
Reasoning About Strategies∗

Fabio Mogavero† 1, Aniello Murano 1, and Moshe Y. Vardi‡ 2

1 Universitá degli Studi di Napoli "Federico II", I-80126 Napoli, Italy.
{mogavero, murano}@na.infn.it

2 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

Abstract
In open systems verification, to formally check for reliability, one needs an appropriate formalism

to model the interaction between open entities and express that the system is correct no matter how the
environment behaves. An important contribution in this context is given by modal logics for strategic
ability, in the setting of multi-agent games, such as ATL, ATL*, and the like. Recently, Chatterjee, Hen-
zinger, and Piterman introduced Strategy Logic, which we denote here by SLCHP, with the aim of getting a
powerful framework for reasoning explicitly about strategies. SLCHP is obtained by using first-order quan-
tifications over strategies and it has been investigated in the specific setting of two-agents turned-based
game structures where a non-elementary model-checking algorithm has been provided. While SLCHP is a
very expressive logic, we claim that it does not fully capture the strategic aspects of multi-agent systems.

In this paper, we introduce and study a more general strategy logic, denoted SL, for reasoning about
strategies in multi-agent concurrent systems. We prove that SL strictly includes SLCHP, while maintaining
a decidable model-checking problem. Indeed, we show that it is 2EXPTIME-COMPLETE, thus not harder
than that for ATL* and a remarkable improvement of the same problem for SLCHP. We also consider the
satisfiability problem and show that it is undecidable already for the sub-logic SLCHP under the concurrent
game semantics.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In system design, model checking is a well-established formal method that allows to automatically
check for global system correctness [4, 19, 5]. In such a framework, in order to check whether a
system satisfies a required property, we express the system in a formal model (such as a Kripke
structure), specify the property with a temporal-logic formula (such as LTL [18], CTL [4], or
CTL* [7]), and check formally that the model satisfies the formula. In the last decade, interest has
arisen in analyzing the behavior of individual components and sets of components in systems with
several components. This interest has started in reactive systems, which are systems that interact
continually with their environments. In module checking [14] the system is modeled as a module that
interacts with its environment and correctness means that a desired property holds with respect to all
such interactions.

Starting from the study of module checking, researchers have looked for logics focusing on
strategic behavior of agents in multi-agent systems [1, 16, 10]. One of the most important development
in this field is Alternating-Time Temporal Logic (ATL*, for short), introduced by Alur, Henzinger,
and Kupferman [1]. ATL* allows reasoning about strategies for agents with temporal goals. Formally,
it is obtained as a generalization of CTL* in which the path quantifiers, “E” (there exists) and “A”

∗ Part of this research was done while the authors were visiting the Hebrew University.
† Part of this research was done while visiting the Rice University.
‡ Work supported in part by NSF grants CCF-0613889, CCF-0728882, and CNS 1049862, by BSF grant 9800096, and

by gift from Intel.

© F. Mogavero, A. Murano, and M.Y. Vardi;
licensed under Creative Commons License NC-ND

....
Editor: ...; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Reasoning About Strategies

(for all) are replaced with “strategic modalities” of the form 〈〈A〉〉 and [[A]], where A is a set of agents
(a.k.a. players). Strategic modalities over agent sets are used to express cooperation and competition
among agents in order to achieve certain goals. In particular, these modalities express selective
quantifications over those paths that are the results of infinite games between the coalition and its
complement. ATL* formulas are interpreted over game structures, which model interacting processes.
Given a game structure S and a set A of agents, the ATL* formula 〈〈A〉〉ψ is satisfied at a state s
of S if there is a strategy for the agents in A such that, no matter the strategy that is executed by
agents not in A, the resulting outcome of the interaction satisfies ψ at s. Thus, ATL* can express
properties related to the interaction among agents, while CTL* can only express property of the global
system. As an example, consider the property “processes α and β cooperate to ensure that a system
(having more than two processes) never enters a fail state”. This property can be be expressed by
the ATL* formula 〈〈{α,β}〉〉G¬fail, where G is the classical temporal modality “globally”. CTL*,
in contrast, cannot express this property [1]. Indeed, CTL* can only say whether the set of all
agents can or cannot prevent the system from entering a fail state. The price that one pays for the
expressiveness of ATL* is increased complexity; both model checking and satisfiability checking are
2EXPTIME-COMPLETE [1, 20].

Despite its powerful expressiveness, ATL* suffers of the strong limitation that strategies are
treated only implicitly, through modalities that refer to games between competing coalitions. To
overcome this problem, Chatterjee, Henzinger, and Piterman introduced Strategy Logic (SLCHP, for
short) [3], a logic that treats strategies in two-player games as explicit first-order objects. In SLCHP,
the ATL* formula 〈〈α〉〉ψ becomes ∃x.∀y.ψ(x,y), i.e., “there exists a player-α strategy x such that for
all player-β strategies y, the unique infinite path resulting from the two players following the strategies
x and y satisfies the property ψ”. The explicit treatment of strategies in SLCHP allows to state many
properties not expressible in ATL*. In particular, it is shown in [3] that ATL* corresponds to the
proper one-alternation fragment of SLCHP. Chatterjee et al. have shown that the model-checking
problem for SLCHP is decidable, although only a non-elementary algorithm for it, both in the size of
the system and the size formula, has been provided, leaving as open the question whether an algorithm
with a better complexity exists or not. The question about the decidability of satisfiability checking
for SLCHP was also left open in [3].

While the basic idea exploited in [3] to quantify over strategies, and thus to commit agent
explicitly to certain strategies, turns out to be very powerful, as discussed above, the logic SLCHP

introduced there has been defined and investigated only under the weak framework of two-players and
turn-based games. Also, the specific syntax considered for SLCHP allows only a weak kind of strategy
commitment. For example, SLCHP does not allow different players to share, in different contexts, the
same strategy. These considerations, as well as all questions left open about SLCHP, have led us to
introduce and investigate a new Strategy Logic, denoted SL, as a more general framework than SLCHP,
for explicit reasoning about strategies in multi-player concurrent game structures. Syntactically, SL
extends LTL by means of two strategy quantifiers, the existential 〈〈x〉〉 and the universal [[x]], and
an agent binding (α,x), where α is an agent and x is variable. Intuitively, these elements can be
respectively read as “there exists a strategy x”, “for all strategies x”, and “bind agent α to the
strategy associated with x”. For example, in a system with three agents α, β, γ, the previous ATL*
formula 〈〈{α,β}〉〉G¬fail can be expressed by the SL formula 〈〈x〉〉〈〈y〉〉[[z]](α,x)(β,y)(γ,z)(G¬fail).
The variables x and y are used to select two strategies for the agents α and β, respectively, and z is
used to select all strategies for agent γ such that the composition of all these strategies results in a
play where fail is never meet. Note that we can also require (by means of agent binding) that agents
α and β share the same strategy, using the formula 〈〈x〉〉[[z]](α,x)(β,x)(γ,z)(G¬fail). We can also
vary the structure of the game by changing the way the quantifiers alternate, for example, in the
formula 〈〈x〉〉[[z]]〈〈y〉〉(α,x)(β,y)(γ,z)(G¬fail). In this case, x remains uniform w.r.t. z, but y becomes

