
CTL+ Is Exponentially More Succinct than CTL

Thomas Wilke

Lehrstuhl für Informatik VII,
RWTH Aachen, 52056 Aachen, Germany

wilke@informatik.rwth-aachen.de

Abstract. It is proved that CTL+ is exponentially more succinct than
CTL. More precisely, it is shown that every CTL formula (and every
modal µ-calculus formula) equivalent to the CTL+ formula

E(Fp0 ∧ · · · ∧ Fpn−1)

is of length at least
�

n
�n/2�

�
, which is Ω(2n/

√
n). This matches almost

the upper bound provided by Emerson and Halpern, which says that for
every CTL+ formula of length n there exists an equivalent CTL formula
of length at most 2n log n.
It follows that the exponential blow-up as incurred in known conversions
of nondeterministic Büchi word automata into alternation-free µ-calculus
formulas is unavoidable. This answers a question posed by Kupferman
and Vardi.
The proof of the above lower bound exploits the fact that for every CTL
(µ-calculus) formula there exists an equivalent alternating tree automa-
ton of linear size. The core of this proof is an involved cut-and-paste
argument for alternating tree automata.

1 Introduction

Expressiveness and succinctness are two important aspects to consider when one
investigates a (specification) logic. When studying the expressiveness of a logic
one is interested in characterizing what properties can be expressed, whereas
when studying the succinctness one is interested in how short a formula can be
found to express a given property. Succinctness is especially of importance in a
situation where one has characterized the expressive power of a logic by a differ-
ent but equally expressive logic. In such a situation, succinctness is the foremost
quantitative measure to distinguish the logics. For instance, linear-time tempo-
ral logic (LTL) is known to be exactly as expressive as first-order logic (FO), [9],
but FO is much more succinct than LTL: from work by Stockmeyer’s, [11], it
follows that there exists a sequence of FO formulas of linear length such that the
length of shortest equivalent LTL formulas cannot be bounded by an elementary
recursive function.

In this paper, the succinctness of computation tree logic (CTL) is compared
to the succinctness of CTL+, an extension of CTL, which is known to have
exactly the same expressive power as CTL, [4,5]. I present a sequence of CTL+

C. Pandu Rangan, V. Raman, R. Ramanujam (Eds.): FSTTCS’99, LNCS 1738, pp. 110–121, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

CTL+ Is Exponentially More Succinct than CTL 111

formulas of length O(n) such that the length of shortest equivalent CTL formulas
is Ω(2n/

√
n). More precisely, I prove that every CTL formula equivalent to the

CTL+ formula

E(Fp0 ∧ · · · ∧ Fpn−1)

is of length at least
(

n
�n/2�

)
, which shows that CTL+ is exponentially more suc-

cinct than CTL. This lower bound is almost tight, because a result by Emerson
and Halpern’s, [4,5], says that for every CTL+ formula of length n there exists
an equivalent CTL formula of length at most 2n log n.

It is important to note that this exponential lower bound is not based on
any complexity-theoretic assumption, and it does not follow from the fact that
model checking for CTL is known to be P-complete whereas model checking for
CTL+ is NP- and co-NP-hard (and in ∆p

2), [3,4,5].
The proof of the lower bound presented in this paper makes use of automata-

theoretic arguments, following other approaches to similar questions. The main
idea is based on the following fact. For every CTL formula (and for every µ-
calculus formula) ϕ there exists an alternating tree automaton Aϕ of size linear
in the length of ϕ that accepts exactly the models of ϕ, [6,1,2]. So in order to
obtain a lower bound on the length of the CTL (or µ-calculus) formulas defining
a given class of Kripke structures,1 it is enough to establish a lower bound on
the number of states of the alternating tree automata recognizing the given class
of structures.

