frdm{(73/)) , which
are f-definable by some sentence MiSO(L, ). If we consider the crisp atomic assignment, then we
simply denote the class®/ =™ ((T¥)) by L™*° ((T%))

The next theorem states a multi-valued version of Rabirssltdor infinitary tree series.

Theorem 5.1. Let X be a ranked alphabet addbe a bounded distributive lattice with any negation
function. Then
LM (1)) = LI (1)) = L7 (1)
!
where the union is taken over all Muller recognizable mudtived atomic assignments.

As noted before, in the proof we can proceed almost exacily tiee case of infinite words. A deci-
dability result analogous to Theorem 4.2 also holdsMb$O( L, X)-sentences over trees.

One can consider multi-valued tree automata over boundédhditive lattices consuming finite trees
as a special case of weighted tree automata over semirings,(6, 7, 8, 9, 18, 21, 25, 34, 44, 51]). Then,
using the same multi-valued MSO logic, but now over finitesrewe can state the results of Thatcher
and Wright [52] and Doner [15] for the equivalence of treeogtzability with MSO-definability, in the
framework of finitary formal power trees series over boundisttibutive lattices with negation function.
This result has been already established in [21]. IndeedstBrand Vogler proved the aforementioned
equivalence for locally finite semirings. Note that the vidgof a multi-valued tree automaton or a
MSO(L, ¥)-formula induce a finite semiring.

6. De Morgan algebras

In this section, we consider De Morgan algebras. RecentyMdrgan algebras have been investigated
intensively in the literature for multi-valued model-ckew, see [13, 29, 32, 37].

A distributive lattice(L, <,” ) is aDe Morgan(or quasi-Booleapalgebra if it is equipped with a
complement mapping : L — L which satisfies the involution and De Morgan laws, i.e.,

all
I

a/’
aVb=aAb,
aANb=aVb

for all a,b € L. Note that theru < bimpliesb < @ for anya, b € L. Furthermore, ifl is bounded then
0=1andl =0. So,” : (L, <) — (L,>) is an order-isomorphism. Hence,(if; | i € I) C Lis a
family of elements of_ for which \/ a; exists, then\/ a; = A @;.
icl icl iel

For instance, the latticéF, <,” ) where ' = [0, 1], the unit interval,< is the usual order of real
numbers, and@ = 1 — a for anya € F'is a De Morgan algebraVe refer the reader to [43] for many
more examples.

However, since any bounded distributive lattice can be eedowith a negation function, it is clear
that lattices with negation function constitute a muchdarngass than De Morgan algebras. In particular,
any bounded distributive lattice which is not anti-isontapto itself carries no complement operation
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making it a De Morgan algebra. The easiest finite example isfithprovided by the four element
Boolean algebrda, b, ¢, d} with an additional element added as new below it:

d

e

Note that if L is a De Morgan algebra, then clearly the collection of povegies(L ((>X“)) , <) also
forms a De Morgan algebra.

In case of De Morgan algebras an alternative simpler syntéarmulas of our multi-valued MSO
logic overX and L can be given by

pi=k|FP(z)[z<ylzeX|[-p|leVeY|Tr.p|[IX. 0.

We define the semantidgp|| of formulasy of this syntax exactly as in Definition 4.2. Given a multi-
valued atomic assignmerfit let LZm—/=ms0 ((3%)) be the collection of all series definable in this logic.
Then conjunction and universal quantifiers can be defineétting

- AP =(npV )
- Voo =-(3z.p)
-VX oo =-(3X . )

for eachp,vy € MSO(L,X). Then, using the De Morgan laws, it is easy to see that we have th
following equalities for anyw, o) € X%, whereo is a valid assignment:

- (le A vl (w,0) = (el (w,0)) A (115, (w, )
- (Mo eeldy s (w,0)) = A (el - (wole = i)

€W

- (WX el (w,0)) = A (Il - (w0, 01X = 1)) -

ICw

The crisp atomic assignmentf is also defined as before, and we denote again the class

