
Formal Methods in System Design 9,105-131 (1996)
@ 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

Symmetry and Model Checking

E. ALLEN EMERSON*
Department of Computer Sciences, The University of Texas at Austin, USA

emerson@cs.utexas.edu

A. PRASAD SISTLA+ sistla@surya.eecs.uic.edu
Department qf Electrical Engineering and Cornpurer Science, The University of Illinois at Chicago, USA

“Whenever you have to do with a structure-endowed entity C
try to determine its group of aufomorphisms”

-Hermann Weyl
in Symmetry

Received July 1993; Accepted January 1994

Abstract. We show how to exploit symmetry in model checking for concurrent systems containing many identical
or isomorphic components. We focus in particular on those composed of many isomorphic processes. In many
cases we are able to obtain significant, even exponential savings in the complexity of model checking.

Keywords: model checking, symmetry, temporal logic, state explosion

1. Introduction

In this paper, we show how to exploit symmetry in model checking. We focus on systems
composed of many identical (isomorphic) processes. The global state transition graph M
of such a system exhibits a great deal of symmetry, characterized by the group of graph
automorphisms of M. The basic idea underlying our method is to reduce model checking
over the original structure M, to model checking over a smaller quotient structure n,
where symmetric states are identified. In the following paragraphs, we give a more detailed
but still informal account of a “group-theoretic” approach to exploiting symmetry.

More precisely, the symmetry of M is reflected in the group, Aut M, of permutations of
process indices defining graph automorphisms of M. Similarly, any specification formula
f intended to capture correctness of M in a particular Temporal Logic (say, CTL*) exhibits
a certain degree of “internal” symmetry reflected in the group, Auto f, of permutations of
process indices that leave f and significant subformulas of f invariant.

We show that for any group G contained in Aut M, we can define M = M/G to be the
quotient structure obtained by identifying any two states s, t of M that are in the same orbit
(or equivalence class) of the state space of M induced by G in the usual way: there exists

*The author’s work was supported in part by NSF Grant CCR 941-5496, Semiconductor Research Corporation
Contract 95-DP-388, and Texas Advanced Technology Program Grant 003658-250.
+The author’s work was supported in part by NSF Grant CCR-9212183.

106 EMERSON AND SISTLA

a permutation rc in G such that n(s) = t. In other words, s and t are the same except for a
permutation of their indices. (For example: s = (Ni , T2, C,), t = (Nz, T3, Cl)).

We next show that such a quotient structure % corresponds in a coarse sense to the
original structure M, so that if there is a path in fi there is an analogous path in M,
and conversely. However, the correspondence may not be sufficiently precise to (directly)
model check a specification f. If we further stipulate that G be contained in Aut M rl Auto f
then we get a precise correspondence enabling us to establish

M,s+ f iff M,sl=I

where f is a formula of CTL,* or Mu-Calculus, and S indicates the equivalence class of s.
We emphasize here that any subgroup G of Aut M n Auto f is sufficient. If we take

G = Aut M II Auto f then we get maximal compression. However, determination of this G
seems to be a potentially difficult problem. This is due to the fact that the problem of com-
puting Aut M is polynomial time equivalent to graph isomorphism (cf. [151). Fortunately,
since M is derived from a concurrent system P = NiKi consisting of many isomorphic
processes Ki, we are able to show that Aut CR S. Aut M, where CR is the process com-
munication graph for P. Since CR often follows a simple, standard pattern, Aut CR is often
known in advance, and we can use G = Aut CR tl Auto f. Moreover, for massively parallel
architectures Aut CR is likely to be a large group reflecting a high degree of symmetry.
Determination of Auto f automatically is also a difficult problem. However, Auto f can
often be determined manually by examination of the formula.

For many of the automorphism groups G determined in practice we can efficiently and
incrementally compute M/G, there by circumventing the construction of M. Of course,
we then accrue the advantage of model checking over the smaller structure ,%?= M/G.

One common and advantageous case occurs when G = Sym[1: n], the set of all permuta-
tions on indices [1 : n]. For a system with n processes each with 1 local states, the original
structure can have on the order of I” states, while M/G has on the order of nr states.
When 1 is fixed and relatively small, while II is large, then n’ < I”. We can thus realize
exponential savings.

A complication can occur when f is a complex formula with little symmetry. Then
Auto f and hence G may be small, resulting in little compression. We argue that it is
frequently beneficial to decompose f into smaller constituent subformulae and check those
individually. We also show how the symmetry of individual states can be exploited for
further gains in efficiency.

Finally, we give an alternative, automata-theoretic approach that provides a uniform
method permitting the use of a single quotient .%? = M /Aut M for model checking for many
specifications f, without computing and intersecting with Auto f . The idea is to annotate the
quotient with “guides”, indicating how coordinates are permuted from one state to the next
in the quotient. An automaton for f designed to run over paths through M, can be modified
into another automaton run over fi using the guides to keep track of shifting coordinates.

The remainder of the paper is organized as follows: in Section 2 we give preliminary def-
initions and terminology. In Section 3 we describe our group-theoretic approach showing
that, for both CTL* and the Mu-calculus, model checking over the original structure can be
reduced to model checking over the quotient structure M/G for any G which is a subgroup

SYMMETRY AND MODEL CHECKING 107

of AutM nAuto f. In Section 4 we discuss how the method can be applied in practice.
This includes showing a helpful way to approximate Aut M from the network topology
CR, by establishing that Aut CR C Aut M. We also discuss optimizations based on formula
decomposition and state symmetry. An alternative automata-theoretic approach using an-
notated quotient structures is described in Section 5. An example is given in Section 6. In
the Section 7 we discuss related work, and we give concluding remarks in Section 8.

2. Preliminaries

2.1. Model of computation

We deal with structures of the form M = (S, ‘R) where

l S = L’ x D” is the finite set of states, with L a finite set of individual process locations,
I the set of process indices, and V is a finite set of shared variables over a finite data
domain D.’

l R s S x S which represents the moves of the system.

Notation. For convenience, each state s = (s’, s”) E S can be written in the form (ei , . . ,
e:,,v=d,..., v’ = d’) indicating that processes 1, . . . , n are in locations l, . . . , e’, respec-
tively and the shared variables u, . . . , u’ are assigned data values d, . . . , d’, respectively.

As usual, a path through M is a finite or infinite sequence of states such that every
consecutive pair of states is in R. By a convenient abuse of notation, we denote a path by
so, 31, sz, . . . 7 orbysa-+sl-+s2,..., not bothering to explicitly indicate the last state for
finite paths. A fullpath is a maximal path, i.e., either an infinite path or a finite one whose
last state lacks an R-successor.

In practice, for ordinary model checking, M, is the global state transition graph of a finite
state concurrent program P of the form j/i Ki consisting of processes K1, . . . , K, running
in parallel. Each Ki may be viewed as a finite state transition graph with node set L. An
arc from node ~2 to node f?’ may be labelled by a guarded command B -+ A. The guard B is
a predicate that can inspect shared variables and local states of “accessible” processes. The
action A is a set of simultaneous assignments to shared variables v := d 11 s . (1 v’ := d’.2
When process Ki is in local state -C and the guard B evaluates to true in the current global state,
the global system can nondeterministically choose to advance by firing this transition of Ki
which changes the local state of Ki to be 4? and the shared variables in V according to A. Thus
the arc from !Z to f? in Ki represents a local transition of Ki that we denote by f? : B + A : e’ .

The structure M corresponding to P is thus defined using the obvious formal operational
semantics. First, the set of (all possible) states S is determined from P because it provides
us with the set of local (i.e., individual process) locations L, process indices I, variables V,
and data domain D. For states s, t E S, we define s -+ t E ‘R iff

3 E I process Ki can cause s to move to t, denoted s +i t iff
3 E I 3 local transition ri = ei: Bi + Ai: mi of Ki which drives s = (s’, s”) to t = (t’, t”);
this means the ith component of s’ equals !Zi, the ith component oft’ equals mi, all other

108 EMERSON AND SISTLA

components of s’ equal the corresponding component of t’, predicate Bi (s) = true, and
t” = Ai (s”).

We are often interested in just the set of states reachable by executing P starting in a
particular start state SO. It is often most natural to consider execution of a program appropri-
ately initialized. Moreover, the set of states reachable from SO can be much smaller than the
set of all possible states. It is thus important to note that we can incrementally generate the
(initialized) structure M = (S, R, SO) corresponding to P starting in state SO. We use the
notation Ki (s) to denote the set of states reachable from state s by a single step of process
Ki. We begin with SO, propagate it by adding in the members of the various Ki(so)‘S, and
then propagate the Ki’s of those members, and so on until closing off. See Section 4.2 for
a helpful and important generalization of this idea.

2.2. Logics of programs

We assume a familiarity with basic aspects of temporal and modal logics of programs (cf.
[10, 22, 241). In this paper we use the logic CTL* and the Mu-calculus.

2.2.1. CTL’. The logic CTL* uses the temporal operators U (until), X (nexttime) and the
existential (full-)path quantifier E. The set of CTL* (path) formulas is generated by the
following rules:

l every atomic theorem, such as P, is a CTL* formula
l if g, h are CTL* formulas then g U h, Eg, Xg, g A h and -h are also CTL* formulas.

