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Abstract
We study alternating good-for-games (GFG) automata, i.e., alternating automata where both
conjunctive and disjunctive choices can be resolved in an online manner, without knowledge of the
suffix of the input word still to be read. We show that they can be exponentially more succinct than
both their nondeterministic and universal counterparts. Furthermore, we lift many results from
nondeterministic parity GFG automata to alternating ones: a single exponential determinisation
procedure, an Exptime upper bound to the GFGness problem, a PTime algorithm for the GFGness
problem of weak automata, and a reduction from a positive solution to the G2 conjecture to a PTime
algorithm for the GFGness problem of parity automata with a fixed index. The G2 conjecture
states that a nondeterministic parity automaton A is GFG if and only if a token game, known as
the G2 game, played on A is won by the first player. So far, it had only been proved for Büchi
automata; we provide further evidence for it by proving it for coBüchi automata. We also study
the complexity of deciding “half-GFGness”, a property specific to alternating automata that only
requires nondeterministic choices to be resolved in an online manner. We show that this problem is
strictly more difficult than GFGness check, already for alternating automata on finite words.
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1 Introduction

Good-for-games (GFG) automata were first introduced in [12] as a tool for solving the synthesis
problem. The equivalent notion of history-determinism was introduced independently in [8]
in the context of regular cost functions. Intuitively, a nondeterministic automaton is GFG
if nondeterminism can be resolved on the fly, only with knowledge of the input word read
so far. GFG automata can be seen as an intermediate formalism between deterministic
and nondeterministic ones, with advantages from both worlds. Indeed, like deterministic
automata, GFG automata enjoy good compositional properties—useful for solving games
and composing automata and trees—and easy inclusion checks [2]. Like nondeterministic
automata, they can be exponentially more succinct than deterministic automata [17].

In recent years, much effort has gone into understanding various properties of nondetermin-
istic GFG automata, for instance their relationship with deterministic automata [2, 17, 4, 16],
applications in probabilistic model checking [15] and LTL and µ-calculus synthesis [13],
decision procedures for GFGness [19, 17, 1], minimisation [23], and links with recent advances
in parity games [10].

Alternating GFG automata are a natural generalisation of nondeterministic GFG auto-
mata that enjoy the same compositional properties as nondeterministic GFG automata, while
providing more flexibility. As we show in the present work, for some languages they can
also be exponentially more succinct, allowing for better synthesis procedures. Alternating
GFG automata were introduced independently by Colcombet [9] and Quirl [22] while a form
of alternating GFG automata with requirements specific to counters were also considered
in [18], as a tool to study cost functions on infinite trees. Boker and Lehtinen studied the
expressiveness and succinctness of alternating GFG automata in [5], showing that they

are not more succinct than DFAs on finite words,
are as expressive as deterministic ones of the same acceptance condition on infinite words,
and can be determinised with a 2θ(n) size blowup for the Büchi and coBüchi conditions.

Many questions about GFG alternating automata were left open, in particular whether
there exists a doubly exponential gap between alternating GFG and deterministic automata,
and the complexity of deciding whether an alternating parity automaton is GFG. We pursue
the study of these questions, and obtain a deeper understanding of the GFG realm.

Contributions

Succinctness of alternating GFG automata. We show that there is a single exponential
gap between alternating parity GFG automata and deterministic ones, thereby answering
a question left open in [5]. However, we also show that alternating GFG automata can
present exponential succinctness compared to both nondeterministic and universal GFG
automata. This means that alternating GFG automata can be used to reduce the complexity
of solving some games with complex acceptance conditions.

Recognising GFG automata. We show that deciding whether an alternating automata on
finite words or a weak alternating automata on infinite words is GFG is in PTime.

For more general acceptance conditions such as parity, we rely on the two-token game G2
introduced in [1]. Bagnol and Kuperberg showed in [1] that this game characterises GFGness
for nondeterministic Büchi automata, in the sense that the first player has a winning strategy
in G2 if and only if the automaton is GFG. They conjectured that this result holds in general
for parity conditions, which would provide a PTime procedure to decide whether a given
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nondeterministic parity automaton with a fixed index is GFG. We lift this characterisation
to alternating automata: we define an alternating version of G2, which can still be solved
in PTime for automata of fixed index. Moreover, we prove that G2 characterises GFG
alternating automata, provided that the conjecture holds for nondeterministic automata.
We then prove that the conjecture indeed holds for nondeterministic coBüchi automata,
taking a step towards a general solution. This immediately provides a new PTime algorithm
for recognising GFGness in nondeterministic coBüchi automata. It is simpler than the
one from [17], which involves several games and intermediate modifications of the input
automaton. Falling short of giving a PTime algorithm in the general case, we give an
Exptime upper bound to the problem of deciding whether an alternating parity automaton
is GFG, matching the known upper bound for recognising nondeterministic GFG automata.

We also study the complexity of deciding “half-GFGness”, i.e., whether the nondetermin-
ism (or universality) of an automaton is GFG. This property guarantees that composition
with games preserves the winner for one of the players. We show that already on finite words,
this problem is PSpace-hard, and it is in Exptime for alternating Büchi automata. This
shows that a PTime algorithm for deciding GFGness must, as in the case of finite word
automata and weak automata, exploit the subtle interplay between nondeterminism and
universality, and cannot be reduced to checking independently whether each of them is GFG.

Roadmap. We begin with some definitions, after which, in Section 3, we define alternating
GFG automata, study their succinctness and the complexity of deciding GFGness of the
nondeterminism within an alternating automaton. Section 4 provides a single-exponential
determinisation procedure for alternating GFG parity automata. Section 5 shows that
GFGness of alternating parity automata is in Exptime and works towards a PTime algorithm.
In particular, it provides such an algorithm for weak automata. Finally, Section 6 shows that
the G2 conjecture holds for coBüchi automata. Throughout the paper, we provide high-level
proof sketches, with detailed technical developments in the appendix.

2 Preliminaries

Words and automata. An alphabet Σ is a finite nonempty set of letters. A finite (resp.
infinite) word u = u0 . . . uk ∈ Σ∗ (resp. w = w0w1 . . . ∈ Σω) is a finite (resp. infinite) sequence
of letters from Σ. A language is a set of words, and the empty word is written ε. We denote
a set {i, . . . , j} of integers by [i, j].

An alternating word automaton is a tuple A = (Σ, Q, ι, δ, α), where: Σ is an alphabet; Q
is a finite nonempty set of states; ι ∈ Q is an initial state; δ : Q× Σ→ B+(Q) is a transition
function where B+(Q) is the set of positive Boolean formulas (transition conditions) over
Q; and α, on which we elaborate below, is either an acceptance condition or a transition
labelling on top of which an acceptance condition is defined. For a state q ∈ Q, we denote by
Aq the automaton that is derived from A by setting its initial state ι to q.

An automaton A is nondeterministic (resp. universal) if all its transition conditions are
disjunctions (resp. conjunctions), and it is deterministic if all its transition conditions are
just states. We represent the transition function of nondeterministic and universal automata
as δ : Q× Σ→ 2Q, and of a deterministic automaton as δ : Q× Σ→ Q. A transition of an
automaton is a triple (q, a, q′) ∈ Q×Σ×Q, sometimes also written q a−→ q′.

We denote by δ̂ ⊆ B+(Q) the set of all subformulas of formulas in the image of δ, i.e., all
the Boolean formulas that “appear” somewhere in the transition function of A.
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Acceptance conditions. There are various acceptance (winning) conditions, defined with
respect to the set of transitions1 that a path of A visits infinitely often. (Notice that a
transition condition allows for many possible transitions.) We later formally define acceptance
of a word w by A in terms of games, and consider a path of A on a word w as a play in that
game. For nondeterministic automata, a “run” coincides with a “path”.

Some of the acceptance conditions are defined on top of a labelling of the transitions
rather than directly on the transitions. In particular, in the parity condition, we have
α : Q× Σ×Q→ Γ, where Γ ⊆ N is a finite set of priorities and a path is accepting if and
only if the highest priority seen infinitely often on it is even.

The Büchi and coBüchi conditions are special cases of the parity condition with Γ = {1, 2}
and Γ = {0, 1}, respectively. When speaking of Büchi and coBüchi automata, we often refer
to α as the set of “accepting transitions”, namely the transitions that are mapped to 2 in the
Büchi case and to 0 in the coBüchi case. The weak condition is a special case of both the
Büchi and coBüchi conditions, in which every path eventually remains in the same priority.

The Rabin and Streett conditions are more involved, yet defined directly on the set T of
transitions. A Rabin condition is a set {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}, with Bi, Gi ⊆ T ,
and a path ρ is accepting iff for some i ∈ {1, . . . , k}, we have that the set inf(ρ) of transitions
that are visited infinitely often in ρ satisfies (inf(ρ)∩Bi = ∅ and inf(ρ)∩Gi 6= ∅). A Streett
condition is dual: a set {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}, with Bi, Gi ⊆ Q, whereby a path
ρ is accepting iff for all i ∈ {1, . . . , k}, we have (inf(ρ) ∩Bi = ∅ or inf(ρ) ∩Gi 6= ∅).

Sizes and types of automata. The size of A is the maximum of the alphabet size, the
number of states, the transition function length, which is the sum of the transition condition
lengths over all states and letters, and the acceptance condition’s index, which is 1 for weak,
Büchi and coBüchi, |Γ| for parity, and k for Rabin and Street.

We sometimes abbreviate automata types by three-letter acronyms in {D, N, U, A} × {F,
W, B, C, P, R, S}×{A,W}. The first letter stands for the transition mode, the second for the
acceptance-condition, and the third indicates that the automaton runs on finite or infinite
words. For example, DPW stands for a deterministic parity automaton on infinite words.

Games and strategies. Some of our technical proofs use standard concepts of an arena, a
game, a winning strategy, etc. . . For the sake of completeness, we provide precise mathematical
definitions of these objects in Appendix A. Here we will just overview the involved concepts.

First, we work with two-player games of perfect information, where the players are Eve
and Adam. These games are played on graphs (called arenas). Most of the considered games
are of infinite duration and their winning condition is expressed in terms of the infinite
sequences of edges taken during the play. We invoke results of determinacy (one of the
players has a winning strategy), as well as of positional determinacy (one of the players has
a strategy that depends only on the last position of the play).

Model-checking games. To represent the semantics of an alternating automaton A, we
treat the Boolean formulas that appear in the transition conditions of A as games. More
precisely, given a letter a ∈ Σ we represent the transition conditions q 7→ δ(q, a) ∈ B+(Q) as
the one-step arena over a. A play over this arena begins in a state q ∈ Q; then players go
down the formula δ(q, a) with Eve resolving disjunctions and Adam resolving conjunctions;

1 Acceptance is defined in the literature with respect to either states or transitions; for technical reasons
we prefer to work with acceptance on transitions.
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and finally they reach an atom q′ ∈ Q and the play stops. This means that a play over the
one-step arena over a results in a transition of the form (q, a, q′).

The language L(A) of an alternating automaton A over an alphabet Σ is defined via the
model-checking game. A configuration of this game is a state q of A, starting at ι. In the
ith round, starting from state qi, the players play the game over the one-step arena over wi,
resulting in a transition q wi−→ qi+1. The acceptance condition of A becomes the winning
condition of this game. A accepts a word w ∈ Σω if Eve has a winning strategy in this game.

For technical convenience, we define (in Appendix A) the model-checking game in terms
of a synchronised product of the word w (treated as an infinite graph) and the automaton A.
Synchronised products turn out to be useful in the analysis of various games presented in
this paper and will be used throughout the technical versions of the proofs, in the appendix.

I Definition 1. Given an alternating automaton A, we denote by A the dual automaton: it
has the same alphabet, set of states, and initial state. Its transition conditions δA(q, a) are
obtained from those of A by replacing each disjunction ∨ with conjunction ∧ and vice versa.
Its acceptance condition is the dual of A′s condition. (In parity automata, all priorities are
increased by 1.)

Boxes. Another technical concept that we use is that of boxes. They can be defined with
respect to the synchronised product, see page 16, but also directly based on transition
conditions. Consider an alternating automaton A and a letter a ∈ Σ. Moreover, fix a strategy
σ of Eve that resolves disjunctions in all the transition conditions δ(q, a). Now, the box of A,
a, and σ, denoted β(A, a, σ) is the subset of Q× {a} ×Q that contains (q, a, q′) if there is a
play consistent with σ on δ(q, a) that reaches the atom q′ of the formula. By BA,a we denote
the set of all boxes of A and a, while BA denotes the union

⋃
a∈Σ BA,a.

I Definition 2. Given a sequence of boxes π = b0, b1, . . . of an automaton A and a path ρ =
(q0, a0, q1), (q1, a1, q2), . . ., we say that ρ is a path of π if for every i we have (qi, ai, qi+1) ∈ bi.
The sequence π is said to be universally accepting if every path in π is accepting in A.

Intuitively, a sequence of boxes π as above represents a particular strategy σ of Eve in
the model-checking game over the word w = a0, a1, . . . In that case, a path of π corresponds
to a possible play of this game consistent with σ.

3 Good-For-Games Alternating Automata

Good-for-games (GFG) nondeterministic automata are automata in which the nondetermin-
istic choices can be resolved without looking at the future of the word. For example, consider
an automaton that consists of a nondeterministic choice between a component that accepts
words in which a occurs infinitely often and a component that accepts words in which a occurs
finitely often. This automaton accepts all words but is not GFG since the nondeterministic
choice of component cannot be resolved without knowing the whole word.

