
ar
X

iv
:1

40
4.

48
56

v1
 [

cs
.L

O
]

18
 A

pr
 2

01
4

Quantitative games with interval objectives

Paul Hunter

Jean-François Raskin

April 2014

Abstract

Traditionally quantitative games such as mean-payoff games and discount sum
games have two players – one trying to maximize the payoff, the other trying to
minimize it. The associated decision problem, “Can Eve (themaximizer) achieve,
for example, a positive payoff?” can be thought of as one player trying to attain a
payoff in the interval(0,∞). In this paper we consider the more general problem
of determining if a player can attain a payoff in a finite unionof arbitrary intervals
for various payoff functions (liminf, mean-payoff, discount sum, total sum). In
particular this includes the interesting exact-value problem, “Can Eve achieve a
payoff of exactly (e.g.) 0?”

1 Introduction

Quantitative two-player games on graphs have been extensively studied in the verifica-
tion community [6, 8, 10, 15, 19]. Those models target applications in reactive system
synthesis with resource constraints. In these games two players, Eve and Adam, inter-
act by moving a token around a weighted, directed graph, for apossibly infinite number
of moves. This interaction results in a play which is an infinite path in the graph. The
value of the play is computed by applying a payoff function tothe sequence of weights
of the edges traversed along the path. Typical payoff functions are (lim)sup, (lim)inf,
mean-payoff, (total) sum, and discounted sum.

In the literature is usual to assume that Eve is attempting tomaximize the payoff
and Adam is attempting to minimize it. In this context all these games are determined,
that is the maximum that Eve can ensure is equal to the minimumthat Adam can ensure,
and this value can be computed in polynomial time for (lim)inf and (lim)sup [5], and in
pseudo-polynomial time for mean-payoff, discounted sum, and total sum [10,19]. The
associated decision problem is thethreshold problem: Given a game graph, a payoff
function and a thresholdν does Eve have a strategy to ensure all consistent plays have
payoff at leastν? The threshold problems for the aforementioned payoff functions are
all closely related, and it is known that Eve and Adam can playoptimally in those
games withmemoryless strategies[11]. Consequently the decision problem for all
those games is inNP∩ coNP. In fact, it can be shown inUP∩ coUP for mean-payoff,
discounted sum, and total sum, and inPTIME for (lim)inf and (lim)sup.

The threshold problem can be seen as game in which Eve is trying to force the
payoff to belong to the interval of values[ν,∞). In this paper we consider the more
general problem of determining if a player can attain a payoff in a finite union of

1

http://arxiv.org/abs/1404.4856v1

arbitrary intervals for the classical payoff functions mentioned above. That is, we are
interested in the following question: Given a weighted arenaG and a finite union of
real intervals, what is the complexity of determining if Evehas a winning strategy to
ensure the payoff of any consistent play lies within the interval union? In particular
this includes the interesting exact-value problem: Can Eveachieve a payoff of exactly
ν? Such objectives arise when considering efficiency constraints, for example can a
system achieve a certain payoff without exceeding a certaintarget? We consider two
versions of our problem depending on whether the numeric inputs (weights, interval
bounds and discount factor) are given in binary or unary. We also consider the memory
requirements for a winning strategy both for Eve and Adam. Our games are a natural
subclass of multi-dimensional quantitative games (see e.g. [6]), however our results are
largely incomparable with that paper as we consider a wider array of payoff functions
and our objective corresponds todisjunctionsof multi-dimensional objectives which
were not considered.

Payoff type Single interval Multiple intervals
Binary Unary

Liminf/limsup PTIME NP ∩ coNP PARITY GAME -c
Mean-payoff NP ∩ coNP PSPACE PARITY GAME -hard
Discounted sum (non-singleton) PSPACE-c PTIME

Discounted sum (exact value) PSPACE-hard ?
Total sum EXP-hard,EXPSPACE PSPACE-c

Table 1: Complexity of deciding the winner in interval games

Tables 1 and 2 summarize the results of this paper: the first table highlights the
complexity results and the second table highlights the memory requirements for play-
ing optimally. While the classical threshold problems for weighted games can be solved
in PTIME for (lim)inf and (lim)sup and inNP∩coNP for mean-payoff, discounted sum
and total sum, and memoryless strategies always suffice, thesituation for our interval
objectives is far richer:

• For liminf and limsup, we provide a polynomial time algorithm in the case of
a single interval. For a union of intervals, we show that these games are poly-
nomially equivalent to parity games: so we can solve them inNP ∩ coNP, and
a polynomial time algorithm for interval liminf games wouldprovide a polyno-
mial time algorithm for parity games (a long-standing open question in the area).
Optimal strategies are memoryless for both players.

• For interval mean-payoff games, we provide a recursive algorithm that executes

Payoff type Single interval Multiple intervals
(Eve/Adam)

Liminf/limsup Positional
Mean-payoff Finite/Positional Infinite
Discounted sum (non-singleton) Finite
Discounted sum (exact value) Infinite
Total sum Finite/Infinite Infinite

Table 2: Memory requirements for interval games

2

in polynomial space. This algorithm leads to aNP ∩ coNP algorithm in the
case of single interval objectives. While mean-payoff games can be solved in
polynomial time when weights are given in unary, we show herethat interval
mean-payoff games are at least as hard as parity games even when weights are
given in unary. So, a pseudo-polynomial time algorithm for interval mean-payoff
games would lead to a polynomial algorithm for parity games.For a union of
intervals, infinite memory may be necessary for both players, and for single in-
terval exponential memory may be necessary for Eve while Adam can always
play a memoryless strategy.

• Interval discounted sum games are complete for polynomial space when single-
ton intervals (and singleton gaps between intervals) are forbidden. The decidabil-
ity for the case when singletons are allowed is left open and it generalizes known
open problems in single player discounted sum graphs [1, 7].Finite memory
suffices for both players in the non-singleton case and infinite memory is needed
for both players when singletons are allowed.

• For the total sum payoff, we establish a strong link with one counter parity games
that leads to aPSPACE-complete result for unary encoding and anEXPSPACE

solution for the binary encoding together with anEXP-hardness result. For single
interval games Eve need only play finite memory strategies, while she may need
infinite memory in the general case. In both cases, Adam may require an infinite
memory strategy.

Structure of the paper Section 2 introduces the necessary preliminaries. In Sections
3, 4, 5, and 6 we consider the decision problems and memory requirements for the lim-
inf/limsup, mean-payoff, discounted sum, and total sum payoff functions, respectively.

