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—— Abstract

We introduce a new natural variant of the synchronization problem. Our aim is to model different

constraints on the order in which a potential synchronizing word might traverse through the states.
We discuss how a word can induce a state-order and examine the computational complexity of
different variants of the problem whether an automaton can be synchronized with a word of which
the induced order agrees with a given relation. While most of the problems are PSPACE-complete
we also observe NP-complete variants and variants solvable in polynomial time. One of them is the
careful synchronization problem for partial weakly acyclic automata (which are partial automata
whose states can be ordered such that no transition leads to a smaller state), which is shown to
be solvable in time O(k*n?) where n is the size of the state set and k is the alphabet-size. The
algorithm even computes a synchronizing word as a witness. This is quite surprising as the careful
synchronization problem uses to be a hard problem for most classes of automata. We will also
observe a drop in the complexity if we track the orders of states on several paths simultaneously
instead of tracking the set of active states. Further, we give upper bounds on the length of a
synchronizing word depending on the size of the input relation and show that (despite the partiality)
the bound of the Cerny conjecture also holds for partial weakly acyclic automata.
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1 Introduction

We call A = (Q,3, ) a deterministic partial (semi-) automaton (DPA) if @ is a finite set
of states, 3 is a finite alphabet, and §: Q X ¥ — @ is a (potentially partial) transition
function. If § is defined for every element in @ x X, we call A a deterministic complete
(semi-) automaton (DCA). Clearly, every DCA is also a DPA. We do not specify any start
and final states as we are only interested in the transition of states. A DCA A = (Q,%,0) is
synchronizing if there exists a word w € ¥* such that w takes every state to the same state.
In that case, we call w a synchronizing word for A. If we are only interested in synchronizing
a subset of states S C @ we refer to the problem as subset synchronization.

One of the oldest applications of the intensively studied topic of synchronizing automata
is the problem of designing parts orienters, which are robots or machines that get an object
in an (due to a lack of expensive sensors) unknown orientation and transform it into a
defined orientation [2]. In his pioneering work, Natarajan [17] modeled the parts orienters
as deterministic complete automata where a state corresponds to a possible orientation of
a part and a transition of some letter a from state g corresponds to applying the modifier
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corresponding to a to a part in orientation q. He proved that the synchronization problem is
solvable in polynomial time for — what is later called — the class of orientable automata [20)
if the cyclic order respected by the automaton is part of the input. Many different classes
of automata have since been studied regarding their synchronization behavior. We refer
to [27, 4, 1] for an overview. The original motivation of designing a parts orienter was
revisited in [26] where Tiirker and Yenigiin modeled the design of an assembly line, which
again brings a part from an unknown orientation into a known orientation, where different
modifiers have different costs. What has not been considered so far is that different modifiers
can have different impact on the parts and as we do not know the current orientation we
might want to restrict the chronology of applied modifiers. For example, if the part is a box
with a fold-out lid, turning it upside-down will cause the lid to open. In order to close the
lid one might need another modifier such as a low bar which brushes the lid and closes it
again. To specify that a parts orienter should deliver the box facing upward with a closed
lid one needs to encode something like: “When the box is in the state facing down, it later
needs to be in the state lid closed”. But this does not stop us from opening the lid again,
so we need to be more precise and encode: “After the last time the box was in the state
facing down, it needs to visit the state lid closed at least once”. We will implement these
conditions in our model of a parts orienter by enhancing a given DCA with a relation R. We
will then consider different ways of how a synchronizing word implies an order on the states
and ask whether there exists a synchronizing word whose implied state-order agrees with
the input-relation R. The case-example above will be covered by the first two introduced
orders. The third considered order relates to the following scenario: Let us again picture
the box with the lid in mind, but this time the box initially contains some water. We would
like to have the box in a specific orientation with the lid open but the water should not be
shed during orientating. We have a modifier that opens the lid and a modifier which rotates
the box. Clearly we do not want the box to face downwards after the lid has been opened.
So, we encode: “As soon as the state lid open has been reached, the state facing downwards
should never be entered again”.

For every type of dynamic constraint (which we will also call order), we investigate the
computational complexity of the problem whether a given automaton admits a synchronizing
word that transitions the states of the automaton in an order that is conform with a given
relation. Thereby, we distinguish between tracking all active states simultaneously and track-
ing each state individually. We observe different complexities for different ordering concepts
and get a good understanding of which ordering constraints yield tractable synchronization
problems and which do not. The complexity of the problem also depends on how detailed we
describe the allowed sequence of states.

2 Related Work

The problem of checking whether a synchronizing word exists for a DCA A = (Q, %, 6) can
be solved in time O(]Q|?|%]), when no synchronizing word is computed, and in time O(|Q|?)
when a witnessing synchronizing word is demanded [11, 27]. In comparison, if we only ask
for a subset of states S C @ to be synchronized, the problem becomes PSPACE-complete for
general DCAs [22]. These two problems have been investigated for several smaller classes of
automata involving orders on states. Here, we want to mention the class of oriented automata
whose states can be arranged in a cyclic order which is preserved by all transitions, which
have been studied among others in [17, 11, 2, 21, 27]. If the order is linear instead of cyclic,
we get the class of monotone automata which has been studied in [2, 21]. An automaton is
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called aperiodic [4] if there is a non-negative integer k such that for any word w and any
state ¢ it holds that d(q, w*) = §(¢q, w**1). An automaton is called weakly acyclic [20] if
there exists an ordering of the states g1, ¢s, ..., ¢, such that if 6(¢;, a) = g; for some letter
a € X, then ¢ < j. In other words, all cycles in a WAA are self-loops. In Section 3 we
will consider partial WA As. The class of WAAs forms a proper subclass of the class of
aperiodic automata. Each synchronizing aperiodic automaton admits a synchronizing word
of length at most n(n — 1)/2 [25], whereas synchronizing WAAs admit synchronizing words
of linear lengths [20]. Asking whether an aperiodic automaton admits a synchronizing word
of length at most & is an NP-complete task [27] as it is for general DCAs [18, 11]. The subset
synchronization problem for WAAs, and hence for aperiodic automata, is NP-complete [20].