F. Mogavero, A. Murano, and M.Y. Vardi 3

dependent on z. The last two examples show that SL is a proper extension of both ATL* and SLCHP.
It is worth noting that the pattern of modal quantifications over strategies and binding to agents can
be extended to other logics than LTL, such as the linear µ-CALCULUS. In fact, the use of LTL here is
only a matter of simplicity in presenting our framework, and changing the embedded temporal logic
involves only few side-changes in the decision procedures.

As a main result in this paper, we show that the model-checking problem for SL is decidable and
precisely PTIME in the size of the model and 2EXPTIME-COMPLETE in the size of the specification,
thus not harder than that for ATL*. Remarkably, this result improves significantly the complexity
of the model-checking problem for SLCHP, for which only a non-elementary upper-bound was
known [3]. The lower bound for the addressed problem immediately follows from ATL*, which
SL includes. For the upper bound, we follow an automata-theoretic approach [13], by reducing the
decision problem for the logic to the emptiness problem of automata. To this aim, we use alternating
Parity tree automata, which are alternating tree automata (see [8], for a survey) along with a Parity
acceptance condition [15]. Due to the exponential size of the required automaton and the EXPTIME

complexity required for checking its emptiness, we get the desired 2EXPTIME upper bound.
As another important issue in this paper, we address the satisfiability problem for SL. By using

a reduction from the recurrent domino problem, we show that this problem is highly undecidable,
and in fact Σ1

1-HARD, (i.e., it is not computably enumerable). Interestingly, the reduction we propose
also holds for SLCHP, under the concurrent game semantics. Thus, we show that in this setting also
SLCHP is highly undecidable, while it remains an open question whether it is decidable or not in the
turned-based framework. A key point to prove the undecidability of SL has been to show that this
logic lacks of the bounded-tree model property, which does hold for ATL* [20].

Since the rise of temporal and modal program logics in the mid-to-late 1970s, we have learned
to expect such logics to have a decidable satisfiability problem. In the context of temporal logic,
decidability results were extended from LTL, to CTL* and to ATL*. SL deviates from this pattern.
It has a decidable model-checking problem, but an undecidable satisfiability problem. In this, it is
similar to first-order logic. The decidability of model checking for first-order logic is the foundation
for query evaluation in relational databases, and undecidability of satisfiability is a challenge we need
to contend with. At the same time, it is clear that SL has nontrivial fragments, for example, ATL*,
which do have a decidable satisfiability problem. Identifying larger fragments of SL with a decidable
satisfiability problem is an important research problem.

Related Work Several works have focused on extensions of ATL* to incorporate more powerful
strategic constructs. Among them, we recall the logics Alternating-Time µ-calculus [1], Game
Logic [1], QDµ [17], and some extensions of ATL* considered in [2]. AMC and QDµ are intrinsically
different from SL (as well as SLCHP and ATL*) as they are obtained by extending the propositional
µ-calculus [11] with strategic modalities. GL is strictly included in SLCHP, but does not use any
explicit treatment of strategies. Also the extensions of ATL* considered in [2] do not use any explicit
treatment of strategies. Rather, they consider restrictions on the memory for strategy quantifiers.
Thus, all the above logics are different from SL, which aims it at being a minimal but powerful logic
to reason about strategic behavior in multi-agent systems.

Due to the lack of space, all proofs are omitted and reported in the full version.

2 Preliminaries

A concurrent game structure (CGS, for short) is a tuple G , 〈AP,Ag,Ac,St,λ,τ,s0〉, where AP and
Ag are finite non-empty sets of atomic propositions and agents, Ac and St are enumerable non-empty
sets of actions and states, s0 ∈ St is a designated initial state, and λ : St→ 2AP is a labeling function
that maps each state to the set of atomic propositions true in that state. Let Dc , AcAg be the set of

4 Reasoning About Strategies

decisions, commonly known as action profiles, that are functions from Ag to Ac representing the
choices of an action for each agent. Then, τ : St×Dc→ St is a transition function mapping a state
and a decision to a state. Intuitively, CGSs provide a generalization of labeled transition systems,
modeling multi-agent systems, viewed as multi-player games in which players perform concurrent
actions, chosen strategically as a function of the history of the game. Note that elements in St are
not global states of the system, but states of the environment in which the agents operate. Thus,
they can be viewed as states of the game, which do not include the local states of the agents. By
|G |, |St| · |Dc| we denote the size of G , which also corresponds to the size |dom(τ)| of the transition
function τ. If the set of actions is finite, i.e., b = |Ac|< ∞, we say that G is b-bounded, or simply
bounded. If both the sets of actions and states are finite, we say that G is finite. It is immediate to
note that G is finite iff it has a finite size.

A track (resp., path) is a finite (resp., an infinite) sequence of states ρ ∈ St∗ (resp., π ∈ Stω)
such that, for all 0 ≤ i < |ρ|− 1 (resp., i ∈ N), there exists d ∈ Dc such that ρi+1 = τ(ρi,d) (resp.,
πi+1 = τ(πi,d)). Intuitively, tracks and paths of a CGS G are legal sequences of reachable states in G
that can be seen as a description of the possible outcomes of the game modeled by G . A track ρ is
said non-trivial iff |ρ|> 0. We use Trk⊆ St+ (resp., Pth⊆ Stω) to indicate the sets of all non-trivial
tracks (resp., paths). By fst(ρ) , ρ0 (resp., lst(ρ) , ρ|ρ|−1), we denote the first (resp., last) state of
the track ρ and, by ρ≤i, we denote the prefix up to the state of index i < |ρ| of the track ρ, i.e., the
track built by the first i+1 states ρ0, . . . ,ρi of ρ. The notations of first and prefix apply also to paths.

