arXiv:1404.4856v1 [cs.LO] 18 Apr 2014

Quantitative games with interval objectives
Paul Hunter
Jean-Francois Raskin

April 2014

Abstract

Traditionally quantitative games such as mean-payoff gaane discount sum
games have two players — one trying to maximize the payaddfother trying to
minimize it. The associated decision problem, “Can Eve (tlagimizer) achieve,
for example, a positive payoff?” can be thought of as onegl&ying to attain a
payoff in the interval 0, c0). In this paper we consider the more general problem
of determining if a player can attain a payoff in a finite unadrarbitrary intervals
for various payoff functions (liminf, mean-payoff, disedusum, total sum). In
particular this includes the interesting exact-value f@oh “Can Eve achieve a
payoff of exactly (e.g.) 0?”

1 Introduction

Quantitative two-player games on graphs have been extnsitidied in the verifica-
tion community [6]. 8, 10, 15, 19]. Those models target ajgpilims in reactive system
synthesis with resource constraints. In these games twedaEve and Adam, inter-
act by moving a token around a weighted, directed graph, posaibly infinite number
of moves. This interaction results in a play which is an inéngath in the graph. The
value of the play is computed by applying a payoff functiotht® sequence of weights
of the edges traversed along the path. Typical payoff fonstiare (lim)sup, (lim)inf,
mean-payoff, (total) sum, and discounted sum.

In the literature is usual to assume that Eve is attemptingagimize the payoff
and Adam is attempting to minimize it. In this context alltkegames are determined,
that is the maximum that Eve can ensure is equal to the minithetAdam can ensure,
and this value can be computed in polynomial time for (lirhgind (lim)sup([5], and in
pseudo-polynomial time for mean-payoff, discounted sumd,tatal sum[[10, 19]. The
associated decision problem is teeshold problem Given a game graph, a payoff
function and a threshold does Eve have a strategy to ensure all consistent plays have
payoff at least/? The threshold problems for the aforementioned payofftfans are
all closely related, and it is known that Eve and Adam can plpgmally in those
games withmemoryless strategigd1]. Consequently the decision problem for all
those games is iNP N coNP. In fact, it can be shown iWP N coUP for mean-payoff,
discounted sum, and total sum, andPiRIME for (lim)inf and (lim)sup.

The threshold problem can be seen as game in which Eve igjttgifiorce the
payoff to belong to the interval of valu¢s, o). In this paper we consider the more
general problem of determining if a player can attain a playof finite union of
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arbitrary intervals for the classical payoff functions rtiened above. That is, we are
interested in the following question: Given a weighted arénand a finite union of
real intervals, what is the complexity of determining if Bvas a winning strategy to
ensure the payoff of any consistent play lies within therwdeunion? In particular
this includes the interesting exact-value problem: Candthéeve a payoff of exactly
v? Such objectives arise when considering efficiency coinssrafor example can a
system achieve a certain payoff without exceeding a cetéaget? We consider two
versions of our problem depending on whether the numerigtinfweights, interval
bounds and discount factor) are given in binary or unary. M @nsider the memory
requirements for a winning strategy both for Eve and Adamr @ames are a natural
subclass of multi-dimensional quantitative games (sed@])ghowever our results are
largely incomparable with that paper as we consider a widayaf payoff functions
and our objective corresponds disjunctionsof multi-dimensional objectives which
were not considered.

Payoff type Single interval Multiple intervals

Binary | Unary
Liminf/limsup PTIME NP N coNP PARITY GAME-C
Mean-payoff NP N coNP PSPACE PARITY GAME-hard
Discounted sum (non-singletory) PSPACE-c PTIME
Discounted sum (exact value) PSPACE-hard ?
Total sum EXP-hard,EXPSPACE PSPACE-c

Table 1. Complexity of deciding the winner in interval games

Tabled1 and@l2 summarize the results of this paper: the fiogt taighlights the
complexity results and the second table highlights the nmgmesquirements for play-
ing optimally. While the classical threshold problems f&ighted games can be solved
in PTIME for (lim)inf and (lim)sup and ilNPNcoNP for mean-payoff, discounted sum
and total sum, and memoryless strategies always sufficejttiegtion for our interval
objectives is far richer:

e For liminf and limsup, we provide a polynomial time algorithin the case of
a single interval. For a union of intervals, we show that ¢hgames are poly-
nomially equivalent to parity games: so we can solve thefRm coNP, and
a polynomial time algorithm for interval liminf games woysdovide a polyno-
mial time algorithm for parity games (a long-standing opeastion in the area).
Optimal strategies are memoryless for both players.

e For interval mean-payoff games, we provide a recursiverdlgua that executes

Payoff type Single interval | Multiple intervals
(Eve/Adam)

Liminf/limsup Positional

Mean-payoff Finite/Positional] Infinite

Discounted sum (non-singleton) Finite

Discounted sum (exact value) Infinite

Total sum Finite/Infinite | Infinite

Table 2: Memory requirements for interval games



in polynomial space. This algorithm leads td\&® N coNP algorithm in the

case of single interval objectives. While mean-payoff gamwen be solved in
polynomial time when weights are given in unary, we show tkea interval

mean-payoff games are at least as hard as parity games eeenwetights are
givenin unary. So, a pseudo-polynomialtime algorithm fdeival mean-payoff
games would lead to a polynomial algorithm for parity gamiésr a union of

intervals, infinite memory may be necessary for both playend for single in-

terval exponential memory may be necessary for Eve whilemhdan always
play a memoryless strategy.

¢ Interval discounted sum games are complete for polynomade when single-
ton intervals (and singleton gaps between intervals) atedden. The decidabil-
ity for the case when singletons are allowed is left open bgerieralizes known
open problems in single player discounted sum graphis [1Fi#jite memory
suffices for both players in the non-singleton case and tefinemory is needed
for both players when singletons are allowed.

e Forthe total sum payoff, we establish a strong link with ooerter parity games
that leads to #SPACE-complete result for unary encoding andEBXPSPACE
solution for the binary encoding together withE2XiP-hardness result. For single
interval games Eve need only play finite memory strategiédevehe may need
infinite memory in the general case. In both cases, Adam npyinean infinite
memory strategy.