To extend this definition to alternating automata, we must look both at its nondeterminism
and universality and require that both can be resolved without knowledge of the future. The
following letter games capture this intuition.

I Definition 3 (Letter games [5]). Given an alternating automaton A, Eve’s letter game
proceeds at each turn from a state q of A, starting from the initial state of A, as follows:

Adam chooses a letter a,
Adam and Eve play on the one-step arena over a from q to a new state q′, where Eve
resolves disjunctions and Adam conjunctions.
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A play of the letter game thus generates a word w and a path ρ of A on w. Eve wins this
play if either w /∈ L(A) or ρ is accepting in A.

Adam’s letter game is similar, except that Eve chooses letters and Adam wins if either
w ∈ L(A) or the path ρ is rejecting.

A more formal definition is given in Appendix B.

I Definition 4 (GFG automata [5]). An automaton A is ∃GFG if Eve wins her letter game;
it is ∀GFG if Adam wins his letter game. Finally, A is GFG if it is both ∃GFG and ∀GFG.

As shown in [5, Theorem 8], an automaton A is GFG if and only if it is indeed “good for
playing games”, in the sense that its product with every game whose winning condition is
L(A) preserves the winner of the game.

3.1 Alternating GFG vs. Nondeterministic and Universal Ones
We show in this section that alternating GFG automata can be more succinct than both
nondeterministic and universal GFG automata.

I Lemma 5. There is a family (Cn)n∈N of alternating GFG {0, 1, 2}-parity automata of size
linear in n over a fixed alphabet, such that every nondeterministic GFG parity automaton
and universal GFG parity automaton for L(Cn) is of size 2Ω(n).

Proof sketch. We use the succinctness result from [17, Thm. 1], stating that there exists a
family An of NCW-GFG with size linear in n, such that any DPW for L(An) has exponential
size. Combining An and its dual into a single alternating automaton gives us the wanted
result. See Appendix B.1 for a detailed construction. J

3.2 Deciding Half-GFGness
In order to decide GFGness, it is enough to be able to decide the ∃GFG property on the
automaton and its dual. A natural first approach is therefore to study the complexity of
deciding whether an APW is ∃GFG. Yet, we will show that already on finite words, this
problem is more difficult than deciding GFGness.

I Lemma 6. Deciding whether an AFA is ∃GFG is PSpace-hard.

Proof sketch. We reduce from NFA universality: starting from an NFA A, we build an
AFA B based on the dual of A, with an additional non-GFG choice to be resolved by Eve.
This AFA B is ∃GFG if and only if L(B) = ∅, which happens if and only if L(A) = Σ∗.
We crucially use the fact that B is not necessarily ∀GFG. See Appendix B.2 for a detailed
construction. J

For Büchi automata, and so in particular for finite words, we can give an Exptime
algorithm for this problem.

I Lemma 7. Deciding whether an ABW is ∃GFG is in Exptime.

Proof. It is shown in [5, Lemma 23] that removing alternation from an ABW A using the
breakpoint construction [20] yields an NBW such that if A is ∃GFG then B is GFG. Moreover,
it is straightforward to show that the converse also holds, i.e., if B is GFG then A is ∃GFG,
since playing Eve’s letter game in B is more difficult for Eve than playing it in A. This means
that starting from an ABW A, we can build an exponential size NBW B via breakpoint
construction, and test whether B is GFG via the algorithm from [1], in time polynomial with
respect to B. Overall, this yields an Exptime algorithm deciding whether A is ∃GFG. J
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In contrast, we will show in Section 5 that deciding GFGness for AFA and AWW is in
PTime, and conjecture that the same is true for APW of every fixed index.

4 Determinisation of Alternating GFG Parity Automata

In this section we provide a procedure that, given an alternating GFG parity automaton,
produces an equivalent deterministic parity automaton with singly exponentially many states.
To do so, we first provide an alternation-removal procedure for Rabin automata that preserves
GFG status. Then, we apply this procedure to both the input automaton and its complement
and use the GFG strategies in these two automata to determinise the input. Our proofs,
in Appendix C, rely on some analysis of when GFG strategies can use the history of the
word, rather than the whole play, and on the memoryless determinacy of Rabin games.

Our method for going from alternating to nondeterministic automata is similar to that
of Dax and Klaedtke [11]: they take a nondeterministic automaton that recognises the
universally-accepting words in (BA)ω and add nondeterminism that upon reading a letter
a ∈ Σ chooses a box in BA over a. Yet in our approach, in order to guarantee that the
outcome preserves GFGnesss, the intermediate automaton is deterministic.

4.1 Alternation Removal in GFG Rabin Automata
I Theorem 8. Consider an alternating Rabin (resp. parity) automaton A with n states and
index k. There exists a nondeterministic parity automaton box(A) with 2O(nk lognk) (resp.
2O(n logn)) states that is equivalent to A such that if A if GFG then box(A) is also GFG.

In Section 5, where we discuss decision procedures, we will show that box(A) is GFG
exactly when A is GFG. For now, the rest of this section is devoted to the proof of Theorem 8,
of which a detailed version can be found in Appendix C.2.

I Lemma 9. Consider an alternating Rabin (resp. parity) automaton A with n states
and index k. Then there exists a deterministic parity automaton B with 2O(nk lognk) (resp.
2O(n logn)) states over the alphabet BA that recognises the set of universally-accepting words
for A. If A is a Büchi automaton, then B can also been taken as Büchi, and in general the
parity index of the automaton B is linear in the number of transitions of A.

Proof sketch. We construct the automaton B by determinising and complementing a non-
deterministic Streett (resp. parity or coBüchi) automaton over the alphabet BA that recognises
the complement of the set of universally-accepting words for A, that is, an automaton that
guesses a path that is not accepting, and has the dual acceptance condition to A. J

We now build the automaton box(A) of Theorem 8. It is the same as the automaton B
of Lemma 9, except that the alphabet is Σ and the transition function is defined as follows:
For every state p of B and a ∈ Σ, we have δbox(A)(p, a) :=

⋃
β∈B〈A,a〉

δB(p, β).
In other words, the automaton box(A) reads a letter a, nondeterministically guesses a box

β ∈ BA,a, and follows the transition of B over β. Thus, the runs of box(A) over a word
w ∈ Σω are in bijection with sequences of boxes (βi)i∈N such that βi ∈ BA,wi for i ∈ N.

Fix an infinite word w ∈ Σω. Our aim is to prove that w ∈ L(A)⇔ w ∈ L(box(A)).

I Lemma 10. There exists a bijection between positional strategies of Eve in the acceptance
game of A over w and runs of box(A) over w. Moreover, a strategy is winning if and only if
the corresponding run is accepting. Then L(A) = L(box(A)).
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I Remark 11. The above alternation-removal procedure fails for alternating Streett auto-
mata A: since Streett games are not positionally determined for Eve, the acceptance game
of A over a word w is not positionally determined for Eve.

I Lemma 12. For an alternating ∃GFG Rabin automaton A, the automaton box(A) is GFG.

Intuitively, this is because the construction of box(A) preserves the nondeterminism of A.

4.2 Single-Exponential Determinisation
The aim of this section is to prove the following determinisation theorem; See Appendix C.3
for a detailed proof.

I Theorem 13. If A is an alternating parity GFG automaton then there exists a deterministic
parity automaton D that recognises the same language and has size at most exponential in
the size of A. Moreover, the parity index of D is the same as that of A.

I Remark 14. Theorem 8 and [2, Theorem 4] together give an exponential deterministic
parity (Rabin) automaton for L(A). However, the index of A might not be preserved. On the
other hand, from [5, Theorem 19] we know that there exists a deterministic parity automaton
equivalent to A with the same index, but it might have more than exponentially many states.

Observe that Theorem 8 can be applied both to A and its dual. Therefore, we can fix
a pair of nondeterministic GFG parity automata box(A) and box(Ā) that recognise L(A)
and L(A)c respectively and are both of size exponential in A. We use the automata A,
box(A), and box(Ā) to construct two auxiliary games.

The game G(A) proceeds from a configuration consisting of a pair (p, q) of states from
box(Ā) and A respectively, starting from their initial states, as follows:

Adam chooses a letter a ∈ Σ;
Eve chooses a transition p a−→ p′ in box(Ā);
Eve and Adam play on the one-step arena over a from q to a new state q′.

A play in G(A) consists of a run ρ in box(Ā) and a path ρ′ in A. It is winning for Eve if
either ρ is accepting in box(Ā) (in which case w /∈ L(A)), or ρ′ is accepting in A.

If A is ∃GFG and box(Ā) is GFG, Eve has a winning strategy in G(A) consisting of
building a run in box(Ā) using her GFG strategy in box(Ā) and a path in A using her
∃GFG strategy in A. This guarantees that if w ∈ L(A) then the path in A is accepting, and
otherwise the run in box(Ā) is accepting.

We then argue that as the winning condition of G(A) is a Rabin condition, Eve also has
a winning strategy that is positional in A, that is, which only depends on the history of the
word and the current position. See Appendix C for details.

I Remark 15. There is some magic here: both the GFG strategies of Eve in A and in box(Ā)
may require exponential memory, yet, when she needs to satisfy the disjunction of the two
conditions, no more memory is needed. In a sense, the states of A provide the memory for
box(Ā) and the states of box(Ā) provide the memory for A.

The game G′(A) is similar, except that Adam is given control of box(A) and Eve is in
charge of letters. This time Adam wins a play consisting of a run of box(A) and a path in A
if either the path of A is rejecting or the run of box(A) is accepting.
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Accordingly, if A is GFG, then he can win by using the GFG strategy in box(A) and the
∀GFG strategy in A. Then if w ∈ L(A), the run in box(A) is accepting, and otherwise the
path of A is rejecting. As before, he also has a positional winning strategy in G′(A).

We are now ready to build the deterministic automaton from a GFG APW A, using
positional winning strategies σ and τ for Eve and Adam in G(A) and G′(A), respectively.

Let D be the automaton with states of the form (q, p1, p2), with q a state of A, p a state
of box(A) and p′ a state of box(Ā). A transition of D over a moves to (q′, p′1, p′2) such that
moving from (q, p1) to (q′, p1) is consistent with τ ; and moving from (q, p2) to (q′, p′2) is
consistent with σ. The acceptance condition of D is inherited from A.

I Lemma 16. For a GFG APW A and D built as above, L(A) = L(D).

I Remark 17. The above construction does not work for an alternating GFG Rabin auto-
maton A, since we need to remove alternations from both A and its dual. Although we know
how to remove alternations from A with a singly-exponential size blowup while preserving
GFGness, we do not know how to do it to the dual of A, which is a Streett automaton.

5 Deciding GFGness of Alternating Automata

We first use the development of the last section to show that deciding whether an APW
is GFG is in Exptime. This matches the best known upper bound for the same problem
on NPW. We then consider how to improve this upper bound by characterising GFGness
with a polynomially solvable game. In particular, we show that if the token game G2
known to characterise GFGness for NBW, can be shown to also characterise GFGness for
nondeterministic parity automata, as previously conjectured in [1], then it also characterises
GFGness for alternating parity automata. In the special case of AWW (or AFAs), we show
that this token game indeed characterises GFGness, and can be decided polynomially.

5.1 GFGness of Alternating Parity Automata is in Exptime
The main result of this section is the following theorem; its proof is in Appendix D.1.

I Theorem 18. There exists an Exptime algorithm that takes as input an alternating parity
automaton A and decides whether A is GFG.

A complete proof of this result is given in Appendix D.1. The idea is to construct the
(exponential size) NPWs box(A) and box(Ā) for L(A) and L(A)c respectively. We observe
the following reciprocal of Lemma 12.

I Lemma 19. If box(A) is GFG then A is ∃GFG.

Proof. Assume that box(A) is GFG and consider a strategy witnessing this. Such a strategy
can be easily turned into a function σ′ : Σ+ → BA that, given a word w ∈ L(A) produces
a universally accepting word of boxes of A. Now, due to the definition of a box, each such
box defines a positional strategy of Eve in the respective one-step game. This allows us to
construct a winning strategy of Eve in the letter game over A. J

Thus, A is GFG if and only if both box(A) and box(Ā) are GFG. To decide this, we
consider a game G′′ where Adam plays letters and Eve produces runs of the automata
box(A) and box(Ā) in parallel. The winning condition of G′′ requires that at least one of
the constructed runs must be accepting.
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Now, each sequence of letters given by Adam belongs either to the language of box(A) or
to box(Ā) and therefore, a winning strategy of Eve in G′′ must comprise of two strategies
witnessing GFGness of both box(A) and box(Ā). Dually, if both box(A) and box(Ā) are
GFG then Eve wins G′′ by playing the two strategies in parallel.

A careful analysis of the winning condition of G′′ shows that solving it is in Exptime.

5.2 Towards a Polynomial Procedure
While the letter games characterise whether an automaton is GFG, solving these games is
not as easy as one could hope, as the winning condition depends on whether the played
word is in the language. The naive solution is to use a deterministic automaton to recognise
whether the played word is in the language; however the cost of determinisation is, in the
case of alternating automata, doubly exponential. Theorem 18 already improves on this by
giving a single exponential procedure.

