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1. Introduction 

In this paper, we show how to exploit symmetry in model checking. We focus on systems 
composed of many identical (isomorphic) processes. The global state transition graph M 
of such a system exhibits a great deal of symmetry, characterized by the group of graph 
automorphisms of M. The basic idea underlying our method is to reduce model checking 
over the original structure M, to model checking over a smaller quotient structure n, 
where symmetric states are identified. In the following paragraphs, we give a more detailed 
but still informal account of a “group-theoretic” approach to exploiting symmetry. 

More precisely, the symmetry of M is reflected in the group, Aut M, of permutations of 
process indices defining graph automorphisms of M. Similarly, any specification formula 
f intended to capture correctness of M in a particular Temporal Logic (say, CTL*) exhibits 
a certain degree of “internal” symmetry reflected in the group, Auto f, of permutations of 
process indices that leave f and significant subformulas of f invariant. 

We show that for any group G contained in Aut M, we can define M = M/G to be the 
quotient structure obtained by identifying any two states s, t of M that are in the same orbit 
(or equivalence class) of the state space of M induced by G in the usual way: there exists 
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a permutation rc in G such that n(s) = t. In other words, s and t are the same except for a 
permutation of their indices. (For example: s = (Ni , T2, C,), t = (Nz, T3, Cl)). 

We next show that such a quotient structure % corresponds in a coarse sense to the 
original structure M, so that if there is a path in fi there is an analogous path in M, 
and conversely. However, the correspondence may not be sufficiently precise to (directly) 
model check a specification f. If we further stipulate that G be contained in Aut M rl Auto f 
then we get a precise correspondence enabling us to establish 

M,s+ f iff M,sl=I 

where f is a formula of CTL,* or Mu-Calculus, and S indicates the equivalence class of s. 
We emphasize here that any subgroup G of Aut M n Auto f is sufficient. If we take 

G = Aut M II Auto f then we get maximal compression. However, determination of this G 
seems to be a potentially difficult problem. This is due to the fact that the problem of com- 
puting Aut M is polynomial time equivalent to graph isomorphism (cf. [ 151). Fortunately, 
since M is derived from a concurrent system P = NiKi consisting of many isomorphic 
processes Ki, we are able to show that Aut CR S. Aut M, where CR is the process com- 
munication graph for P. Since CR often follows a simple, standard pattern, Aut CR is often 
known in advance, and we can use G = Aut CR tl Auto f. Moreover, for massively parallel 
architectures Aut CR is likely to be a large group reflecting a high degree of symmetry. 
Determination of Auto f automatically is also a difficult problem. However, Auto f can 
often be determined manually by examination of the formula. 

For many of the automorphism groups G determined in practice we can efficiently and 
incrementally compute M/G, there by circumventing the construction of M. Of course, 
we then accrue the advantage of model checking over the smaller structure ,%?= M/G. 

One common and advantageous case occurs when G = Sym[ 1: n], the set of all permuta- 
tions on indices [ 1 : n]. For a system with n processes each with 1 local states, the original 
structure can have on the order of I” states, while M/G has on the order of nr states. 
When 1 is fixed and relatively small, while II is large, then n’ < I”. We can thus realize 
exponential savings. 

A complication can occur when f is a complex formula with little symmetry. Then 
Auto f and hence G may be small, resulting in little compression. We argue that it is 
frequently beneficial to decompose f into smaller constituent subformulae and check those 
individually. We also show how the symmetry of individual states can be exploited for 
further gains in efficiency. 

Finally, we give an alternative, automata-theoretic approach that provides a uniform 
method permitting the use of a single quotient .%? = M /Aut M for model checking for many 
specifications f, without computing and intersecting with Auto f . The idea is to annotate the 
quotient with “guides”, indicating how coordinates are permuted from one state to the next 
in the quotient. An automaton for f designed to run over paths through M, can be modified 
into another automaton run over fi using the guides to keep track of shifting coordinates. 

The remainder of the paper is organized as follows: in Section 2 we give preliminary def- 
initions and terminology. In Section 3 we describe our group-theoretic approach showing 
that, for both CTL* and the Mu-calculus, model checking over the original structure can be 
reduced to model checking over the quotient structure M/G for any G which is a subgroup 
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of AutM nAuto f. In Section 4 we discuss how the method can be applied in practice. 
This includes showing a helpful way to approximate Aut M from the network topology 
CR, by establishing that Aut CR C Aut M. We also discuss optimizations based on formula 
decomposition and state symmetry. An alternative automata-theoretic approach using an- 
notated quotient structures is described in Section 5. An example is given in Section 6. In 
the Section 7 we discuss related work, and we give concluding remarks in Section 8. 

