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Abstract10

Weighted timed games are zero-sum games played by two players on a timed automaton equipped11

with weights, where one player wants to minimise the accumulated weight while reaching a target.12

Weighted timed games are notoriously difficult and quickly undecidable, even when restricted to13

non-negative weights. For non-negative weights, the largest class that can be analysed has been14

introduced by Bouyer, Jaziri and Markey in 2015. Though the value problem is undecidable, the15

authors show how to approximate the value by considering regions with a refined granularity.16

In this work, we extend this class to incorporate negative weights, allowing one to model energy17

for instance, and prove that the value can still be approximated, with the same complexity. In18

addition, we show that a symbolic algorithm, relying on the paradigm of value iteration, can be19

used as an approximation scheme on this class.20
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1 Introduction24

The design of programs verifying some real-time specifications is a notoriously difficult prob-25

lem, because such programs must take care of delicate timing issues, and are difficult to26

debug a posteriori. One research direction to ease the design of real-time software is to27

automatise the process. The situation may usually be modelled into a timed game, played28

by a controller and an antagonistic environment: they act, in a turn-based fashion, over a29

timed automaton [2], namely a finite automaton equipped with real-valued variables, called30

clocks, evolving with a uniform rate. A simple, yet realistic, objective for the controller is to31

reach a target location. We are thus looking for a strategy of the controller, that is a recipe32

dictating how to play so that the target is reached no matter how the environment plays.33

Reachability timed games are decidable [4], and EXPTIME-complete [19].34

Weighted extensions of these games have been considered in order to measure the quality35

of the winning strategy for the controller [9, 1]: when the controller has a winning strategy36

in a given reachability timed game, the quantitative version of the game helps choosing a37

good one with respect to some metrics. This means that the game now takes place over a38

weighted (or priced) timed automaton [5, 3], where transitions are equipped with weights,39

and locations with rates of weights (the cost is then proportional to the time spent in this40

location, with the rate as proportional coefficient). While solving weighted timed automata41
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has been shown to be PSPACE-complete [6] (i.e. the same complexity as the non-weighted42

version), weighted timed games are known to be undecidable [12]. This has led to many43

restrictions in order to regain decidability, the first and most interesting one being the class44

of strictly non-Zeno cost with only non-negative weights (in transitions and locations) [9]:45

this hypothesis requires that every execution of the timed automaton that follows a cycle of46

the region automaton has a weight far from 0 (in interval [1,+∞), for instance).47

Negative weights are crucial when one wants to model energy or other resources that48

can grow or decrease during the execution of the system to study. In [16], we have recently49

extended the strictly non-Zeno cost restriction to weighted timed games in the presence50

of negative weights in transitions and/or locations. We have described there the class of51

divergent weighted timed games where each execution that follows a cycle of the region52

automaton has a weight far from 0, i.e. in (−∞,−1] ∪ [1,+∞). We were able to obtain53

a doubly-exponential-time algorithm to compute the values and almost-optimal strategies,54

while deciding the divergence of a weighted timed game is PSPACE-complete. These com-55

plexity results match the ones that could be obtained in the non-negative case from [9, 1].56

The techniques used to obtain these results cannot be extended if the conditions are57

slightly relaxed. For instance, if we add the possibility for an execution of the timed auto-58

maton following a cycle of the region automaton to have weight exactly 0, the decision59

problem is known to be undecidable [10], even with non-negative weights only. For this60

extension, in the presence of non-negative weights only, it has been proposed an approxim-61

ation scheme to compute arbitrarily close estimates of the optimal value [10]. To this end,62

the authors consider regions with a refined granularity so as to control the precision of the63

approximation. In this work, our contribution is two-fold: first, we extend the class con-64

sidered in [10] to the presence of negative weights; second, we show that the approximation65

can be obtained using a symbolic computation, based on the paradigm of value iteration.66

More precisely, we define the class of almost-divergent weighted timed games where, for67

each strongly connected component (SCC) of the region automaton, executions following68

a cycle of this SCC have a weight either all in (−∞,−1] ∪ {0}, or all in {0} ∪ [1,+∞).69

In contrast, the divergent condition is equivalent to the same property on the strongly70

connected components, but without the presence of singleton {0}. Given an almost-divergent71

weighted timed game, an initial configuration c and a threshold ε, we compute a value that72

we guarantee to be ε-close to the optimal value when the play starts from c. Moreover,73

deciding if a weighted timed game is almost-divergent is a PSPACE-complete problem.74

In order to approximate almost-divergent weighted timed games, we first adapt the75

approximation scheme of [10] to our setting. At the very core of their scheme is the notion76

of kernels that collect all cycles of weight exactly 0 in the game. Then, a semi-unfolding of77

the game (in which kernels are not unfolded) of bounded depth is shown to be equivalent to78

the original game. Adapting this scheme to negative weights requires to address new issues:79

The definition and the approximation of these kernels is much more intricate in our80

setting (see Sections 3 and 5). Indeed, with only non-negative weights, a cycle of weight81

0 only encounters locations and transitions with weight 0. It is no longer the case with82

arbitrary weights, both for discrete weights on transitions (that could alternate between83

weight +1 and −1, e.g.) and continuous rates on locations: for this continuous part, this84

requires to keep track of the real-time dynamics of the game.85

Some valuations may have value −∞. While it is undecidable in general whether a86

configuration has value −∞ (see Appendix A.1), we prove that it is decidable for almost-87

divergent weighted timed games (see Lemma 8).88

The identification of an adequate bound to define an equivalent semi-unfolding of bounded89
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depth is more difficult in our setting, as having guarantees on weight accumulation is90

harder (we can lose accumulated weight). We deal with this by evaluating how large the91

value of a configuration can be, provided it is not infinite. This is presented in Section 4.92

We also develop, in Section 6, a second approximation schema, more symbolic than [10],93

in the sense that it avoids the a priori refinement of regions. Instead, all computations94

are performed in a symbolic way using the techniques developed in [1]. This allows to95

mutualise as much as possible the different computations: comparing these schemas with96

the evaluation of MDPs or quantitative games like mean-payoff or discounted-payoff, it is97

the same improvement as the use of value iteration techniques instead of techniques based98

on the unfolding of the model into a finite tree that contains many times the same location.99

Due to lack of space, omitted proofs can be found in the appendix.100

2 Weighted timed games101

Clocks, guards and regions. We let X be a finite set of variables called clocks. A102

valuation of clocks is a mapping ν : X → R>0. For a valuation ν, d ∈ R>0 and Y ⊆ X, we103

define the valuation ν+d as (ν+d)(x) = ν(x)+d, for all x ∈ X, and the valuation ν[Y := 0]104

as (ν[Y := 0])(x) = 0 if x ∈ Y , and (ν[Y := 0])(x) = ν(x) otherwise. The valuation 0105

assigns 0 to every clock. A guard on clocks of X is a conjunction of atomic constraints of106

the form x ./ c, where ./ ∈ {6, <,=, >,>} and c ∈ Q (we allow for rational coefficients107

as we will need to refine the granularity in the following). Guard g is the closed version of108

guard g where every open constraint x < c or x > c is replaced by its closed version x 6 c109

or x > c. A valuation ν : X → R>0 satisfies an atomic constraint x ./ c if ν(x) ./ c. The110

satisfaction relation is extended to all guards g naturally, and denoted by ν |= g. We let111

Guards(X) denote the set of guards over X.112

x

y

1 20

1

2
We rely on the crucial notion of regions, as introduced in the sem-113

inal work on timed automata [2]: a region is a set of valuations,114

that are all time-abstract bisimilar. We will also need some refine-115

ment of regions, with respect to a granularity 1/N , with N ∈ N.116

Formally, with respect to the set X of clocks and a constant M , a117

1/N -region r is a subset of valuations characterised by the vector118

(ιx)x∈X = (min(MN, bν(x)Nc))x∈X ∈ [0,MN ]X and the order of119

fractional parts of ν(x)N , given as a partition X = X0 ]X1 ] · · · ]Xm of clocks: a valu-120

ation ν is in this 1/N -region r if (i) bν(x)Nc = ιx, for all clocks x ∈ X; (ii) ν(x) = 0 for all121

x ∈ X0; (iii) all clocks x ∈ Xi 6= ∅ verify that ν(x)N have the same fractional part, for all122

1 6 i 6 m. We denote by RegN (X,M) the set of 1/N -regions, and we write Reg(X,M) as123

a shortcut for Reg1(X,M). We recover the traditional notion of region for N = 1. E.g., the124

figure on the right depicts regions Reg({x, y}, 2) as well as a their refinement Reg3({x, y}, 2).125

For any integer guard g, either all valuations of a given 1/N -region satisfy g, or none of126

them do. A 1/N -region r′ is said to be a time successor of the 1/N -region r if there exist127

ν ∈ r, ν′ ∈ r′, and d > 0 such that ν′ = ν + d. Moreover, for Y ⊆ X, we let r[Y := 0] be128

the 1/N -region where clocks of Y are reset.129

Weighted timed games. A weighted timed game (WTG) is then a tuple G = 〈L =130

LMin ] LMax,∆,wt, LT ,wtT 〉 where LMin and LMax are finite disjoint subsets of locations131

belonging to Min and Max, respectively, ∆ ⊆ L × Guards(X) × 2X × L is a finite set of132

transitions, wt : ∆ ] L → Z is the weight function, associating an integer weight with each133

transition and location, LT ⊆ LMin is a subset of target locations for player Min, and134

wtT : LT ×RX>0 → R∞ is a function mapping each target location and valuation of the clocks135

FSTTCS 2018
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−2
`1

3
2
`2 `3

wtT = 0

−1
`4

−2
`5

x 6 2
x := 0; 0

1 6 x 6 3
1

x 6 3; x := 0; 0

2 6 x 6 3
3

x 6 3
0

x 6 3; 0 x 6 3; 0
x 6 1;x := 0

1 < x 6 3
x := 0; 1

Figure 1 A weighted timed game. Locations belonging to Min (resp. Max) are depicted by
circles (resp. squares). The target location is `3, whose output weight function is null. It is easy
to observe that location `1 (resp. `5) has value +∞ (resp. −∞). As a consequence, the value in `4
is determined by the edge to `3, and depicted in blue on the picture below. In location `2, the
value associated with the transition to `3 is depicted in red, and the value in `2 is obtained as the
minimum of these two curves. Observe the intersection in x = 2/3 requiring to refine the regions.

to a final weight of R∞ = R]{−∞,+∞} (possibly 0, +∞, or −∞). The addition of target136

weights is not standard, but we will use it in the process of solving those games: anyway,137

it is possible to simply map each target location to the weight 0, allowing us to recover138

the standard definition. Without loss of generality, we suppose the absence of deadlocks139

except on target locations, i.e. for each location ` ∈ L\LT and valuation ν, there exists140

(`, g, Y, `′) ∈ ∆ such that ν |= g, and no transition starts in LT .141

2/3
x

Val

0 1 2 3
0

1

2

3
`2 → `4 → `3

`2 → `3

The semantics of a WTG G is defined in terms of a game played142

on an infinite transition system whose vertices are configurations143

of the WTG. A configuration is a pair (`, ν) with a location and144

a valuation of the clocks. Configurations are split into players145

according to the location. A configuration is final if its location is146

a target location of LT . The alphabet of the transition system is147

given by R>0 ×∆ and will encode the delay that a player wants148

to spend in the current location, before firing a certain transition.149

For every delay d ∈ R>0, transition δ = (`, g, Y, `′) ∈ ∆ and150

valuation ν, there is an edge (`, ν) d,δ−−→ (`′, ν′) if ν + d |= g and ν′ = (ν + d)[Y := 0]. The151

weight of such an edge e is given by d×wt(`) + wt(δ). An example is depicted on Figure 1.152

A finite play is a finite sequence of consecutive edges ρ = (`0, ν0) d0,δ0−−−→ (`1, ν1) d1,δ1−−−→153

· · · (`k, νk). We denote by |ρ| the length k of ρ. The concatenation of two finite plays ρ1154

and ρ2, such that ρ1 ends in the same configuration as ρ2 starts, is denoted by ρ1ρ2. We155

let FPlaysG be the set of all finite plays in G, whereas FPlaysMin
G (resp. FPlaysMax

G ) denote156

the finite plays that end in a configuration of Min (resp. Max). A play is then a maximal157

sequence of consecutive edges (it is either infinite or it reaches LT ).158

A strategy for Min (resp. Max) is a mapping σ : FPlaysMin
G → R>0×∆ (resp. σ : FPlaysMax

G →159

R>0 × ∆) such that for all finite plays ρ ∈ FPlaysMin
G (resp. ρ ∈ FPlaysMax

G ) ending in non-160

target configuration (`, ν), there exists an edge (`, ν) σ(ρ)−−−→ (`′, ν′). A play or finite play ρ =161

(`0, ν0) d0,δ0−−−→ (`1, ν1) d1,δ1−−−→ · · · conforms to a strategy σ of Min (resp. Max) if for all k such162

that (`k, νk) belongs to Min (resp. Max), we have that (dk, δk) = σ((`0, ν0) d0,δ0−−−→ · · · (`k, νk)).163