The hope for further improving on this upper bound is to find an alternative character-
isation of GFGness, based on polynomially solvable games. So far, this approach has been
successful in the case of nondeterministic Büchi automata [1]: a nondeterministic Büchi
automaton is GFG if and only if Eve wins the game G2 in which Adam chooses letters while
Eve builds a run in the automaton, as in the letter game, but, in addition, Adam also has to
build two runs, of which at least one should witness that the word is in the language. This
game is polynomially solvable as the arena is just the product of the alphabet and three
copies of the automaton, and the winning condition is a simple Boolean combination of Büchi
conditions. Asking Adam to just build one accepting run would make the game too easy for
Eve who could use the information from Adam’s run to build her own run, see [1, Lemma 8].

We describe below a version of the G2 game suited to alternating automata.

I Definition 20 (The two-token game). Given an alternating parity automaton A, we define
the two-token game G2(A). A configuration (p, q1, q2) ∈ Q3 of G2(A) consists of three states
of A, one for Eve’s token, and two for Adam’s tokens. The initial configuration is (ι, ι, ι).
A turn starting in (p, q1, q2) proceeds as follows:

Adam picks a letter a ∈ Σ;
Eve and Adam play the one-step game over δA(p, a) in A and build a transition p a−→ p′;
Eve and Adam play the one-step game over δĀ(q1, a) in Ā and build a transition q1

a−→ q′1;
Eve and Adam play the one-step game over δĀ(q2, a) in Ā and build a transition q2

a−→ q′2;
The new configuration is (p′, q′1, q′2).

A play consists of the resulting three infinite paths (ρE , ρA, ρ′A) and is winning for Eve if
either ρE is accepting or ρA and ρ′A are both rejecting.

Notice that the roles of the players are swapped in the games from q1 and q2: it is Adam
who resolves disjunctions and Eve resolves conjunctions.

It is easy to encode the above game as a game over a finite graph, with labels of the form
(Q× Σ×Q)3, representing the three transitions taken in a given turn.

I Remark 21. Notice that if A is a nondeterministic automaton, then this game is just the
two-token game from [1] in which Adam picks a letter, Eve chooses a transition for her token
and Adam chooses transitions for his two tokens. In the nondeterministic case, we will also
use the game Gk(A), in which Adam has k tokens instead of two, see [1, Definition 9].

I Theorem 22 ([1, Corollary 21]). For all NBW A, Eve wins G2(A) if and only if A is GFG.
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B Conjecture 23 ([1]). A nondeterministic parity automaton A is GFG if and only if Eve
wins G2(A).

In this section we show that if this conjecture holds, then the above generalisation of G2
also characterises GFGness for alternating automata, in the sense that then an alternating
parity automaton A is GFG if and only if Eve wins both G2(A) and G2(Ā).

Before we move on, we argue that the game G2 is more tractable than both the letter
game and the approach from Section 5.1, as expressed by the following proposition.

I Proposition 24. Given an APW A of size n with a fixed number d of priorities over
an alphabet Σ, the game G2(A) can be solved in time complexity O(n4). (More precisely, in
O(d2(n3|Σ|2d2 log d)1+o(1)).)

A proof of this proposition boils down to a careful analysis of the size of G2(A) and ways
to represent its winning condition, see Appendix D.2.

The following lemma is direct: a GFG strategy of Eve in A can win G2(A) without even
looking at the tokens moved by Adam, see Appendix D.3.

I Lemma 25. If an alternating automaton A is GFG, then Eve wins both G2(A) and G2(Ā).

Recall that in Section 4 we construct from A a nondeterministic parity automaton box(A)
which is GFG if and only if the nondeterminism in A is GFG, see Lemma 12 and Lemma 19.

We now show that if Eve wins G2(A), then she also wins G2(box(A)). Then, if Conjec-
ture 23 holds, it follows that box(A), and therefore also A, is GFG.

I Proposition 26. For an alternating parity automaton A, if Eve wins G2(A) then she also
wins G2(box(A)).

The proof, given in Appendix D.4, is very similar in spirit to the proof of Lemma 12: we
consider a positional winning strategy of Eve in an intermediate game, where she plays her
token in a copy of A, against Adam playing in two copies of box(A).

As deciding G2 on alternating automata is also PTime, proving Conjecture 23 would also
provide a PTime algorithm for deciding the GFGness of APW. In Section 6 we work towards
this goal by proving that G2 characterises GFG for nondeterministic coBüchi automata.

While for now we fall short of deciding GFGness of APW in PTime, our technical
developments suffice to decide GFGness for alternating weak automata (AWW) in PTime.

I Corollary 27. Deciding whether an AWW A is GFG is in PTime.

Proof. Recall that if A is an AWW, then both box(A) and box(Ā) are Büchi automata.
We can then show that Eve wins G2(A) and G2(Ā) if and only if A is GFG. Indeed, from

Proposition 26 if Eve wins G2(A) and G2(Ā), she wins G2(box(A)) and G2(box(Ā)). From
Theorem 22, box(A) and box(Ā) are then GFG, and therefore so is the nondeterminism of
A and Ā, i.e., A is GFG. The other direction follows from Lemma 25.

We can then solve G2(A). J

This contrasts in particular with the PSpace-hardness from Section 3, which holds even
for weak automata, of deciding whether the nondeterminism of A is GFG.

6 Deciding GFGness of NCW via Two-Token Games

The following theorem constitutes a step towards proving Conjecture 23. It also provides a
simplified PTime algorithm for deciding whether an NCW is GFG: it suffices to solve G2.
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I Theorem 28. A nondeterministic coBüchi automaton A is GFG if and only if Eve wins G2(A).

We give only a proof sketch conveying the main ideas of the construction, leaving the
detailed proof to Appendix E. The proof is inspired both by the construction from [1] for
Büchi automata, and by techniques tailored to coBüchi automata from [17].

It is straightforward that if an NCW A is GFG then Eve wins G2(A) [1]. We thus assume
that Eve wins G2(A) and show that A is GFG.

Global proof scheme. Let us start by recalling the main proof scheme of [1], showing that
for all NBW A, if Eve wins G2(A) then A is GFG:

For every k ∈ N \ {0, 1}, Eve wins G2(A) if and only if Eve wins Gk(A), a game where
she has one token and Adam has k tokens.
We assume, towards contradiction, that the automaton is not GFG, and we fix a fi-
nite-memory strategy τ for Adam in the letter game of A. This strategy chooses letters
such that the produced word w is always in L(A). Moreover, the finite memory of τ
guarantees additional structure on the run-DAG of A on w.
We describe a strategy σmove to move a fixed number N of tokens in A, such that any
word produced by τ will be accepted by one of the N tokens.
Finally, we build a strategy σ for Eve in the letter game of A, moving N virtual tokens in
her memory according to σmove, and playing her winning strategy σN in GN (A) against
them. The play yielded by σ playing against τ will be winning for Eve, contradicting the
fact that τ is a winning strategy in the letter game.

Switching to the coBüchi condition. The goal is to use the same proof scheme. However
the strategy σmove will be more involved. Indeed, for the Büchi condition, it was enough to
take σmove to be a strategy that spread tokens evenly at each nondeterministic choice. This
is no longer true for the coBüchi condition, and the main challenge here consists of building
a strategy σmove with the same properties. The following ideas are inspired by [17]:

We show that the automaton A can be taken in a form that guarantees properties related
to the winning region of G2(A) and the structure of the graph of accepting transitions.
We show that there is a subset S of states of A and a deterministic transition function
δdet such that any word w ∈ L(A) is ultimately accepted from a state of S via the run
yielded by δdet , without any rejecting transition.

We also provide a new construction: we use the fact that Eve wins Gk(A) for every k ∈ N
to build a “limit strategy” σ∞ in the letter game of A. This strategy might build a rejecting
run, but guarantees that for each state p it reaches, and any number k of tokens at reachable
states q1 . . . , qk, the position (p; q1, . . . , qk) is in the winning region of Gk(A).

We are now ready to build the strategy σmove, which is the only missing piece to complete
the proof. We take a big number N of tokens that depends on the size of A and of the size of
the memory of Adam’s strategy τ . The strategy σmove moves these N main tokens according
to σ∞ until, one by one, they become active and deviate from σ∞ to attempt to build an
accepting run. To do so, the current active token will play σ|S|, the winning strategy in G|S|,
against |S| virtual deterministic tokens. These |S| tokens start from the states of S that
Adam could have reached, and move deterministically according to δdet . We use here the fact
that σ∞ was built so that the active token is in a position to win G|S|(A). If a deterministic
token encounters a rejecting transition, it is considered dead. If all deterministic tokens are
dead, we reached a breakpoint: a new main token becomes active, and deviates from σ∞ by
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Figure 1 An illustration of the behaviour of tokens in the memory structure of the strategy σ.
Awaiting main tokens are represented in black, active main tokens in green, and alive deterministic
tokens in red. Breakpoints are represented by dashed vertical lines.

starting to play σ|S| against |S| new virtual deterministic tokens. On the other hand, if at
least one of these deterministic tokens stays alive forever, then our currently active token will
build an accepting run by correctness of σ|S|. We show that this must happen eventually, as
otherwise there are N “breakpoints”, contradicting the fact that the finite-memory strategy
τ only builds words in L(A). This means that the global strategy σmove is correct: one of
the N main tokens will always build an accepting run, providing the input word has been
produced by τ . The behaviour of tokens is illustrated in Figure 1.

Finally, to win the letter game against τ , Eve moves her token by simulating her strategy
in GN (A) against N virtual tokens moving according to σmove. Then, as τ plays a word
in L(A), one of the N virtual tokens is guaranteed to follow an accepting run, so Eve’s
token will also follow an accepting run. This contradicts the assumption that τ is a winning
strategy for Adam, and proves that G2 indeed characterises GFGness of NCW.

7 Conclusions

The results obtained in this work shed new light on where alternating GFG automata resemble
nondeterministic ones, and where they differ.

In particular, we show that alternating parity GFG automata can be exponentially more
succinct than any equivalent nondeterministic GFG automata, yet this succinctness does not
become double exponential when compared to deterministic automata, answering a question
from [5]. Some further succinctness problems are left open here, such as the possibility of
a doubly exponential gap between GFG automata of stronger acceptance conditions and
deterministic ones, as well as between ∃GFG parity automata and deterministic ones.

We also show that the interplay between the two players can be used to decide whether
an automaton is GFG without deciding ∃GFG and ∀GFG separately. In particular, the G2
characterisation of nondeterministic GFG automata conjectured in [1] (see Conjecture 23)
suffices to recognise alternating GFG parity automata of fixed index in PTime. We provide
further evidence to the conjecture, by proving it for the coBüchi condition, combining insights
from [17] and [1], and using some new techniques. We also note that the conjecture holds
for the generalized-Büchi condition, via a proof that slightly adapts the one from [1] for the
Büchi case. Still, we could not manage to prove the conjecture for nondeterministic automata
with 3 parity priorities, and we believe that new insights will be necessary to climb up the
parity ladder.
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Appendix
A Appendix of Section 2

In this section of the appendix we provide the remaining technical definitions from Section 2
that are used in the proofs.

Games. A Σ-arena is a directed (finite or infinite) graph with nodes (positions) split into
E-labelled positions of Eve and A-labelled positions of Adam, where the edges (transitions)
are labelled by elements of Σ t {ε}. The role of ε is to mark edges that have no influence on
the winner of a play, e.g., edges allowing players to resolve some Boolean formula.

We represent such an arena as R = (V,X, VE , VA), where V is its set of positions;
X ⊆ V ×

(
Σ t {ε}

)
× V its transitions; VE ⊆ V the E-positions; and VA = V \ VE the

A-positions.
Notice that the definition allows more than one transition between a pair of positions

(such transitions needs to have distinct labels). We will require that each infinite path
contains infinitely many Σ-labelled transitions. An arena might be rooted at an initial
position vι ∈ V . We say that a position v is terminal if there is no outgoing transition from v

(i.e. no element of X of the form (v, a, v′)). If we don’t say that an arena is partial then it is
assumed that there are no terminal positions.

If R is a (partial) Σ-arena and V ′ ⊆ V is a set of positions, then R�V ′ is the sub-arena of R
defined as the restriction of R to the positions in V ′, namely for P ∈ {E,A}, the P -positions
of R�V ′ are V ′P := VP ∩ V ′, and its transitions are X ′ := X ∩ (V ′ × (Σ ∪ {ε})× V ′). We say
that two (partial) Σ-arenas R = (V,X, VE , VA) and R′ = (V ′, X ′, V ′E , V ′A) are isomorphic if
there exists a bijection i : V → V ′ that preserves the membership in VP /V ′P , for P ∈ {E,A},
and sets of transitions X/X ′.

A partial play in R is a path in R, i.e., an element π = v0e0v1e1 . . . of V ·
(
X ·V )∗∪

(
V ·X

)ω,
where for every i we have ei = (vi, ai, vi+1). Such a partial play is said to begin in v0. A partial
play is a play if either it is infinite or the last position vi is terminal.

A game is a Σ-arena together with a winning condition W ⊆ Σω. An infinite play π is
said to be winning for Eve in the game if the sequence of Σ-labels (ai)i∈N of the transitions
along π form a word in W . Else π is winning for Adam. Games with some class X of winning
conditions (e.g., the parity condition) are called X games (e.g., parity games).

A strategy for Eve (resp. Adam) is a function τ : V ·
(
X · V

)∗ → X that maps a history
v0e0v1 . . . ei−1vi, i.e. a finite prefix of a play in R, to a transition ei whenever vi belongs
to VE (resp. to VA). A partial play v0e0v1e1 . . . agrees with a strategy τ for Eve (Adam)
if whenever vi ∈ VE (resp. in VA), we have ei = τ(v0e0v1 . . . ei−1vi). A strategy for Eve
(Adam) is winning from a position v ∈ V if all plays beginning in v that agree with it are
winning for Eve (Adam). We say that a player wins the game from a position v ∈ V if they
have a winning strategy from v. If the game is rooted at vι, we say that a player wins the
game if they win from vι.