Structure of the paper Sectior 2 introduces the necessary preliminaries. In Qexti
[3,[4,[8, andb we consider the decision problems and memoujrezgents for the lim-
inf/limsup, mean-payoff, discounted sum, and total sunpffdynctions, respectively.

2 Preliminaries

A game graph is a tupl& = (V, V3, E, w, q0) where(V, E, w) is an edge-weighted
graph,V3 C V, andqy € V is the initial state. Without loss of generality we will
assume all weights are integers. In the sequel we will depitices inl’5 with squares
and vertices i\ V3 with circles. In complexity analyses we will denote the nmadim
absolute value of a weight in a game grapHy If V' C V, we denote by~ \ V' the
game graph induced By \ V".

A play in a game graph is an infinite sequence of statesvyv; - - - wherevy = o
and (v;,v;4+1) € E for all i. Given a playr = vov; --- and integers:, ! we define
wlk.l] = vg---vy, w[..k] = w[0..k], andx[l..] = vvi41---. We extend the weight
function to partial plays by setting(x[k..l]) = Zi;i w((vi,vit1)). A strategy for
Eve (Adam) is a functios that maps partial plays ending with a veriei V3 (V'\ V3)
to a successor af. A strategy has memory/ if it can be realized as the output of a
finite state machine witll/ states. A memoryless (or positional) strategy is a strategy
with memoryl, that is, a function that only depends on the last elemerfi@fjiven
partial play. A playr = vgvy --- IS consistent with a strategy for Eve (Adam) if
whenevew; € V3 (v; € V \ V3), o(n[..1]) = vit1-



2.1 Payoff functions

A play in a game graph defines an infinite sequence of weights. d&fine below
several common functions that map such sequences to redlerem

Liminf/limsup.  The liminf (limsup) payoff is determined by the minimum (nax
mum) weight seen infinitely often. Given a play= vyv; - - - we define:

lim inf(7) = lim inf w(v;, vig1) lim sup(7) = lim sup w(v;, vit1).
1—=00 i—00
Note that by negating all weights and the endpoints of therytals we transform a
limsup game to a liminf game and vice-versa.

Mean-payoff. Themean-payoffvalue of a play is the limiting average weight, how-
ever there are several suitable definitions because théngiawerages might not con-
verge. The mean-payoff values of a playve are interested in are defined as:

1 S 1
MP(7) = liminf —w(n[..k]) MP(7) = limsup —w(x[..k]).
k—oo k k—oo K
As with liminf/limsup games we can switch between definiidty negating weights

and interval endpoints, so we will only consider theP function.

Discounted sum. The discounted sunis defined by a discount factor € (0, 1).
Given a playr = vgvy - - -, we define:

DS\ (m) = Z)\i cw(vi, Vig1)-
i=0

Total sum. Thetotal sumcondition can be thought of as a refinement of the mean-
payoff condition, enabling discrimination between playstthave a mean-payoff of
Given a playr we define:

Total(r) = liminf w(x[..k]) Total(m) = lim sup w(n[..k]).
k—o0 k—o0
As with liminf/limsup games we can switch between definiidty negating weights
and interval endpoints, so we will only consider fhietal function.

2.2 Interval games

For a fixed payoff functior”, aninterval F' gameconsists of a finite game graph and a
finite union of real intervalg = I; U- - - U I,.. Given an intervaF game(G, I), a play
min G is winning for Eve if F'(7) € I and winning for Adam ifF'(w) ¢ I. We say a
player wins the interval game if he or she has a strategych that all plays consistent
with o are winning for that player. For convenience we will assuheintervals are
non-overlapping and ordered such thap 7; < inf I;,; for all 4.



2.3 Parity games

A parity game is a paifG, 2) whereG is a game graph (with no weight function) and
Q : V — Nis a function that assigns a priority to each vertex. Playssirategies are
defined as with interval games. A play defines an infinite seqai®f priorities, and
we say it is winning for Eve if and only if the minimal prioriseen infinitely often is
even.

3 Liminf games

The first payoff function we consider is thien inf function. Note that as this always
takes integer values, we can assume all intervals are ctrsgplen as necessary. We
show below that deciding interval liminf games is polynoltyiaquivalent to deciding
parity games. In particular the number of intervals is eqoahe number of even
priorities required, so single interval liminf games areigglent to parity games with
at most three priorities and can therefore be solved in ohial time [16]. Further,
the range of the priorities are determined by range of thegmteunction and vice
versa, so this equivalence also holds for unary encoded/atté@ninf games.

Theorem 1. The following problems are polynomially equivalent:
(i) Deciding if Eve wins a unary encoded interval liminf game
(i) Deciding if Eve wins a binary encoded interval liminfrga; and
(iif) Deciding if Eve wins a parity game.

Proof. (i)=-(ii): Trivial.

(i) =(iii): For this reduction, we use the following function vahi will also be used
in Sectior 6. Lefl = I; UI,U---U I, be afinite union of closed integer intervals such
thatsup I; < inf I;;4 for all i. DefineQ2; : Z — [1,2r + 1] as follows:

21 if ne 1;,
Q](n): 1 if n <inf Iy, and
max{l +2i:supl; <n} otherwise.

Now supposéG, I) is an interval liminf game. We transform the game grépto
G’ as follows. Every edgeis sub-divided and the subdividing vertex is given priority
Qr(w(e)). The original vertices ofs are all given priority2r + 1.

It is not difficult to see that there isla1 correspondence between playsirand
plays inG’, and that for any play i+, lim inf w(e) € I; for somei if and only if the
minimum priority in the corresponding play @& seen infinitely often is even.