We write M, x b f to denote that in structure M of fullpath x = (xc, XI, . . .) formula
f is true; the definition of b is specified inductively:

.M,+gUhiffforsomei >O,M,x(‘)~~andforallj,suchthatOI j <i,
M,x(j) kg, wherex (0 denotes the suffix of x starting from Xi.

. M, x b Eg iff there exists a maximal path x’ starting from XO, which may be different
from x, such that M, x’ b g.

l M x+XgiffM x(‘)+g.
. M:x+g/\hiff&,xkgandM,xkh.
. M,xk-giffitisnotthecasethatM,xkg.
. M, x + p iff P is true in the state x0, for any atomic proposition P.

Convention. Indexed atomic propositions (cf. [CG89]) and atomic formulas are treated as
follows. If J? is a local process state and some process i is in local state state C in global state
s,thensisoftheform(..., &,.. .) and we say that indexed proposition ei is true in global
state s. If variable u has value d in global state s, then s is of the form (. . . , u = d, . . .),
and we say that the atomic formula v = d, which we treat as an atomic proposition, is true
in global state s.

Any CTL* formula which is a boolean combination of atomic propositions and formulas
of the form Eg is called a stateformula. Note that in a structure all fullpaths starting from the

SYMMETRY AND MODEL CHECKING 109

same state satisfy the same set of state formulas. We write M, s b f , and say that in struc-
ture M at state s formula f is true, provided that M, x + f for all fullpaths x starting at S.

We find it convenient to use the other standard temporal operators F (sometime), G
(always), and propositional connectives v (or), + (implies), A (universal path quantifier).
All these operators and connectives can be defined in terms of the basic symbols in the
usual way; e.g., Af abbreviates -E-f and g v h abbreviates -((-g) A (-A)). The logic
CTL (see [6]) is strict subset of CTL* which restricts how the temporal operators can be
used with path quantifiers.

2.2.2. The Mu-calculus. We define the syntax and semantics of the (propositional) Mu-
calculus (cf. [Ko83], [ECSO]). We assume that we have a set X of variables whose
members are denoted by y, z, The formulas of the Mu-calculus are formed using
(indexed) atomic propositions, variables, the propositional connectives 1 and A, the modal
operator CR> and the least fixpoint operator p, which is formally analogous to a quantifier.
The set of formulas of the Mu-calculus is the smallest set satisfying the following properties:

s each atomic proposition P and each variable y in K is a formula
l if f and g are formulas then f A g, -f, <R>f are also formulas
l if f(y) is a formula, then py .f (y) is also a formula, provided all occurrences of the

variable y in f are in the scope of an even number of negations

To define the semantics, we need the following terminology. A variable y is free in a
formula f if there is at least one occurrence of y which is not in the scope any py. The set of
variables that are free in f is denoted by free-var(f). A formula without any free variables
is called a closedformula or sentence. Let M = (S, R) be a structure. A valuation p is a
mapping that associates a subset of S with each variable in X. With each structure M as
given above and with each formula f, we define a function &M,J) from the set of valuations
to subsets of S, by induction on the structure off as follows:

l &M,P)(P) = {s E S: M, s /= P) where P is an atomic proposition
. l(M,y)(d = P(Y)

. l:(M,f~g)(P) =&M,,,(P) n ‘?M,g)(d

. c(M,-f,(p) =s - c(M,f,(P)

. l(M,Wf)(P) = { s. 3s’ E &M,&(P) such that (s, s’) E ‘I?.]
l L(M,jq.f(y))(P) = n(s’ E s: s’= c (M,f(y))(p’) where p’(y) = S’ and for all other z E X,

P’(Z) = P(Z)).

Note that the value of f&,@y.f(y))(P) is given as a least fixed point. For finite Kripke
structures, the least fixed point can be computed by starting with the empty set and iterat-
ing f at most Is(times until a fixed point is reached, by the well-known Tarski-Knaster
theorem.

Other connectives can then be introduced as abbreviations: uy.f(y) abbreviates ‘KY.
-f(-y) and represents the greatest fixpoint of f(y), while [R] f abbreviates -<R>- f.

Other propositional connectives are defined as abbreviations in the usual way.

110 EMERSON AND SISTLA

2.3. Applicable group theory

We summarize the essential notions from group theory needed here. We refer the reader to
one of the many standard texts discussing this topic (cf. [14]) for additional information.
A group 6 is a set G together with a binary operation on G, called the group multiplication,
that is associative, has an identity, and has an inverse for each group element. In practice, we
write just G for G, and multiplication may be indicated by concatenation. H I G denotes
H is a subgroup of G.

A permutation n on a finite set of objects I is a I- 1, onto mapping n : I -+ I. The set of all
permutations on I, denoted Sym I, forms a group under functional composition: if permu-
tations n’, x” E Sym Z then TC = n” o X’ E Sym I. Here the order of functional composition
in JC” o T’ is to first apply n’ then apply x”. If J s Z then Pstab J denotes {n: V j E
J rc(j) = j}, the pointwise stabilizer of J. Id is the identity permutation or relation on I.

Given an indexed object 6, i.e., one whose description depends on I, we can define a
notion of permutation TC being applied to b, denoted x(b). In general, n(b) is obtained
from b by simultaneously replacing every occurrence of index i E Z by n(i).

For example, given state s = (NI , T2, C3, turn = l), where {N, T, C} s L, turn is a
shared variable, and n: 1 t+ 2,2 H 1,3 I+ 3, we have n(s) = (N,(l), Tn(2), C&, turn =
n(l))=(N2,T~,C3,turn=2)=(T~,N2,Cg,turn=2).

Roughly speaking, we can then define Aut b to be the set (which is, in fact, a group) of
permutations n E Sym Z such that n(b) is “equivalent” to b. The notion of equivalence
used depends on the type of object b and the intended application.

2.4. Automorphisms of states

We define Aut s = {n E Sym I: n(s) = s} for any state s E S. Similarly, for any 7 c S we
define Aut 7 = {n E Sym I: n(7) = T).

2.5. Automorphisms of a structure

We will define a notion of automorphism h of structure M into itself. By analogy with the
usual definition of graph automorphism for labeled, directed graphs we say the following:

An automorphism h of structure M = (S, R) is a mapping h: S -+ S that

1. is l-l, onto on S,
2. preserves edge structure: s + t E R implies h(s) + h(t) E R, and
3. preserves “labeling” of states up to a permutation: h(s) = n’(s) for some n’ E Sym I.

If M = (S, R, SO) is initialized, we also require that
4. h(so) = SO.

Observe, in particular, that a permutation ?r on I, viewed as a mapping S + S, vacuously
satisfies the 1 stand 3rd criteria. If it also fulfills the 2nd criterion then it is an automorphism
of M. We define Aut M = {n E Sym I: 15 defines an automorphism of M]. More simply,
wehaveAutM={lr ~Syml:x(M)=M}.

SYMMETRY AND MODEL CHECKING 111

2.6. Automorphisms of formulas

For a CTL* formula f, we let Aut f = {n E Sym I: x(f) = f), where 3 denotes logi-
cal equivalence under all propositional interpretations. For example, for f = PI A P2 and
n = Flip, the permutation transposing 1 and 2, we have n(f) = P,(l) A Pnc2, = P2 A PI s
PI A Pz = f. Hence, Aut f = {Id, Flip). In general, Aut f is intended to capture the “top-
level” symmetry of f.

We also use a subset (subgroup) of Aut f, denoted by Auto f which is used to capture
the “internal” symmetry of f and certain significant subformulas thereof. This internal
symmetry will subsequently turn out to be vital to formulating inductive arguments on
formula structure in proving the Compression Theorem below. Auto f is defined as follows:

l For a propositional formula f, we define Auto f = Aut f.
l For a general CTL* formula f, we define Auto f inductively according to the following

cases.

-f=XXgorf=Eg:Inthiscase,Autof=Autog.
- f = g U h: In this case, Auto f = Auto g n Auto h.
- Other cases: If neither of the above conditions hold then f is a boolean combination

of atomic propositions and subformulas of the form Xg, g U h and Eg. That is,
f=b(el,ez,...,ek,fi,fi,..., fi) where b is a boolean formula over the atomic
propositions ei , ez, . . . , ek and subformulas f, , f2, . . . , fl where each fi is of the form
Xg, or g U h, or Eg. Now, we replace each fi in b by a new unindexed proposition Fi ,
anddefineAutof=Autob(er,e2 ,..., ek,Fl,F2 ,..., F~)nAutof,n~..nAutof~.
Itistobenotedthatb(ei ,..., ek, Fl,..., FI) is a propositional formula.

It is not difficult to see that Auto f is well-defined for any CTL* formula. For ex-
ample, letting I = [1 : 21, consider f = Pi A EX(Qi v Q2) v P2 A EX(Qi v Qz). From the
definitions we get Auto f = Auto (PI A B v P2 A B) n Auto (EX(Ql v Q2)) where B is con-
sidered as unindexed proposition, while PI and P2 are considered as indexed propositions.
Now, Auto (Pi A B v P2 A B) = Sym I and we also see that Auto EX(Ql v Qz) is also Sym I,
and hence Auto f = Sym I.