A strategy is positional if its value depends only on the last position, i.e., τ(v0e0 · · · ei−1vi)
depends only on vi. In that case the strategy of a player P can be represented as a function
τ : VP → X.

We also define the notion of strategy with memory M for player P . This is a tuple
(σ,M,m0, upd) where M is a set of memory states; m0 is an initial memory state; upd : M ×
X → M is an update function, and σ : M × VP → X is a strategy deciding which move
should be played, depending only on the current memory state and on the current position.
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Along a play, the memory starts with m0, and is updated along every transition according to
upd. The general notion of strategy corresponds to M = (V ·X)∗, and positional strategies
correspond to M being a singleton. A player has a finite-memory winning strategy if there
exists a winning strategy using a finite memory set M .

I Proposition 29. Let G and G′ be two Σ-games with the same winning condition, such
that the unfoldings of G and G′ are isomorphic. Then Eve has a winning strategy in G if
and only if she has a winning strategy in G′.

I Proposition 30 ([14]). Rabin games are positionally determined for Eve. (If Eve has
a winning strategy then she has a positional winning strategy.)

I Definition 31 (Synchronised product). The synchronised product R × A of a (partial)
Σ-arena R = (V,X, VE , VA) and an alternating automaton A = (Σ, Q, ι, δ, α) with a set of
transitions T and labelling α : T → Γ is a (partial) Σ×Γ-arena defined as follows. Its set of
positions is (V ×Q) ∪ (V ×Q× Σ× δ̂), and its transitions are defined by:〈

(v, q), ε, (v′, q, a, δ(q, a))
〉

for (v, q) ∈ V ×Q and 〈v, a, v′〉 ∈ X;〈
(v, q), ε, (v′, q)

〉
for (v, q) ∈ V ×Q and 〈v, ε, v′〉 ∈ X;〈

(v, q, a, b), ε, (v, q, a, bi)
〉

for (v, q, a, b) ∈ V ×Q× Σ× δ̂
with b = b1∨b2 or b = b1∧b2 and i = 1, 2;〈

(v, q, a, q′),
(
a, α(q, a, q′)

)
, (v, q′)

〉
for (v, q, a, q′) ∈ V ×Q× Σ× δ̂ with q′ ∈ Q.

The positions belonging to Eve are of the form (v, q) where v ∈ VE and of the form
(v, q, a, b1∨b2). The remaining ones belong to Adam. If R has an initial position vι then the
initial position of the product is (vι, ι).

We implicitly assume that the arena only contains vertices that are reachable from V ×Q.
(They need not be reachable from an initial position of R and an initial state of A, but from
some position of R and state of A.)

We will sometimes consider longer products, like (R×A1)×A2, where R is a Σ-arena and
both automata A1 and A2 are over the alphabet Σ. Assume that A1 and A2 have transitions
labelled in sets Γ1 and Γ2 respectively. Notice that in that case the arena R×A1 is formally
a Σ × Γ1-arena. Thus, to make the above formula precise, we treat the automaton A2 as
an automaton over the alphabet Σ× Γ1 and assume that it ignores the second component of
the letters read.

One-step arenas. For a letter a ∈ Σ, we denote by Ra a partial Σ-arena consisting of two
vertices v and v′ (it does not matter which of the players controls them), and one transition
〈v, a, v′〉. Then, for an automaton A = (Σ, Q, ι, δ, α), the product Ra ×A is a partial arena,
in which the players should resolve their choices in the formulas δ(q, a) for all the possible
states q ∈ Q. We call it the one-step arena of A over a. Such an arena contains one position
of the form (v, q) for each state q ∈ Q; a set of non-terminal positions of the form (v′, q, a, ψ)
for some q ∈ Q and ψ ∈ δ̂; and one terminal position of the form (v′, q) for each state q ∈ Q.
(See Figure 2.)

Boxes. In the later exposition, we will be interested in the combinatorial structure of
possible strategies of Eve over one-step arenas Ra ×A. For a positional strategy σ of Eve in
a game of the form Ra ×A, we define the box of A, a, and σ, denoted by β(A, a, σ), as the
relation that is a subset of Q× Σ×Q and contains a triple (q, a, q′) iff there exists a play in
Ra ×A that is consistent with σ, starting in (v, q) and ending in (v′, q′). We further define
for every a ∈ Σ, the set B〈A,a〉 = {β(A, a, σ) | σ is a positional strategy of Eve}. Finally, let
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Ra A Ra ×A

v

v′

a

Q = {q0, q1, q2}

δ(q0, a) = (q0∧q1) ∨ (q1∧q2)
δ(q1, a) = q1 ∧ q2

δ(q2, a) = q1 ∨ q2

α(q0, a, q0) = 3
α(q0, a, q1) = 2
α(q0, a, q2) = 6

α(q1, a, q1) = 4
α(q1, a, q2) = 5

α(q2, a, q1) = 3
α(q2, a, q2) = 5

v, q0

v′, q0

v, q1

v′, q1

v, q2

v′, q2

v′, q0, a,
(q0 ∧ q1)∨
(q1 ∧ q2)

v′, q0, a,
q0 ∧ q1

v′, q0, a,
q1 ∧ q2

v′, q1, a,
q1 ∧ q2

v′, q2, a,
q1 ∨ q2

v′, q0,
a, q0

v′, q0,
a, q1

v′, q0,
a, q2

v′, q1,
a, q1

v′, q1,
a, q2

v′, q2,
a, q1

v′, q2,
a, q2

(a, 3) (a, 2)

(a, 6) (a
, 4)

(a, 5)(a,
3)

(a
, 5

)

Figure 2 A one-step arena over a letter a ∈ Σ, obtained as a product of a simple arena Ra

with the alternating parity automaton A. In this example v is controlled by Eve and v′ by Adam.
The transitions with no label are labelled by ε. Diamond-shaped positions belong to Eve and
square-shaped positions belong to Adam.
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q0

q0

q1

q1

q2

q2

q0

q0

q1

q1

q2
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Figure 3 The four possible boxes corresponding to Eve’s choices in the one-step arena of Figure 2.
(All edges should be labelled with a, which we omit for better readability.)

BA :=
⋃
a∈Σ B〈A,a〉. Notice that |BA| ≤ 2|Q×Σ×Q|. When speaking of an arbitrary box, we

mean any non-empty relation β ⊆ Q×Σ×Q where all the letters a appearing on the middle
component are equal.

Figure 3 represents B〈A,a〉 for the automaton A of Figure 2: Since there are two bin-
ary-choice positions of Eve in the corresponding one-step arena, there are four distinct
positional strategies of Eve, which give the four possible boxes. They correspond to Eve
choosing respectively LL, LR, RL, RR, where L stands for a left choice and R for a right
choice in each of her two binary-choice positions.

I Proposition 32. Consider a letter a and an automaton A with states Q and transition
function δ. Then there is a bijection between B〈A,a〉 and the positional strategies of Eve in
the one-step arena of A and a.

Acceptance of a word by an automaton. We define the acceptance directly in terms of the
model-checking (acceptance/membership) game, which happens to be exactly the product
of the automaton with a path-like arena describing the input word. More precisely, given
a word w ∈ Σω, the model-checking game is defined as the product Rw × A, where the
arena Rw consists of an infinite path ω, of which all positions belong to Eve (although it
does not matter); the transitions are of the form 〈i, wi, i+1〉; the initial position is 0; and the
winning condition is based on the winning condition of A (the Σ-component of the labels
is ignored). We say that A accepts w if Eve has a winning strategy in the model-checking
game Rw ×A. The language of an automaton A, denoted by L(A), is the set of words that
it accepts (recognises).

Notice that for each i ∈ N, the sub-arena of Rw ×A with positions in(
{i} ×Q

)
∪
(
{i+1} ×Q×Σ×B+(Q)

)
∪
(
{i+1} ×Q

)
is isomorphic to the one-step arena of A over wi.

B Appendix of Section 3

I Definition 33 (A formalisation of Definition 3). Let RA,Σ be the Σ-arena consisting of a
single position v that belongs to Adam and the set of transitions X of the form 〈v, a, v〉 for
each letter a ∈ Σ (see Figure 4). The arena RE,Σ is the same except that v belongs to Eve.
Notice that the products RA,Σ × A and RE,Σ × A are both labelled by Σ × Γ, where Σ is
the alphabet of A and Γ is A’s labelling, on top of which its acceptance condition is defined.
Thus, the winning condition of games defined on these arenas can depend on a sequence of
labels of the form (ai, γi)i∈N. Then, Eve’s letter game is played over RA,Σ ×A, where Eve
wins if:

(ai)i∈N /∈ L(A) or the sequence (γi)i∈N satisfies the acceptance condition of A.
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Dually, Adam’s letter game is played over RE,Σ ×A, where Adam wins if:

(ai)i∈N ∈ L(A) or the sequence (γi)i∈N violates the acceptance condition of A.

B.1 Proof of Lemma 5
From [17], there is a family (An)n∈N of GFG-NCWs with n states over a fixed alphabet Σ,
such that every DPW for Ln = L(An) is of size 2Ω(n). For every n ∈ N, let Bn be the dual
of An, so Bn is a UBW accepting Ln. We build an APW Cn over Σ of size linear in n, by
setting its initial state to move to the initial state of An when reading the letter a ∈ Σ and
to the initial state of Bn when reading the letter b ∈ Σ. The acceptance condition of Cn is a
parity condition with priorities {0, 1, 2}: accepting transitions of An are assigned priority 0,
and accepting transitions of Bn priority 2. Other transitions have priority 1.

The automaton Cn is represented below:

Observe that L(Cn) = aLn∪bLn, and that Cn is GFG: its initial state has only deterministic
transitions, and over the An and Bn components, the strategy to resolve the nondeterminism
and universality, respectively, follows the strategy to resolve the nondeterminism of An,
which is guaranteed due to An’s GFGness.

Consider a GFG UPW En for L(Cn), and let q be a state to which En moves when reading
a, according to some strategy that witnesses En’s GFGness. Then Eqn is a GFG UPW for Ln.
Its dual is therefore a GFG NPW E ′n for Ln.

Since An is a GFG NPW for Ln, by [2, Thm 4] we obtain a DPW for Ln of size |An||E ′n|.
By choice of Ln, this DPW must be of size 2Ω(n), and since An is of size n, it follows that
E ′n, and hence En, must be of size 2Ω(n). By a symmetric argument, every GFG NPW for
L(Cn) must also be of size 2Ω(n).

B.2 Proof of Lemma 6
Let A be an NFA over an alphabet Σ = {a, b} and Ā its dual. We want to check whether
L(A) = Σ∗. We build an AFA B, as depicted below, by first making Eve guess the second
letter. If her guess is wrong, the automaton proceeds to a rejecting sink state ⊥. Otherwise,
it proceeds to the initial state of Ā. The size of B is linear in the size of A.

If (Ā) = ∅, then L(B) = ∅, so B is trivially ∃GFG. However, if there is some u ∈ Ā,
then Adam has a winning strategy in Eve’s letter game on B. This strategy consists
of playing a, then playing the letter that brings Eve to ⊥, and finally playing u. The
resulting word is in L(B) = Σ2L(A), so this witnesses that B is not ∃GFG. We obtain that
L(A) = Σ∗ ⇔ L(Ā) = ∅ ⇔ B is ∃GFG, which is the wanted reduction.
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C Appendix of Section 4

This section provides the technical details of the determinisation procedure in Section 4. We
start with some technical analysis of the types of histories needed to win letter games.

C.1 Good for Games Automata: Required Histories
We begin by considering an expanded letter game. This will allow us to use a form of
positional determinacy in letter games.

RA,Σ R∗A,Σ

v

a

b

ε

a b

aa ab ba bb

a b

a b a b

...
...

...
...

...

Figure 4 The arenas RA,Σ and R∗A,Σ, allowing Adam to choose an arbitrary sequence of letters.
We define Eve’s letter game for an automaton A over the product of RA,Σ ×A, and her expanded
letter game over R∗A,Σ ×A; She wins a play if the word generated by Adam is not in L(A) or the
path generated by her (resolving A’s nondeterminism) and by Adam (resolving A’s universality)
satisfies A’s acceptance condition.

Expanded letter games. The definition of the letter games (Definition 3) has the important
advantage of being defined over a finite-arena. Yet, as a result, these games generally do not
allow for positional determinacy.

We provide below an expanded variant of the letter game that will have same unfolding
as the original one, while being defined over an infinite arena. This will allow Eve to have
positional determinacy in these games for Rabin automata.

Let R∗A,Σ be the Σ-arena with the set of positions V = Σ∗, all belonging to Adam, and
the set of transitions X of the form 〈w, a,w · a〉 for each word w ∈ Σ∗ and letter a ∈ Σ (see
Figure 4). The initial position of this arena is ε. The arena R∗E,Σ is the same, except that
all the positions belong to Eve. We define Eve’s expanded letter game over R∗A,Σ ×A and
Adam’s expanded letter game over R∗E,Σ ×A with the same winning conditions as in their
(non expanded) variants. The following follows directly from Proposition 29.

I Proposition 34. For every automaton A, the expanded letter games for A have the same
winners as the (standard) letter games for A.