As mentioned above, automata-theoretic arguments have been used in this
way in different places, for instance by Etessami, Vardi, and myself in [8] or
Kupferman and Vardi in [10]. The difference, however, is that in this paper the
automaton model (alternating automata on trees) is rather intricate compared
to the automaton models used in [8] and [10] (nondeterministic automata on
words and nondeterministic automata on trees, respectively).

The more elaborate argument that is needed here also answers a question
raised in the paper by Kupferman and Vardi. A particular problem they con-
sider is constructing for a given nondeterministic Büchi word automaton an
alternation free µ-calculus (AFMC) formula that denotes in every Kripke struc-
ture the set of all worlds where all infinite paths originating in this world are
accepted by the automaton. They show that if such a formula exists, then there
is a formula of size at most exponential in the number of states of the given Büchi
automaton, but they cannot give a matching lower bound. This is provided in
this paper.

Outline. In Section 2, the syntax and semantics of CTL and CTL+ are briefly
reviewed and the main result of the paper is presented. In Section 3, alternating
tree automata are briefly reviewed and subsequently, in Section 4, the succinct-
ness problem is reduced to an automata-theoretic problem. Section 5 describes

1 Strictly speaking, a CTL formula defines a class of pointed Kripke structures, see
Section 2.

112 Thomas Wilke

the latter in a more general setting and in Section 6 a sketch is given of the solu-
tion of this more general problem. Section 7 presents consequences, and Section 8
gives a conclusion.

This paper is an extended abstract; for details of the proofs, see the technical
report [12].

Acknowledgment. I would like to thank Kousha Etessami, Martin Grohe, Neil
Immerman, Christof Löding, Philippe Schnoebelen, and Moshe Y. Vardi for hav-
ing discussed with me the problem addressed in this paper.

Trees and tree arithmetic. In this paper, a tree is a triple (V,E, λ) where (V,E)
is a directed tree in the graph-theoretic sense and λ is a labeling function with
domain V . By convention, when T denotes a tree, then V , E, and λ always
denote the set of nodes, set of edges, and labeling function of T . The same
applies to decorations such as T ′, T ∗, T i, etc.

Let T be an arbitrary tree. A node v′ ∈ V is a successor of a node v ∈ V in T
if (v, v′) ∈ E. The set of all successors of a node v in T is denoted by Scs(T , v).
The set of leaves of a tree T , that is, the set of nodes without successors, is
denoted by Lvs(T). The set of inner nodes is denoted by In(T).

Given a tree T and a vertex v of T , the ancestors path, denoted T ↑v, is
the unique path from the root of T to v (inclusively). The descendants tree,
denoted T ↓v, is the subgraph of T induced by all nodes reachable from v (v
itself included).

I will use two kinds of concatenations for trees. When T and T ′ are trees
and v is a node of T , then T ·(v,T ′) denotes the tree that results from T by first
making an isomorphic copy of T ′ whose node set is disjoint from the set of nodes
of T and then adding an edge from v to the root of T ′. Similarly, T � (v,T ′)
denotes the tree that results from T by first making an isomorphic copy of T ′

whose node set is disjoint from the set of nodes of T and then identifying the
root of the isomorphic copy of T ′ with v. By convention, the node v is retained in
the resulting tree (rather than the root of T ′) and the label of v is kept.— These
two concatenation operations are extended in a straightforward way: when T is
a tree and M a set of pairs (v,T ′), with v ∈ V and T ′ an arbitrary tree, I might
write T ·M and T �M to denote the result of concatenating (in the respective
way) all trees from M to T .

For ease in notation, when π is a finite path (a finite tree with exactly one
leaf) with leaf v and T is a tree, I simply write π · T for the tree π · (v,T) as
defined above. To make things even simpler, I view strings as finite paths and
vice versa. So when u is a string and T a tree, I might write u · T to denote the
tree which is obtained by viewing u as a path and concatenating T to it.