2 Preliminaries

A game graph is a tupleG = (V, V∃, E, w, q0) where(V,E,w) is an edge-weighted
graph,V∃ ⊆ V , andq0 ∈ V is the initial state. Without loss of generality we will
assume all weights are integers. In the sequel we will depictvertices inV∃ with squares
and vertices inV \V∃ with circles. In complexity analyses we will denote the maximum
absolute value of a weight in a game graph byW . If V ′ ⊆ V , we denote byG \V ′ the
game graph induced byV \ V ′.

A play in a game graph is an infinite sequence of statesπ = v0v1 · · · wherev0 = q0
and(vi, vi+1) ∈ E for all i. Given a playπ = v0v1 · · · and integersk, l we define
π[k..l] = vk · · · vl, π[..k] = π[0..k], andπ[l..] = vlvl+1 · · · . We extend the weight
function to partial plays by settingw(π[k..l]) =

∑l−1
i=k w((vi, vi+1)). A strategy for

Eve (Adam) is a functionσ that maps partial plays ending with a vertexv in V∃ (V \V∃)
to a successor ofv. A strategy has memoryM if it can be realized as the output of a
finite state machine withM states. A memoryless (or positional) strategy is a strategy
with memory1, that is, a function that only depends on the last element of the given
partial play. A playπ = v0v1 · · · is consistent with a strategyσ for Eve (Adam) if
whenevervi ∈ V∃ (vi ∈ V \ V∃), σ(π[..i]) = vi+1.

3

2.1 Payoff functions

A play in a game graph defines an infinite sequence of weights. We define below
several common functions that map such sequences to real numbers.

Liminf/limsup. The liminf (limsup) payoff is determined by the minimum (maxi-
mum) weight seen infinitely often. Given a playπ = v0v1 · · · we define:

lim inf(π) = lim inf
i→∞

w(vi, vi+1) lim sup(π) = lim sup
i→∞

w(vi, vi+1).

Note that by negating all weights and the endpoints of the intervals we transform a
limsup game to a liminf game and vice-versa.

Mean-payoff. Themean-payoffvalue of a play is the limiting average weight, how-
ever there are several suitable definitions because the running averages might not con-
verge. The mean-payoff values of a playπ we are interested in are defined as:

MP (π) = lim inf
k→∞

1

k
w(π[..k]) MP (π) = lim sup

k→∞

1

k
w(π[..k]).

As with liminf/limsup games we can switch between definitions by negating weights
and interval endpoints, so we will only consider theMP function.

Discounted sum. The discounted sumis defined by a discount factorλ ∈ (0, 1).
Given a playπ = v0v1 · · · , we define:

DSλ(π) =

∞
∑

i=0

λi · w(vi, vi+1).

Total sum. The total sumcondition can be thought of as a refinement of the mean-
payoff condition, enabling discrimination between plays that have a mean-payoff of0.
Given a playπ we define:

Total(π) = lim inf
k→∞

w(π[..k]) Total(π) = lim sup
k→∞

w(π[..k]).

As with liminf/limsup games we can switch between definitions by negating weights
and interval endpoints, so we will only consider theTotal function.

2.2 Interval games

For a fixed payoff functionF , anintervalF gameconsists of a finite game graph and a
finite union of real intervalsI = I1 ∪ · · · ∪ Ir . Given an intervalF game(G, I), a play
π in G is winning for Eve ifF (π) ∈ I and winning for Adam ifF (π) /∈ I. We say a
player wins the interval game if he or she has a strategyσ such that all plays consistent
with σ are winning for that player. For convenience we will assume the intervals are
non-overlapping and ordered such thatsup Ii ≤ inf Ii+1 for all i.

4

2.3 Parity games

A parity game is a pair(G,Ω) whereG is a game graph (with no weight function) and
Ω : V → N is a function that assigns a priority to each vertex. Plays and strategies are
defined as with interval games. A play defines an infinite sequence of priorities, and
we say it is winning for Eve if and only if the minimal priorityseen infinitely often is
even.

3 Liminf games

The first payoff function we consider is thelim inf function. Note that as this always
takes integer values, we can assume all intervals are closedor open as necessary. We
show below that deciding interval liminf games is polynomially equivalent to deciding
parity games. In particular the number of intervals is equalto the number of even
priorities required, so single interval liminf games are equivalent to parity games with
at most three priorities and can therefore be solved in polynomial time [16]. Further,
the range of the priorities are determined by range of the weight function and vice
versa, so this equivalence also holds for unary encoded interval liminf games.

Theorem 1. The following problems are polynomially equivalent:

(i) Deciding if Eve wins a unary encoded interval liminf game;

(ii) Deciding if Eve wins a binary encoded interval liminf game; and

(iii) Deciding if Eve wins a parity game.

Proof. (i)⇒(ii): Trivial.
(ii)⇒(iii): For this reduction, we use the following function which will also be used

in Section 6. LetI = I1∪I2 ∪· · ·∪Ir be a finite union of closed integer intervals such
thatsup Ii < inf Ii+1 for all i. DefineΩI : Z→ [1, 2r + 1] as follows:

ΩI(n) =







2i if n ∈ Ii,
1 if n < inf I1, and
max{1 + 2i : sup Ii < n} otherwise.

Now suppose(G, I) is an interval liminf game. We transform the game graphG to
G′ as follows. Every edgee is sub-divided and the subdividing vertex is given priority
ΩI(w(e)). The original vertices ofG are all given priority2r + 1.

It is not difficult to see that there is a1-1 correspondence between plays inG and
plays inG′, and that for any play inG, lim inf w(e) ∈ Ii for somei if and only if the
minimum priority in the corresponding play inG′ seen infinitely often is even.

(iii)⇒(i): To go the other direction, given a parity game played onG we transform
it to an interval liminf game played onG′ as follows.G′ is the weighted graph obtained
by setting the weight of an edge to be the priority at the vertex at the tail of the edge
(that is, the vertex for which the edge is outgoing). The intervals are singleton intervals
containing each of the even priorities that occur inG. Clearly any play inG is a play in
G′ and it is not difficult to see that for a play inG the minimum priority seen infinitely
often is even if and only if thelim inf of the weights of all edges in a play ofG′ lie in
a given interval.

5

We observe that the above reductions between parity and liminf games do not sig-
nificantly alter the topology of the game graph (if at all). Inparticular, positional strate-
gies in one game readily translate to positional strategiesin the other. It follows from
the positional determinacy of parity games [18], that:

Corollary 1. Positional strategies suffice for interval liminf games.

4 Mean-payoff games

In this section we investigate interval mean-payoff games.We give a recursive al-
gorithm that repeatedly asks for a solution for themean-payoff threshold problem:
Given a game graphG and a thresholdν ∈ Q does Eve have a strategy to ensure
the (liminf) mean-payoff of all consistent plays is at least1 ν? As mentioned earlier
this problem is known to be inNP ∩ coNP, and solvable in timeO(|V | · |E| · W)
and spaceO(|V | · log(|E| · W)) [4]. We denote this problem byMP∼ν(G) where
∼∈ {≥, >,≤, <} depending on whether Eve is maximizing or minimizing the payoff
and whether or not a payoff ofν is winning for Eve. It is well known [8] that the strict
threshold problem can be reduced to a non-strict threshold problem – this follows from
the fact that mean-payoff values are restricted to a finite set of rationals.

