
Lazy Reachability Checking
for Timed Automata using Interpolants

Tamás Tóth? and István Majzik

Budapest University of Technology and Economics
Department of Measurement and Information Systems

{totht,majzik}@mit.bme.hu

Abstract.

Authors’ manuscript. Published in A. Abate, G. Geeraerts (eds.): Formal Mod-
elling and Analysis of Timed Systems, LNCS 10419, 2017. The final publication is
available at Springer via http://dx.doi.org/10.1007/978-3-319-65765-3_15.

To solve the reachability problem for timed automata, model
checkers usually apply forward search and zone abstraction. To ensure
efficiency and termination, the computed zones are generalized using
maximal constants obtained from guards either by static analysis or lazily
for a given path. In this paper, we propose a lazy method based on
zone abstraction that, instead of the constants in guards, considers the
constraints themselves. The method is a combination of forward search,
backward search and interpolation over zones: if the zone abstraction is
too coarse, we propagate a zone representing bad states backwards using
backward search, and use interpolation to extract a relevant zone to
strengthen the current abstraction. We propose two refinement strategies
in this framework, and evaluate our method on the usual benchmark
models for timed automata. Our experiments show that the proposed
method compares favorably to known methods based on efficient lazy
non-convex abstractions.

Keywords: timed automata, model checking, reachability, zone abstraction,
interpolation

1 Introduction

Timed automata [1] is a widely used formalism for the modeling and verification
of real-time systems. The reachability problem deals with the question whether
a given error state is reachable from an initial state along the transitions of the
automaton. The standard solution of this problem involves performing a forward
exploration in the so-called zone-graph induced by the automaton [9].

To ensure performance and termination, model checkers for timed automata
usually apply some sort of generalization of zones based on maximal lower-
and upper bounds [3] (LU -bounds) appearing in the guards of the automaton.
This can be performed directly by extrapolation [3] parametrized by bounds
obtained by static analysis [2]. Alternatively, bounds can be propagated lazily
for all transitions [12] or along an infeasible path [11], which, combined with

? This work was partially supported by Gedeon Richter’s Talentum Foundation
(Gyömrői út 19-21, 1103 Budapest, Hungary).

http://dx.doi.org/10.1007/978-3-319-65765-3_15

an efficient method for inclusion checking [13] with respect to a non-convex
abstraction induced by the bounds, results in an efficient method for reachability
checking of timed automata. This latter approach can be seen as a variant of
counterexample-guided abstraction refinement [8] (CEGAR), a technique widely
used in model checking.

In this paper, we propose a similar lazy algorithm for reachability checking
of timed automata. However, instead of propagating the bounds appearing in
guards, the algorithm considers the guards themselves. If the abstraction is too
coarse to exclude an infeasible path, a zone representing the guards of a disabled
transition is propagated backwards using pre-image computation. Based on the
pre-image, we compute a zone strong enough to block the disabled transition in
form of an interpolant [14]. In a similar fashion, we use interpolation to effectively
prune the search space by enforcing coverage of a newly discovered state with
an already visited state when possible. We propose two refinement strategies in
this framework. Both methods are a combination of forward search, backward
search and zone interpolation, and can be considered as a generalization of zone
interpolation to sequences of transitions of a timed automaton.

We compared the proposed interpolation based method and the non-convex
LU -abstraction based method [11] on the usual benchmark models for timed
automata. Results show that our method performs similarly to the highly so-
phisticated algorithm of [11], and in cases can even generate a smaller state
space. Moreover, it turned out that for some models the proposed refinement
strategies are less sensitive to search order, thus are more robust against bad
decisions during search.

Comparison to related work. Lazy abstraction [10] is an approach widely
used for model checking, and in particular for model checking software. It consists
of building an abstract reachability graph on-the fly, representing an abstraction
of the system, and refining a part of the tree in case a spurious counterexample
is found. Lazy abstraction with interpolants [15] (also known as Impact) and
lazy annotation [16] are both lazy abstraction techniques for software where
refinement is performed using interpolant generation.

For timed automata, a lazy abstraction approach based on non-convex LU -
abstraction and on-the-fly propagation of bounds has been proposed [11]. A
significant difference of this algorithm compared to usual lazy abstraction algo-
rithms is that it builds an abstract reachability graph that preserves exact reach-
ability information (a so-called adaptive simulation graph). As a consequence it
is able to apply refinement as soon as the abstraction admits a transition dis-
abled in the concrete system. In our work, we apply the same approach, but for
a different abstract domain, with different refinement strategies.

The work closest to ours is difference bound constraint abstraction [18]. The
refinement method presented there and our refinement strategy we refer to as
the binary (bin) strategy are highly analogous, and both are very similar to lazy
annotation. However, our refinement strategy that we refer to as the sequence
(seq) strategy is different in concept. Moreover, in [18], abstractions are sets of

difference constraints, and refinement rules are defined on a case-by-case basis for
guards, resets and delay. In our paper, we represent abstractions as canonical
difference bound matrices, and define abstraction refinement in more general
terms, as a combination of symbolic forward and backward search and zone
interpolation. This formulation enables a simple generalization of our approach
to automata with diagonal constraints in guards [6] and to updatable timed
automata [5], as well as to the application of backward exploration. Moreover,
by representing abstractions as canonical difference bound matrices, known zone-
based abstraction methods can be considered orthogonal to our approach.