2 CTL, CTL+, and Main Result

I start with recalling the syntax and the semantics of CTL and CTL+. For tech-
nical reasons, I only define formulas in positive normal form. This is not an

CTL+ Is Exponentially More Succinct than CTL 113

essential restriction, because every CTL formula is equivalent to a CTL formula
in positive normal form of the same length, and the same applies to CTL+.

Let Prop = {p0, p1, p2, . . . } be an infinite supply of distinct propositional
variables. The set of all CTL+ formulas and the set of all path formulas are
defined simultaneously as follows.

1. 0 and 1 are CTL+ formulas.
2. For p ∈ Prop, p and ¬p are CTL+ formulas.
3. If ϕ and ψ are CTL+ formulas, then so are ϕ ∨ ψ and ϕ ∧ ψ.
4. Every CTL+ formula is a path formula.
5. If ϕ and ψ are CTL+ formulas, then Xϕ, U(ϕ, ψ), and R(ϕ, ψ) are path

formulas.
6. If ϕ and ψ are path formulas, then so are ϕ ∨ ψ and ϕ ∧ ψ.
7. If ϕ is a path formula, then Eϕ and Aϕ are CTL+ formulas.

A CTL+ formula is a CTL formula when it can be constructed without using
rule 6. That is, in CTL formulas every path quantifier (E or A) is followed imme-
diately by a temporal modality (X, U, or R). As usual, I use Fϕ (eventually ϕ)
as an abbreviation for U(1, ϕ).

CTL and CTL+ formulas are interpreted in Kripke structures, which are di-
rected graphs with specific labeling functions for their nodes. Formally, a Kripke
structure is a tuple (W,R,α) where W is a set of worlds, R ⊆ W ×W is an
accessibility relation, and α : W → 2Prop is a labeling function, which assigns to
each world the set of propositional variables that hold true in it. By convention,
Kripke structures are denoted by K or decorated versions of K such as K′ or
K∗, and their components are referred to asW , R, and α, respectively decorated
versions of these letters.

Given a world w of a Kripke structure K as above, a world w′ is called a
successor of w in K if (w,w′) ∈ R. Just as with trees, the set of all successors
of a world w is denoted by Scs(K, w). A path through a Kripke structure K as
above is a nonempty sequence w0, w1, . . . such that (w0, w1) ∈ R, (w1, w2) ∈ R,
. . . A maximal path is a path that is either infinite or finite and ends in a world
without successors.

A pointed Kripke structure is a pair (K, w) of a Kripke structure and a
distinguished world of it. A path through a pointed Kripke structure (K, w) is a
path through K starting in w. A path-equipped Kripke structure is a pair (K, π)
of a Kripke structure and a maximal path through it.

For every CTL+ and path formula ϕ, one defines in a straightforward way
what it means for ϕ to hold in a pointed Kripke structure (K, w) respectively
path-equipped Kripke structure (K, π) and denotes this by (K, w) |= ϕ respec-
tively (K, π) |= ϕ. For instance, when ϕ is a path formula, then (K, w) |= Eϕ if
there exists a maximal path π through (K, w) such that (K, π) |= ϕ. For details,
the reader is referred to [5].

Given a CTL+ formula ϕ, I write Mod(ϕ) for the class of all pointed Kripke
structures that are models of ϕ, i. e., Mod(ϕ) = {(K, w) | (K, w) |= ϕ}. CTL+

formulas ϕ and ψ are equivalent if they have the same models, i. e., if Mod(ϕ) =
Mod(ψ).

114 Thomas Wilke

The main result of this paper is:

Theorem 1. Every CTL formula equivalent to the CTL+ formula ϕn defined by

ϕn = E(Fp0 ∧ · · · ∧ Fpn−1) (1)

has length at least
(

n
�n/2�

)
, which is Ω(2n/

√
n).

In other words, CTL+ is exponentially more succinct than CTL.

Note that it is easy to come up with a formula of length O(n!) equivalent
to ϕn, namely as a disjunction with n! many disjuncts, each taking care of one
possible order in which the pi’s may occur on a path.

