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Abstract. We study verification problems for a model of network with
the following characteristics: the number of entities is parametric, com-
munication is performed through broadcast with adjacent neighbors, en-
tities can change their internal state probabilistically and reconfiguration
of the communication topology can happen at any time. The semantics
of such a model is given in term of an infinite state system with both non
deterministic and probabilistic choices. We are interested in qualitative
problems like whether there exists an initial topology and a resolution of
the non determinism such that a configuration exhibiting an error state
is almost surely reached. We show that all the qualitative reachability
problems are decidable and some proofs are based on solving a 2 player
game played on the graphs of a reconfigurable network with broadcast
with parity and safety objectives.

1 Introduction

Providing methods to analyze and verify distributed systems is a complex task
and this for several reasons. First there are different families of distributed sys-
tems depending on the communication means (shared memory or message pass-
ing), on the computing power of the involved entities, on the knowledge of the
system provided to the entities (full knowledge, or local knowledge of their neigh-
bors, or no knowledge at all) or on the type of communication topology that is
considered (ring, tree, arbitrary graph, etc). Second, most of the protocols devel-
oped for distributed systems are supposed to work for an unbounded number of
participants, hence in order to verify that a system behaves correctly, one needs
to develop methods which allow to deal with such a parameter.

In [12], the authors propose a model which allows to take into account the
main features of a family of distributed networks, namely ad-hoc networks. It
characterizes the following aspects of such systems: the nodes in the network can
only communicate with their neighbors using broadcast communication and the
number of participants is unbounded. In this model, each entity behaves similarly
following a protocol which is represented by a finite state machine performing
three kinds of actions (1) broadcast of a message, (2) reception of a message and
(3) internal action. Furthermore, the communication topology does not change
during an execution and no entity is deleted or added during an execution. The



control state reachability problem consists then in determining whether there
exists an initial number of entities in a communication topology such that it
is possible to reach a configuration where at least one process is in a specific
control state (considered for instance as an error state). The main difficulty
in solving such a problem lies in the fact that both the number of processes
and the initial communication topology are parameters, for which one wishes
to find an instantiation. In [12], it is proven that this problem is undecidable
but becomes decidable when considering non-deterministic reconfiguration of
the communication topology, i.e. when at any moment the nodes can move and
change their neighborhood. In [11] this latter problem is shown to be P-complete.
An other way to gain decidability in such so called broadcast networks consists in
restricting the set of communication topologies to complete graphs (aka cliques)
or bounded depth graphs [13] or acyclic directed graphs [1].

We propose here to extend the model of reconfigurable broadcast networks
studied in [11] by allowing probabilistic internal actions, that is, a process can
change its internal state according to a probabilistic distribution. Whereas the
semantics of reconfigurable broadcast networks was given in term of an infinite
state system with non-determinism (due to the different possibility of sending
messages from different nodes and also to the non-determinism of the proto-
col itself), we obtain here an infinite state system with probabilistic and non-
deterministic choices. On such a system we study the probabilistic version of
the control state reachability by seeking for the existence of a scheduler resolv-
ing non-determinism which minimizes or maximizes the probability to reach a
configuration exhibiting a specific state. We focus on the qualitative aspects of
this problem by comparing probabilities only with 0 and 1. Note that another
model of broadcast networks with probabilistic protocols was defined in [6]; it
was however different: the communication topologies were necessarily cliques and
decidability of qualitative probabilistic reachability only holds when the network
size evolves randomly over time.

For finite state systems with non-determinism and probabilities (like finite
state Markov Decision Processes), most verification problems are decidable [5],
but when the number of states is infinite, they are much harder to tackle. The
introduction of probabilities might even lead to the undecidability, for problems
that are decidable in the non-probabilistic case. For instance for extensions of
pushdown systems with non-deterministic and probabilistic choices, the model-
checking problems of linear time or branching time logic are undecidable [14,8].
On the other hand, it is not always the case that the introduction of probabilistic
transitions leads to undecidability but then dedicated verification methods have
to be invented, as it is the case for instance for nondeterministic probabilistic
lossy channel systems [4]. Even if for well-structured infinite state systems [2,15]
(where a monotonic well-quasi order is associated to the set of configurations),
a class to which belong the broadcast reconfigurable networks of [12], a general
framework for the extension to purely probabilistic transitions has been proposed
in [3], it seems hard to adapt such a framework to the case with probabilistic
and non-deterministic choices.
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In this paper, we prove that the qualitative versions of the control state reach-
ability problem for reconfigurable broadcast networks with probabilistic internal
choices are all decidable. For some of these problems, like finding a scheduler
such that the probability of reaching a control state is equal to 1, our proof tech-
nique is based on a reduction to a 2 player game played on infinite graphs with
safety and parity objectives. This translation is inspired by a similar translation
for finite state systems (see for instance [9]). However when moving to infinite
state systems, two problems raise: first whether the translation is correct when
the system has an infinite number of states, and then whether we can solve the
game. In our translation, we answer the first question in Section 3 and the second
one in Section 4. We also believe that the parity game we define on broadcast
reconfigurable networks could be used to verify other properties on such systems.
Due to lack of space, omitted details and proofs can be found in [7].