A strategy is a partial function f : Trk ⇀ Ac, non associated to any particular agent, mapping each
non-trivial track in its domain to an action. Intuitively, a strategy is a plan for an agent that contains
all choices of moves as a function of the history of the current outcome. We use Str to indicate the sets
of all strategies. For a state s, we say that f is s-total iff it is defined on all non-trivial tracks starting
in s, i.e., dom(f) = {ρ ∈ Trk | fst(ρ) = s}. For a track ρ ∈ dom(f), by fρ we denote the translation of
f along ρ, i.e., the lst(ρ)-total strategy such that fρ(lst(ρ) ·ρ′) = f(ρ ·ρ′), for all lst(ρ) ·ρ′ ∈ dom(fρ).

Let Var be a fixed set of variables. An assignment is a partial function χ : Ag∪Var ⇀ Str mapping
every agent and variable to a strategy. An assignment χ is complete iff Ag⊆ dom(χ). We use Asg
to indicate the sets of all assignments. For a state s, we say that χ is s-total iff all strategies χ(l)
are s-total too, for l ∈ dom(χ). Let ρ be a track and χ be an fst(ρ)-total assignment. By χρ we
denote the translation of χ along ρ, i.e., the lst(ρ)-total assignment with dom(χρ) = dom(χ), such
that χρ(l) = χ(l)ρ, for all l ∈ dom(χ). Intuitively, the translation χρ is the update of all strategies
contained into the assignment χ, after the history of the game becomes ρ. Let χ be an assignment, a be
an agent, x be a variable, and f be a strategy. Then, by χ[a 7→ f] and χ[x 7→ f] we denote, respectively,
the new assignments defined on dom(χ)∪{a} and dom(χ)∪{x} that return f on a and x and are
equal to χ on the remaining part of its domain. Note that, if χ and f are s-total, χ[a 7→ f] and χ[a 7→ f]
are s-total, too.

Finally, a path π starting in a state s is a play w.r.t. a complete s-total assignment χ ((χ,s)-play,
for short) iff, for all i ∈ N, it holds that πi+1 = τ(πi,d), where d(a) = χ(a)(π≤i), for all a ∈ Ag. Note
that there is a unique (χ,s)-play. Intuitively, a play is the outcome of the game determined by all the
agent strategies participating to the game.

In the sequel of the paper, we use the Greek letters “α,β,γ ” with indexes to indicate specific
agents of a CGS, while we use the Latin letter “a” as a meta-variable on the agents themselves.

3 Strategy Logic

In this section, we formally introduce SL and discuss its main properties. In particular, we show that
it does not have the bounded-tree model property.

F. Mogavero, A. Murano, and M.Y. Vardi 5

Syntax. SL syntactically extends LTL by means of two strategy quantifiers, the existential 〈〈x〉〉
and the universal [[x]], and an agent binding (a,x), where a is an agent and x is a variable. Intuitively,
these new elements can be read, respectively, as “there exists a strategy x”, “for all strategies x”, and

“bind agent a to the strategy associated with variable x”. The formal syntax of SL follows.

I Definition 3.1 (Syntax). SL formulas are built from the sets of atomic propositions AP, variables
Var, and agents Ag, in the following way, where p ∈ AP, x ∈ Var, and a ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | X ϕ | ϕ U ϕ | ϕ R ϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a,x)ϕ.

We now introduce some auxiliary syntactical notation for the definition of the semantics. By
free(ϕ) we denote the set of free agents/variables of ϕ defined as the subset of Ag∪Var containing
(i) all the agents for which there is no variable application after the occurrence of a temporal operator
and (ii) all the variables for which there is an application but no quantifications. For example, let
ϕ = 〈〈x〉〉(α,x)(β,y)(F p) be the formula on agents Ag = {α,β,γ}. Then, we have free(ϕ) = {γ,y},
since γ is an agent without any application after F p and y has no quantification at all. A formula ϕ

without free agents (resp., variables), i.e., with free(ϕ)∩Ag = /0 (resp., free(ϕ)∩Var = /0), is named
agent-closed (resp., variable-closed). If ϕ is both agent- and variable-closed, it is named sentence.

Semantics. As for ATL*, we define the semantics of SL w.r.t. concurrent game structures. For a
CGS G , a state s, and an s-total assignment χ with free(ϕ)⊆ dom(χ), we write G ,χ,s |= ϕ to indicate
that the formula ϕ holds at s under the assignment χ. Similarly, if χ is a complete assignment, for the
(χ,s)-play π and a natural number k, we write G ,χ,π,k |= ϕ to indicate that ϕ holds at the position k
of π. The semantics of the SL formulas involving p, ¬, ∧, and ∨, as well as that for the temporal
operators X , U , and R , is defined as usual in LTL and we omit it here (see [13], for a survey). The
semantics of the remaining part, which involves quantifications and bindings, follows.

I Definition 3.2 (Semantics). Given a CGS G = 〈AP,Ag,Ac,St,λ,τ,s0〉, an SL formula ϕ, a variable
x ∈ Var, a state s ∈ St, and an s-total assignment χ with free(ϕ)⊆ dom(χ)∪{x}, it holds that:
1. G ,χ,s |= 〈〈x〉〉ϕ iff there is an s-total strategy f such that G ,χ[x 7→ f],s |= ϕ;
2. G ,χ,s |= [[x]]ϕ iff for all s-total strategies f it holds that G ,χ[x 7→ f],s |= ϕ.
Moreover, if free(ϕ)∪{x} ⊆ dom(χ)∪{a} for an agent a ∈ Ag, it holds that:
3. G ,χ,s |= (a,x)ϕ iff G ,χ[a 7→ χ(x)],s |= ϕ.
Finally, if χ is also complete, where π is the (χ,s)-play and k ∈ N, it holds that:
4. G ,χ,s |= ϕ iff G ,χ,π,0 |= ϕ;
5. G ,χ,π,k |= ϕ iff G ,χπ≤k ,πk |= ϕ.
Intuitively, at Items 1 and 2, respectively, we evaluate existential and universal quantifiers over
strategies. At Item 3, by means of an agent binding (a,x), we commit the agent a to a strategy
contained in the variable x. Finally, Items 4 and 5 can be easily understood by looking at their
analogous path and state formulas in ATL*. In fact, Item 4 can be viewed as the rule that allows to
move the verification process from states to paths and, vice versa, Item 5 from paths to states.