A strategy σ is memoryless if for all finite plays ρ, ρ′ ending in the same configuration, we164

have that σ(ρ) = σ(ρ′). For all strategies σMin and σMax of players Min and Max, respectively,165

and for all configurations (`0, ν0), we let playG((`0, ν0), σMax, σMin) be the outcome of σMax166

and σMin, defined as the only play conforming to σMax and σMin and starting in (`0, ν0).167

The objective of Min is to reach a target configuration, while minimising the accumu-168
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lated weight up to the target. Hence, we associate to every finite play ρ = (`0, ν0) d0,δ0−−−→169

(`1, ν1) d1,δ1−−−→ · · · (`k, νk) its cumulated weight, taking into account both discrete and con-170

tinuous costs: wtΣ(ρ) =
∑k−1
i=0 wt(`i)×di+ wt(δi). Then, the weight of a play ρ, denoted by171

wtG(ρ), is defined by +∞ if ρ is infinite (does not reach LT ), and wtΣ(ρ) + wtT (`T , ν) if it172

ends in (`T , ν) with `T ∈ LT . Then, for all locations ` and valuation ν, we let ValG(`, ν) be173

the value of G in (`, ν), defined as ValG((`, ν)) = infσMin supσMax
wtG(play((`, ν), σMax, σMin)),174

where the order of the infimum and supremum does not matter, since WTGs are known to175

be determined1. We say that a strategy σ?Min of Min is ε-optimal if, for all (`, ν), and all176

strategies σMax of Max, wtG(play((`, ν), σMax, σ
?
Min)) 6 ValG(`, ν) + ε. It is said optimal if this177

holds for ε = 0. A symmetric definition holds for optimal strategies of Max. If the game is178

clear from the context, we may drop the index G from all previous notations.179

As usual in related work [1, 9, 10], we assume that the starting WTGs have guards180

where all constants are integers, and all clocks are bounded, i.e. there is a constant M ∈ N181

such that every transition of the WTG is equipped with a guard g such that ν |= g implies182

ν(x) 6M for all clocks x ∈ X. We denote by wLmax (resp. w∆
max, wemax) the maximal weight183

in absolute values of locations (resp. of transitions, edges) of G, i.e. wLmax = max`∈L |wt(`)|184

(resp. w∆
max = maxδ∈∆ |wt(δ)|, wemax = MwLmax + w∆

max). For technical reasons that will185

become clear later, we also assume that the output weight functions are piecewise linear186

with a finite number of pieces and are continuous on each region.187

Region and corner abstractions. The region automaton, or region game, RN (G) (ab-188

breviated as R(G) when N = 1) of a game G = 〈L = LMin ] LMax,∆,wt, LT ,wtT 〉 is the189

WTG with locations S = L × RegN (X,M) and all transitions ((`, r), g′′, Y, (`′, r′)) with190

(`, g, Y, `′) ∈ ∆ such that the model of guard g′′ (i.e. all valuations ν such that ν |= g′′) is a191

1/N -region r′′, time successor of r such that r′′ satisfies the guard g, and r′ = r′′[Y := 0].192

Distribution of locations to players, final locations and weights are taken according to G.193

We call path a finite or infinite sequence of transitions in this automaton, and we denote by194

π the paths. A play ρ in G is projected on a path π in RN (G), by replacing actual valuations195

by the 1/N -regions containing them: we say that ρ follows the path π. It is important to196

notice that, even if π is a cycle (i.e. starts and ends in the same location of the region game),197

there may exist plays following it in G that are not cycles, due to the fact that regions are198

sets of valuations. By projecting away the region information of RN (G), we simply obtain:199

I Lemma 1. For all ` ∈ L, 1/N -regions r, and ν ∈ r, ValG(`, ν) = ValRN (G)((`, r), ν).200

On top of regions, we will need the corner-point abstraction techniques introduced in [8].201

A valuation v is said to be a corner of a 1/N -region r, if it belongs to the topological202

closure r and has coordinates multiple of 1/N (v ∈ (1/N)NX). We call corner state a203

triple (`, r, v) that contains information about a location (`, r) of the region-game RN (G),204

and a corner v of the 1/N -region r. Every region has at most |X|+1 corners. We now define205

the corner-point abstraction CN (G) of a WTG G as the WTG obtained as a refinement of206

RN (G) where guards on transitions are enforced to stay on one of the corners of the current207

1/N -region: the locations of CN (G) are all corner states of RN (G), associated to each player208

accordingly, and transitions are all ((`, r, v), g′′, Y, (`′, r′, v′)) such that t = ((`, r), g, Y, (`′, r′))209

is a transition of RN (G) such that the model of guard g′′ is a corner v′′ satisfying the210

guard g (recall that g is the closed version of g), v′ = v′′[Y := 0], and there exist two211

1 The determinacy result is stated in [13] for WTG (called priced timed games) with one clock, but the
proof does not use the assumption on the number of clocks.

FSTTCS 2018
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valuations ν ∈ r, ν′ ∈ r′ such that ((`, r), ν) d′,t−−→ ((`′, r′), ν′) for some d′ ∈ R>0 (this212

constraint must be added to ensure that the transition between corners is not spurious).213

Because of this closure operation, we must also define properly the final weight function:214

we simply define it over the only valuation v reachable in location (`, r, v) (with ` ∈ LT ) by215

wtT ((`, r, v), v) = limν→v,ν∈r wtT (`, ν) (the limit is well defined since wtT is piecewise linear216

with a finite number of pieces on region r).217

The WTG CN (G) can be seen as a weighted game (with final weights), i.e. a WTG218

without clocks (which means that there are only weights on transitions), by removing219

guards, resets and rates of locations, and replacing the weights of transitions by the ac-220

tual weight of jumping from one corner to another: for instance, the previous transition221

(((`, r), v), g′′, Y, ((`′, r′), v′)) becomes an edge from ((`, r), v) to ((`′, r′), v′) with weight222

d × wt(`) + wt(t) (for all possible values of d, which requires to allow for multi-edges2).223

Note that delay d is necessarily a rational of the form α/N with α ∈ N, since it must relate224

corners of 1/N -regions. In particular, this proves that the cumulated weight wtΣ(ρ) of a225

finite play ρ in CN (G) is indeed a rational number with denominator N .226

We will call corner play a play ρ in the corner-point abstraction CN (G): it can also227

be interpreted as a timed execution in G where all guards are closed (as explained in the228

definition before). It straightforwardly projects on a finite path π in the region game RN (G):229

in this case, we say again that ρ follows π. Corner plays allow one to obtain faithful230

information on the plays that follow the same path:231

I Lemma 2. If π is a finite path in RN (G), the set {wtΣ(ρ) | ρ finite play following π}232

is an interval bounded by the minimum and the maximum values of the set {wtΣ(ρ) |233

ρ finite corner play of CN (G) following π}.234

Value iteration. We will rely on the value iteration algorithm described in [1] for a WTG G.235

If V represents a value function—i.e. a mapping from configurations of L × RX>0 to a236

value in R∞—we denote by V`,ν the image V (`, ν), for better readability, and by V` the237

function mapping each valuation ν to V`,ν . One step of the game is summarised in the238

following operator F mapping each value function V to a value function V ′ = F(V ) defined239

by V ′`,ν = wtT (`, ν) if ` ∈ LT , and otherwise240

V ′`,ν =

sup
(`,ν)

d,δ−−→(`′,ν′)

[
d× wt(`) + wt(δ) + V`′,ν′

]
if ` ∈ LMax

inf
(`,ν)

d,δ−−→(`′,ν′)

[
d× wt(`) + wt(δ) + V`′,ν′

]
if ` ∈ LMin

(1)241

where (`, ν) d,δ−−→ (`′, ν′) ranges over valid edges in G. Then, starting from V 0 mapping every242

configuration to +∞, except for the target mapped to wtT , we let V i = F(V i−1) for all243

i > 0. The value function V i represents the value ValiG , which is intuitively what Min can244

guarantee when forced to reach the target in at most i steps.245

More formally, we define wtiG(ρ) the weight of a maximal play ρ at horizon i, as wtG(ρ)246

if ρ reaches a target state in at most i steps, and +∞ otherwise. Using this altern-247

ative definition of the weight of a play, we can obtain a new game value ValiG(`, ν) =248

infσMin supσMax
wtiG(play((`, ν), σMax, σMin)). Then, if G is a tree of depth d, V i=ValG if i ≥ d.249

The mappings V 0
` are piecewise linear for all `, and F preserves piecewise linearity250

over regions, so all iterates V i` are piecewise linear with a finite number of pieces. In [1],251

2 The only case where several edges could link two corners using the same transition is when all clocks
are reset in Y , in which case there is a choice for delay d.
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it is proved that V i` has a number of pieces (and can be computed within a complexity)252

exponential in i and in the size of G when wtT = 0. This result can be extended to handle253

negative weights in G and output weights wtT 6= 0.254

Problems. We consider the value problem that asks, given a WTG G, a location ` and a255

threshold α ∈ Z ∪ {−∞,+∞}, to decide whether ValG(`,0) 6 α. In the context of timed256

games, optimal strategies may not exist. We generally focus on finding ε-optimal strategies,257

that guarantee the optimal value, up to a small error ε. Moreover, when the value problem258

is undecidable, we also consider the approximation problem that consists, given a precision259

ε ∈ Q>0, in computing an ε-approximation of ValG(`,0).260

Related work. In the one-player case, computing the optimal value and an ε-optimal261

strategy for weighted timed automata is known to be PSPACE-complete [6]. In the two-262

player case, the value problem of WTGs (also called priced timed games in the literature) is263

undecidable with 3 clocks [12, 10], or even 2 clocks in the presence of negative weights [15]264

(for the existence problem asking if a strategy of player Min can guarantee a given threshold).265

To obtain decidability, one possibility is to limit the number of clocks to 1: then, there is266

an exponential-time algorithm to compute the value as well as ε-optimal strategies in the267

presence of non-negative weights only [7, 20, 17], whereas the problem is only known to be268

PTIME-hard. A similar result can be lifted to arbitrary weights, under restrictions on the269

resets of the clock in cycles [13].270

The other possibility to obtain a decidability result [9, 16] is to enforce a semantical271

property of divergence (originally called strictly non-Zeno cost): it asks that every play272

following a cycle in the region automaton has weight far from 0. It allows the author to273

prove that playing for only a bounded number of steps is equivalent to the original game,274

which boils down to the problem of computing the value of a tree-shaped weighted timed275

game G using the value iteration algorithm.276

Other objectives, not directly related to optimal reachability, have been considered in [11]277

for weighted timed games, like mean-payoff and parity objectives. In this work, the authors278

manage to solve these problems for the so-called class of δ-robust WTGs that they introduce.279

This class includes the class we consider, but is decidable in 2-EXPSPACE.280

Our results. A cycle π of R(G) is said to be a positive cycle (resp. a 0-cycle, or a negative281

cycle) if every finite play ρ following π satisfies wtΣ(ρ) > 1 (resp. wtΣ(ρ) = 0, or wtΣ(ρ) 6282

−1). A strongly connected component (SCC) S ofR(G) is said to be positive (resp. negative)283

if every cycle π ∈ S is positive (resp. negative). An SCC S of R(G) is said to be non-284

negative (resp. non-positive) if every play ρ following a cycle in S satisfies either wtΣ(ρ) > 1285

or wtΣ(ρ) = 0 (resp. either wtΣ(ρ) 6 −1 or wtΣ(ρ) = 0).286

I Definition 3. A WTG G is divergent (as defined in [16]) if every SCC of R(G) is either287

positive or negative. As a generalisation, a WTG G is almost-divergent when every SCC288

of R(G) is either non-negative or non-positive.289

In [16], we showed that we can decide in 2-EXPTIME the value problem for divergent290

WTGs. Unfortunately, it is shown in [10] that this problem is undecidable for almost-291

divergent WTGs (already with non-negative weights only, where almost-divergent WTGs292

are called simple). They propose a solution to the approximation problem, again with293

non-negative weights only. Our main result is the following extension of their result:294

I Theorem 4. Given an almost-divergent WTG G, a location ` and ε∈Q>0, we can com-295

pute an ε-approximation of ValG(`,0) in complexity doubly-exponential in the size of G and296

polynomial in 1/ε. Moreover, deciding if a WTG is almost-divergent is PSPACE-complete.297
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Figure 2 Static approximation schema: SCC decomposition of R(G), semi-unfolding of an SCC,
corner-point abstraction for the kernels

To obtain this result, we follow an approximation schema that we now outline. First, we298

will always reason on the region game R(G) of the almost-divergent WTG G. The goal is to299

compute an ε-approximation of ValR(G)(s0,0) for some state s0 = (`0, r0), with r0 the region300

where every clock value is 0. As already recalled, techniques of [1] allows one to compute301

the (exact) values of a WTG played on a finite tree, using operator F . The idea is thus to302

decompose as much as possible the game R(G) in a WTG over a tree. First, we decompose303

the region game into SCCs (left of Figure 2).304

During the approximation process, we must think about the final weight functions as305

the previously computed approximations of the values of SCCs below. We will keep as an306

invariant that final weight functions are piecewise linear functions with a finite number of307

pieces, and are continuous on each region.308

For an SCC of R(G) and an initial state s0 of R(G) provided by the SCC decomposition,309

we show that the game on the SCC is equivalent to a game on a tree built from a semi-310

unfolding (see middle of Figure 2) of R(G) from s0 of finite depth, with certain nodes of the311

tree being kernels. These kernels are some parts of R(G) that contain all cycles of weight 0.312