History Requirement. Although R∗A,Σ and R∗E,Σ are trees, the arenas of the expanded
letter games are directed acyclic graphs as there can exist two distinct paths from the initial
position to a given position (w, q). Thus, a priori, a winning strategy of a player of such a
game might need some history of a play. However, as expressed by the following theorem, it
is not the case.

I Theorem 35. If A is a Rabin (or parity) automaton then Eve’s expanded letter game is
positionally determined for Eve.
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Proof. We will show that the winning condition of this game can be represented as a Rabin
condition and invoke Proposition 30. Let D′ be a deterministic parity automaton recognising
the complement of the language L(A), for a Rabin automaton A over the alphabet Σ. Let
Ω: QD′ → N be the priority assignment of D′ (without loss of generality we can assume that
the states of D′ bear priorities).

Consider the arena R′∗A,Σ that is derived from the arena R∗A,Σ by adding to transitions
priorities according to the deterministic of runs of D′, that is, by changing the labelling of
every transition 〈w, a,w · a〉 to 〈w, (ΩD′(q), a), w · a〉, where a ∈ Σ and q is the state of D′
reached after reading the word w from the initial state of D′.

Consider the product R′∗A,Σ ×A, in which for A′s transitions we ignore these additional
labels. The labels of that product are now of the form (`, a, γ), where ` ∈ N is a priority of D′,
a ∈ Σ, and γ ∈ Γ is a label of A. Notice that when one forgets about the first coordinate of
the label, the game is equal to R∗A,Σ ×A. Moreover, given a sequence of labels (`i, ai, γi)i∈N ,
by the choice of D′, we know that (ai)i∈N /∈ L(A) if and only if the sequence (`i)i∈N satisfies
the parity condition.

Define the game G over R′∗A,Σ ×A, in which Eve wins a play labelled by (`i, ai, γi)i∈N if

(`i)i∈N satisfies the parity condition of D′ or (γi)i∈N satisfies the Rabin condition of A.

Notice that both disjuncts above can be written as Rabin conditions and therefore G is
positionally determined for Eve. Moreover, the choice of D′ guarantees that the new winning
condition is equivalent to Eve’s condition in her expanded letter game on A—the same plays
are winning for Eve in G and her expanded letter game on A. Since the structure of the game
is also preserved, it means that Eve’s expanded letter game on A is positionally determined
for Eve. J

I Remark 36. Dually, Adam’s expanded letter game for a Streett automaton is positionally
determined for Adam.

As a consequence of Theorem 35, for alternating ∃GFG Rabin automata, a strategy for
Eve to resolve the nondeterminism may ignore the history of the play, and only consider the
history of the word read, as is the case for nondeterministic GFG automata.

We will now argue that Eve’s positional strategy σ in the expanded letter game on an
alternating automaton A can be represented as a function σ′ : Σ+ → BA that assigns to each
word wa a box βwa ∈ B〈A,a〉. Indeed, let (w · a) ∈ Σ+ and let Vwa be the set of positions of
R∗A,Σ ×A of the form (w, q), (w · a, q, a, b), or (w · a, q) for q ∈ Q and b ∈ B+(Q). Observe
that the partial arena of R∗A,Σ × A restricted to Vwa is isomorphic to the one-step arena
Ra × A. Thus, σ provides a positional strategy over this arena, which by Proposition 32
can be encoded as a box βwa. More formally, let βwa contain (q, a, q′), if there is a play
consistent with σ that visits both the positions (w, q) and then (wa, q′).

Then, in the next lemma we show that if σ is also winning, then the sequences of boxes
βwa only has accepting paths.

I Definition 37. Consider an automaton A with states Q and initial state ι, and an infinite
word u = β0, β1, . . . ∈ (BA)ω. We say that a sequence of transitions ρ = (qi, ai, qi+1)i∈N is a
path of u if q0 = ι and for every i ∈ N, we have (qi, aiqi+1) ∈ βi. The word u is universally
accepting for A if each of its paths satisfies the acceptance condition of A.

I Lemma 38. Given an alternating ∃GFG Rabin automaton A, there is a positional strategy
σ in her expanded letter game on A such that for every word w ∈ L(A) the sequence of boxes
u = β0, β1, . . . ∈ (BA)ω defined as βi = σ(w�i+1) is universally accepting for A.
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q0

q1 q2

q3

q4 q5

∧

∨

t1 t2

t4 t5

Aceptance condition:
(Finitely often t1 or Infinitely often t4) and
(Finitely often t2 or Infinitely often t5)

Figure 5 A GFG ASW over a singleton alphabet, for which Eve’s ∃GFG strategy cannot only
remember the prefix of the word read so far, but also some history about the visited states.

Proof. Consider words w and u as above. Let ρ = (qi, ai, qi+1)i∈N be a path of u. Since the
strategy σ is positional, the definition of σ(w�i+1) implies that there exists a single play of
the expanded letter game that visits all the positions of the form (w�i, qi) for i ∈ N . Since
w ∈ L(A), the winning condition of the expanded letter game guaranteees that the path ρ
must be accepting. J

Observe that the above arguments do not hold for alternating GFG Streett automata:
Since Streett games are not positionally determined for Eve, Eve’s expanded letter game for
a Streett automaton is not positionally determined for Eve (an analogous of Theorem 35
does not hold). Furthermore, we provide in Figure 5 an example of an alternating GFG
Streett automaton, in which Eve cannot resolve her nondeterminism only according to the
history of the word read.

I Proposition 39. Consider an ∃GFG alternating Streett automaton A with transition
conditions in DNF. Then Eve might not have a strategy σ : Σ+ → BA satisfying Lemma 38.

Proof. Consider the ASW depicted in Figure 5. It is ∃GFG, as witnessed by the strategy
that chooses the transition t4 in q3 if the last visited state was q1 and t5 otherwise. Yet,
there is no strategy that only remembers the word read so far, as this only gives the length
of the word, and cannot help in determining whether the path visited q1 or q2. J

Interestingly, the question of whether Eve can resolve the nondeterminism in a class of
alternating GFG automata with only the knowledge of the word read so far does not tightly
correspond to whether the acceptance condition of this class is memoryless. For example, it
does hold for the generalised-Büchi condition, though it is not memoryless.

C.2 Alternation Removal in GFG Rabin Automata
This section presents the proof of the following theorem:

I Theorem 8. Consider an alternating Rabin (resp. parity) automaton A with n states and
index k. There exists a nondeterministic parity automaton box(A) with 2O(nk lognk) (resp.
2O(n logn)) states that is equivalent to A such that if A if GFG then box(A) is also GFG.

I Lemma 9. Consider an alternating Rabin (resp. parity) automaton A with n states
and index k. Then there exists a deterministic parity automaton B with 2O(nk lognk) (resp.
2O(n logn)) states over the alphabet BA that recognises the set of universally-accepting words
for A. If A is a Büchi automaton, then B can also been taken as Büchi, and in general the
parity index of the automaton B is linear in the number of transitions of A.
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Proof. Notice that it is easy to construct a nondeterministic Streett (resp. parity) automaton
S over the alphabet BA that recognises the complement of the set of universally-accepting
words for A—it is enough to guess a path that is not accepting, and have the acceptance
condition that is the dual of A’s condition. Formally, for an alternating Rabin (resp. parity)
automaton A = 〈Σ, Q, ι, δ, α〉, we define the nondeterministic Street (resp. parity) automaton
S = 〈BA, Q, ι, δS , α〉, where α is the dual of α and δS is defined as follows. For every states
q, q′ ∈ Q and box β ∈ BA, we have q′ ∈ δS(q, β) iff 〈q, q′〉 ∈ β.

Now, one can translate S to an equivalent deterministic parity automaton B′ with
2O(nk lognk) states [21] (resp. 2O(n logn) states [6, 24]), and then complement the acceptance
condition of B′, getting the required automaton B.

Since nondeterministic coBüchi automata can be determinised into deterministic coBüchi
automata, if A is Büchi, so is B. In general, the parity index of the automaton D is linear in
the number of transitions of A. J

We now proceed to the construction of the automaton box(A) of Theorem 8. It is the
same as the automaton B of Lemma 9, except that the alphabet is Σ and the transition
function is defined as follows: For every state p of box(A) and a ∈ Σ, we have δbox(A)(p, a) :=
∪β∈B〈A,a〉δB(p, β).

In other words, the automaton box(A) reads a letter a, nondeterministically guesses a box
β ∈ BA,a, and follows the transition of B over β. Thus, the runs of box(A) over a word
w ∈ Σω are in bijection between sequences of boxes (βi)i∈N such that βi ∈ BA,wi

for i ∈ N .
Fix an infinite word w ∈ Σω. Our aim is to prove that w ∈ L(A)⇔ w ∈ L(box(A)).

I Lemma 10. There exists a bijection between positional strategies of Eve in the acceptance
game of A over w and runs of box(A) over w. Moreover, a strategy is winning if and only if
the corresponding run is accepting. Then L(A) = L(box(A)).

Proof. Consider a run of box(A) over w, and observe that it corresponds to a sequence
of boxes β0, . . .. Notice that each box βi corresponds to Eve’s choices in A over wi, and
therefore provides a positional strategy for Eve in the one-step arena Rwi ×A. The sequence
of these choices provides a positional strategy for Eve in Rw ×A.

Dually, given a positional strategy for Eve in Rw × A, one can extract a sequence of
strategies for Eve in the one-step arenas Rwi

×A, and each of them corresponds to a box
βi. Proposition 32 shows that each path in β0, . . . corresponds to a play consistent with the
constructed strategy and vice versa: each play gives rise to a path.

Now, a run is accepting if and only if the sequence of boxes is universally accepting, which
means exactly that all the plays consistent with the corresponding strategy are winning. J

We now show that the automaton box(A) is also GFG.

I Lemma 12. For an alternating ∃GFG Rabin automaton A, the automaton box(A) is GFG.

Proof. Let σ be a positional winning strategy for Eve in her expanded letter game for A (over
the arena R∗A,Σ ×A). The proof is based on the construction of the function σ′ : Σ+ → BA,
see the paragraph before Definition 37.

Consider the following way of resolving the nondeterminism of box(A): after reading
w ∈ Σ∗, when the next letter a ∈ Σ is provided, the automaton moves to the state δB(p, βwa)
where βwa = σ′(wa). Consider an infinite word w ∈ L(A) and let β0, . . . be the sequence of
boxes used to construct the run of box(A) over w. Lemma 38 implies that this sequence is
universally accepting and therefore, the constructed run of B must also be accepting. J
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C.3 Single-Exponential Determinisation of Alternating Parity GFG
Automata

The aim of this section is to prove the following determinisation theorem.

I Theorem 13. If A is an alternating parity GFG automaton then there exists a deterministic
parity automaton D that recognises the same language and has size at most exponential in
the size of A. Moreover, the parity index of D is the same as that of A.

First consider the synchronised product RA,Σ × box(Ā), which is a game with labels of
the form Σ×Γbox(Ā), where Γbox(Ā) is the parity condition of box(Ā). Now, we can treat the
automaton A as an automaton over the alphabet Σ× Γbox(Ā) that just ignores the second
component of the given letter. Thus, we can define a game G(A) =

(
RA,Σ × box(Ā)

)
×A.

Notice that G(A) is naturally divided into rounds, between two consecutive positions of
the form (v, p, q), where v is the unique position of RA,Σ, p is a state of box(Ā) and q is
a state of A. Such a round, starting in (v, p, q) consists of first Adam choosing a letter a;
then Eve resolving nondeterminism of box(Ā) from p over a; and then both players playing
the game corresponding to the transition condition δ(q, a) of A.

Let the winning condition of G(A) say that either the sequence of transitions of box(Ā)
is accepting or the sequence of transitions of A is accepting. Since A is ∃GFG and box(Ā) is
GFG, we know that Eve has a winning strategy in G(A): she just plays her GFG strategies
in both automata and is guaranteed to win whether the word produced by Adam is in L(A)
or L(box(Ā)).

As the winning condition of G(A) is a disjunction of two Rabin conditions, Eve has a
positional winning strategy. Fix such a strategy σ.

Now do the same with A and box(A) for Adam: define G′(A) as
(
RE,Σ × box(A)

)
×A,

where box(A) is the automaton box(A) where the transitions are turned from nondeterministic
to universal, i.e, we replace ∨ with ∧.

Again, in a round of G′(A) from a position (v, p, q): Eve plays a letter a; Adam resolves
nondeterminism of box(A) (i.e., the universality in its dual); then they both resolve the
choices in A. Let Adam win G if either the play of A is rejecting or the run of box(A) is
accepting. Again we can ensure that Adam has a winning strategy in G′(A), because both
automata are GFG: he uses the GFG strategy of box(A) and the ∀GFG strategy over A. If
the word given by Eve belongs to L(A) then Adam wins by producing an accepting run of
box(A), otherwise he wins by refuting an accepting run of A. Let τ be his positional winning
strategy in that game.

We are now ready to build the deterministic automaton from a GFG APW A, using
positional winning strategies σ and τ for Eve and Adam in G′(A) and G(A), respectively.

Let D be the automaton with states of the form (q, p1, p2), with q a state of A, p a state
of box(A) and p′ a state of box(Ā). A transition of D over a moves to (q′, p′1, p′2) such that
((q, p1), (q′, p1)) is consistent with τ and ((q, p′2), (q′, p′2)) is consistent with σ. In other words,
when reading a letter a in such a state, the following computations are performed:
1. We simulate the choices made by σ in G′(A) upon obtaining a from Adam. This way

we know how to resolve nondeterminism of box(Ā) and what to do with disjunctions
inside A.