A CGS G is a model of an SL sentence ϕ, denoted by G |= ϕ, iff G ,∅,s0 |= ϕ, where ∅ is the
empty assignment. Moreover, ϕ is satisfiable iff there is a model for it. For two SL formulas ϕ1 and
ϕ2 we say that ϕ1 is equivalent to ϕ2, formally ϕ1 ≡ ϕ2, iff, for all CGSs G , states s, and s-defined
assignments χ with free(ϕ1)∪ free(ϕ2)⊆ dom(χ), it holds that G ,χ,s |= ϕ1 iff G ,χ,s |= ϕ2.

As an example, let ϕ = 〈〈x〉〉[[y]]〈〈z〉〉(α,x)(β,y)(X p)∧ (α,y)(β,z)(X q). First, note that α and β

both use the strategy associated with y to achieve the goals X q and X p, respectively. A model for ϕ

is G = 〈{p,q},{α,β},{0,1},{s0,s1,s2,s3},λ,τ,s0〉, where λ(s0) = /0, λ(s1) = {p}, λ(s2) = {p,q},
λ(s3) = {q}, τ(s0,(0,0)) = s1, τ(s0,(0,1)) = s2, τ(s0,(1,0)) = s3, and all the remaining transitions
(with any action) go to s0. Clearly, G ,s0 |= ϕ by letting, on s0, x to chose action 0 (the goal X p is

6 Reasoning About Strategies

satisfied for any choice of y, since we can move from s0 to s1 or s2, both labeled with p) and z to
choose action 1 when y has action 0 and, vice versa, z to 0 when y has 1 (in both the cases, the goal
X q is satisfied, since one can move from s0 to s2 or s3, both labeled with q).

An important property that is possible to express in SL, but neither in ATL* nor in SLCHP, is the
existence of deterministic multi-player Nash equilibria. For example, consider n agents α1, . . . ,αn

each of them having the LTL goals ψ1, . . . ,ψn. Then, we can express the existence of a strategy
profile (x1, . . . ,xn) that is a Nash equilibrium for α1, . . . ,αn w.r.t. ψ1, . . . ,ψn by using the sentence
〈〈x1〉〉 · · · 〈〈xn〉〉(α1,x1) · · ·(αn,xn)(

Vn
i=1(〈〈y〉〉(αi,y)ψi)→ ψi). Informally, this sentence asserts that

every agent has the “best” strategy once all the strategies of the remaining agents have been fixed.
Note that here we have only considered equilibria under deterministic strategies.

Basic properties. We now investigate some basic properties of SL that turn out to be important for
their own and useful to prove the decidability of the model checking problem and the undecidability
of the satisfiability one. In particular, for the introduced logic we investigate the tree and finite model
properties. To this aim, we define a generalization to CGS of the classical concept of unwinding of
labeled transition systems, which allows us to show that SL has the (general) tree model property, but
neither the bounded-tree model property nor the finite model property. As preliminary, we need to
formally state the concepts of concurrent game tree and unwinding of a game structure.

A concurrent game tree (CGT, for short) is a CGS U = 〈AP,Ag,Ac,St,λ,τ,ε〉, where St⊆ ∆∗ is
a tree for a given set of directions ∆ and s · t ∈ St iff there is a decision d ∈ Dc such that τ(s,d) = s · t,
for all s ∈ St and t ∈ ∆. For a CGS G = 〈AP,Ag,Ac,St,λ,τ,s0〉, the unwinding of G is the CGT

GU , 〈AP,Ag,Ac,St′,λ′,τ′,ε〉, where St is the set of directions of the tree, the states in St′ = {ρ∈ St∗

| s0 ·ρ ∈ Trk} are the suffixes of the tracks starting in s0, and, for all s ∈ St′, d ∈ Dc, and t ∈ St,
it holds that τ′(s,d) = s · τ(lst(s),d) and there is a surjective function unw : St′ → St such that (i)
unw(ε) = s0, (ii) unw(s · t) = t, and (iii) λ′(s) = λ(unw(s)).

We say that SL has the tree model property if every satisfiable formula is satisfiable by a CGT.
Actually, next theorem reports that SL is invariant under unwinding, so, it has the tree model property.
This can be shown by using a proof by induction on the structure of the formula, making use of the
unwinding technique defined above.

I Theorem 3.3. G |= ϕ iff GU |= ϕ.

We now move to the negative results about SL, namely, that it neither has the finite model
property nor the bounded-tree model property. We recall that a modal logic has the bounded-tree
model property (resp., finite model property) if whenever a formula is satisfiable, it is so on a model
having a tree shape (resp., a finite number of states) in which every state has at most n successors,
for a natural number n. Clearly, if a modal logic with the tree model property has the finite model
property, it has the bounded-tree model property as well. The other direction may not hold, instead.
To prove both results, we introduce in Definition 3.4 the formula ϕord to be used as a counterexample.

I Definition 3.4. Let x1 < x2 , 〈〈y〉〉ϕin(x1,x2,y), where ϕin(x1,x2,y) , (β,y)((α,x1)(X p)∧ (α,x2)
(X¬p)) is an agent-closed SL formula, named partial order, on the sets AP = {p} and Ag = {α,β}.
Then, the SL order sentence ϕord , ϕunb∧ϕtrn is the conjunction of the following two sentences,
called strategy unboundedness and strategy transitivity requirements:
1. ϕunb , [[x1]]〈〈x2〉〉 x1 < x2;
2. ϕtrn , [[x1]][[x2]][[x3]] (x1 < x2∧ x2 < x3)→ x1 < x3.

Intuitively, ϕunb asserts that, for each strategy x1, there is a different strategy x2 in relation of <

w.r.t. the first one, i.e., < has no upper bound, while ϕtrn expresses the fact that the relation < is
transitive. Note also that, by definition, < is not reflexive. Obviously, the formula ϕord needs to be
satisfiable, as reported in the following lemma.

F. Mogavero, A. Murano, and M.Y. Vardi 7

I Lemma 3.5. The SL sentence ϕord is satisfiable.

Next two lemmas report two important properties of the formula ϕord , for the negative statements
we want to show. Namely, they state that, in order to be satisfied, ϕord must require the existence of
strict partial order relations on strategies and actions that do not admit any maximal element. From
this, as stated in Theorem 3.8, we directly derive that ϕord needs an infinite chain of actions to be
satisfied (i.e., it cannot have a bounded model).

I Lemma 3.6. Let G be a model of ϕord and r< ⊆ Str×Str be a relation between strategies such
that r<(f1, f2) holds iff G ,χ,s0 |= x1 < x2, where χ(x1) = f1 and χ(x2) = f2, for all χ ∈ Asg, with s0

as the initial state of G . Then r< is a strict partial order without maximal element.