Our algorithm implies that for a fixed number of intervals theproblem reduces
to the classic threshold problem (under polynomial-time Turing reductions). In Sec-
tion 4.3 we consider single interval mean-payoff games in more detail. In particular we
show that in this case finite memory strategies (indeed, positional strategies for Adam)
suffice for winning strategies. However, our first observation of this section is that in
general interval mean-payoff games may require infinite memory.

Lemma 1. Finite memory winning strategies are not sufficient in interval mean-payoff
games.

Proof. Consider the game in Figure 1 whereI = (0, 1] ∪ [2,∞). Eve has an infinite
memory winning strategy in this game as follows. First she plays toq1. Then she
counts how many times Adam takes the loop(q1, q1). If Adam returns toq0 then Eve
takes the loop(q0, q0) the same number of times before returning toq1. Clearly any
play consistent with this strategy that only visitsq0 finitely often will satisfyMP = 2,
and any play that visitsq0 infinitely often will satisfyMP = 1. Therefore the strategy
is winning for Eve. Now suppose Eve plays a finite memory strategyσ with memory
M . We observe that any play consistent withσ that visitsq0 either remains inq0 or
exitsq0 in at mostM steps – if a play stays inq0 for more thanM steps then a memory
state must have been revisited, thus the strategy will keep the play inq0 indefinitely.
Consider the following (finite memory) strategy of Adam: whenever the play reaches
q1, take the loop(q1, q1)M+1 times then move toq0. We claim this strategy is winning
for Adam. If at some point the play consistent withσ and this strategy remains inq0
indefinitely then it hasMP = 0, so it is winning for Adam. Otherwise the play exits
q0 infinitely often, that is the edge(q0, q1) is taken infinitely often. Let us break up the
play into the segments defined by successive occurrences of this edge. Following the
above argument the length of each of these segments is between M + 3 and2M + 3,
and the weight of each of these segments is exactly2M + 4. Thus the average weight
for each segment lies between1 + 1

2M+3 and2 − 2
M+3 inclusive. AsM is fixed, it

follows thatMP ∈ (1, 2) and thus the play is winning for Adam.

1or at most if she is minimizing the payoff

6

q0 q1

1

2

1

0

Figure 1: Interval mean-payoff game (I = (0, 1] ∪ [2,∞)) which requires infinite
memory

4.1 Upper bounds

We now present an algorithm, Algorithm 1, for computing the winning regions in an
interval mean-payoff game.

Algorithm 1 MP I(G)

Input: A game graphG = (V, V∃, E, w, q0) and a finite union of real intervalsI.
Output: (W ∃,W ∀) whereW ∃ (W ∀) are the vertices from which Eve (Adam) has a

winning strategy.
if I = ∅ then

return (∅, V)
end if
a← inf I
if a = −∞ then
(W,W ′)← MPR\I(G) {G is G with V∃ andV \ V∃ swapped}

else
W ← ∅
repeat
(A,A′)← MP≻a(G) {If a ∈ I then≻=≥ otherwise≻=>}
(B,B′)← MP(−∞,a]∪I(G)
W ←W ∪A′ ∪B′

G← G \ (A′ ∪B′)
until A′ ∪B′ = ∅

end if
return (V \W,W)

The correctness of the algorithm is given by the following lemma.

Lemma 2. Let (G, I) be an interval mean-payoff game.MPI(G) correctly computes
the winning regions for Adam and Eve.

Proof. We observe that by symmetry the winning regions ofMPI(G) are precisely the
complements of the winning regions ofMPR\I(G). Thus the algorithm correctly com-
putes the winning regions forI if and only if correctly computes the winning regions
for R \ I. In particular we can assume that eitherI = ∅ or inf I > −∞.

The proof is by induction on the number of interval boundaries inI. If there are no
boundaries thenI = ∅ and soMPI(G) returns the correct value:(∅, V). Now suppose
a = inf I > −∞. Note thatI ′ = (−∞, a] ∪ I has one interval boundary fewer

7

thanI, so by the induction hypothesis the recursive call in line 11correctly computes
the winning regions ofG for the intervalI ′. Let Wi (i = 0, 1, . . .) denote the set of
vertices inW afteri iterations. Note that the algorithm runs untilWn = Wn+1, and the
subgraph ofG used in thei-th iteration isG \Wi−1. We prove by induction oni that
Adam has a winning strategy from every vertex inWi. Fori = 0, W0 = ∅ so the result
holds trivially. Now suppose Adam has a winning strategy from every vertex inWi,
and letv ∈Wi+1\Wi. Eitherv is in the winning region of Adam forMP≻a(G\Wi) or
v is in the winning region of Adam forMPI′(G\Wi). In both cases the corresponding
winning strategy will ensure a payoff outsideI and will therefore be winning for plays
restricted toG \Wi. Thus his strategy fromv is to play this strategy until a vertex in
Wi is reached, whereupon he switches to the winning strategy from that vertex.

We now show that Eve has a winning strategy on the vertices inV \ W . Note
that on these vertices Eve has two strategies: a memoryless strategyσ> which ensures
MP ≻ a; and, by the inductive hypothesis, a strategyσ< which ensures a payoff in
the intervalI ′. Also note that plays consistent with these strategies remain in V \W .
We now show how to combine these two strategies to obtain a winning strategy for the
interval I. For simplicity we will assumea ∈ I, if it is not the case, then the same
arguments apply by replacinga with the smallest payoff Adam can attain againstσ>.
Let I1 be the interval ofI with a = inf I1, and lett be any element ofI1. The strategy
for Eve is to track the current average weight of the play so far. If it is less thant then
she playsσ> and if it is greater than or equal tot then she playsσ<. Clearly if she
changes strategy only finitely often then her strategy is winning: if she eventually only
playsσ> then the payoff will be in[a, t) ⊆ I1 ⊆ I; and if she eventually only playsσ<

then the payoff will be in[t,∞) ∩ I ′ ⊆ I. Now suppose the play causes Eve to switch
strategy infinitely often. The problem here is that when switching toσ> the average
weight may go belowa, and if this happens infinitely often thelim inf average may be
belowa. However, asσ> is memoryless, the average aftern steps will never be more
than (|V |+1)W

n
belowa: this is seen easiest by takinga = 0 and considering the total,

rather than the average, weight. This tends to0 asn tends to∞ henceMP is at least
a. As the average goes belowt infinitely often,MP ≤ t. Therefore the payoff of the
play is in[a, t] ⊆ I1 ⊆ I, and hence the combined strategy is winning for Eve.