Going from complete automata to partial automata normally brings a jump in complexity.
For example, the so called careful synchronization problem for DPAs asks for synchronizing
a partial automata such that the synchronizing word w is defined on all states. The problem
is PSPACE-complete for DPAs with a binary alphabet [15]. It is even PSPACE-complete
for DPAs with a binary alphabet if § is undefined for only one pair in @ x X [16]. The
length of a shortest carefully synchronizing word ¢(n), for a DPA with |Q| = n, differs
with 2(35) < ¢(n) < O(45 - n?) [16] significantly from the cubic upper-bound for complete
automata. Also for the smaller class of monotone partial automata with an unbounded
alphabet size, an exponential lower bound on the length of a shortest carefully synchronizing
word is known, while for fixed alphabet sizes of 2 and 3 only a polynomial lower bound is
obtained [21]. The careful synchronization problem is NP-hard for partial monotone automata
over a four-letter alphabet [26, 21]. Tt is also NP-hard for aperiodic partial automata over a
three-letter alphabet [20]. In contrast we show in Section 3 that the careful synchronization
problem is decidable in polynomial time for partial WA As.

In [20, 21] several hardness and inapproximability results are obtained for WA As, which
can be transferred into our setting as depicted in Section 3. We will also observe WI[1]-
hardness results from the reductions given in [20]. So far, only little is known (see for
example [13, 28, 5]) about the parameterized complexity of all the different synchronization
variants considered in the literature.

While synchronizing an automaton under a given order, the set of available (or allowed)
transitions per state may depend on the previously visited states on all paths. This dynamic
can also be observed in weighted and timed automata [10]. More static constraints given by
a second automaton have been discussed in [12]. Due to space limitations missing proofs can
be found in the long version of this work [29].

3 Problem Definitions

A deterministic semi-automaton A = (Q, X, ) that might either be partial or complete is
called an automaton. The transition function § is generalized to words in the usual way. It is
further generalized to sets of states S C @ as 6(S,w) := {d(¢,w) | ¢ € S}. We sometimes
refer to 6(S,w) as S.w. We call a state g active regarding a word w if ¢ € Q.w. If for some
w € X |Q.w| =1 we call ¢ € Q.w a synchronizing state. We denote by |S| the size of the
set S. With [i..j] we refer to the set {k € N |7 <k < j}. For a word w over some alphabet
¥, we denote by |w| the length of w, by w[i] the i*" symbol of w (or the empty word e if
i = 0) and by wli..j] the factor of w from symbol i to symbol j. For each state ¢, we call
the sequence of active states g.w[i] for 0 <4 < |w| the path induced by w starting at g. We
expect the reader to be familiar with basic concepts in complexity theory, approximation
theory and parameterized complexity theory [9, 24, 3].
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We are now presenting different orders <,, which describe how a word traverses an
automaton. We describe how a word implies each of the three presented orders. The first
two orders relate the last visits of the states to each other, while the third type of order
relates the first visits. We will then combine the order with an automaton A and a relation
R C @Q? given in the input and ask whether there exists a synchronizing word for A such
that the implied order of the word agrees with the relation R. An order <, agrees with a
relation R C Q2 if and only if for all pairs (p,q) € R it holds that p <,, ¢, i.e., R C <.

For any of the below defined orders <, C @ x @, we define the problem of synchronization
under order and subset synchronization under order as:

» Definition 1 (SYNC-UNDER-<,,). Given a DCA A = (Q,%,8) and a relation R C Q.
Does there exist a word w € £* such that |Q.w| =1 and R C <, ?

» Definition 2 (SUBSET-SYNC-UNDER-<t,,). Given a DCA A = (Q,%,§), S C Q, and a
relation R C Q2. Is there a word w € ¥* with |Saw| =1 and R C <, ?

It is reasonable to distinguish whether the order should include the initial configuration of
the automaton or if it should only describe the consequences of the chosen transitions. In the
former case, we refer to the problem as SYNC-UNDER-0-<,, (starting at w|[0]), in the latter
case as SYNC-UNDER-1-<,, (starting at w[1]), and if the result holds for both variants, we
simply refer to is as SYNC-UNDER-<,,. Examples for positive and negative instances of the
problem synchronization under order for some discussed variants are illustrated in Figure 1.
Let first(g,w, .S) be the function returning the minimum of positions at which the state ¢
appears as an active state over all paths induced by w starting at some state in S. Accordingly,
let last(q, w, S) return the maximum of those positions. Note that first(q,w,S) = 0 for all
states ¢ € S and > 0 for ¢ € Q\S. If ¢ does not appear on a path induced by w on S, then
set first(q, w, S) := |w| + 1 and last(¢,w,S) := —1. In the SYNC-UNDER-I-<, problem
variant, the occurrence of a state at position 0 is ignored (i.e., if ¢ occurs only at position 0
while reading w on S, then last(q, w,S) = —1). In the following definitions let A = (Q, 3, 0)
be a DCA and let p,q € Q. The following relations <,, are defined for every word w € ¥*.