Remark. There is an alternate way of capturing internal symmetry of f. If 91, . . , q,,, are
the maximal propositional subformulae of f with respect to the subformula relation, then
define Auto’f =Autq, cl ... nAutq,. Auto’ f consists of those permutations respecting
the symmetry not only off but also of its major constituent propositional subformulae qi, It
can be shown that the first definition, Auto f, is more general; i.e., for any f, the Auto’ f &
Auto f. In addition, for some formulas, the containment is strict. The formula f given in
the previous paragraph is such an example. In the rest of the paper, we will only use Auto f .3

For a Mu-calculus formula f, Auto f is defined inductively according to the following
cases:

. f =Fy.gor f =<R>g: Inthiscase,Autof =Autog.
. f = y: In this case, Auto f = Sym I.

112 EMERSON AND SISTLA

l Other cases: In all other cases f can be written as a boolean combination of indexed
atomic propositions and subformulas which are variables or of the form @y.g or <R>g.
That is, f=b(ei, . . . ,ek, fi,. .., jr) where each ei is an indexed atomic proposition
and each fj is a variable or a subformula of the form <R>g or of the form wy . g. In
this case, we define Auto f =Auto b(el , . . . , ek, F, , . . . , Fl) fl Auto fl f~ . . . n Auto fr
whereFi,..., F/ are unindexed atomic propositions. Note that b(er , . . . , ek, Fl , . . . , 4)
is simply a propositional formula.

For example, if f = my .((Pi V Pz) V <R>(Qi A Q2 A <R>y)) then Auto f = Sym I.

2.7. Quotient construction

Finally, let G be any subgroup of Sym I. Then we can define an equivalence relation 36
on states in S where s “o t iff 3 n E G such that t = n(s). The equivalence class of s,
denoted [SIG, is also referred to as the G-orbit of s. In the sequel, our task will be to find
a subgroup G of Sym I that is a subgroup of Aut M thus respecting the symmetry of M
and also is a subgroup of Auto f, thus respecting the symmetry of f. We then collapse
G-equivalent states to get a “quotient structure” as defined below. We emphasize that any
subgroup G of Aut M n Auto f is sufficient for our application. The largest one possible is
desirable for maximal compression.

Let M = (S, R) be a structure and let = be an equivalence relation on S. Let 3 be a set
ofrepresentatives of the partition of S into equivalence classes induced by =, i.e., for each
s E S there exists a unique representative S of s such that S E [s] flz. Then the quotient
of M mod&o =, as specified by the set of representatives 3, is $i = M/ =

--
= (S, R)

where S + t E %! iff there exists s’ 3 S and there exists t’ z i such that s’ + t’ E R.
When = is =o, for some G, we denote Ml so by M/G or simply by M.

3. Group-theoretic approach

3.1. Model checking CTL*

In this section we present the correspondence lemma and the results showing that model
checking of CTL* formulas on the original structure can be reduced to that on the quo- --
tient structure. Let M = (S, ‘RJ and M/G = (S, 7%) be as defined above. For a sequence
X=(SO,S] ,... yJi,..o) of states in S, we let 2 denote the sequence of corresponding rep-
resentatives in S, i.e., X = 6, S;, . . . (5, . . .).

Lemma 3.1 (Correspondence lemma). There is a bidirectional correspondence between
paths of the original structure M and the quotient structure M = M/G for any G _<
AutM:
(i) Zf x = SO, SI, s2, . . . , is a path in M, then X is a path in a.
(ii) ZfX=io,S~,i~, . . . , is a path in .%?, then for every state s; =G .?o in M there exists a

corresponding path x’ = s& si, sa, . . . , in M of states such that S: =o Si.

SYMMETRY AND MODEL CHECKING 113

Proof: Part (i) is immediate from the definition of quotient structure. To prove (ii), let
x=io,s,,s2)..., be a path in a. Choose an arbitrary sh So SO. By definition of quotient
structure and since ia -+ Si E %!, there exists sI(=o Sa and there exists sy =G Si such that
s; + si’ E R.

Thus, by transitivity s; =o s;i and s; =n-(~6) for some permutation rc E G. Let
si =n(s;“). Now, sI, + si =rr($‘) + n(sy) E M since sfi -+ s;’ E M and n E
G (Aut M. Moreover, s{ = n(sy) zo Si as desired.

The first edge of x’ is thus defined by s; -+ si . Continuing with si the same argument
can be applied to exhibit s; such that si -+ s; E M and si =G &. Proceeding, in this
fashion we see that there is si -+ sl+i E M corresponding to each Si -+ Si+i of..? in ,&!.
The process continues for all natural numbers i or until the terminal i of X if it is finite. Let
x’ = sI, -+ si -+ si + . . be the resulting path in M. By construction, it corresponds to
X in the desired way. q

Remark. If the Correspondence Lemma is restricted to paths consisting of a single tran-
sition, it amounts to saying that there is a bisimulation between M and .&? defined by zG.

Let f be any CTL* formula. We define a subset of subformulas off, called signi$cant
subformulas, as follows

l f is a significant subformula of itself.
l For every subformula g off which is of the form Xg’ or Eg’, both g and g’ are significant

subformulas of f. Similarly, for every subformula g of the form g’ U h’, all of g, g’ and
h’ are significant subformulas off.

Intuitively, g is a significant subformula of f if either g is same as f, or the outer most
connective of g is a temporal operator or is a path quantifier, or g appears as an immediate
argument of a subformula whose outer most connective is a temporal operator or a path
quantifier. For example, for the formula f =Egwheregisgivenby(Pi v P~)A ((Ql v

Qd U (RI v Rd), the suthmulas f, g, <QI v Qd U (RI v Rd, <QI v QA (RI v Rd
and (Pi v P2) are all the significant subformulas. Note that, in this case, none of the atomic
propositions is a significant subformula.

Lemma 3.2. For every significant subformula h off, Auto f 2 Auto h.

Proof: Let g be any significant subformula of f. We define the immediate significant
subformulas of g as follows. If g is of the form Xg’ or Eg’ then g’ is an immediate significant
subformula of g. If g is of the form g’ U h’, then both g’ and h’ are the immediate significant
subformulas of g. If neither of these conditions holds then g is a boolean expression over
atomic propositions and significant subformula f,, . . . , fk where each fj is of the form
Xg’ or Eg’ or g’ U h’; in this case f,, . . . , fk are the immediate significant subformulas
of g. From the definition of Autog the following condition holds: for every immediate
subformula g’ of g, Auto g E Auto g’. Applying this inductively we get the following: for
every significant subformula g’ of g, Auto g C Auto g’. The lemma follows by using f and
h in place of g and g’, respectively, in the above observation. q

114 EMERSON AND SISTLA

The Correspondence Lemma and the previous lemma make it easy to prove the following
fundamental result showing that model checking over M can be reduced to model checking
over M.

Theorem 3.3 (Compression theorem for CTL*). For all structures M, all CTL* for-
mulas f , all subgroups G _< Aut M n Auto f , and allfullpaths x in M,

M,x b f iffMIG,i !=.f

Proof: We argue by induction on formula structure that, for every significant subformula g
off and every fullpath x in M, M, x + g iff M/G, X /= g. Formally, let count(g) denote
the number of occurrences in g of symbols from {U, X, E}. We proceed by induction on
count(g), letting x = (sa, si , . . . , sj, . . .).

Base case: count(g) = 0. In this case g is a propositional formula. Hence, M, x j= g iff SO
satisfies g and .%?, X /= g iff S;; satisfies g. Clearly, there exists a permutation n E G such
that G = n(sa). Using Lemma 3.2 and the fact that g is a maximal subformula of f and
K E Auto f, we see that 7t E Autog. From this, we deduce that g is equivalent to n(g).
Clearly, se satisfies g iff rr(sa) satisfies n(g) iff So satisfies g. Hence, M, x + g iff M/G,
Xkg.

Induction step: Assume that the lemma holds for all maximal subformulas g’ such that
count(g’) 5 k and for all maximal paths in M. Let g be any maximal subformula with
count(g) = k + 1. Now, we have the following cases:

g = Eg’: M, x b g iff there exists a maximal path x’ in M starting from SO such that
M, x’ + g’. From the induction hypothesis and the fact that count(g’) = k, it follows
that M, x’ k g’ iff M/G, 7 b g’. Since, 2 and X start from the same state in 3, it is
the case that M/G, x’bg iff M/G, X ,l=g. The induction step follows from these
observations.

g=Xg’: M,x~giffM,x(“~g’iffM/G,x”‘~g’iffM/G,~~g. Thesecondstep
follows from the induction hypothesis, and the last step follows from the fact that x(I) = i
and the definition of nexttime.

g = g’ Uh’: count(g’), count(h’) 5 k. Now, M, x j= g iff for some i 2 0, M, xci) b h’
and for all j, 0 5 j c: i, M, x(j) l= g’. By induction hypothesis, the later condition -
holds iff M/G, x(I) l= h’ and for all j, 0 5 j < i, M/G, x(j) l=g’. The last condition
holds iff M /G, X + g. The induction step follows from these observations.

Other cases: In this case, it is easy to see that g is a boolean combination of atomic
propositions and maximal subformulas whose outer most connective is from (X, U, E).
That is, g = b(el, e2, . . . , ek, fl, f2, . . . , fi) where b is a boolean expression over
the indexed atomic propositions el , . . . , ek and maximal subformulas ft , . . . , fr such
that, for each i, 1 5 i 5 1, the outer most connective of fi belongs to {X, U, E} and
count(fi) = k + 1. Using the induction hypothesis for the previous three cases, we see
that,foreachi,l (isl, M,x+~iffM/G,x~~.