The running time for Algorithm 1 is|V |2r−1 ·MP, whereMP is the running time
for an algorithm to solve the mean-payoff threshold problem. It is straightforward to
see that the algorithm can be implemented in polynomial space.

Theorem 2. LetG be a game graph andI a finite union ofr real intervals. Whether
Eve wins the interval mean-payoff game(G, I) can be decided in timeO(|V |2r ·|E|·W)
and spaceO(r · |V | · log(|E| ·W)).

We observe that although the players may require infinite memory for a winning
strategy, Algorithm 1 shows that a winning strategy can be succinctly represented by
2r positional sub-strategies. It is not clear that given such acertificate whether there
exists an efficient algorithm for computing the winning region, however we believe that
this is the case. By the symmetry of the roles of the players, such an algorithm would
show that the interval mean-payoff game is both inNP andcoNP.

Conjecture 1. Determining whether Eve wins an interval mean-payoff game is inNP∩
coNP.

8

v0
v+

v−
v

p

p+ 1

p

p

p− 1

p

Figure 2: Vertex gadget for vertexv ∈ V \ V∃ with even priorityp

4.2 Lower bound

The above conjecture would hold if we could solve interval mean-payoff games with
only polynomially many calls to the mean-payoff threshold problem. We now give a
lower bound for the complexity of deciding interval mean-payoff games which suggests
any such algorithm would yield quite remarkable results: wereduce parity games to
interval mean-payoff games with small weights and small interval bounds. In particular
this implies that any pseudo-polynomial time algorithm (including polynomially many
calls to the threshold problem) would yield a polynomial time algorithm for parity
games.

Theorem 3. There is a polynomial time reduction from parity games to unary-encoded
interval mean-payoff games.

Proof. Let (V, V∃, E, q0,Ω) be a (min-)parity game. Without loss of generality we
can assume that the set of priorites is contained in[0, |V |]. We construct an interval
mean-payoff game(V ′, V ′

∃, E
′, w, q′0, I) as follows.

• I = [0, 1)∪ [2, 3) ∪ · · · ∪ [n, n+ 1) wheren is the smallest even integer greater
than or equal to|V |;

• V ′ = V ∪ V × {0,+,−}. For simplicity we write(v, ∗) asv∗;

• q′0 = q0;

• V ′
∃ = V∃ ∪ {v0, v+, v− : Ω(v) is even};

• E′ andw are constructed as follows:

– For each(v, w) ∈ E, (v, w0) ∈ E′ and the weight of this edge isΩ(v),

– For eachv ∈ V : (v0, v+), (v0, v−), (v+, v), (v−, v) ∈ E′ all with weight
Ω(v), (v+, v+) ∈ E′ with weightΩ(v)+1, and(v−, v−) ∈ E′ with weight
Ω(v)− 1.

Intuitively, we replace each vertex in the original game with the gadget shown in Fig-
ure 2. If the priority of the vertex is even then the gadget is controlled by Eve, and if it
is odd then it is controlled by Adam. The last vertex in the gadget is controlled by the
player that controlled the original vertex.

9

As the weights and interval boundaries are integers in[0, |V | + 1] this is clearly a
polynomial time translation to a unary-encoded interval mean-payoff game. We claim
that Eve wins the parity game if and only if she wins the interval mean-payoff game.
Suppose she has a positional winning strategyσ in the parity game. We define her strat-
egyσ′ as follows. For any vertexv ∈ V∃ she moves to the vertex gadget corresponding
to the vertex she would have moved to underσ. That is,σ′(v) = (σ(v), 0). Whenever
the play reaches a vertex gadget that she controls (i.e. a vertex v0 wherev has even
priority p in the parity game), her strategy is to remain in the gadget until the average
weight of the current play lies in the interval[p, p + 1

2]. She does this by moving to
v+ if the current average is below the interval, and tov− if the average is above, and
then staying at that vertex until the average weight reachesthe interval. Note that after
sufficiently many steps this will always be possible. When the average weight lies in
[p, p+ 1

2] she moves tov and the game continues. There is a clear1-1 correspondence
between plays consistent withσ and plays consistent withσ′, and if a play in the parity
game visits a vertex with even priorityp infinitely often, then the running average of
the corresponding play will lie in the interval[p, p + 1

2] ⊆ I infinitely often. By con-
struction, Adam can never reduce the mean-payoff below the interval[p, p+ 1

2] unless
the play reaches a gadget corresponding to a vertex of lower priority. This is important
because we use thelim inf definition of mean-payoff. Further, if he chooses to remain
in a gadget indefinitely he will lose. As all plays consistentwith σ have the property
that the minimal priority visited infinitely often is even, it follows that for all playsπ
consistent withσ′ there is some even priorityp such thatMP (π) ∈ [p, p + 1

2] ⊆ I.
Thus theσ′ is winning for Eve. For the converse we see that Adam can translate a
winning strategy from the parity game in the same manner.

4.3 Single interval

We now examine in more detail the case whenI is a single interval. As we can replace
any strict threshold call with a non-strict threshold we canassume without loss of
generality thatI is closed. The simplification of Algorithm 1 to a single closed interval
is given in Algorithm 2.

Algorithm 2 MP [a,b](G)

Input: A game graphG and a bounded closed real interval[a, b].
Output: (W ∃,W ∀) whereW ∃ (W ∀) are the vertices from which Eve (Adam) has a

winning strategy.
W ← ∅
repeat
(A,A′)← MP≥a(G)
(B,B′)← MP≤b(G \A′)
W ←W ∪A′ ∪B′

G← G \ (A′ ∪B′)
until A′ ∪B′ = ∅
return (V \W,W)

We observe that Algorithm 2 makes at most a linear number of calls to the mean-
payoff threshold problem, so lies in the intersection ofNP andcoNP.

Theorem 4. Deciding if Eve wins a single interval mean-payoff game is inNP∩coNP.

10

4.3.1 Memory considerations

The strategies for Adam and Eve described in the proof of Lemma 2 require infinite
memory. We now show, with a careful analysis, that in the caseof a single interval this
can be improved.

Theorem 5. Let (G, I) be a single interval mean-payoff game. If Adam has a winning
strategy then he has a positional winning strategy. If Eve has a winning strategy then
she has a strategy that requires finite memory.