» Definition 3 (Order [ < on sets). p o<iu<és q & last(p,w, Q) < last(q, w, Q).

» Definition 4 (Order [ <[ on sets). p ociu%s q = last(p,w, Q) < last(q, w, Q).
The second order differs from the first in the sense that ¢ does not have to appear finally

without p, instead they can disappear simultaneously. Further, note that in comparison

<l
w@Qs?

reading w up to some position ¢ > 0. This will make a difference when we later consider the
orders on isolated paths rather than on the transition of the whole state set. It can easily
be verified that for any word w € ¥* and any automaton A = (@, X, ) the order o<fu<@{s is
a proper subset of O(iu% - For the order qf@l o> it makes no difference whether we take the
initial configuration into account since states can disappear simultaneously.

So far, we only introduced orders which consider the set of active states as a whole. It
did not matter which active state belongs to which path and a state on a path 7 could stand
in a relation with a state on some other path p. But, in most scenarios the fact that we
start with the active state set @Q only models the lack of knowledge about the actual current
state. In practice only one state ¢ is active and hence any constraints on the ordering of
transitioned states should apply to the path starting at ¢q. Therefore, we are introducing
variants of order 1 and 2 which are defined on paths rather than on series of state sets.

with order o for a pair (p,q) in order O(ffés it is not demanded that ¢ is active after

» Definition 5 (Order [ < [ on paths). p cxff(ép q & Vr € Q: last(p,w, {r}) <last(q,w, {r}).
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» Definition 6 (Order [ <[ on paths). p ocfép q:=Vr e Q: last(p,w, {r}) <last(q,w, {r}).

i<l
w@p

at position 1) for ocff@lp is in NP while it is PSPACE-complete for ociu%p.

While the previously defined orders are bringing “positive” constraints to the future
transitions of a word, in the sense that the visit of a state p will demand for a later visit of

The orders and ociu%p significantly differ since the synchronization problem (starting

the state ¢ (as opening the lid demands closing the lid later in our introductory example),
we will now introduce an order which yields “negative” constraints. The third kind of order
demands for a pair of states (p, q) that the (first) visit of the state ¢ forbids any future visits
of the state p (like do not turn the box after opening the lid). This stands in contrast to the
previous orders where we could made up for a “forbidden” visit of the state p by visiting ¢
again. The order [ < f will only be considered on paths since when we consider the state
set @, every pair in R would already be violated in position 0.

» Definition 7 (Order [ < f on paths). p ocifé; q:=Vr e Q :last(p,w, {r}) < first(q, w, {r}).

Note that oclw<@{p is not transitive; e.g., for R = {(1,2), (2,3)} we are allowed to go from 3
to 1 as long as we have not transitioned from 1 to 2 yet. For the order I < f, we will also
consider the special case of R being a strict total order (irreflexive, asymmetric, transitive,
and total).

» Definition 8 (SYNC—UNDER—TOTAL—ocf@fp). Given o« DCA A = (Q,%,9), a strict and

total order R C Q2. Is there a word w € ¥* with |Q.w| =1 and R C af@fp?

The orders on path could also be stated as LTL formulas of some kind which need to be
satisfied on every path induced by a synchronizing word w and our hardness results transfer
to the more general problem whether a given DCA can be synchronized by a word such that
every path induced by w satisfies a given LTL formula. The orders on sets could be translated
into LTL formulas which need to be satisfied on the path in the power-set-automaton starting
in the state representing (). Despite the similarity of the chosen orders and their translated
LTL formulas we need different constructions for the considered orders as the presented
attempts mostly do not transfer to the other problems. Therefore, it is not to be expected
that a general construction for restricted LTL formulas can be obtained. Our aim is to focus
on restricting the order in which states appear and disappear on a path in the automaton
or on a path in the power-set-automaton (remember the introductory example). Hence,
we have chosen the stated definitions in order to investigate the complexity of problems
where the LTL formula is always of the same type, i.e., comparing only the last or first
appearances of states on a path. We leave it to future research to investigate other types
of LTL formulas. In order to express synchronizability of Kripke structures, an extension
to CTL has been introduced in [8]. Note that synchronization of Kripke structures is more
similar to D3-directing words [14] for unary NFAs as in contrast to general DFAs the labels
of the transitions are omitted in Kripke structures.

» Definition 9 (CAREFUL SYNC (PSPACE-complete [15])). Given a DPA A = (Q,%,0). Is
there a word w € ¥*, s.t. |Q.w| =1 and w is defined on all g € Q¥

» Definition 10 (VERTEX COVER (NP-complete [24])). Given a graph G = (V, E) and an
integer k < |V|. Is there a vertex cover V' CV of size [V'| < k? A vertex cover is a set of
states that contains at least one vertex incident to every edge.
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Figure 1 DCA A (left) with all paths induced by w = baabba (middle) and relations R consisting
of single pairs forming a positive, resp. negative, instance for versions of SYNC-UNDER-<,, (right).