3 Alternating Tree Automata

As indicated in the abstract and the introduction, I use an automata-theoretic
argument to prove Theorem 1. In this section, the respective automaton model,
which differs from other models used in the literature, is introduced.

First, it can handle trees with arbitrary degree of branching in a simple way.
Second, the class of objects accepted by an automaton as defined here is a class
of pointed Kripke structures rather than just a set of trees. Both facts make it
much easier to phrase theorems such as Theorem 2 below and also simplify the
presentation of a combinatorial (lower-bound) argument like the one given in
Section 6.

An alternating tree automaton (ATA) is a tuple A = (Q,P, qI , δ, Ω) where Q
is a finite set of states, P is a finite subset of Prop, qI ∈ Q is an initial state, δ is
a transition function as specified below, and Ω is an acceptance condition for ω-
automata such as a Büchi or Muller condition. The same notational conventions
as with Kripke structures apply.

The transition function δ is a function Q × 2P → TC(Q), where TC(Q) is
the set of transition conditions over Q, which are defined by the following rules.

1. 0 and 1 are transition conditions over Q.
2. For every q ∈ Q, q is a transition condition over Q.
3. For every q ∈ Q, ✷q and ✸q are transition conditions over Q.
4. If ϕ and ψ are transition conditions overQ, then ϕ∧ψ and ϕ∨ψ are transition

conditions over Q.

A transition condition is said to be ε-free if rule 2 is not needed to build it. An
ATA is ε-free if every condition δ(q, a) for q ∈ Q and a ∈ 2P is ε-free; it is in
normal form if it is ε-free, the conditions δ(q, a) are in disjunctive normal form,
and neither 0 nor 1 occur in these conditions.

ATA’s work on pointed Kripke structures. Their computational behavior is
explained using the notion of a run. Assume A is an ATA as above and (K, wI)
a pointed Kripke structure as above. A run of A on (K, wI) is a (W × Q)-
labeled tree R = (V,E, λ) satisfying the conditions described further below.
To explain these conditions, some more definitions are needed. For simplicity

CTL+ Is Exponentially More Succinct than CTL 115

in notation, I will write wR(v) and qR(v) for the first and second component
of λ(v), respectively.

For every node v of R, I define what it means for a transition condition τ
over Q to hold in v, denoted K,R, v |= τ . This definition is by induction on the
structure of τ , where the boolean constants 0 and 1 and the boolean connectives
are dealt with in the usual way; besides:

— K,R, v |= q if there exists v′ ∈ Scs(R, v) such that λ(v′) = (wR(v), q),
— K,R, v |= ✸q if there exists v′ ∈ Scs(R, v) and w ∈ Scs(K, wR(v)) such

that λ(v′) = (w, q), and
— K,R, v |= ✷q if for every w ∈ Scs(K, wR(v)) there exists v′ ∈ Scs(R, v)

such that λ(v′) = (w, q).
The two additional conditions that are required of a run are the following.

1. Initial condition. Let v0 be the root of (V,E). Then λ(v0) = (wI , qI).
2. Local consistency. For every v ∈ V ,

K,R, v |= τv (2)

where

τv = δ(qR(v), α(wR(v)) ∩ P) . (3)

Note that the intersection with P allows us to deal easily with the fact that in
the definition of Kripke structure an infinite number of propositional variables
is always present.

A run R is said to be accepting if the state labeling of every infinite path
through R satisfies the given acceptance condition Ω. For instance, if Ω ⊆ 2Q is
a Muller condition, then every infinite path v0, v1, . . . through R must have
the property that the set formed by the states occurring infinitely often in
qR(v0), qR(v1), . . . is a member of Ω.

A pointed Kripke structure is accepted by A if there exists an accepting run
of A on the Kripke structure. The class of pointed Kripke structures accepted
by A is denoted by K(A); it is said A recognizes K(A).