I Lemma 3.7. Let G be a model of ϕord and s< ⊆ Ac×Ac be a relation between actions such that
s<(c1,c2) holds iff r<(f1, f2) holds, where c1 = f1(s0) and c2 = f2(s0), for all f1, f2 ∈ Str, with s0 as
the initial state of G . Then s< is a strict partial order without maximal element.

Observe that the relation s< cannot be defined on a finite set [6]. Now, we have all tools to prove
that SL lacks of the finite and bounded-tree model properties, which hold in several commonly used
multi-agent logics, such as ATL*.

I Theorem 3.8. For SL it holds that: (i) it does not have the bounded-tree model property, and (ii)
it does not have the finite model property.

4 Model Checking

In this section, we study the model-checking problem for SL and show that it is decidable and
2EXPTIME-COMPLETE, as for ATL*. The lower bound immediately follows from ATL*, which SL
properly includes. For the upper bound, we follow an automata-theoretic approach [13], reducing the
decision problem for the logic of interest to the emptiness problem of automata. To this aim, we use
alternating parity tree automata (APT, for short), which are alternating tree automata along with a
parity acceptance condition (see [8], for a survey). APTs are a generalization of nondeterministic
parity tree automata (NPT, for short). Intuitively, while an NPT that visits a node of the input tree
sends exactly one copy of itself to each of the successors of the node, an APT can send several copies
of itself to the same successor. We recall that an approach to tree automata is only possible once
the logic satisfies the tree model property. In fact, this property holds for SL as we have proved in
Theorem 3.3. By the size of the automaton and the complexity required for checking its emptiness,
we get the desired 2EXPTIME upper bound. The definition of APTs follows.

I Definition 4.1. An APT is a tuple A = 〈Σ,∆,Q,δ,q0,F〉, where Σ, ∆, and Q are non-empty finite
sets of input symbols, directions, and states, q0 ∈ Q is an initial state, F = (F1, . . . ,Fk) ∈ (2Q)∗ with
F1 ⊆ . . . ⊆ Fk = Q is a parity acceptance condition, and δ : Q×Σ→ B+(∆×Q) is an alternating
transition function that maps each pair of states and symbols into a Boolean positive formula on the
set of propositions of the form (d,q), where d is a direction and q a state.

A run of an APT A on a Σ-labeled ∆-tree T = 〈T,v〉 is a (Q×T)-labeled N-tree R = 〈Tr, r〉 such
that (i) r(ε) = (q0,ε) and (ii) for all y ∈ Tr with r(y) = (q,x), there exists a set S ⊆ D×Q with
S |= δ(q,v(x)) such that, for all atoms (d,q′) ∈ S, there is an index i ∈ N for which it holds that
r(y · i) = (q′,x ·d). The run R is said to be accepting iff, for every path π, the least index 1≤ i≤ k
such that at least one state of Fi occurs infinitely often in π is even. The number k of sets in F is called
the index of the automaton. A tree T is accepted by A if there is an accepting run of A on it. By
L(A) we denote the language accepted by the automaton A , i.e., the set of all trees that A accepts. A
is said empty if L(A) = /0. The emptiness problem for A is to decide whether L(A) = /0.

8 Reasoning About Strategies

We now proceed with the model-checking algorithm for SL. As for ATL*, we use a bottom-up
model-checking algorithm, in which we start with the innermost sub-sentences and terminate with
the sentence under checking. At each step, we label each state of the model with all the sub-sentences
that are satisfied on it. The procedure we propose here extends that used for ATL* in [1] by means of
a richer structure of the automata involved in.

First, we introduce some extra notation. A principal sentence ϕ is a sentence of the form
Qn1x1 · · ·Qnkxk ψϕ, where Qnixi ∈ {〈〈xi〉〉, [[xi]]} and the matrix ψϕ is an agent-closed formula, with
free(ψϕ) = {x1, . . . ,xk}, such that it does not contain any quantification. For the sake of space and
clarity of exposition, we only discuss the model checking of principal formulas. By a slight variation
of both the notion of principal formulas and our procedure, we can also address the full SL. We also
need the notion of atom. An atom ψ is an agent-closed formula of the form (α1,y1) · · ·(αn,yn)ψ′,
where Ag = {α1, . . . ,αn}, y1, . . . ,yn are possible equal variables and either (i) ψ′ does not contain any
quantification and binding, i.e., it is an LTL formula, or (ii) the derived formula ψ̂′ does not contain
any quantification and binding at all, where ψ̂′ is obtained by ψ′ substituting its sub-atoms with fresh
atomic propositions. W.l.o.g., we assume that each principal sentence has a matrix that is a Boolean
combination of atoms. Atm(ϕ) denotes the set of all sub-formulas of ϕ that are atoms.

The core idea behind our model-checking procedure is the following. Let G = 〈AP,Ag,Ac,St,
λ,τ,s0〉 be a CGS and ϕ be an SL principal sentence over the set Ag = {α1, . . . ,αn} of n different
agents, for which we want to check if G |= ϕ holds or not. We first build an NPT DG recognizing the
unwinding GU of G . Then, we build an APT A ′G ,ϕ accepting all prunings of GU that are coherent
with the strategy quantification of ϕ. Such prunings are done by properly labeling its paths with
elements from the set Z , Atm(ϕ)×{start, pass} of atoms associated with a flag in {start, pass}, in
a way similar as it has been done for ATL* satisfiability in [20]. The start and pass flags are used to
indicate whether a path guessed to satisfy at a specific state an atom ψ ∈ Atm(ϕ), starts or passes
through that state, respectively. Namely, the unlabeled paths are the pruned ones that are not needed
in order to satisfy the formula. Hence, A ′G ,ϕ accepts GU with this additional labeling. The automata
DG and A ′G ,ϕ have index 2 and a number of states polynomial in the size of G and ϕ, respectively.
With more details, they are both safety automata1. Finally, we build an APT A ′′ϕ that checks that
all paths of a pruned model accepted by A ′G ,ϕ, i.e., all labeled paths, satisfy the atoms of ϕ. The
automaton A ′′ϕ has index 2 and a number of states exponential in ϕ.