Table 1 Overview of the complexity for synchronization (on the left), and subset synchronization

under order (on the right) for relations o\ ., ocﬁf@lp, = miugép, and ocff@{p (tot. is short for total).
Synchronization Subset Synchronization
Order <l 1< l<f I< f-tot l</<1 l<f 1< f-tot
Set 0 | PSPACE-c PSPACE-c - - PSPACE-c - -
1 | PSPACE-c PSPACE-c - - PSPACE-c - -
Path 0 in NP NP-hard  PSPACE-c P PSPACE-c  PSPACE-c  NP-c
1 in NP PSPACE-c  PSPACE-c NP-c PSPACE-c  PSPACE-c NP-c

4 Main Results

We now investigate the complexity of the introduced problems. An overview on the obtained
results is given in Table 1.

» Theorem 11. For all orders < € {ocifés, O(ffép, f@ls, O(L%Z),Mf@fp}, the problem SYNC-

UNDER-< is contained in PSPACE. Further, it is FPT with parameter p = |Q)|.

Proof sketch. For a DCA A = (Q,%,d) and R C Q?, we can enrich the powerset-automaton
P(A) of A with the information about the set of active pairs in R in every state. Here, a pair
in R is active during the transition of a word if it constrains which states might be, or need
to be visited in the future. For instance, in the example in Figure 1 concerning the order
fés, the pair (2,4) is active while reading the prefix ba, since the state 2 has appeared as
an active state while the state 4 has not appeared without 2 as an active state yet. It is not
active after reading baa, since now 4 is active without 2 and hence the pair (2,4) is satisfied
and does not demand for further state visits. The pair becomes active again after reading
baab since again 2 became active demanding for the state 4 to become active without 2 again.

To store the information of active pairs in R, we copy each state in P(A) 2% times

1<i . 1<l !
for the orders ocifés, and o &, and \Q|2‘R‘ times for the orders oclw<@lp, Kypap and oclfgp,

yielding an automaton P(A) of size at most 2/91|Q[2/Rl = 20URQI") " As each state contains
only up to |@Q|+ 1 bit-strings of length up to |Q|* a state of P(A) can be stored in polynomial

space. Hence, reachability tests can be performed in P(A) in polynomial space and in time
20(1Q1%) |

X

s

» Theorem 12. SYNC-UNDER-'S!_ is PSPACE-complete, even for |R| =1 and || = 2.

Proof. We reduce from the PSPACE-complete CAREFUL SYNC problem for DPAs [15]. Let
A=(Q,X%, ) be a DPA. We construct from A a DCA A" = (Q' = QU {qo,r},X%,d") with
qo,r ¢ Q. For every pair ¢ € Q, 0 € X for which §(q, o) is undefined, we define the transition
8'(¢,0) = qo. On all other pairs ¢’ agrees with . Further, for some arbitrary state t € @ and
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for all v € ¥ we set 0'(go,y) = §'(t,y) (note that this can be ¢g itself) and ¢'(r,y) = §'(¢,7).
We set the relation R to R := {(qo,7)}-

Assume there exists a word w € £*, |w| = n that synchronizes A without using an
undefined transition. Then, §(g, w[1]) is defined for all states ¢ € Q. The letter w[1] acts on A’
in the following way: (1) &' (r, w[1]) = §'(go, w[1]) = 6(¢,w[1]) which is defined by assumption;
(2) 6'(Q,w[1]) C Q since §(g, w[1]) is defined for all states ¢ € Q. The combination of (1)-(2)
yields 6'(Q', w[1]) C Q. We further constructed ¢’ such that ¢'(Q’, w[1]) = §(Q, w[1]). Since
d(q, w[2..n]) is defined by assumption for every ¢q € 6(Q,w][1]), &’ agrees with ¢ on w[2..n] for
every ¢ € 6(Q,w[1]). This means especially that while reading w[2..n] in A’ on the states
in ¢’(Q’,w[1]) the state qg is not reached and that ¢'(Q’,w) = 6(Q,w). Therefore, w also
synchronizes the automaton A’. The state ¢g is only active in the start configuration where
no letter of w is read yet and is not active anymore while reading w. The same holds for r,
hence R = {(¢o,7)} C i,

For the other direction, assume there exists a word w € ¥*, |w| = n that synchronizes A’
with (¢o,r) € ociugés. Then, w can be partitioned into w = uv with u,v € ¥* where r is not
active while reading the factor v in w. The only position of w in which r is active due to
the definition of ¢’ is before any letter of w is read. Hence, we can set © = € and v = w. As
(go,7) € o<l§@ls it holds for all ¢ € [1..n] that q5 ¢ 0'(Q’,v[1..7]). Hence, §'(q,v) is defined

w
for every state ¢ € . Since ¢’ and § agree on the definition range of § it follows that v also
synchronizes the state set @) in A without using an undefined transition. <

» Remark 13. The construction works for both variants (with and without 0) of the problem.
It can further be adapted for the order ocifé s (both variants) by introducing a copy ¢ of
every state in Q U {r} and setting §'(§,0) = ¢ for every o0 € X, ¢ € Q U {r}. For all other
transitions, we follow the above construction. We keep R := {(qo,r)}. Since r is left after
w[2] for any word w € ¥* with |w| > 2 in order to satisfy R the state ¢g needs to be left

with w[1] such that afterwards r is active without ¢g. Note that go has not been copied.
» Corollary 14. SYNC-UNDER-<3L is PSPACE-complete even for |R| =1 and |S| = 2.