Proof. Algorithm 2 consists of repeatedly removing vertices from which Adam can
either ensure the mean-payoff lies above or belowI. Clearly Adam has a winning
strategy from any vertex removed: he plays his (positional)winning strategy corre-
sponding to the level at which the vertex was removed, until the play reaches a vertex
removed at an earlier stage. We observe that any consistent play will never return to a
vertex removed at a later stage (as such vertices are in the winning set for Eve at the
same point of the iteration), so this strategy is in fact positional. Any play consistent
with this strategy will eventually stabilize at some stage of the iteration, whereupon
Adam’s strategy for that stage will ensure the mean-payoff lies outsideI. We also ob-
serve that this result follows from the fact that the objective is prefix-independent and
convex, so from [14] Adam has a positional winning strategy.

The idea behind Eve’s finite memory strategy onW ∃ is to keep track of the total
weight seen so far (rather than the average as in the proof of Lemma 2)modulo cycles
with average weight inI. This ensures, with the strategy outlined below, that the total
weight will remain within some bounded range, and hence the strategy will only require
finite memory.

By subtracting a constant from the weights of all edges and the interval bounds, we
can assume that0 ∈ I. We observe on the vertices inW ∃ Eve has two (positional)
strategies:σ< which ensuresMP ≤ sup I andσ> which ensuresMP ≥ inf I.
Eve’s strategy is to alternate between these two strategies, as in the proof of Lemma 2,
however now she changes when the following condition is met.We keep a stack-based
history of the current play and when a cycleχ is completed we remove it from the
history of the current play, keeping the first vertex of the cycle on the top of the stack.
If w(χ)/|χ| ∈ I we sayχ is goodand she continues to play her current strategy. If
w(χ)/|χ| /∈ I, she addsw(χ) to a counter. Note that if she was playingσ< she would
only subtract from the counter and if she was playingσ> then she would only add to the
counter becauseσ< andσ> are winning positional strategies. She switches strategies
if the counter changes sign. That is, if she was playingσ< and the counter value falls
below 0 she switches toσ>, and she switches toσ< if she was playingσ> and the
counter value goes above0. Clearly this strategy requires only exponential memory:
Eve needs only to store at most|V | vertices in the history and becauseσ> andσ<

are positional the counter values are bounded by±|V | ·W . We claim that any playπ
consistent with this strategy hasMP (π) ∈ I.

Letπ be a play consistent with the strategy. Let us consider the state of the strategy
after k steps of the play. Letwk be the total weight of all good cycles popped, and
lk ≤ k their total length. Letck denote the counter value. We observe that the stack
contents being stored are always a finite prefix ofπ (when read from bottom to top), so
we can definesk, the weight of the stack, as the weight of the corresponding prefix. It
is clear from the definition of the strategy that:

w(π[..k]) = wk + ck + sk.

11

Also,−|V | ·W ≤ ck, sk ≤ |V | ·W , andwk

lk
∈ I. As0 ∈ I we haveinf I ≤ 0 ≤ sup I,

so

inf I ≤
lk(inf I)

k
≤

wk

k
≤

wk

lk
≤ sup I.

Therefore,

w(π[..k])

k
≥
−2|V | ·W

k
+ inf I → inf I ask →∞, and

w(π[..k])

k
≤

2|V | ·W

k
+ sup I → sup I ask →∞.

Hence, asI is closed,MP (π) ∈ I as required.

5 Discount sum games

In this section we consider interval discount sum games. Here we make a distinction
between whether or not singleton intervals (and singleton gaps between intervals) are
permitted, because unlike other payoff functions considered in this paper there is a
marked difference between the corresponding games. We showthat for non-singleton
intervals the problem of determining the winner isPSPACE-complete and as a conse-
quence of our algorithm we show that finite memory stategies suffice. For singleton
intervals (including the exact value problem) ourPSPACE-hardness result holds, but is
not even known if determining the winner is decidable. We give a simple example that
shows that infinite memory is required for winning strategies in this case.

5.1 Single, non-singleton intervals

We show that the problem for discount sum games in this case isPSPACE-complete
for any discount factorλ.

Lower bound. To showPSPACE-hardness we reduce from the subset sum game
defined in [9]. The subset sum game is specified by a targett ∈ N and a list of pairs of
natural numbers(a1, a′1), (a2, a

′
2), . . . , (an, a

′
n). The game takesn rounds, in roundi,

one player (Adam ifi is odd, Eve ifi is even) choosesai or a′i. After n rounds Eve
wins if and only if the sum of the selected numbers ist. Given an instance of the subset
sum game we construct the following interval discount sum game (for discount factor
λ):

• V = {v1, v2, . . . , vn+1},

• V∃ = {vi : i is even},

• q0 = v1,

• E andw defined as follows:

– For 1 ≤ i ≤ n there are two edges fromvi to vi+1, one with weight ai

λi−1

and one with weight a
′

i

λi−1 ,

– There is a loop with weight0 onvn+1.

• I = (t− 1, t+ 1)

12

. . .

a1

a′
1

a2

λ

a
′

2

λ

an

λn−1

a
′

n

λn−1

0

Figure 3: Reduction from subset sum games to interval discount sum games

The reduction is illustrated in Figure 3.
Note that aslog

(

a
λn

)

= log(a)−n·log(λ) the binary representations of the weights
on this graph are still polynomial in the size of the input, sothis is a polynomial time
translation. It is clear that a play in this game correspondsto a selection of elements
from the pairs, and the discounted sum of the play is equal to the sum of the corre-
sponding elements. As this sum is always an integer, the discounted sum lies in the
interval(t− 1, t+1) if and only if the sum is equal tot. Thus this is a polynomial time
reduction from subset sum games to interval discounted sum games.

A corollary of this construction is that positional strategies are not sufficient for
interval discount sum games.

Upper bound. Givenv ∈ V and strategiesσ andτ for Eve and Adam respectively,
we definevvστ to be the payoff of the unique play fromv consistent withσ andτ . Two
important (memoryless) strategies for Eve areσmax andσmin, the strategies which, for
all statesv, maximizeminτ v

v
στ and minimizemaxτ v

v
στ respectively.

The idea behind the upper bound centres around the observation that after many
steps the remainder of any play does not contribute much to the overall discounted sum.
If the target interval is non-singleton then after sufficiently many steps the problem
reduces to the classical threshold problem. Thus we can stopthe game after finitely
many steps when it becomes a trivial matter to determine if the overall discounted sum
will lie in the interval or not. The key lemma for the result isthe following:

Lemma 3. Suppose Eve has a winning strategy to ensure the discounted sum lies in an
intervalI, and let

N =

⌊

log(|I|) + log(1− λ)− log(2W)

logλ

⌋

whereW is the maximum absolute value of any weight occurring inG. Then Eve has
a winning strategy that agrees with eitherσmax or σmin afterN steps.

Note that whether the strategy agrees withσmax or σmin depends on the play up to
theN -th step. It is feasible that against one strategy of Adam this strategy will agree
with σmax but against another strategy it will agree withσmin.