I Remark. In a weighted-timed game, it is easy to detect the set of states with value +∞:313

these are all the states from which Min cannot ensure reachability of a target location ` ∈ LT314

with wtT (`) < +∞. It can therefore be computed by an attractor computation, and is indeed315

a property constant on each region. In particular, removing those states from R(G) does316

not affect the value of any other state and can be done in complexity linear in |R(G)|. We317

will therefore assume that the considered WTG have no configurations with value +∞.318

3 Kernels of an almost-divergent WTG319

The approximation procedure described before uses the so-called kernels in order to group320

together all cycles of weight 0. We study those kernels and give a characterisation allowing321

computability. Contrary to the non-negative case, the situation is more complex in our322

arbitrary case, since weights of both locations and transitions may differ from 0 in the323

kernel. Moreover, it is not trivial (and may not be true in a non almost-divergent WTG) to324

know whether it is sufficient to consider only simple cycles, i.e. cycles without repetitions.325

To answer these questions, let us first analyse the cycles of R(G) that we will encounter.326

Since we are in an almost-divergent game, by Lemma 2, all cycles π = t1 · · · tn of R(G)327

(with t1, . . . , tn transitions of R(G)) are either 0-cycles, positive cycles or negative cycles.328

Additionally, in an SCC S of R(G), we cannot find both positive and negative cycles by329

definition. Moreover, we can classify a cycle by looking only at the corner plays following it.330

I Lemma 5. A cycle π is a 0-cycle iff there exists a corner play ρ following π with wtΣ(ρ)=0.331



D. Busatto-Gaston, B. Monmege, and P.-A. Reynier yy:9

An important result is that 0-cycles are stable by rotation. This is not trivial because332

plays following a cycle can start and end in different valuations, therefore changing the333

starting state of the cycle could a priori change the plays that follow it and their weights.334

I Lemma 6. Let π and π′ be paths of R(G). Then, ππ′ is a 0-cycle iff π′π is a 0-cycle.335

Sketch of proof. This stems from a pumping argument on the corner plays following cycles.336

Indeed, there are finitely many corners, so by constructing a long enough play following an337

iterate of π′π, we can obtain a corner play that starts and ends in the same corner. This338

play can then be considered as a play following an iterate of ππ′, which ensures that it has339

weight 0. This allows us to conclude because in an almost-divergent WTG, if (ππ′)m is a340

0-cycle then ππ′ is a 0-cycle. J341

We will now construct the kernel K as the subgraph of R(G) containing all 0-cycles.342

Formally, let TK be the set of transitions of R(G) belonging to a simple 0-cycle, and SK be343

the set of states covered by TK. We define the kernel K of R(G) as the subgraph of R(G)344

defined by SK and TK. Transitions in T\TK with starting state in SK are called the output345

transitions of K. We define it using only simple 0-cycles in order to ensure its computability.346

However, we now show that this is of no harm, since the kernel contains exactly all the347

0-cycles, which will be crucial in the approximation schema we present in Section 5.348

I Proposition 7. A cycle of R(G) is entirely in K if and only if it is a 0-cycle.349

Proof. We prove that every 0-cycle is in K by induction on the length of the cycles. The350

initialisation contains only cycles of length 1, that are in K by construction. If we consider351

a cycle π of length n > 1, it is either simple or it can be rotated and decomposed into π′π′′,352

π′ and π′′ being smaller cycles. Let ρ be a corner play following π′π′′. We denote by ρ′ the353

prefix of ρ following π′ and ρ′′ the suffix following π′′. It holds that wtΣ(ρ′) = −wtΣ(ρ′′), and354

in an almost-divergent SCC this implies wtΣ(ρ′) = wtΣ(ρ′′) = 0. Therefore, by Lemma 5355

both π′ and π′′ are 0-cycles, and they must be in K by induction hypothesis. Note that this356

reasoning proves that every cycle contained in a longer 0-cycle is also a 0-cycle.357

t1

t2

t3

t4

t5

πt5

πt4

πt3

πt2

πt1
We now prove that every cycle in K is a 0-cycle. By construc-358

tion, every transition t ∈ TK is part of a simple 0-cycle. Thus,359

to every transition t ∈ TK, we can associate a path πt such that360

tπt is a simple 0-cycle (rotate the simple cycle if necessary). We361

can prove the following property by relying on another pumping362

arguments on corners (see Lemma 17 in Appendix B): If t1 · · · tn363

is a path in K, then t1t2 · · · tnπtn · · ·πt2πt1 is a 0-cycle of R(G).364

Now, if π is a cycle of R(G) in K, there exists a cycle π′ such365

that ππ′ is a 0-cycle, therefore π is a 0-cycle. J366

4 Semi-unfolding of almost-divergent WTGs367

Given an almost-divergent WTG G, we describe the construction of its semi-unfolding T (G)368

(as depicted in Figure 2), which is a WTG that has the same value as G. Moreover, the SCC-369

decomposition of T (G) is tree-shaped and each non-trivial SCC is a kernel. In the following,370

the depth of T (G) refers to the depth of its SCC-decomposition. This construction crucially371

relies on the absence of states with value −∞, so we explain how to deal with them:372

I Lemma 8. In an SCC of R(G), the set of configurations with value −∞ is a union of373

regions computable in time linear in the size of R(G).374
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Sketch of proof. If the SCC is non-negative, the cumulated weight cannot decrease along375

a cycle, thus, the only way to obtain value −∞ is to jump in a final state with final weight376

−∞. We can therefore compute this set of states with an attractor for Min.377

If the SCC is non-positive, we let SR
f (resp. S−∞f ) be the set of target states where wtT378

is bounded (resp. has value −∞). We also define TR
f (resp. T−∞f ), the set of transitions of379

R(G) whose end state belongs to SR
f (resp. S−∞f ). Notice that the kernel cannot contain380

target states since they do not have outgoing transitions. We can prove that a configuration381

has value −∞ iff it belongs to a state where player Min can ensure the LTL formula on382

transitions: (G¬TR
f ∧ ¬FGTK) ∨ FT−∞f . The procedure to detect −∞ states thus consists383

of four attractor computations, which can be done in time linear in |R(G)|. J384

We can now assume that no states of G has value −∞, and that the output weight385

function maps all configurations to R. Since wtT is piecewise linear with finitely many386

pieces, wtT is bounded. Let sup |wtT | denote the bound of |wtT |, ranging over all target387

configurations. We turn to the construction of the semi-unfolding T (G) and prove:388

I Proposition 9. Let G be an almost-divergent WTG with initial state (`0, r0). There exists389

a semi-unfolding T (G) with initial state (˜̀0, r0) such that for all ν0 ∈ r0, ValG(`0, ν0) =390

ValT (G)((˜̀0, r0), ν0). The depth of T (G) is polynomial in |R(G)|, wemax and sup |wtT |.391

Sketch of proof. We only build the semi-unfolded game T (G) of an SCC of G starting from392

some initial state (`0, r0), since it is then easy to glue all the semi-unfoldings together to get393

the one of the full game. Since every configuration has finite value, we can prove that values394

of the game are bounded by |R(G)|wemax +sup |wtT |. As a consequence, we can find a bound395

γ linear in |R(G)|, wemax and sup |wtT | such that a play that visits some state outside the396

kernel more than γ times has weight strictly above |R(G)|wemax + sup |wtT |, hence is useless397

for value computation. This leads to considering the semi-unfolding T (G) of G (nodes in the398

kernel are not unfolded, see Figure 2) such that each node not in the kernel is encountered399

at most γ times along a branch. In particular, the depth of T (G) is bounded by |R(G)|γ. J400

5 Approximation of almost-divergent WTGs401

Approximation of kernels. We start by approximating a kernel G by extending the402

region-based approximation schema of [10]. In their setting, all runs in kernels had weight 0,403

allowing a simple reduction to a finite weighted game. In our setting, we have to approximate404

the timed dynamics of runs, and therefore resort to the corner-point abstraction (as shown405

in the right of Figure 2).406

Since output weight functions are piecewise linear with a finite number of pieces and407

continuous on regions, they are K-Lipschitz-continuous3, for a given constant K > 0. We408

let B = wLmax |L||Reg(X,M)|+K.409

Let N be an integer. Consider the game CN (G) described in the preliminary section,410

with locations of the form (`, r, v) with v a corner of the 1/N -region r. Two plays ρ of G411

and ρ′ of CN (G) are said to be 1/N -close if they follow the same path π in RN (G). In412

particular, at each step the configurations (`, ν) in ρ and (`′, r′, v′) in ρ′ (with v′ a corner413

of the 1/N -region r′) satisfy ` = `′ and ν ∈ r′, and the transitions taken in both plays have414

the same discrete weights. Close plays have close weights, in the following sense:415

3 The function wtT is said to be K-Lipschitz-continuous when |wtT (s, ν)−wtT (s, ν′)| 6 K‖ν− ν′‖∞ for
all valuations ν, ν′, where ‖v‖∞ = maxx∈X |v(x)| is the ∞-norm of vector v ∈ RX . The function wtT

is said to be Lipschitz-continuous if it is K-Lipschitz-continuous, for some K.
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I Lemma 10. For all 1/N -close plays ρ of G and ρ′ of CN (G), |wtG(ρ)−wtCN (G)(ρ′)| 6 B/N .416

In particular, if we start in configurations (`0, ν0) of G, and ((`0, r0, v0), v0) of CN (G),417

with ν0 ∈ r0, since both players have the ability to stay 1/N -close all along the plays, a418

bisimulation argument permits to obtain that the values of the two games are also close in419

(`0, ν0) and ((`0, r0, v0), v0):420

I Lemma 11. For all locations ` ∈ L, 1/N -regions r, ν ∈ r and corners v of r, |ValG(`, ν)−421

ValCN (G)((`, r, v), v)| 6 B/N .422

Using this result, picking N an integer larger than B/ε, we can thus obtain |ValG(`, ν)−423

ValCN (G)((`, r, v), v)| 6 ε. Recall that CN (G) can be considered as an untimed weighted game424

(with reachability objective). Thus we can apply the result of [14], where it is shown that the425

optimal values of such games can be computed in pseudo-polynomial time (i.e. polynomial426

time with weights encoded in unary, instead of binary). We then define an ε-approximation427

of ValG , named Val′N , on each 1/N -region by interpolating the values of its 1/N -corners in428

CN (G) with a piecewise linear function: therefore, we can control the Lipschitz constant of429

the approximated value for further use.430

I Lemma 12. Val′N is an ε-approximation of ValG, that is piecewise linear with a finite431

number of pieces and 2B-Lipschitz-continuous over regions.432

Approximation of almost-divergent WTGs. We now explain how to approximate433

the value of an almost-divergent WTG G, thus proving Theorem 4. First, we compute a434

semi-unfolding T (G) as described in the previous section. Then we perform a bottom-up435

computation of the approximation. As already recalled, techniques of [1] allow us to compute436

exact values of a tree-shape WTG. In consequence, we know how to compute the value of a437

non-kernel node of T (G), depending of the values of its children. There is no approximation438

needed here, so that if all children are ε-approximation, we can compute an ε-approximation439

of the node. Therefore, the only approximation lies in the kernels, and we explained before440

how to compute arbitrarily close an approximation of a kernel’s value. We crucially rely on441

the fact that the value function is 1-Lipschitz-continuous4. This entails that imprecisions442

will sum up along the bottom-up computations, as computing an ε-approximation of the443

value of a game whose output weights are ε′-approximations yields an (ε+ε′)-approximation.444

Therefore we compute approximations with threshold ε′ = ε/α for kernels in T (G), where445

α is the maximal number of kernels along a branch of T (G): α is smaller than the depth of446

T (G), which is bounded by Proposition 9.447

The subregion granularity considered before for kernel approximation crucially depends448

on the Lipschitz constant of output weights. The growth of these constants is bounded for449

kernels in T (G) by Lemma 12. For non-kernel nodes of T (G), using a careful analysis of the450

algorithm of [1] (see details in Appendix D.2), we obtain the following bound:451

I Lemma 13. If all the output weights of a WTG G are K-Lipschitz-continuous over regions452

(and piecewise linear, with finitely many pieces), then ValiG is KK ′-Lipschitz-continuous over453

regions, with K ′ polynomial in wLmax and |X| and exponential in i.454

The overall time complexity of this method is doubly-exponential in the size of the input455

game and polynomial in 1/ε. An example of execution of the approximation scheme can be456

found in Appendix D.3, and its complexity is analyzed in Appendix D.4.457

4 Indeed, inf and sup are 1-Lipschitz-continuous functions, and with a fixed play ρ, the mapping wtT →
wtΣ(ρ) + wtT (last(ρ)) is 1-Lipschitz-continuous.
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6 Symbolic approximation algorithm458