» Remark 15. The reduction presented in the proof of Theorem 12 can also be applied to show
the PSPACE-completeness of SYNC-UNDER- ! —ocffép. Since the state r cannot be reached
from any other state, the state go needs to be left with the first letter of any synchronizing
word and must not become active again on any path. The rest of the argument follows the

proof of Theorem 12. Note that the construction only works for SYNC-UNDER- 1 —ocff@lp. If we
consider SYNC—UNDER—O—O(Z)S@ZP the problem might become easier. But it is at least NP-hard.

» Theorem 16. The problem SYNC—UNDER—O—O(L}%I) is NP-hard.

Proof. We give a reduction from VERTEX COVER. We refer to Figure 2 for a schematic
illustration. Let G(V, E) be a graph and let k& € N. We construct from G a DCA A = (Q, %, )
in the following way. We set ¥ = VU{p} for some p ¢ V. We start with Q = {f,r, s} where s
is a sink state, meaning 6(s,0) = s for all o € &, f will be the “false way” and r will be the
“right way”. We set §(r,p) = 0(f,p) = s and 6(r,v) = r, §(f,v) = f for all other v € 3. For
every edge e;; € E/ connecting some vertices v;,v; € V, we create two states e;; and é;; and
set d(e;j,v;) = d(eij,vj) = éi5, 6(eij,p) = f. For all other letters, we stay in e;;. For the
state é;;, we stay in é;; for all letters except p. For p, we set 6(é;;,p) = s. We further create
for 1 < i < k+ 2 the states ¢; with the transitions §(g;,v) = ¢;+1 for it <k+1and v € V,
0(qi,p) = q; for i < k, and §(qx+1,p) =7, 0(qrs2,p) = S, 0(qrt2,v) = qrso for v € V. We
set R := (ql,r) U {(6ij,éij) | €ij € E}

58:7

FSTTCS 2020



58:8

Synchronization Under Dynamic Constraints

p

Figure 2 Schematic illustration of the reduction from VERTEX COVER (see Theorem 16). For
each state, the transition without a label represents all letters which are not explicitly listed as an
outgoing transition from that state.

If there exists a vertex cover of size k' < k for GG, then there also exists a vertex cover
of size k for G. Therefore, assume V' is a vertex cover for G of size k. Then, the word
wpp where w is any non-repeating listing of the vertices in V' is a synchronizing word for A

. 1<i
with R C Xppp@p-
trivially satisfied for each path starting in any state other than ¢;. Hence, we only have

Since g; cannot be reached from any other state, the pair (¢1,7) € R is

to track the appearances of g1 and r on the path starting in ¢;. Since w lists the states in
the vertex cover V' it holds that |w| = k and hence ¢;.w = qx+1. Further, ¢;.wp = r and
q1-wpp = s. Hence, the pair (qq,r) is satisfied on the path starting in ¢; as well as on all
paths. It remains to show that wpp is indeed a synchronizing word and that all pairs in R
of the form (e;;, é;;) are satisfied. For every state e;; representing an edge e;;, the state é;;
is reached if we read a letter corresponding to a vertex incident to it. Since V' is a vertex
cover, the word w contains for each edge e;; at least one vertex incident to it. Hence, for
each edge e;;.w = é;; and e;;.wpp = s. Since each state e;; is not reachable from any other
state it follows that all pairs (e;;, é;;) are satisfied by wpp on all paths. It is easy to see that
for all other states ¢ € @ it holds that q.wpp = s.

For the other direction, assume there exists a synchronizing word w for A with R C mf@lp.
By the construction of A the word w must contain some letters p. Partition w into w = upv

where p does not appear in u. Since R C ocffép the pair (¢1,7) in R enforces |u| < k since

otherwise the only path on which ¢; appears (namely the one starting in ¢1) will not contain
the state r as for any longer prefix w it holds that ¢;.u = gr+2 and r is not reachable
from gg42. The other pairs of the form (e;;,é;;) € R enforces that u encodes a vertex cover
for G. Assume this is not the case, then there is some state e;; for which e;;.u = e;;. But
then, e;;.up = f and from f the state é;; is not reachable, hence the pair (e;;, é;;) is not
satisfied on the path starting in e;;. Therefore, u encodes a vertex cover of size at most k. <«

ifép, the two variants of the order (with and without position i = 0)

do not differ since for a pair (p, q), regardless of whether p is reached, the state ¢ must be
reached on every path. Hence, whenever we leave ¢ we must be able to return to it, so it does

not matter if we consider starting in g or not. In comparison with SYNC-UNDER- ! —mfép,

If we consider o

the problem SYNC—UNDER—ocfjép is solvable in polynomial time using non-determinism.

» Theorem 17. The problem SYNC-UNDER-s,, is in NP.

Proof. Recall that in the problem SYNC—UNDER—ocifép, for every pair of states (p,q) € R
and every state r € @), it is demanded that ¢ appears somewhere on a path induced by the
sought synchronizing word w, starting in r. Hence, a precondition for the existence of w is

that for every pair (p;,q;) € R the states ¢; must be reachable from any state in Q. More
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precisely, under the order ocfjép only the last appearance of each state on a path is taken

into account. Hence, a prohibited visit of a state can later be compensated by revisiting all
related states in the correct order. Thus, it is sufficient to first synchronize all pairs of states
and then transition the remaining state through all related states in the demanded order. <«

» Remark 18. The NP-hardness proof for SYNC—UNDER—O—ociU%p in Theorem 16 and the

NP-membership proof for SYNC—UNDER—ocféP
1<l

way the larger states need to be reached on every path and

not only on a path containing the corresponding smaller state as it is the case concerning mfép.

in Theorem 17 do not work for the respectively

other problem since concerning o<

» Theorem 19. The problem SYNC—UNDER—O—oclwigp is PSPACE-complete.