Proof. We first observe thatN is chosen such that for alln > N we have

|I| > λn ·

(

2W

1− λ

)

. (1)

That is, after theN -th step of any play, the overall contribution of the remainder of the
play is restricted to an interval smaller thanI.

13

Letσ be a winning strategy for Eve. The desired winning strategy will follow σ for
N steps and then one ofσmax or σmin depending on the value of the play in a manner
described presently. Suppose afterN steps the current play has valuex and is in state
v. Asσ is a winning strategy, we have for any strategyτ for Adam:

x+ λN+1 · vvστ ∈ I. (2)

Now, as|vvστ | ≤
W
1−λ

, it follows from (1) and (2) that at least one of the followingis
true:

x+ λN+1 ·
W

1− λ
∈ I, or (3a)

x− λN+1 ·
W

1− λ
∈ I. (3b)

If (3a) holds then we followσmax, otherwise we followσmin. To show that the resulting
strategy is winning, let us suppose (3a) holds, the case for (3b) being similar. From the
definition ofσmax we have, for any statew and any strategyτ of Adam:

v
w
στ ≤ v

w
σmaxτ

≤
W

1− λ
.

Hence it follows from (2) that for any strategyτ of Adam:

x+ λN+1 · vvσmaxτ
≥ x+ λN+1 · vvστ ∈ I,

and from (3a):

x+ λN+1 · vvσmaxτ
≤ x+ λN+1 ·

W

1− λ
∈ I.

Thus the payoff of any play consistent with this strategy lies in I and is therefore
winning for Eve.

Corollary 2. Finite memory strategies are sufficient in non-singleton interval discount
sum games.

The algorithm for determining the winner of a non-singletoninterval discount sum
game is straightforward. We run an alternating Turing Machine forN steps to guess
an initial play. Note thatN is polynomial in the size of the input, so this can be done
in PSPACE. Suppose the play ends in statev with the current discounted sumx. We
compute the four values:

maxmax = maxτ v
v
σmaxτ

minmax = minτ v
v
σmaxτ

maxmin = maxτ v
v
σminτ

minmin = minτ v
v
σminτ

.

These are computable inNP ∩ coNP: minmax andmaxmin using the standard algo-
rithm for discount sum games, andmaxmax (minmin) by fixing σmax (σmin respec-
tively), computed in the previous step, and treating the resulting game as a solitaire
discount sum game with Adam trying to maximize (minimize) the payoff. Finally we
check if either:

x+ λN+1 ·minmax ∈ I and x+ λN+1 ·maxmax ∈ I, or

x+ λN+1 ·minmin ∈ I and x+ λN+1 ·maxmin ∈ I.

It is clear that one of the above conditions holds if and only if σmax or σmin is winning
from the current position. Therefore, from Lemma 3, one of the above conditions holds
if and only if Eve has a winning strategy.

14

Theorem 6. Let G be a game graph,I ⊆ R a non-singleton real interval andλ ∈
(0, 1). Deciding if Eve wins the interval discount sum game(G, I, λ) is PSPACE-
complete.

We observe that if the weights, interval bounds and discountfactor are all encoded
in unary thenN is logarithmic in the size of the input andmaxmax,minmax,maxmin,
andminmin can all be computed in polynomial time using a pseudo-polynomial time
algorithm for the threshold problem for discount sum games (see e.g. [19]). Thus the
above algorithm runs in polynomial time.

Theorem 7. Let G be a game graph,I ⊆ R a non-singleton real interval andλ ∈
(0, 1) all encoded in unary. Deciding if Eve wins the interval discount sum game
(G, I, λ) is inPTIME.

5.2 Multiple intervals

The algorithm of the previous section also applies to multiple intervalsas long as the
gaps between the intervals are also non-singleton. This follows from the observation
that after sufficiently many steps the overall discount payoff will not deviate too far
from the current value, so at that point the game reduces to the single interval case.

Theorem 8. LetG be a game graph,I a finite union of real intervals such that neither
I nor R \ I contains singleton elements, andλ ∈ (0, 1). Deciding if Eve wins the
interval discount sum game(G, I, λ) is PSPACE-complete.

5.3 Singleton intervals

When the set of intervals (or their complement) include singleton intervals, the situa-
tion is more complicated. Following the same argument as theprevious section, after
sufficiently many steps the problem reduces to the exact value problem: Given a game
graphG, a discount factorλ ∈ Q and a targett ∈ Q, does Eve have a strategy to ensure
the discounted sum is exactlyt?

It is currently open whether this problem is even decidable,however thePSPACE-
hardness result from the previous section (using the interval{t} rather than(t−1, t+1))
gives a lower-bound. The problem is related to the universality problem for discount
sum automata [2], a well-known problem for which decidability remains open [1]. The
problem was also studied for Markov Decision Processes and graphs (i.e. one-player
games) in [7] where it was shown to be decidable for discount factors of the form
λ = 1

n
, and that in general infinite memory is required.

Lemma 4 ([7]). There exist exact value discount sum games for which an infinite
memory is required for a winning strategy.

6 Total sum games

Total sum games refine mean-payoff games and can be seen as a special case of dis-
count sum games where the discount factor is1. Assuming the graph has integer
weights,Total will always be an integer (or±∞), thus we can assume all intervals
are closed or open as necessary.

The objective of total sum games is similar to reachability in one-dimensional vec-
tor addition systems with states [3] and counter reachability games [15], however we

15

−1

+1

0

Figure 4: Exact value discount sum game (λ = 2
3 , t = 0) that requires infinite memory

(modified from [7])

are interested in values seen infinitely often rather than reaching a particular state and
counter value. The complexity bounds we obtain are similar to these problems, indeed
we use the same problems for establishing the bounds. However it is not clear if there
is a more direct reduction between these problems.

6.1 Lower bounds

In this section we establish the following result:

Theorem 9. • The problem of deciding if Eve wins an interval total sum gameis
EXP-hard.

• The problem of deciding if Eve wins a unary-encoded intervaltotal sum game is
PSPACE-hard.

6.1.1 Binary encoding

We first show that deciding the winner of interval total sum games isEXP-hard by
reducing fromcountdown games. A countdown game is played on a weighted graph,
where all weights are negative. The play starts by setting a counter to a given initial
value. Whenever an edge is taken the counter is decremented by the weight. Eve wins
if and only if she reaches a vertex with the counter exactly0. Deciding the winner
of countdown games is known to beEXP-complete [13]. Note that by subdividing
edges if necessary we can assume that the players play alternately, that is the graph
is bipartite. The reduction is straightforward, given a countdown gameG with initial
creditc we construct the following total sum game. We add two new vertices (of Eve)
vI andv⊥. There is an edge fromvI to the initial vertex ofG with weightc, and an
edge of weight0 from every vertex of Eve inG to v⊥. Also, for every edgee = (v, v′)
wherev is a vertex of Eve we add another edge(v, v⊥) of weightw(e). Finally we
have an edge(v⊥, v⊥) of weight0. Clearly Eve can ensureTotal = 0 if and only if
she can reachv⊥ with a total sum of0. Thus she can win the interval total sum game,
with interval{0}, if and only if she can win the countdown game.