Throughout this paper, the same notational conventions as with Kripke struc-
tures and alternating tree automata apply to runs.

4 Reduction to Automata-Theoretic Problem

In order to reduce the lower bound claim for the translation from CTL+ to CTL
to a claim on alternating tree automata, I describe the models of a CTL formula
by an alternating tree automaton, following the ideas of Kupferman, Vardi, and
Wolper, [2], but using the more general model of automaton.

Let ϕ be an arbitrary CTL formula and P the set of propositional variables
occurring in ϕ. The ATA Aϕ is defined by Aϕ = (Q,P, ϕ, δ,Ω) where Q is the
set of all CTL subformulas of ϕ including ϕ itself, Ω is the Muller acceptance
condition that contains all sets of subformulas of ϕ that do not contain formulas

116 Thomas Wilke

starting with EU or AU, and δ is defined by induction, where, for instance, the
inductive step for EU is given by

δ(EU(ψ, χ), a) = χ ∨ (ψ ∧ ✸EU(ψ, χ)) . (4)

The other cases are similar and follow the ideas of [2]. Note that on the right-
hand side of (4) the boolean connectives ∨ and ∧ are part of the syntax of
transition conditions.

Similar to [2], one can prove by a straightforward induction on the structure
of ϕ:

Theorem 2. Let ϕ be an arbitrary CTL formula of length l. Then Aϕ is an
ATA with at most l states such that Mod(ϕ) = K(Aϕ).

It is quite easy to see that for every ATA there exists an equivalent ATA in
normal form with the same number of states. So in order to prove Theorem 1
we only need to show:

Theorem 3. Every ATA in normal form recognizing Mod(ϕn) has at least(
n

�n/2�
)

states.

5 The General Setting

The method I use to prove Theorem 3 (a cut-and-paste argument) does not only
apply to the specific properties defined by the ϕn’s but to a large class of “path
properties.” As with many other situations, the method is best understood when
presented in its full generality. In this section, I explain the general setting and
present the extended version of Theorem 3, namely Theorem 4.

In the following, word stands for nonempty string or ω-word. The set of all
words over a given alphabet A is denoted by A∞. A language is a subset of
(2P)∞ where P is some finite subset of Prop. Given a language L over some
alphabet 2P , EL denotes the class of pointed Kripke structures (K, w) where
there exists a maximal path through (K, w) whose labeling (restricted to the
propositional variables in P) is an element of L. (Remember that a path through
a pointed Kripke structure always starts in its distinguished world.)

Observe that for every n, we clearly have Mod(ϕn) = ELn where

Ln = {a0a1 · · · ∈ (2Pn)∞ | ∀i(i < n→ ∃j(pi ∈ aj))}
and Pn = {p0, . . . , pn−1}.

Let L be a regular language. We say a family {(ui, u
′
i)}i<m is a discriminating

family for L if uiu
′
i ∈ L and uiu

′
j /∈ L for all i < m and all j < m with

j �= i. Obviously, the number of classes of the Nerode congruence2 associated
with L is an upper bound for m. The maximum number such that there exists
a discriminating family of that size for L is denoted ι(L).

The generalized version of Theorem 3 now reads:
2 The Nerode congruence of a language L is the congruence that considers strings u
and v equivalent if for every word x (including the empty word), ux ∈ L iff vx ∈ L.

CTL+ Is Exponentially More Succinct than CTL 117

Theorem 4. Let L be a regular language. Then every ATA recognizing EL has
at least ι(L) states.

Before we turn to the proof of this theorem in the next section, let’s apply
it to the languages Ln (as defined above) to obtain the desired lower bounds.