(iii) =(i): To go the other direction, given a parity game playedbwe transform
it to an interval liminf game played a@’ as follows.G" is the weighted graph obtained
by setting the weight of an edge to be the priority at the weatethe tail of the edge
(that s, the vertex for which the edge is outgoing). Therivas are singleton intervals
containing each of the even priorities that occuGinClearly any play inG is a play in
G’ and itis not difficult to see that for a play @ the minimum priority seen infinitely
often is even if and only if thém inf of the weights of all edges in a play 6f lie in
a given interval. O



We observe that the above reductions between parity andflgaimes do not sig-
nificantly alter the topology of the game graph (if at all) plarticular, positional strate-
gies in one game readily translate to positional strategi¢ise other. It follows from
the positional determinacy of parity games|[18], that:

Corollary 1. Positional strategies suffice for interval liminf games.

4 Mean-payoff games

In this section we investigate interval mean-payoff gamé&e give a recursive al-
gorithm that repeatedly asks for a solution for thean-payoff threshold problem
Given a game grapli and a threshold € Q does Eve have a strategy to ensure
the (liminf) mean-payoff of all consistent plays is at I8ag? As mentioned earlier
this problem is known to be iDNP N coNP, and solvable in time(|V| - |E| - W)
and space&(|V| - log(|E| - W)) [4]. We denote this problem byIP .., (G) where
~€e {>,>, <, <} depending on whether Eve is maximizing or minimizing theqffy
and whether or not a payoff ofis winning for Eve. It is well known[8] that the strict
threshold problem can be reduced to a non-strict threshrolalgm — this follows from
the fact that mean-payoff values are restricted to a finitefsationals.

Our algorithm implies that for a fixed number of intervals tmblem reduces
to the classic threshold problem (under polynomial-timeifdg reductions). In Sec-
tion[4.3 we consider single interval mean-payoff games inendetail. In particular we
show that in this case finite memory strategies (indeedtiposl strategies for Adam)
suffice for winning strategies. However, our first obsexvatf this section is that in
general interval mean-payoff games may require infinite prgm

Lemma 1. Finite memory winning strategies are not sufficient in intdmean-payoff
games.

Proof. Consider the game in Figuté 1 whefe= (0, 1] U [2,00). Eve has an infinite
memory winning strategy in this game as follows. First sheypltoq;. Then she
counts how many times Adam takes the Iqgp, ¢1). If Adam returns tay, then Eve
takes the loofqo, ¢o) the same number of times before returningito Clearly any
play consistent with this strategy that only visijtsfinitely often will satisfyM P = 2,
and any play that visitg, infinitely often will satisfyM P = 1. Therefore the strategy
is winning for Eve. Now suppose Eve plays a finite memory sgatr with memory
M. We observe that any play consistent wittihat visitsqy either remains inyy or
exitsqg in at mostM steps — if a play stays iy for more than\/ steps then a memory
state must have been revisited, thus the strategy will Keeplay ing, indefinitely.
Consider the following (finite memory) strategy of Adam: wmkeer the play reaches
q1, take the loofiq1, ¢1) M +1 times then move tg,. We claim this strategy is winning
for Adam. If at some point the play consistent withand this strategy remains i
indefinitely then it hasW/ P = 0, so it is winning for Adam. Otherwise the play exits
qo infinitely often, that is the edggyo, ¢1) is taken infinitely often. Let us break up the
play into the segments defined by successive occurrencbsaddge. Following the
above argument the length of each of these segments is befdiee 3 and2M + 3,
and the weight of each of these segments is ex&dtly+ 4. Thus the average weight

for each segment lies betweent 577— and2 — 12 inclusive. AsM is fixed, it
follows thatM P € (1,2) and thus the play is winning for Adam. O

Lor at most if she is minimizing the payoff
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Figure 1: Interval mean-payoff gamé & (0,1] U [2, 00)) which requires infinite
memory

4.1 Upper bounds

We now present an algorithm, AlgoritHoh 1, for computing thening regions in an
interval mean-payoff game.

Algorithm 1 MP ;(G)

Input: A game graplz = (V, V3, E, w, qo) and a finite union of real intervals
Output: (W3, W") whereWW3= (WV) are the vertices from which Eve (Adam) has a
winning strategy.
if I = ( then
return (0,V)
end if
a < inf [
if a = —oco then
(W, W') <= MPg\ [ (G) {G is G with V5 andV \ V5 swapped}
else
W0
repeat
(A, A) + MP,(G) {If a € I then>==> otherwise-=>}
(B’ Bl) — Mp(foo,a]ul(G)
W+ WUA UB
G+ G\ (AUB)
until A’UB =0
end if
return (V\ W, W)

The correctness of the algorithm is given by the followingiea.

Lemma 2. Let (G, I) be an interval mean-payoff gamielP; (G) correctly computes
the winning regions for Adam and Eve.

Proof. We observe that by symmetry the winning region®f; (G) are precisely the
complements of the winning regionsP, ; (G). Thus the algorithm correctly com-
putes the winning regions farif and only if correctly computes the winning regions
for R\ I. In particular we can assume that eitier () or inf I > —oo.

The proof is by induction on the number of interval boundaiel . If there are no
boundaries theh = () and soMP ;(G) returns the correct valué), V). Now suppose
a = infI > —oo. Note thatl’” = (—o0,a] U I has one interval boundary fewer



than!, so by the induction hypothesis the recursive call in lineeafrectly computes
the winning regions o for the intervall’. LetW, (i = 0,1,...) denote the set of
vertices inlV afteri iterations. Note that the algorithm runs undil, = W,, 1, and the
subgraph of7 used in the-th iteration isG \ W;_;. We prove by induction onthat
Adam has a winning strategy from every verteXify. For: = 0, Wy = () so the result
holds trivially. Now suppose Adam has a winning strategyrfrevery vertex iniv;,
and letv € W;;1 \ W;. Eitherv is in the winning region of Adam faviP ., (G\ W;) or

v is in the winning region of Adam fo¥IP . (G \ W;). In both cases the corresponding
winning strategy will ensure a payoff outsidend will therefore be winning for plays
restricted toGG \ W;. Thus his strategy from is to play this strategy until a vertex in
W; is reached, whereupon he switches to the winning strategy fhat vertex.