2 Networks of probabilistic reconfigurable protocols

2.1 Preliminary definitions

For a finite or denumerable set E, we write Dist(E), for the set of discrete
probability distributions over E, that is the set of functions δ : E 7→ [0, 1] such
that Σe∈Eδ(e) = 1. We now give the definition of a 1 − 1

2 player game, which
will be later used to provide the semantics of our model.

Definition 1 (1 − 1
2 player game). A 1 − 1

2 player game is a tuple M =

(Γ, Γ (1), Γ (p),→, prob) where Γ is a denumerable set of configurations (or ver-
tices) partitioned into the configurations of Player 1 Γ (1) and the probabilistic
configurations Γ (p); →: Γ (1) 7→ Γ is the non deterministic transition relation;
prob : Γ (p) 7→ Dist(Γ (1)) is the probabilistic transition relation.

For a tuple (γ, γ′) ∈→, we will sometimes use the notations γ → γ′. A finite
path in the game M = (Γ, Γ (1), Γ (p),→, prob) is a finite sequence of configura-
tions γ0γ1 . . . γk such that for all 0 ≤ i ≤ k − 1, if γi ∈ Γ (1) then γi → γi+1 and
otherwise prob(γi)(γi+1) > 0; moreover we will say that such a path starts from
the configuration γ0. An infinite path is an infinite sequence ρ ∈ Γω such that
any finite prefix of ρ is a finite path. Furthermore we will say that a path ρ is
maximal if it is infinite or it is finite and there does not exist a configuration γ
such that ργ is a finite path (in other words a finite maximal path ends up in a
deadlock configuration). The set of maximal paths is denoted Ω.

A scheduler in the game M = (Γ, Γ (1), Γ (p),→, prob) is a function π : Γ ∗ ·
Γ (1) 7→ Γ that assigns, to a finite sequence of configurations ending with a
configuration in Γ (1), a successor configuration such that for all ρ ∈ Γ ∗, γ ∈ Γ (1)

and γ′ ∈ Γ , if π(ρ · γ) = γ′ then γ → γ′. We denote by Π the set of schedulers
for M. Given a scheduler π ∈ Π , we say that a finite path γ0γ1 . . . γn respects
the scheduler π if for every i ∈ {0 . . . n − 1}, we have that if γi ∈ Γ (1) then
π(γ0 . . . γi) = γi+1. Similarly we say that an infinite path ρ = γ0γ1 . . . respects
the scheduler π if every finite prefix of ρ respects π.
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Remark 1. Alternatively, a scheduler in the game M = (Γ, Γ (1), Γ (p),→, prob)
can be defined as what is often called a scheduler with memory. It is given by a
set M called the memory together with a strategic function πM : Γ (1)×M → Γ ,
an update function UM : Γ (1)×M ×Γ → M , and an initialization function IM :
Γ (0) → M . Intuitively, the update function updates the memory state given the
previous configuration, the current memory state and the current configuration.
The two definitions for schedulers coincide, and we will use one or the other,
depending on what is more convenient.

The set of paths starting from a configuration and respecting a scheduler
represents a stochastic process. Given a measurable set of paths A ⊆ Ω, we
denote by P(M, γ, π,A) the probability of event A for the infinite paths starting
from the configuration γ ∈ Γ and respecting the scheduler π. We define then
extremal probabilities of the event A starting from configuration γ as follows:

Pinf(M, γ,A) = inf
π∈Π

P(M, γ, π,A) and Psup(M, γ,A) = sup
π∈Π

P(M, γ, π,A)

2.2 Networks of probabilistic reconfigurable protocols

We introduce in this section our model to represent the behavior of a communi-
cation protocol in a network. This model has three main features : the commu-
nication in the network is performed via broadcast communication, each node in
the network can change its internal state probabilistically and the communica-
tion topology can change dynamically. This model extends the one proposed in
[11] with probability and can be defined in two steps. First, a configuration of the
network is represented by a labelled graph in which the edges characterize the
communication topology and the label of the nodes give the state and whether
they are the next node which will perform an action or not.

Definition 2 (L-graph). Given L a set of labels, an L-graph is a labelled
undirected graph G = (V,E, L) where: V is a finite set of nodes, E ⊆ V × V \
{(v, v) | v ∈ V } is a finite set of edges such that (v, v′) ∈ E iff (v′, v) ∈ E, and
L : V 7→ L is a labelling function.

We denote by GL the infinite set of L-graphs and for a graph G = (V,E, L),
let L(G) ⊆ L be the set of all the labels present in G, i.e. L(G) = {L(v) | v ∈ V }.
For an edge (v, v′) ∈ V , we use the notation v ∼G v′ to denote that the two
vertices v and v′ are adjacent in G. When the considered graph G is made clear
from the context, we may omit G and write simply v ∼ v′.

Then, in our model, each node of the network behaves similarly following a
protocol whose description is given by what can be seen as a finite 1− 1

2 player
game labelled with a communication alphabet.