Now,letFi,..., F, be some distinct unindexed atomic propositions. From Lemma 4.2,
we get Auto f s Auto g. From the definition of Auto g, we get Auto g 5 Auto b(el, . . . ,

SYMMETRY AND MODEL CHECKING 115

ek,FI,..., F~).Hence,G~Aurob(et ,..., ek,F~ ,..., F~).Now,foreachi,l~i~l,
let ui be a boolean constant defined as follows: if M, x b fi then ui = true else
Ui = false. It should be easy to see that M, x ‘F g iff the state SO satisfies b(e, , . . , ek,
ui, . . . , ul) and M/G, X kg iff the state SO satisfies b(et, . . . , ek, u], . . . , ut). Let
TC E G be such that ia = n(sa). Clearly, so satisfies b(el, . . , ek, ui, . , u,) iff So sat-
isfies n(b(e,, . . , ek, ~1,. . . , ut)). Since G IAutob(el, . . , ek, F,, . . , Ft), it is the
case that n E Auto b(el, . . . , ek, FI, . . , Ft). From this, we see that n(b(e,, . . . , ek,
UI,..., ul)) is equivalent to b(el , . . , ek, ui, . , u(>. Hence, SO satisfies b(el, . . , ek,
ui, . . , ~1) iff &, satisfies b(el, . . , ek, ui , . . . , ~1). Putting all the above observations
together, we get the induction step. q

3.2. Model checking the Mu-calculus

We now prove a result analogous to Theorem 3.3 showing that model checking for the Mu-
calculus over the original structure M can be reduced to model checking over the quotient
structure ~77.

First, we define the significant subformulas of a formula f as follows:

l f is a significant subformula of itself.
l Every variable appearing in f is a significant subformula.
l For every subformula g of f which is of the form py. g’ or <R>g’, both g and g’ are

significant subformulas.

The following technical lemma is similar to Lemma 3.2, and its proof is left to the reader.

Lemma 3.5. If h is a signi$cant subformula off then Auto h C Auto f.

Theorem 3.6. For every structure M = (S,‘R), closed Mu-calculusformula f, subgroup
G such that G 5 Auto M n Auto f, and state s in S, we have M, s + f iff M/G, S b f.

Let M, f and G be as given in the statement of Theorem 3.5. In order to prove the
theorem, we need the following definitions. Let D, D’ be subsets of S and 3, respectively.
We say that D and D’ correspond if D = {s : for some t E D’ s =o t); i.e., D is the union
of all the equivalence classes that have a representative in D’. Let p and p’ be evaluations
having same domains and with ranges being the power sets of S and 3, respectively. We
say that p and ,o’ correspond if for each variable x, p(x) and p’(x) correspond.

Proof of Theorem 3.6: We argue by induction on formula structure that, for every sig-
nificant subformula g of f and for any two evaluations p and p’ that correspond with each
other, l~~,~)(p) and Cc,-,,I($) correspond with each other. Intuitively, this asserts that
for any significant subformula g of f, a state s in the structure M satisfies g with respect
to an evaluation p iff its representative S in m satisfies g with respect to a corresponding
evaluation p’. Formally, for any significant subformula g, let count(g) denote the num-
ber of occurrences in g of symbols from the set {,/J, CR>}. We proceed by induction on
count(g).

116 EMERSON AND SISTLA

Base case: count(g) =O. In this case, g is simply a propositional formula over atomic
propositions and variables. From Lemma 3.6, it is the case that Auto f C Auto g and hence
G ~Autog. From these observations it should be easy to see that l,,,(p) and LG.&‘)
correspond.

Induction step: Assume that the theorem holds for all significant subformulas g’ such that
count@‘) 5 k. Let g be a significant subformula such that count(g) = k -I- 1. Now we have
the following cases:

g = <R>g': This case is straightforward from the induction hypothesis.
g = py . g’: Let PO, PI, . . . , ~1 and PA, pi, . . . , p,’ be sequences of evaluations obtained by

iteratively computing the least fixed points in the structures M and M/G, respectively.
Formally, these sequences of evaluations are defined as follows. For i = 0, . . . ,1 and
for each z # y, pi(Z) = p(z) and p,‘(z) = p’(z). PO(Y) = p;(y) = 0. For i = 1, . . . ,I,
pi(y) = L~,~f(pi-t) and pi(y) = ~5~,+(pf-t); pi = pi-1 and pi = pi-, . Using the main
induction hypothesis and by induction on i, it can easily be shown that pi and pi’ corre-
spondfori=O,..., 1. By Tarski-Knaster theorem, it is the case that Lc,,,(p) = m(y)
and L,-,,(p’) = p;(y). Hence L,,,(p) and L,-,,(p’) correspond.

Other cases: In this case g is a boolean combination of atomic propositions, variables and
significant subformulas of the form <R>g' or py .g’. Hence g = b(et , . . . , el, ft , . . , fm)
where each ei is an atomic proposition or a variable, and each fi is a formula of the form
<R>g' or py.g’ such that cOUnt(fi) 5 k + 1. Using the induction step for the previous
two cases, we can show that L,,,,fi (p) and ~Z,,J; (p’) correspond. From this observation
and the fact that G 5 Auto f C Auto b(el, . . . , el, FI, . . . , F,,,), where F,, . . . , F, are
unindexed atomic propositions, it is easy to show that CM,,(~) and CM,, (p’) correspond.

The theorem now follows by taking f itself for g and the empty evaluation, assigning
false to every variable, for p and p’. 0

4. Applications

We wish to determine whether M, SO l= f, where M is the global state transition graph
of ‘P = Ni Ki and f is an arbitrary CTL* or Mu-calculus formula, without incurring the
potentially enormous cost of constructing M. By Theorem 3.3, it suffices to construct
M/G, where G is a subgroup of Aut M rl Auto f , and then check whether M/G, so b f .
If G is large, reflecting a good deal of symmetry common to M and f, then we should
realize a significant savings.

4.1. Determination of a suitable group G

We can take G to be G’ n Auto f for any subgroup G’ of Aut M. Thus, to calculate
G we should determine (i) Auto f, (ii) largest possible G’ and (iii) the intersection of (i)
and (ii). Each of these appears to be a difficult problem. Fortunately, with certain reasonable
restrictions on M and f the computations of (i)-(iii) become much easier.

SYMMETRY AND MODEL CHECKING 117

It is to be noted that if we have an algorithm for computing Aut p for a propositional for-
mula p, then we can use it inductively to compute Auto f for an arbitrary CTL* formula f.
However, automatic computation of Aut p for a propositional formula p is a computationally
hard problem. For example, the following proposition shows that three important problems
associated with Aut p, namely universality, membership and non-triviality are computa-
tionally hard problems. Here the universality problem is to determine if Aut p = Sym I for
a propositional formula p. The membership problem is to check if a given permutation 3~
is in Aut p for a propositional formula p. The non-triviality problem is to check that there
exists at least one non-identity permutation in Aut p.

Proposition 4.1. All the three problems, i.e., universality, membership and non-triviality,
are co-NP-hard.

Proof: We reduce the validity problem for propositional formulas to the universality
problem. Let p be any propositional formula. It has some number n of atomic propositions,
and we may assume without loss of generality, that they are indexed by I = [I : n], viz.,
Ql , . . , Q,. We may also assume that there exists an alphabet of n distinct propositions
Pi, also indexed by I, such that no Pi appears in p.

We claim that p is valid iff Aut (p v PI) = Sym I. If p is valid, then any formula
resulting from any permutation of the indices on its propositions is also valid, and simi-
larly for the validity p v PI; hence, Aut (p v PI) = Sym I. Conversely, let us assume that
Aut (p v PI) = Sym I. Let 71 be a permutation such that n(l) = 2. Now, by assumption,
we have that n(p v PI) = (p v PI), simplifying to n(p) v P2 3 p v PI. Consider any
assignment of truth values to all the propositions Qi. Extend it to assignment to all the
propositions such that PI and P2 are set to false and true, respectively; for any such assign-
ment p should evaluate to true. Since no Pi, for any i, appears in p, we can conclude that
p is valid. With slight modifications we can also exhibit similar reductions to the other two
problems. 0

It should be obvious that both the universality and membership problem are in co-NP,
and hence are co-NP-complete.

In practice, for a CTL* formula f, Auto f can often be determined through inspection
or by using some heuristics. For example, if f = AF(Cl v C2 v . . v C,) then it is easy to
see that Auto f = Sym I.

For many systems we can also determine Aut M by inspection of program P, and in these
cases we can take G to be Aut M nAuto f . Sometimes, we can take G to be Aut P fl Auto f .
Here Aut P is the set of automorphisms of the program P defined as follows.

In order to define Aut P, we first define the notion of equivalences of transitions and
equivalence of processes. Recall that each process is comprised of a set of transitions.
We say that a transition 1: B -+ A: m is equivalent to another transition I’: B’ -+ A’: m’
if 1 = l’, m = m’, the boolean expressions B, B’ are (semantically) equivalent, and finally
A, A’ are (semantically) equivalent, i.e., update the same variables and assign equivalent
expressions to identical variables. We say that two processes K and K’ are equivalent if
there exists a bijection mapping each transition of K to an equivalent transition of K’.