Proof sketch. We reduce from CAREFUL SYNC. As in the proof of Theorem 12 we take every
undefined transition d(g, o) to the new state go. We further enrich the alphabet by a letter ¢
and use ¢ to take gg into Q). We use the relation R and extra states 7, s to enforce that c is
the first letter of any synchronizing word, and that afterwards gg is not reached again. <«

» Remark 20. In the presented way, the reduction relies on taking the initial configuration at
position ¢ = 0 into account but we can adapt the construction to prove PSPACE-completeness
of SYNC—UNDER—J—ocfécp by copying every state in () and the state r. Denote a copy of a
state ¢ with ¢/. Then, we set 6'(¢’,0) = ¢ for any copied state including r’. Note that the
copied states are not reachable from any state. Now, after the first transition w[1] (which
can be arbitrary), we have a similar situation as previously considered for w[0]. The state r
is active and forces the next letter to be the letter ¢; all states in ) are active; reading the

letter ¢ will cause all states g, to be left and never be reached again.

In the above reduction from CAREFUL SYNC the size of R depends on |@Q|. Hence, the
question whether SYNC-UNDER—O(EE@TP is PSPACE-hard for |R| =1 is an interesting topic for
further research. We will now see that when R is a strict and total order on @, the problem

I<f I<f

of synchronizing under o<, g, (a.k.a. SYNC—UNDER—TOTAL—cxw@p) becomes tractable.

» Theorem 21. Let A = (Q,X,9), R be an instance of SYNC—UNDER—TOTAL—O(f@fp. A
shortest synchronizing word w for A with R C ocfgp has length |w| < w + 1.

Note that this length bound is smaller than the bound of the Cerny conjecture [6, 7] for
|Q| > 3. The same bound can be obtained for SUBSET-SYNC-UNDER-TOTAL-ocf@fp. We
will now prove that the problem SYNC-UNDER-TOTAL- 0—0(55; is equivalent — concerning
polynomial time many-one-reductions (depicted by =,) — to the problem of carefully syn-
chronizing a partial weakly acyclic automaton (PWAA) (a PWAA is a WAA where § might
be only partially defined). The obtained length bound also holds for PWA As, which is only
a quadratic increase w.r.t. the linear length bound in the complete case [20]. This is quite
surprising as in general shortest carefully synchronizing words have an exponential lower
bound [16]. Further, we show that careful synchronization for PWAAs is in P while the
problem is PSPACE-complete for general DPAs even if only one transition is undefined [16].

» Theorem 22. SYNC—UNDER—TOTAL—O—O(if@fp =, CAREFUL SYNC of PWAAs.

Proof. We prove this statement by reducing the two problems to each other. Let A =
(Q,%,0), R C @? be an instance of SYNC—UNDER—TOTAL—O—ocf@fp. Since R is a strict total
order on @, we can order the states according to R. We construct from A the PWAA
A= (Q,%,9) by removing all transitions in § which are leading backwards in the order.
Clearly, A’ is carefully synchronizable if and only if A is synchronizable with respect to R.
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For the other reduction, assume A = (Q,%,6) is a PWAA. Then, we can order the
states in ) such that no transition leads to a smaller state. We are constructing from A
the DCA A’ = (QU {q<},%,0") and insert g as the smallest state in the state ordering.
Then, we define in §’ all transitions (¢,0) for ¢ € Q,0 € ¥ which are undefined in ¢
as ¢'(q,0) = q<«. We take the state ¢ with every symbol to the maximal state in the
order. Note that the maximal state needs to be the synchronizing state if one exists. We
set R ={(p,q) | p < q in the state ordering of Q in A} U{(¢<,q) | ¢ € Q}. Every undefined
transition (p,o) in A is not allowed in A’ at any time, since otherwise the pair (¢<,p) € R
would be violated. The state g« itself can reach the synchronizing state with any transition.
Hence, A’ is synchronizable with respect to R if and only if A is carefully synchronizable. <«

» Theorem 23. Let A = (Q,%,0), R C Q? withn :=|Q|. Let Q1 C Q be such that R
restricted to Q1 X Q1 is a strict and total order. Let p = |Q|—|Q1|. For SYNC—UNDER—oclw<@fp.'

If A is synchronizable by a shortest word w with R C o<iv<<({p, then: |w| < (% +1)-2°,

We now present an O(]X|?|Q|?) algorithm for SYNC-UNDER-TOTAL- 0—o<iv<écp. The idea
is the following: We start on all states as the set of active states and pick a letter, which is
defined on all active states and maps at least one active state to a larger state in the order R.
We collect the sequence u of applied letters and after each step, we apply the whole sequence
u on the set of active states. This is possible as we already know that u is defined on Q. We
thereby ensure that a state which has become inactive after some iteration never becomes
active again after an iteration step and hence 4ot grows in each step and never shrinks.
While a greedy algorithm which does not store u runs in O(|X||Q|?), with this trick we get
a running time of O(|X]?|Q|?). As in practice |Q| > |X| this is a remarkable improvement.
Note that we can store u compactly by only keeping the map induced by the current v and
storing the sequence of letters ¢ from which we can restore the value of u in each iteration.