Organization of the paper. The rest of the paper is organized as follows. In
Section 2, we define the notations used throughout the paper, and present the
theoretical background of our work. In Section 3 we propose a lazy reachability
checking algorithm based on zone abstraction for timed automata. We propose
two methods for abstraction refinement in Section 4. Section 5 describes exper-
iments performed on the proposed algorithm. Finally, conclusions are given in
Section 6.

2 Background and Notations

Let X be a set of clock variables over R. We assume x0 ∈ X , where x0 is a
distinguished reference clock with constant value 0. A clock constraint over X
is a conjunction of atoms of the form xi − xj ≺ c where xi, xj ∈ X , c ∈ Z and
≺ ∈ {<,≤}. We denote the set of clock constraints over X by Φ(X).

A clock valuation over X is a function η : X → R. We denote by Eval(X)
the set of clock valuations over X , and by 0 ∈ Eval(X) the clock valuation
where 0(x) = 0 for all x ∈ X . For a real number δ ≥ 0 and for all x ∈ X , let
(η + δ)(x) = η(x) + δ. Moreover, for R ⊆ X and for all x ∈ X , let ([R] η)(x) = 0
if x ∈ R and ([R] η)(x) = η(x) otherwise. For a clock constraint ϕ ∈ Φ(X),
we denote by η |= ϕ iff ϕ is satisfied under valuation η. Furthermore, let
JϕK = {η | η |= ϕ}.

2.1 Timed automata

Definition 1 (Timed automaton). Syntactically, a timed automaton is a tu-
ple A = (L,X ,T , `0) where

– L is a finite set of locations,
– X is a finite set of clock variables,
– T ⊆ L× Φ(X)× P(X)× L is a finite set of transitions where for a transi-

tion (`, g, R, `′) ∈ T , constraint g is a guard and R is a set containing clocks
to be reset, and

– `0 ∈ L is the initial location.

A state of A is a pair (`, η) where ` ∈ L and η ∈ Eval(X).

Definition 2 (Semantics). The operational semantics of a timed automaton
is given by a labeled transition system with initial state (`0,0) and two kinds of
transitions:

– Delay: (`, η)
δ−→ (`, η + δ) for some δ ≥ 0;

– Action: (`, η)
t−→ (`′, [R] η) for some transition t = (`, g, R, `′) where η |= g.

A run of a timed automaton is a sequence of states from the initial state along
the transition relation (`0, η0)

α1−→ (`1, η1)
α2−→ . . .

αn−−→ (`n, ηn) where η0 = 0 and
αi ∈ T ∪ R≥0 for all 0 ≤ i ≤ n. A location ` ∈ L is reachable iff there exists a
run such that `n = `.

2.2 Symbolic semantics

As the concrete semantics of a timed automaton is infinite due to real valued
clock variables, model checkers are often based on a symbolic semantics defined in
terms of zones. A zone Z ∈ Z is the solution set of a clock constraint ϕ ∈ Φ(X),
that is Z = JϕK. For zones Z and Z ′, we will denote by Z v Z ′ iff Z ⊆ Z ′.
Moreover, if Z and Z ′ are zones and t ∈ T , then

– ⊥ = ∅,
– > = Eval(X),
– Z u Z ′ = Z ∩ Z ′,
– Z0 = {η | η = 0 + δ for some δ ≥ 0},
– postt(Z) =

{
η′ | (`, η)

t−→ s
δ−→ (`′, η′) for some η ∈ Z and δ ≥ 0

}
, and

– pret(Z
′) =

{
η | (`, η)

t−→ s
δ−→ (`′, η′) for some η′ ∈ Z ′ and δ ≥ 0

}
are also zones. Zones are not closed under complementation, but the comple-

ment of any zone is the union of finitely many zones. For a zone Z, we are going
to denote a finite set of such zones by ¬Z.

The functions postt(Z) and pret(Z) represent the strongest postcondition
and weakest precondition of Z with respect to a transition t of a timed automa-
ton, repsectively. We are going to use the following simple lemma.

Lemma 1. Let A, B be zones and t ∈ T a transition. Then A u pret(B) v ⊥
iff postt(A) uB v ⊥.

Using post, we can define a zone-based symbolic semantics for timed au-
tomata.

Definition 3 (Symbolic semantics). The symbolic semantics of a timed au-
tomaton is given by a labeled transition system with states of the form (`, Z),

with initial state (`0, Z0), and with transitions of the form (`, Z)
t

=⇒ (`′,postt(Z))
where t = (`, g, R, `′).

Definition 4 (Symbolic run). A symbolic run of a timed automaton is a se-

quence (`0, Z0)
t1=⇒ (`1, Z1)

t2=⇒ . . .
tn=⇒ (`n, Zn) where Zn 6= ⊥.