The previous approximation result suffers from several drawbacks: it relies on the SCC459

decomposition of the region automaton, which have to be analysed in a sequential way, and460

their analysis requires an a priori refinement of the granularity of regions. This approach461

is thus not easily amenable to implementation. We instead prove in this section that the462

symbolic approach based on the value iteration paradigm, i.e. the computation of iterates463

of the operator F recalled in page 6, is an approximation scheme:464

I Theorem 14. Let G be an almost-divergent WTG such that ValG > −∞ for all configur-465

ations. Then the sequence (ValkG)k>0 converges towards ValG and for every ε ∈ Q>0, we can466

compute an integer P such that ValPG is an ε-approximation of ValG for all configurations.467

Sketch of proof. The proof relies on the semi-unfolding considered in the previous approx-468

imation scheme and on the following arguments:469

1. For a kernel, one can bound the number of computation steps of value iteration that are470

needed to achieve a given precision. This number depends on the Lipschitz constants of471

the functions given as output weights.472

2. When applying value iteration, one can bound how the Lipschitz constant of the value473

function increases after a bounded number of steps.474

3. As the operator F is 1-Lipschitz-continuous, imprecisions will sum up along the way.475

The only new property is the first one, and it can be derived from the 1/N corner-point476

abstraction techniques developed in Section 5. Then, we can use all three properties to prove477

that a semi-unfolding can be approximated by an unfolding (without kernels) of the game478

that mirrors the computation of ValP , and conclude. J479

This symbolic procedure avoids the three drawbacks (SCC decomposition, sequential480

analysis of the SCCs, and refinement of the granularity of regions) of the previous approx-481

imation scheme. Moreover, it allows one to easily obtain an almost-optimal strategy w.r.t.482

the computed value. Its proof relies on Section 5, and would not hold with the approxima-483

tion scheme of [10] (that does not maintain the continuity on regions of the computed value484

functions, in turn needed to define output weights on 1/N -corners). If one has the guarantee485

that no configurations of G have value −∞, then one can directly apply the value iteration486

approach. If this is not the case, then one can perform the SCC decomposition of R(G),487

and, as G is almost-divergent, identify and remove regions whose value is −∞, by Lemma 8.488

7 Conclusion489

We have given an approximation procedure for a large class of weighted timed games with490

unbounded number of clocks and arbitrary integer weights that can be executed in doubly-491

exponential time with respect to the size of the game. In addition, we proved the correction492

of a symbolic approximation scheme, that does not start by splitting exponentially every493

region, but only does so when necessary (as dictated by [1]). We argue that this paves the494

way towards an implementation of value approximation for weighted timed games.495

Another perspective is to extend this work to the concurrent setting, where both players496

play simultaneously and the shortest delay is selected. We did not consider this setting497

in this work because concurrent WTGs are not determined, and several of our proofs rely498

on this property for symmetrical arguments (mainly to lift results of non-negative SCCs to499

non-positive ones). Another extension is the exploration of the effect of almost-divergence500

in the case of multiple weight dimensions, and/or with mean-payoff objectives.501
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A Proofs of Section 2574

Proof of Lemma 2. The set {wtΣ(ρ) | ρ finite play following π} is an interval as the image575

of a convex set by an linear function (see [6, Sec. 3.2] for an explanation). The good properties576

of the corner-point abstraction allows us to conclude, since for every play ρ following π, one577

can find a corner play following π of smaller weight and one of larger weight, and for every578

corner play ρ following π and every ε > 0, one can find a play following π whose weight is579

at most ε away from wtΣ(ρ) [8]. J580

A.1 Undecidability of value −∞581

We prove that given a WTG G (not necessarily almost-divergent) and an initial location `0,582

it is undecidable whether ValG(`0,0) = −∞. We reduce it to the existence problem on turn-583

based WTG: given a WTG G (without output weight function), an integer threshold α and584

a starting location `0, does there exist a strategy for Min that can guarantee reaching the585

unique target location `t from `0 with weight < α. In the non-negative setting, it is proved586

in [7] that the problem is undecidable for the comparison 6 α. In the negative setting,587

formal proofs are given for all comparison signs in [15].588

Consider G′ the WTG built from G by adding a transition from `t to `0, without guards589

and resetting all the clocks, of discrete weight −α. We add a new target location `′t, and590

add transitions of weight 0 from `t to `′t. Location `t is then given to Min. Let us prove that591

ValG′(`0,0) = −∞ if and only if Min has a strategy to guarantee a weight < α in G.592

Assume first ValG′(`0,0) = −∞. If ValG(`0,0) = −∞, we are done. Otherwise, Min must593

follow in G′ the new transition from `t to `0 to enforce a cycle of negative value, and thus594

enforce a play from (`0,0) to `t with weight less than α. Therefore, there exists a strategy595

for Min in G that can guarantee a weight < α.596

Reciprocally, if there exists a strategy for Min that can guarantee a weight < α, then597

Min can force a negative cycle play and ValG′(`0,0) = −∞.598

A.2 Decision of the almost-divergence of a WTG599

First, we state that a WTG G is not almost-divergent if and only if R(G) contains an SCC600

with either both a positive play following one of its cycles and a negative play following one601

of its cycles, or a play with weight in (−1, 0)∪ (0, 1) following one of its cycles. We will now602

explain how we can test both of those properties (and thus if a game is not almost-divergent)603

in PSPACE.604

A corner play following a cycle of the region game is said to be simple if it does not visit605

the same corner twice (but the first and last corners can be the same). A simple corner play606

following a cycle has length bounded by |S| × (|X| + 1). By Lemma 2, R(G) contains an607

SCC with either both a positive play following one of its cycles and a negative play following608

one of its cycles if and only if R(G) contains both a positive corner play following one of its609

cycles and a negative corner play following one of its cycles. We will extend this to simple610

corner plays.611

I Lemma 15. R(G) contains an SCC with either both a positive play following one of its612

cycles and a negative play following one of its cycles if and only if R(G) contains an SCC613

with both a positive simple corner play following one of its cycles and a negative simple614

corner play following one of its cycles.615
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Proof. All that is left to prove is that, in an SCC of R(G), if all simple corner plays following616

a cycle have non-negative weight (resp. non-positive weight), then all corner plays following617

a cycle have non-negative weight (resp. non-positive weight).618

By contradiction, we consider ρ, the shortest corner play following a cycle π, such that619

wtΣ(ρ) < 0 (resp. wtΣ(ρ) > 0). Corner play ρ cannot be simple, so it must contain a simple620

loop. That loop is a simple corner play following a cycle of R(G), so it must have non-621

negative weight (resp. non-positive weight). This means that ρ without that loop satisfies622

wtΣ(ρ) < 0 (resp. wtΣ(ρ) > 0), and therefore was not the shortest corner play with the623

desired property. J624

We can test the existence of such simple corner plays in a SCC of R(G) in NPSPACE,625

by guessing them corner after corner and by keeping the cumulated weight in memory. The626

check that both plays are in the same SCC is a reachability check in a timed automaton,627

which can be done in PSPACE. We described a similar procedure in [16] where we were628

testing the existence of a non-negative corner play and a non-positive one in the same SCC629

instead of a negative one and a positive one.630

Now, we will assume in this second part that this test failed, so every SCC of R(G) either631

satisfies that all plays following a cycle have non-negative weight or satisfies that they all632

have non-positive weight. We will now explain how to check if R(G) contains a play with633

weight in (−1, 0) ∪ (0, 1) following one of its cycles. Let B = (|S| × (|X|+ 1))2.634

I Lemma 16. R(G) contains a play with weight in (−1, 0)∪ (0, 1) following one of its cycles635

if and only if R(G) contains a cycle π of length at most B such that there is a corner play636

following π with weight zero and another one with non-zero weight.637

Proof. By Lemma 2, R(G) contains a play with weight in (−1, 0)∪ (0, 1) following one of its638

cycles if and only if that cycle satisfies that there is a corner play following it with weight639

zero and another one with non-zero weight.640

We only need to show that if there are no such cycles of length at most B, then there641

are no such cycles of any length. Therefore, we assume that no cycle of length less than B642

allows a play with weight in (−1, 0) ∪ (0, 1). By contradiction, let π be the shortest cycle643

such that there exist two corner plays ρ and ρ′ following π, with wtΣ(ρ) = 0 and wtΣ(ρ′) 6= 0.644

Then |π| > B. Let vi be the i-th corner of ρ, and v′i be the i-th corner of ρ′. There are at645

most (|S|× (|X|+ 1))2 different pairs (vi, v′i), which implies that there must be two indexes,646

j and k, such that (vj , v′j) = (vk, v′k) and j < k. The portion of ρ between indexes j and647

k follows a cycle, and have opposite weight to the play constructed by considering ρ and648

removing the loop between indexes j and k. Since the sum of their weight is 0 and they both649

follow cycles of R(G) in the same SCC, both of those plays have weight 0. The portion of π650

between indexes j and k is a cycle shorter than π, and it contains a corner play of weight 0,651

therefore all of its corner plays have weight 0, and the portion of ρ′ between indexes j and652

k has weight 0 too. But then the cycle defined by taking π and removing the loop between653

indexes j and k contains a corner play of weight 0 (derived from ρ), and a corner play of654

weight non-zero (derived from ρ′), and that contradicts π being the shortest cycle with that655

property. J656

Once again, we can check the existence of such a cycle of length bounded by B in657

NPSPACE by guessing it and its two relevant corner plays on-the-fly and storing the cumu-658

lated weight of each. This imply that deciding if a game G is almost divergent is decidable in659

coNPSPACE = NPSPACE = PSPACE (using the theorems of Immerman-Szelepcsényi [18, 22]660

and Savitch [21]).661
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Let us now show the PSPACE-hardness (indeed the coPSPACE, which is identical) by662

a reduction from the reachability problem in a timed automaton. We consider a timed663

automaton with a starting state and a different target state without outgoing transitions.664

We construct from it a weighted timed game by distributing all states to Min, and equipping665

all transitions with weight 0, and all states with weight 0. We also add a loop with weight 1666

on the initial state, one with weight −1 on the target state, and a transition from the target667

state to the initial state with weight 0, all three resetting all clocks and with no guard. Then,668

the weighted timed game is not almost-divergent if and only if the target can be reached669

from the initial state in the timed automaton.670

B Proofs of the kernel characterisation (Section 3)671

Proof of Lemma 5. If π is a 0-cycle, every such corner play ρ will have weight 0, by672

Lemma 2. Reciprocally, if such a corner play exists, all corner plays following π have673

weight 0, otherwise the set {wtΣ(ρ) | ρ play following π} would have non-empty intersection674

with the set (−1, 1) \ {0} which would contradict the almost-divergence. J675

Proof of Lemma 6. First, notice that since π1 = ππ′ is a cycle, first(π) = last(π′) and676

first(π′) = last(π), so π2 = π′π is correctly defined. Then, let us define two sequences of677

region corners (vi ∈ first(π))i and (v′i ∈ first(π′))i. We start by choosing any v0 ∈ first(π).678

Let v′0 be a corner of first(π′) such that v′0 is accessible from v0 by following π. For every i > 0,679

let vi be a corner of first(π) such that vi is accessible from v′i−1 by following π′, and let v′i be a680

corner of first(π′) such that v′i is accessible from vi by following π. We stop the construction681

at the first l such that there exists k < l with vk = vl. Additionally, we let v′l = v′k682

and vl+1 = vk+1. This process is bounded since first(π) has at most |X|+ 1 corners.683

For every 0 6 i 6 l, let wi be the weight of a play ρi from vi to v′i along π, and let w′i684

be the weight of a play ρ′i from v′i to vi+1 along π′. The concatenation of the two plays has685

weight wi + w′i = 0, since it follows the 0-cycle π1. Therefore, all corner plays from vi to v′i686

following π have the same weight wi, and the same applies for w′i. For every 0 6 i < l, the687

concatenation of ρ′i and ρi+1 is a play from v′i to vi+1, of weight w′i + wi+1 = −wi + wi+1,688

following π2. Since π2 is a cycle, and the game is almost-divergent, all possible values of689

wi+1 − wi have the same sign.690

Finally, we can construct a corner play from v′k to v′l by concatenating the plays ρ′k, ρk+1,691

ρ′k+1, ρk+2, . . . , ρ
′
l−1, ρl. That play has weight

∑l−1
i=k(wi+1−wi) = wl−wk = 0. This implies692

that the terms wi+1 − wi, of constant sign, are all equal to 0. As a consequence, the693

concatenation of ρ′k and ρk+1 is a corner play following π2 of weight 0. By Lemma 5, we694

deduce that π2 is a 0-cycle. J695

I Lemma 17. If t1 · · · tn is a path in K, then t1t2 · · · tnπtn · · ·πt2πt1 is a 0-cycle of R(G).696