We now show that Eve has a winning strategy on the verticdg inWW. Note
that on these vertices Eve has two strategies: a memorytagsgyo~ which ensures
MP » a; and, by the inductive hypothesis, a strategywhich ensures a payoff in
the intervall’. Also note that plays consistent with these strategiesiremd” \ W.
We now show how to combine these two strategies to obtain aimgrstrategy for the
interval . For simplicity we will assume, € I, if it is not the case, then the same
arguments apply by replacingwith the smallest payoff Adam can attain against
Let I; be the interval of with ¢ = inf I;, and lett be any element of;. The strategy
for Eve is to track the current average weight of the play solfdt is less thart then
she playsss. and if it is greater than or equal tathen she plays .. Clearly if she
changes strategy only finitely often then her strategy iswmig: if she eventually only
playso then the payoff will be ifja, t) C I; C I; and if she eventually only plays.
then the payoff will be irff¢, co) N I’ C I. Now suppose the play causes Eve to switch
strategy infinitely often. The problem here is that when eliitg too~. the average
weight may go below, and if this happens infinitely often thin inf average may be
belowa. However, agr~. is memoryless, the average aftesteps will never be more
thanw belowa: this is seen easiest by taking= 0 and considering the total,
rather than the average, weight. This tend8 &sn tends toco henceM P is at least
a. As the average goes belavinfinitely often, M P < t. Therefore the payoff of the
play isinfa,t] C I; C I, and hence the combined strategy is winning for Eve. [

The running time for Algorithrall i$V |>"—! . MP, whereMP is the running time
for an algorithm to solve the mean-payoff threshold problénis straightforward to
see that the algorithm can be implemented in polynomialespac

Theorem 2. Let G be a game graph and a finite union ofr real intervals. Whether
Eve wins the interval mean-payoff gandg ) can be decided in tim@(|V |?"-|E|-W)
and space(r - |V| - log(|E| - W)).

We observe that although the players may require infinite argrfor a winning
strategy, Algorithni Il shows that a winning strategy can leeisietly represented by
2r positional sub-strategies. It is not clear that given suckrdificate whether there
exists an efficient algorithm for computing the winning gihowever we believe that
this is the case. By the symmetry of the roles of the playersh sin algorithm would
show that the interval mean-payoff game is botiNih andcoNP.

Conjecture 1. Determining whether Eve wins an interval mean-payoff ganmeNP N
coNP.



p+1

X 0"/’“\’);@ .

Figure 2: Vertex gadget for vertexe V' \ V3 with even priorityp

4.2 Lower bound

The above conjecture would hold if we could solve intervabm@ayoff games with
only polynomially many calls to the mean-payoff threshotdlgem. We now give a
lower bound for the complexity of deciding interval mearnypfigames which suggests
any such algorithm would yield quite remarkable results: raguce parity games to
interval mean-payoff games with small weights and smadirivel bounds. In particular
this implies that any pseudo-polynomial time algorithneluding polynomially many
calls to the threshold problem) would yield a polynomial giralgorithm for parity
games.

Theorem 3. There is a polynomial time reduction from parity games toryrencoded
interval mean-payoff games.

Proof. Let (V, V5, E, q0,€2) be a (min-)parity game. Without loss of generality we
can assume that the set of priorites is containeld,iti’|]. We construct an interval
mean-payoff gaméV’, V4, E', w, ¢, I) as follows.

e I=[0,1)U[2,3)U---U[n,n+ 1) wheren is the smallest even integer greater
than or equal toV|;

V' =V UV x{0,+, —}. For simplicity we write(v, ) asv*;

Q6 = o,

Vi=V5U {o% vt 0™ : Qv) is ever};

e I’ andw are constructed as follows:

— For each(v,w) € E, (v,w") € E" and the weight of this edge §3(v),

— For eachw € V: (v°,v%), (v°,v7), (vF,v), (v™,v) € E’ all with weight
Qv), (vt,vT) € E' with weightQ(v)+1, and(v—,v~) € E" with weight
Qv) — 1.

Intuitively, we replace each vertex in the original gamehwitie gadget shown in Fig-
ure[2. If the priority of the vertex is even then the gadgebistmlled by Eve, and if it

is odd then it is controlled by Adam. The last vertex in theggtds controlled by the
player that controlled the original vertex.



As the weights and interval boundaries are integef8,ifi’| + 1] this is clearly a
polynomial time translation to a unary-encoded intervahmeayoff game. We claim
that Eve wins the parity game if and only if she wins the intdémean-payoff game.
Suppose she has a positional winning strategythe parity game. We define her strat-
egyo’ as follows. For any vertex € V3 she moves to the vertex gadget corresponding
to the vertex she would have moved to undefThat is,o’ (v) = (¢(v),0). Whenever
the play reaches a vertex gadget that she controls (i.e.texvet wherev has even
priority p in the parity game), her strategy is to remain in the gadgtittine average
weight of the current play lies in the intervll, p + 3]. She does this by moving to
vt if the current average is below the interval, and toif the average is above, and
then staying at that vertex until the average weight reattteemterval. Note that after
sufficiently many steps this will always be possible. When élierage weight lies in
p,p+ %] she moves te and the game continues. There is a cledrcorrespondence
between plays consistent withand plays consistent witsf, and if a play in the parity
game visits a vertex with even priorigyinfinitely often, then the running average of
the corresponding play will lie in the intervid, p + %] C [ infinitely often. By con-
struction, Adam can never reduce the mean-payoff belowntteeval[p, p + %] unless
the play reaches a gadget corresponding to a vertex of losggity. This is important
because we use thin inf definition of mean-payoff. Further, if he chooses to remain
in a gadget indefinitely he will lose. As all plays consisteith o have the property
that the minimal priority visited infinitely often is even,follows that for all playsr
consistent withv’ there is some even priority such thatM P(r) € [p,p + 3] C 1.
Thus thes’ is winning for Eve. For the converse we see that Adam can lasna
winning strategy from the parity game in the same manner.