Proposition 1. For a timed automaton, a location ` ∈ L is reachable iff there
exists a symbolic run with `n = `.

2.3 Difference Bound Matrices

Clock constraints and thus zones can be efficiently represented by difference
bound matrices.

A bound is either ∞, or a finite bound of the form (m,≺) where m ∈ Z and
≺ ∈ {<,≤}. Difference bounds can be totally ordered by “strength”, that is,
(m,≺) < ∞, (m1,≺1) < (m2,≺2) iff m1 < m2 and (m,<) < (m,≤). Moreover
the sum of two bounds is defined as b+∞ =∞, (m1,≤)+(m2,≤) = (m1+m2,≤)
and (m1, <) + (m2,≺) = (m1 +m2, <).

A difference bound matrix (DBM) over X = {x0, x1, . . . , xn} is a square
matrix D of bounds of order n + 1 where an element Dij = (m,≺) represents
the clock constraint xi − xj ≺ m. We denote by JDK the zone induced by the
conjunction of constraints stored in D. We say that D is consistent iff JDK 6= ∅.
The following is a simple sufficient and necessary condition for a DBM to be
inconsistent.

Proposition 2. A DBM D is inconsistent iff there exists a negative cycle in
D, that is, a set of pairs of indexes {(i1, i2), . . . , (ik−1, ik), (ik, i1)} such that
Di1,i2 + . . .+Dik−1,ik +Dik,i1 < (0,≤).

For a consistent DBM D, we say it is canonical iff constraints in it can
not be strengthened without losing solutions, formally, iff Dii = (0,≤) for all
0 ≤ i ≤ n and Dij ≤ Dik +Dkj for all 0 ≤ i, j, k ≤ n. For convenience, we will
also consider the inconsistent DBM D with the single finite bound D00 = (0, <)
canonical. Up to the ordering of clocks, the canonical form is unique. Moreover,
the zone operations in Section 2.2 can be efficiently implemented over canonical
DBMs [4]. Therefore, we will refer to a canonical DBM D (syntax) and the
zone JDK it represents (semantics) interchangeably throughout the paper.

For two DBMs A and B, we will denote by min(A,B) the (not necessarily
canonical) DBM D where Dij = min(Aij , Bij), which encodes JAK ∩ JBK.

3 Algorithm

In this section, we present our algorithm for lazy reachability checking of timed
automata.

3.1 Adaptive simulation graph

The definitions and propositions presented here are adaptations of concepts in-
troduced in [11] to our convex, zone-based setting.

Definition 5 (Unwinding). An unwinding of a timed automaton (L,X ,T , `0)
is a tuple U = (V,E, v0,Mv,Me, .) where

– (V,E) is a directed tree rooted at node v0 ∈ V ,
– Mv : V → L is the vertex labeling,

– Me : E → T is the edge labeling, and
– . ⊆ V × V is the (functional) covering relation.

For an unwinding we require that the following properties hold:

– Mv(v0) = `0,
– for each edge (v, v′) ∈ E the transition Me(v, v

′) = (`, g, R, `′) is such that
Mv(v) = ` and Mv(v

′) = `′,
– for all v and v′ such that v . v′ it holds that Mv(v) = Mv(v

′).

Informally, the purpose of the covering relation . is to mark if the search space
has been pruned at a node due to an other node that admits all runs possible from
the covered node. For convenience, we define the following shorthand notations:
`v = Mv(v) and tv,v′ = Me(v, v

′).

Definition 6 (Adaptive simulation graph). An adaptive simulation graph
(ASG) for a timed automaton A is a tuple G = (U,ψZ , ψW) where

– U is an unwinding of A, and
– ψZ , ψW : V → Z are labelings of vertices by zones.

We will use the following shorthand notations: Zv = ψZ(v) and Wv = ψW (v).
Later, we will ensure that Zv represents the exact set of reachable valuations for
v, and Wv an overapproximation of it.

A node v is expanded iff it has a successor for all transitions t = (`, g, R, `′)
such that `v = `. Without loss of generality, we assume that for each location the
automaton has at least one outgoing transition, thus if a node is expanded, then
it is not a leaf. A node v is feasible iff Wv 6= ⊥. It is covered iff v . v′ for some
node v′. It is excluded iff it is covered, infeasible or it has an excluded parent. A
node is complete iff it is either expanded or excluded. A node is `-safe iff `v 6= `.

For an ASG to be useful for reachability checking, we have to introduce
restrictions on the labelings ψZ and ψW .

Definition 7 (Well-labeled node). A node v of an ASG G for a timed au-
tomaton A is well-labeled iff the following conditions hold:

– (initiation) if v = v0, then (a) Zv = Z0 and (b) Z0 vWv;
– (consecution) if v 6= v0, then for its parent u and the transition t = tu,v we

have (a) Zv = postt(Zu) and (b) postt(Wu) vWv;
– (coverage) if v . v′ for some node v′, then Wv vWv′ , and v′ is not excluded;
– (simulation) if Zv = ⊥, then Wv = ⊥.