Definition 3 (Probabilistic protocol). A probabilistic protocol is a tuple
P = (Q,Q(1), Q(P ), q0, Σ,∆,∆int) where Q is a finite set of control states par-
titioned into Q(1), the states of Player 1, and Q(P ) the probabilistic states;
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q0 ∈ Q(1) is the initial control state; Σ is a finite message alphabet; ∆ ⊆
(Q(1) × {!!a, ??a | a ∈ Σ} × Q(1)) ∪ (Q(1) × {ε} × Q) is the transition relation;
∆int : Q(P ) 7→ Dist(Q(1)) is the internal probabilistic transition relation.

The label !!a [resp. ??a] represents the broadcast [resp. reception] of the mes-
sage a ∈ Σ, whereas ε represents an internal action. Given a state q ∈ Q
and a message a ∈ Σ, we define the set Ra(q) = {q′ ∈ Q | (q, ??a, q′) ∈ ∆}
containing the control states that can be reached in P from the state q af-
ter receiving the message a. We also denote by ActStates the set of states
{q ∈ Q | ∃(q, !!a, q′) ∈ ∆ or ∃(q, ε, q′) ∈ ∆} from which a broadcast or an
internal action can be performed.

The semantics associated to a protocol P = (Q,Q(1), Q(P ), q0, Σ,∆,∆int) is
given in terms of an infinite state 1 − 1

2 player game. We will represent the
network by labelled graphs. The intuition is that each node of the graph runs
the protocol and the semantics respect the following rules: first the Player 1
chooses non deterministically a communication topology (i.e. the edge relation)
and a node which will then perform either a broadcast or an internal change;
if the node broadcasts a message, all the adjacent nodes able to receive it will
change their states, and if the node performs an internal move, then it will be
the only one to change its state to a new state, if it is a probabilistic state a
probabilistic move will then follow. Observe that the topology can hence possibly
change at each step of the Player 1. Finally, in our model, there is no creation
neither deletion of nodes, hence along a path in the associated game the number
of nodes in the graphs is fixed. We now formalize this intuition.

Let P = (Q,Q(1), Q(P ), q0, Σ,∆,∆int) be a probabilistic protocol. The set of
configurations ΓP of the network built over P is a set of (Q × {⊥,⊤})-graphs

formally defined as follows: Γ
(1)
P = {(V,E, L) ∈ GQ(1)×{⊥,⊤} | card({v ∈ V |

L(v) ∈ Q(1) × {⊤}}) ≤ 1} and Γ
(p)
P = {(V,E, L) ∈ GQ×{⊥} | card({v ∈ V |

L(v) ∈ Q(P ) × {⊥}}) = 1} and ΓP = Γ (1) ∪ Γ (p). Hence in the configurations
of Player 1, there is no node labelled with probabilistic state and at most one
node labelled with ⊤ (it is the chosen node for the action to be performed) and
in the probabilistic configurations no node is labelled with ⊤ and exactly one
node is labelled with a probabilistic state. For this last set of configurations, the
intuition is that when in the network one node changes its state to a probabilistic

one then the network goes in a configuration in Γ
(p)
P from which it performs a

probabilistic choice for the next possible state of the considered node.
The semantics of the network built over P is then given in terms of the 1− 1

2

player game MP = (ΓP , Γ
(1)
P , Γ

(p)
P ,→P , probP) where:

– →P⊆ Γ
(1)
P × ΓP is defined as follows, for all γ = (V,E, L) in Γ

(1)
P , all γ′ =

(V ′, E′, L′) in ΓP , we have γ →P γ′ iff one of the following conditions hold:

Reconfiguration and process choice: γ ∈ GQ(1)×{⊥}, V
′ = V and there

exists a vertex v ∈ V and a state q ∈ ActStates such that L(v) = (q,⊥)
and L′(v) = (q,⊤) and for all v′ ∈ V \ {v}, L(v′) = L′(v′) (in this step
E′ is arbitrarily defined and this is what induces reconfiguration);
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Internal: γ ∈ Γ
(1)
P , V ′ = V , E′ = E and there exists v ∈ V , q ∈ Q(1) and

q′ ∈ Q such that L(v) = (q,⊤), L′(v) = (q′,⊥) and (q, ε, q′) ∈ ∆, and
for all v′ ∈ V \ {v}, L′(v′) = L(v′);

Communication: γ′ ∈ Γ
(1)
P , V ′ = V , E′ = E and there exists v ∈ V , q, q′ ∈

Q(1) and a ∈ Σ such that L(v) = (q,⊤), L′(v) = (q′,⊥), (q, !!a, q′) ∈ ∆
and for every v′ ∈ V \{v} with L(v′) = (q′′,⊥), if v ∼ v′ and Ra(q

′′) 6= ∅
then L′(v′) = (q′′′,⊥) with q′′′ ∈ Ra(q

′′) and otherwise L′(v′) = L(v′);

– probP : Γ
(p)
P 7→ Dist(Γ

(1)
P ) is defined as follows, for all γ = (V,E, L) ∈ Γ

(p)
P ,

we have : if v ∈ V is the unique vertex such that L(v) ∈ Q(P ) × {⊥} and if
∆int(L(v)) = µ, then for all γ′ = (V ′, E′, L′) ∈ ΓP , if V

′ = V and E′ = E
and for all v′ ∈ V \ {v}, L′(v′) = L(v) and then probP(γ)(γ

′) = µ(q′) where
(q,⊥) = L(v) and (q′,⊥) = L′(v) , and otherwise probP(γ)(γ

′) = 0.