O

4.3 Single interval

We now examine in more detail the case whids a single interval. As we can replace
any strict threshold call with a non-strict threshold we @msume without loss of
generality thaf is closed. The simplification of Algorithd 1 to a single cldseterval

is given in Algorithn{2.

Algorithm 2 MP [, ,(G)

Input: A game graph and a bounded closed real interi@alb).
Output: (W3, WY) whereW?= (W) are the vertices from which Eve (Adam) has a
winning strategy.
W0
repeat
(A, A") + MP>,(G)
(B,B’) < MP<,(G\ 4
W+ WUA UB
G+ G\(AUB)
until AU B =0
return (V\ W, W)

We observe that Algorithin 2 makes at most a linear numberl&sf ttathe mean-
payoff threshold problem, so lies in the intersectiofNéfandcoNP.

Theorem 4. Deciding if Eve wins a single interval mean-payoff game i$fmncoNP.
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4.3.1 Memory considerations

The strategies for Adam and Eve described in the proof of LaBmequire infinite
memory. We now show, with a careful analysis, that in the cdisesingle interval this
can be improved.

Theorem 5. Let (G, I) be a single interval mean-payoff game. If Adam has a winning
strategy then he has a positional winning strategy. If Eve &avinning strategy then
she has a strategy that requires finite memory.

Proof. Algorithm[2 consists of repeatedly removing vertices fromiaihn Adam can
either ensure the mean-payoff lies above or belowClearly Adam has a winning
strategy from any vertex removed: he plays his (positionéfning strategy corre-
sponding to the level at which the vertex was removed, umiltlay reaches a vertex
removed at an earlier stage. We observe that any considégmivill never return to a
vertex removed at a later stage (as such vertices are in th@ngi set for Eve at the
same point of the iteration), so this strategy is in fact fimsal. Any play consistent
with this strategy will eventually stabilize at some stadehe iteration, whereupon
Adam'’s strategy for that stage will ensure the mean-payjesfoutsidel. We also ob-
serve that this result follows from the fact that the objexts prefix-independent and
convex, so from[[14] Adam has a positional winning strategy.

The idea behind Eve’s finite memory strategy1di¥ is to keep track of the total
weight seen so far (rather than the average as in the proafrofhtd 2)modulo cycles
with average weight id. This ensures, with the strategy outlined below, that tied to
weight will remain within some bounded range, and hencettlageg)y will only require
finite memory.

By subtracting a constant from the weights of all edges aadhterval bounds, we
can assume thd@ € I. We observe on the vertices Iff = Eve has two (positional)
strategies:o. which ensuredV P < supl ando. which ensure/ P > inf[.
Eve’s strategy is to alternate between these two strateagen the proof of Lemnia 2,
however now she changes when the following condition is Metkeep a stack-based
history of the current play and when a cygleis completed we remove it from the
history of the current play, keeping the first vertex of theleyon the top of the stack.

If w(x)/|x| € I we sayy is goodand she continues to play her current strategy. If
w(x)/|x| ¢ I, she addsu(x) to a counter. Note that if she was playing she would
only subtract from the counter and if she was playinghen she would only add to the
counter because. ando~ are winning positional strategies. She switches stragegie
if the counter changes sign. That is, if she was playingand the counter value falls
below 0 she switches t@~, and she switches to. if she was playings- and the
counter value goes above Clearly this strategy requires only exponential memory:
Eve needs only to store at masf| vertices in the history and because ando-

are positional the counter values are boundeetBy| - W. We claim that any play
consistent with this strategy hag P(r) € I.

Letr be a play consistent with the strategy. Let us consider tte sf the strategy
after k. steps of the play. Letv, be the total weight of all good cycles popped, and
I < k their total length. Let; denote the counter value. We observe that the stack
contents being stored are always a finite prefix ¢fvhen read from bottom to top), so
we can definey, the weight of the stack, as the weight of the correspondiafpp It
is clear from the definition of the strategy that:

w(m[..k]) = wi + ¢ + Sk
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Also, —|V |- W < ¢k, s < |V|- W, and%f €l.AsO e Iwehavenfl <0 <supl,

SO

inf I S lk(lnf]) Wi WE

Therefore,

wirlk) =2V W

+infI — infI ask — oo, and

k - k
-k V- W
w(ﬂ-l[f ) < | L +supl — suplask — oo.
Hence, ad is closed M P(x) € I as required. O

5 Discount sum games

In this section we consider interval discount sum gamese ar make a distinction
between whether or not singleton intervals (and singletgsdetween intervals) are
permitted, because unlike other payoff functions considen this paper there is a
marked difference between the corresponding games. We ttadvior non-singleton
intervals the problem of determining the winnePiISPACE-complete and as a conse-
guence of our algorithm we show that finite memory stategidfice. For singleton
intervals (including the exact value problem) ®EPACE-hardness result holds, but is
not even known if determining the winner is decidable. Weegivsimple example that
shows that infinite memory is required for winning strategrethis case.

5.1 Single, non-singleton intervals

We show that the problem for discount sum games in this caBSRACE-complete
for any discount factoA.

Lower bound. To showPSPACE-hardness we reduce from the subset sum game
defined in[[9]. The subset sum game is specified by a targe¥ and a list of pairs of
natural numberéa, a}), (az, ab), ..., (an,al). The game takes rounds, in round,
one player (Adam if is odd, Eve ifi is even) chooses; or a;. After n rounds Eve
wins if and only if the sum of the selected numbers i&iven an instance of the subset
sum game we construct the following interval discount sumg#or discount factor
A):
[ ] V = {1)1,1)2, e ,’Un+1},
o V3 ={v; :iisever,
® gdo = V1,
e F andw defined as follows:
— For1 < i < n there are two edges from to v; 1, one with weight;#:+
and one with weighﬁ%,
— There is a loop with weight onv,, ;1.

o I=(t—1,t+1)

12
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Figure 3: Reduction from subset sum games to interval digtcswm games

The reduction is illustrated in Figulé 3.