The above definitions for nodes can be extended to ASGs: an ASG is com-
plete, `-safe or well-labeled iff all its nodes are complete, `-safe or well-labeled,
respectively. As the conditions for well-labeledness suggest, the main challenge
for the construction of a well-labeled ASG is how the labeling ψW is computed.
In Section 4, we propose two strategies for computing a labeling that satisfies
well-labeledness. A well labeled ASG preserves reachability information, which
is expressed by the following proposition.

Proposition 3. Let G be a complete, well-labeled ASG for a timed automaton

A. Then A has a symbolic run (`0, Z0)
t1=⇒ (`1, Z1)

t2=⇒ . . .
tn=⇒ (`n, Zn) iff G has a

non-excluded node v such that `v = `n.

Proof. The left-to right direction is a consequence of Lemma 2, and the converse
is a consequence of Lemma 3. ut

Lemma 2. Let G be a complete, well-labeled ASG for a timed automaton A.

If A has a symbolic run (`0, Z0)
t1=⇒ (`1, Z1)

t2=⇒ . . .
tn−1
===⇒ (`n−1, Zn−1)

tn=⇒ (`, Z)
then G has a non-excluded node v such that ` = `v and Z vWv.

Proof. We prove the statement by induction on the length n of the symbolic
run. If n = 0, then ` = `0 and Z = Z0, thus v0 is a suitable witness by con-
dition initiation(b). Suppose the statement holds for runs of length at most
n − 1. Thus there exists a non-excluded node vn−1 such that `n−1 = `vn−1

and
Zn−1 vWvn−1

. As vn−1 is complete and not excluded, it is expanded, thus by
condition consecution(b), there is a successor node vn for transition tn such that
`n = `vn and posttn(Wn−1) vWvn . Clearly, Z vWn, as Z = posttn(Zn−1) and
postt is monotonic for any t ∈ T . Thus if vn is not covered then it is a suitable
witness. Otherwise there exists a node v ∈ V such that vn . v. By condition
coverage, we know that Wvn v Wv and v is not excluded, thus it is a suitable
witness. ut

Lemma 3. Let G be an ASG for a timed automaton A. Let v be a non-excluded,
well-labeled node of G such that all its ancestors are well-labeled. Then A has a

symbolic run (`0, Z0)
t1=⇒ (`1, Z1)

t2=⇒ . . .
t

=⇒ (`v, Zv).

Proof. We prove the statement by induction on the depth n of v in the tree. If
n = 0, then v = v0. Thus `v = `0 and Zv = Z0 by condition initiation(a), and
(`0, Z0) is a suitable run of A. Assume that the statement holds for nodes in
depth at most n−1. Let u be the parent of v. As u is non-excluded, well-labeled,
and all its ancestors are well-labeled, there exists a symbolic run to (`u, Zu).
By condition consecution(a), we have postt(Zu) = Zv for t = tu,v. As v is not
excluded, Zv 6= ⊥ by condition simulation, thus the run to u can be extended
to a run to v by appending to it (`v, Zv) for t. ut

Remark 1. Note that for an automaton A, the labeling ψW can be chosen so
that the ASG is finite. A way to construct such an ASG is for example by taking
Wv = Extra+

LU (Zv) [3] for some bound functions L and U statically computed
for `v, for all nodes v. Similarly, the termination of any reasonable algorithm for
constructing a well-labeled ASG can be ensured by maintaining the additional
invariant Wv = Extra+

LU (Wv) for all nodes v. As doing so is straightforward,
termination can be considered an issue orthogonal to abstraction computation.
In this paper, we focus on the latter.

3.2 Algorithm

The pseudocode of the reachability algorithm is shown in Algorithm 1. The main
procedure of the algorithm is explore, which gets as input a timed automaton
A and an error location `e ∈ L. Upon termination, it either witnesses reachability
by a symbolic run of A to `e, or proves unreachability of `e for A with a well-
labeled, complete, `e-safe ASG.

The main data structures of the algorithm are the ASG G over set of nodes
V , and sets waiting and passed , both of which store nodes from V . Informally,
waiting stores leaves that are not yet excluded, and passed stores nodes that
have been expanded. The algorithm consists of three subprocedures, expand,
cover, and refine. The procedure cover attempts to add a covering edge
for a node. Procedure expand creates the successors for a node. For a node v
and zone W such that Zv v W , procedure refine enforces that also Wv v W
holds. This is performed by calls to a procedure block, for which two possible
algorithms based on interpolation are given in Section 4. The contract of block
asserts that whenever zones Zv and B are inconsistent, then after the call, the
inconsistency of Wv and B is also ensured. Note that this condition is sufficient
to satisfy the contract of refine.