6.1.2 Unary encoding

For unary-encoded interval total sum games, we reduce from the non-emptiness prob-
lem for one letter alphabet alternating automata, shown to bePSPACE-complete in [12].
Again, the reduction is simple as this problem can be viewed as a countdown game

16

where all edges have weight−1 and Eve has to guess the initial credit. The guessing
stage can be implemented by having a loop onvI with weight+1. The remainder of
the reduction is as in the reduction from countdown games.

6.2 Upper bound

We now show that interval total sum games can be solved inEXPSPACE by reducing
them to parity games on infinite graphs described by one-counter machines. Such
games were studied in [17] where determining the winner was shown to be decidable
in PSPACE, but the graphs were described by aunarycounter machine, or equivalently,
pushdown graphs with a single-letter alphabet. Here we use adefinition corresponding
to the use of a binary-valued counter (also called long-range in [15]). More formally, a
one-counter game graph is described by a tuple(V, V∃, E,E0, w, q0) where(V,E,w)
is a finite weighted graph,V∃ ⊆ V ,E0 ⊆ V ×V andq0 ∈ V . The (infinite) unweighted
game graph corresponding to such a tuple is(V × Z, V∃ × Z, E′, (q0, 0)) whereE′ is
defined as follows:

• If e = (v, v′) ∈ E then for allc ∈ Z,
(

(v, c), (v′, c+ w(e))
)

∈ E′, and

• If (v, v′) ∈ E0 then
(

(v, 0), (v′, 0)
)

∈ E′.

Intuitively a one-counter game graph is a game graph augmented with a counter which
is incremented or decremented by weights on traversed edges. A special set of edges,
E0, are activated only if the counter has value0. It is clear a binary one-counter graph
can be described by an exponentially larger unary one-counter graph2, hence our re-
duction yields anEXPSPACE algorithm.

The key observation for the reduction is that interval totalsum games can be viewed
as parity games onV × Z, where the second component keeps track of the total sum
seen so far. The priority of a vertex(v, c) is determined by which interval (or gap
between intervals) containsc, in the same manner used in the equivalence between
liminf games and parity games in Section 3. However, we cannot use the result on par-
ity games on one-counter graphs directly for this observation because for those games
the priorities are defined by the states of the counter-machine and not the values of
the counter. Instead, we have Eve assert which interval (or gap between intervals) the
counter is in, and give Adam the ability to punish her if she claims falsely.

Let (V, V∃, E, w, q0, I) be an interval total sum game. Recall from Section 3 the
definition of ΩI . Let us definemi := minΩ−1

I (i) andMi := maxΩ−1
I (i). We

construct a parity game on a one-counter graph(V ′, V ′
∃, E

′, E′
0, w

′, q′0,Ω) as follows.

• V ′ = (V × {0, 1})× [1, 2r + 1] ∪ {ve : e ∈ E} ∪ {v0, v⊥, v⊤};

• V ′
∃ = E ∪ {v0, v⊥, v⊤} ∪ {(v, 1, i) : v ∈ V∃ andi ∈ [1, 2r + 1]};

• q′0 = (q0, 1,ΩI(0));

• E′
0 = {(v⊥, v0), (v⊤, v0)};

• E′ andw′ given as follows, for alli ∈ [1, 2r + 1]:

– For everye = (v, v′) ∈ E, an edge from(v, 1, i) to ve with weightw(e)
and an edge fromve to (v′, 0, i) with weight0,

2We allow negative counter values, but this can be handled with non-negative counter values by doubling
the state space

17

v, 1, i ve v′, 0, i′ v′, 1, i′

v⊥ v⊤

v0

w(e) 0 0

−mi′ −Mi′

= 0? = 0?

−1 +1

0

Figure 5: Edge gadget for edgee = (v, v′), v /∈ V∃, v′ ∈ V∃

– An edge from(v, 0, i) to v⊥ with weight−mi if mi > −∞,

– An edge from(v, 0, i) to v⊤ with weight−Mi if Mi <∞,

– An edge from(v, 0, i) to (v, 1, i) with weight0, and

– Loops onv⊥, v⊤ andv0 with weights−1, +1 and0 respectively.

• Ω((v, 0, i)) = Ω((v, 1, i)) = ΩI(i), Ω(ve) = Ω(v⊥) = Ω(v⊤) = 2r + 1, and
Ω(v0) = 2r.

Intuitively, we create2r + 1 copies of the game graph (one for each interval and one
for each gap), but replace edges with the edge gadget shown inFigure 5.

We now show that Eve has a winning strategy in this parity gameif and only if she
has a winning strategy in the interval total sum game. We firstobserve that ifv⊥ (v⊤) is
reached with a negative (positive) counter value then the edge tov0 is never activated so
the vertex acts as a sink which is winning for Adam. Conversely, if v⊥ (v⊤) is reached
with a non-negative (non-positive) counter value then the loop decrements (increments)
the counter until the edge tov0 is activated, whereupon Eve can win by moving to this
sink which is winning for her. It follows that if the play reaches a vertex(v, 0, i) and the
counter value is outside[mi,Mi] then Adam can win by playing tov⊥ if the counter
is < mi or to v⊤ if the counter is> Mi. On the other hand, if the counter is in the
range[mi,Mi] then Eve wins if Adam plays to either of these vertices. Thus the gadget
defined by the vertices{v⊥, v⊤, v0} allows Adam to punish Eve if the counter is not
in the asserted interval and lets Eve win if Adam attempts to falsely punish her. Now,
assuming Eve plays correctly, it is easy to see that the minimal priority seen infinitely
often corresponds to the lowest interval or interval gap visited infinitely often by the
counter. Thus Eve has a winning strategy in the parity game ifand only if she has a
winning strategy in the interval game.

Theorem 10. Deciding if Eve wins an interval total sum game is inEXPSPACE.

We conclude by observing that if the interval game is encodedin unary, then the
above reduction is a polynomial time reduction to the paritygames on one-counter
graphs considered in [17], giving an upper bound to match ourlower bound.

Theorem 11.Deciding if Eve wins a unary encoded interval total sum game isPSPACE-
complete.