118 EMERSON AND SISTLA

Now, let P = //i Ki be a program (with start state so). Let n be a permutation on the
process indices. We extend rr to the processes in P as follows. For each Ki, let n(Ki) be
the process obtained by replacing each occurrence of index j by n(j) for each j E I. We
say that a permutation n on process indices is an automorphism of P if for each i, n(Ki)
and K=(i) are equivalent (and n(se) = se). Let Aut P denote the set of automorphisms of P.
Clearly, Aut P forms a group.

Lemma 4.2. Aut P 5 Aut M where M is the global transition graph of program P (with
start stafe so).

Proof: Let n be a permutation in AutP. Assume s + t E M. Then for some i,
s +i t, and in process Ki there is some local transition r driving s to t in M. Clearly,
the transition n(r) in n(Ki) drives n(s) to x(t) in n(M). Since the processes n(Ki)
and Kt,(i) are equivalent, there is a transition t’ in Kx(i) of the program P generating
M that is (semantically) equivalent to rr(t) and that drives rr(s) to Is(t) in M. Hence,
n(s) +x(i) n(t), and n(s) + It(t) EM. Since the above property holds for any transition
s -+ t of M, we conclude that n E Aut M, while noting that if P has start state so, it must
be that n (so) = SO. 0

It may not be easy to determine the automorphism group of P. However, sometimes
when all the processes in P are normal and are isomorphic, we can use the automorphism
group of the under1 ying communication graph to determine an appropriate G. We formalize
this below.

Let P = Ni Ki be the concurrent program. We assume that each shared variable in P is
shared between exactly two processes. Corresponding to P, we define an undirected graph
CR as follows. The nodes of CR are the process indices and there is an edge connecting i
and j iff i and j share a variable Xij. (Shared variable xij is also equivalently denoted Xji.)
For any node i, we let CR(i) denote the neighbors of i. We say that the processes in P are
normal if every transition t in each process Ki is of the form:

8 : A B(i, j) + IljEcR(i)A(iT j>: m
j&R(i)

where B(i, j) is a boolean expression over atomic formulas that are either atomic proposi-
tions Qi or Qj, or equality tests of shared variables of the form Xii = yij or xij = d, where
X, y are variable names and d is the name of a domain element; and A(i, j) is a concurrent
assignment to variables shared between i and j of the form xii := yij or xij := d.

We say that two processes Ki and Kit, where i EA,,~CR i’, are isomorphic if there exists
a bijection mapping each transition t E Ki to a transition t’ E Kil such that if t is

c: A B(i, j> + IljeCR(i)A(i, j>:m
j&R(i)

SYMMETRY AND MODEL CHECKING 119

then t’ is

t : A B(i’, j) -+ Illjux(r)A(i’, j): m.
jcCR(i’)

It should be noted that B(i’, j) is the same B(i, j) and A(i’, j) is the same as A(i, j) except
that the subscript i is replaced by i’.

Theorem 4.3. If M is the global state transition graph of P = /Ii Ki where all Ki are
normal and isomorphic then Aut CR 5 Aut M.

Proof: We will show that Aut CR 5 Aut P, and from Lemma 4.2, it would follow that
Aut CR 5 Aut M. Let n E Auf CR. For any i, consider the processes Ki and Kn(i). Since
these two processes are normal and isomorphic, there exists a bijection that maps each
transition t of Ki of the form

C : A B(i, j) + IIjecR(i)A(it j): m
j&R(i)

to a transition t’ of Kn(i) which is of the form

.!!: A B(n(i), j> + Ilj~cR(n(i))A(~(i), j>: m.
jcCR(n(i))

Since TC E Aut CR, the transition n(t) is equivalent to t’. Hence the processes n(Ki) and
Kn(i) are equivalent, and TT E Aut P. 0

Since in designing the program P, the choice of CR is (one hopes!) explicitly and
carefully considered, and often chosen from a standard pattern, determination of Aut CR is
often easy in practice, and frequently is just a well-known fact of graph theory. We have
for example:

l If CR = I x I \ Id so that the communication topology is the complete graph on I, then
AutCR=SymI.

l If the processes K,, . . , K, of P are arranged in a ring then CR= {(i, i @,, I),
(i, i 8 nl): i E I), where @, denotes wrap-around addition where n Bn 1 = 1, and
analogously for subtraction. This indicates that each process can only communicate with
its two neighbors in the ring. Thus, Aut CR = D,, the dihedral group of order 2n.

To determine the intersection of A.uto f and Aut CR, we can often proceed by inspection.
In practice, it is likely to turn out that one or both of Auto f or Aut CR is large, for example
Sym I or Sym I \ (i}, or at least a well-known permutation group which simplifies our task.

120 EMERSON AND SISTLA

Let 3 := 0
Let SO := so
Add x0 to 3
While unprocessed(S) # do

Remove some unprocessed B from 3
For each i E [l : TZ] do

For each t E &(z) do
Ensure Z ends up in 3:

If 3i E s t =‘G Ti then
Note T = z E 3 already

Else
Let $:= t
Add E to unprocessed@)

Adda-+ftoE
End

End
Mark 3 processed

End
Figure 1. Incremental construction of quotient.

4.2. Constructing the quotient structure

We can construct M/G from P with start state SO incrementally, without building M itself,
as shown in figure 1 (cf. [16, 7,211).

An important part of the above procedure is the test t “G U. Since G may in the worst
case be Aut M, this could conceivably be intractable (cf. [7, 151). However, in practice M
has special structure derived from P, which can simplify matters. In some cases, the test
is particularly simple, For example, if S = L’ and L = {8,, . . . , fZ,] and G = Sym I, then
s “G t iff for each i E [1 : m] the number of processes in local state ei is the same for both
global states s and t.

4.3. Decomposing formulae

In some instances G may be very small essentially because f is a large composite formula.
Consider, for example, f = pi AG(Ni =S AFCi). We see that Auto f = Pstab 1 n . . . n
Pstab n = Id. Since G r&to f, it is the case that G = Id. So, no compression is possible
in forming the quotient M = M/G. Sometimes it is possible to overcome this problem
by breaking down the composite formula into its basic modalities (or other appropriate
subformulae) and checking them individually. While this may entail computing multiple
quotients, it can still be more efficient. For the formula f specified above, we can check

SYMMETRY AND MODEL CHECKING 121

for each conjunct fi = AG(Ni + AFCi) in turn. Since Auto fi = Pstub i = Sym I\ {i} is of
exponential size, any G obtained from such an Auto fi is likely to be large. Thus computing
n different exponentially smaller quotients can be more efficient than computing one large
quotient, actually equal to the full, original structure.

4.4. State symmetry

Sometimes we can take advantage of symmetry in the initial states to achieve faster model
checking. Suppose s is a state that is fully symmetric in a fully symmetric structure M,
viz., Aut s = Aut M = Sym I. For example, s could be the start state (Ni , . . . , ZV,) for a
solution to the mutual exclusion problem with each process in its noncritical region (cf.
[2,9], Section 6).

Consider the formula Aigi where gi is a temporal formula over the atomic propositions
with index i . Here Ai denotes a conjunction over all process indices i, i.e., all i E I. Now,
it can be shown that M, s /= pi gi iff M, s b gJ. The + direction is obvious. To see
the e= direction, choose an arbitrary i E I. Then pick some n E Aut s = Sym I such that
n(1) = i. The right-hand-side implies that for all permutations n’ that M, n’(s) j= n’(gJ)

and hence M, n’(s) b g+(r); this is due to the fact that each permutation n’ is in Aut M.
For n’ = rr this simplifies to the desired property M, s k gi .

Thus, in reference to the previous Section 4.3, in checking a formula such as r\iAG(Ni +
AFCi) evaluation of multiple conjuncts over multiple quotients is not required if the initial
state and the structure are fully symmetric.

This idea can be generalized to states and systems with somewhat less symmetry. Let s
be any state in M. Auts nAutM induces an equivalence relation on I: i = j iff i = n(j)
for some n E Aut s fl Aut M. Let Part be the partition induced by the above equivalence
relation. Let Rep be a set of representatives, one from each equivalence class in Part.

Theorem 4.4. M, s b Ai gi iff M, S b Aj E Rep gj.

Proof: The =+ direction is obvious. To see the + direction, assume the left-hand-side
holds. Choose an arbitrary i E Z. Let j be the representative equivalent to i. For some
n E AutsnAutM, we have i =x(j). Moreover, M,s + gj. SO M,n(s) b n&j)
because rr E Aut M. Because n(s) = s, n(gj) = gn(i) and n(j) = i, the above simplifies
toM,s +ggi. 0

Thus, instead of checking all n = (I] conjuncts, it suffices to check JRep(conjuncts which
may be significantly smaller. In the extreme case, as above, only one conjunct need be
checked. If Aut M = Sym Z then matters simplify so that at most (L 1, the number of distinct
local states, need be checked. Typically IL] < n =]I 1. If Aut s = Sym I, so that s is a start
state with all process in the same local state, then if Auf CR is nontrivial, some equivalence
class on Z has 2 or more members,)Repl < n, and some savings is obtained. In many
practical cases Aut CR may yield a small IRepI. Any of the vertex-transitive connectivity
graphs, which includes such “sparse” graphs as rings, yields only a single equivalence class.