Note that asog (5% ) = log(a)—n-log()) the binary representations of the weights
on this graph are still polynomial in the size of the inputtlsis is a polynomial time
translation. It is clear that a play in this game correspdnds selection of elements
from the pairs, and the discounted sum of the play is equaiéastum of the corre-
sponding elements. As this sum is always an integer, th@dited sum lies in the
interval(¢ — 1, ¢+ 1) if and only if the sum is equal to Thus this is a polynomial time
reduction from subset sum games to interval discounted sumeg.

A corollary of this construction is that positional stratgare not sufficient for
interval discount sum games.

Upper bound. Givenv € V and strategies andr for Eve and Adam respectively,
we definev? _ to be the payoff of the unique play fromconsistent withe andr. Two
important (memoryless) strategies for Eve &g andonin, the strategies which, for
all statesy, maximizemin, v, and minimizemax, vy respectively.

The idea behind the upper bound centres around the obserthtt after many
steps the remainder of any play does not contribute muctetouérall discounted sum.
If the target interval is non-singleton then after suffitiemmany steps the problem
reduces to the classical threshold problem. Thus we cantseogame after finitely
many steps when it becomes a trivial matter to determinesibtrerall discounted sum
will lie in the interval or not. The key lemma for the resultle following:

Lemma 3. Suppose Eve has a winning strategy to ensure the discowneties in an
interval 7, and let

_ | log(l1]) +log(1 — A) — log(2W)
M= { log A J

whereWV is the maximum absolute value of any weight occurringinThen Eve has
a winning strategy that agrees with either, .. or o.,;, after N steps.

Note that whether the strategy agrees with.. or o.,;,, depends on the play up to
the N-th step. It is feasible that against one strategy of Adam dtriategy will agree
with o, but against another strategy it will agree with;,,.

Proof. We first observe thaV is chosen such that for all > N we have

1> A (%) . @)

That is, after theéV-th step of any play, the overall contribution of the rema&inaf the
play is restricted to an interval smaller than

13



Leto be a winning strategy for Eve. The desired winning strateijyffelow o for
N steps and then one of,.x or o, depending on the value of the play in a manner
described presently. Suppose aftfésteps the current play has valkand is in state
v. As o is a winning strategy, we have for any strategfpr Adam:

x+ AV yv el )

Now, as|vy,| < {25, it follows from (1) and[R) that at least one of the followiity
true:

x+>\N+1-%€I, or (3a)

w
AN — el 3b
* 1 °© (3b)
If (Ba) holds then we follovs ..., otherwise we followr,,;,. To show that the resulting
strategy is winning, let us suppo$el(3a) holds, the cas@l)(eing similar. From the
definition ofo,.x We have, for any state and any strategy of Adam:
w w W

Vor < Vomax‘r < 1— )\

Hence it follows from[(R) that for any strategyof Adam:

and from [(3h):

x + AV vy o < x+ ANV T el
Thus the payoff of any play consistent with this strategg lie / and is therefore
winning for Eve. O

Corollary 2. Finite memory strategies are sufficient in non-singletdarival discount
sum games.

The algorithm for determining the winner of a non-singleitwierval discount sum
game is straightforward. We run an alternating Turing Maetor NV steps to guess
an initial play. Note thatV is polynomial in the size of the input, so this can be done
in PSPACE. Suppose the play ends in statevith the current discounted suz We
compute the four values:

v
OmaxT
v
OminT

v
OmaxT
v
OminT "

maxmax = max, vV minmax = min, v

maxmin = max, v minmin = min, v

These are computable MP N coNP: minmax andmaxmin using the standard algo-
rithm for discount sum games, amthxmax (minmin) by fixing oymax (omin respec-
tively), computed in the previous step, and treating theltieg game as a solitaire
discount sum game with Adam trying to maximize (minimize) grayoff. Finally we
check if either:

x4+ AV minmax € I and x4+ AV . maxmax € I, or

x4+ AVt minmin e I and  x+ AT maxmin € I.

It is clear that one of the above conditions holds if and ohbyi., OF oy iS Winning
from the current position. Therefore, from Lemimia 3, one efahove conditions holds
if and only if Eve has a winning strategy.

14



Theorem 6. Let G be a game graph/ C R a non-singleton real interval and €
(0,1). Deciding if Eve wins the interval discount sum gai& I, \) is PSPACE-
complete.

We observe that if the weights, interval bounds and disctaator are all encoded
in unary thenV is logarithmic in the size of the input amthxmax, minmax, maxmin,
andminmin can all be computed in polynomial time using a pseudo-patyiabtime
algorithm for the threshold problem for discount sum gansee €.9.[[19]). Thus the
above algorithm runs in polynomial time.

Theorem 7. Let G be a game graph/ C R a non-singleton real interval and €
(0,1) all encoded in unary. Deciding if Eve wins the interval disagbsum game
(G,I,))isinPTIME.

5.2 Multiple intervals

The algorithm of the previous section also applies to midtiptervalsas long as the
gaps between the intervals are also non-singletbiis follows from the observation
that after sufficiently many steps the overall discount eyl not deviate too far
from the current value, so at that point the game reducetsitfgle interval case.

Theorem 8. Let G be a game graph, a finite union of real intervals such that neither
I nor R \ I contains singleton elements, ande (0,1). Deciding if Eve wins the
interval discount sum gant{é, I, \) is PSPACE-complete.