Informally, the algorithm employs the following strategy. The algorithm con-
sists of the single loop in line 10 that consumes nodes from waiting one by one. If
waiting becomes empty, then A is deemed safe. Otherwise, a node v is removed
from waiting . If Zv v ⊥, then simulation is established by calling to refine.
Otherwise, if the node represents an error location, then A is deemed unsafe.
Otherwise, in order to avoid unnecessary expansion of the node, the algorithm
tries to cover it. This is attempted by a call to cover to enforce coverage by a
candidate node v′. As the labeling of v′ might be strengthened during the call as
a side effect, after the call, the condition for coverage is checked. If it is satisfied,
v gets covered. Otherwise, v is put back to waiting . If there are no suitable can-
didates for coverage, then the algorithm expands the node by a call to expand,
puts it in passed , and puts all its newly created successors in waiting .

To show correctness of explore w. r. t. the annotation specified in line 1,
we will refer to the following subsets of V : let infeasible = {v | v is infeasible}
and tentative = {v | v is covered}.

Proposition 4. Procedure explore is partially correct: if explore(A, `e) ter-
minates, then the result is safe iff `e is unreachable for A.

Proof (sketch). The main loop in line 10 maintains the following invariants:

1. V = passed ∪ waiting ∪ tentative ∪ infeasible,
2. passed is a set of non-excluded, expanded, `e-safe, well-labeled nodes,
3. waiting is a set of non-excluded leaves that satisfy all conditions of well-

labeledness, except maybe simulation,
4. tentative is a set of feasible, covered, `e-safe, well-labeled leaves, and
5. infeasible is a set of infeasible, `e-safe, well-labeled leaves.

Algorithm 1 Lazy reachability algorithm for timed automata

1: ensure ρ = safe iff `e is unreachable for A
2: function explore(A, `e) returns ρ ∈ {safe,unsafe}
3: let v0 be a node such that `v0 = `0, Zv0 = Z0 and Wv0 = >
4: V ← {v0}
5: E ← ∅
6: .← ∅
7: let G be an ASG for A over V , E and .
8: passed ← ∅
9: waiting ← {v0}

10: while v ∈ waiting for some v do
11: waiting ← waiting \ {v}
12: if Zv v ⊥ then
13: refine(v,⊥)
14: else if `v = `e then
15: return unsafe
16: else if there exists v′ ∈ passed such that `v′ = `v and Zv vWv′ then
17: cover(v, v′)
18: else
19: expand(v)

20: return safe

21: require Zv vWv′

22: procedure cover(v, v′)
23: refine(v,Wv′)
24: if Wv vWv′ then
25: .← . ∪ {(v, v′)}
26: else
27: waiting ← waiting ∪ {v}

28: procedure expand(v)
29: for all t ∈ T such that t = (`v, g, R, `

′) do
30: let v′ be a new node such that `v′ = `′, Zv′ = postt(Zv) and Wv′ = >
31: let (v, v′) be a new edge such that tv,v′ = t
32: V ← V ∪ {v′}
33: E ← E ∪ {(v, v′)}
34: waiting ← waiting ∪ {v′}
35: passed ← passed ∪ {v}

36: require Zv vW
37: ensure Wv vW
38: procedure refine(v,W)
39: for all B ∈ ¬W do
40: block(v,B)

41: require Zv uB v ⊥
42: ensure Wv uB v ⊥
43: procedure block(v,B)

It is easy to verify that under the above assumptions, these sets form a
partition of V . Partial correctness of the algorithm is then a direct consequence.
Since at line 20 the set waiting is empty, so G is complete, well-labeled and
`e-safe, and as a consequence of Lemma 2, the location `e is indeed unreachable
for A. Conversely, at line 15, a node is encountered that is non-excluded, well-
labeled and not `e-safe, with all its ancestors well-labeled, thus by Lemma 3,
there is a symbolic run of A to `e.

Building on the assumption that expand, cover and refine preserve the
conditions of well-labeledness, showing that the loop invariant holds is straight-
forward. For expand and cover, this assumption can be easily proved. For
refine, we need to prove that block preserves the conditions of well-labeledness.
As calls to block might strengthen the labeling, care must be taken that the
conditions (and in particular, initiation(b) and consecution(b)) are maintained
In Section 4, this assumption is proved to hold. ut

Termination, hence total correctness of the algorithm in this form can not
be established, however, with the additional restriction in Remark 1, termina-
tion can be guaranteed. This is because refinement progress is ensured by the
algorithm. After each call to cover, either a node v gets covered, or a node
v′ ∈ passed gets strengthened. As a node v′ does not get strengthened beyond
Zv′ , eventually, either all leaves become covered, an error node gets discovered,
or a leaf gets expanded.

4 Abstraction refinement

To maintain well-labeledness, procedure refine relies on a procedure block
that performes abstraction refinement by safely adjusting labels of nodes (see the
reachability algorithm in Section 3.2). In this section, we propose two methods
for abstraction refinement based on interpolation for zones.

4.1 Interpolation for zones

Let A and B be two canonical DBMs such that A u B v ⊥. An interpolant for
the pair (A,B) is a canonical DBM I such that

– A v I,
– I uB v ⊥, and
– clocks constrained in I are constrained in both A and B.