Finally we will denote by ΓP,0 the set of initial configurations in which all the
vertices are labelled with (q0,⊥). We point out the fact that since we do not
impose any restriction on the size of the Q-graphs, the 1− 1

2 player gameMP has
hence an infinite number of configurations. However the number of configurations
reachable from an initial configuration γ ∈ ΓP,0 since the number of states
in a probabilistic protocol is finite. Furthermore, note that since the topology
can change arbitrarily at any reconfiguration step, we could have considered an
equivalent semantics without topology but with a set of possible receivers for
each emitted message.

A simple example of probabilistic protocol is represented on Figure 1. The
initial state is q0 and the only probabilistic state is qp. From qr the broadcast of
a message a leads back to q0, and this message can be received from ql to reach
the target qf .

q0 qp

ql

qr

qf

ε

1

2

1

2

ε

!!a

??a

Fig. 1: Simple example of probabilistic protocol

2.3 Qualitative reachability problems

The problems we propose to investigate are qualitative ones where we will com-
pare the probability of reaching a particular state in a network built over a proba-
bilistic protocol with 0 or 1. Given a probabilistic protocol P = (Q,Q(1), Q(P ), q0,
Σ,∆,∆int) and a state qf ∈ Q, we denote by ✸qf the set of all maximal paths of
MP of the form γ0 · γ1 · · · such that there exists i ∈ N verifying (qf ,⊥) ∈ L(γi),
i.e. the set of paths which eventually reach a graph where a node is labelled with
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the state qf . It is well known that such a set of paths is measurable (see [5] for
instance). We are now ready to provide the definition of the different qualitative
reachability problems that we will study. Given opt ∈ {min,max}, b ∈ {0, 1}
and ∼∈ {<,=, >}, let Reach

∼b
opt be the following problem:

Input: A probabilistic protocol P , and a control state qf ∈ Q.
Question: Does there exist an initial configuration γ0 such that
Popt(MP , γ0,✸qf ) ∼ b ?

Remark that this problem is parameterized by the initial configuration and this
is the point that make this problem difficult to solve (and that leads to unde-
cidability in the case with no probabilistic choice and no reconfiguration in the
network [12]). However for a fixed given initial configuration, the problem boils
down to the analysis of a finite 1 − 1

2 player game as already mentioned. As a
consequence, the minimum and maximum (rather than infimum and supremum)
probabilities are well-defined when an initial configuration γ0 is fixed; moreover,
these extremal values are met for memoryless schedulers.

3 Networks of parity reconfigurable protocols

3.1 Parity, safety and safety/parity games

We first introduce 2 player turn-based zero-sum games with various winning
objectives. For technical reasons, our definition differs from the classical one:
colors (or parities) label the edges rather than the vertices.

Definition 4 (2 player game). A 2 player game is a tuple G = (Λ,Λ(1), Λ(2), T,
col, safe) where Λ is a denumerable set of configurations, partitioned into Λ(1)

and Λ(2), configurations of Player 1 and 2, respectively; T ⊆ Λ × Λ is a set of
directed edges; col : T → N is the coloring function such that col(T ) is finite;
safe ⊆ T is a subset of safe edges.

As in the case of 1 − 1
2 player game, we define the notions of paths and

the equivalent to schedulers: strategies. A finite path ρ is a finite sequence of
configurations λ0λ1 · · ·λn ∈ Λ∗ such that (λi, λi+1) ∈ T for all 0 ≤ i < n. Such a
path is said to start at configuration λ0. An infinite path is an infinite sequence
ρ ∈ Λω such that any finite prefix of ρ is a finite path. Similarly to paths in 1− 1

2
player game, maximal paths in G are infinite paths or finite paths ending in a
deadlock configuration.

A strategy for Player 1 dictates its choices in configurations of Λ(1). More
precisely, a strategy for Player 1 in the game G = (Λ,Λ(1), Λ(2), T, col, safe) is
a function σ : Λ∗Λ(1) 7→ Λ such that for every finite path ρ and λ ∈ Λ(1),
(λ, σ(ρλ)) ∈ T . Strategies τ : Λ∗Λ(2) → Λ for Player 2 are defined symmetrically,
and we write S(1) and S(2) for the set of strategies for each player. A strategy
profile is a pair of strategies, one for each player. Given a strategy profile (σ, τ)
and an initial configuration λ0, the game G gives rise to the following maximal
path, aka the play, ρ(G, λ0, σ, τ) = λ0λ1 · · · such that for all i ∈ N, if λi ∈ Λ(1)

then λi+1 = σ(λ0 . . . λi), otherwise λi+1 = τ(λ0 . . . λi).
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Remark 2. Similarly to the case of schedulers in 1 − 1
2 player game, (see Re-

mark 1), when convenient the players’ strategies can be alternatively defined as
strategies with memory. In this case, a strategy for Player 1 with memory M is
given by means of a strategic function σM : Λ(1) ×M → Λ, an update function
UM : Λ(1) ×M × Λ → M , and an initialization function IM : Λ → M .