Now, recall that APTs are linearly closed under intersection. More precisely, two APTs having n1

and n2 states and k1 and k2 as indexes, respectively, can be intersected in an APT with n1 +n2 states
and index max{k1,k2} [15]. So, we can build an APT AG ,ϕ such that L(AG ,ϕ) = L(A ′G ,ϕ)∩L(A ′′ϕ),
having in particular index 2. Also, by [15], we can translate an APT with n states and index k in an
equivalent NPT having nO(n) states and index O(n). Hence, we can transform AG ,ϕ in an NPT NG ,ϕ

with a number of states double exponential in ϕ and an index exponential in ϕ. It is well known that
an NPT having n states and index k and a safety automaton with m states can be intersected in an
NPT with n ·m states and index k. Hence, by intersecting DG with NG ,ϕ, we get an NPT N ′

G ,ϕ such
that L(N ′

G ,ϕ) = L(DG)∩L(NG ,ϕ). At this point, it is possible to prove that G |= ϕ iff L(N ′
G ,ϕ) 6= /0.

Observe that N ′
G ,ϕ has a number of states double exponential in ϕ and polynomial in G , while it has

an index exponential in ϕ, but independent from G . Moreover, the automata run over the alphabet
Σ = {σ ⊆ AP∪St∪Z | |σ∩St| = 1}, where |Z| = O(|G | × 2|ϕ|). Since the emptiness of an NPT
with n states, index k, and alphabet size h can be checked in time O(h ·nk) [12], we get that to check
whether G |= ϕ can be done in time double exponential in ϕ and polynomial in G . More precisely,
the algorithm runs in |G |2O(|ϕ|)

. The details of the automata construction follow.

1 A safety condition is the special parity condition (/0,Q) of index 2.

F. Mogavero, A. Murano, and M.Y. Vardi 9

The NPT DG = 〈Σ,St,St,δ,s0,(/0,St)〉 has the set of directions and states formed by the states of
G that are used to build its unwinding. Moreover, the transition function is defined as follows. At the
state s ∈ St, the automaton first checks that the labeling of the node of the input tree corresponds to
the union of {s} and its labeling λ(s) in G . Then, it sends all successors of s in the relative directions.
Formally, δ(s,σ) is set to f (false) if λ(s)∪{s} 6= σ∩(AP∪St) and to

V
s′∈{τ(s,d)|d∈Dc} (s′,s′) otherwise.

Note that |DG |= O(|G |).
The APT A ′G ,ϕ = 〈Σ,St,{q0}∪Atm(ϕ),δ,q0,(/0,{q0}∪Atm(ϕ))〉 has the set of states formed by

a distinguished state q0, which is also initial, and from the atoms in Atm(ϕ) that are used to verify the
correctness of the additional labeling Z. Moreover, the transition function is defined as follows. δ(ψ,σ)
is equal to t (true) if (ψ, pass) ∈ σ∩Z and to f (false) otherwise. The automaton at state q0 sends the
same state in all the directions individuated by the quantification, together with the control state ψ.
It is important to note that the quantification here is reproduced by conjunctions and disjunctions
on all possible actions of G . Formally, δ(q0,σ) is set to Op1 c1∈Ac· · ·Opk ck∈Ac

V
(ψ,?)∈σ∩Z (τ(s,d),

q0)∧ (τ(s,d),ψ), where Opi ci∈Ac is a disjunction if Qnixi = 〈〈xi〉〉 and a conjunction if Qnixi = [[xi]],
{s}= σ∩St, and d(αi) = c j iff in the atom ψ the binding (αi,x j) appears. Note that |A ′G ,ϕ|= O(|ϕ|).

Finally, we build the APT A ′′ϕ . Let ψ̂ be the LTL formula obtained by replacing in ψ ∈ Atm(ϕ)
all the occurrences of each other atom ψ′ ∈ Atm(ψ) with the fresh atomic proposition (ψ′,start). By
using a slight variation of the procedure developed in [21], we can translate ψ̂ into a universal co-
Büchi word automaton2 Uψ = 〈Σ,Qψ,δψ,Q0ψ,Fψ〉, with a number of states at most exponential in |ψ|,
accepting the infinite words on Σ that are models of ψ̂. At this point, we can construct the automaton
A ′′ϕ that recognizes the trees whose paths, labeled with the flags (ψ,?), for ? ∈ {start, pass}, and
starting with the label (ψ,start), satisfy the LTL formula ψ̂, for all ψ ∈ Atm(ϕ).

Formally, A ′′ϕ = 〈Σ,St,{q0,qc}∪Q,δ,q0,(F,{q0,qc}∪Q)〉 is built as follows. Q =
S

ψ∈Atm(ϕ){ψ}
×Qψ and F =

S
ψ∈Atm(ϕ){ψ}×Fψ are, respectively, the disjoint union of the set of states and final

states of the word automata Uψ, for every atom ψ ∈ Atm(ϕ). q0 is the initial state used to verify that
the formula ψϕ (the matrix of ϕ) holds at the root of the tree in input, by checking whether the labeling
of the root contains all the propositions required by ψϕ to hold. If the checking succeeds, q0 behaves
as the state qc. Formally, let ψϕ be considered as a boolean formula on the set of atoms Atm(ϕ) in
which we assume ψ = (ψ,start), for all ψ ∈ Atm(ϕ). Then, δ(q0,σ) is set to δ(qc,σ), if σ∩Z |= ψϕ

and to f (false), otherwise. qc is the checking state used to start the verification of the atoms ψ in every
node of the input tree that contains the flag (ψ,start), which indicates the existence of a path starting
in that node that satisfies ψ. To do this, qc sends in all the directions (i) a copy of the state itself, to
continue the control on the remaining part of the tree, and (ii) the states derived by all initial states of
the automata Uψ, for all the atoms ψ for which a flag (ψ,start) appears in the labeling σ. Formally,
δ(qc,σ) is

V
s∈St(s,qc)∧

V
(ψ,start)∈σ∩Z

V
q∈Q0ψ

V
q′∈δψ(q,σ∩AP)(s,(ψ,q′)). The states of the form (ψ,q)

are used to run Uψ on all paths labeled by the related flags (ψ, pass). Formally, δ((ψ,q),σ) is set to t

(true) if (ψ, pass) 6∈ σ∩Z and to
V

s∈St
V

q′∈δψ(q,σ∩AP)(s,(ψ,q′)) otherwise. Note that |A ′′ϕ |= O(2|ϕ|).
By a simple calculation, it follows that the overall procedure results in an algorithm that is in

PTIME w.r.t the size of G and in 2EXPTIME w.r.t. the size of ϕ. Hence, by getting lower bounds from
ATL*, the following result holds.

I Theorem 4.2. The model-checking problem for SL is PTIME w.r.t. the size of the model and
2EXPTIME-COMPLETE w.r.t the size of the specification.

