
Parity games played on transition graphs of

one-counter processes ⋆

Olivier Serre

LIAFA, Université Paris VII & CNRS

Abstract. We consider parity games played on special pushdown graphs,
namely those generated by one-counter processes. For parity games on
pushdown graphs, it is known from [22] that deciding the winner is an
ExpTime-complete problem. An important corollary of this result is that
the µ-calculus model checking problem for pushdown processes is Exp-

Time-complete. As one-counter processes are special cases of pushdown
processes, it follows that deciding the winner in a parity game played
on the transition graph of a one-counter process can be achieved in Ex-

pTime. Nevertheless the proof for the ExpTime-hardness lower bound
of [22] cannot be adapted to that case. Therefore, a natural question is
whether the ExpTime upper bound can be improved in this special case.
In this paper, we adapt techniques from [11, 4] and provide a PSpace

upper bound and a DP-hard lower bound for this problem. We also give
two important consequences of this result. First, we improve the best
upper bound known for model-checking one-counter processes against
µ-calculus. Second, we show how these games can be used to solve push-
down games with winning conditions that are Boolean combinations of
a parity condition on the control states with conditions on the stack
height.

1 Introduction

Infinite two-player games with perfect information allow us to encode several
challenging problems from formal verification, and this is one of the reasons why
they are so intensively studied for several years. Several model-checking prob-
lems can be expressed as decision problems for games: the most famous example
is that the µ-calculus model-checking problem is polynomially equivalent to the
solution of a parity game. This correspondence was first proved for finite graphs
[6] and later extended to various classes of infinite graphs, e.g. pushdown graphs
[22, 23]. Two-player games also offer a very convenient framework to represent
interaction of a program with some (possibly hostile) environment. In this ap-
proach, the first player represents the program while the second player simulates
the environment. A winning strategy expresses a property that must hold what-
ever the environment does. Hence, finding a winning strategy for the first player

⋆ This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (GAMES),
(contract HPRN-CT-2002-00283), see www.games.rwth-aachen.de.

allows to synthesize a controller that restricts the program and ensures that the
property expressed by the winning condition always holds [2].

The most standard setting of verification and synthesis only considers finite
games. Nevertheless infinite models arise when recursive programs or programs
with variable on infinite domains are considered. Therefore, solving games on
such infinite objects is a natural question. The special case of pushdown pro-
cesses, have been intensively studied from the games point of view (see e.g. [22,
11, 5, 3, 7, 19]) and the most important consequence for model-checking is that
for pushdown processes, the µ-calculus model-checking problem is ExpTime-
complete [22].

In this paper, we consider a natural subclass of pushdown processes, namely
one-counter processes with zero test. Verification problems for one-counter pro-
cesses have intensively been studied (see e.g. [9, 8]) but, for model-checking
problems, most of the complexity results concern lower bounds whereas upper
bounds generally follow from known results for pushdown processes. Hence, this
frequently yields complexity gaps, as for µ-calculus model-checking where the
lower bound is DP-hard [8] whereas the upper bound is ExpTime [22].

We consider parity games played on one-counter graphs and provide a PSpace

algorithm to decide the winner in such games. Our procedure relies on a tricky
adaptation and a precise analysis of the techniques from [11, 4] that were origi-
nally developed for pushdown games. Our result improves the ExpTime upper
bound inherited from pushdown games [22]. As a by-product, it improves the
best known upper bound for the µ-calculus model-checking for one-counter pro-
cesses from ExpTime to PSpace.

Another consequence of our main result concerns pushdown games equipped
with winning conditions that combine both regular conditions and conditions on
how the stack height evolves during a play (e.g. unboundedness). Special cases
of these games have been studied and shown to be decidable [5, 3, 7]. Here, we
capture a larger class of games and we provide a more intuitive construction
which generalizes those for parity games [22] and for strict unboundedness [19].
Moreover, our construction is very general, and one does not need to provide a
specific construction/proof for each possible kind of winning condition neither
to prove preliminary results on the existence of memoryless strategy.

The paper is organized as follows. In Section 2, we give the main definitions.
Section 3 provides a PSpace algorithm to solve one-counter parity games and
a DP lower-bound is presented for one-counter reachability games. The conse-
quences of these results are presented in the two last sections: Section 4 consid-
ers the µ-calculus model-checking problem while Section 5 focuses on pushdown
games. Due to the page limit, missing proofs and extra details can be found in
the Appendix.

2 Definitions

An alphabet A is a finite set of letters. A∗ denotes the set of finite words on A
and Aω the set of infinite words on A. The empty word is denoted by ε.

2

Infinite two-player games. Let G = (V,E) denote a (possibly infinite) graph
with vertices V and edges E ⊆ V ×V . Let VE ∪ VA be a partition of V between
two players Eve and Adam. A game graph is such a tuple G = (VE, VA, E). An
infinite two-player game on a game graph G is a pair G = (G, Ω), where Ω ⊆ V ω

is a winning condition.
The players, Eve and Adam, play in G by moving a token between vertices.

A play from some vertex v0 proceeds as follows: the player owning v0 chooses
a successor v1 such that (v0, v1) ∈ E. Then the player owning v1 chooses a
successor v2 and so on, forever. If at some point one of the players cannot move,
she/he looses the play. Otherwise, the play is an infinite word Λ ∈ V ω and is
won by Eve if and only if Λ ∈ Ω. As one can always add loops on dead-end
vertices, and slightly modify the winning condition to make looping plays on
some dead-end vertex loosing for the player that controls it, we will assume in
the sequel that all plays are infinite. A partial play is any prefix of a play.

A strategy for Eve is a function assigning, to any partial play ending in
some vertex v ∈ VE, a vertex v′ such that (v, v′) ∈ E. Eve respects a strategy Φ
during some play Λ = v0v1v2 · · · if vi+1 = Φ(v0 · · · vi), for all i ≥ 0 such that
vi ∈ VE. Finally a strategy for Eve is winning from some position v ∈ V , if any
play starting from v, where Eve respects Φ, is won by her. A vertex v ∈ V is
winning for Eve if she has a winning strategy from v. Symmetrically, one defines
strategies and winning positions for Adam.

A game G is determined if, from any position, either Eve or Adam has a
winning strategy. For all games considered in this article one can use Martin’s
Theorem [15] and conclude that they are determined.

For more details and basic results on games, we refer to [20, 25].

Pushdown games. Pushdown processes provide a natural model for programs
with recursive procedures. They are like nondeterministic pushdown automata
except that they have no input (and therefore no initial state neither final state).

More formally, a pushdown process is a tuple P = 〈Q,Γ,⊥, ∆〉 where Q is a
finite set of states, Γ is a finite stack alphabet that contains a special bottom-
of-stack symbol ⊥ and ∆ : Q×Γ → 2({skip(q),pop(q),push(q,γ)|q∈Q,γ∈Γ\{⊥}}) is the
transition relation. We additionally require that, for all q ∈ Q, ∆(q,⊥) does not
contain any element of the form pop(q′).

A stack is any word in St = (Γ \{⊥})∗ ·⊥. A configuration of P is a pair (q, σ)
with q ∈ Q and σ ∈ St. Note that the top stack symbol in some configuration
(q, σ) is the leftmost symbol of σ.

Any pushdown process P induces an infinite graph, called pushdown graph,
denoted G = (V,E), whose vertices are the configurations of P , and edges are
defined by the transition relation ∆, i.e., from a vertex (p, γσ) one has edges to:

– (q, γσ) whenever skip(q) ∈ ∆(p, γ).
– (q, σ) whenever pop(q) ∈ ∆(p, γ).
– (q, γ′γσ) whenever push(q, γ′) ∈ ∆(p, γ).

Consider a partition QE ∪ QA of Q between Eve and Adam. It induces a
natural partition VE∪VA of V by setting VE = QE×St and VA = QA×St. The

3

resulting game graph G = (VE, VA, E) is called a pushdown game graph. Finally,
a pushdown game is a game played on such a game graph.

The regular winning conditions on pushdown games are inherited from the
standard acceptance condition for automata on infinite words. The simplest one
is the reachability condition. Let F ⊆ Q be a set of final states, and let VF be
the set of configuration which control state is in F . The reachability condition is
the winning condition defined by Ωreach(F) = {v0v1 · · · | ∃vi ∈ VF }. Using the
notion of final states one can define the Büchi condition and its dual winning con-
dition the co-Büchi conditions: ΩBuc(F) = {v0v1 · · · | ∀i ≥ 0 ∃j ≥ i s.t. vi ∈ VF }
and Ωco−Buc(F) = V ω \ΩBuc(F).
Let col be a coloring function from Q into a finite set of colors C ⊂ N. This
function is easily extended into a function from V into C by setting col((q, σ)) =
col(q). The parity condition is the winning condition defined by:
Ωpar = {v0v1 · · · | lim inf((col(vi))i≥0) is even}.

For a parity game played on a pushdown graph, the main question is to
decide which player has a winning strategy from some given configuration. It
is easily seen that this last question can be reduced to decide the winner for
configurations with empty stack. For the general case of parity games played on
pushdown graph, this last problem has been fully characterized by Walukiewicz
[22].

Theorem 1. [22] Deciding the winner from some configuration of empty stack
in a pushdown parity game is an ExpTime problem. Moreover, this problem is
ExpTime-hard even if the winning condition is a reachability one.

One-counter games. A one-counter process is a special case of a pushdown
process P = 〈Q,Γ,⊥, ∆〉 where Γ = {1,⊥} consists of a single stack symbol 1
together with the bottom-of-stack symbol. It therefore corresponds to a finite
state machine equipped with a counter that can be test to zero. The notions
of one-counter graphs, one-counter game graphs and one-counter games are in-
duced by the one for pushdown processes.

Remark 1. Note that our model of one-counter processes can test whether the
stack (equivalently the counter value) is empty (equivalently equals 0). This
follows from the fact that in the definition of pushdown processes the bottom-
of-stack belongs to the stack alphabet, and hence can be checked as top stack
symbol when performing an action.

Theorem 1 implies an ExpTime upper bound to decide the winner in a
one-counter parity game. The ExpTime-hard lower bound of Theorem 1 is es-
tablished by coding the computation of an alternating Turing machine using
linear space into a reachability pushdown game. The main idea of the reduc-
tion is that the pushdown process is built so that its stack is a description of
the prefix of a computation of the Turing machine. Therefore this construction
strongly relies on the fact that the stack alphabet is large enough to describe
configurations of the Turing machine. Hence this proof cannot be adapted to the
case of one-counter game.

4

A natural question is thus to check whether it is possible, in the special case
of one-counter games, to improve the ExpTime upper bound. We positively
answer this question in Theorem 2 by providing a PSpace algorithm.

3 Deciding the winner in a one-counter parity game

3.1 Upper bound

Intuition In [11], Kupferman and Vardi have proposed a new approach, based
on automata, to solve model-checking problem for pushdown graphs. The main
idea was to reduce a model-checking problem to an emptiness problem for a
class of tree automata, namely alternating two-way parity tree automata. This
technique can then be adapted to solve parity pushdown games [4].