The winning condition for Player 1 is a subset of plays Win ⊆ Λ∗ ∪ Λω. In
this paper, we characterize winning conditions through safety, parity objectives
and combinations of these two objectives, respectively denoted by Wins, Winp

and Winsp, and defined as follows:

Wins = {ρ ∈ Λ∗ ∪ Λω | ∀0 ≤ i < |ρ| − 1.(ρ(i), ρ(i+ 1)) ∈ safe and ρ is maximal}

Winp = {ρ ∈ Λω | max{n ∈ N | ∀i ≥ 0.∃j ≥ i.col((ρ(j), ρ(j + 1))) = n}is even}

Winsp = (Winp ∩Wins) ∪ (Λ∗ ∩Wins)

The safety objective denotes the maximal path that use only edges in safe, the
parity objective denotes the infinite paths for which the maximum color visited
infinitely often is even and the safety-parity objective denotes the set of safe
maximal paths which have to respect the parity objectives when they are infinite.
Note that in the context of games played over a finite graph the safety-parity
objective can easily be turned into a parity objective, by removing the unsafe
edges and by adding an even parity self-loop on deadlock states; However when
the game is played on an infinite graph, this transformation is difficult because
one first has to be able to detect deadlock configurations. Finally, we say that
a play ρ is winning for Player 1 for an objective Win ⊆ Λ∗ ∪ Λω if ρ ∈ Win,
in the other case it is winning for Player 2. Last, a strategy σ for Player 1 is a
winning strategy from configuration λ0 if for every strategy τ of Player 2, the
play ρ(G, λ0, σ, τ) is winning for Player 1.

3.2 Networks of parity reconfigurable protocols

We now come to the definition of networks of parity reconfigurable protocols,
introducing their syntax and semantics. The main differences with the probabilis-
tic protocol introduced previously lies in the introduction of states for Player 2,
the use of colors associated to the transition relation and the removal of the
probabilistic transitions.

Definition 5 (Parity protocol). A parity protocol is as a tuple P = (Q,Q(1),
Q(2), q0, Σ,∆, col, safe) where Q is a finite set of control states partitioned into
Q(1) and Q(2); q0 ∈ Q(1) is the initial control state; Σ is a finite message alphabet;
∆ ⊆

(

Q(1) ×
(

{!!a, ??a | a ∈ Σ} ∪ {ε}
)

×Q
)

∪
(

Q(2) × {ε} ×Q
)

is the transition
relation; col : ∆ → N is the coloring function; safe ⊆ ∆ is a set of safe edges.

Note that the roles of Player 1 and Player 2 are not symmetric: only Player 1
can initiate a communication, and Player 2 performs only internal actions. The
semantics associated to a parity protocol is given in term of a 2 player game
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whose definition is similar to the 1− 1
2 player game associated to a probabilistic

protocol (the complete definition can be found in [7]). Here also the Player 1 has
the ability to choose a communication topology and a node which will perform
an action, and according to the control state labelling this node either Player 1
or Player 2 will then perform the next move. The set of configurations ΛP of
the network built over a parity protocol P = (Q,Q(1), Q(2), q0, Σ,∆, col, safe)
is defined as follows: ΛP = {(V,E, L) ∈ GQ×{⊥,⊤} | card({v ∈ V | L(v) ∈

Q× {⊤}}) ≤ 1} and then we have Λ
(1)
P

= GQ×{⊥} ∪ {(V,E, L) ∈ ΛP | card({v ∈

V | L(v) ∈ Q(1) × {⊤}}) = 1}and Λ
(2)
P

= {(V,E, L) ∈ ΛP | card({v ∈ V | L(v) ∈
Q(2) × {⊤}}) = 1}. We observe that Player 1 owns vertices where no node is
tagged ⊤, and Player i owns the vertices where the node tagged ⊤ is in a Player i
control state. The semantics of the network built over P is then given in term of

the 2 player game GP = (ΛP, Λ
(1)
P

, Λ
(2)
P

, TP, colP, safeP) where TP ⊆ ΛP ×ΛP is
defined using reconfiguration and process choices for Player 1 and internal and
communication rules as the one defined in the case of probabilistic protocols,
whereas colP : TP → N and safeP ⊆ TP are defined following col and safe

lifting the definition from states to configurations. Finally, we will say that a
configuration λ = (V,E, L) is initial if L(v) = (q0,⊥) for all v ∈ V and we will
write ΛP,0 the set of initial configurations. Note that here also the number of
initial configuration is infinite. We are now able to define the game problem for
parity protocol as follows:

Input: A parity protocol P, and a winning condition Win.
Question: Does there exists an initial configuration λ0 ∈ ΛP,0 such that
Player 1 has a winning strategy in GP from λ0?

3.3 Restricting the strategies of Player 2

In order to solve the game problem for parity protocols, we first show that we
can restrict the strategies of Player 2 to strategies that always choose from a
given control state the same successor, independently of the configuration, or
the history in the game.