2. We simulate the choices made by τ in G(A) upon obtaining a from Eve. This way we
know how to resolve nondeterminism in box(A) and what to do with conjunctions of A.

3. In the end we proceed to a new state of A and resolved nondeterminism of both box(A)
and box(Ā).
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The acceptance condition of D is inherited from A.

I Lemma 16. For a GFG APW A and D built as above, L(A) = L(D).

Proof. Take a word w ∈ Σω. First assume that w ∈ L(A). Eve cannot win a play of the
game G with the letters played in RA,Σ coming from w using by the first disjunct of her
winning condition, since L(box(Ā)) = L(Ā). Thus, all the plays over w consistent with her
winning strategy σ in G′ must guarantee that the constructed path of A is accepting. Thus,
the run of the automaton D over w is accepting.

Now assume that w /∈ L(A). Dually, no play of the game G′ with the letters coming from
w can produce an accepting run of box(A) over w. Thus, the strategy τ guarantees that the
sequence of visited states of A is rejecting. Thus, the run of D over w must be rejecting. J

D Appendix of Section 5

D.1 Proof of Theorem 18
Our aim is to provide an Exptime algorithm for deciding if a given alternating parity
automaton is GFG.

Recall the construction of the two nondeterministic parity automata box(A) and box(Ā)
for L(A) and L(A)c respectively, as defined in Section 4.2. We will use these automata to
design a game characterising the fact that A is both ∃GFG and ∀GFG, i.e, A is just GFG.

Recall that the automata box(A) and box(Ā) have exponential number of states in the
number of states of A. However, due to Lemma 9 their parity index is linear in the number
of transitions of A. Consider the game G′′ =

(
RA,Σ× box(A)

)
× box(Ā), i.e, the game where

Adam plays a letter and Eve replies with two boxes, one of A and the other of A. Let the
winning condition of that game for Eve say that either of the runs of box(A) or box(Ā) must
be accepting.

I Lemma 40. Eve has a winning strategy in G′′ if and only if A is GFG.

Proof. Clearly if A is GFG then both box(A) and box(Ā) are GFG as nondeterministic
automata. Therefore, one can use strategies witnessing their GFGness to construct a single
strategy for Eve in G′′. This strategy must be winning, because each word proposed by
Adam either belongs to L(box(A)) = L(A) or to L(box(Ā)) = L(A)c.

Now assume that Eve has a winning strategy in G′′. This strategy consists of two
components: one is a strategy in RA,Σ × box(A) and the other in RA,Σ × box(Ā). By the
fact that the languages of box(A) and box(Ā) are disjoint, the above components are in
fact winning strategies in the letter games for box(A) and box(Ā) respectively. Thus, by
Lemma 19 we know that A is both ∃GFG and ∀GFG. J

What remains is to show how to solve the game G′′ in Exptime. Let n be the size of the
automaton A. Our aim is to turn it into a parity game of size exponential in n but with
a number of priorities polynomial in n. Then, by invoking for instance [7], we know that
such a game can be solved in Exptime.

I Lemma 41. Let Γ = {0, . . . , N} be a set of priorities. Then, there exists a deterministic
parity automaton of size exponential in N , with a number of priorities polynomial in N that
recognises the language L of words w ∈ (Γ× Γ)ω that satisfy the parity condition on at least
one coordinate.
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Proof. It is a rather standard construction. One possibility is to design a nondeterministic
Büchi automaton for L with N2 states. Then, the standard determinisation procedure [21]
applied to this automaton gives a deterministic parity automaton as in the statement. J

Therefore, we conclude the proof of Theorem 18 by taking a product of the game G′′
with the automaton from Lemma 41 and then solving the resulting parity game.

D.2 Proof of Proposition 24
I Proposition 24. Given an APW A of size n with a fixed number d of priorities over
an alphabet Σ, the game G2(A) can be solved in time complexity O(n4). (More precisely, in
O(d2(n3|Σ|2d2 log d)1+o(1)).)

Proof. We start by constructing a deterministic parity automaton D of a fixed size that
recognises whether a word over the alphabet {p1, p2, . . . , pd}3, describing the priorities of the
three paths ρE , ρA, ρ′A, satisfies the condition “either ρE satisfies the parity condition or
neither ρA nor ρ′A satisfies the parity condition.”

For constructing D, first take NBWs B1 and B2 that recognise that ρA and ρ′A do not
satisfy the parity condition, respectively. Both B1 and B2 are of size O(d) and proceed by
first waiting in an initial state with rejecting transitions until they guess the maximal odd
priority to be seen infinitely often and when no higher priorities are seen; then their guess is
rewarded with a Büchi transition while higher priorities lead to a rejecting sink.

Then construct an NBW B3 of size O(d2) that recognises “neither ρA nor ρ′A satisfies the
parity condition”, as the Büchi intersection of B1 and B2.

Afterwards, construct an NBW B4 of size O(d2) for “either ρE satisfies the parity
condition or neither ρA nor ρ′A satisfies the parity condition”, as the disjunction of B3 and a
nondeterministic Büchi automaton that recognises whether ρE satisfies parity.

Eventually, determinise B4 to get the NPW D of size O(2d2 log d) and O(d2) priorities [21].
Solving G2(A) then reduces to solving the parity game G that results from the product

between the arena of G2(A) and the automaton D. Notice that G is of size O(n3|Σ|2d2 log d)
with O(d2) priorities. Jurdziński and Lazić’s quasi-polynomial algorithm for solving parity
games operates in time O(km1+o(1)), form, k the size of the game and the number of priorities
respectively, when k is in o(logm). We are in this case, so the overall time complexity of
solving G2(A) is in O(d2(n3|Σ|2d2 log d)1+o(1)). J

D.3 Proof of Lemma 45
I Lemma 25. If an alternating automaton A is GFG, then Eve wins both G2(A) and G2(Ā).

Proof. Assume A is GFG, with strategies σ and τ witnessing respectively that the non-
determinism and universality of A are GFG. Eve’s strategy σ′ is to play with her token
as if she was playing her letter game with strategy σ and to play with Adam’s tokens
as Adam would play in two disjoint copies of his letter game with strategy τ . In other
words, Eve resolves the nondeterminism for her token using the strategy witnessing that the
nondeterminism in A is GFG and she resolves the universality for Adam’s token according
to the strategy witnessing that the universality of A is GFG.

We claim that this strategy is winning. Indeed, in a play (ρE , ρA, ρ′A) that agrees with σ′,
if the word is in L(A), then σ guarantees ρE is accepting while if the word is not accepting,
then τ guarantees that both ρA and ρ′A are rejecting.

Furthermore, if A if GFG, then so in Ā, and therefore Eve also wins G2(Ā). J
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D.4 Proof of Proposition 26
I Proposition 26. For an alternating parity automaton A, if Eve wins G2(A) then she also
wins G2(box(A)).

The rest of this section is devoted to a proof of this proposition. The proof relies on an
additional intermediate game game Gpos(A) in which Eve can win positionally.

First, let P be a deterministic parity automaton over the language (BA)2 that recognises
the sequences of pairs of boxes where at least one sequence is universally accepting. The
automaton P allows us to turn the condition “at least one of the sequences of boxes produced
by Adam is universally accepting” into a parity condition. Let δP : QP × (BA)2 → QP be
the transition function of P.

Now, the game Gpos(A) is very similar to the game G2(box(A)) except two differences.
First, instead of the first copy of box(A) controlled by Eve, we plug a copy of the automaton
A, where Eve controls nondeterminism and Adam controls universality. Second, we use P
instead of the respective part of the winning condition of G2(box(A)). Let the set of
configurations of Gpos(A) consist of QA ×QP and the initial configuration be (ιA, ιP).

In a turn starting in a configuration (q, p) ∈ QA ×QP , the following choices are done:
Adam chooses a letter a ∈ Σ;
Eve and Adam resolve the whole transition of A from q reaching a state q′;
Adam chooses two boxes b1 and b2 over a.

After such a turn, the new configuration is (q′, δP
(
p, (b1, b2)

)
.

A play of the above game provides is a pair of paths (ρE , ρA) in A and P respectively,
and Eve wins if either ρE is accepting or ρA is rejecting. Since the winning condition for
Eve is a disjunction of two parity conditions, i.e., a Rabin condition, from Proposition 30 we
obtain the following claim.

B Claim 42. If Eve wins Gpos(A) then she has a positional winning strategy.

The following two lemmata show how Gpos(A) is related to both G2(A) and G2(box(A)).

I Lemma 43. If Eve wins G2(A) then she also wins Gpos(A).

Proof. Assume σ is a winning strategy for Eve in G2(A). During a play of G2(A) the players
construct three paths (ρE , ρA, ρ′A) of the automaton A. We call them the paths of that play.
Similarly, during a play of Gpos(A) the players construct three sequences (ρ, π, π′), where ρ
is a path of A, while π and π′ are two sequences of boxes of A. We will say that a play of
G2(A) with paths (ρE , ρA, ρ′A) is consistent with a play of Gpos(A) with sequences (ρ, π, π′)
if ρ = ρE and ρ is a path in π, and ρ′ is a path in π′, see Definition 2.

We can now define Eve’s strategy σ′ in Gpos(A) as follows. During a play of Gpos(A) with
sequences (ρ, π, π′), Eve simulates a play of G2(A) with paths (ρ, ρA, ρ′A) that are consistent
with (ρ, π, π′). We will now show how Eve can preserve this invariant. Consider a turn of
Gpos(A) starting in (q, p) (q is the last state of the path ρ) and assume that the simulated
play of G2(A) ended in a configuration (q, q1, q2).

The turn of Gpos(A) starts with Adam choosing a letter a ∈ Σ. Assume that in the
simulated play of G2(A) Adam has also chosen a. Based on that, the strategy σ knows how
to resolve disjunctions in δA(q, a) against any choices made by Adam. Assume that σ′ plays
in exactly the same was in the copy of A in Gpos(A). This gives a transition (q, a, q′) that
is taken in both games. Now, in Gpos(A) Adam provides two boxes b1 and b2 of box(A) —
both represent positional strategies of Eve in one-step game over a. Let Eve assume that in
the simulated play of G2(A), Adam was resolving nondeterminism of the last two copies of A
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in the way given by b1 and b2 respectively. The strategy σ gives a way to resolve universality
in these copies, which leads to two transitions (q1, a, q

′
1) and (q2, a, q

′
2). Extend the paths

(ρ, ρA, ρ′A) with the transitions (q, a, q′), (q1, a, q
′
1), and (q2, a, q

′
2) defined above. This way,

we managed to preserve the invariant. This concludes the definition of the strategy σ′.
We will now prove that the strategy σ′ is winning in Gpos(A). Consider an infinite play

in Gpos(A) that agrees with σ′ and its sequences are (ρ, π, π′). By the invariant, there must
exist a play of G2(A) that is consistent with σ and has paths (ρ, ρA, ρ′A) that are consistent
with (ρ, π, π′). Now assume that in the considered play of Gpos(A), the sequence of states of
P is parity accepting (otherwise Eve wins the play). We need to prove that ρ is accepting
in that case. But the construction of P guarantees that in that case at least one of the
sequences of boxes π or π′ is universally accepting. W.l.o.g. assume that π is universally
accepting. Since ρA is a path of π, it implies that ρA is accepting in A. But in that case, the
winning condition of G2(A) guarantees that ρ must be accepting in A. We conclude that if
Eve wins G2(A), she wins Gpos(A). J

Under the assumption of Proposition 26 that Eve wins G2(A), Lemma 43 together with
Claim 42 imply that Eve has a positional winning strategy in Gpos(A). The following lemma
concludes the proof of Proposition 26.

I Lemma 44. If Eve has a positional winning strategy in Gpos(A) then Eve wins G2(box(A)).

Proof. Let σ be a positional winning strategy of Eve in Gpos(A). We assume that it is
defined in all the positions of Gpos(A), not only those accessible from the initial position. We
now construct a winning strategy σ′ for Eve in G2(box(A)). The structure of σ′ is obtained
directly from σ by just storing the state of P in the memory of σ′.

More formally, let σ′ store in its memory a state p of P. At each turn starting in a
configuration (q, q1, q2) of G2(box(A)),

Adam chooses a letter a;
Eve chooses a box b over a such that each q

a−→ q′ ∈ b is consistent with σ from the
position (q, p) for each q ∈ Q — since σ is positional, for each q ∈ QA it provides a q-box
and their union b1 is a box;
Adam chooses boxes b1 and b2 respectively over a for his two tokens;
Eve updates her memory state to δP(p, (b1, b2)).

Consider a play that agrees with the above defined strategy σ′ and provides three sequences
of boxes (πE , πA, π′A). For every path ρ in πE , there is a play of Gpos(A) that is consistent
with σ and gives sequences (ρ, πA, π′A). If either πA or π′A is universally accepting, also ρ
must be accepting. Then πE is also universally accepting. This means that σ′ is a winning
strategy in G2(box(A)). J

This concludes the proof of Proposition 26.

E Appendix of Section 6

In this section we show that a nondeterministic coBüchi automaton A is GFG if and only if
Eve wins G2(A). This constitutes a step towards Conjecture 23.

Let us fix an NCW A = (Σ, Q, ι, δ, α) with a transition function δ : Q× Σ→ 2Q and a
set of accepting transitions α ⊆ Q× Σ×Q .