122 EMERSON ANO SISTLA

5. Automata-theoretic approach

We can give an alternative, uniform method using automata for model checking temporal
properties of systems of processes that exhibit symmetry. The main feature of this approach
is that a single, annotated quotient structure M = M/G, where G is a subgroup of Aut M,
can be used to model check with respect to a variety of different specifications f. Each
transition in the annotated quotient structure is labelled with additional information denoting
how coordinates are permuted from one state to the next state. The annotated quotient
structure is a succinct representation of the original structure. In order to verify that all
computations satisfy a linear temporal specification f, we construct an automaton d that
accepts exactly those strings that satisfy the formula -f, construct the cross product of fi
with A and check that the product automaton does not accept any input strings.

5.1. The annotated quotient structure

Let M = (S, 77,) be a structure which, for ease of exposition, is assumed to be total. We
first fix a subgroup G of Aut M. We then define the annotated quotient structure of M with
respect to G, denoted M, to be (3, AR) where 3 is the set of representative states as before,
and AR is an annotated relation consisting of the following elements. Corresponding to
each transition (i, t) E R, the triple (S, rr, f), where t = rr(f) for some rr E G, is contained
in AR. All transitions in the original structure from a representative state S to another
representative state tare included in AR as triples (S, rr, i) in which the permutation rr is
the identity permutation. Also, all transitions in the original structure from a representative
state S to a non-representative state t are encoded by some (S, n, i) in AR where n is not
the identity. Those transitions from a non-representative state to a non-representative state
in the original structure are not included in a. Due to this, many times, the size of the
structure a can be much smaller than that of M. It is not difficult to see that we can obtain
the original structure from the annotated quotient structure .%?.

We prove some simple properties of the annotated quotient structure a. An annotated
path p in M is an alternating infinite sequence G, ~1~5, . . , z, rr+i, . . . of states and
permutations such that, for all i 2 0, 6, Iti+], si+l) E dR. We define a function h
mapping annotated paths of m to paths of M as follows. For any annotated path p as given
above,h(p)=to,tl,...,ti,...,whereto=soandti=nlon2o...o~i(~foralli>O.

Lemma 5.1. The following properties are satisfied by M.
l For every annotated path p in a, h(p) is a path in M.
. For every path q in M startingfrom a representative state S;;, there exists an annotated

path p in ,%? such that q = h(p).

Proof: To prove the first part of the lemma, assume that p = to, nl , tl , ~2, . . . , ti , ni+l, . . . ,
is an annotated path in fi. From the definition of M, it should be easy to see that, for each
i 2 0 the following properties are satisfied: ti += rri+i (ti+l) is a transition in M. Since
no,n1, ... are all in the group G of automorphisms of M, it follows that that rri o 7r2 0. . . o
7ZY<(ti) + 7iTl 0X20*‘* o ni+l(ti+l) is a transition of M. Hence h(p) is a path in M.

SYMMETRY AND MODEL CHECKING 123

To prove the second part, we note that we can write any path q = so, ~1, ~2, . . . in A.4
starting at a representative state So in the form so, #to, $20, . . . where, for each j 2 1,
4j is any permutation in G such that $j ($ = St. We will argue by induction on j that we can
take $i to be a permutation of the form rrr o . . o ni where 6, nl , m, . . . , 6, nj, sj+l)
E AR. For j = 1, since 6, $1 (s1)) E R, by definition of %, there is some nl E G
and 6, nt, ?i) E /l7Z such that rrt(Zi) = &(s;). Thus, we can take Cpt to be rri. In-
ductively, we can take $j = rri o * . o nj. Because (4j(v, @j+r (sj+l)) E R, we have
(sj, (Xl 0 ‘. ’ 0 7lj)-’ o @j+t (sj+l)) E R, by induction hypothesis and since 47’ is an au-
tomorphism of M. Hence, there is some nj+t E G and some (q, rrj+t, si+l) E AR
such that nj+t (sj+l) = (nr o . . o Xj)-’ o 4j+l(sj+l). Thus, we can take $j+t =
n] 0 ‘.. o Jrj o nj+r, thereby completing the induction step. Then, the annotated path
~=~,nt,K,n2,S2... issuchthath(p)=q. cl

5.2. Model checking indexed CTL*

The above lemma allows us to model check properties specified in an Indexed CTL* (ICTL*)
efficiently. The set of ICTL* formulas are defined inductively. To do this, we assume that
the set dP of atomic propositions is partitioned into two sets dP’ and AP” where dP’ is
the set of global propositions and AP” is the set of local propositions. We further assume
that the set AP” is an indexed set, while dP’ is not an indexed set. Global propositions
denote global properties of a state, while local propositions denote properties of individual
processes. An element Pi E AP” indicates a property of process i, and its satisfaction in
a global state depends only on the state of process i. We also assume that all the states
in an equivalence class satisfy the same set of global propositions (these are same as the
invariant propositions of [7]). The set of ICTL* formulas are defined inductively using
the propositional connectives, atomic propositions and quantified formulas of the form
Vi Efi and Ai Efi where, fi is any propositional linear temporal logic (PLTL) formula that
only uses global propositions and local propositions of process i. The symbol Vi acts as
an existential quantifier ranging over processes indices. Similarly, Ai acts as a universal
process quantifier. E acts as an existential path quantifier. We further stipulate that all local
propositions should appear in the scope of a process quantifier.

Lemma 5.2. Two equivalent states in M satisfy the same set of ICTL* formulas.

Proof: Let s and t be two states such that t = n(s) for some x E G. For any ICTL*
formula f, s satisfies f iff t satisfies n(f). Roughly speaking, the above property is
satisfied due to the fact that, the tree rooted at the state t in M is obtained by taking the
tree rooted at s and replacing each state s’ in the tree by the state n(s’). In addition, since
f is an ICTL* formula, it is the case that f and n(f) are equivalent. Hence s satisfies f
iff t satisfies f. cl

From the above lemma it is enough if we give a procedure to check if a representative
state satisfies an ICTL* formula. Furthermore, it is enough if we give the procedure for
ICTL* formulas of the form Vi Efi and ~\i Efi. We show how to model check for these type
of formulas using the annotated quotient structure.

124 EMERSON AND SISTLA

As indicated previously, we will be using automata for model checking temporal prop-
erties. A Buchi automaton A on infinite strings is quintuple (Q, C, 6, I, R) where Q is a
finite set of automaton states, E is the input alphabet, 6 : (Q x C) + 2Q is the transition
function, I C Q is the set of initial states and R C Q is the set of recurrent states. A run of
the automaton on an input t = (to, . . . , ti, . . .) E Co is an infinite sequence (40, . . , qt, . . .)
of automaton states such that qo E I, and for all i 2 0, qt+I E 6(qi, ti). We say that a run
is accepting iff some recurrent state occurs infinitely often in the run. We say that an input
t E Co is accepted by A iff there is an accepting run of A on t.

We first construct a Buchi automaton A corresponding to the PLTL formula fi and check
that there is no path in M that is accepted by it. The input alphabet of A is the set of
subsets of local propositions and global propositions. We next construct a directed graph
z which is a product of the annotated structure and the automaton A. The nodes of a are
triples of the form (S, q, j) where S E 3, q is a state of the automaton A and j is a process
index. The edges/transitions of B are defined as follows. For every transition of the form
(Z, n, f) E AR and for every automaton state q and process index j, there is going to be
an edge in B from node (S, q, j) to the node (f, r, n-‘(j)) where r is any state to which
there is a transition of A from state q on the input which is the set of global propositions
satisfied in S and local propositions satisfied in the process j’s component of S. We say that
a node (S, q, j) of B is a recurrent node iff q is a recurrent state of A. Let qo be the initial
state of A.

Lemma 5.3. The following properties hold for all S E 3.
l The formula Vi E fi is satisjied in the state S of the structure M ifffor some i, 1 5 i 5 n,

there exists an infinite path in B starting from the node (S, qo, i) and containing infinitely
many recurrent nodes.

l The formula Ai E fi is satisfied in the state S of the structure M ifffor all i, 1 5 i 5 n,
there exists an infinite path in B starting from the state (S, qo, i) and containing infinitely
many recurrent nodes.

Proof: We prove the first part of the lemma. The second part can be proved analogously.
Assume that the formula viEfi is satisfied in the state 5. Let p = SO, ~1, . . . , sj, . . . , be
a path in M and ia be a process index such that S = SO and p satisfies the formula fi,.
Letqo,ql,...,qj,..., be an accepting run of A on the above path. From Lemma 5.1,
we know that there exists an annotated path p’ = to, ~1, tl, 7x2, . . . , t, j, nj+l, . . . , such
that h(p’) = p. Now define a sequence of process indices in, il, . . . , ij, . . . , such that

-1 -1
lj =Xj OXj-1 O'.' 0151 -r (io). From the definition of a, it can be shown that the sequence

(t0,90, i0>, (tl,q1,4>, . . . , (tj, qj, ij) . . . is a path in B. This path contains infinitely many
recurrent nodes, and in addition to = S.