» Theorem 24. SYNC—UNDER—TOTAL—O—O(fé; is solvable in quadratic time.

Proof. Let A = (Q,%,0) bea DCA, and let R C Q? be a strict and total order on Q. Figure 3
describes an algorithm that decides in time O(]%|?|Q|?) whether A is synchronizable with
respect to R under the order o<lw<évp (including position ¢ = 0) on paths. Despite the simplicity
of the algorithm its correctness is not trivial and is proven in the following lemmas. <

» Lemma 25. The algorithm in Figure 3 terminates on every input A = (Q,X%,0) with
m = |X|, n = Q, strict and total order R C |Q|? in time O(m?n?).

Proof. Step 1 can be performed in time O(nlogn) using the Quicksort-algorithm. Step 2
to Step 5 take time O(mn) each. The procedure explore takes time O(mn?). The number
of iterations in Step 6 is bounded by |Xpart| as qer is applied exhaustively on Qact and by
invariant (2) of Lemma 26 we have Q’.; C Qact, This yields a total run-time of O(m?n?). =

act =

» Lemma 26. If the algorithm in Figure 3 returns true on the input A = (Q,%,0), strict
and total order R C |Q|?, then A, R is a yes instance of SYNC—UNDER—TOTAL—O—ocfgp.

Proof. For the procedure explore, the following invariant holds: Let uqg be the word u
before the execution of explore and let une, be the one after the execution of explore.
Then, it holds for all executions of explore that (1) Q.uney is defined, (2) Q.tunew € Q-Uold,
and (3) Q.Unewlnew = @-Unew- We prove the invariant by induction. First, note that the
word u computed by explore in Step 5 is defined on all states in ) since it only consists of
letters which are defined on all states. Since we go through the states in order during the
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Step 1: Order all states in @ according to the order R. Since R is strict and total the
states can be ordered in an array {q1,qz,-..,qn}-

Step 2: Delete in the automaton A all transitions which are leading backwards in the
state-ordering. If this produces a state with no outgoing arc, abort; return false.

Step 3: Let ¢, be the maximal state according to the order R. Delete all transitions in A
which are labeled with letters o € 3 for which ¢,,.0 is undefined. If this produces a state
with no outgoing transition, abort and return false.

Step 4: Partition the alphabet ¥ into Xqef, consisting of all letters o € ¥ for which q.o is
defined for all states g € @, and Ypa 1= E\Zger. If Xger = () abort; return false.

Step 5: Compute explore(Q, Q, Xdef, €) which returns Qacy and u € £;. The returned
set of active states will equate Qtrap = {¢ € Q | ¢.Zdaer = ¢}

Step 6: Set Yaer := Zder U {0 € Epar | .0 is defined for all ¢ € Qact}-

Compute explore(Q, Qact, Ldef, u) Which returns Q. and v’ € X7 ;.

Set Qact := Qhets U =1, Xpar := X\ Ldet-

Repeat this step until Q,ct does not change anymore (= to X4er does not change anymore).
Then, if Qact = {gn} return true, otherwise return false.

Procedure explore: Input: Ordered state set (), set of active states Qact, alphabet Xeyp
to be explored, word u with Q.u = Qact.

Initialize a new word v’ := u.

Go through the active states in order. For the current state q, test if any o € Y4er leads
to a larger state, if so, perform the transition cu on all active states and update the set
of active states Q.. Concatenate u’ with ocu. Continue with the next larger active state
(note that this can be g.ou). If ¢, is reached, return u’, and the current set of active states

Qact .

Figure 3 Poly-time algorithm for SYNC—UNDER—TOTAL—O—ocf@fp on A=(Q,%,d), RC Q>

execution of explore and we only proceed with the next larger state if (1) we where able to
leave the current one towards a larger state or if (2) the current state cannot be left with
any of the letters in Xgef, it holds that Q.uu = Q.u. Also, trivially Q.u C Q.

Next, consider some later execution of explore. The new word computed by explore
is of the form Upew = UoldO1UoldO2Uold - - - Oiliold for some 0 < ¢ < |Q|. The induction
hypothesis tells us that (1) Q.ueq is defined. Since Q.uqq01 is defined (since o1 € Xqef) and
Q.uolgo1 C @ it holds that Q.ugqo1Uolq is defined. Further, since uqq brings all states to the
set Q.ucolq it also brings a subset of @ to a subset of Q.uqq. Using the induction hypothesis
(3) we get by an induction on ¢ that Q.upew is defined and Q.unew C Q.uglg- Since in the
execution of explore we only proceed with the next larger state if we exhaustively checked
all possible transitions for the current state and since Q.uglquolq = @-Uolq it follows that
Q Unowlnew = Q. Unew-

If the algorithm in the proof of Theorem 24 terminates and returns yes, it also returns a

synchronizing word u. By the invariant proven above, we know that Q.u is defined. This
I<f
u@Qp

agrees with R. During the execution of the algorithm we track the set of active states Qact
(starting with @) and only return true if Q,c4 contains only the in R largest state g,. Since
R is a total order, every g € @ is smaller than ¢, and hence ¢, cannot be left. Therefore, g,
needs to be the single synchronizing state of A and w is a synchronizing word for A. <

means that u never causes a transition of a larger state to a smaller state and hence x

» Lemma 27. If the algorithm in Figure 3 returns false on input A = (Q,%,0), strict and

total order R C |Q|?, then A is not synchronizable with respect to R under the order ocf@fp.
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Proof. The algorithm returns false in the following cases.