Proof. We prove the property by induction on n. For n = 1, the property is immediate697

since t1πt1 is a 0-cycle. Consider then n such that the property holds for n, and prove it for698

n + 1. We will exhibit two corner plays following t1 · · · tn+1πtn+1 · · ·πt1 of opposite weight699

and conclude with Lemma 5.700

Let v0 be a corner of last(tn+1). Since tn+1πtn+1 is a 0-cycle, there exists w ∈ Z, a corner701

play ρ0 following tn+1 ending in v0 with weight w and a corner play ρ′0 following πtn+1702

beginning in v0 with weight −w. We name v′0 the corner of last(tn) where ends ρ′0. We703

consider any corner play ρ1 following tn+1 from corner v′0. The corner play ρ′0ρ1 follows the704

path πtn+1tn+1 that is also a 0-cycle by Lemma 6, therefore ρ1 has weight w. We denote by705

v1 the corner where ends ρ1. By iterating this construction, we obtain some corner plays706

FSTTCS 2018



yy:18 Symbolic Approximation of Weighted Timed Games

ρ0, ρ1, ρ2, . . . following tn+1 and ρ′0, ρ′1, ρ′2, . . . following πtn+1 such that ρ′i goes from corner707

vi to v′i, and ρi+1 from corner v′i to vi+1, for all i > 0. Moreover, all corner plays ρi have708

weight w and all corner plays ρ′i have weight −w. Consider the first index l such that vl = vk709

for some k < l, which exists because the number of corners is finite.710

We apply the induction to find a corner play following t1 · · · tnπtn · · ·πt1 , going through711

the corner v′k in the middle: more formally, there exists wα, a corner play ρα following712

t1 · · · tn ending in v′k with weight wα and a corner play ρ′α following πtn · · ·πt1 beginning713

in v′k with weight −wα. We apply the induction a second time with corner v′l−1: there exists714

wβ , a corner play ρβ following t1 · · · tn ending in v′l−1 with weight wβ and a corner play ρ′β715

following πtn · · ·πt1 beginning in v′l−1 with weight −wβ .716

The corner play ραρk+1ρ
′
k+1ρk+2ρ

′
k+2 · · · ρ′l−1ρ

′
β , of weight wα + (w − w)l−k − wβ =717

wα − wβ , follows the cycle t1 · · · tn(tn+1πtn+1)l−kπtn · · ·πt1 . The corner play ρβρlρ′kρ′α, of718

weight wβ + w − w − wα = wβ − wα, follows the cycle t1 · · · tntn+1πtn+1πtn · · ·πt1 . Since719

the game is almost-divergent, and those two corner plays are in the same SCC, both have720

weight 0. The second corner play of weight 0 ensures that the cycle t1 · · · tn+1πtn+1 · · ·πt1721

is a 0-cycle, by Lemma 5. J722

C Proofs of the semi-unfolding (Section 4)723

Proof of Lemma 8. We detail the case of non-negative SCCs. Let us prove that a config-724

urations has value −∞ if and only if it belongs to a state where player Min can ensure the725

LTL formula on transitions: φ = (G(¬TR
f ) ∧ ¬FGTK) ∨ FT−∞f . Since ω-regular games are726

determined, this is equivalent to saying that a configuration has finite value if and only if it727

belongs to a state where Max can ensure ¬φ.728

If s is a state where Min can ensure φ, he can ensure −∞ value from all configurations729

in s by either reaching S−∞f or avoiding SR
f for as long as he desires, while not getting730

stuck in K, and thus going through an infinite number of negative cycles by Proposition 7.731

This proves that a state where Max cannot ensure ¬φ contains only valuations of value −∞.732

Conversely, if s is a state where Max can ensure ¬φ = (FTR
f ∨FGTK)∧G¬T−∞f , then from s,733

Max must be able to avoid S−∞f , and eventually enforce either SR
f reachability or staying in734

K forever. In both cases, Max can ensure a value above −∞. J735

C.1 Semi-unfolding construction736

In order to prove Proposition 9, we will construct the desired semi-unfolding T (G) of a737

(non-negative or non-positive SCC) G.738

If (`, r) is in K, we let K`,r be the part of K accessible from (`, r) (note that K`,r is an739

SCC as K is a disjoint set of SCCs). We define the output transitions of K`,r as being the740

output transitions of K accessible from (`, r). If (`, r) is not in K, the output transitions741

of (`, r) are the transitions of R(G) starting in (`, r).742

Formally, we define a tree T whose nodes will either be labelled by region graph states743

(`, r) ∈ S\SK or by kernels K`,r, and whose edges will be labelled by output transitions744

in R(G). The root of the tree T is labelled with (`0, r0), or K`0,r0 (if (`0, r0) belongs to745

the kernel), and the successors of a node of T are then recursively defined by its output746

transitions. When a state (`, r) is reached by an output transition, the child is labelled747

by K`,r if (`, r) ∈ K, otherwise it is labelled by (`, r). Edges in T are labelled by the748

transitions used to create them. Along every branch, we stop the construction when either749

a final state is reached (i.e. a state not inside the current SCC) or the branch contains750

3|R(G)|wemax + 2 sup |wtT |+ 2 nodes labelled by the same state ((`, r) or K`,r). Since R(G)751
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has a finite number of states, T is finite. Leaves of T with a location belonging to LT are752

called target leaves, others are called stopped leaves.753

We now transform T into a WTG T (G), by replacing every node labelled by a state (`, r)754

by a different copy (˜̀, r) of (`, r). Those states are said to inherit from (`, r). Edges of T755

are replaced by the transitions labelling them, and have a similar notion of inheritance.756

Every non-leaf node labelled by a kernel K`,r is replaced by a copy of the WTG K`,r, output757

transitions being plugged in the expected way. We deal with stopped leaves labelled by758

a kernel K`,r by replacing them with a single node copy of (`, r), like we dealt with node759

labelled by a state (`, r). State partition between players and weights are inherited from the760

copied states of R(G). The only initial state of T (G) is the state denoted by (˜̀0, r0) inherited761

from (`0, r0) in the root of T (either (`0, r0) or K`0,r0). The final states of T (G) are the states762

derived from leaves of T . If R(G) is a non-negative (resp. non-positive) SCC, the output763

weight function wtT is inherited from R(G) on target leaves and set to +∞ (resp. −∞) on764

stopped leaves.765

C.2 Semi-unfolding correction766

We will now prove that Proposition 9 holds on this T (G).767

I Lemma 18. All finite plays in R(G) have cumulated weight (ignoring output weights) at768

least −|R(G)|wemax in the non-negative case, and at most |R(G)|wemax in the non-positive769

case. Moreover, values of the game are bounded by |R(G)|wemax + sup |wtT |.770

Proof. Suppose first that R(G) is a non-negative SCC. Consider a play ρ following a path π.771

π can be decomposed into π = π1π
c
1 · · ·πnπcn such that every πci is a cycle, and π1 . . . πn772

is a simple path in R(G) (thus
∑n
i=1 |πi| 6 |R(G)|). Let us define all plays ρi and ρci as773

the restrictions of ρ on πi and πci . Now, since all plays following cycles have cumulated774

weight at least 0, wtΣ(ρ) =
∑n
i=1 wtΣ(ρi) + wtΣ(ρci ) >

∑n
i=1−wemax|ρi|+ 0 > −|R(G)|wemax.775

Similarly, we can show that every play in a non-positive SCC has cumulated weight at most776

|R(G)|wemax.777

For the bound on the values, consider again two cases. If R(G) is non-negative, consider778

any memoryless attractor strategy σMin for Min toward Sf . Since all states have values779

below +∞, all plays obtained from strategies of Max will follow simple paths of R(G), that780

have cumulated weight at most |R(G)|wemax in absolute value. Similarly, if R(G) is non-781

positive, following the proof of Lemma 8, since all values are above −∞, Max can ensure782

¬φ⇒ FTR
f ∨FGTK on all states. Then we can construct a strategy σMax for Max combining an783

attractor strategy toward Sf on states satisfying FTR
f , a safety strategy on states satisfying784

GTK, and an attractor strategy toward the latter on all other states. Then, all plays obtained785

from strategies of Min will either not be winning (GTK) or follow simple paths of R(G). Both786

cases imply that the values of the game are bounded by |R(G)|wemax + sup |wtT |. J787

I Lemma 19. All plays in T (G) from the initial state to a stopped leaf have cumulated788

weight at least 2|R(G)|wemax + 2 sup |wtT |+ 1 if the SCC R(G) is non-negative, and at most789

−2|R(G)|wemax − 2 sup |wtT | − 1 if it is non-positive.790

Proof. Note that by construction, all finite paths in T (G) from the initial state to a stopped791

leaf can be decomposed as π′π1 · · ·π3|R(G)|wemax+2 sup |wtT |+1 with all πi being cycles. Ad-792

ditionally, those cycles cannot be 0-cycles by Proposition 7, since they take at least one793

transition outside of K. Therefore the restriction of ρ to π1 · · ·π3|R(G)|wemax+1 has weight at794

least 3|R(G)|wemax + 2 sup |wtT |+ 1 (in the non-negative case) and at most −3|R(G)|wemax−795

FSTTCS 2018



yy:20 Symbolic Approximation of Weighted Timed Games

2 sup |wtT | − 1 (in the non-positive case). The beginning of the play, following π′, has cu-796

mulated weight at least −|R(G)|wemax (in the non-negative case) and at most |R(G)|wemax797

(in the non-positive case), by Lemma 18. J798

Two plays ρ = ((`1, r1), ν1) d1,t1−−−→ · · · dn−1,tn−1−−−−−−−→ ((`n, rn), νn) and ρ̃ = ((˜̀1, r1), ν1) d1,,t̃1−−−→799

· · · dn−1,t̃n−1−−−−−−−→ ((˜̀
n, rn), νn) in R(G) and T (G), respectively, are said to mimic each other if800

every (˜̀
i, ri) is inherited from (`i, ri) and every transition t̃i is inherited from the transition801

δi. Combining Lemmas 19 and 18, we obtain802

I Lemma 20. If R(G) is a non-negative (resp. non-positive) SCC, every play from the803

initial state and with cumulated weight less than |R(G)|wemax + 2 sup |wtT |+ 1 (resp. greater804

than −|R(G)|wemax − 2 sup |wtT | − 1) can be mimicked in T (G) without reaching a stopped805

leaf. Conversely, every play in T (G) reaching a target leaf can be mimicked in R(G).806

Proof. We prove only the non-negative case. Let ρ be a play of R(G) with cumulated807

weight less than |R(G)|wemax + 2 sup |wtT | + 1. Consider the branch of the unfolded game808

it follows. If ρ cannot be mimicked in T (G), then a prefix of ρ reaches the stopped leaf of809

that branch when mimicked in T (G). In this situation, ρ starts by a prefix of weight at least810

2|R(G)|wemax + 2 sup |wtT | + 1 by Lemma 19 and then ends with a suffix play of weight at811

least −|R(G)|wemax by Lemma 18, and that contradicts the initial assumption. The non-812

positive case is proved exactly the same way, and the converse is true by construction. J813

Then, the plays of R(G) starting in an initial configuration that cannot be mimicked814

in T (G) are not useful for value computation, which is formalised by Proposition 21:815

I Proposition 21. For all valuations ν0 ∈ r0, ValG(`0, ν0) = ValT (G)((˜̀0, r0), ν0).816

Proof. By Lemma 1, we already know that ValG(`0, ν0) = ValR(G)((`0, r0), ν0). Recall that817

we only left finite values in R(G) (in the final weight functions, in particular), and more818

precisely |ValR(G)((`0, r0), ν0)| 6 |R(G)|wemax + sup |wtT | by Lemma 18. We first show that819

the value is also finite in T (G). Indeed, if ValT (G)((˜̀0, r0), ν0) = +∞, since we assumed all820

output weights of R(G) bounded, we are necessarily in the non-negative case, and Max is821

able to ensure stopped leaves reachability.822

Claim 1.If ValT (G)((˜̀0, r0), ν0) = +∞, then there are no winning strategies in R(G) for Min823

ensuring weight less than |R(G)|wemax + sup |wtT |+ 1 from (`0, r0).824

Thus, we can obtain the contradiction ValR(G)((`0, r0), ν0) > |R(G)|wemax + sup |wtT |.825

Proof of Claim 1. By contradiction, consider a strategy σMin of Min ensuring weight A 6826

|R(G)|wemax + sup |wtT |+ 1 in R(G). Then, for all σMax, the cumulated weight of playR(G)(827

((˜̀0, r0), ν0), σMin, σMax) (reaching target configuration (`, ν)) is at most A − wtT (`, ν) 6828

|R(G)|wemax +2 sup |wtT |+1, and by Lemma 20 this play does not reach a stopped leaf when829

mimicked in T (G), which is absurd. J830

If ValT (G)((˜̀0, r0), ν0) = −∞, we are necessarily in the non-positive case, and by construction831

this implies having Min ensuring stopped leaves reachability in T (G).832

Claim 2.If ValT (G)((˜̀0, r0), ν0) = −∞, then there are no winning strategies in R(G) for Max833

ensuring weight above −|R(G)|wemax − sup |wtT | − 1 from (`0, r0).834

Thus, we can obtain the contradiction ValR(G)((`0, r0), ν0) < −|R(G)|wemax − sup |wtT |.835
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Proof of Claim 2. By contradiction, consider a strategy σMax of Max ensuring weight A >836