Let us first informally recall the construction of [4], and explain how to
simplify it in the special case of one-counter parity games. It is rather standard
to consider that the complete infinite tree of arity k is a representation of the
set of all finite words on an alphabet of cardinality k. Each node in this tree is
labeled by the last letter of the word it represents: hence the word associated
to some node is obtained by considering the sequence of labels of the nodes on
the path from the root to the current one. Using this fact, a play in a pushdown
game can be considered as an (infinite) path in such a tree in which a node
encodes the stack content while an extra information describes the control state.
As there are finitely many control states, and as the possible moves only depend
on the control state and on the top stack symbol (that is the label of the current
node), this representation of a play can be seen as a path in the run of some
tree automaton on the complete infinite tree of arity k, where k is the size of
the pushdown stack alphabet without the bottom-of-stack symbol. This tree
automaton can go in both directions in the tree: it goes down to simulate a rule
that pushes some new symbol, it goes up to simulate a popping rule and it stay in
the same node to simulates a skip rule. For each possible move, the control state
has to be updated in accordance with the pushdown transition rules. As we aim
to simulate a game, the tree automaton needs to be alternating: existential states
are those associated to Eve’s states while universal states are those associated to
Adam’s states. Finally, the acceptance condition is inherited from the winning
condition, and is therefore a parity condition. The complete infinite tree of arity
k is accepted if and only if Eve has a winning strategy in the pushdown game.

The previous tree automaton works on the complete infinite tree and the
arity of this tree is the cardinality of the stack alphabet without the bottom-of-
stack symbol. Hence, if we restrict ourselves to one-counter processes instead of
general pushdown processes, the arity is equal to 1 and instead of a tree we have
to consider a simpler model, namely the infinite word ⊥1ω. Therefore, it follows
that to decide the winner in a one-counter parity game it is sufficient to check
emptiness for an alternating two-way parity word automaton. In Proposition 2
we will show that emptiness for these word automata can be checked in PSpace

and hence it will yield a PSpace procedure to decide the winner in a one-counter
parity game (Theorem 2).

5

Definitions Given a set S of variables, we denote by B+(S) the set of positive
boolean formulas over S with true and false. A subset S′ ⊆ S satisfies a formula
in B+(S) if this formula is satisfied by the valuation assigning true to every
variable in S′ and false to every variable in S \ S′.

An alternating two-way parity word automaton A is a tuple 〈Q,A, qin, δ, col〉,
where Q is a finite set of control states, A is a finite input alphabet, qin ∈ Q is
an initial state, δ is a mapping from Q × A to B+(Q × {−1, 0, 1}), and col is a
mapping from Q to a finite set of colors C ⊂ N. An alternating one-way parity
word automaton corresponds to the special case where δ : Q×A→ B+(Q×{1}).

A run of A on an infinite word u = a0a1 · · · ∈ Aω is an infinite (Q×N)-labeled
tree such that its root is labeled by (qin, 0), and for every vertex x labeled by some
(q, n) with sons labeled by (q1, n1), . . . , (qk, nk), the set {(q1, n1−n), . . . , (qk, nk−
n)} ⊂ Q×{−1, 0, 1} satisfies δ(q, an). A run is accepting if and only if for every
infinite branch, the smallest infinitely repeated color is even, where the color of
a node labeled by some (q, n) is col(q). Finally, an infinite word is accepted if
there exists an accepting run on it, and we denote by L(A) the set of all words
accepted by A.

The construction Let C = 〈Q, {1,⊥},⊥, ∆〉 be a one-counter process equipped
with a partition QE ∪ QA of its control states, and with a coloring function
col : Q → C. Let G be the one-counter parity game induced by the preceding
partition and the coloring function col. Let qin be some state in Q. We are
interesting in deciding whether (qin,⊥) is winning for Eve in G.

To solve this problem, instead of using the techniques from [22], that would
lead to an ExpTime procedure, we adapt the techniques developed in [11, 4],
and note that it reduces our problem to the emptiness problem for alternating
two-way parity word automaton.

Let us consider the alternating two-way parity word automatonA = 〈Q, {1,⊥},
qin, δ, col} where the transition function δ is defined by:

– for every q ∈ QE and for every a ∈ {1,⊥}, δ(q, a) equals
[
∨

push(q′,1)∈∆(q,a)(q
′, 1)] ∨ [

∨
skip(q′)∈∆(q,a)(q

′, 0)] ∨ [
∨

pop(q′)∈∆(q,a)(q
′,−1)].

– for every q ∈ QA and for every a ∈ {1,⊥}, δ(q, a) equals
[
∧

push(q′,1)∈∆(q,a)(q
′, 1)] ∧ [

∧
skip(q′)∈∆(q,a)(q

′, 0)] ∧ [
∧

pop(q′)∈∆(q,a)(q
′,−1)].

We have the following straightforward proposition.

Proposition 1. [11, 4] The configuration (qin,⊥) is winning for Eve in G if and
only if A accepts the infinite word ⊥1ω.

Checking whether A accepts the word ⊥1ω is closely related to checking
emptiness for a language accepted by an alternating two-way parity word au-
tomaton. This problem was studied by Vardi in [21] in the more general setting
of two-way alternating parity tree automata, and then this construction was
adapted for alternating two-way Büchi word automata in [17, 10]. In the case
of tree automata, checking emptiness is in ExpTime, while in the case of Büchi
word automata the problem is in PSpace. The following proposition, extends
this last result to the case of parity acceptance condition.

6

Proposition 2. Deciding emptiness for a language accepted by an alternating
two-way parity word automaton can be achieved in PSpace.

Proof. We only give the main ideas and explain how the construction of [17, 10]
is extended to our setting. A complete proof can be found in the Appendix.

Let A be an alternating two-way parity word automaton. The first step is to
build an alternating one-way parity automaton B such that L(B) 6= ∅ if and only
if L(A) 6= ∅. Moreover the number of control states of B is polynomial in the
number of control states of A. However the size of its alphabet is exponential
but note that it is not important for the complexity of emptiness checking.The
construction of B directly follows from the ones in [21, 17, 10]. A precise analysis
of the structure of B is given by the following lemma (which is proved in the
Appendix).

Lemma 1. Let A = 〈Q,A, qin, δ, col〉 be an alternating two-way parity word au-
tomaton, let n = |Q| and let d be the number of colors involved in the parity
condition. Then there exists an alternating one-way parity word automaton B
such that L(B) 6= ∅ if and only if L(A) 6= ∅. Moreover, L(B) = L(B1) ∩ L(B2),
where B1 is an alternating one-way automaton without acceptance condition (ev-
ery run, when exists, is accepting) and has O(nd) states, and B2 is a purely uni-
versal (its transition function takes value into the boolean formulas made only of
conjunctions) one-way parity automaton (with d colors) and has O(nd) states.

Let n1 and n2 be the respective sizes of the set of control states of B1 and B2.
As B2 is purely universal, its dual automaton B2 is a non deterministic parity
automaton using d colors and having O(n2) states. It is then standard to build
a nondeterministic Büchi automaton B′

2 that recognizes the same language than
B2 (that is the complement of L(B2)) and having O(n2d) states (see [13] for
instance). Dualizing B′

2 yields a purely universal co-Büchi automaton B′
2 with

O(n2d) states and such that L(B′
2) = L(B2).

Now, the intersection of B1 and B′
2 provides an alternating co-Büchi au-

tomaton B′ with O(n2d + n1) = O(n2d) states that recognizes the language
L(B1) ∩ L(B′

2) = L(B1) ∩ L(B2) = L(B). As checking emptiness for an alternat-
ing co-Büchi automaton can be achieved in PSpace (see [12] for instance), we
conclude that one can check whether L(A) is empty in PSpace.

⊓∪

Propositions 1 and 2 directly imply the following theorem.

Theorem 2. Deciding the winner in a one-counter parity game can be done in
PSpace.

3.2 Lower bound

In this section, we give a lower bound for the problem of deciding the winner
in a one-counter reachability game. Due to the symmetry of the problem, the
lower bound should be robust under complementation: we provide such a lower

7

bound, namely DP-hardness. Note that DP-hardness is a rather standard lower
bound for problems related to one-counter process, e.g. the EF model-checking
problem for one-counter processes [8].

A language L is in the complexity class DP if and only if there are two
languages L1 ∈ NP and L2 ∈ co-NP such that L = L1 ∩ L2.

The sat-unsat problem is the following one: given two Boolean formulas ψ1

and ψ2, both in conjunctive normal form with three literals per clause, decide
whether ϕ1 is satisfiable and ϕ2 is not. It is rather immediate to prove that
sat-unsat is DP-complete [16].

Let us first explain how to polynomially reduce 3-sat to decide the winner
in a one-counter reachability game. Let X = {x1, . . . , xk} be a set of variables
and let ψ be some Boolean formula in conjunctive normal form with 3 literals
per clause. Let denote ψ = C1 ∧C2 ∧ · · · ∧Ch, where Ci = li,1 ∨ li,2 ∨ li,3 for all
i = 1, . . . , h with li,j ∈ {x, x | x ∈ X}, for j = 1, 2, 3.

For every i ≥ 1, let ρi denote the i-th prime number. A valuation of X is a
mapping from X into {0, 1}, that is a tuple in {0, 1}k. Let τ : N → {0, 1}k be
the function defined by τ(n) = (b1, b2, . . . , bk) where bj = 0 if n = 0 mod ρj and
bj = 1 otherwise. The Chinese remainder lemma implies that τ is surjective.

Consider now the following informal game. Eve chooses some integer n en-
coding a valuation that she claims to satisfy ψ. Then Adam picks a clause Ci

that he claims not to be satisfied by the preceding valuation. Eve contests by
giving a literal of Ci that she claims to be evaluated to true by the preceding
valuation. Finally Adam checks whether this literal is evaluated to true: if it is
the case, then Eve wins, otherwise Adam does. It is then easily seen that Eve
has a winning strategy if and only if ψ is satisfiable.

This game can be encoded into a one-counter reachability game. For the
first step, Eve increments the counter until it equals n. For the second step,
Adam indicates the clause by changing the control state. In the third step, Eve
indicates the literal by changing the control state. Finally, Adam check whether
the literal evaluates to true by decrementing the counter while performing a
modulo ρk counting, where the literal was xk or xk.

Now, if one wants to reduce sat-unsat, it suffices to add a preliminary step
to the previous game. Let (ψ1, ψ2) be the instance of sat-unsat. First Adam
picks ψ1 or ψ2. In the first case Eve and Adam play the previous game. In the
second case, they play the dual game where Adam is now the one that has to
provide a valuation for ψ2, and where Eve wins if and only if ψ2 is not satisfiable.
Eve wins the main game if and only if she can win both sub-games, that is if
and only if ψ1 is satisfiable while ψ2 is not. Hence, we have the following result
(a detailed proof can be found in the appendix).

Theorem 3. Deciding the winner in a one-counter reachability game is a DP-
hard problem.

Remark 2. An alternative proof for this result is the following one: consider the
EF model-checking problem for one-counter automata. In [8] this problem is
shown to be DP-hard. One can then easily reduce it to decide the winner in a

8

one-counter reachability game. Nevertheless, we think that the proof we gave for
Theorem 3 is more intuitive and better here as it is self-contained.