Fix an arbitrary positive natural number n > 1 and let m = �n/2� and
t =

(
n
m

)
. Write N for the set {0, . . . , n− 1} and ¯ for set-theoretic complementa-

tion with respect to N . For everyM ⊆ N , let u(M) be a string over 2Pn of length
|M | such that for every pi ∈M , the letter {pi} occurs in u(M). (In other words,
u(M) should be a sequence of singletons where for each i ∈ M the singleton
{pi} occurs exactly once and no other singleton occurs.) Let M0, . . . ,Mt−1 be
an enumeration of all m-subsets of N and let ui = u(Mi) and u′i = u(M̄i). Then
{(ui, u

′
i)}i<t is a discriminating family for Ln, which means ι(Ln) ≥

(
n

�n/2�
)
.

This together with Theorem 4 implies Theorem 3 and thus also Theorem 1.
(Observe that for n = 1 the claims of Theorems 3 and 1 are trivial.)

6 Saturation

In this section, I will introduce the key concepts used in the proof Theorem 4,
state the main lemmas, provide as much intuition as is possible within the page
limit, and give a rough outline of the proof of Theorem 4.

We will see trees in two different roles. On the one hand, we will look at runs
of ATA’s, and runs of ATA’s are trees by definition. On the other hand, we will
consider Kripke structures that are trees. In order to not get confused, I will
strictly follow the notational conventions introduced earlier, for instance, that
the labeling function of a run R′ is referred to by λ′. As we will only work with
Kripke structures that are trees, I will use the term Kripke tree. A Kripke tree
will also be viewed as a pointed Kripke structure where the root of the tree is
the distinguished node.

For the rest of this section, fix a language L over some alphabet 2P , and an
ATA A. For each state q, write Aq for the ATA that results from A by changing
its initial state to q and Kq for the class K(Aq), the class of pointed Kripke
structures recognized by Aq.

Let u be a string. A state q is preventable for u if there exists a Kripke tree K
such that u·K /∈ EL and K /∈ Kq. We write pvt(u) for set of all states preventable
for u, and for every q ∈ pvt(u), we pick, once and for all, a Kripke tree K as
above and denote it by Ku

q . The important observation here is that if K is a
Kripke tree, w ∈W , and q ∈ pvt(K↑w), then K′ defined by K′ = K · (w,Ku

q)
with u = K↑w has the following two properties. First, if K /∈ EL, then K′ /∈ EL.
Second, there is no run R of A on K′ that has a node v with wR(v) = w and
K′,R, v |= ✷q. In a certain sense, by adding Kq

u to K, the condition ✷q is
“prevented” from being used at w.

A state q is always successful for u if there exists a state q′ ∈ pvt(u) such
that Ku

q′ ∈ Kq. We write scf(u) for the set of states always successful for u, and
for every q ∈ scf(u), we pick, once and for all, a state q′ as above and denote it

118 Thomas Wilke

by qu. (Note that whether or not a state is always successful for a string depends
on the particular choices for the Ku

q ’s.) The important observation here is the
following. Choose K, w, u, and K′ as in the previous paragraph. If q ∈ scf(u)
and if we want to construct a run R of A on K′, then we can always make sure
that K,R, v |= ✸q holds for a node v with wR(v) = w, because we only need to
add to R a successful run of A on Ku

q′ with q′ = qu. Formally, if Ru
q′ is such a

run, we only need to consider R · (v,Ru
q′) instead of R.

A worldw of a Kripke treeK is said to be saturated if for every q ∈ pvt(K↑w),
there exists w′ ∈ Scs(K, w) such that K↓w′ is isomorphic to Ku

q with u = K↑w.
Let K be an arbitrary Kripke tree. The Kripke tree Ks is defined by

Ks = K · {(w,Ku
q) | w ∈ In(K), u = K↑w, and q ∈ pvt(u)} , (5)

that is, in Ks, every inner world from K is saturated.

Remark 1. Let K be an arbitrary Kripke tree. If K ∈ EL, then Ks ∈ EL.

This is because every maximal path through K is also present in Ks; no
successors are added to leaves.