This definition of a DBM interpolant is analogous to the definition of an in-
terpolant in the usual sense [14]. As DBMs encode formulas in DL(Q), a theory
that admits interpolation [7], an interpolant always exists for a pair of incon-
sistent DBMs. Algorithm 2 is a direct adaptation of the graph-based algorithm
of [7] for DBMs. For simplicity, we assume that A and B are defined over the
same set of clocks with the same ordering, and are both canonical. Naturally,
these restrictions can be lifted. For a more general description, see [17].

Algorithm 2 Interpolation for zones represented as canonical DBMs

1: require A uB v ⊥
2: ensure A v I
3: ensure I uB v ⊥
4: function interpolate(A,B) returns I
5: if A v ⊥ then
6: return ⊥
7: else if B v ⊥ then
8: return >
9: else

10: let D = min(A,B)
11: let C = {(i1, i2), . . . , (ik−1, ik), (ik, i1)} be a negative cycle in D
12: let CA = {(i, j) ∈ C | Aij = Dij}

13: let Iij =


(0,≤) if i = j

Aij if (i, j) ∈ CA

∞ otherwise

14: let I = [Iij]ij
15: return I

After checking the trivial cases, the algorithm searches for a negative cycle in
min(A,B) to witness its inconsistency. This can be done e.g. by running a variant
of the Floyd-Warshall algorithm. As AuB is inconsistent, such a cycle C exists
by Proposition 2. Then the set CA of edges that come from A is constructed.
We can assume that no two such edges are subsequent, as A is canonical. Thus
the DBM I induced by the corresponding constraints of A is clearly canonical.
Moreover, it is easy to verify that I is indeed an interpolant.

4.2 Interpolation strategies for abstraction refinement

We propose two methods for abstraction refinement based on zone interpolation.
Both methods are based on pre- and post-image computation, and can be con-
sidered as a generalization of zone interpolation to sequences of transitions of a
timed automaton.

Conceptually, both methods for block work as follows. Given a node v and
a zone B for which Zv u B v ⊥ holds, a zone inconsistent with B is computed
in form of an interpolant that is used to strengthen the current labeling. Mean-
while, conditions for well-labeledness are maintained. The condition of coverage
is maintained by procedure strengthen that removes covering edges that would
violate the condition after strengthening. However, the two methods differ in the
strategy to ensure conditions initiation(b) and consecution(b).

Algorithm 3 depicts the pseudocode for the two methods. We will refer to
procedure blockseq as the sequence (seq) strategy, and to procedure blockbin

as the binary (bin) strategy. The main difference is that bin only applies back-
ward propagation for refinement, whereas seq also uses forward propagation. We

Algorithm 3 Interpolation strategies for abstraction refinement

1: require Zv v I
2: ensure Wv v I
3: procedure strengthen(v, I)
4: for all u such that u . v and Wu 6v I do
5: .← . \ (u, v)
6: waiting ← waiting ∪ {u}
7: Wv ←Wv u I

8: require Zv uB v ⊥
9: ensure Wv v I

10: ensure Wv uB v ⊥
11: function blockseq(v,B) returns I
12: if Wv uB v ⊥ then
13: return Wv

14: else
15: if (u, v) ∈ E for some u then
16: let t = tu,v
17: let B′ = pret(B)
18: let A′ = blockseq(u,B′)
19: let A = postt(A

′)
20: else
21: let A = Zv

22: let I = interpolate(A,B)
23: strengthen(v, I)
24: return I

25: require Zv uB v ⊥
26: ensure Wv uB v ⊥
27: procedure blockbin(v,B)
28: if Wv uB v ⊥ then
29: return
30: else
31: let A = Zv

32: let I = interpolate(A,B)
33: if (u, v) ∈ E for some u then
34: let t = tu,v
35: for all B′′ ∈ ¬I do
36: let B′ = pret(B

′′)
37: blockbin(u,B′)

38: strengthen(v, I)

show that both procedures are correct w. r. t. the annotations in Algorithm 3
and maintain well-labeledness.

Proposition 5. Both variants of block are totally correct: if ZvuB v ⊥, then
block(v,B) terminates and ensures WvuB v ⊥. Moreover, they maintain well-
labeledness.

Proof. Termination of both methods is trivial, so we focus on partial correctness
and the preservation of well-labeledness.

For blockbin, if Wv uB v ⊥, then no strengthening is needed. If v is a root,
it is easy to see that initiation(b) is maintained, and the postcondition trivially
holds. Otherwise, after the loop, Wuupret(B

′′) v ⊥ for all B′′ ∈ ¬I by contract.
Thus postt(Wu)uB′′ v ⊥ for all B′′ ∈ ¬I by Lemma 1. Hence postt(Wu) v I,
so consecution(b) is maintained for v after strengthening. Moreover, I uB v ⊥,
thus B is successfully blocked.

For blockseq, if Wv uB v ⊥, then no strengthening is needed. If v is a root,
it is easy to see that initiation(b) is maintained, and the postconditions trivially
hold. Otherwise A′ is such that A′ u pret(B) v ⊥ by contract, thus A uB v ⊥
by Lemma 1. Thus the interpolant I can be computed, and postt(A

′) v I.