−|R(G)|wemax− sup |wtT | − 1 in R(G). Then, for all σMin, the cumulated weight of playR(G)(837

((˜̀0, r0), ν0), σMin, σMax) (reaching target configuration (`, ν)) is at least A − wtT (`, ν) >838

−|R(G)|wemax − 2 sup |wtT | − 1, and by Lemma 20 this play does not reach a stopped leaf839

when mimicked in T (G), which is absurd. J840

Then, strategies and plays of T (G) starting from (˜̀0, r0) can be mimicked in R(G),841

therefore ValR(G)((`0, r0), ν0) 6 ValT (G)(s̃0, ν0): If R(G) is non-negative, for all ε > 0 we842

can fix an ε-optimal strategy σMin for Min in T (G). It is a winning strategy, so every play843

derived from σMin in T (G) reaches a target leaf, and can be mimicked in R(G) by Lemma 20.844

Therefore, σMin can be mimicked in R(G), where it is also winning, with the same weight.845

From this we deduce ValR(G)((`0, r0), ν0) 6 ValT (G)(s̃0, ν0). If R(G) is non-positive, the same846

reasoning applies by considering an ε-optimal strategy for Max in T (G).847

Let us now show that ValT (G)((˜̀0, r0), ν0) 6 ValR(G)((`0, r0), ν0). IfR(G) is non-negative,848

let us fix 0 < ε < 1, an ε-optimal strategy σMin for Min in R(G), and a strategy σMax of Max849

in R(G). Let ρ be their outcome playR(G)(((`0, r0), ν0), σMin, σMax)), ρk be the finite prefix of850

ρ defining its cumulative weight and (`k, νk) be the configuration defining its output weight,851

such that wtR(G)(ρ) = wtΣ(ρk) + wtT (`k, νk). Then, wtR(G)(ρ) 6 ValR(G)((`0, r0), ν0) + ε <852

|R(G)|wemax + sup |wtT |+ 1, therefore wtΣ(ρk) < |R(G)|wemax + sup |wtT |+ 1−wtT (`k, νk) 6853

|R(G)|wemax + 2 sup |wtT | + 1 and by Lemma 20 all such plays ρ can be mimicked in T (G),854

and ValT (G)((˜̀0, r0), ν0) 6 ValR(G)((`0, r0), ν0). Once again, if R(G) is non-positive, the855

same reasoning applies by considering an ε-optimal strategy for Max in R(G). J856

This proof not only holds on an SCC, but also on full almost-divergent WTGs, by simply857

stacking the semi-unfoldings of each SCC on top of each others.858

Note that the semi-unfolding procedure of an SCC depends on sup |wtT |, where wtT859

can be the value function of an SCCs under the current one. Assuming all configura-860

tions have finite value, we can extend the reasoning of Lemma 18 and bound all values861

in the full game by |R(G)|wemax + sup |wtT |, which let us bound uniformly the unfolding862

depth of each SCC and gives us a bound on the depth of the complete semi-unfolding tree:863

|R(G)|(5|R(G)|wemax + 2 sup |wtT |+ 2) + 1864

D Proofs of the approximation scheme (Section 5)865

D.1 Proofs of the approximation of kernels866

Proof of Lemma 10. Since ρ and ρ′ follow the same locations ` of G, one reaches a target867

location if and only if the other does. In the case where they do not reach a target location,868

both weights are infinite, and thus equal. We now look at the case where both plays reach869

a target location, moreover in the same step.870

Consider the region path π of the run ρ: π can be decomposed into a simple path with871

maximal cycles in it. The number of such maximal cycles is bounded by |L × Reg(X,M)|872

and the remaining simple path has length at most |L × Reg(X,M)|. Since all cycles of a873

kernel are 0-cycles, the parts of ρ that follow the maximal cycles have weight exactly 0.874

Consider the same decomposition for the play ρ′. Cycles of π do not necessarily map to875

cycles over locations of CN (G), since the 1/N -regions could be distinct. However, Lemma 2876

shows that, for all those cycles of π, there exists a sequence of finite plays of G whose weight877

tends to the weight of ρ′. Since all those finite plays follow a cycle of the region game878

R(G) (with G being a kernel), they all have weight 0. Hence, the parts of ρ′ that follow the879

maximal cycles of π have also weight exactly 0.880
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Therefore, the difference |wtG(ρ)− wtCN (G)(ρ′)| is concentrated on the remaining simple881

path of π: on each transition of this path, the maximal weight difference is 1/N × wLmax882

since 1/N is the largest difference possible in time delays between plays that stay 1/N -close883

(since they stay in the same 1/N -regions). Moreover, the difference between the output884

weight functions is bounded by K/N , since the output weight function wtT is K-Lipschitz-885

continuous and the output weight function of CN (G) is obtained as limit of wtT . Summing886

the two contributions, we obtain as upper bound the constant B/N . J887

Proof of Lemma 11. Let us prove that both ValG(`, ν) 6 ValCN (G)((`, r, v), v) + α and888

ValCN (G)((`, r, v), v) 6 ValG(`, ν) + α, with α = B/N . By definition and determinacy of889

turn based WTG, this is equivalent to proving these two inequalities:890

inf
σMin

sup
σMax

wtG(play((`, ν), σMax, σMin)) 6 inf
σ′Min

sup
σ′Max

wtCN (G)(play(((`, r, v), v), σ′Max, σ
′
Min)) + α891

892

sup
σ′Max

inf
σ′Min

wtCN (G)(play(((`, r, v), v), σ′Max, σ
′
Min)) 6 sup

σMax

inf
σMin

wtG(play((`, ν), σMax, σMin)) + α893

Let (β) denote |wtG(play((`, ν), σMax, σMin))−wtCN (G)(play(((`, r, v), v), σ′Max, σ
′
Min))| 6 α. To894

show the first inequality, it suffices to show that for all σ′Min, there exists σMin such that for895

all σMax, there is σ′Max verifying (β). For the second, it suffices to show that for all σ′Max,896

there exists σMax such that for all σMin, there is σ′Min verifying (β). We will detail the proof897

for the first, the second being syntactically the same, with both players swapped.898

Equation (β) can be obtained from Lemma 10, under the condition that the plays899

play((`, ν), σMax, σMin) and play(((`, r, v), v), σ′Max, σ
′
Min) are 1/N -close. Therefore, we fix a900

strategy σ′Min of Min in the game CN (G), and we construct a strategy σMin of Min in G, as901

well as two mappings f : FPlaysMin
G → FPlaysMin

CN (G) and g : FPlaysMax
CN (G) → FPlaysMax

G such that:902

for all ρ ∈ FPlaysMin
G , ρ and f(ρ) are 1/N -close, and if ρ is consistent with σMin and starts903

in (`, ν), then f(ρ) is consistent with σ′Min and starts in ((`, r, v), v);904

for all ρ′ ∈ FPlaysMax
CN (G), g(ρ′) and ρ′ are 1/N -close, and if ρ′ is consistent with σ′Min and905

starts in ((`, r, v), v), then g(ρ′) is consistent with σMin and starts in (`, ν).906

We build σMin, f , and g by induction on the length n of plays, over prefixes of plays of907

length n − 1, n and n, respectively. For n = 0 (plays of length 0 are those restricted to908

a single configuration), we let f(`, ν) = ((`, r, v), v) and g((`, r, v), v) = (`, ν), leaving the909

other values arbitrary (since we will not use them).910

Then, we suppose σMin, f , and g built until length n − 1, n and n, respectively (if911

n = 0, σMin has not been build yet), and we define them on plays of length n, n + 1 and912

n + 1, respectively. For every ρ ∈ FPlaysMin
G of length n, we note ρ′ = f(ρ). Consider913

the decision (d′, δ′) = σ′Min(ρ′) and ρ′+ the prefix ρ′ extended with the decision (d′, δ′). By914

timed bisimulation, there exists (d, δ) such that the prefix ρ+ composed of ρ extended with915

the decision (d, δ) builds 1/N -close plays ρ+ and ρ′+. We let σMin(ρ) = (d, δ). If ρ+ ∈916

FPlaysMin
G , we also let f(ρ+) = ρ′+, and otherwise we let g(ρ′+) = ρ+. Symmetrically,consider917

ρ′ ∈ FPlaysMax
CN (G) of length n, and ρ = g(ρ′). For all possible decisions (d′, δ′), by timed918

bisimulation, there exists a decision (d, δ) in the prefix ρ such that the respective extended919

plays ρ′+ and ρ+ are 1/N -close. We then let g(ρ′+) = ρ+ if ρ+ ∈ FPlaysMax
G and f(ρ+) = ρ′+920

otherwise. We extend the definition of f and g arbitrarily for other prefixes of plays. The921

properties above are then trivially verified.922

We then fix a strategy σMax of Max in the game G, which determines a unique play923

play((`, ν), σMax, σMin). We construct a strategy σ′Max of Max in the game CN (G) by building924

the unique play play(((`, r, v), v), σ′Max, σ
′
Min) we will be interested in, such that each of its925
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prefixes is in relation, via f or g, to the associated prefix of play((`, ν), σMax, σMin). Thus,926

we only need to consider a prefix of play ρ′ ∈ FPlaysMax
CN (G) that starts in ((`, r, v), v) and is927

consistent with σ′Min, and σ′Max built so far. Consider the play ρ = g(ρ′), starting in (`, ν) and928

consistent with σMin, and σMax (by assumption). For the decision (d, δ) = σMax(ρ) (letting929

ρ+ be the extended prefix), the definition of f and g ensures that there exists a decision930

(d′, δ′) after ρ′ that results in an extended play ρ′+ that is 1/N -close, via f or g, with ρ+.931

We thus can choose σ′Max(ρ′) = (d′, δ′).932

We finally have built two plays play((`, ν), σMax, σMin) and play((`′, ν′), σ′Max, σ
′
Min) that933

are 1/N -close, as needed, which concludes this proof. J934

Proof of Lemma 12. By construction, the approximated value is piecewise linear with one935

piece per 1/N -region. To prove the Lipschitz constant, it is then sufficient to bound the936

difference between ValCN (G)((`, r, v), v) and ValCN (G)((`, r, v′), v′), for v and v′ two corners937

of a 1/N -region r. We can pick any valuation ν in r and apply Lemma 11 twice, between938

ν and v, and between ν and v′. We obtain |ValCN (G)((`, r, v), v) − ValCN (G)((`, r, v′), v′)| 6939

2B/N = 2‖v − v′‖∞B. J940

D.2 Computing the value of an acyclic WTG941

Note that for a piecewise linear functions with finitely many pieces, being K-Lipschitz-942

continuous over regions is equivalent to being continuous over regions and having all partial943

derivatives bounded by K in absolute value.944

I Lemma 22. If for all ` ∈ L, V` is piecewise linear with finitely many pieces that have945

all their partial derivatives bounded by K in absolute value, then for all ` ∈ L, F(V )` is946

continuous over regions and piecewise linear with finitely many pieces that have all their947

partial derivatives bounded by max(K, |wt(`)|+ (n− 1)K) in absolute value.948

Proof. We will show that for every region r, F(V ) restricted to r has those properties.949

Note that they are transmitted over finite min and max operations. The continuity over950

regions is easy to prove because it is stable by inf and sup. We now use the notations951

and definitions of [1] to bound the partial derivatives.There exists a partition cost function952

(P, F ) that represents V , with P an n-dimensional nested tube partition and F a mapping953

from the leaf nodes of P to linear expressions over variables in X. Intuitively, P defines954

a finite arborescence of convex spaces, defined by linear inequalities, whose root is the955

whole region r and whose leaves partition r into cells. A crucial property of those cells956

([1, Theorem 4]) is that, for a given valuation ν, the delays t that need to be considered in957

the sup or inf operation of F(V )(`,ν) correspond to the intersection points of the diagonal958

half line containing the time successors of ν and borders of cells (if νb is such a valuation,959

t = ‖νb − ν‖∞ is the associated delay). In particular, there is a finite number of such960

borders, and the final F(V )` function can be written as a finite nesting of finite min and961

max operations over linear terms, each corresponding to a choice of delay and a transition962

to take. Formally, there are several cases to consider to define those terms, depending on963

delay and transition choices. For each available transition δ, those terms can either be:964

1. If a delay 0 is taken and all clocks in Y ⊆ X are reset by δ, then965

wtΣ((`, ν) 0−→ (`, ν) δ−→ (`′, ν[Y := 0])) = wtΣ(δ) + V(`′,ν[Y :=0])966

2. If a delay t > 0 (leading to valuation νb on border B) is taken and the clocks in Y are reset967

by δ, then wtΣ((`, ν) t−→ (`, νb) δ−→ (`′, νb[Y := 0])) = wtΣ(`)× t+ wtΣ(δ) + V(`′,νb[Y :=0])968

FSTTCS 2018



yy:24 Symbolic Approximation of Weighted Timed Games

x
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ν ν′

B

νb

ν′
b

c

Figure 3 A tubular cell c as described in the proof of Lemma 22. Dashed lines bound the cell c,
dotted lines are proof constructions.