4 Model-checking propositional µ-calculus against

one-counter trees

In this section we rephrase Theorem 3 in the framework of propositional µ-
calculus model-checking problem for one-counter trees. An important conse-
quence is that it improves from ExpTime to PSpace the best complexity bound
known for this problem.

Propositional µ-calculus is a very powerful fix point logic that allows to spec-
ify a large class of properties of (non-terminating) systems. Moreover, many im-
portant temporal logic were shown to be fragments of µ-calculus. For definitions
and results on µ-calculus, we refer to [1].

Models of µ-calculus formulas are transitions systems, that is graphs equipped
with functions that assign to any propositional constant the set of vertices where
it holds. The µ-calculus model-checking problem is to decide, for a given model
M, a state s of M, and a µ-calculus formula ϕ, whether ϕ holds in s. In the
sequel we are interested in the special case where M is the unfolding of a one-
counter graph, called a one-counter tree.

A standard technique to solve a µ-calculus model-checking problem is to
construct a parity game in which Eve has a winning strategy if and only if
the model satisfies the formula. The game graph is obtained by considering the
synchronized product of a finite game graph, representing the formula ϕ, with
the model M. This idea was first used in [6] for finite transition systems, and was
then adapted in [22] for pushdown trees (see also [24] for a general presentation of
the technique). In the case of pushdown trees, an important point to note is that
in the synchronized product, the stack alphabet remains unchanged (the product
is done in the control states). Hence, using the same construction for one-counter
trees reduces the µ-calculus model-checking problem for a one-counter tree to
solve a one-counter parity game. Conversely, it follows from [22] that solving
a one-counter parity game reduces to a µ-calculus model checking problem. As
both reductions are polynomial, we obtain the following consequence of Theorem
2.

Theorem 4. The propositional µ-calculus model-checking problem for one-counter
trees can be solved in PSpace and is DP-hard.

Remark 3. Note that the DP-hardness was already known, as it is a consequence
of the DP-hardness of the model-checking problem for the branching-time tem-
poral logic EF [8] which is a fragment of the propositional µ-calculus.

5 Application to pushdown games

In section 2 we have defined the regular winning conditions. Nevertheless, when
considering pushdown games, non-regular winning conditions arise naturally. In

9

particular, one can require conditions on how the stack height evolves during the
play. For some configuration v = (q, σ⊥) in a pushdown graph, let sh(v) = |σ|
denote the stack height in v. The unboundedness condition requires that the
stack height is not bounded. Its dual condition is the boundedness condition.
Both conditions are formally defined as follows:

– ΩUbd = {v0v1 · · · | lim sup((sh(vi)i≥0) = ω}.
– ΩBd = {v0v1 · · · | ∃B ≥ 0 s.t. sh(vi) < B ∀i ≥ 0}.

If we replace the lim sup by a lim in the definition of the unboundedness
condition then we obtain the strict unboundedness condition which enforces the
stack height to converge to infinity. Its dual version, the repeating condition
requires that some stack height (equivalently, some vertex) is infinitely often
visited. Both conditions are formally defined as follows:

– ΩStUbd = {v0v1 · · · | lim((sh(vi))i≥0) = ω}.
– ΩRep = {v0v1 · · · | ∃B ≥ 0 s.t. ∀j ≥ 0 ∃i ≥ j s.t. sh(vi) = B}.

These four winning conditions will be designated as stack conditions. Push-
down games with stack conditions are known to be decidable in ExpTime [5, 19,
3, 7, 18]. In the sequel we consider winning conditions that are a Boolean com-
bination of stack conditions with a parity condition. For instance the winning
condition Ωpar ∩ ΩUbd ∩ ΩRep requires that the smallest infinitely visited color
has to be even and that arbitrary large stack height occurs while some level is
infinitely repeated. Note that the winning condition ΩUbd ∩ ΩRep was already
mentioned in [5] and can be rephrased as: there exists infinitely many vertices
that are infinitely often visited during the play. Decidability of pushdown games
with this winning condition was open and is a consequence of the main result of
this section.

Games equipped with winning conditions that are a Boolean combination of
a parity condition and of an unboundedness condition have been shown to be de-
cidable in [3] when restricting to Büchi conditions and in [7] for the general case.
For all these games an ExpTime-complete complexity bound has been provided.

The main result of this section is to provide an ExpSpace procedure to solve
these games and more generally to solve the ones equipped with a Boolean com-
bination of a parity condition and of stack conditions. Even if the complexity
bound may not be optimal here, the results are more general and the presenta-
tion and proof techniques are much simpler and unified. Indeed, the construction
is a generalization of the one for parity condition, and it separates all conditions
involved in the Boolean combination, which allows to reason independently on
these conditions and leads to a very flexible construction. Moreover, no prelim-
inary result on memoryless strategy is needed, while it was the case in [7].

From now on, we fix a pushdown process P = 〈Q,Γ,⊥, ∆〉, a partition QE ∪
QA of its control states and a coloring function col : Q → {0, . . . , d}. Let G be
the corresponding game graph, and let Ωpar be the parity condition induced by
col.

10

For an infinite play Λ = v0v1 · · · , let StepsΛ be the set of indices of positions
where no configuration of strictly smaller stack height is visited later in the play.
More formally, StepsΛ = {i ∈ N | ∀j ≥ i sh(vj) ≥ sh(vi)}. Note that StepsΛ is
always infinite and hence induces a factorization of the play Λ into finite pieces.

For all pair (i, j) ∈ StepsΛ, with i 6= j and such that there is no k ∈ StepsΛ

such that i < k < j, we define mcol(i, j) = min{col(vk) | i ≤ k ≤ j} and

kind(i, j) =

{
S if sh(vj) = sh(vi) + 1

(B, h) if sh(vj) = sh(vi) and h = max{sh(vk) − sh(vi) | i ≤ k ≤ j}

In the factorization induced by StepsΛ, a factor vi · · · vj will be called a bump
of height h if kind(i, j) = (B, h), and will be called a Stair if kind(i, j) = S.

For any play Λ with StepsΛ = {n0 < n1 < · · · }, one can define two sequences
(mcolΛi)i≥0 ∈ NN and (kindΛ

i)i≥0 ∈ ({S} ∪ ({B} × N))N defined by mcolΛi =
mcol(ni, ni+1) and kindΛ

i = kind(ni, ni+1).
These sequences fully characterize the parity conditions and the stack con-

ditions.

Proposition 3. For a play Λ the following equivalences hold

1. Λ ∈ Ωpar iff lim inf((mcolΛi)i≥0) is even.
2. Λ ∈ ΩUbd iff either {kindΛ

i | i ≥ 0} contains (B, h) for any h ≥ 0, or S
appears infinitely often in (kindΛ

i)i≥0.
3. Λ ∈ ΩStUbd iff S appears infinitely often in (kindΛ

i)i≥0.

By dualization, one obtains similar characterizations for ΩBd and ΩRep.

The main idea used in [22] to solve parity pushdown game is to build a par-
ity game played on an exponentially larger finite graph with the same number
of colors. This new game simulates the pushdown game, in the sense that the
sequences of visited colors during a correct simulation play are exactly the se-
quences (mcolΛi)i≥0 for plays Λ in the original pushdown game. Moreover, a play
in which a player does not correctly simulate the pushdown game is loosing for
that player. From this construction follows the ExpTime upper bound.

Let us explain how to extend this technique to handle stack conditions. When
considering the strict unboundedness condition, it is sufficient to detect in the
simulation game of [22] whether the currently simulated factor is a stair or a
bump. Therefore, this construction can be easily adapted to reduce a pushdown
games with a strict unboundedness winning condition to a Büchi game played on
a finite game graph (the Büchi condition enforcing to simulate an infinite number
of stairs) [19, 18]. Nevertheless, for bumps, one cannot express any property on
their height.

Consider the unboundedness condition. A play satisfies it either if it satisfies
the strict unboundedness condition (which can be encoded by a Büchi condition)
or if some stack height is infinitely often repeated and arbitrarily high bumps
appear. For this last case, it would be sufficient to detect whether a bump is the
highest one since the play is on the current stack level: indeed in a non strictly

11

unbounded game, this happens infinitely often if and only if arbitrarily high
bumps occur during the play. In order to detect this phenomena, we enrich the
finite game graph of [22] with a counter that is incremented whenever a bump
higher than the counter value is simulated, and that is decremented (mainly for
technical reasons) when a stair is simulated: if finitely many stair are simulated,
the counter is incremented infinitely often if and only if arbitrarily high bumps
occur on some fixed level (the one reached after the last stair). Therefore the
unboundedness condition is simulated in this new one-counter game by requiring
that either one simulates infinitely many stairs or the counter is infinitely often
incremented.

Hence, when considering as winning condition a Boolean combination of a
parity condition and of stack conditions, one gets a reduction to a one-counter
game equipped with a simple combination of parity, Büchi and co-Büchi condi-
tion that can easily be expressed as a parity condition by slightly modifying the
underlying one-counter process.

Before providing a description of the one-counter game graph G̃, let us con-
sider the following informal description of this simulation game. We aim at sim-
ulating a play in the pushdown game from some initial vertex (pin,⊥). In G̃ we
keep track of only the control state and the top stack symbol of the simulated
configuration, and we maintain a counter κ. The interesting case is when it is
in a control state p with top stack symbol α, and the player owning p wants to
push a letter β onto the stack and change control state to q. For every strategy
of Eve, there is a certain set of possible (finite) continuations of the play that
will end with popping β from the stack. We require Eve to declare a vector
−→
S = ((S−

0 , S
+
0), . . . , (S−

d , S
+
d)) of (d + 1) pairs in (2Q)2, where S−

i (resp. S+
i)

is the set of all states the game can be in after popping of β along these plays
where in addition the stack height in the induced bump is strictly smaller (resp.
equal or larger) than κ and the smallest visited color while β was on the stack
is i.
Adam has two main choices. He can continue the game by pushing β onto the
stack and update the state (we call this a pursue move). Otherwise, he can pick
a set S⋆

i (for ⋆ = − or +) and a state s ∈ S⋆
i , and continue the simulation

from that state s (we call this a jump move). If he does a pursue move, then

he remembers the vector
−→
S claimed by Eve and the counter κ is decreased; if

later on a pop transition is simulated, the play stops and Eve wins if and only
if the resulting state is in S⋆

θ where θ is the smallest color seen in the current
level (this information is encoded in the control state, reset after each pursue
move and updated after each jump move) and ⋆ = + if κ = 0 and ⋆ = −
otherwise. If Adam does a jump move to a state s in S⋆

i , the currently stored
value for θ is updated to min(θ, i, col(s)), which is the smallest color seen since
the current stack level was reached, and if ⋆ = +, the currently stored vector
−→
R = ((R−

0 , R
+
0), . . . , (R−

d , R
+
d)) is changed to

−→
R+ = ((R+

0 , R
+
0), . . . , (R+

d , R
+
d))

and κ is incremented.

Therefore the main vertices of the one-counter game graph are configurations

of the form [(p, α,
−→
R, θ), κ] and they are controlled by the player that control p.