We now consider a parity protocol P = (Q,Q(1), Q(2), q0, Σ,∆, col, safe). We
begin by defining what are the local positional strategies for Player 2 in GP. A
local behavior for Player 2 in GP is a function b : (Q(2) ∩ ActStates) 7→ ∆ such
that for all q ∈ Q(2) ∩ ActStates, b(q) ∈ {(q, ε, q′) | (q, ε, q′) ∈ ∆}. Such a local
behavior induces what we will call a local strategy τb for Player 2 in GP defined
as follows: let ρ be a finite path in Λ∗

P
and λ = (V,E, L) ∈ Λ(2), if v is the unique

vertex in V such that L(v) ∈ Q(2)×{⊤} and if L(v) = (q,⊤), we have τb(ρλ) = λ′

where λ′ is the unique configuration obtained from λ by applying accordingly
to the definition of GP the rule corresponding to b(q) (i.e. the internal action

initiated from vertex v). We denote by S
(2)
l the set of local strategies for Player 2.

Note that there are a finite number of states and of edges in P, the set S
(2)
l is

thus finite and contains at most card(∆) strategies. The next lemma shows that
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we can restrict Player 2 to follow only local strategies in order to solve the game
problem for P when considering the previously introduced winning objectives.

Lemma 1. For Win ∈ {Wins,Winp,Winsp}, we have ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈

S(2), ρ(GP, λ0, σ, τ) ∈ Win ⇐⇒ ∀τ ∈ S
(2)
l

. ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1), ρ(GP, λ0,
σ, τ) ∈ Win

The proof of this lemma shares some similarities with the one to establish that
memoryless strategies are sufficient for Player 2 in energy parity games [10]. It is
performed by induction on the number of states of Player 2 in the parity protocol.
In the induction step, a configuration is split into several sub-configurations
(one for each local strategy of Player 2) and Player 1 navigates among the sub-
configurations each time Player 2 changes strategy. For instance if Player 2 has
two choices, say left and right, then at the beginning Player 1 plays in the “left”-
sub-configuration and when Player 2 decides to choose right instead of left, then
the associated node is moved to the “right”-sub-configuration and the game
proceeds in this sub-configuration, and so on. It can be shown that if Player 1
wins against the strategy which chooses always left and against the one which
chooses always right, then it wins agains any strategy of Player 2.

3.4 Solving the game against local strategies

In this section, we explain how to decide whether there exists an initial con-
figuration and a strategy for Player 1 which is winning against a fixed lo-
cal strategy. We consider a parity protocol P = (Q,Q1, Q2, q0, Σ,∆, col, safe)
and a local behavior b. From this parity protocol we build a parity protocol
P′ = (Q, q0, Σ,∆′, col′, safe′) by removing the choices of Player 2 not corre-
sponding to b and by merging states of Player 1 and states of Player 2; this
protocol is formally defined as follows: ∆′ ⊆ ∆ and (q, a, q′) ∈ ∆′ iff q ∈ Q(1)

and (q, a, q′) ∈ ∆′, or, q ∈ Q(2) and b(q) is defined and equal to (q, a, q′), fur-
thermore col

′ is the restriction of col to ∆′ and safe
′ = ∆′ ∩ safe. The following

lemma states the relation between P and P′.

Lemma 2. For Win ∈ {Wins,Winp,Winsp}, there exists a path ρ in GP′ start-
ing from an initial configuration and such that ρ ∈ Win iff ∃λ0 ∈ ΛP,0. ∃σ ∈
S(1), ρ(GP, λ0, σ, τb) ∈ Win.

We will now show how to decide the two following properties on GP′ : whether
there exists a maximal finite path in Wins starting from an initial configuration
in GP′ and whether there exists an infinite path ∈ Winp ∩Wins starting from an
initial configuration. Once, we will have shown how to solve these two problems,
this will provide us, for each winning condition, an algorithm to decide whether
there exists a winning path in GP′ .

We now provide the idea to solve the first problem. By definition, a finite
path ρ = λ0λ1 · · ·λn in the game GP′ is maximal if there does not exist a
configuration λ ∈ ΛP′ such that (λn, λ) ∈ T ′

P
and according to the semantics of

the parity protocol P′, this can be the case if and only if λn = (V,E, L) where

10



L(λn) ⊆ (Q×{⊥})\(ActStates×{⊥}). In [11], it is shown that, for reconfigurable
broadcast protocol, one can decide in NP whether, given a set of protocol states,
there exists a path starting from an initial configuration reaching a configuration
in which no vertices are labelled by the given states. We deduce the next lemma.

Lemma 3. The problem of deciding whether there exists in GP′ a finite maximal
path belonging to Wins starting from an initial configuration is in NP.

We now show how to decide in polynomial time whether there exists an
infinite path in Winp ∩ Wins starting from an initial configuration. The idea is
the following. We begin by removing in P′ the unsafe edges. Then we compute in
polynomial time all the reachable control states using an algorithm of [11]. Then
from [11] we also know that there exists a reachable configuration exhibiting as
many reachable states as we want. Finally, we look for an infinite loop respecting
the parity condition from such a configuration. This is done by using a counting
abstraction method which translates the system into a Vector Addition System
with States (VASS) and then by looking in this VASS for a cycle whose effect
on each of the manipulated values is 0 (i.e. a cycle whose edge’s labels sum to
0) and this is can be done in polynomial time thanks to [16].