In the first case, the resulting partial derivatives are 0 for clocks in Y , and the same as969

the partial derivatives in V`′ for all other clocks, which allows us to conclude that they are970

bounded by K. We now consider the second case. We argue that the second case could971

be decomposed as a delay followed by a transition of the first case, meaning that we can972

assume Y = ∅ without loss of generality.973

There are again two cases: the border B being inside a region or on the frontier of a974

region.975

If the border is not the frontier of a region, it is the intersection points of two affine976

pieces of V`′ whose equations (in the space Rn+1 whose n first coordinates are the clocks977

(x1, . . . , xn) and the last coordinate correspond to the value V`′(x1, . . . , xn)) can be written978

y =
∑n
i=1 aixi + b (before the border) and y =

∑n
i=1 a

′
ixi + b′ (after the border). Therefore,979

valuations of the borders all fulfil the equation980

n∑
i=1

(a′i − ai)xi + b− b′ = 0 (2)981

We let A =
∑n
i=1(a′i − ai). Consider that ` is a location of Min (the very same reasoning982

applies to the case of a location of Max). Since F computes an infimum, we know that the983

function mapping the delay t to the weight obtained from reaching ν+ t is decreasing before984

the border and increasing after. These functions are locally affine which implies that their985

slopes verify:986

wt(`) +
n∑
i=1

ai 6 0 and wt(`) +
n∑
i=1

a′i > 0 . (3)987

We deduce from these two inequalities that A > 0. The case where A = 0 would correspond988

to the case where the border contains a diagonal line, which is forbidden, and A > 0. Con-989

sider now a valuation of coordinates ν = (x1, . . . , xn) and another valuation of coordinates990

ν′ = (x1, . . . , xk−1, xk + λ, xk+1, . . . , xn). The delays t and t′ needed to arrive to the border991

starting from these two valuations are such that ν + t and ν′ + t′ both verify (2). We can992

then deduce that t′ − t = λ
ak−a′k
A . It is now possible to compute the partial derivative of993
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F(V )` in the k-th coordinate using994

F(V )`,ν′ −F(V )`,ν
λ

= wt(`)(t′ − t′) + V`′,ν′+t′ − V`′,ν+t

λ
.995

We may compute it by using the equations of the affine pieces before or after the border.996

We thus obtain997

F(V )`,ν′ −F(V )`,ν
λ

= ak − a′k
A

(wt(`) +
n∑
i=1

ai) + ak998

F(V )`,ν′ −F(V )`,ν
λ

= ak − a′k
A

(wt(`) +
n∑
i=1

a′i) + a′k999

1000

In the case where ak > a′k, the first equation, with (3), allows us to obtain that the partial1001

derivative is at most ak. We may then lower wt(`) by −
∑n
i=1 a

′
i to obtain that the partial1002

derivative is at least a′k. Since ak and a′k are bounded in absolute value by K, so is the1003

partial derivative. We get the same result by reasoning on the second equation if a′k > ak.1004

We now come back to the case where the border is on the frontier of a region. Then, it1005

is a segment of a line of equation xk = c for some k and c. V`′ contains at most three values1006

for points of B: The limit coming from before the border, the value at the border, and the1007

limit coming from after the border. The computation of F(V ) computes values obtained1008

from all three and takes the min (or the max).1009

Now, let y =
∑n
i=1 aixi + b be the equation defining the linear piece of V`′ before the1010

border (resp. at the border, after the border). Consider now a valuation of coordinates ν =1011

(x1, . . . , xn) and another valuation of coordinates ν′ = (x1, . . . , xj−1, xj + λ, xj+1, . . . , xn).1012

The delays t and t′ needed to arrive to the border starting from these two valuations are1013

such that ν + t and ν′ + t′ both verify xk = c. We can then deduce that t′ − t = 0 if j 6= k1014

and t′ − t = −λ if j = k. It is now possible to compute the partial derivative of F(V )` in1015

the j-th coordinate using1016

F(V )`,ν′ −F(V )`,ν
λ

= wt(`)(t′ − t′) + V`′,ν′+t′ − V`′,ν+t

λ
.1017

We may compute it by using the equations of the linear piece before the border (resp. at the1018

border, after the border). Then, V`′,ν+t =
∑n
i=1 ai(xi+t)+b = (

∑n
i=1 6=k ai(xi+t))+akc+b+1019

and V`′,ν′+t′ = (
∑n
i=1 6=k ai(xi + t′)) + akc+ b. We thus obtain1020

F(V )`,ν′ −F(V )`,ν
λ

= aj if j 6= k1021

F(V )`,ν′ −F(V )`,ν
λ

= −wt(`)−
n∑

i=1,i6=k
ai otherwise1022

1023

Then, the partial derivatives are bounded, in absolute value, by |wt(`)|+ (n− 1)K.1024

J1025

As a corollary, we can now obtain Lemma 13, or more precisely:1026

I Lemma 23. Consider an acyclic WTG G of depth i with all the output weights being1027

K-Lipschitz-continuous over each region (and piecewise linear, with finitely many pieces).1028

Then,1029

if |X| = 1, ValG = ValiG is max(K,wLmax)-Lipschitz-continuous over regions;1030

if |X| = 2, ValG = ValiG is (i ∗ wLmax +K)-Lipschitz-continuous over regions;1031

otherwise, ValG = ValiG is (wLmax
(|X|−1)i−1
|X|−2 + (|X| − 1)iK)-Lipschitz-continuous over1032

regions.1033
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D.3 Example of an execution of the approximation scheme1034

0
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1
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`2

1
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0
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`t

wtT (x, y) = x

0 < x < 1
x := 0
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y := 0
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1 < x < 2
x := 01 y = 1

y := 01
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Figure 4 A weighted timed game G with two clocks x and y, and the portion of its region game
R(G) accessible from configuration (`0, (0, 0)). Locations of Min (resp. Max) are depicted as circles
(resp. squares). The states of R(G) are labeled by their associated region, location and weight, and
transitions are labeled by a representation of their guards and resets. Since each location ` of G
leads to a unique states (`, r) of R(G), we will refer to states by their associated location label.

We are given the WTG G in Figure 4 and ε ∈ Q>0, and want to compute an ε-1035

approximation of its value in location `0 for the valuation (x=0, y=0), denoted ValG(`0, (0, 0)).1036

In this example, we will use ε=15 because the computations would not be readable with1037

a smaller precision. R(G) contains one SCC {`1, `2, `3, `4}, made of two simple cycles.1038

π1 = `1 → `2 → `1 is a positive cycle (all plays following π1 have cumulated weight in1039

the interval (1, 3)) and π2 = `1 → `3 → `4 → `1 is a 0-cycle (all plays following π2 have1040

cumulated weight 0). This can be checked by Lemma 2.1041

Therefore, R(G) only contains non-negative SCCs and is almost-divergent. Since all1042

states are in the attractor of Min towards LT , all cycles are non-negative and the output1043

weight function is bounded (on all reachable regions), there are no configurations in R(G)1044

with value +∞ or −∞.1045

We let the kernel K be the sub-game of R(G) defined by π2, and we construct a semi-1046

unfolding T (G) of R(G) of equivalent value. Following Appendix C, we should unfold the1047

game until every stopped branch contains a state seen at least 3|R(G)|wemax+2 sup |wtT |+2 =1048

3 ∗ 3 ∗ 4 + 2 ∗ 1 = 38 times. We will unfold with bound 4 instead of 38 for readability (it is1049

enough on this example). Thus the infinite branch (`1`2)ω is stopped when `1 is reached for1050

the fourth time, as depicted in Figure 5.1051
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`′1

`′3`′4

`′t`′2

`0`2

K′`1

`0

K`1

`2

K′`1

`′2

K′′`1

`′′2

`′′′1

`′′t

`′t

`t

wtT (x, y) = +∞

wtT (x, y) = x

wtT (x, y) = x

wtT (x, y) = x

Figure 5 The kernel K (with input state `1), and a semi-unfolding T (G) such that
ValG(`0, (0, 0)) = ValT (G)(`0, (0, 0)). We denote `i, `′

i and `′′
i the locations in K, K′ and K′′.

Let us now compute an approximation of ValT (G). Let us first remove the states of value1052

+∞: `′′′1 and `′′2 . Then, we start at the bottom and compute an (ε/3)-approximation of the1053

value of `′′1 in the game defined by K′′`1
and its output transition to `′′t . Following Section 5,1054

we should use N > 3(4 + 1)/ε and compute values in the 1/N -corners game CN (K′′`1
) in1055

order to obtain an (ε/3)-approximation of the value function. For ε = 15 we will use N = 11056

(in this case the computation happens to be exact and would also hold with a small ε) We1057

construct this corner game, and obtain the finite (untimed) weighted game in Figure 6.1058

We can compute the values in this game to obtain Val(c′1) = 1 and Val(c1) = 3. We then1059

define a value for every configuration in state `′′1 by linear interpolation, obtaining (x, y)→1060

3− 2y (which happens to be exactly (x, y)→ ValT (G)(`′′1 , (x, y)) in this case, but would only1061

be an ε/3-approximation of it in general). Now, we can compute an ε/3-approximation of1062

ValT (G)(`′2) with one step of value iteration, obtaining (x, y)→ inf0<d<2−x(−1) ∗ d+ 1 + 3−1063

2(0 + d) = 3x− 2.1064

The next step is computing an ε/3-approximation of the value of `′1 in the game defined by1065

K′`1
and its output transitions to `′t and `′2, of respective output weight functions (x, y)→ x1066

and (x, y)→ 3x− 2. This will give us an 2ε/3-approximation of ValT (G)(`′1).1067

Following Section 5 once again, we should use N > 3(5 + 3)/ε and compute values1068

in the 1/N -corners game CN (K′`1
). For ε = 15 this gives N = 2 (which will once again1069

keep the computation exact). We can construct a finite (untimed) weighted game as in1070

Figure 6, and obtain a value for each 1/2-corner of state `′1: On the 1/2-region (0 < y <1071

1/2, x = 0), corner (0, 0) has value 2 and corner (0, 1/2) has value 2. On the 1/2-region1072

(y = 1/2, x = 0), corner (0, 1/2) has value 2. On the 1/2-region (1/2 < y < 1, x = 0),1073

corner (0, 1/2) has value 2 and corner (0, 1) has value 1. From these results, we define1074

a piecewise-linear function by interpolating the values of corners on each 1/2-region, and1075
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Figure 6 The finite weighted game obtained from C1(K′′
`1 ), where ci and c′

i are the corners of `′′
i

in T (G).

obtain (x, y)→
{

2 if y 6 1/2
3− 2y otherwise

, as depicted in Figure 7.1076

1/2 y

Val`′1(0, y)

0 1
0

1

2

Figure 7 The value function (x, y)→ ValT (G)(`′
1, (x, y)), projected on x = 0. Black dots represent

the values obtained for 1/2-corners using the corner-points abstraction.

This gives us an 2ε/3-approximation of (x, y) → ValT (G)(`′1, (x, y)) (in fact exactly1077

ValT (G)(`′1)). Now, we can compute an 2ε/3-approximation of ValT (G)(`2) on region (1 <1078

x < 2, y = 0) with one step of value iteration, obtaining :1079

(x, y)→ inf
0<d<2−x

{
3− d if d 6 1/2
4− 3d otherwise

=
{

3x− 2 if x 6 3/2
x+ 1 otherwise

1080

Then, we need to compute an ε/3-approximation of the value of `1 in the game defined by1081

K`1 and its output transitions to `t and `2, of respective output weight functions (x, y)→ x1082

and (x, y) → 3x − 2 if x 6 3/2, x + 1 otherwise. This will give us an ε-approximation of1083

ValT (G)(`1).1084

Following Section 5 one last time, we should use N > 3(5 + 3)/ε and compute values in1085

the 1/N -corners game CN (K`1). This time, let us use N = 3 to showcase an example where1086

the computed value is not exact. We can construct a finite (untimed) weighted game as in1087

Figure 6, and obtain a value for each 1/3-corner of state `′1. From these results, we define a1088

piecewise-linear function by interpolation, as depicted in Figure 8.1089
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1/3 2/3 y

Val`1(0, y)

0 1
0

1

2

Figure 8 The value function (x, y)→ ValT (G)(`1, (x, y)), projected on x = 0, is depicted in red.
Black dots represent the values obtained for 1/3-corners using the corner-points abstraction, and
the derived approximation of the value function is depicted in blue

Finally, from this ε-approximation of ValT (G)(`1), we can compute an ε-approximation1090

of ValT (G)(`0) using one step of value iteration, and conclude. On our example this ensures1091