We conclude this section by pointing out that the model checking procedure described above
for SL is completely different from that one used in [3] for SLCHP. Indeed in [3], the authors use

2 Word automata can be seen as tree automata in which the tree has just one path. A universal word automaton is a
particular case of alternating automata in which there is no nondeterminism. A co-Büchi acceptance condition F⊆Q
is the special parity condition (F,Q) of index 2.

10 Reasoning About Strategies

a top-down approach and, most important, for every quantification in the formula, they make a
projection of the automaton they build at each stage (one for each quantification). Since at each
projection they have an exponential blow-up, at the end their procedure results in a non-elementary
one, both in the size of the system and the formula. Our iterative approach, instead, does not make
use of any projection, since we reduce strategy quantifications to action quantifications, which, as we
have stated, can be handled locally on each state of the model.

5 Satisfiability

In this section, we show the undecidability of the satisfiability problem for SL through a reduction of
the recurrent domino problem. In particular, as we discuss later, the reduction also holds for SLCHP

under the concurrent game semantics.
The domino problem, proposed for the first time by Wang [22], consists of placing a given number

of tile types on an infinite grid, satisfying a predetermined set of constraints on adjacent tiles. Its
standard version asks for a compatible tiling of the whole plane N×N. The recurrent domino
problem further requires the existence of a distinguished tile type that occurs infinitely often in the
first row of the grid. This problem was proved to be highly undecidable by Harel, and in particular,
Σ1

1-COMPLETE [9]. The formal definition follows.

I Definition 5.1 (Recurrent Domino System). An N×N recurrent domino system D = 〈D,H,V,

t∗〉 consists of a finite non-empty set D of domino types, two horizontal and vertical matching
relations H,V⊆D×D, and a distinguished tile type t∗∈D. The recurrent domino problem asks for
an admissible tiling of N×N, which is a solution mapping ∂ : N×N→D such that, for all x,y ∈ N, it
holds that (i) (∂(x,y),∂(x+1,y))∈H, (ii) (∂(x,y),∂(x,y+1))∈V , and (iii) |{x | ∂(x,0) = t∗}|=∞.

By showing a reduction from the recurrent domino problem, we prove that the satisfiability
problem for SL is Σ1

1-HARD, which implies that it is even not computably enumerable. We achieve
this reduction by showing that a given recurrent tiling system D = 〈D,H,V, t∗〉 can be “embedded”
into a model of a particular sentence ϕdom , ϕgrd ∧ϕtil ∧ϕrec over AP = {p}∪D and Ag = {α,β},
where p 6∈ D, in such a way that ϕdom is satisfiable iff D allows an admissible tiling. For the sake of
clarity, we split the reduction into three tasks where we explicit the sentences ϕgrd , ϕtil , and ϕrec.

Grid specification. Consider the sentence ϕgrd ,
V

a∈Ag ϕord
a , where ϕord

a = ϕunb
a ∧ϕtrn

a are order
sentences and ϕexs

a and ϕtrn
a are the strategy unboundedness and strategy transitivity requirements for

agents α and β defined, similarly in Definition 3.4, as follows:
1. ϕunb

a , [[z1]]〈〈z2〉〉 z1 <a z2,
2. ϕtrn

a , [[z1]][[z2]][[z3]] (z1 <a z2∧ z2 <a z3)→ z1 <a z3,
where x1 <α x2 , 〈〈y〉〉(β,y)((α,x1)(X p)∧(α,x2)(X¬p)) and y1 <β y2 , 〈〈x〉〉(α,x)((β,y1)(X¬p)∧
(β,y2)(X p)) are the two partial order formulas on strategies of α and β, respectively. Intuitively, <α

and <β correspond to the horizontal and vertical ordering of the positions in the grid, respectively.
It easy to see that ϕgrd is satisfiable, as it follows from the same argument used in Lemma 3.5.

I Lemma 5.2. The SL sentence ϕgrd is satisfiable on a CGS with a countable number of actions.

Consider now a model G = 〈AP,Ag,Ac,St,λ,τ,s0〉 of ϕgrd and the relations r<
a ⊆ Str× Str

between strategies, for all agents a ∈ Ag, defined as follows: r<
a (f1, f2) holds iff G ,χ,s0 |= z1 <a z2,

where χ(z1) = f1 and χ(z2) = f2. By Lemma 3.6, the relations r<
a are strict partial orders without

maximal element on Str. To apply the desired reduction, we need to transform r<
a into total orders over

strategies. Let r≡a ⊆ Str×Str, with a ∈Ag, be the two relations between strategies such that r≡a (f1, f2)
holds iff neither r<

a (f1, f2) nor r<
a (f2, f1) holds. It is possible to show that r≡a are equivalence relations.

Now, let Str≡a = Str/r≡a be the quotient sets of Str w.r.t. r≡a , i.e., the sets of the related equivalence

F. Mogavero, A. Murano, and M.Y. Vardi 11

classes over strategies. Also, let s<
a ⊆ Str≡a ×Str≡a , with a ∈ Ag, be the two relations between classes

of strategies such that s<
a (F1,F2) holds iff, for all f1 ∈ F1 and f2 ∈ F2, it holds that r<

a (f1, f2). Then,
it is easy to prove that s<

a are strict total orders with minimal element but no maximal element. By
a classical result on first order logic model theory [6], s<

a cannot be defined on a finite set. Hence,
|Str≡a |= ∞, for all a ∈ Ag. Now, let s≺a be the successor relations on Str≡a compatible with the strict
total orders s<

a , i.e., such that s≺a (F1,F2) holds iff (i) s<
a (F1,F2) holds and (ii) there is no F3 ∈ Str≡a for

which both s<
a (F1,F3) and s<

a (F3,F2) hold, for all F1,F2 ∈ Str≡a . Then, we can write the two sets of
classes Str≡α and Str≡

β
as the infinite ordered lists {Fα

0 ,Fα
1 , . . .} and {Fβ

0 ,Fβ

1 , . . .}, respectively, such
that s≺a (Fa

i ,Fa
i+1), for all a ∈Ag and i ∈N. Note that Fa

0 are the classes of minimal strategies w.r.t the
relations s<

a .
Now, we have all the machinery to build an embedding of the plane N×N into the model G

of ϕgrd . In particular, we are able to construct a bijective map ℵ : N×N→ Str≡α ×Str≡
β

such that

ℵ(i, j) = (Fα
i ,Fβ

j), for all i, j ∈ N.