Lemma 4. The problem of deciding whether there exists an infinite path ρ start-
ing from an initial configuration in GP′ such that ρ ∈ Winp ∩Wins is in Ptime.

By Lemma 2 we know hence that: there is anNP algorithm to decide whether
∃λ0 ∈ ΛP,0. ∃σ ∈ S(1), ρ(GP, λ0, σ, τb) ∈ Wins (in fact this reduces to looking
for a finite maximal path belonging to Wins and use Lemma 3 or an infinite
safe path, in this case we put all the colors to 0 and we use Lemma 4); there is
a polynomial time algorithm to decide the same problem with Winp instead of
Wins (use Lemma 3 with all the transitions considered as safe) and there is an
NP algorithm for the same problem with Winsp (here again we look either for a
finite maximal safe path and use Lemma 3 or for an infinite safe path satisfying
the parity condition and we use Lemma 4).

So now since the number of local strategies is finite, this gives us non deter-

ministic algorithms to solve whether ∃τ ∈ S
(2)
l . ∀λ0 ∈ ΛP,0. ∀σ ∈ S(1), ρ(GP, λ0,

σ, τ) /∈ Win with Win ∈ {Wins,Winp,Winsp}. Note that for Winp we will have
an NP algorithm and for Wins and Winsp, an NP algorithm using an NP oracle
(i.e. an algorithm in NP

NP = ΣP
2 ). Hence thanks to Lemma 1, we are able to

state the main result of this section.

Theorem 1. For safety and safety-parity objectives, the game problem for parity
protocol is decidable and in ΠP

2 (=co-NP
NP), and in co-NP for parity objectives.

4 Solving probabilistic networks

In this section we solve the qualitative reachability problems for probabilistic
reconfigurable broadcast networks. The most involved case is Reach

=1
max for

which we reduce to games on parity protocols with a parity winning condition.
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4.1 Reach=1

max

Let us now discuss the most involved case, Reach
=1
max, and show how to reduce it

to the game problem for parity protocols with a parity winning condition. From
P = (Q,Q(1), Q(P ), q0, Σ,∆,∆int) a probabilistic protocol and qf ∈ Q a control

state, we derive the parity protocol P = (QP, Q
(1)
P

, Q
(2)
P

, q0P, ΣP, ∆P, col, safe)

as follows: QP = Q
(1)
P

∪ Q
(2)
P

, Q
(1)
P

= Q(1) ∪ Q(P ) × {1}, Q
(2)
P

= Q(P ) ×
{2}, and q0P = q0; ΣP = Σ; ∆P =

(

Q(1) × {!!a, ??a | a ∈ Σ} ×Q(1) ∩∆
)

∪
{(qf , ε, qf )} ∪ {(q, ε, (q′, 2)), ((q′, i), ε, q′), ((q, 2), ε, (q, 1)) | (q, ε, q′) ∈ ∆, i ∈
{1, 2}} ∪ {((q, i), ε, q′) | ∆int(q)(q′) > 0, i ∈ {2, 3}}; and last col((qf , ε, qf )) = 2,
col(((q, 2), ε, q′) = 2 and otherwise col(δ) = 1.

Intuitively, all random choices corresponding to internal actions in P are
replaced in P with choices for Player 2, where either he decides the outcome
of the probabilistic choice, or he lets Player 1 choose. Only transitions where
Player 2 makes the decision corresponding to a probabilistic choice and the self
loop on the state qf have parity 2. Figure 2 illustrates this reduction on the
example probabilistic protocol from Figure 1. This construction ensures:

q0 qp, 2 qp, 1

ql

qr

qf

ε:1

ε:2

ε:2

ε:1

ε:1

ε:1

ε:1

!!a:1

??a:1
ε:2

Fig. 2: Parity protocol for the probabilistic protocol from Figure 1.

Proposition 1. ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winp if
and only if ∃γ0 ∈ ΓP,0. Pmax(MP , γ0,✸qf ) = 1.

Proof (sketch). The easiest direction is from left to right. Assuming that some
scheduler π ensures to reach qf with probability 1, one builds a winning strategy
σ for the parity objective as follows. When Player 2 makes a decision correspond-
ing to a probabilistic choice in P , the strategy chooses to play this probabilistic
transition. Now, when Player 1 needs to make a decision in some configuration λ
where there is a vertex v labelled by ((q, 1),⊤) ∈ Q(P )×{1}×{⊤}, the strategy
is to play along a shortest path respecting π from γ to a configuration containing
qf , where γ is defined as λ but the label of v is q. Assuming that π reaches qf
with probability 1, such a path must exist for every reachable configuration in the
game. This definition of σ ensures to eventually reach qf under the assumption
that Player 2, from some point on, always lets Player 1 decide in configurations
corresponding to probabilistic states of P .