We use the following standard extensions of the transition function δ:
δ : 2Q × Σ→ 2Q is defined by δ(X, a) =

⋃
p∈X δ(p, a).

δ∗ : Σ∗ → 2Q is defined by induction: δ∗(ε) = {ι}, and δ∗(ua) = δ(δ∗(u), a).
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First, let us recall results on G2(A) from [1] that are valid for coBüchi automata.

I Lemma 45 ([1]). If A is GFG then Eve wins G2(A).

I Lemma 46 ([1]). If Eve wins G2(A) then for all k ∈ N, Eve wins Gk(A).

From now on, we assume that Eve wins G2(A), and aim at proving that A is GFG.

E.1 Normalisation
Along the proof, we will change A to a different automaton A′, while ensuring that if A′ is
GFG then so is A. We will then show that A′ is indeed GFG, reaching the required result.

We will use the following operations to change A:
G2-restriction: We “clean” A to only have states from which Eve wins the G2 game,
namely restrict it to the states Q′ = {q | Eve wins G2(Aq)}, and remove the remaining
states and transitions involving them.
Reachability labelling: States occupied by tokens at a given time in a token game on A are
always “co-reachable”, namely there is a word on which A can reach all of them. Therefore,
augmenting the states ofA with the set of currently reachable states may intuitively help in
analysing token games on A. We accordingly define the NCW A′ = (Σ, Q′, (ι, {ι}), δ′, α′)
that behaves like A, but with an additional component storing the set of states reachable
on the prefix read so far. (Cf. the “augmented subset construction” of [3].)
That is, we define the components of A′ as follows: Q′ = {(p,X) ∈ Q × 2Q | p ∈ X},
δ′ : Q′ × Σ → 2Q′ defined for every state (p,X) and letter a ∈ Σ by δ′((p,X), a) =
{(p′, X ′) | p′ ∈ δ(p, a), X ′ = δ(X, a)}, and the accepting transitions are α′ = {(p,X) a−→
(q,X ′) | a ∈ Σ, p a−→ q ∈ α,X ′ = δ(X, a)}. Notice that the second component evolves
deterministically, and that L(A′) = L(A).
Acceptance tuning: For a coBüchi automaton A, we want to normalise A to only have
accepting transitions that can be used infinitely often in an accepting run. We therefore
define the accepting transitions of A′ to be the ones that are accepting in A and are
part of a maximal strongly connected component of accepting transitions of A. In other
words, all transitions p a−→ q for which there is no path of accepting transitions from q to
p in A are made rejecting. We will call these latter transitions SCC-changing.

We first show that the G2-restriction allows Eve to win G2 from every state. Notice that
it is not trivial from the definition, as her G2 winning strategy in A might upfront visit states
that are then removed in the G2-restriction.

I Lemma 47. Consider a nondeterministic coBüchi automaton A and the automaton A′
that is derived from A by G2-restriction. Then i) if Eve wins G2(A) then she wins G2(A′q′)
for every state q′ of A′, and ii) if A′ is GFG then so is A.

The proof of this lemma relies on the games Gk(A) as defined in Remark 21. We will
additionally use the explicit shape of Eves strategies in these games, as in the definition
of a strategy in memory from Section 2. For the sake of simplicity, we base that on the
representation of the game G2(A) (and analogously Gk(A)) as in [1, Lemma 11]. This means,
that Eve’s strategy in Gk(A) can be represented as σ : M × (Σ×Qk+1)→ Q, where M is
the memory used by σ.

Proof.
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i) Consider a state p ∈ Q′. By the definition of Q′, Eve wins G2(A) from (p; p, p), and by
Lemma 46 she also wins G4(A) from (p; p, p, p, p). Let σ4 be her winning strategy that
uses some memory structure M4 as above.
We define a strategy σ2 : M4× (Σ×Q3)→ Q of Eve in G2(A), in which she plays like σ4,
assuming that the first two tokens of Adam in the 4-token game follow her token. The
memory structure M4 is maintained accordingly. That is, when Eve’s memory is m, her
token is in state p, Adam’s tokens are in states q1 and q2, and he chooses the letter a,
we have σ2(m, a, p; q1, q2) = σ4(m, a, p; p, p, q1, q2). Observe that σ2 is a winning strategy,
since σ4 is.
Now, it must be that all states visited by Eve’s token in a play consistent with σ2 are
in Q′, as otherwise a play consistent with σ4 can reach a position (p; p, p, q1, q2), where
q ∈ Q \Q′, from which Adam can win against σ4, by diverting to a winning strategy of
him in G2(A) from (q; q, q) with his first two tokens.
So σ2 is actually a winning strategy in G2(A′) from (p; p, p), as it never goes outside of
Q′ (and this strategy even works when Adam is allowed to visit Q and not only Q′).

ii) It is enough to show that L(A) = L(A′), as then a winning strategy σ : Σ∗ → Q′ of Eve in
the letter game for A′ is also a winning strategy for her in the letter game for A. (Every
word generated by Adam is either not in their language, or followed by an accepting run
of Eve in A′, which is also an accepting run for her in A.)
Assume toward contradiction that exists a word w ∈ L(A′) \ L(A). We give a winning
strategy for Adam in G3(A), thereby contradicting Lemma 46. Adam will play the word
w, and make his first two tokens follow Eve’s token, while the third token will follow an
accepting run for w. If Eve stays in Q′, then by the choice of w she cannot build an
accepting run, and Adam will win the play. So Eve is forced to leave Q′ at some point,
and the game reaches a position (p; p, p, q) with p /∈ Q′. By the definition of Q′, this
means that Adam has a winning strategy τ in G2(A) from (p; p, p). Adam can therefore
stop playing w, and win by playing τ against Eve with his first two tokens, while doing
arbitrary choices with the third token.

J

We continue with showing that reachability labelling and acceptance tuning do not change
the G2 winner, and if they produce a GFG automaton then so was the original one.

I Lemma 48. Consider a nondeterministic automaton A and the automaton A′ that is
derived from A by acceptance tuning or reachability labelling. Then i) if Eve wins G2(Aq)
for every state q of A then she wins G2(A′q′) for every state q′ of A′, and ii) if A′ is GFG
then so is A.

Proof.
Acceptance tuning Every run r of A is also a run of A′, and vice versa, and r is accepting

in A iff it is accepting in A′. This is because any accepting run of A must eventually
stay within a SCC of accepting transitions, and therefore avoid SCC-changing transitions.
Therefore, the two required properties directly follow.

Reachability labelling
i) Eve can simply use her winning strategy in G2(A) — the extra component of A′ does

not play any role in the acceptance condition, and evolves deterministically.
ii) Consider a winning strategy σ′ : Σ∗ → Q× 2Q of Eve in the letter game for A′. Then

Eve can win the letter game for A, by using the strategy σ : Σ∗ → Q that is derived
from σ′ by ignoring the second component of the image. (Since the second component,
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consisting of the reachable states, evolves deterministically, Eve can compute it in the
memory of her strategy.)

J

The automaton Ar

We continue with considering the automaton Ar = (Σ, Qr , (ι, {ι}), δr , αr) that is derived
from A by first performing G2-restriction, then reachability labelling, and finally acceptance
tuning. We aim to show that it is GFG, which will show by Lemmas 47 and 48 that A is
GFG.

Notice that since Eve wins G2(A), we have in particular (ι, {ι}) ∈ Qr . In the sequel, we
will use q to denote a state of Ar of the form (q,X) with q ∈ Q and X ⊆ Q. The second
component of a state in Qr (the X in (q,X) ) is deterministically determined (it is the subset
construction on the part of A that was not removed in the normalisation). For a finite word
u, we shall use ∆(u) to denote the component X of a state (q,X) reached by Ar reading u.

E.2 Safety Game and Deterministic Runs
We analyse the different regions of the automaton Ar with respect to states being “safe” for
Eve and states from which she can have some “partially deterministic” choices.

The following constructions and arguments refine the corresponding ones from [17].

I Definition 49. Consider an NCW C with a set P of states. We define the safety game
Gsafe(C) on C as in [17]: The game is played on P 2, and a turn from a configuration (p, q)
is played as follows:

Adam chooses a letter a ∈ Σ,
Eve chooses a transition p a−→ p′

Adam chooses a transition q a−→ q′

If the transition q a−→ q′ chosen by Adam is rejecting then Eve wins the game immediately. If
p
a−→ p′ is rejecting and q a−→ q′ is accepting, Eve loses the game immediately. Otherwise, the

game moves to the position (p′, q′) and a new round starts. Eve wins any infinite play.

The above game can again be defined as (RA,Σ × C) × C with an appropriate winning
condition.

Notice that Gsafe(Ar) is a safety game for Eve, and in particular if she wins the game,
she can do it with a positional strategy.

We will denote by Wsafe ⊆ Q2
r the winning region of Eve in Gsafe(Ar). We show next

that for every state in Ar , there is a corresponding safe state sharing the same reachabil-
ity-component. The proof is analogous to the proof of [17, Lemma 53 in Appendix E.5],
except that we additionally need to keep track of the component X in the states in Qr .

I Lemma 50. For all (q,X) ∈ Qr , there exists p ∈ Q such that ((p,X), (q,X)) ∈Wsafe.

Proof. Assume toward contradiction that there is a state q = (q,X) ∈ Qr such that for all
p ∈ Q, ((p,X), (q,X)) /∈Wsafe. Since Eve wins G2(A) from each state, she also wins G1(A)
from (q; q). We shall build a winning strategy τ for Adam in G1(Ar) from (q; q), to obtain
contradiction.

By the assumption on q, we have (q, q) /∈ Wsafe. The strategy τ of Adam will start by
playing in order to win Gsafe from (q, q). This means that τ guarantees to build a partial
play (q, q) u1−→ ((p1, X1), (q1, X1)), where a rejecting transition has been seen only on Eve’s
moves.
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Since q and (q1, X1) are in the same SCC (accepting transitions do not change SCC),
Adam can now play a word v1 allowing his token to go back to q. By the acceptance tuning
of Ar , Adam can ensure that the partial run along v1 sees only accepting transitions.

The play therefore reaches a position ((p′1, X), (q,X)). Notice that the second component
X is the same, as it evolves deterministically according to the input word read so far (here
u1v1). By the assumption, we again have ((p′1, X), (q,X)) /∈ Wsafe. Adam can therefore
reiterate the previous strategy: first play in order to win Gsafe from there, forcing Eve to
witness a rejecting transition; then go back to q with his token, without seeing any rejecting
transition on the loop. This reaches a position ((p′2, X), (q,X)). Repeating this strategy ad
infinitum constitutes the winning strategy τ , as Eve will be forced to see infinitely many
rejecting transitions, while Adam will not see any. J

Let us define SafeZone ⊆ Qr by SafeZone = {(p,X) | ((p,X), (p,X)) ∈Wsafe}.
From Lemma 50, we deduce the following:

I Lemma 51. For all (q,X) ∈ Qr, there exists p ∈ Q such that ((p,X), (q,X)) ∈Wsafe and
(p,X) ∈ SafeZone.

Proof. Let (q,X) ∈ Qr. By Lemma 50, there exists p1 ∈ Q such that ((p1, X), (q,X)) ∈
Wsafe. Again, there exists p2 ∈ Q such that ((p2, X), (p1, X)) ∈ Wsafe. Iterating this
construction builds a sequence p1, p2, p3, . . . . Since Q is finite, there exists i < j such that
pi = pj . As it is shown in [17] that Wsafe is transitive, we obtain that pi ∈ SafeZone and
((pi, X), (q,X)) ∈Wsafe. Therefore, taking p = pi concludes the proof. J

Notice that due to Lemma 51, we have in particular that the initial state of Ar , namely
(ι, {ι}), is in SafeZone, since ι is the only state of A that belongs to a state of Ar in which
the second component is {ι}.

We continue with another refinement of a result from [17]:

I Lemma 52. There exists a partial deterministic transition function δdet : SafeZone× Σ→
SafeZone, where δdet ⊆ δr , such that for all w ∈ L(Ar), there is a decomposition w = uv and
a state s ∈ Q, such that (s,∆(u)) ∈ SafeZone and δdet accepts v from s without any rejecting
transition.

Proof. The function δdet is defined by δdet(p, a) = σsafe(p, p, a), where σsafe is a positional
winning strategy of Eve in Gsafe(Ar).

Let w = a1a2 · · · ∈ L(Ar), and ρ = (p0, X0)(p1, X1)(p2, X2) . . . be an accepting run of
Ar on w. Let k ∈ N such that the last rejecting transition in ρ occurs before position k. Let
u = a1a2 . . . ak and v = ak+1ak+2 . . . , so w = uv. After reading u, the run ρ reaches a state
(pk, Xk) with Xk = ∆(u). By Lemma 51, there exists sk ∈ Q such that (sk, Xk) ∈ SafeZone
and ((sk, Xk), (pk, Xk)) ∈Wsafe.

We now build by induction a sequence (si)i≥k, describing the run of Ar yielded by δdet
on v from (sk, Xk). We show that this run does not contain rejecting transitions, thereby
proving the Lemma. To do so, we show the following invariant (Pi): the run yielded by δdet
on ak+1 . . . ai does not contain rejecting transitions, and the remaining suffix ai+1ai+2 . . .

can be accepted in Ar without rejecting transition from (si, Xi). For the induction base, we
need to show that (Pk) is true. The first part is trivial, and the second part follows from
the fact that ((sk, Xk), (pk, Xk)) ∈Wsafe. Indeed, if from this position in Gsafe(Ar), Adam
plays v and follows the suffix of ρ from position k, Eve must accept v from (sk, Xk) without
seeing any rejecting transition, witnessing the wanted property.