12

[(q, α,
−→
R, min(θ, col(q))), κ]

tt, κ ff, κ[(p, α,
−→
R, θ), κ]

[(p, α,
−→
R, θ, q, β), κ]

[(p, α,
−→
R, θ, q, β,

−→
S), κ]

[(q, β,
−→
S , col(q)), κ − 1] [(s, α,

−→
R, min(θ, i, col(s))), κ] [(s, α,

−→
R+, min(θ, i, col(s))), κ + 1]

S
b, i

B, i

If ∃ pop(r) ∈ ∆(p,α)

s.t. r ∈ R−

θ
if κ > 0

and r ∈ R+

θ
if κ = 0

If ∃ pop(r) ∈ ∆(p, α)

s.t. r /∈ R−

θ
if κ > 0

and r /∈ R−

θ
if κ = 0

∀ skip(q) ∈ ∆(p,α)

∀ push(q, β) ∈ ∆(p, α)

∀
−→
S ∈ P(Q)2d+2

∀ s ∈ S−

i
∀ s ∈ S+

i

Fig. 1. Local structure of eG.

Intermediate configurations are used to handle the previously described inter-
mediate steps. The local structure is given in Figure 1 (circle vertex are those
controlled by Eve). Two special control states tt and ff are used to simulate pop
moves. This game graph is equipped with a coloring function on the vertices and

on the edges: vertices of the form [(p, α,
−→
R, θ), κ] have color col(p), edges leaving

from a vertex [(p, α,
−→
R, θ, q, β,

−→
S), κ] have two colors, one in {S, b, B} (the color

is S if the edge simulates a stair, b if it simulates a bump smaller than κ and
B otherwise) and one in {0, . . . , d} if it simulates a bump (the color is θ is the
bump has color θ). It is easily seen that intermediate control states can be used
to have only colors on vertices. A precise description of the graph is given in the
Appendix.

The winning condition for the game played on G̃ depends on the winning
condition considered in the pushdown graph. If the winning condition is of the
form ψ(Ω1, . . . , Ωk) for a Boolean formula ψ, the winning condition on G̃ will be

13

ψ(Ω̃1, . . . , Ω̃k), where

Ω̃ =

Ωpar if Ω = Ωpar

ΩBuc({S,B}) if Ω = ΩUbd

Ωco−Buc({S,B}) if Ω = ΩBd

ΩBuc({S}) if Ω = ΩStUbd

Ωco−Buc({S}) if Ω = ΩRep

Our main result is the following.

Theorem 5. A configuration (pin,⊥) is winning for Eve in G = (G, ψ(Ω1, . . . , Ωk))

if and only if [(pin,⊥, ((∅, ∅), . . . , (∅, ∅), col(pin)), 0] is winning for Eve in G̃ =

(G̃, ψ(Ω̃1, . . . , Ω̃k)). Hence, deciding the winner in such a pushdown game can be
done in ExpSpace.

6 Conclusion

Refining the techniques from [11, 4], we have obtained a PSpace algorithm to
decide the winner in a one-counter parity game. As this problem was shown to be
DP-hard, a remaining question is whether the complexity gap can be reduced.

As a corollary of our main result, we have improved the best known upper
bound for the µ-calculus model-checking problem against one-counter processes.

We have shown how to use one-counter parity games to solve pushdown
games equipped with winning conditions requiring both regular properties and
stack height properties. We briefly mention here an extension of our result. In
[14] pushdown games equipped with visibly pushdown winning conditions were
considered. Such winning conditions capture all regular properties and several
natural non-regular properties. In this setting, one can express the strict un-
boundedness condition but not the unboundedness one. The technique to solve
these games is similar to the one for parity pushdown games: it uses a reduction
to a parity game played on a finite game graph. One can easily show that the
techniques of Section 5 can be adapted to solve pushdown games equipped with
a winning condition combining a visibly pushdown condition with an unbound-
edness condition.

Acknowledgments. I would like to acknowledge the anonymous referees for
their helpful suggestions and remarks.

References

1. A. Arnold and D. Niwiński. Rudiments of mu-calculus, volume 146 of Studies in

Logic and the Foundations of Mathematics. Elsevier, 2001.
2. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controlers with

partial observation. Theoretical Computer Science, 303(1):7–34, 2003.

14

3. A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with the unbound-
edness and regular conditions. In Proceedings of FST&TCS’03, volume 2914 of
LNCS, pages 88–99. Springer, 2003.

4. T. Cachat. Two-way tree automata solving pushdown games. In E. Grädel,
W. Thomas, and T. Wilke, editors, Automata, Logics, and Infinite Games, vol-
ume 2500 of LNCS, pages 303–317. Springer, 2002.

5. T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3-
winning condition. In Proceedings of CSL’02, volume 2471 of LNCS, pages 322–336.
Springer, 2002.

6. E. A. Emerson, C. Jutla, and A. Sistla. On model-checking for fragments of mu-
calculus. In Proceedings of CAV’93, volume 697 of LNCS, pages 385–396. Springer,
1993.

7. H. Gimbert. Parity and exploration games on infinite graphs. In Springer, editor,
Proceedings of CSL’04, volume 3210 of LNCS, pages 56–70, 2004.

8. P. Jančar, A. Kučera, F. Moller, and Zdeněk Sawa. DP lower bounds for
equivalence-checking and model-checking of one-counter automata. Information

and Computation, 188:1–19, 2004.
9. A. Kucera. Efficient verification algorithms for one-counter processes. In Springer,

editor, Proceedings of ICALP’00, volume 1853 of LNCS, pages 317–328, 2000.
10. O. Kupferman, N. Piterman, and M. Vardi. Extended temporal logic revisited. In

Springer, editor, Proceedings of Concur’01, volume 2154 of LNCS, pages 519–535,
2001.

11. O. Kupferman and M. Vardi. An automata-theoretic approach to reasoning about
infinite-state systems. In Proceedings of CAV’00, volume 1855 of LNCS, pages
36–52. Springer, 2000.

12. O. Kupferman and M. Vardi. Weak alternating automata are not that weak. ACM

Transactions on Computational Logic, 2(3):408–429, 2001.
13. C. Löding. Methods for the transformation of ω-automata: Complexity and con-

nection to second order logic. Diplomata thesis, Christian-Albrechts-University of
Kiel, 1998.

14. C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proceedings

of FST&TCS’04, volume 3328 of LNCS, pages 408–420. Springer, 2004.
15. D. A. Martin. Borel determinacy. Annals of Mathematics, 102(363–371), 1975.
16. C. Papadimitriou. Complexity Theory. Addison Wesley, 1994.
17. N. Piterman. Extending temporal logic with ω-automata. Master’s thesis, The

Weizmann Institute of Science, 2000.
18. O. Serre. Contribution à l’étude des jeux sur des graphe de processus à pile. PhD

thesis, Université Paris VII, November 2004.
19. O. Serre. Games with winning conditions of high Borel complexity. In Proceedings

of ICALP’04, volume 3142 of LNCS, pages 1150–1162. Springer, 2004.
20. W. Thomas. On the synthesis of strategies in infinite games. In Proceedings of

STACS 1995, volume 900 of LNCS, pages 1–13. Springer, 1995.
21. M. Vardi. Reasoning about the past with two-way automata. In Proceedings of

ICALP 1998, volume 1443 of LNCS, pages 628–641. Springer, 1998.
22. I. Walukiewicz. Pushdown processes: games and model checking. In Proceedings

of CAV’96, volume 1102 of LNCS, pages 62–74. Springer, 1996.
23. I. Walukiewicz. Pushdown processes: games and model checking. Information and

Computation, 157:234–263, 2000.
24. I. Walukiewicz. A landscape with games in the background. In Proceeding of

LICS’04, pages 356–366. IEEE Computer Society, 2004.

15

25. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

16

Appendix

A Proofs of Section 3

A.1 Proof of Proposition 1

Proposition 1. The configuration (qin,⊥) is winning for Eve in G if and only
if A accepts the infinite word ⊥1ω.

Proof. Let us assume that Eve has a winning strategy from (qin,⊥) in G. This
strategy can be seen as an infinite tree where each branch represents a possible
play in which Eve follows her winning strategy. It is straightforward to note that
this tree is an accepting run of A on ⊥1ω.

Conversely, an accepting run of A provides a winning strategy for Eve from
(qin,⊥) in G. ⊓∪

A.2 Proof of Lemma 1

Lemma 1. Let A = 〈Q,A, qin, δ, col〉 be an alternating two-way parity word
automaton, let n = |Q| and let d be the number of colors involved in the parity
condition. Then there exists an alternating one-way parity word automaton B
such that L(B) 6= ∅ if and only if L(A) 6= ∅. Moreover, L(B) = L(B1) ∩ L(B2),
where B1 is an alternating one-way automaton without acceptance condition (ev-
ery run, when exists, is accepting) and has O(nd) states, and B2 is a purely uni-
versal (its transition function takes value into the boolean formulas made only of
conjunctions) one-way parity automaton (with d colors) and has O(nd) states.

Proof. The proof is a simple adaptation of the general one for alternating two-
way parity automata on trees [21]. It can also be seen as a generalization of the
one for alternating two-way Büchi automata on words [17, 10] (which was itself
a simplification of the one in [21]). The presentation of this proof is based on an
adaptation of the one in [17] for the Büchi acceptance condition.

We start with some definitions.

Definition A1 A strategy for A is a mapping τ : N → 2Q×{−1,0,1}×Q. For
each subset ζ ⊆ Q×{−1, 0, 1}×Q, we set state(ζ) = {q ∈ Q | (q, i, q′) ∈ ζ, q′ ∈
Q, i = −1, 0, 1}. The strategy τ is on a word u = a0a1 · · · if qin ∈ state(τ(0)),
and for all i ≥ 0 and all state q ∈ state(τ(i)), {(q′, c) | (q, c, q′) ∈ τ(i)} satisfies
δ(q, ai).

Definition A2 A path in a strategy τ is a finite or infinite sequence (0, qin),(i1, q1),
(i2, q2) . . . of pairs from N × Q such that, either the path is infinite and for
all j ≥ 0, there exists cj ∈ {−1, 0, 1} such that (qj , cj , qj+1) ∈ τ(ij) and

17

ij+1 = ij + cj; or the path is a finite sequence (0, qin), (i1, q1) . . . (im, qm) and
for all 0 ≤ j < m, there exists cj ∈ {−1, 0, 1} such that (qj , cj , qj+1) ∈ τ(ij)
and ij+1 = ij + cj, and δ(qm, am) = true. A path (0, qin), (i1, q1), (i2, q2) . . . is
accepting if it is finite, or it is infinite and satisfies the parity condition, i.e.
lim inf(col(qi)i≥1) is even. Finally, a strategy τ is accepting if all paths in τ are
accepting.

The following proposition was proved by Vardi in [21].

Proposition A3 [21] An alternating two-way parity automaton accepts a word
if and only if it has an accepting strategy on that word.

We now introduce the notion of annotation that expresses what kind of loops
may appears in a path in some strategy τ .