Let us now briefly explain how the right to left implication works. Notice
that if Player 2 always chooses transitions with parity 1 (thus letting Player 1

12



decide the outcome of probabilistic choices), the only way for Player 1 to win
is to reach qf , and from there use the self loop to ensure the parity condition.
As a consequence, from any reachable configuration, the target state qf must be
reachable.
From a winning strategy σ, we define a scheduler π that mimics the choices of σ
on several copies of the network. The difficulty comes from the transformation
of choices of Player 1 in states of the form (q, 1) ∈ Q(P ) × {1} into probabilistic
choices. Indeed, the outcome of these random choices cannot surely match the
decision of Player 1. The idea is the following: when a probabilistic choice in
P does not agree with the decision of Player 1 in P, this “wrong choice” is
attributed to Player 2. The multiple copies thus account for memories of the
“wrong choices”, and a process performing such a choice is moved to a copy
where the choice was made by Player 2. With probability 1, eventually a “good
choice” is made, and the 1-1/2 player game can continue in the original copy of
the network. Therefore, almost-surely the play will end in a given copy, where
Player 1 always decides, and thus qf is reached. ⊓⊔

Theorem 2. Reach
=1
max is co-NP-complete.

Proof (sketch). The co-NP membership is a consequence of Proposition 1 and
Theorem 1, and we now establish the matching lower-bound. To establish the
coNP-hardness we reduce the unsatisfiability problem to Reach

=1
max. From ϕ a

formula in conjunctive normal form, we define a probabilistic protocol Pϕ and a
control state qf such that ϕ is unsatisfiable if and only if there exists an initial
configuration γ0 ∈ ΓP,0 and a scheduler π such that P(MP , γ0, π,✸qf ) = 1.

We provide here the construction on an example in Figure 3, the general
definition is given in Appendix. For simplicity, the initial state q0 of the proba-
bilistic protocol is duplicated in the picture. The idea, if ϕ is unsatisfiable, is to
generate a random assignment of the variables (using the gadgets represented
bottom of the Figure), which will necessarily violate a clause of ϕ. Choosing then
this clause in the above part of the protocol allows to reach state r1, and from
there to reach qf with probability half. Iterating this process, the target can be
almost-surely reached. The converse implication relies on the fact that if ϕ is
satisfiable, there is a positive probability to generate a valuation satisfying it,
and then not to be able to reach r1, a necessary condition to reach qf . Therefore,
the maximum probability to reach the target is smaller than 1 in this case. ⊓⊔

4.2 Other cases

The decision problems Reach
=0
min [resp. Reach

<1
min] can be reduced to a game

problem for parity protocols with a safety [resp. safety/parity] winning condition.
From a probabilistic protocol P , for Reach

=0
min, we build a parity protocol P

where all random choices in P are replaced in P with choices for Player 2. The
transitions with target qf are the only ones that do not belong to the safe set
safe. For Reach

<1
min, P consists of two copies of P . In the first copy, all random

choices are replaced with choices of Player 1, whereas in the second copy they
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q0φ x1,0

x0,0

x2,0

x0,1

x1,1

x2,1

x0,2

x1,2

x2,2

x0,3

x1,3

x2,3

r1

rp qf

q0φ a

a1

ā1

a2

ā2

q0φ b

b1

b̄1

b2

b̄2

q0φ c

c1

c̄1

c2

c̄2

??ā ??b̄ ??c

!!ok

??ā ??b ??c̄ !!ok

??a ??b ??c

!!ok

1

2 1

2

1

2

1

2

!!a

!!ā

??ok

??ok

1

2

1

2

!!b

!!̄b

??ok

??ok

1

2

1

2

!!c

!!c̄

??ok

??ok

Fig. 3: Probabilistic protocol for the formula ϕ = (a∨b∨ c̄)∧(a∨ b̄∨c)∧(ā∨ b̄∨ c̄)

are replaced with choices of Player 2. Also, at any time, one can move from the
first to the second copy. The parity of transitions with target in the second copy
is 2, and otherwise it is 1. Moreover, the only unsafe transitions are those with
targer qf . In these two cases, using Theorem 1, we obtain:

Theorem 3. Reach
=0
min and Reach

<1
min are in ΠP

2 .

The decidability and complexity of the remaining cases are established di-
rectly, without reducing to games on parity protocols. First of all, Reach

>0
max

is interreducible to the reachability problem in non-probabilistic reconfigurable
broadcast networks, known to be P-complete [11]. For the other decision prob-
lems we use a monotonicity property: intuitively, with more nodes, the proba-
bility to reach the target can only increase. The problems are then reduced to
qualitative reachability problems in the finite state MDP for the network with
a single process, and thus belong to PTIME.

Theorem 4. Reach
>0
max, Reach

=0
max, Reach

<1
max, Reach

=1
min and Reach

>0
min are

in PTIME.

5 Conclusion

In this paper we introduced probabilistic reconfigurable broadcast networks and
studied parameterized qualitative reachability questions. The decidability of
these verification questions are proved by a reduction to a 2-player games played
on an infinite graphs, for which we provide decision algorithms. The complexities
range from PTIME to coNP

NP, as summarized in the table below.

Problem Reach
=0
min Reach

<1
min Reach

=1
max others

Complexity ΠP
2 ΠP

2 coNP-complete PTIME
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In the future, we would like to find the precise complexity for Reach
=0
min and

Reach
<1
min either by determining matching lower bounds or by improving the

decision procedures. We will also study quantitative versions of the reachability
problem. Finally we also believe that we could use our games played over recon-
figurable broadcast protocols either to decide other properties on this family of
systems or to analyze new models.
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