5.3 Singleton intervals

When the set of intervals (or their complement) include Igitag intervals, the situa-
tion is more complicated. Following the same argument aptleious section, after
sufficiently many steps the problem reduces to the exacevyaioblem: Given a game
graphG, a discount factok € Q and a target € QQ, does Eve have a strategy to ensure
the discounted sum is exactly

Itis currently open whether this problem is even decidatdeyever thePSPACE-
hardness result from the previous section (using the iat¢ty rather thar{t—1, t+1))
gives a lower-bound. The problem is related to the univiysptoblem for discount
sum automata [2], a well-known problem for which decidapilemains operi|1]. The
problem was also studied for Markov Decision Processes eaquhg (i.e. one-player
games) in[[¥] where it was shown to be decidable for discoaatofs of the form
A = 1, and that in general infinite memory is required.

Lemma 4 ( [7]). There exist exact value discount sum games for which antmfini
memory is required for a winning strategy.

6 Total sum games

Total sum games refine mean-payoff games and can be seen esia spse of dis-
count sum games where the discount factot.isAssuming the graph has integer
weights,Total will always be an integer (ot-c0), thus we can assume all intervals
are closed or open as necessary.

The objective of total sum games is similar to reachabititpme-dimensional vec-
tor addition systems with stated [3] and counter reachglghmes|[15], however we
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Figure 4: Exact value discount sum game={ % t = 0) that requires infinite memory
(modified from [7])

are interested in values seen infinitely often rather thanhimg a particular state and
counter value. The complexity bounds we obtain are similzh¢se problems, indeed
we use the same problems for establishing the bounds. Howésaot clear if there
is a more direct reduction between these problems.

6.1 Lower bounds
In this section we establish the following result:

Theorem 9. e The problem of deciding if Eve wins an interval total sum gésne
EXP-hard.

e The problem of deciding if Eve wins a unary-encoded inteiotal sum game is
PSPACE-hard.

6.1.1 Binary encoding

We first show that deciding the winner of interval total sunmga iSEXP-hard by
reducing fromcountdown gamesA countdown game is played on a weighted graph,
where all weights are negative. The play starts by settingumter to a given initial
value. Whenever an edge is taken the counter is decremeytad kveight. Eve wins

if and only if she reaches a vertex with the counter exagthyDeciding the winner
of countdown games is known to XP-complete [[13]. Note that by subdividing
edges if necessary we can assume that the players playaadtigtrthat is the graph
is bipartite. The reduction is straightforward, given ammiown game= with initial
creditc we construct the following total sum game. We add two newicest(of Eve)

vy andv . There is an edge fromy; to the initial vertex ofG with weightc¢, and an
edge of weigho from every vertex of Eve iz to v, . Also, for every edge = (v, v’)
wherew is a vertex of Eve we add another edgev, ) of weightw(e). Finally we
have an edgév, , v, ) of weight0. Clearly Eve can ensurBotal = 0 if and only if
she can reach, with a total sum of). Thus she can win the interval total sum game,
with interval {0}, if and only if she can win the countdown game.

6.1.2 Unary encoding

For unary-encoded interval total sum games, we reduce fnemaon-emptiness prob-
lem for one letter alphabet alternating automata, showe RSIPACE-complete inl[12].
Again, the reduction is simple as this problem can be viewsed aountdown game
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where all edges have weightl and Eve has to guess the initial credit. The guessing
stage can be implemented by having a loopgmvith weight+1. The remainder of
the reduction is as in the reduction from countdown games.

6.2 Upper bound

We now show that interval total sum games can be solvé&KiRSPACE by reducing
them to parity games on infinite graphs described by oneteounachines. Such
games were studied in [17] where determining the winner \uag/a to be decidable
in PSPACE, but the graphs were described byrearycounter machine, or equivalently,
pushdown graphs with a single-letter alphabet. Here we dgdimition corresponding
to the use of a binary-valued counter (also called long-ean¢15]). More formally, a
one-counter game graph is described by a tgplé5, E, Fy, w, qo) where(V, E, w)

is a finite weighted grapiz C V, Ey C V xV andqy € V. The (infinite) unweighted
game graph corresponding to such a tupl@isx Z, V5 x Z, E’, (g0, 0)) whereE’ is
defined as follows:

o If e=(v,0') € Ethenforallc € Z, ((v,¢), (v/,c+w(e))) € E', and
o If (v,v') € Ey then((v,0), (v/,0)) € E'.

Intuitively a one-counter game graph is a game graph augrdevith a counter which
is incremented or decremented by weights on traversed edggsecial set of edges,
E,, are activated only if the counter has valudt is clear a binary one-counter graph
can be described by an exponentially larger unary one—eongnapﬁ, hence our re-
duction yields arEXPSPACE algorithm.

The key observation for the reduction is that interval tetah games can be viewed
as parity games ol x Z, where the second component keeps track of the total sum
seen so far. The priority of a vertdx, c) is determined by which interval (or gap
between intervals) contains in the same manner used in the equivalence between
liminf games and parity games in Sectidn 3. However, we cans®the result on par-
ity games on one-counter graphs directly for this obsemwdtiecause for those games
the priorities are defined by the states of the counter-macand not the values of
the counter. Instead, we have Eve assert which intervalgprbgtween intervals) the
counter is in, and give Adam the ability to punish her if shagrak falsely.

Let (V, V3, E,w, q0, I) be an interval total sum game. Recall from Secfibn 3 the
definition of Q7. Let us definem; := minQ;'(i) and M; = maxQ;'(i). We
construct a parity game on a one-counter graph V3, E’, E{, w', ¢(, §2) as follows.

o V' =(Vx{0,1}) x [1,2r +1]U{v. : e € E} U{vg, v ,vT};

Vi=FEU{vo,vi, o1} U{(v,1,7):v € Vzandi € [1,2r + 1]};
Q6 = (QOvlaQI(O));
Ey = {(vi,v0), (vr,v0)};

E’ andw’ given as follows, for alf € [1,2r 4 1]:

— For everye = (v,v') € E, an edge fron{v, 1,14) to v, with weightw(e)
and an edge from, to (v, 0, 7) with weight0,

2We allow negative counter values, but this can be handldunnh-negative counter values by doubling
the state space
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Figure 5: Edge gadget for edge= (v,v'),v ¢ V3,0 € V5

— An edge from(v, 0, 7) to v with weight—m; if m; > —oo0,

— An edge from(v, 0, ¢) to vt with weight— M, if M; < oo,

— An edge from(v, 0, 7) to (v, 1, ¢) with weight0, and

— Loops onv_ , vt andvg with weights—1, +1 and0 respectively.

e Q((v,0,4)) = Q((v,1,4)) = Q1(4), Qve) = Qvy) = QvT) = 2r 4+ 1, and
Q(vg) = 2r.