Let τ be an arbitrary transition condition over Q and X,Y ⊆ Q. The X-Y -
reduct of τ , denoted τX,Y , is obtained from τ by replacing

— every atomic subformula of the form ✷q with q ∈ X by 0,
— every atomic subformula of the form ✷q with q ∈ Q \X by 1, and
— every atomic subformula of the form ✸q with q ∈ Y by 1.
Let K be an arbitrary Kripke tree. A partial run of A on K is defined just

as an ordinary accepting run with the following modification of local consistency
as defined in (2). For every v ∈ V such that wR(v) ∈ In(K), it is required that

K,R, v |= τXv ,Yv
v (6)

holds where τv is as defined in (3) and

Xv = pvt(K↑wR(v)) , Yv = scf(K↑wR(v)) .

Note that in general neither τ implies τX,Y nor τX,Y implies τ . So there is
no a priori relation between the existence of runs and partial runs. But using
Remark 1 and the right notion of restriction of a run one can prove the following.

Lemma 1. Let K be an arbitrary Kripke tree. Assume K(A) = EL and K ∈
K(A). Then there exists a partial run of A on K.

Let R be a partial run of A on a Kripke tree K. The run R is distributed if
for every w ∈ W there exists at most one v ∈ V with wR(v) = w.

The set of all frontier pairs of R, denoted by FrtPrs(R), is defined by
FrtPrs(R) = {λ(v) | v ∈ V and wR(v) ∈ Lvs(K)}. Similarly, the set of all
frontier states of R, denoted FrtSts(R), is defined by FrtSts(R) = {qR(v) |
v ∈ V and wR(v) ∈ Lvs(K)}.

The crucial lemma connecting Kripke trees with saturated inner worlds and
partial runs is as follows.

CTL+ Is Exponentially More Succinct than CTL 119

Lemma 2. Let K be a Kripke tree and R a distributed partial run of A on K.
Assume that for every q ∈ FrtSts(R) there exists a Kripke tree Kq ∈ Kq such
that the tree K∗ defined by

K∗ = K � {(w,Kq) | q ∈ FrtSts(R)}
does not belong to EL.

Then there exists an accepting run of A on the Kripke tree K∗∗ defined by

K∗∗ = Ks � {(w,Kq) | (w, q) ∈ FrtPrs(R)} ,
which does not belong to EL.

Note that because R is supposed to be distributed, the trees K∗ and K∗∗

are obtained from K and Ks, respectively, by adding to each leaf at most one
of the trees Kq.

The proof of this lemma is technically involved and makes extensive use of
the aforementioned properties of preventable and always successful states.

I will conclude this section with a rough sketch of the proof of Theorem 4.

Sketch of the Proof of Theorem 4. Let {(ui, u
′
i)}i<m be a discriminating family

for L of size ι(L) and A an ATA with K(A) = EL. I claim that for every i < m,
there exists a state q such that u′i ∈ Kq, but u′j /∈ Kq for j < m and j �= i. This
clearly implies the claim of the theorem.

By way of contradiction, assume this is not the case. Then there exists i < m
such that for every q ∈ Q with u′i ∈ Kq there exists j �= i such that u′j ∈ Kq. For
every such q let jq be an appropriate index j.

Let K be a |Q|-branching Kripke tree3 such that every maximal path starting
with the root is labeled uiai where ai is the first letter of u′i. Consider the Kripke
tree K′ defined by K′ = K � {(w, u′i) | w ∈ Lvs(K)}.

Clearly, K′ ∈ EL (because every maximal path through K′ is labeled uiu
′
i).

Thus, by Lemma 1, there exists a partial run of A on K′. By restricting this run
to the worlds in K, we obtain a partial run of A on K. This run has the obvious
property that for every q ∈ FrtSts(R) there exists an accepting run of Aq on u′jq

.
By manipulating this run adequately, using the fact that K is |Q|-branching, one
can transform it into a distributed partial run with the same property. This run
together with the u′jq

’s replacing the Kq’s satisfies the assumptions of Lemma 2.
We can thus conclude the Kripke tree K∗∗ as defined in Lemma 2, which does
not belong to EL, is accepted by A—a contradiction.