ValT (G)(`0, (0, 0)) = sup0<d<1 ValT (G)(`1, (0, d)) ∈ [2− ε, 2 + ε].1092

D.4 Complexity analysis1093

We will express complexities according to several parameters: |L|, |X|, greatest guard1094

constant M , greatest location and transition weight constants wLmax and w∆
max. We also1095

need to keep track of the output weight functions’ characteristics. Recall that the output1096

weight functions must be piecewise linear with finitely many pieces and Lipschitz-continuous1097

over regions. We define three parameters, its Lipschitz constant K, its number of lin-1098

ear pieces J and a bound U (that we call additive bound) on its additive constant, such1099

that if (x1, . . . , x|X|) →
∑|X|
i=1 aixi + b defines one of those linear pieces, then |b| 6 U and1100

∀1 6 i 6 |X|, |ai| 6 K.1101

Note that |L|, |X| and J are all polynomial in the size of the input, but M , wLmax, w∆
max,1102

K and U are exponential in the size of the input if constants are encoded in binary.1103

We start with simple estimates:1104

Number of regions |Reg(X,M)|: Polynomial in M , exponential in |X|.1105

Number of 1/N -regions |RegN (X,M)|: Polynomial in M and N , exponential in |X|.1106

Number of 1/N -corners: Polynomial in M and N , exponential in |X|.1107

Maximum weight of a timed transition wemax: Polynomial in M , wLmax and w∆
max.1108

Maximum output weight sup |wtT |: Polynomial in M , U , |X| and K.1109

D.4.1 Tree1110

Let us recall the complexity of the value iteration algorithm, used to compute the exact1111

value of an acyclic WTG:1112

Input: An acyclic game of depth i.1113

Algorithm scheme: Computes F i(V 0) = Vali = Val.1114

Output: A K ′-Lipschitz-continuous function with J ′ pieces and additive bound U ′ that is1115

the game’s value.1116

K ′ is of the form KK ′′ with K ′′ polynomial in wLmax and |X| and exponential in i.1117

J ′ is of the form J |X| J ′′ with J ′′ polynomial in M and |L| and exponential in |X| and i.1118

U ′ is of the form U + U ′′ with U ′′ polynomial in M , wLmax, w∆
max and i.1119

Complexity: exponential in i and the size of the input.1120
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D.4.2 Kernel1121

Input: A kernel WTG, a precision ε > 0.1122

Algorithm scheme: Solves optimal reachability on the finite 1/N -corner game with N poly-1123

nomial in 1/ε, wLmax, |L|, M and K and exponential in |X|.1124

Output: A K ′-Lipschitz-continuous value function with J ′ pieces and additive bound U ′1125

that is an ε-approximation of the game’s value.1126

K ′ is of the form KK ′′ with K ′′ polynomial in |L|, wLmax and M and exponential in |X|.1127

J ′ is polynomial in 1/ε, wLmax, |L|, M and K and exponential in |X| (in particular, it is1128

independent in J).1129

U ′ of the form U + U ′′ with U ′′ polynomial in 1/ε, wLmax, w∆
max, |L|, M and K and1130

exponential in |X|.1131

Complexity: polynomial in 1/ε, wLmax, w∆
max, |L|, M and K and exponential in |X|.1132

D.4.3 Semi-unfolding1133

We now stack several kernel and tree parts to form a semi-unfolding of a region game.1134

Input: A semi-unfolding of branch depth D, a precision ε > 0.1135

Algorithm scheme: value iteration for the trees and region-based for the kernels (on 1/N1136

corners), with precision ε/D. In order to bound N , we need to bound the Lipschitz constants1137

along the whole computation. We can recursively show that along this computation the1138

Lipschitz constants, additive constants and number of pieces do not grow too much, and1139

obtain global bounds:1140

we can bound all Lipschitz constants by KK ′′ with K ′′ polynomial in |L|, wLmax, M and1141

exponential in |X| and D.1142

we can bound all number of pieces by J |X| J ′′ with J ′′ polynomial in 1/ε, M , |L|, wLmax,1143

and K and exponential in |X| and D.1144

we can bound all additive constants by U +U ′′ with U ′′ polynomial in 1/ε, wLmax, w∆
max,1145

|L|, M and K and exponential in |X| and D.1146

Therefore, N can be chosen polynomial in 1/ε, wLmax, |L|, M and K and exponential in |X|1147

and D.1148

Output: A K ′-Lipschitz-continuous value function with J ′ pieces and additive bound U ′1149

that is an ε-approximation of the game’s value. K ′, J ′, U ′ are bounded by their respective1150

global bound.1151

Complexity: polynomial in 1/ε and exponential in the size of the input and D.1152

D.4.4 Almost divergent game1153

Input: An almost divergent game, a precision ε > 0.1154

Algorithm scheme: First, compute the region game’s SCCs, and remove + −∞ locations.1155

Then, perform the semi-unfolding of the game, of depth D whose value is equivalent to that1156

of the original game, with D polynomial in M , |L|, wLmax, w∆
max, K, U and exponential in1157

|X|.1158

Output: A K ′-Lipschitz-continuous value function with J ′ pieces and additive bound U ′1159

that is an ε-approximation of the game’s value.1160

K ′ is exponential in M , |L|, wLmax, w∆
max, K, U and doubly-exponential in |X|.1161

J ′ is polynomial in J , 1/ε, exponential in M , |L|, wLmax, w∆
max, K, U and doubly-1162

exponential in |X|.1163
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U ′ is polynomial in 1/ε and exponential in M , |L|, wLmax, w∆
max, K, U and doubly-1164

exponential in |X|1165

Complexity: polynomial in 1/ε, exponential in the size of the input and M , K, U , wLmax1166

and w∆
max and doubly-exponential in |X|.1167

E Proofs of the symbolic approximation scheme (Section 6)1168

This section is devoted to the proof of Theorem 14.1169

Notice that configurations with value +∞ are stable through value iteration, and do not1170

affect its other computations. Since we assumed the absence of value −∞, we will therefore1171

consider in the following that all configurations have finite value in G.1172

Consider a game G that is a kernel. Following Section 5, we can define an integer N1173

such that solving the untimed weighted game CN (G) computes an ε/2-approximation of the1174

value of 1/N corners.1175

Using the results of [14] for untimed weighted games, we know that those values are1176

obtained after a finite number of steps of (the untimed version of) the value iteration op-1177

erator. More precisely, if one considers a number of iterations P = |L||RegN (X,M)|(|X|+1178

1)(2(|L||RegN (X,M)|(|X|+1)−1)wemax+1), then ValPCN (G)((`, r, v), v) = ValCN (G)((`, r, v), v).1179

From this observation, we deduce the following property of P :1180

I Lemma 24. If G is a kernel with no infinite value, |ValG(`, ν) − ValPG (`, ν)| 6 ε for all1181

configurations (`, ν) of G.1182

Proof. We already know that ValPCN (G)((`, r, v), v) = ValCN (G)((`, r, v), v) for all configura-1183

tions ((`, r, v), v) of CN (G). Moreover, Section 5 ensures |ValG(`, ν)−ValCN (G)((`, r, v), v)| 61184

ε/2 whenever ν is in the 1/N -region r. Therefore, we only need to prove that |ValPG (`, ν)−1185

ValPCN (G)((`, r, v), v)| 6 ε/2 to conclude. This is a simple rewriting of Lemma 11 that holds1186

with exactly the same proof, since Lemma 10 does not depend on the length of the plays ρ1187

and ρ′, and both runs reach the target state in the same step, i.e. both before or after the1188

horizon of P steps. J1189

Once we know that value iteration converges on kernels, we can use the semi-unfolding1190

of Section 4 to prove that it also converges on non-negative SCCs when all values are finite.1191

I Lemma 25. If G is a non-negative SCC with no infinite value, we can compute P such1192

that |ValG(`, ν)− ValPG (`, ν)| 6 ε for all configurations (`, ν) of G.1193

Proof. Consider a non-negative SCC’s G, a precision ε, and an initial configuration (`0, ν0).1194

Let T (G) be its finite semi-unfolding (obtained from the labelled tree T , as in Appendix C),1195

such that ValG(`0, ν0) = ValT (G)((˜̀0, r0), ν0). Let α be the maximum number of kernels1196

along a branch of T . Let P ′ be an integer such that for all kernels K in T (G), |ValK(`, ν)−1197

ValP
′

K (`, ν)| 6 ε/α for all configurations (`, ν) of G. We can find such a P ′ by using Lemma 24.1198

Create T ′(G) from T by applying the method used to create T (G) but replace every kernel1199

by its complete P ′-unfolding instead. This implies that T ′(G) is a tree, of bounded depth1200

P (at most the depth of T times P ′). Then |ValT (G)((˜̀0, r0), ν0)−ValT ′(G)((˜̀0, r0), ν0)| 6 ε.1201

This holds because the value function is 1-Lipschitz-continuous with regards to the output1202

weight function, so imprecision builds up additively.1203

Consider now T ′′(G) the (complete) unfolding ofR(G) with unfolding depth P , where ker-1204

nels are also unfolded. By construction, ValT ′′(G)((˜̀0, r0), ν0) = ValPT ′′(G)((˜̀0, r0), ν0). Then,1205

we can prove that ValPT ′′(G)((˜̀0, r0), ν0) = ValPG (`0, ν0) (same strategies at bounded horizon1206
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P ), which implies ValR(G))((`0, r0), ν0) 6 ValT ′′(G)((˜̀0, r0), ν0) (monotonicity of Valk). By1207

another monotonicity argument (because T ′′ contains T ′ as a prefix), we can also prove1208

ValT ′′(G)((˜̀0, r0), ν0) 6 ValT ′(G)((˜̀0, r0), ν0).1209

Bringing everything together we obtain |ValPG (`0, ν0)− ValG(`0, ν0)| 6 ε. J1210

Proving the same property on non-positive SCCs requires more work, because the semi-1211

unfolding gives stopped leaves −∞ as output weight (for symmetry reasons), which doesn’t1212

integrate well with value iteration (initialisation at +∞ on non-target states).1213

I Lemma 26. If G is a non-positive SCC with no infinite value, there exists P such that1214

|ValG(`, ν)− ValPG (`, ν)| 6 ε for all configurations (`, ν) of G.1215

Proof. Consider a non-positive SCC G, a precision ε, and an initial configuration (`0, ν0).1216

Let T (G) be its finite semi-unfolding (obtained from the labelled tree T , as in Appendix C),1217

such that ValG(`0, ν0) = ValT (G)((˜̀0, r0), ν0).1218

We now change T , by adding a subtree under each stopped leaf: the complete un-1219

folding of R(G), starting from the stopped leaf, of depth |R(G)|. Let us name T+ this1220

unfolding tree. We then construct T +(G) as before, based on T+. Since we are in a non-1221

positive SCC, T +(G) must have output weight −∞ on its stopped leaves. It is easy to1222

see that ValG(`0, ν0) = ValT +(G)((˜̀0, r0), ν0) still holds (the proof was based on branches1223

being long enough, and we increased the lengths). We now perform a small but crucial1224

change: the output weight of stopped leaves in T +(G) is set to +∞ instead of −∞. Trivi-1225

ally ValT (G)((˜̀0, r0), ν0) 6 ValT +(G)((˜̀0, r0), ν0) (we increased the output weight function).1226

Let us prove that ValT +(G)((˜̀0, r0), ν0) 6 ValT (G)((˜̀0, r0), ν0).1227

For a fixed η > 0, consider σMin a η-optimal strategy for player Min in T (G). Let us1228

define σ+
Min, a strategy for Min in T +(G), by making the same choice as σMin on the common1229

prefix tree, and once a node that is a stopped leaf in T (G) is reached, we switch to a1230

memoryless attractor strategy of Min towards target states. Consider any strategy σ+
Max1231

of Max in T +(G), and let σMax be its projection in T (G). Let ρ+ denote the (maximal)1232

play playT +(G)(((`0, r0), ν0), σ+
Min, σ

+
Max)), and ρ be playT (G)(((`0, r0), ν0), σMin, σMax)). By1233

construction, ρ+ does not reach a stopped leaf in T +(G). If the play ρ+ stays in the1234

common prefix tree of T and T+, then ρ = ρ+, and wtT +(G)(ρ+) 6 ValT (G)((˜̀0, r0), ν0) + η.1235

If it doesn’t, then ρ+ has a prefix that reaches a stopped leaf in T (G): this must be ρ. This1236

implies that wtT +(G)(ρ+) < −|R(G)|wemax−sup |wtT | 6 ValT (G)((˜̀0, r0), ν0) (see Lemma 20).1237

Since this holds for all η > 0, we proved ValT +(G)((˜̀0, r0), ν0) 6 ValT (G)((˜̀0, r0), ν0), which1238

finally implies that the two values are equal.1239

Then, we can follow the proof of Lemma 25 (with T+ and T +(G)) in order to conclude.1240

J1241

Now, if we are given an almost-divergent game G and a precision ε, we can glue together1242

the semi-unfoldings of each SCC (non-positive SCCs have to get the same treatment as in1243

Lemma 26 and get slightly more unfolded than the non-negative ones), and follow once again1244

the proof of Lemma 25 in order to conclude. Therefore, by adding the convergence time of1245

value iteration obtained from each SCC, we can obtain an integer P such that for all k > P ,1246

ValkG is an ε-approximation of ValG .1247
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