18

q0 q1 q2

q≥

q<

q3

+1

0

−1

0

+1

0

+1

−1

0

0

0

Figure 6: Interval total sum game (I = R \ {0}) which requires infinite memory

6.3 Memory requirements

We now consider memory requirements for winning strategiesin interval total sum
games. We show that, in general, infinite memory is required for winning strategies,
but for single interval games, winning strategies for Eve need only finite memory.

Lemma 5. Finite memory winning strategies are not sufficient in interval total sum
games.

Proof. Consider the game in Figure 6 with the intervals(−∞, 0) ∪ (0,∞). Eve has a
winning strategy in this game: if the play ever reachesq2 then she moves toq≥ if the
total sum is non-negative, and moves toq< otherwise. Clearly any play consistent with
this strategy will haveTotal 6= 0 so it is winning for Eve. Now suppose Eve plays a
finite memory strategy. It follows there exists a memory state which cannot distinguish
between two distinct sums atq0. Therefore, after taking sufficiently many loops atq1,
it follows that there exists a memory state which cannot distinguish between two sums
of different signs atq2. As Eve’s play depends only on her location and memory state,
there is a total value for which Eve makes the “wrong choice”,i.e. she either moves to
q≥ with a negative sum or toq< with a non-negative sum. Adam’s winning strategy
is then to play to this move of Eve and then to increase or decrease the total sum to0
before moving toq3.

By exchanging the roles of the players and complementing theinterval, we see that
even for single interval games Adam may require infinite memory. We now show this
is not the case for Eve. In fact, we show that having unboundedintervals is necessary
for Eve to not have a finite memory winning strategy.

Lemma 6. Let (G, I) be an interval total sum game whereI ∩Z is finite. If Eve has a
winning strategy then she has a finite memory winning strategy.

Proof. As observed in the previous section, we can regard an interval total sum game as
a parity game onV ×Z. It is well known [18] that positional strategies suffice in parity
games, even on infinite graphs. However, in our case such a strategy would depend on
the current stateand on the counter value, so it would not immediately be realizable
with finite memory. We now show that ifI ∩Z is finite and Eve has a winning strategy

19

then we only need to consider a bounded set of counter values so we can realize the
strategy with finite memory. Letσ be a positional winning strategy for Eve onV × Z,
and letI = [inf I, sup I]. If σ is winning from(v, c) wherec /∈ I we claim she only
requires finite memory to reach a state(v′, c′) from which σ is winning and where
c′ ∈ I. Consider the finitely-branching, infinite tree of plays consistent withσ from
(v, c)3. Let us cut a branch when it first reaches a vertex(v′, c′) with c′ ∈ I. Note that
as we are following plays consistent withσ, such a state is in the winning set ofσ. We
claim the resulting tree is finite. If it were not, then by König’s lemma there exists an
infinite branch, that is, an infinite play consistent withσ that does not reach a vertex
(v′, c′) with c′ ∈ I. As all even priority states are only of the form(v′, c′) wherec ∈ I,
such a play is winning for Adam, contradicting the fact thatσ is a winning strategy for
Eve. This finite tree then serves as the memory states for the strategy to reachI from
(v, c). The finite memory strategy is now clear: if the current stateis (v, c) with c ∈ I
she moves toσ(v, c). If the play ever reaches a state(v′, c′) with c′ /∈ I she plays her
finite memory strategy until the play returns to(v′′, c′′) with c′′ ∈ I. Asσ is positional,
there are at most|V | × |I| of these “out-of-bounds” states reachable (and possibly the
initial state(q0, 0)) so overall we only require finite memory.

To complete the argument for single interval total sum games, we observe that if
the interval is infinite then we are considering the classical threshold problem for total
sum games. Positional strategies for these games were shownto be sufficient in [11].

Theorem 12. Let (G, I) be a single interval total sum game. If Eve has a winning
strategy then she has a finite memory winning strategy.

References

[1] Udi Boker and Thomas A. Henzinger. Determinizing discounted-sum automata.
In CSL, pages 82–96, 2011.

[2] Udi Boker and Jan Otop. Personal communcation, 2014.

[3] Tomás Brázdil, Petr Jancar, and Antonín Kucera. Reachability games on extended
vector addition systems with states. InICALP (2), pages 478–489, 2010.

[4] Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini, and Jean-
François Raskin. Faster algorithms for mean-payoff games.Formal methods in
system design, 38(2):97–118, 2011.

[5] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. A survey of
partial-observation stochastic parity games.Formal Methods in System Design,
43(2):268–284, 2013.

[6] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François
Raskin. Generalized mean-payoff and energy games. InProc. of FSTTCS, pages
505–516, 2010.

[7] Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak. Multi-objective
discounted reward verification in graphs and mdps. InLPAR, pages 228–242,
2013.

3That is, the tree rooted at(v, c) where the branches are all the plays consistent withσ and a branching
occurs when Adam has a choice of moves

20

[8] A. Ehrenfeucht and J. Mycielski. Positional strategiesfor mean payoff games.
International Journal of Game Theory, 8:109–113, 1979.

[9] John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata
is pspace-complete. InICALP, volume 2, pages 212–223, 2013.

[10] Thomas Gawlitza and Helmut Seidl. Games through nestedfixpoints. InCAV,
pages 291–305, 2009.

[11] Hugo Gimbert and Wieslaw Zielonka. When can you play positionally? In
MFCS, pages 686–697, 2004.

[12] Markus Holzer. On emptiness and counting for alternating finite automata. In
Developments in Language Theory, pages 88–97, 1995.

[13] Marcin Jurdzinski, Jeremy Sproston, and François Laroussinie. Model checking
probabilistic timed automata with one or two clocks.Logical Methods in Com-
puter Science, 4(3), 2008.

[14] Eryk Kopczynski. Omega-regular half-positional winning conditions. InCSL,
pages 41–53, 2007.

[15] Julien Reichert. On the complexity of counter reachability games. InRP, pages
196–208, 2013.

[16] Sven Schewe. Solving parity games in big steps. InFSTTCS, pages 449–460,
2007.

[17] Olivier Serre. Parity games played on transition graphs of one-counter processes.
In FoSSaCS, pages 337–351, 2006.

[18] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees.Theoretical Computer Science, 200:135–183, 1998.

[19] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1):343–359, 1996.

21

	1 Introduction
	2 Preliminaries
	2.1 Payoff functions
	2.2 Interval games
	2.3 Parity games

	3 Liminf games
	4 Mean-payoff games
	4.1 Upper bounds
	4.2 Lower bound
	4.3 Single interval
	4.3.1 Memory considerations

	5 Discount sum games
	5.1 Single, non-singleton intervals
	5.2 Multiple intervals
	5.3 Singleton intervals

	6 Total sum games
	6.1 Lower bounds
	6.1.1 Binary encoding
	6.1.2 Unary encoding

	6.2 Upper bound
	6.3 Memory requirements