Moreover, Wu v A′ by contract, thus postt(Wu) v postt(A
′) by monotony

of post. Hence postt(Wu) v I, so consecution(b) is maintained for v after
strengthening. Moreover, I uB v ⊥, thus B is successfully blocked. ut

5 Evaluation

We implemented a prototype version of Algorithm 1 in Java as an instantiation
of the open source model checking framework Theta1. The only optimization
we applied in the implementation compared to the presented algorithm is how
coverage is handled: in the implementation, refine is only called if no covering
node is present. Moreover, we implemented the two interpolation-based refine-
ment strategies described in Algorithm 3.

For comparison, we also implemented a version of the lazy refinement algo-
rithm of [11] based on LU -bounds (a4LU , disabled). The main difference in our
implementation compared to [11] is that bounds are propagated from all guards
on an infeasible path, and not just from ones that contribute to the infeasibil-
ity. Because of this, refinement in the resulting algorithm is extremely cheap,
but as the comparison of our data with that of [11] suggests, for the examined
models, the algorithm is still at least as space- and time-efficient as the original
one. In some aspects, this refinement strategy is the opposite of interpolation
based refinement: it provides a very cheap, non-convex, specialized refinement
algorithm, as opposed to a relatively costly, convex, more general strategy. Apart
from the abstraction and refinement strategy used (a4LU , bin or seq), the three
implementations of Algorithm 1 are identical.

Table 1 reports the results of our experiments. It contains the execution time
(in seconds) and the final sizes of sets V and passed . The execution time is the
average of 10 runs, obtained from 12 runs by removing the slowest and the fastest
one. The input models are based on the PAT benchmarks2. For each model, the
more efficient of BFS and DFS was applied as search order, which is BFS for all
models except FDDI. We performed the measurements on a machine running
Windows 10 with a 2.6GHz dual core CPU and 8GB of RAM.

For CSMA, FDDI, Fischer and Lynch, the three algorithms generated and
expanded the same number of nodes. For FDDI, Fischer and Lynch, all three
algorithms are optimal in this sense: the number of expanded nodes equals the
number of distinct discrete states (plus one for FDDI), that is, clock variables
do not influence the size of the ASG.

With respect to execution time, Fischer and Lynch provide the worst cases for
our algorithm. The reason for the higher execution time despite the same number
of generated nodes is that for these two models, the more costly refinement
was not counterweighed by the smaller number of refinements performed, as
opposed to CSMA, where the interpolation-based algorithms performed (as our
logs showed) significantly less refinement steps. For FDDI, the three algorithms
performed the same small number of refinement steps each, which explains the

1 http://theta.inf.mit.bme.hu
2 http://www.comp.nus.edu.sg/~pat/bddlib/timedexp.html

http://theta.inf.mit.bme.hu
http://www.comp.nus.edu.sg/~pat/bddlib/timedexp.html

Table 1. Comparison of lazy reachability algorithms

Model
a4LU bin seq

time nodes passed time nodes passed time nodes passed

Critical 3 1.8 23428 4923 1.6 14377 3213 1.6 14075 3157
Critical 4 65.0 838213 130779 78.2 536733 83686 75.2 499245 78252

CSMA 9 6.6 99207 30476 7.3 99207 30476 7.9 99207 30476
CSMA 10 21.3 251749 78605 21.0 251749 78605 22.8 251749 78605
CSMA 11 61.4 625215 198670 58.9 625215 198670 63.8 625215 198670
CSMA 12 167.2 1525525 493583 168.7 1525525 493583 179.1 1525525 493583

FDDI 50 1.4 504 402 2.0 504 402 2.0 504 402
FDDI 70 2.9 704 562 3.5 704 562 3.7 704 562
FDDI 90 5.9 904 722 6.8 904 722 7.1 904 722
FDDI 120 12.9 1204 962 15.0 1204 962 15.4 1204 962

Fischer 7 1.9 31060 7737 2.8 31060 7737 2.8 31060 7737
Fischer 8 5.1 111825 25080 7.7 111825 25080 8.7 111825 25080
Fischer 9 21.3 395956 81035 29.0 395956 81035 32.4 395956 81035
Fischer 10 94.4 1382921 260998 133.2 1382921 260998 149.7 1382921 260998

Lynch 7 2.6 51570 9977 3.6 51570 9977 4.0 51570 9977
Lynch 8 7.7 179273 30200 12.2 179273 30200 13.9 179273 30200
Lynch 9 32.8 620236 92555 45.2 620236 92555 54.2 620236 92555

slight relative overhead of the interpolation-based algorithms. However, the three
algorithms scale in the same way.

A favorable case for our algorithm with respect to ASG size is provided
by the model Critical. For this model, the interpolation-based algorithms were
able to generate a 40% smaller ASG as a4LU , with a 15-20% relative overhead
in execution time. Among the two interpolation strategies, seq was somewhat
more efficient in both aspects.