U. Boker, D. Kuperberg, K. Lehtinen, M. Skrzypczak 33

For the induction step, assume (Pi) holds on (si, Xi), and let (si+1, Xi+1) = δdet((si, Xi),
ai+1) (recall that the second component evolves deterministically, so δdet only chooses the first
component si+1). We first need to show that this transition is well-defined and not rejecting.
From (Pi), we know that ai+1ai+2 . . . can be accepted without rejecting transitions from
(si, Xi). This means that σsafe((si, Xi), (si, Xi), ai+1) must not be rejecting, as otherwise
the strategy σsafe would not be winning, since Adam could play an accepting transition from
(si, Xi) and immediately win the play. By definition of δdet, we obtain that the transition
(si, Xi)

ai+1−−−→ (si+1, Xi+1) is well-defined and accepting. It remains to show the second part of
(Pi+1), i.e., ai+2ai+3 . . . can be accepted from (si+1, Xi+1) without any rejecting transition
in Ar . Again, consider the play of Gsafe starting from ((si, Xi), (si, Xi)) with Adam playing
ai+1 and Eve playing σsafe((si, Xi), (si, Xi), ai+1)) to (si+1, Xi+1). If the suffix ai+2ai+3 . . .

cannot be safely accepted from (si+1, Xi+1), then Adam can just play the accepting safe
run from (si, Xi) on ai+1ai+2 . . . (which exists by Pi), and win the game Gsafe against σsafe.
This is a contradiction, so (Pi+1) must hold.

This achieves the proof that δdet builds a run without rejecting transition from (si, Xi)
on v. J

E.3 Adam’s Strategy τ in the Letter Game
Let us assume toward contradiction that although Eve wins G2(Ar), Ar is not GFG, so
Adam has a finite-memory winning strategy τ in the letter game on Ar . Let M be the
memory used in τ , i.e., τ has type Qr ×M → Σ (together with a memory update function),
and m0 be the initial memory state.

We will explicit a property of τ linked with the strategy δdet from Lemma 52.

I Definition 53. Consider a word u = a1a2 . . . a|u| ∈ Σ∗. We say that positions i1 <

i2 < · · · < in are det-breakpoints of u if for every j ∈ [1, n−1] and s ∈ Q for which
(s,∆(a1 . . . aij )) ∈ SafeZone, the run yielded by δdet from (s,∆(a1 . . . aij )) on aij+1 . . . aij+1

is not defined or witnesses a rejecting transition.

I Lemma 54. There is a constant N depending only on Ar and M , such that if u is a finite
word produced by the strategy τ then any sequence of det-breakpoints of u has length smaller
than N .

Proof. Let N = |M | · |Qr|+ 2, and consider a partial run (ι, {ι}) a1−→ p1
a2−→ p2

a3−→ . . .
al−→ pl

of Ar on a finite word u = a1, . . . , al that is generated by τ . Assume toward contradiction
that u has N det-breakpoints i1 < i2 < · · · < iN , and let mj be the memory state of τ at
step ij .

By the choice of N , there must be j < t ∈ [1, N ], such that (mj , pj) = (mt, pt). This
means that when reaching pt, Eve can repeat the play from pj to pt, forcing τ to produce the
same letters aij+1 . . . ait in a loop, producing an infinite word w. Moreover, each occurrence
of this loop contains a det-breakpoint, so w contains infinitely many det-breakpoints. By
Lemma 52, it follows that w /∈ L(Ar). This contradicts the fact that τ is winning in the
letter game, as τ must always produce a word from L(Ar) in order to win. J

E.4 Limit Strategy σ∞

Recall that by Lemma 46, Eve wins Gk(Ar) for all k ∈ N. Let Wk ⊆ Qk+1
r be the winning

region of Eve in Gk(Ar), and σk a winning strategy for Eve in Gk(Ar) from the initial
position ((ι, {ι}); (ι, {ι}), . . . , (ι, {ι})).
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I Proposition 55. Let (p; q1, q2, . . . , qk) ∈Wk, let i ∈ [1, k], and let πi : [1, i]→ [1, k] be an
injective function. Then (p; qπi(1), qπi(2), . . . , qπi(i)) ∈Wi.

Proof. Straightforward. J

I Lemma 56. There is a strategy2 σ∞ : Σ∗ → Qr , such that for all u ∈ Σ∗, if δ∗r (u) =
{q1, q2, . . . , q|Qr |}, then we have (σ∞(u); q1, . . . , q|Qr |) ∈W|Qr |.

Notice that in the above definition the cardinality of δ∗r (u) might be smaller than |Qr |
and then some states q1, . . . , q|Qr | repeat.

Proof. We build σ∞ by induction on u, starting with σ∞(ε) = (ι, {ι}).
Let us define a strategy τunif

k : Qkr × Σ→ Qkr for moving k tokens in Ar , by dispatching
them uniformly at each nondeterministic choice (remaining tokens are dispatched arbitrarily,
for instance using some fixed order on the states). For instance if a state p contains 10
tokens, and its possible transitions on a letter a are δ(p, a) = {q1, q2, q4}, then τunif

k can send
4 tokens to q1, 3 tokens to q2, and 3 tokens to q4. Let us define a strategy σunif

k : Σ∗ → Qr
for Eve in the letter game on Ar , as follows. The memory M = Qkr of σunif

k consists of k
tokens, updated according to τunif

k . The choices made by σunif
k are then simply the choices

made by σk against these k tokens. More formally, σunif
k,M : Qr ×M × Σ→ Qr is defined by

σunif
k,M (p,m, a) = σk(p,m, a), and its update fuction is induced by τunif

k : M × Σ→M . The
strategy σunif

k : Σ∗ → Qr is then defined from σunif
k,M in a canonical way, using initial memory

state m0 = ((ι, {ι}), . . . , (ι, {ι})), and initial state σunif
k (ε) = (ι, {ι}).

We will preserve the following invariant while building σ∞: for every finite word u, there
is an infinite set Iu ⊆ N such that for all k ∈ Iu, σ∞ yields the same run as σunif

k on u. This
invariant guarantees the statement of the lemma (using Proposition 55), since as soon as k is
big enough, all states from δ∗r (u) are each reached by |Qr | tokens when playing τunif

k , and
σunif
k must always stay in the winning region Wk.
We start with Iε = N, for which the invariant trivially holds.
Assume it holds for u with some infinite set Iu, and let a ∈ Σ. Let p = σ∞(u). For each

k ∈ N, let pk = σunif
k (u). There exists q ∈ Qr such that for infinitely many k ∈ Iu, we have

pk = q. We set σ∞(ua) = q, and Iua = {k ∈ Iu | pk = q}.
This maintains the invariant, and thus we can conclude the proof by induction. J

E.5 Playing Against τ

We will now describe a strategy σ for Eve in the letter game of Ar , so that the play yielded
by σ playing against τ is winning for Eve. This will contradict the assumption that τ is a
winning strategy, leading to the conclusion that Ar is GFG.

Let N be the constant from Lemma 54. The strategy σ will intuitively play the N -tokens
game in Ar against N imaginary main tokens q1, q2, . . . qN . Here “imaginary” means that
these tokens exist only in the memory of Eve, and are not part of the actual game arena. So
if u is the finite word read so far and p is the current state of Eve, when τ produces a new
letter a, Eve will choose a successor state p′ by setting p′ = σN (ua, p, q1, . . . , qN ), where σN
is a winning strategy of Eve in GN (Ar).

If τ eventually produces a word w not in L(A), Eve wins by the definition of the letter
game. We may thus consider the case where w ∈ L(A). Then, since σN is a winning strategy

2 In Appendix A, we formally defined a “strategy” with respect to a specific game. Here we abuse the
term “strategy” to refer to a general total function on finite words.
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for Eve, by the definition of tokens game, either the path produced by σ is accepting, which
is what we target, or all of the paths generated by the imaginary tokens are rejecting. We
shall thus ensure that at least one of the paths generated by a qi token is accepting.

The N main tokens will aim at producing an accepting path in turns, starting with q1; if
q1 seems to fail, moving to q2; and so on; until giving the last chance to qN . At each point of
time the index of the active token is denoted by j, and qj plays the |Qr |-tokens game on Ar
against yet other |Qr | imaginary deterministic tokens d1, d2, . . . d|Qr |. That is, the new state
of the active token is q′j = σ|Qr |(ua, qj , d1, . . . , d|Qr |). Analogously to the previous step, since
σ|Qr | is a winning strategy for Eve in the |Qr |-token game on Ar , the path of qi is guaranteed
to accept if at least one path of the deterministic tokens that it plays against is accepting.

Each of the “awaiting” main tokens qj+1, . . . qN should remain in the “safe area” of Eve
in the |Qr |-tokens game, namely in W|Qr |, until its turn arrives. This “waiting in the safe
area” is done according to the strategy σ∞. That is, for every i ∈ [j + 1, N ], we set the
new state of the i-th main token to q′i = σ∞(ua). The “discarded” main tokens q1, . . . , qj−1
proceed arbitrarily to a new state compatible with δr . That is, for every i ∈ [1, j − 1], we set
the new state of the i-th main token to q′i ∈ δr(qi, a).

What did we get so far? Instead of directly producing an accepting run for Eve in her
letter game, moving around the token p, we aim at producing an accepting path for one of the
main tokens q1, . . . , qN , which we again reduce to producing an accepting path for one of the
deterministic tokens d1, . . . d|Qr |. What is it good for? The first reduction allows to try out N
paths instead of a single one. The second reduction allows not to only consider a connected
paths, but also paths with up to N “jumps” between co-reachable states. That is, whenever
the active token is replaced, namely when the index j of the active token is increased by one,
a new token game starts between qj and the deterministic tokens d1, . . . d|Qr |. At this point,
each of the deterministic tokens can be changed to a new state not only by following δr but
also by going to any co-reachable state.

The |Qr | deterministic tokens proceed according to δdet ; if for some token di, the transition
δdet is not defined or makes a rejecting transition, the token di is no longer “alive”, and we
maintain a set E ⊆ Qr of the alive deterministic tokens. That is, for every i ∈ E, we move
the token di to δdet(di, a), if this transition of δdet is accepting, or to an arbitrary state in
δr(di, a) otherwise.

If the set E of alive deterministic tokens becomes empty, it is a breakpoint, on which σ
behaves as follows: the active token qj finishes its turn, and qj+1 gets its turn to be the active
token and play against the deterministic tokens, which become alive again and are spread
across all reachable states in SafeZone. That is, we choose the new states d′1, d′2, . . . , d′|Qr | of
the deterministic tokens in any canonical way such that {d′1, d′2, . . . d′|Qr |} = δ∗r (ua)∩SafeZone.

To sum up the description of σ, it uses the infinite memory structure Σ∗ ×QNr × [1, N ]×
Q
|Qr |
r × 2[1,|Qr |], where a memory state m = (u, q1, . . . , qN , j, d1, . . . , d|Qr |, E) consists of
The prefix u of the word read so far.
N main tokens q1, . . . , qN .
The index j ∈ [1, N ] of the currently active main token.
|Qr | deterministic tokens d1, . . . , d|Qr |.
A set E ⊆ |Qr | of the indexes of the alive deterministic tokens, namely those that
encountered only accepting transitions since the last breakpoint.

The initial memory state ism0 = (ε, (ι, {ι}), . . . , (ι, {ι}), 1, (ι, {ι}), . . . , (ι, {ι}), {1}), where
all tokens are in (ι, {ι}), the active main token is the first one, and only one deterministic
token (of index 1) is alive. This memory structure of σ is updated as described above, the
behaviour of the tokens is illustrated in Fig. 6.



36 On Succinctness and Recognisability of Alternating Good-for-Games Automata

Figure 6 An illustration of the behaviour of tokens in the memory structure of the strategy σ.
Awaiting main tokens are represented in black, active tokens in green, and alive deterministic tokens
in red. Breakpoints are represented by dashed vertical lines.

We are now ready to prove the main theorem stating the correctness of σ.

I Lemma 57. The strategy σ wins against τ in the letter game of A.

Proof. First of all, notice that by the construction of σ, if E becomes empty while token qi
is active, then the word u produced by τ so far has witnessed i det-breakpoints. By Lemma
54, this means that we will never run out of main tokens, and eventually an active token qi
stays active forever.

Let us consider the point of the run where this token qi becomes active, and let u be
the word produced so far. At the breakpoint, deterministic tokens are placed such that
{d1, d2, . . . d|Qr |} = δ∗r (ua) ∩ SafeZone. Since qi followed σ∞ until now, we have qi = σ∞(u).
By Prop. 55 and Lemma 56, we have (qi, d1, . . . , d|Qr |) ∈ W|Qr |. From now on, since no
more det-breakpoints occur, some deterministic token dh will never encounter a rejecting
transition, and will safely follow δdet forever. Since qi now moves according to σ|Qr | against
d1, . . . , d|Qr |, and since dh follows an accepting run, we obtain that qi will follow an accepting
run.

Finally, since the states assigned to p are chosen according to σN against q1, . . . , qN , and
since qi follows an accepting run, we have that p follows an accepting run, and thus the play
yielded by σ against τ is winning for Eve. J

Assuming that Eve wins G2(Ar) and Ar is not GFG leads to a contradiction, we can
therefore conclude that Ar is GFG, and thus A is GFG by Lemmas 47 and 48. We finally
have shown Theorem 28.
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