Lidm—cf—mso ((yw)) py [dm—mso ((y1w)) As an immediate consequence of Theorem 4.1 and the above
equalities we obtain:

Corollary 6.1. LetX be an alphabet and., <, ) be a De Morgan algebra. Then

wrec <<Ew>> — ULdmfffmso <<Ew>> — Ldmfmso <<Ew>>
f

where the union is taken over allrecognizable multi-valued atomic assignments.
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Recall that any bounded distributive lattick, <) can be considered as a semiriig +, -, 0, 1) with
supremum as addition and infimum as multiplication openatim view of our results (and the wealth
of results in the literature on weighted automata havingghtsi in arbitrary semirings) one could ask
whether we could obtain our results for an arbitrary sergisnth some complement function. By the
above, the complement function should interconnect amdaind multiplication. Therefore we consider
the following concept:

Let (A, +,-,0,1) be a semiring and : A — A be a function. We calf a complement functigrif
the following hold:

(i) fisaninvolution i.e. f(f(a)) = afor eacha € L,

(i) fis amonoid morphism fromA, +,0) to (A4, -, 1), i.e. f(0) =1andf(a+b) = f(a) - f(b) for
anya,b € A.

Note that then alsg¢f(1) = 0 and f(a - b) = f(a) + f(b) for anya,b € A, and f is a monoid
isomorphism from(A, +,0) to (A4, -,1) and from(A,-,1) to (4, +,0).

Clearly, any De Morgan algebid, <, ) constitutes a semiring with complement function, letting
again addition be the supremum and multiplication be thenumfihn operation inl.. Next we show the
converse:

Proposition 6.1. Let (A, +,-,0,1) be a commutative semiring with complement functifinFor any
a,b e A, put
a<b iff a+b=0b

Then(A, <, f) is a De Morgan algebra.

Proof:

We havef (0) = 1, fis aninvolution,f(a+b) = f(a)- f(b) andf(a-b) = f(a)+ f(b). Hencep-0 =0
implies1 + 1 =1, s0(A4, +,0) and hence als@A, -, 1) are idempotent. Thus; is a partial order om
(cf. Proposition 20.19 in [31]) and+ b is the supremum af andb in this partial order. Also) < «a for
anya € A,anda -0 = 0impliesf(a) + 1 =1,s0 f(a) < 1, showing alsa: < 1 for anya € A.

Next note that ifa < b, then by distributivity we obtaim - ¢ < b - ¢, for anya, b, c € A. We claim
thata - b is the infimum ofe andb in (A, <), for anya, b € A. Since,a < 1, the previous remark implies
a-b < band similarlya-b < a. Now if c € Awith ¢ < aandec < b, thenc=c-c < a-c < a-b, proving
our claim. Hencd A, <) is a distributive lattice with+- being the operation supremum anbeing the
infimum. Moreover,(A, <) is bounded, and is a complement mapping satisfying De Morgan laws.
Thus, our proof is completed. O

This result shows that semirings with complement functiand De Morgan algebras provide actu-
ally the same class of structures.

7. Conclusion

We considered a multi-valued MSO logic over bounded distile lattices and we proved a multi-valued
generalization of Buchi’s fundamental theorem for inBnitords over bounded distributive lattices with
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any negation function. We showed that our methods can badadeto a multi-valued logic over infinite
trees, proving a generalization of Rabin’s theorem. Fynafe dealt with De Morgan algebras showing
that they coincide with semirings with complement mappihgcase of De Morgan algebras our logic
has a simpler syntax due to the De Morgan laws. If we conslieispecial case of tHezzy semiring
([0,1],V, A,0,1) (which is a De Morgan algebra with complemant 1 —a for anya € [0, 1]), then we
obtain afuzzy MSO logicln this case the fundamental theorem of Biichi states theeegive equivalence
of w-recognizable fuzzy languagéd. [35, 43, 47]) withfuzzy MSO-definable serieSimilar results are
obtained forfuzzy Muller recognizable tree languageser infinite trees.
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