To prove the other direction of the first part, let (SO, qo, io), (~1, 41, il), . . . ,
(sj~ qj3 ij>v . . ‘9 be a path in B that contains infinitely many recurrent nodes and such
that SO = S. From the construction of B we see that there exists an annotated path
p’ = So,Itl,Sl,n2,...,Sj~ nj+lv...v in M such that, for each j > 0 ij =n,T’(ii-I),
and qj is such that there is a transition of A from the state qj-1 on the input which is the set
of global propositions and local propositions satisfied by process ii-1 in the state si-1. Let

SYMMETRY AND MODEL CHECKING 125

h(p)=to,tl,..., ti ,..., whereti=niorr20.. - o Xj (Sj). From Lemma 5.1, we see that
h(p) is a path in M. Also, it is not difficult to see that qo, 41, . . . qj, . . . , is a run of A on
the sequence of sets of local propositions satisfied by process io in the path p. In addition
this run is an accepting run. Hence, this path satisfies fi,. As a consequence, we see that S
satisfies vi Efi . cl

Checking if there exists an infinite path starting from a particular node s and containing
infinitely many recurrent nodes is accomplished by checking if there exists a finite path
from s to a strongly connected component containing a recurrent node. The later property
can be checked using standard graph algorithms that are of linear time complexity in the
size of the graph. The number nodes in the graph a is O(lSlmn) where m is the number
of states of the automaton A and n is the number of processes. We can obtain A using
standard tableau construction for PLTL, and in this case m is going to be of order 0 (2’fi’).

5.3. Model checking indexed PLTL

In the previous construction, we used Buchi automata to check properties involving local
propositions of a single process together with global propositions. Now, we would like to
use Buchi automata for checking properties that may involve local propositions of more
than one process together with global propositions. The input alphabet to such automata are
subsets of the set of all atomic propositions dP. We define a particular type of automata
called symmetric automata. First, we need the following definitions. For any (D 5 dP,
and permutation n, we define n(p) to be the set (p n AP’) U (Pn(i): Pi E bp}. Essentially,
the n(p) is obtained by changing the indices of the local propositions in q according to the
permutation n .

We say that an automaton A = (Q, 2 dp, S, I, F) is symmetric with respect to a group of
permutations G if there exists a group action of G on Q, a: (Q x G) -+ Q, satisfying the
following properties:

For every q E Q and n E G,

l For every q’ E Q, and cp E dP, q’ E 6(q, cp) iff a(q’, n) E Va(q, ~1, I).
l q E I iff a(q, rr) E I; also, q E F iff a(q, n> E F.

Below, we present a procedure for checking if there exists a path in the original structure
M that is accepted by a symmetric automaton A. We later use this procedure for model
checking for a powerful linear temporal logic called Indexed PLTL (in short IPLIL). Let
M = (S, R) be a structure and A be an automaton that is symmetric with respect to a
group of permutations G, and let a be the function as defined above. First, we construct
the annotated quotient structure M = (3, AR) with respect to the group of permutations
Aut M n G. We define a graph B as follows. The nodes of is are pairs of the form (S, 4)
where S E ‘s and q E Q. The set of edges of B is defined below. For every S E 3, q E Q,
transition (S, n, t) in AR and r E 6(q, (p) where p is the subset of atomic propositions
satisfied in the state S in the structure M, there is an edge in B from the node (S, q) to
the node (f, a(r, n-l)). A recurrent node of B is a node of the form (S, ql) where qr is a

126 EMERSON AND SISTLA

recurrent state of A. The following lemma is easily proved from the symmetry property of
the automaton.

Lemma 5.4. There existsapath in M startingfrom a representative state S that is accepted
by A @there exists an infinite path in B starting from the node (S, qo) where qo is an initial
state of A, and containing infinitely many recurrent nodes.

We show below how the above lemma can be used for model checking for a powerful
indexed temporal logic called IPLTL. In order to define the syntax of IPLTL, we assume
that we have two sets of propositions dP' and AP" denoting global and local propositions
repsectively. All the local propositions are indexed. Let dP denote dP' U AP". First we
define the set of PLTL formulas over the set of atomic propositions kP. The set of PLTL
formulas is the subset of CTL* consisting of all CTL* formulas over dP that do not use
the path quantifier E, i.e., PLTL is the standard linear propositional temporal logic.

IPLTL is the extension of PLTL that allows process quantifiers of the form pi and ~+j.
The symbols of IPLTL include all those from PLTL together with some index variables
such as i, j, etc., and the above two types of process quantifiers. We say that an index
variable i is free in a formula f if i occurs as the index of a local proposition and this
occurrence is not in the scope of a process quantifier of the form pi, or of the form A\i#j for
some j. The set of IPLTL formulas is the smallest set satisfying the following conditions.
Every global proposition is an IPLTL formula; if P is a local proposition symbol and i is
an index variable then Pi is an IPLTL formula; if f, g are IPLTL formula then f A g, -f,
X f, f U g, and Ai f are IPLTL formulas; if f is an IPLTL formula with free index variable
j then Ai+jf is also an IPLTL formula. A closed IPLTL formula is one that has no free
index variables. We fix the set of process indices to be I = { 1,2, . . . , n). The semantics
of IPLTL formulas is defined by translation into PLTL. The translation maps each IPLTL
formula f into a PLTL formula f’ inductively. The translation is achieved by expanding
each process quantifier in the obvious way. It is to be noted that in the resulting formula f ',
the indices of all local propositions are constants. It can also be shown that for any closed
IPLTL formula f, Aut f’ is going to be the full symmetry set Sym Z.4

Given an IPLTL formula f and the annotated structure M, we use the following method
for checking if all paths in the original structure M starting from a state s satisfy the
formulas. We first construct the automaton A corresponding to the PLTL formula 1 f ‘.
Such an automaton is obtained directly from the tableau associated with -f’ (see [ESSS]).
This automaton can be shown to be sym_metric with respect to the full symmetry group
Sym I. We construct the product graph Z? obtained by taking the product of M and the
automaton A, and check that there is no infinite path starting from a node of the form
(5, qo) that contains infinitely many recurrent nodes where qo is the initial state of the
automaton A. Clearly, after the annotated quotient structure is constructed, the complexity
of the remainder of the procedure is simply proportional to the product of the size of the
quotient structure and the size of the automaton A. The size of A is exponential in the
length of f’. The length of f’ can itself be exponential in the length of f. However, the
complexity of the procedure is going to be proportional to the size of the annotated structure
which can be much smaller than the size of the original structure.

SYMMETRY AND MODEL CHECKING 127

6. Example

We now consider a simple example. A solution P to the mutual exclusion problem is given
in figure 2. Each process Ki has a noncritical section, corresponding to location Ni, and
a critical section, represented by location Ci. The transition from Ni to Ci is guarded by
the predicate A\i#i ‘Cj . Hence, each process cycles through its two sections preserving the
property of mutual exclusion: that no two processes are ever in their critical section at the
same time. This can be expressed in CTL by (a formula of the form) AG(A\i+j -(Ci A Cj)).
Thus the solution is safe. The starting condition can be captured as pi Ni,

To verify mutual exclusion, for a system with n processes, for any fixed n, we could
build its global state transition graph M, with n i- 1 states, as in figure 3. However, since
the communication relation for P is the complete graph on n nodes, Aut M = Sym [1 : n].
Our rules also tell us that Aut f = Sym [1 : n] Thus we can take G = Sym [1: n]. Using
(Nl, N2, . . . , N,) and (G,N2,..., N,) as representatives we obtain a quotient M/G
shown in figure 4. We can now model check over the quotient using Theorem 3.3.

Figure 2. Skeleton for two state II process mutual exclusion.

C,,Nz ,..., Nn-r,K C,,Nz ,..., Nn-r,K NI,CZ,...,N,-~,N~ NI,CZ,...,N,-~,N~

. , ,
Nl,Na,...,Cn-1,Nn Nl,Na,...,Cn-1,Nn N,,Nz, Nn-~,cn N,,Nz, Nn-~,cn

Figure 3. Model for two state n process mutual exclusion. Figure 3. Model for two state n process mutual exclusion.

128 EMERSON AND STSTLA

Figure 4. Quotient of model for two state n process mutual exclusion.

7. Related work

There has been much work done on various bisimulation equivalences and their relationship
to program logics. However, none of this work considers automorphisms of a formula as
we do and Theorem 3.3 was not established in any of the existing works. Moreover, our
paper contains many other results including the formula decomposition, state symmetry
and the alternate automata theoretic approach.

The telling quote from Hermann Weyl [25] in the introduction shows that the basic
idea of exploiting the group of automorphisms of a structure in order to understand its
basic properties, symmetry and otherwise, is a rather old one in mathematics. However,
its application to temporal logic model checking seems to be quite new. In the realm of
program verification symmetry seems to have first been utilized, with varying degrees of
formality, in the realm of reachability analysis for Petri nets [17]. Here, however, the
work seems to have centered around simple reachability (AGp) rather than the full range
of temporal correctness properties. Ip and Dill [161 also consider the problem of verifying
reachability only, but not an arbitrary correctness specification given by a temporal logic
formula. Their system provides a new, somewhat more abstract than usual programming
language, to facilitate identifications of symmetrys. It has been implemented as the Mur@
system and applied to examples. In [2] and [191 an algebraic approach to reducing the cost
of protocol analysis based on the use of quotient structures induced by automorphisms is
proposed. For example, the symmetry between 0 and 1 in the alternating bit protocol is
factored out to reduce the size of the state space by one half.