An annotation of the strategy τ (on the word u) for A is a mapping η :
N → 2Q×{1,...,d}×Q. The meaning of a tuple (q, c, q′) is that there is a loop,
respecting τ , that starts with control state q reads some letters and come back
to the original letter with state q′. Moreover, the smallest color visited in the
meantime (without considering the initial state q) is c. An annotation has to
satisfy the following properties for all i ∈ N.

1. If (q, c, q′) ∈ η(i) and (q′, c′, q′′) ∈ η(i), then (q,min(c, c′), q′′) ∈ η(i): if there
is a loop of minimal color c followed by a loop of minimal color c′ then there
is a loop of minimal color min(c, c′).

2. If (q, 0, q′) ∈ τ(i) then (q, col(q′), q′) ∈ η(i): if there is a trivial loop, then its
color is the one of the last state.

3. If i > 0, (q,−1, q′) ∈ τ(i), (q′, c, q′′) ∈ η(i−1) and (q′′, 1, q′′′) ∈ τ(i−1), then
(q,min(col(q′), c, col(q′′′)), q′′′) ∈ η(i): we go left, loop, and go back right.

4. If (q, 1, q′) ∈ τ(i), (q′, c, q′′) ∈ η(i + 1) and (q′′,−1, q′′′) ∈ τ(i + 1), then
(q,min(col(q′), c, col(q′′′)), q′′′) ∈ η(i): we go right, loop and go back left.

5. If i > 0, (q,−1, q′) ∈ τ(i) and (q′, 1, q′′) ∈ τ(i− 1), then
(q,min(col(q′), col(q′′)), q′′) ∈ η(i): we go left and go back right immediately.

6. If (q, 1, q′) ∈ τ(i) and (q′,−1, q′′) ∈ τ(i+1), then (q,min(col(q′), col(q′′)), q′′) ∈
η(i): we go right and go back left immediately.

A downward path in an annotation η of a strategy τ on a word u = a0a1 · · ·
is a sequence of tuples (i1, q1, t1), (i2, q2, t2), . . . , where for all j ≥ 1, ij ∈ N,
qj ∈ Q and tj is either an element of τ(ij) or η(ij), and the following holds.

– If tj is an element of τ(ij), tj = (qj , 1, qj+1) and ij+1 = ij + 1. In this case,
we say that the color of (ij , qj , tj) is col(qj+1).

– If tj is an element of η(ij), tj = (qj , c, qj+1) and ij+1 = ij. In this case, we
say that the color of (ij , qj , tj) is c.

A downward path can be finite if it ends either by a tuple (im, qm, tm) such
that tm = (q, c, q) (it ends by a loop) or by a tuple (im, qm, tm) such that
δ(qm, aim

) = true. A finite downward path is accepting either if we are in the
first case with c being even, or if we are in the second case. Finally an infinite

18

downward path is accepting if it satisfies the parity condition, that is if the
smallest color (in the previously defined way) appearing infinitely often is even.

Finally, an annotation η is accepting if every downward path in η is accepting.
We have the following characterization.

Proposition A4 [21] An alternating two-way parity automaton accepts a word
if and only if it has a strategy on that word and an accepting annotation of the
strategy.

The automaton B will read a word on the alphabet A together with a strategy
and an annotation of it. It accepts if and only if the annotation is a correct one
and is accepting.

We introduce two new alphabets: ∆s
Q = 2Q×{−1,0,1}×Q (for strategies) and

∆a
Q = 2Q×{1,...,d}×Q (for annotations). Finally, let us define the alphabet A′ =

A ×∆s
Q × ∆a

Q, and the three natural projections p1, p2 and p3 from A′ on A,
∆s

Q and ∆a
Q. These projections define morphisms from A′∗ on A∗, ∆s

Q
∗ and

∆a
Q
∗. Finally, the automaton B is the ”intersection” of two automata B1 and B2.

On some input u, the automaton B1 checks that p3(u) is an annotation of the
strategy p2(u), while B2 checks that all downward paths in it are accepting. A
crucial point in the sequel will be that B1 has no acceptance condition (it can
just be blocked to reject), and that B2 is purely universal.

Description of B1: In order to check that p2(u) is a strategy on u, and in
order to check the two first conditions for p3(u) to be an annotation of p2(u),
it suffices to verify local conditions, and the input alphabet A′ can thus be
restricted in such a way that these local conditions are always satisfied. We
assume in the sequel that it is the case and we only deal with the conditions 3
to 6 for p3(u).

Let B1 = 〈Q1, A
′, {q1in}, δ1, col1〉 where Q1 consists of the following states.

– Two states {q1in, q
1
1} that are used to initiate and propagate the verification

of various conditions. The state q1in is used to verify that qin is in state(ζ)
if the input letter is (a, ζ, µ). The state q11 is used to recursively check the
other conditions for the rest of the input word.

– A set {C} × Q × {∈, /∈} of states is used to check the consecution of the
strategy, that is if there is a state (q, 1, q′) in the current strategy, then there
must be a state (q′, ,) in the next strategy, and if there is no state of the
form (q, ,) in the current strategy, there must not be a state (q′,−1, q) in
the next strategy.

– A set {A} ×Q× {1, . . . , d} ×Q× {∈, /∈} of states that represent the tuples
(q, c, q′) of the annotation that must belong (∈) or not (/∈) to the third
component of the current input letter.

– A set {S}×Q×{−1}×Q×{/∈} of states that represent the tuples (q,−1, q′)
of the strategy that must not be in the second component of the current
input letter.

The coloring function here is unused and can thus be defined to be constant
and equal to 2 (hence every run, when exists, is accepting).

19

The transition function δ1 is defined as follows.

– δ1((C, q,∈), (a, ζ, µ)) equals true if q ∈ state(ζ) or if δ(q, a) = true, and
equals false otherwise.

– δ1((C, q, /∈), (a, ζ, µ)) equals false if there exists some q′ such that (q′,−1, q) ∈
ζ, and equals true otherwise.

– δ1((A, q1, c, q2,∈), (a, ζ, µ)) equals true if (q1, c, q2) ∈ µ, and equals false
otherwise.

– δ1((A, q1, c, q2, /∈), (a, ζ, µ)) equals true if (q1, c, q2) /∈ µ, and equals false
otherwise.

– δ1((S, q1, i, q2, /∈), (a, ζ, µ)) equals true if (q1, i, q2) /∈ ζ, and equals false
otherwise.

– Let set consec(a, ζ) = {q ∈ Q | q /∈ state(ζ) and δ(q, a) 6= true}, for every
a ∈ A and every ζ ∈ Q×{−1, 0, 1}×Q. The consecution of the strategy is ex-

pressed by the formula Υ cons(a, ζ, µ) =
∧

q∈consec(a,ζ)

(c, q, /∈)∧
∧

(q′,1,q)∈ζ

(c, q,∈).

– To verify condition 3, we set ϕ1 = (q,−1, q′) ∈ τ(i), ϕ2 = (q′, c, q′′) ∈ η(i−1),
ϕ3 = (q′′, 1, q′′′) ∈ τ(i − 1) and ϕ4 = (q,min(c, col(q′), col(q′′′)), q′′′) ∈ η(i).
The condition is expressed by the formula ϕ1∧ϕ2∧ϕ3 ⇒ ϕ4, which is equiv-
alent to ϕ2 ∧ ϕ3 ⇒ ϕ4 ∨ ¬ϕ1. Thus we have the expression

Υ 3(a, ζ, µ) =
∧

(q′,c,q′′)∈µ

∧

(q′′,1,q′′′)∈ζ

∧

q∈Q

[(A, q, c′, q′′′,∈)∨(S, q,−1, q′, /∈)], where

c′ = min(c, col(q′), col(q′′′)).

– We do the same thing for condition 4, that is we set ϕ1 = (q, 1, q′) ∈
τ(i), ϕ2 = (q′, c, q′′) ∈ η(i + 1), ϕ3 = (q′′,−1, q′′′) ∈ τ(i + 1) and ϕ4 =
(q,min(c, col(q′), col(q′′′)), q′′′) ∈ η(i). The condition is expressed by the for-
mula ϕ1∧ϕ2∧ϕ3 ⇒ ϕ4, which is equivalent to ϕ1∧¬ϕ4 ⇒ ¬ϕ2∨¬ϕ3. Thus
we have the expression

Υ 4(a, ζ, µ) =
∧

(q,1,q′)∈ζ

∧

(q,c′,q′′′)∈µ

∧

q′′∈Q

[(A, q′, c, q′′, /∈)∨(S, q′′,−1, q′′′, /∈)], where

c′ = min(c, col(q′), col(q′′′)).
– We do the same thing for condition 5, that is we set

Υ 5(a, ζ, µ) =
∧

(q,1,q′′)∈ζ

∧

q∈Q

[(A, q, c, q′′,∈)∨(S, q,−1, q′, /∈)], where c = min(col(q′), col(q′′)).

– We do the same thing for condition 6, that is we set

Υ 5(a, ζ, µ) =
∧

(q,1,q′)∈ζ

∧

(q,c,q′′)/∈µ

(S, q,−1, q′′, /∈), where c = min(col(q′), col(q′′)).

– For the initialization, δ1(q
1
in, (a, ζ, µ)) equals q11 ∧ Υ c(a, ζ) ∧ Υ 3(a, ζ, µ) ∧

Υ 4(a, ζ, µ) ∧ Υ 5(a, ζ, µ) ∧ Υ 6(a, ζ, µ) if qin ∈ state(ζ), and equals false oth-
erwise.

– Finally, for the propagation, we set δ1(q
1
1 , (a, ζ, µ)) = q11∧Υ

c(a, ζ)∧Υ 3(a, ζ, µ)∧
Υ 4(a, ζ, µ) ∧ Υ 5(a, ζ, µ) ∧ Υ 6(a, ζ, µ).

It is easily verified that a word u is accepted by B1 if and only if p3(u) is an
annotation of the strategy p2(u). It is also clear that |Q1| = O(nd).

20

Description of B2: First recall that B2 is used to check that all downward
path are accepting. It will therefore be equipped with a parity condition and will
be purely universal.

More precisely, B2 = 〈Q × {1, . . . , d}, A′, (qin, col(qin)), δ2, col2〉, where the
following holds.

– For every state (q, c) and every letter (a, ζ, µ), δ2((q, c), (a, ζ, µ)) equals false
if there exists some odd color c′ such that (q, c′, q) ∈ µ, or if there exists some
odd color c′, some color c′′ and some state q′ ∈ Q, such that (q, c′′, q′) ∈ µ
and (q′, c′, q′) ∈ µ. Otherwise,

δ2((q, c), (a, ζ, µ)) =
∧

(q,1,q′)∈ζ

(q′, col(q′))∧
∧

(q,c′,q′)∈µ

∧

(q′,1,q′′)∈ζ

(q′′,min(c′, col(q′′)))

– For every state (q, c), col2((q, c)) = c.

It is then easily verified that B2 accepts a word u if and only if all downward
path in p3(u) are accepting. It is also clear that |Q1| = O(nd) and that B2 is
purely universal. ⊓∪

A.3 Proof of Theorem 2

Theorem 2. Deciding the winner in a one-counter parity game can be done in
PSpace.