Intuitively, we creater + 1 copies of the game graph (one for each interval and one
for each gap), but replace edges with the edge gadget shavigune[.

We now show that Eve has a winning strategy in this parity giiigued only if she
has a winning strategy in the interval total sum game. Wedliserve that i, (v) is
reached with a negative (positive) counter value then tige &ab, is never activated so
the vertex acts as a sink which is winning for Adam. Converseb, (vT) is reached
with a non-negative (non-positive) counter value thendlopldecrements (increments)
the counter until the edge tg is activated, whereupon Eve can win by moving to this
sink which is winning for her. It follows that if the play relaes a vertexv, 0, ) and the
counter value is outsiden;, M;] then Adam can win by playing to, if the counter
is < m; or to vt if the counter is> M;. On the other hand, if the counter is in the
rangelm;, M;] then Eve wins if Adam plays to either of these vertices. Thegiadget
defined by the vertice§v ,vT,vo} allows Adam to punish Eve if the counter is not
in the asserted interval and lets Eve win if Adam attemptsigefy punish her. Now,
assuming Eve plays correctly, it is easy to see that the nailamority seen infinitely
often corresponds to the lowest interval or interval gajedsinfinitely often by the
counter. Thus Eve has a winning strategy in the parity gamaedfonly if she has a
winning strategy in the interval game.

Theorem 10. Deciding if Eve wins an interval total sum game iElPSPACE.

We conclude by observing that if the interval game is encddadhary, then the
above reduction is a polynomial time reduction to the pagi#ynes on one-counter
graphs considered in [117], giving an upper bound to matchavwer bound.

Theorem 11. Deciding if Eve wins a unary encoded interval total sum gasRSPACE-
complete.
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6.3 Memory requirements

We now consider memory requirements for winning strategieisterval total sum
games. We show that, in general, infinite memory is requioedvinning strategies,
but for single interval games, winning strategies for Evechenly finite memory.

Lemma 5. Finite memory winning strategies are not sufficient in iatdrtotal sum
games.

Proof. Consider the game in Figulé 6 with the intervglsx, 0) U (0, c0). Eve has a
winning strategy in this game: if the play ever reachgthen she moves tg- if the
total sum is non-negative, and movegtootherwise. Clearly any play consistent with
this strategy will havéotal # 0 so it is winning for Eve. Now suppose Eve plays a
finite memory strategy. It follows there exists a memoryestathich cannot distinguish
between two distinct sums a§. Therefore, after taking sufficiently many loopsgat

it follows that there exists a memory state which cannotriistish between two sums
of different signs atj,. As Eve’s play depends only on her location and memory state,
there is a total value for which Eve makes the “wrong choice’,she either moves to
g> with a negative sum or tg. with a non-negative sum. Adam’s winning strategy
is then to play to this move of Eve and then to increase or dserthe total sum to
before moving tays. O

By exchanging the roles of the players and complementinmtkeval, we see that
even for single interval games Adam may require infinite mgm@ad/e now show this
is not the case for Eve. In fact, we show that having unbouirtedvals is necessary
for Eve to not have a finite memory winning strategy.

Lemma 6. Let(G, I) be an interval total sum game whefe Z is finite. If Eve has a
winning strategy then she has a finite memory winning styateg

Proof. As observed in the previous section, we can regard an inteteahsum game as
a parity game o’ x Z. It is well known [18] that positional strategies suffice iaripy
games, even on infinite graphs. However, in our case suchtegyrwould depend on
the current statand on the counter valyeso it would not immediately be realizable
with finite memory. We now show that ffn Z is finite and Eve has a winning strategy
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then we only need to consider a bounded set of counter vatueg <an realize the
strategy with finite memory. Let be a positional winning strategy for Eve dhx Z,
and letl = [inf I,sup I]. If o is winning from (v, c) wherec ¢ I we claim she only
requires finite memory to reach a stdté, ¢’) from which o is winning and where
¢ € 1. Consider the finitely-branching, infinite tree of plays sistent witho from
(v, c. Let us cut a branch when it first reaches a veftéxc') with ¢’ € 7. Note that
as we are following plays consistent with such a state is in the winning setafWe
claim the resulting tree is finite. If it were not, then by K@isilemma there exists an
infinite branch, that is, an infinite play consistent wittthat does not reach a vertex
(v', ) with ¢/ € 1. As all even priority states are only of the fofw1, ¢’) wherec € I,
such a play is winning for Adam, contradicting the fact thas a winning strategy for
Eve. This finite tree then serves as the memory states fotrtitegy to react from
(v, ¢). The finite memory strategy is now clear: if the current siste, c) with ¢ € T
she moves ta (v, c). If the play ever reaches a stdt€, ¢’) with ¢’ ¢ I she plays her
finite memory strategy until the play returns(td’, ¢”’) with ¢ € I. As o is positional,
there are at mos$t/| x |I| of these “out-of-bounds” states reachable (and possilely th
initial state(qo, 0)) so overall we only require finite memory. O

To complete the argument for single interval total sum gamesobserve that if
the interval is infinite then we are considering the cladsfo@shold problem for total
sum games. Positional strategies for these games were sbdersufficient in[[11].

Theorem 12. Let (G, I) be a single interval total sum game. If Eve has a winning
strategy then she has a finite memory winning strategy.
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