7 Connection with Büchi Automata and µ-Calculus

One can show that Theorem 2 also holds for the modal µ-calculus (see, for
instance, [2]). So we also obtain: every modal µ-calculus formula equivalent to
3 A Kripke tree K is m-branching if for every world w ∈ W the following is true. For
every successor w0 of w there exist at least m−1 other successors w1, . . . , wm−1 of w
such that all subtrees K↓w0, . . . , K↓wm−1 are isomorphic.

120 Thomas Wilke

the CTL+ formula ϕn has length at least
(

n
�n/2�

)
. This is interesting because of

the following.
As the modal µ-calculus is closed under syntactic negation, the above also

says that every modal µ-calculus formula equivalent to the CTL+ formula

A(G¬p0 ∨ · · · ∨ G¬pn−1)

has length at least
(

n
�n/2�

)
. And, clearly, this property can easily be expressed

by an alternation-free µ-calculus (AFMC) formula (according to the definition
of alternation-freeness as introduced by Emerson and Lei in [7]), because it
can be expressed in CTL. On the other hand, the set of all ω-words over 2Pn

satisfying the linear-time temporal property G¬p0 ∨ · · · ∨ G¬pn−1 is recognized
by a nondeterministic Büchi word automaton (NBW) with n + 1 states. We
therefore have:

Corollary 1. There is an exponential lower bound for the translation NBW �→
AFMC in the sense of [10].

This answers a question left open by Kupferman and Vardi in [10].

8 Conclusion

We have seen that there is an exponential gap between the succinctness of CTL+

and CTL, as well as an exponential gap between nondeterministic Büchi word
automata and alternation-free µ-calculus. Just as in many other situations, the
automata-theoretic approach to understanding the expressive power of (specifi-
cation) logics has proved to be useful.

References

1. O. Bernholtz [Kupferman] and O. Grumberg. Branching temporal logic and amor-
phous tree automata. In E. Best, ed., CONCUR’93, vol. 715 of LNCS, 262–277.
111

2. O. Bernholtz [Kupferman], M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. In D. L. Dill, ed., CAV ’94, vol. 818
of LNCS, 142–155. 111, 115, 116, 116, 119

3. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications: A practical approach.
In PoPL ’83, 117–126. 111

4. E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. In STOC ’82, 169–181. 110, 111, 111

5. E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. J. Comput. System Sci., 30(1):1–24, 1985. 110,
111, 111, 113

6. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of
µ-calculus. In C. Courcoubetis, ed., CAV ’93, vol. 697 of LNCS, 385–396. 111

7. E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus (extended abstract). In LICS ’86, 267–278. 120

CTL+ Is Exponentially More Succinct than CTL 121

8. K. Etessami, M. Y. Vardi, and Th. Wilke. First-order logic with two variables and
unary temporal logic. In LICS ’97, 228–235. 111, 111

9. J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California, Los Angeles, Calif., 1968. 110

10. O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism: From
linear-time to branching-time. In LICS ’98, 81–92. 111, 111, 120, 120

11. L. J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and
Logic. PhD thesis, Dept. of Electrical Engineering, MIT, Boston, Mass., 1974. 110

12. Th. Wilke. CTL+ is exponentially more succinct than CTL. Technical Report
99-7, RWTH Aachen, Fachgruppe Informatik, 1999. Available online via
ftp://ftp.informatik.rwth-aachen.de/pub/reports/1999/index.html. 112

ftp://ftp.informatik.rwth-aachen.de/pub/reports/1999/index.html

	Introduction
	CTL, CTL+, and Main Result
	Alternating Tree Automata
	Reduction to Automata-Theoretic Problem
	The General Setting
	Saturation
	Connection with Büchi Automata and \mu-Calculus
	Conclusion