Compatible tiling. Given the grid structure built on the model G of ϕgrd through the bijective
map ℵ, we can express that a tiling of the grid is admissible by making use of the formulas z1 ≺a

z2 , z1 <a z2∧¬〈〈z3〉〉 z1 <a z3∧ z3 <a z2 corresponding to the successor relations s≺a , for all a ∈ Ag.
Indeed, it is not hard to see that G ,χ,ε |= z1 ≺a z2 holds iff χ(z1) ∈ Fa

i and χ(z2) ∈ Fa
i+1, for all i ∈N.

The idea here is to associate to each domino type t ∈D a corresponding atomic proposition t ∈AP and
to express the horizontal and vertical matching conditions via suitable object labeling. In particular,
we can express that the tiling is locally compatible, that the horizontal neighborhood of a tile satisfies
the H requirement, and that also its vertical neighborhood satisfies the V requirement, all through the
following three agent-closed formulas, respectively:

1. ϕt,loc(x,y) , (α,x)(β,y)(X (t ∧
Vt ′ 6=t

t ′∈D¬t ′));

2. ϕt,hor(x,y) ,
W

(t,t ′)∈H[[x′]] x≺α x′→ (α,x′)(β,y)(X t ′);

3. ϕt,ver(x,y) ,
W

(t,t ′)∈V [[y′]] y≺β y′→ (α,x)(β,y′)(X t ′).
Informally, we have the following: ϕt,loc(x,y) asserts that t is the only domino type labeling the
successors of the root of the model G that can be reached using the strategies related to the variables
x and y; ϕt,hor(x,y) asserts that the tile t ′ labeling the successors of the root reachable through the
strategies x′ and y is compatible with t w.r.t. the horizontal requirement H, for all strategies x′ that
immediately follow that related to x w.r.t. the order r<

α ; ϕt,ver(x,y) asserts that the tile t ′ labeling the
successors of the root reachable through the strategies x and y′ is compatible with t w.r.t. the vertical
requirement V , for all strategies y′ that immediately follow that related to y w.r.t. the order r<

β
.

Finally, to express that the whole grid has an admissible tiling, we use the sentence ϕtil ,
[[x]][[y]]

W
t∈D ϕt,loc(x,y)∧ϕt,hor(x,y)∧ϕt,ver(x,y) that asserts, for every point individuated by the

strategies x and y, the existence of a domino type t satisfying the three conditions mentioned above.

Recurrent tile. As last task, we impose that the grid embedded into G has the distinguished domino
type t∗ occurring infinitely often in its first row. To do this, we first use two formulas that determine if
a row or a column is the first one or not w.r.t. the orders s<

α and s<
β

, respectively. Formally, we use

0a(z) , ¬〈〈z′〉〉 z′ <a z, for a ∈ Ag. One can prove that G ,χ,ε |= 0α(z) iff χ(z) ∈ Fa
0 .

Now, the infinite occurrence requirement on t∗ can be expressed with the following sentence:
ϕrec , [[x]][[y]] (0β(y)∧ (0α(x)∨ (α,x)(β,y)(X t∗)))→ 〈〈x′〉〉 x <α x′ ∧ (α,x′)(β,y)(X t∗). Informally,
ϕrec asserts that, when we are on the first row individuated by the variable y and at a column
individuated by x such that it is the first column or the node of the “intersection” between x and y is
labeled by t∗, we have that there exists a greater column individuated by x′ such that its “intersection”
with y is labeled by t∗ as well.

12 Reasoning About Strategies

Construction correctness. Now we have all the tools to formally prove the correctness of the
undecidability reduction, by showing the equivalence between finding the solution of the recurrent
tiling problem and the satisfiability of the sentence ϕdom. In particular, one can note that in the
reduction we propose, only the SLCHP fragment of SL is involved. Thus, we prove that SLCHP

under the concurrent semantics is highly undecidable, while it remains an open question whether this
problem is undecidable or not in the turned-based framework.

I Theorem 5.3. The satisfiability problem for SLCHP under the concurrent semantics is highly
undecidable. In particular, it is Σ1

1-HARD.

References

1 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. JACM, 49(5):672–
713, 2002.

2 T. Brihaye, A.D.C. Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Contexts and Bounded
Memory. In LFCS’09, LNCS 5407, pages 92–106. Springer, 2009.

3 K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In CONCUR’07, LNCS 4703,
pages 59–73. Springer, 2007.

4 E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In LP’81, LNCS 131, pages 52–71. Springer, 1981.

5 E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.

6 H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

7 E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching Versus
Linear Time. JACM, 33(1):151–178, 1986.

8 E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to Current
Research. LNCS 2500. Springer, 2002.

9 D. Harel. A Simple Highly Undecidable Domino Problem. In LCC’84, 1984.

10 W. Jamroga and W. van der Hoek. Agents that Know How to Play. FI, 63(2-3):185–219, 2004.

11 D. Kozen. Results on the Propositional mu-Calculus. TCS, 27:333–354, 1983.

12 O. Kupferman and M.Y. Vardi. Weak Alternating Automata and Tree Automata Emptiness. In
STOC’98, pages 224–233, 1998.

13 O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to Branching-Time
Model Checking. JACM, 47(2):312–360, 2000.

14 O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. IC, 164(2):322–344, 2001.

15 D.E. Muller and P.E. Schupp. Simulating Alternating Tree Automata by Nondeterministic Au-
tomata: New Results and New Proofs of Theorems of Rabin, McNaughton and Safra. TCS, 141:69–
107, 1995.

16 M. Pauly. A Modal Logic for Coalitional Power in Games. JLC, 12(1):149–166, 2002.

17 S. Pinchinat. A Generic Constructive Solution for Concurrent Games with Expressive Constraints
on Strategies. In ATVA’07, LNCS 4762, pages 253–267. Springer, 2007.

18 A. Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57, 1977.

19 J.P. Queille and J. Sifakis. Specification and Verification of Concurrent Programs in Cesar. In
SP’81, LNCS 137, pages 337–351. Springer, 1981.

20 S. Schewe. ATL* Satisfiability is 2ExpTime-Complete. In ICALP’08, LNCS 5126, pages 373–385.
Springer, 2008.

21 M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verification.
In LICS’86, pages 332–344. IEEE Computer Society, 1986.

22 H. Wang. Proving Theorems by Pattern Recognition II. BSTJ, 40:1–41, 1961.

	Introduction
	Preliminaries
	Strategy Logic
	Model Checking
	Satisfiability