(1) All outgoing transitions of some state ¢ are deleted in Step 2. In that case, every
transition of ¢ leads to a smaller state. As this would violate the order R, we cannot perform
any of those transitions. Hence, ¢ cannot be left. (The case that ¢ = ¢, is treated in (2).)

(2) Since g, is the largest state, it cannot be left. Hence, ¢, will be active the whole time.
Therefore, any transition which is not defined for ¢,, cannot be taken at all since g, is active
during the whole synchronizing process. Hence, we can delete these transitions globally. If
this creates a state which cannot be left anymore, this state cannot be synchronized.

(3) The execution of explore returns two identical sets of active states Qact in a row.
Let Y 4ot be the explored alphabet of the last execution of explore. Then, ¥4ef contains
all letters o from ¥ for which q.o is defined on all states ¢ € Qacy and none of them leads
some state in Q¢ to a larger state. Since the relation R forbids cycles, for all 0 € ¥4 and
all ¢ € Qact .0 = q and hence this set cannot be left when all states of the set are active
simultaneously. Since all states are active at the beginning of the algorithm, also all states in
Q.ct are active and since this set cannot be left with any transition which does not cause an
undefined transition for all states in the set, the state set cannot be synchronized at all. <«

» Corollary 28. The careful synchronization problem for PWAA is in P.

If we allow one unrestricted transition first (SYNC-UNDER-TOTAL- ! —o<iv<écp) the problem is

related to the subset synchronization problem of complete WAAs which is NP-complete [20].
Together with the quadratic length bound of a synchronizing word of SYNC-UNDER-TOTAL-

i<s (which implies membership of SYNC-UNDER-TOTAL-1-x</ in NP), we get:

1 _ocw@p w@p

» Theorem 29. The problem SYNC—UNDER—TOTAL—]—ocf@{p is NP-complete.

Proof sketch. We reduce from the NP-complete problem: Given a complete weakly acyclic
automaton A = (Q,%,d) and a subset S C @, does there exist word w € ¥* such that
|S.w| = 17 We construct from A an automaton A’ = (Q', X U {c},d’) with ¢ ¢ ¥ in the
following way. We start with Q' = Q. W.l.o.g., assume |S| > 2. For each state ¢ € S, we
add a copy 4 to @'. Further, we add the states g and ¢~. Let g1, qo, ..., g, be an ordering
of the states in @ such that ¢ follows this ordering. The transition function §’ agrees with ¢
on all states in @ and letters in X. For a copied state §, we set 6’(4,0) = ¢ for all ¢ € ¥ and
8'(g,¢) = q. For every state q € Q, we set 0’(¢q,¢) = g<. Let g5 be some state in S. Then for
all 0 € ¥ we set §'(q<,0) = 6(qs,0), 8 (q<,¢) = qs and §'(¢>,0) = ¢>, 6'(¢>, ) = gs. Then,
we set R = {(¢;,¢;) | ¢ < j} for all states in Q). Further, for every copied state ¢ we extend
R by the sets: {(gk, qr)}, 1(qis dk), (G, q5) [ < b,k <7}, and {(di, k), (dk, G5) | 1 < k < j}
for all copied states §;,q;. For the states ¢<,¢>, we add {(¢<,q) | ¢ # ¢« € Q'} and
{(¢:95) | ¢ #q> € Q"} to R. <

» Theorem 30. SUBSET-SYNC-UNDER—TOTAL-ocfj@fp is NP-complete.

» Theorem 31. The following subset synchronization problems are PSPACE-complete for

. 1<l <l 1<l <i I<f
both -0- and -1-: SUBSET-SYNC-UNDER-X, ;6 “Xpap: "Xpas: Xuap: " Cwap-

Several other results can be transferred from [20] to the corresponding version of the
SYNC—UNDER—TOTAL—O—O(ifévp problem, such as inapproximability of the problems of finding
a shortest synchronizing word; a synchronizing set of maximal size (here also W[1]-hardness
can be observed); or determining the rank of a given set. Further, by the observation (in [20])
that, in the construction given in [18, 11] the automata are WAAs, we immediately get
NP-hardness for finding a shortest synchronizing word for all of our orders (for order | < [

and [ <l set R=10).
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5 Conclusion

We discussed ideas how constraints for the design of assembly lines caused by the physical
deformation of a part can be described in terms of synchronization problems. For that, we
considered several ways how a word can imply an order of states in (). We considered the
complexity of synchronizing an automaton under different variants of orders and observed that
the complexity of considering an order on the set of active states may differ from considering
the order on each single path. Although we were able to get a good understanding of
the complexity of synchronization under the considered orders, some questions remained
open: We only know that SYNC-UNDER-o<!<! ' is contained in NP but it is open whether

wQp

the problem is NP-complete or if it can be solved in polynomial time. Conversely, for

SYNC—UNDER—O—ociU%p the problem is NP-hard but its precise complexity is unknown. It

would be quite surprising to observe membership in NP here since it would separate the
complexity of this problem from the closely related problem SYNC-UNDER- 1 —ufép. Further,
it remains open whether for the other orders a drop in the complexity can be observed, when

R is strict and total, as it is the case for ocf@fp.
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