We also evaluated the three methods under random search order. We used
FDDI as an input model, as this model is known to be sensitive to search order:
with the right abstraction and search order, it scales linearly in the number of
processes (as in Table 1), otherwise, it scales exponentially. The results of our
experiment are shown on the boxplot in Figure 1, which depicts the ASG sizes for
50 random runs of each algorithm. As the boxplot suggests, the interpolation-
based refinement methods, and seq in particular, are less sensitive to search
order with respect to the size of the generated tree, and are better at recovering
from bad decisions during search.

6 Conclusions

In this paper, we proposed a lazy reachability checking algorithm for timed au-
tomata based on interpolation for zones. Moreover, we proposed two refinement
strategies, both a combination of forward search, backward search and interpo-
lation. We demonstrated with experiments that - even without the use of extrap-

Fig. 1. ASG size for random search of FDDI 10

0 1000 2000 3000 4000 5000 6000

SEQ

BIN

LU

olation - the method is competitive with sophisticated non-convex abstractions
in both execution time and memory consumption.

Future work. As the method we proposed computes abstractions in terms
of zones, it is straightforward to combine it with existing zone-based abstrac-
tions for timed automata. In particular, we believe that a combination with
a4LU , disabled would potentially yield a more efficient method with no consid-
erable overhead, as backward propagation of LU -bounds is much cheaper than
the propagation of interpolants. In this setting, interpolation can be considered
as a further reduction on top of a4LU abstraction.

An interesting application of our approach would be to apply it to more ex-
pressive variants of timed automata, e.g. to automata with diagonal constraints
in guards [6], or to updatable timed automata [5] with updates of the form
xi := c, xi := xi+ c (shift), xi := xj (copy) or, more generally, even xi := xj + c.
As all these operations yield zones both for forward and backward computation,
with a generalization of pre and post, the approach becomes directly applicable.
Naturally, due to general undecidability and the lack of a suitable extrapolation
operator, termination can not be guaranteed in some of these cases [5].

We note that by switching the role of pre and post in the algorithm, a variant
can be obtained that performs backward exploration in a lazy manner. Such an
algorithm might result in an interesting method for simple timed automata with
a restricted use of integer operations.

There are also many possibilities for fine-tuning the proposed algorithm. For
example, the algorithm as described applies an aggressive covering strategy, as it
tries all possible nodes for coverage before expanding a node. The investigation
of more sophisticated covering strategies (e.g. forced covering as in [15]) might
yield better scaling with respect to execution time. Moreover, our current im-
plementation is based on DBMs. The adaptation of the method to e.g. minimal
constraint systems is straightforward, and is possibly more efficient.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

2. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Tools and Algorithms for the Construction and Analysis
of Systems. LNCS, vol. 2619, pp. 254–270. Springer (2003)

3. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Tools and Algorithms for the
Construction and Analysis of Systems. LNCS, vol. 2988, pp. 312–326. Springer
(2004)

4. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Lec-
tures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer (2004)

5. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in
System Design 24(3), 281–320 (2004)

6. Bouyer, P., Laroussinie, F., Reynier, P.A.: Diagonal constraints in timed automata:
Forward analysis of timed systems. In: Formal Modeling and Analysis of Timed
Systems. LNCS, vol. 3829, pp. 112–126. Springer (2005)

7. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satisfia-
bility modulo theories. In: Tools and Algorithms for the Construction and Analysis
of Systems. LNCS, vol. 4963, pp. 397–412. Springer (2008)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. Journal of the ACM 50(5), 752–
794 (2003)

9. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems. LNCS, vol. 1384, pp. 313–329. Springer (1998)

10. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Prin-
ciples of Programming Languages. pp. 58–70. ACM (2002)

11. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed au-
tomata. In: Computer Aided Verification. LNCS, vol. 8044, pp. 990–1005. Springer
(2013)

12. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex ap-
proximations for efficient analysis of timed automata. In: Foundations of Software
Technology and Theoretical Computer Science. LIPIcs, vol. 13, pp. 78–89 (2011)

13. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed au-
tomata. In: Logic in Computer Science. pp. 375–384. LICS, IEEE (2012)

14. McMillan, K.L.: Interpolation and sat-based model checking. In: Computer Aided
Verification. LNCS, vol. 2725 LNCS, pp. 1–13. Springer (2003)

15. McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided Verifica-
tion. LNCS, vol. 4144 LNCS, pp. 123–136. Springer (2006)

16. McMillan, K.L.: Lazy annotation for program testing and verification. In: Com-
puter Aided Verification. LNCS, vol. 6174, pp. 104–118. Springer (2010)

17. Tóth, T., Majzik, I.: Timed automata verification using interpolants. In: Pro-
ceedings of the 24th PhD Mini-Symposium. pp. 82–85. BUTE DMIS (2017),
http://oszkdk.oszk.hu/DRJ/19248

18. Wang, W., Jiao, L.: Difference bound constraint abstraction for timed automata
reachability checking. In: Formal Techniques for Distributed Objects, Components,
and Systems. LNCS, vol. 9039, pp. 146–160. Springer (2015)

http://oszkdk.oszk.hu/DRJ/19248

	Lazy Reachability Checking for Timed Automata using Interpolants