Proof. It suffices to note that checking whether A accepts ⊥1ω can be reduced
to check emptiness for an alternating two-way parity word automaton A′ which
is built from A′ by adding one state.

More precisely, A′ = 〈A ∪ {qc}, {1,⊥}, qin, δ′, col′〉, where col′(q) = col(q) if
q ∈ Q and col′(qc) = 0. The transition function δ′ is such that δ′(q, a) = δ(q, a)
for every q ∈ Q \ {qin} and for every a ∈ {1,⊥}, δ′(qin,⊥) = δ(qin,⊥) ∧ (qc, 1)
and δ′(qin, 1) = δ(qin, 1), and δ(qc, 1) = (qc, 1) and δ(qc,⊥) = false. Therefore
A′ works like A except that, at the beginning of the run, it starts a computation
verifying that the input word is ⊥1ω. If the input word is ⊥1ω, A′ accepts if and
only if A does. Hence ⊥1ω is accepted by A if and only if the language accepted
by A′ is not empty (equivalently equal to {⊥1ω}). ⊓∪

A.4 Proof of Theorem 3

Theorem 3. Deciding the winner in a one-counter reachability game is a DP-
hard problem.

Proof. We first show how to polynomially reduce 3-sat to the game problem.
Let X = {x1, . . . , xk} be a set of variables and let ψ be some Boolean formula
in conjunctive normal form with 3 literals per clause. Let denote ψ = C1 ∧C2 ∧
· · · ∧Ch, where Ci = li,1 ∨ li,2 ∨ li,3 for all i = 1, . . . , h with li,k ∈ {x, x | x ∈ X},
for k = 1, 2, 3.

For every i ≥ 1, let ρi denote the i-th prime number. A valuation of X is a
mapping from X into {0, 1}, that is a vector in {0, 1}k. Consider the function

21

τ : N → {0, 1}k defined by τ(n) = (b1, b2, . . . , bk) where bj = 0 if n = 0 mod ρj

and bj = 1 otherwise. The Chinese remainder lemma implies that τ is surjective.
Let us consider the following game:

1. Eve chooses some integer n encoding a valuation that she claims to satisfy
ψ.

2. Adam picks a clause Ci that he claims not to be satisfied by the preceding
valuation.

3. Eve gives a literal of Ci that she claims to be evaluated to true by the
preceding valuation.

4. Adam checks whether this literal is evaluated to true. If it is the case, then
Eve wins, otherwise Adam does.

It is easily seen that Eve has a winning strategy if and only if ψ is satisfiable.
Now it remains to explain how to encode the preceding games into a one-

counter reachability graph. The initial configuration (qin,⊥) is controlled by
Eve. From it she can apply the transitions push(qin, 1) and skip(qcc). In this
last case (that concludes the first step of the informal game), the play goes
in some configuration (qcc, 1

n⊥) encoding the valuation τ(n), and it is Adam’s
turn to play. Adam can apply any rule skip(qCi

) for i = 1, . . . , h, meaning
that he wants to check that the clause Ci is satisfied by τ(n) (second step of
the previous game). From (qCi

, 1n⊥), Eve plays a transition skip(qli,j
) for any

j ∈ {1, 2, 3}, claiming that the literal li,j is evaluated to true by τ(n) (third
step). Then she applies the transition skip(mρk

0) if li,j = xk, or skip(mρk

0) if
li,j = xk. From the configuration (mρk

0 , 1n⊥) Adam pops until the stack gets
empty, and in the same time a modulo ρk counting is performed: the successive
states are mρk

1 ,mρk

2 , . . . ,mρk

ρk−1,m
ρk

0 ,mρk

1 . . . Finally a configuration (mρk

l ,⊥) is
reached, and there is a unique possible transition rule: skip(qw) if l = 0, or
skip(ql) otherwise. The states qw and ql are looping states and qw is the only
final state. In the case where li,j = xk, the play goes the same except that it
goes to (qw,⊥) from (mρk

l ,⊥) if l 6= 0, and to (ql,⊥) otherwise.
It is clear that (pin,⊥) is winning for Eve if and only if ψ is satisfiable. It

is not difficult to check that one can build in polynomial time the underlying
one-counter process (that has O(Σk

i=1ρi) states which is polynomial in k).
Now, if one wants to reduce sat-unsat, it suffices to add a preliminary step

to the previous game. Let (ψ1, ψ2) be the instance of sat-unsat. First Adam
picks ψ1 or ψ2. In the first case Eve and Adam play the previous game. In the
second case, they play the symmetrical game where Adam is now the one that
has to provide a valuation for ψ2, and where Eve wins if and only if ψ2 is not
satisfiable. Eve wins the main game if and only if she can win both sub-games,
that is if and only if ψ1 is satisfiable while ψ2 is not. ⊓∪

B Details for Section 5

B.1 The one-counter game graph G̃

Let us first precisely describe the one-counter game graph G̃. We refer the reader
to Figure 1. For simplicity, we denote a configuration of this one-counter automa-

22

ton by (p, κ) instead of (p, 1κ⊥), and when decrementing the counter, we have
the convention that κ− 1 designates 0 if κ = 0.

– The main vertices of G̃ are those of the form [(p, α,
−→
R, θ), κ], where p ∈ Q,

α ∈ Γ ,
−→
R = ((R−

0 , R
+
0) . . . , (R−

d , R
+
d)) ∈ P(Q)2d+2, θ ∈ {0, . . . , d} and

κ ≥ 0. A vertex [(p, α,
−→
R, θ), κ] is reached when simulating a partial play Λ

in G such that:

• The last vertex in Λ is (p, ασ) for some σ ∈ Γ ∗.
• Eve claims that she has a strategy to continue Λ in such a way that if α

is eventually popped, the control state reached after popping α belongs
to R⋆

m, where m is the smallest color visited since α was on the stack,
and ⋆ = + if the maximal increase of the stack height was at least κ
since α was on the stack, and ⋆ = − otherwise.

• The color θ is the smallest one since α was pushed onto the stack.

A vertex [(p, α,
−→
R, θ), κ] is controlled by Eve if and only if p ∈ QE.

– The control states tt and ff are there to ensure that the vectors
−→
R encoded

in the main vertices are correct. Vertices of the form [tt, κ] are controlled by
Adam, whereas vertices of the form [ff, κ] belongs to Eve. As these vertices
are dead-ends, a play reaching some vertex [tt, κ] is won by Eve whereas a
play reaching some vertex [ff, κ] is won by Adam.

There is a transition from some vertex [(p, α,
−→
R, θ), κ] to [tt, κ], if and only if

there exists a transition rule pop(r) ∈ ∆(p, α), such that r ∈ R⋆
θ with ⋆ = −

if κ > 0 and ⋆ = + otherwise (this means that
−→
R is correct with respect

to this transition rule). Symmetrically, there is a transition from a vertex

[(p, α,
−→
R, θ), κ] to a vertex [ff, κ] if and only if there exists a transition rule

pop(r) ∈ ∆(p, α) such that r /∈ R⋆
θ where ⋆ = − if κ > 0 and ⋆ = + otherwise

(this means that
−→
R is not correct with respect to this transition rule).

– To simulate a transition rule skip(q) ∈ ∆(p, α), the player that controls

[(p, α,
−→
R, θ), κ] goes in [(q, α,

−→
R,min(θ, ρ(q))), κ]. Note that the last compo-

nent of the control state has to be updated as the smallest color seen since
α is on the stack is now min(θ, ρ(q)).

– To simulate a transition rule push(q, β) ∈ ∆(p, α), the player that controls

[(p, α,
−→
R, θ), κ] goes in [(p, α,

−→
R, θ, q, β), κ]. This vertex is controlled by Eve

who has to give a vector
−→
S = ((S−

0 , S
+
0), . . . , (S−

d , S
+
d)) ∈ P(Q)2d+2 that de-

scribes the control states that can be reached if β is eventually popped. To de-

scribe this vector, she goes to the corresponding vertex [(p, α,
−→
R, θ, q, β,

−→
S), κ].

The vertex [(p, α,
−→
R, θ, q, β,

−→
S), κ] is controlled by Adam who chooses either

to simulate a bump or a stair. In the first case, he additionally chooses
whether the simulated bump will have a stack height (strictly) smaller than
κ or not. He also has to pick the minimal color in this bump. To simulate
a bump of height smaller than κ with minimal color i, he goes to a vertex

[(s, α,
−→
R,min(θ, i, col(s))), κ], for some s ∈ S−

i , through an edge colored by
i and b (b stands for small bump).

23

To simulate a bump of height greater than κ with minimal color i, he goes to

a vertex [(s, α,
−→
R+,min(θ, i, col(s))), κ+1], for some s ∈ S+

i , through an edge

colored by i andB (B stands for big bump). Here
−→
R+ = ((R+

0 , R
+
0), . . . , (R+

d , R
+
d)).

Note that the counter is incremented in that case.

Finally to simulate a stair, Adam goes to the vertex [(q, β,
−→
S , ρ(q)), κ − 1],

through an edge colored by S (for stair). Note that the counter is decre-
mented in that case.

The last component of the control state (that stores the smallest color seen
since the currently simulated stack level was reached) has to be updated in
all these cases. After simulating a bump of minimal color i, the minimal color
is min(θ, i, col(s)). After simulating a stair, this color has to be initialized
(since a new stack level is simulated). Its value, is therefore ρ(q), which is
the unique color since the (new) stack level was reached.

Note that in the simulation of a bump of height greater than κ, the vector
−→
R

of possible reachable states when popping α is updated: whatever happens
now, if α is popped, the increased of the stack on the current level would
have been greater than κ and hence the control state reached would have to
be in R+

m for some m.

The only vertices that are colored are those of the form [(p, α,
−→
R, θ), κ] and

the color of such a vertex is col(p). Some edges are also colored. These are the one

leaving from some vertex [(p, α,
−→
R, θ, q, β,

−→
S), κ] : this (possibly multi) coloring

is always formed by a color in {S, b, B} that can be completed (for bumps) by a
color in {0, 1, . . . , d}. See Figure 1 for details.

Remark B1 In the definition of parity games we were requiring to have a total
coloring function working only on vertices. One can add extra intermediate states
and introduce a new color larger than d to fit the definition without changing the
issue of that game.

B.2 Proof of Theorem 5

This subsection is devoted to the proof Theorem 5 that is recalled bellow.

Theorem 5. A configuration (pin,⊥) is winning for Eve in G = (G, ψ(Ω1, . . . , Ωk))

if and only if [(pin,⊥, ((∅, ∅), . . . , (∅, ∅), col(pin)), 0] is winning for Eve in G̃ =

(G̃, ψ(Ω̃1, . . . , Ω̃k)). Hence, deciding the winner in such a pushdown game can be
done in ExpSpace.

Factorization of a play in G̃

Recall that in G̃ some edges are colored and that we can also have two colors
on the same edge. Hence, to represent a play, we have to encode this information

24

on edge coloring. First, note that the information on colors in {S, b, B} is implic-
itly encoded into the vertices, as they respectively correspond to decrement/do
not modify/increment the counter. Therefore we only need to encode the colors
in {0, . . . , d} that appears when simulating a bump: a play will be represented
as a sequence of vertices together with colors in {0, . . . , d} that correspond to
colors appearing on edges.