The most directly related work is that of Clarke et al. [7], who have independently
reported correspondence results similar to those of our Section 3 and follow a somewhat
similar overall strategy [4,24]. Moreover, they have implemented their ideas using BDD’s,
provided an analysis of the complexity of BDD-based manipulations of permutation groups
showing that testing =o is graph isomorphism hard for BDD-based representations, and
done practical examples. However they do not use formula decomposition, state symmetry,
or the alternative automata theoretic approach.

SYMMETRY AND MODEL CHECKING 129

There has been some work done on using symmetries in Petri nets [23] for computing
reachability graphs of nets. However, this work does not consider checking temporal prop-
erties over the reduced graph. The work presented in [8] elegantly combines the symmetry
based method with other techniques (such as stubborn sets, etc.) to achieve state space
reduction in Petri-net based analysis of deadlocks in ADA tasks.

Our work may be distinguished by the most general explicit correspondence results,
including CTL* and the Mu-Calculus, and by focusing on the symmetry induced by having
many identical processes, which allows us to reduce the difficult problem of computing
Aut M to Au? CR. We also permit auxiliary variables, exploit formula decomposition and
state symmetry, and provide an alternative automata-theoretic approach.

8. Conclusions

We have described a framework for expediting model checking by forming the quotient
structure modulo a subgroup of the group of automorphisms of the original structure and
the specification. The resulting reduction in size can be dramatic when the degree of
symmetry is high. The group of automorphisms of the structure depends on process network
topology, which is possibly a crucial factor here. For massively parallel systems with high
connectivity and high symmetry like hypercubes, we should get a very good savings. For
rings, we would get much less. We have also shown how to improve the efficiency by
decomposing large formulae into smaller subformulae. We have further shown that it is
possible to exploit the symmetry of individual states to avoid redundant computation. An
alternative approach using automata to track shifting indices was also given.

It should be noted that, while we have focused on systems with many isomorphic pro-
cesses, this is more in the nature of a restriction on the “systems” terminology. Excepting,
for example, Theorem 4.1 showing Aut CR SAut M, the basic mathematical machinery
here is applicable to systems containing multiple isomorphic “components”. All that is
really essential is symmetry in the state space, whatever its “physical, systems” source.

At present, we have a method, that is not fully automated. Obviously, we could mechanize
it by using naive algorithms to compute automorphism groups, but this in general would not
be efficient. Thus important open problems seem to us to be to identify useful special cases
for when Aut b, for various objects b can provably be calculated efficiently, and the related
problem of testing “G efficiently (cf. [7]). Of course, these are largely group-theoretic in
nature. There is a vast literature in computational group theory which should be helpful
(cf. [15]). In the interim, we are compiling a catalog of helpful special cases.

Acknowledgments and historical remark

We have been thinking about this problem for some time. Actually, we had the Corre-
spondence Lemma in 1988 but encountered other difficulties. Following a happenstance
conversation with Ed Clarke in 1992, where he mentioned his ongoing interest in symmetry
as well as a possible upcoming paper (which turned out to be [7]), we were left with a desire
to write up some of our own ideas on symmetry. This ultimately led to a preliminary version
of our paper [121, which was presented at the International Conference on Computer Aided

130 EMERSON AND SISTLA

Verification held in Crete, Greece in June 1993. We thank the Programme Committee Chair,
Costas Courcabetis, for allowing us to submit our paper somewhat later than the originally
announced deadline, which allowed it to be considered in conjunction with [7]. We also
thank Paul Attie, Ed Clarke, C.A.R. Hoare, Somesh Jha, Steve Kaufman and Bob Kurshan
for valuable comments on earlier versions.

Notes

1. We remark that D and V are optional, in which case we define S = L’. When present, D and V can have their
own additional internal organization. In particular, they can depend on I.

2. We stipulate that each guarded command be index independent, which means that the value of the guard and
the effect of the action do not depend on the specific values chosen for the index set I. In particular, permuting
the names of the indices should not alter their values. This excludes, for example, such guards as 1 < 3, whose
truth value would change under transposition of 1 and 3.

3. The definition of “Autof” in [12] amounts to Auto’f defined here. The Compression Theorems with the
new, more generaJ definition of Auto f are also true when Auto , f is replaced by the “old” Auto’ ,f of [12].
The advantage of the new Aufo .f’ is that, since it is in general a superset of the old, it may provide greater
compression. Moreover, it should be noted that Auto @ =Auto’ @ = (Id) for @ a fairness constraint [13].

4. Note that Auto ,f’ may not be Sym I.

References

1. S. Aggarwal, R.P. Kurshan, and K.K. Sabnani, ‘A calculus for protocol specification and validation,” in
Protocol Specification, Testing and Vertfication III, H. Ruden and C. West (Eds.), North-Holland, 1983, pp.
19-34.

2. P.C. Attie and E.A. Emerson, “Synthesis of concurrent systems with many similar sequential processes,” Pnrc.
16th Annual ACM Symp. on Principles of Programming Languages, Austin, pp. 191-201, 1989.

3. M.C. Browne, E.M Clarke, and 0. Grumberg, “Characterizing Kripke structures in temporal logic,” Theoret-
ical Computer Science, Vol. 59, pp. 115-131, 1988.

4. M.C. Browne, E.M. Clarke, and 0. Grumberg, “Reasoning about many identical processes,” Irrfi~rm. and
Camp., Vol. 81, No. 1, pp. 13-31, 1989.

5. E.M. Clarke and E.A. Emerson, “Design and synthesis of synchronization skeletons using branching time
temporal logic,” in Proc. of the Workshop on Lngics c$ Programs, Yorktown Heights and D. Kozen (Eds.),
LNCS#131, Springer-Verlag, pp. 52-71, May 1981.

6. E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic verification of finite state concurrent systems using
” temporal logic specifications: A practical approach, in Proc. 10th Annual ACM Symp. on Principles of

Programming Languages, Austin, 1983, pp. 117-126; also appeared in ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 2, pp. 244-263, 1986.

7. E.M. Clarke, T. Filkom, and S. Jha, “Exploiting symmetry in temporal logic model checking,” in Pmt. of5th
International Conference on ComputerAided V’enfcation, Elounda, Greece, June 1993, pp. 450-462.

8. S. Duri, U. Buy, R. Devarapalli, and S. Shatz, “Using state space methods for deadlock analysis in ADA
tasking,” in ACM Proceedings of the 1993 International Symposium on So&we Testing and Analysis, June
1993, pp. 51-60.

9. E.A. Emerson and E.M. Clarke, “Using branching time temponl logic to synthesize synchronization skele-
tons,” Science of Computer Pmgr-ing, Vol. 2, pp. 241-266, 1982.

10. E.A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical Computer Science, Vol. B: Formal
Models and Semantics, J. van Leeuwen (Ed.), Elsevier Science Publishers, pp. 995-1072, 1990.

11. E.A. Emerson and A.P. Sistla, “Deciding full branching time logic,” Information and Confml, Vol. 61, pp.
175-201.1984.

SYMMETRY AND MODEL CHECKING 131

12. E.A. Emerson and A.P. Sistla, “Symmetry and model checking,” in Proc. c$Srh fnternafional Cortference on
Cornpurer Aided Verification, Elounda, Greece, June 1993, pp. 463-478.

13. E.A. Emerson and A.P Sistla, “Utilizing symmetry when model checking under fairness assumptions,” Uni-
versity of Texas at Austin, Computer Sciences Tech. Report TR-94-17, April 1994.

14. I. Herstein, Topics in Algebra, Xerox, 1964.
15. C. Hoffmann, “Graph isomorphism and permutation groups,” Springer LNCS No. 132, 1982.
16. C-W.N. Ip and D.L. Dill, “Better verification through symmetry,” in Proc. llth International Symposium on

Computer Hardware Description Languages (CHDL), April 1993.
17. K. Jensen and G. Rozenberg (Eds.), High-level Petri Nets: Theory and Application, Springer-Verlag, 199 1.
18. 2. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, 1978.
19. R.P. Kurshan, “Testing containment of omega-regular languages,” Bell Labs Tech. Report 1121-861010-33

(1986); conference version in R.P. Kurshan, Reducibility in Analysis of Coordination, LNCIS 103 (1987)
Springer-Verlag, 19-39.

20. R.P. Kurshan, Computer-Aided Verification qf Coordinating Processes: The Automata-Theoretic Approach,
Princeton University Press, Princeton, New Jersey, 1994.

2 1. D. Lee and M. Yannakakis, “Online minimization of transition systems,” 24th ACM Symposium on Theory of
Computing, Victoria, Canada, pp. 264-274, 1992.

22. 2. Manna and A. Pnueli, Temporal Logic ofReactive and Concurrent Systems: Specification, Springer-Verlag.
1992.

23. P.H. Starke. “Reachability analysis of petri nets using symmetries,” Syst. A&. Model. Simul., Akademic
Verlag, Vol. 8, Nos. 4/5, pp. 293-303, 1991.

24. C. Stirling, “Modal and temporal logics,” in Handbook oflogic in Computer Science, D. Gabbay (Ed.), pp.
l-85, Oxford, 1993.

25. H. Weyl, Symmetry, Princeton Univ. Press, 1952.