For any play in G̃, a round is a factor between two visits through vertices of

the form [(p, α,
−→
R, θ), κ]. We have the following possible forms for a round:

– The round is of the form [(p, α,
−→
R, θ), κ][(q, α,

−→
R, θ), κ] and corresponds there-

fore to the simulation of a skip rule. We designate it as a bump of height 0.

– The round is of the form [(p, α,
−→
R, θ), κ][(p, α,

−→
R, θ, q, β), κ][(p, α,

−→
R, θ, q, β,

−→
S), κ]i

[(s, α,
−→
R,min(θ, i, col(s))), κ] and corresponds therefore to the simulation of

a rule pushing β followed by a sequence of moves that ends by popping β.
Moreover the stack height does not increase by more than κ in the meantime.
We designate it has a small bump.

– The round is of the form [(p, α,
−→
R, θ), κ][(p, α,

−→
R, θ, q, β), κ][(p, α,

−→
R, θ, q, β,

−→
S), κ]i

[(s, α,
−→
R+,min(θ, i, col(s))), κ + 1] and corresponds therefore to the simula-

tion of a rule pushing β followed by a sequence of moves that ends by popping
β. Moreover the stack height increases by more than κ in the meantime. We
designate it has a big bump.

– The round is of the form [(p, α,
−→
R, θ), κ][(p, α,

−→
R, θ, q, β), κ][(p, α,

−→
R, θ, q, β,

−→
S), κ]

[(q, β,
−→
S , col(q)), κ− 1] and corresponds therefore to the simulation of a rule

pushing a symbol β that will not be removed. We designate it has a stair.

For any play λ = v0v1v2 · · · in G̃, we consider the subset of indices corre-

sponding to vertices of the form [(p, α,
−→
R, θ), κ]. More precisely:

Roundsλ = {n ∈ N | vn = [(p, α,
−→
R, θ), κ], p ∈ Q, α ∈ Γ,

−→
R ∈ P(Q)2d+2, 0 ≤ θ ≤ d, κ ≥ 0}

Therefore, the set Roundsλ induces a natural factorization of λ into rounds.

Definition B2 (Rounds factorisation) For a (possibly partial) play λ = v0v1v2 · · · ,
we call rounds factorization of λ, the (possibly finite) sequence (λi)i≥0 of rounds
λ defined as follows. Let Roundsλ = {n0 < n1 < n2 < · · · }, then for all
0 ≤ i < |Roundsλ|, λi = vni

· · · vni+1
.

Therefore, for every i ≥ 0, the first vertex in λi+1 equals the last one in λi.
Moreover, λ = λ1 ⊙ λ2 ⊙ λ3 ⊙ · · · , where λi ⊙ λi+1 denotes the concatenation of
λi with λi+1 without its first vertex.

Finally, the color of a round is the smallest color in {0, . . . , d} appearing in
the round.

In order to prove both implications of Theorem 5, we build from a winning
strategy for Eve in one game a winning strategy for her in the other game.
The main argument to prove that the new strategy is winning is to prove a
correspondence between the factorizations of plays in both games.

25

Direct implication

Assume that the configuration (pin,⊥) is winning for Eve in G, and let Φ be
a corresponding strategy for her.

Using Φ, we define a strategy ϕ for Eve in G̃ from [(pin,⊥, (∅, . . . , ∅), ρ(pin)), 0].
This strategy stores a partial play in G, that is an element in V ∗ (where V
denotes the set of vertices of G). This memory will be denoted by Λ. At the
beginning Λ is initialized to the vertex (pin,⊥). We first describe ϕ, and then
we explain how Λ is updated. Both the strategy ϕ and the update of Λ, are
described for a round.

Choice of the move. Assume that the play is in some vertex [(p, α,
−→
R, θ), κ]

for p ∈ QE. The move given by ϕ depends on Φ(Λ):

– If Φ(Λ) = pop(r), then Eve goes to [tt, κ] (Proposition B3 will prove that this
move is always possible).

– If Φ(Λ) = skip(q), then Eve goes to [(q, α,
−→
R,min(θ, col(q))), κ].

– If Φ(Λ) = push(q, β), then Eve goes to [(p, α,
−→
R, θ, q, β), κ].

In this last case, or in the case where p ∈ QA and Adam goes to [(p, α,
−→
R, θ, q, β), κ],

we also have to explain how Eve behaves from [(p, α,
−→
R, θ, q, β), κ]. She has to

provide a vector
−→
S ∈ P(Q)2d+2 that describes which states can be reached if β

is popped, depending on both the increased of the stack compared with κ and on

the smallest visited color in the meantime. In order to define
−→
S , Eve considers

the set of all possible continuation of Λ · (q, βασ) (where (p, ασ) denotes the last
vertex of Λ) where she respects her strategy Φ. For each such play, she checks
whether some configuration of the form (s, ασ) is visited after Λ · (q, βασ), that
is if β is eventually popped. If it is the case, she considers the first configura-
tion (s, ασ) appearing after Λ · (q, βασ), the smallest color i and the maximal
increase h of the stack height since β was on the stack. For every i ∈ {0, . . . d},
S−

i , is exactly the set of states s ∈ Q such that the preceding case happens with
h < κ−1, and S+

i is exactly the set of states s ∈ Q such that the preceding case

happens with h ≥ κ− 1. Finally, we set
−→
S = ((S−

0 , S
+
0), . . . , (S−

d , S
+
d)) and Eve

moves to [(p, α,
−→
R, θ, q, β,

−→
S), κ].

Update of Λ. The memory Λ is updated after each visit to a vertex of the

form [(p, α,
−→
R, θ), κ]. We have three cases depending on the kind of the round:

– The round is a bump of height 0 and therefore a skip(q) action was simulated.
Let (p, ασ) be the last vertex in Λ, then the updated memory is Λ · (q, ασ).

– The round is a bump of non null height, and therefore a bump of color i
(where i is the color of the round) starting with some action push(q, β) and
ending in a state s ∈ S−

i ∪S+
i was simulated. Let (p, ασ) be the last vertex in

Λ. Then the memory becomes Λ extended by (q, βασ) followed by a sequence
of moves, where Eve respects Φ, that ends by popping β and reach (s, ασ)
while having i as smallest color and augmenting the stack height by at least
κ, if s ∈ S+

i (respectively by at most κ− 1 if s ∈ S−
i).

26

– The round is a stair and therefore we have simulated a push(q, β) action. If
(p, ασ) denotes the last vertex in Λ, then the updated memory is Λ ·(q, βασ).

Therefore, with any partial play λ in G̃ in which Eve respects her strategy
ϕ, is associated a partial play Λ in G. An immediate induction shows that Eve
respects Φ in Λ. The same arguments works for an infinite play λ, and the
corresponding play Λ is therefore infinite, starts from (pin,⊥) and Eve respects
Φ in that play. Therefore it is a winning play.

The following proposition is a consequence of how ϕ was defined.

Proposition B3 Let λ be a partial play in G̃ that starts from [(pin,⊥, (∅, . . . , ∅), ρ(pin)), 0],

ends in a vertex of the form [(p, α,
−→
R, θ), κ], and where Eve respects ϕ. Let Λ be

the play associated to λ built by the strategy ϕ. Then the following holds:

1. Λ ends in a vertex of the form (p, ασ) for some σ ∈ Γ ∗.
2. θ is the smallest visited color in Λ since α has been pushed.
3. In Λ a configuration of stack height κ+ |σ| has been visited.
4. Assumer that Λ is extended, that Eve keeps respecting Φ and that the next

move after (p, ασ) is to some vertex (r, σ). Then r ∈ R⋆
i , where i is the

smallest visited color since α was on the stack (that is i = θ from point (2))
and ⋆ = + if κ = 0 and ⋆ = − otherwise.

Proof. The only difficult part is (4). The fact that r ∈ R−
i ∪ R+

i is clear.
First note that λ ends by a (possibly empty) sequence of bumps of the form

[(p′, α,
−→
R′, θ′), κ′] . . . [(p′′, α,

−→
R′⋆, θ′′), κ′ + ι]. Let [(p′, α,

−→
R′, θ′), κ′] be the first ver-

tex in this sequence In the special case where the sequence is empty, p′ = p,
−→
R′ =

−→
R , θ′ = θ and κ′ = κ. Moreover, one has

−→
R =

−→
R′ and κ′ = κ if all bumps

have height smaller than κ′, and otherwise
−→
R =

−−→
R′+ and κ′ < κ.

In the special case where κ = 0, κ′ = 0 and by definition of R′+
i , one has

r ∈ R′+
i = R+

i . In the case where κ > 0, if κ′ = κ, all bumps before popping
α had height less than κ′, and by definition of R′−

i , one has r ∈ R′−
i = R−

i . If
κ′ < κ, then a bump higher than κ′ was done before popping α, and therefore,
by definition of R′+

i , one has r ∈ R′+
i = R−

i .

Remark B4 Proposition B3 implies that the strategy ϕ is well defined when
it provides a move to tt. Moreover, one can deduce that, if Eve respects ϕ, no
configuration of control state ff is visited.

The preceding remark shows in particular that any finite play ends in some
vertex [tt, κ] and is therefore won by Eve. For infinite play, using the definitions

of G̃ and ϕ, we easily deduce the following proposition.

Proposition B5 Let λ be an infinite play in G̃ that starts from [(pin,⊥, (∅, . . . , ∅),
ρ(pin)), 0], and where Eve respects ϕ. Let Λ be the associated play build by the
strategy ϕ. Let (λi)i≥0 be the round factorization of λ. Then, for every i ≥ 1 the
following hold:

27

1. λi is a bump if and only if kindΛ
i = (B, h) for some h. Moreover if κ is the

counter value in the first vertex of λi, h ≥ κ if and only if λi is a big bump.
2. λi has color mcolΛi .

Proposition B5 implies that for any infinite play λ in G̃ starting from [(pin,⊥, (∅, . . . , ∅),
ρ(pin)), 0] where Eve respects ϕ, the sequence of visited colors in λ is (mcolΛi)i≥0

for the corresponding play Λ in G. Moreover λ ∈ ΩBuc({S,B}) if and only if
(kindΛ

i)i≥0 contains either infinitely many S or (B, h) for every h ≥ 0 (because if
there are finitely many S in λ but infinitely many B, there are higher and higher
bumps in some stack level). Finally λ ∈ ΩBuc({S}) if and only if (kindΛ

i)i≥0

contains infinitely many S.
Using Proposition 3 we conclude that λ ∈ ψ(ω̃1, . . . , Ω̃k) if and only if Λ ∈

ψ(Ω1, . . . , Ωk). As Λ is winning for Eve, it follows that λ is also winning for her.

Converse implication

Assume now that Eve has a winning strategy ϕ in G̃ from [(pin,⊥, (∅, . . . , ∅), col(pin)), 0].
Using ϕ, we build a strategy Φ for Eve in G for plays starting from (pin,⊥).

The strategy Φ uses, as memory, a stack Π , to store the complete description
of a play in G̃. Recall here that a play in G̃ is represented as a sequence of
vertices together with colors in {0, . . . d}.

Therefore the stack alphabet of Π is the set of vertices of G̃ together with
{0, . . . , d}. Note that this alphabet is infinite. In the following, top(Π) will denote
the top stack symbol of Π while StCont(Π) will be the word obtained by reading
Π from bottom to top (without considering the bottom-of-stack symbol of Π).

In any play where Eve respects Φ, StCont(Π) will be a play in G̃ that starts
from [(pin,⊥, (∅, . . . , ∅), col(pin)), 0] and where Eve respects her winning strategy
ϕ. Moreover, for any play Λ where Eve respects Φ, we will always have that

top(Π) = [(p, α,
−→
R, θ), κ] if and only if the current configuration in Λ is of the

form (p, ασ). Finally, if Eve keeps respecting Φ, and if α is eventually popped the
configuration that is reached will be of the form (r, σ) for some r ∈ R⋆

i , where
i is the smallest visited color since α was on the stack, and ⋆ = + if the stack
was increased by at least κ symbols in between (p, ασ) and (r, σ), and ⋆ = −
otherwise. Initially, Π only contains [(pin,⊥, (∅, . . . , ∅), col(pin)), 0].

In order to describe Φ, we assume that we are in some configuration (p, ασ)

and that top(Π) = [(p, α,
−→
R, θ), κ]. We first describe how Eve plays if p ∈ QE,

and then we explain how the stack is updated.

– Choice of the move. Assume that p ∈ QE and that Eve has to play from
some vertex (p, ασ). For this, she considers the value of ϕ on StCont(Π).
If it is a move to [tt, κ], Eve plays an action pop(r) for some state r ∈ R⋆

θ ,
with ⋆ = − if κ > 0 and ⋆ = + otherwise. Lemma B6 will prove that such
an r always exists.

If the move given by ϕ is to go to some vertex [(q, α,
−→
R,min(θ, col(q))), κ],

Eve applies the transition skip(q).

28

If the move given by ϕ is to go to some vertex [(p, α,
−→
R, θ, q, β), κ], then Eve

applies the transition push(q, β).
– Update of Π. Assume that the last move, played by Eve or Adam, was

to go from (p, ασ) to some configuration (r, σ). The update of Π is il-
lustrated by figure 2 and explained in what follows. Eve pops in Π until

she finds some configuration of the form [(p′, α′,
−→
R′, θ′, p′′, α,

−→
R′′), κ′] that

is not preceded by a color in {0, . . . , d}. This configuration is therefore
in the stair that simulates the pushing of α onto the stack. Let h be the
maximal increase of the stack when α was in. Eve updates Π by pushing

θ in Π followed by [(r, α′,
−→
R′,min(θ′, θ, col(r))), κ′] if h < κ′ − 1, and by

[(r, α′,
−−→
R′+,min(θ′, θ, col(r))), κ′ + 1] otherwise.

Assume that the last move, played by Eve or Adam, was to go from (p, ασ) to

some configuration (q, ασ). Then Eve updateΠ by pushing [(q, α,
−→
R,min(θ, col(q))), κ].

Assume that the last move, played by Eve or Adam, was to go from (p, ασ)

to some configuration (q, bau), let [(p, α,
−→
R, θ, q, β,

−→
S), κ] = ϕ(StCont(Π) ·

[(p, α,
−→
R, θ, q, β), κ]). Intuitively,

−→
S describes which states Eve can ensured

to reach if β is eventually popped. Eve updates Π by successively pushing

[(p, α,
−→
R, θ, q, β), κ], [(p, α,

−→
R, θ, q, β,

−→
S), κ], and [(q, β,

−→
S , col(q)), κ− 1].

The following lemma gives the meaning of the information stored in Π .

Lemma B6 Let Λ be a partial play in G, where Eve respects Φ, that starts from
(pin,⊥) and that ends in a configuration (p, ασ). We have the following facts:

1. top(Π) = [(p, α,
−→
R, θ), κ] with

−→
R ∈ P(Q)2d+2, 0 ≤ θ ≤ d and κ ≥ 0

2. StCont(Π) is a partial play in G̃ that starts from [(pin,⊥, (∅, . . . , ∅), col(pin)), 0],

that ends with [(p, α,
−→
R, θ), κ] and where Eve respects ϕ.

3. θ is the smallest color visited since α was pushed.
4. Let κ′ − 1 be the last component of top(Π) after having pushed α. If Λ is

extended by some move that pops α, the configuration (r, σ) that is reached
is such that r ∈ R⋆

θ, where ⋆ = + if the maximal increase of the stack height
was smaller than κ′ − 1 since α was in, and ⋆ = − otherwise.

Proof. The proof goes by induction on Λ. We first show that the last point is
a consequence of the second and third points. For a better readability, one can
refer to Figure 2. Assume that the next move after (p, ασ) is to apply an action
pop(r) ∈ ∆(p, α). We start with the case where κ = 0. The second point implies

that [(p, α,
−→
R, θ), κ] in winning for Eve in G̃. If p ∈ QE, by definition of Φ, there

is some edge from that vertex to [tt, κ], which means that r ∈ R+
θ and allows us

to conclude as we always have κ ≥ κ′. If p ∈ QA, note that there is no edge from

[(p, α,
−→
R, θ), κ] (winning position for Eve) to the loosing vertex [ff, κ]. Hence we

conclude the same way.
Assume now that κ > 0. Let h be the maximal increase of the stack height

since α was in. Let [(p′′, α,
−→
R′′, col(p′′)), κ′ − 1] be equal to top(Π) just after α

29

(p
′
,σ

)

(p
′
′
,α

σ
)

(p
,α

σ
)

σ
=

α
′
σ
′

Π

·
·
·

[(p′, α′,
−→
R′, θ′), κ′]

[(p′, α′,
−→
R′, θ′, p′′, α), κ′]

[(p′, α′,
−→
R′, θ′, p′′, α,

−→
R′′), κ′]

[(p′′, α,
−→
R′′, col(p′′)), κ′ − 1]

[(p, α,
−→
R, θ), κ]

·
·
·

(p
,α

σ
)

m
in

im
a
l
co

lo
r

=
θ

m
in

im
a
l
co

lo
r

=
θ
′

(p
′
,σ

)
(r

,σ
)

σ
=

α
′
σ
′

h

Π

·
·
·

[(p′, α′,
−→
R′, θ′), κ′]

[(p′, α′,
−→
R′, θ′, p′′, α), κ′]

[(p′, α′,
−→
R′, θ′, p′′, α,

−→
R′′), κ′]

θ

[(r, α′,
−−→
R′⋆, min(θ′, θ, col(r))), κ′ + ι]

m
in

im
a
l
co

lo
r

=
m

in
(θ

′
,θ

,c
ol

(r
))

⋆
=

+
if

h
≥

κ
′
−

1
a
n
d

⋆
=

−
o
th

er
w

is
e

ι
=

1
if

h
≥

κ
′
−

1
a
n
d

ι
=

0
o
th

er
w

is
e

F
ig

.
2
.
U

p
d
a
ti
n
g

th
e

st
ra

te
g
y
’s

st
a
ck

Π

3
0

was pushed. Considering how Π was updated, one concludes that
−→
R =

−→
R′′ if

h < κ′ − 1 and that
−→
R =

−−→
R′′+ otherwise.

Therefore, it is sufficient to show that r ∈ R−
θ . The second point implies that

[(p, α,
−→
R, θ), κ] is winning for Eve in G̃. If p ∈ QE, by definition of Φ, there is an

edge from that configuration to [tt, κ], which means that r ∈ R−
θ (as κ > 0) and

allows us to conclude. If p ∈ QA, note that there is no edge from [(p, α,
−→
R, θ), κ]

(winning for Eve) to [ff, κ]. Therefore one concludes the same way.
Let us now prove the other points. For this, assume that the result is proved

for some play Λ, and let Λ′ be an extension of Λ. We have two cases, depending
on how Λ′ extends Λ:

– Λ′ is obtained by applying a rule of type skip or push. The result is trivial
in that case.

– Λ′ is obtained by applying a pop rule. Let (p, ασ) be the last configuration

in Λ, and let
−→
R be the last vector component in top(Π) when being in

configuration (p, ασ). By induction hypothesis, it follows that Λ′ = Λ · (r, σ)
with r ∈ R⋆

θ . Considering how Π is updated, and using the fourth point, we
easily deduce that the new strategy stack Π is as desired (one can have a
look at Figure 2 for more intuition).

Actually, we easily deduce a more precise result.

Lemma B7 Let Λ be a partial play in G starting from (pin,⊥) and where Eve
respects Φ. Let λ = StCont(Π), where Π denotes the strategy’s stack in the last
vertex of Λ. Let (λi)i=0,...,k be the round factorization of λ. Then the following
holds:

– λi is a bump if and only if kindΛ
i = (B, h) for some h. Moreover if κ is the

counter value in the first vertex of λi, h ≥ κ if and only if λi is a big bump.
– λi has color mcolΛi .

Both lemmas B6 and B7 are for partial plays. A version for infinite plays
would allow to conclude. Let Λ be an infinite play in G. We define an infinite
version of λ by considering the limit of the stack contents (StCont(Πi))i≥0

where Πi is the strategy’s stack after the i-th first moves in Λ. See [19] for
similar constructions. It is easily seen that such a limit exists, is infinite and
corresponds to a play won by Eve in G̃. Moreover the results of Lemma B7
apply.

Let Λ be a play in G with initial vertex (pin,⊥), and where Eve respects Φ,

and let λ be the associated infinite play in G̃. Therefore λ is won by Eve. Using
Lemma B7 and Proposition 3, we conclude, as in the direct implication that Λ
is winning.

Solving G̃ in ExpSpace.

The one-counter game provided by Theorem 5 is not equipped with a parity
condition, so we cannot directly apply Theorem 2. Nevertheless, it is easily seen

31

that one can always modify G̃ to obtain an equivalent game G̃′ (here equivalent
means that one wins in the first game if and only if he wins in the second game).

Moreover, constructing G̃′ can be done in polynomial time.
We only give the construction for some cases. For the others, it is sufficient

to consider the game from Adam’s point of view. These constructions are an
adaptation of the standard constructions for intersection/union of ω-automata
equipped with various acceptance conditions.

– if ψ(Ω̃1, . . . , Ω̃k) is the conjunction of a Büchi condition (coming from a stack
condition) and of a parity condition, we modify the one-counter process by
adding a component that remembers the smallest visited color since the
last visit to a final state. Whenever a final state (for the Büchi condition) is
visited, a vertex with the stored color is visited. Every other vertex is colored
by an odd color larger than all other colors in the game. Hence, Eve wins if
and only if infinitely many final states are visited while the parity condition
holds.

– if ψ(Ω̃1, . . . , Ω̃k) is the disjunction of a Büchi condition (coming from a stack
condition) and a parity condition, we introduce a new color which is even
and minimal. Any final state for the Büchi condition has this color. Hence,
Eve wins in the new parity game if and only if infinitely many final states
are visited or if the previous parity condition holds.

Applying Theorem 2 to that new games concludes the proof.

32