2. Preliminaries 

2.1. Model of computation 

We deal with structures of the form M = (S, ‘R) where 

l S = L’ x D” is the finite set of states, with L a finite set of individual process locations, 
I the set of process indices, and V is a finite set of shared variables over a finite data 
domain D.’ 

l R s S x S which represents the moves of the system. 

Notation. For convenience, each state s = (s’, s”) E S can be written in the form (ei , . . , 
e:,,v=d,..., v’ = d’) indicating that processes 1, . . . , n are in locations l, . . . , e’, respec- 
tively and the shared variables u, . . . , u’ are assigned data values d, . . . , d’, respectively. 

As usual, a path through M is a finite or infinite sequence of states such that every 
consecutive pair of states is in R. By a convenient abuse of notation, we denote a path by 
so, 31, sz, . . . 7 orbysa-+sl-+s2,..., not bothering to explicitly indicate the last state for 
finite paths. A fullpath is a maximal path, i.e., either an infinite path or a finite one whose 
last state lacks an R-successor. 

In practice, for ordinary model checking, M, is the global state transition graph of a finite 
state concurrent program P of the form j/i Ki consisting of processes K1, . . . , K, running 
in parallel. Each Ki may be viewed as a finite state transition graph with node set L. An 
arc from node ~2 to node f?’ may be labelled by a guarded command B -+ A. The guard B is 
a predicate that can inspect shared variables and local states of “accessible” processes. The 
action A is a set of simultaneous assignments to shared variables v := d 11 s . (1 v’ := d’.2 
When process Ki is in local state -C and the guard B evaluates to true in the current global state, 
the global system can nondeterministically choose to advance by firing this transition of Ki 
which changes the local state of Ki to be 4? and the shared variables in V according to A. Thus 
the arc from !Z to f? in Ki represents a local transition of Ki that we denote by f? : B + A : e’ . 

The structure M corresponding to P is thus defined using the obvious formal operational 
semantics. First, the set of (all possible) states S is determined from P because it provides 
us with the set of local (i.e., individual process) locations L, process indices I, variables V, 
and data domain D. For states s, t E S, we define s -+ t E ‘R iff 

3 E I process Ki can cause s to move to t, denoted s +i t iff 
3 E I 3 local transition ri = ei: Bi + Ai: mi of Ki which drives s = (s’, s”) to t = (t’, t”); 
this means the ith component of s’ equals !Zi, the ith component oft’ equals mi, all other 
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components of s’ equal the corresponding component of t’, predicate Bi (s) = true, and 
t” = Ai (s”). 

We are often interested in just the set of states reachable by executing P starting in a 
particular start state SO. It is often most natural to consider execution of a program appropri- 
ately initialized. Moreover, the set of states reachable from SO can be much smaller than the 
set of all possible states. It is thus important to note that we can incrementally generate the 
(initialized) structure M = (S, R, SO) corresponding to P starting in state SO. We use the 
notation Ki (s) to denote the set of states reachable from state s by a single step of process 
Ki. We begin with SO, propagate it by adding in the members of the various Ki(so)‘S, and 
then propagate the Ki’s of those members, and so on until closing off. See Section 4.2 for 
a helpful and important generalization of this idea. 

2.2. Logics of programs 

We assume a familiarity with basic aspects of temporal and modal logics of programs (cf. 
[ 10, 22, 241). In this paper we use the logic CTL* and the Mu-calculus. 

2.2.1. CTL’. The logic CTL* uses the temporal operators U (until), X (nexttime) and the 
existential (full-)path quantifier E. The set of CTL* (path) formulas is generated by the 
following rules: 

l every atomic theorem, such as P, is a CTL* formula 
l if g, h are CTL* formulas then g U h, Eg, Xg, g A h and -h are also CTL* formulas. 

We write M, x b f to denote that in structure M of fullpath x = (xc, XI, . . .) formula 
f is true; the definition of b is specified inductively: 

.M,+gUhiffforsomei >O,M,x(‘)~~andforallj,suchthatOI j <i, 
M,x(j) kg, wherex (0 denotes the suffix of x starting from Xi. 

. M, x b Eg iff there exists a maximal path x’ starting from XO, which may be different 
from x, such that M, x’ b g. 

l M x+XgiffM x(‘)+g. 
. M:x+g/\hiff&,xkgandM,xkh. 
. M,xk-giffitisnotthecasethatM,xkg. 
. M, x + p iff P is true in the state x0, for any atomic proposition P. 

Convention. Indexed atomic propositions (cf. [CG89]) and atomic formulas are treated as 
follows. If J? is a local process state and some process i is in local state state C in global state 
s,thensisoftheform( ..., &,.. .) and we say that indexed proposition ei is true in global 
state s. If variable u has value d in global state s, then s is of the form (. . . , u = d, . . .), 
and we say that the atomic formula v = d, which we treat as an atomic proposition, is true 
in global state s. 

Any CTL* formula which is a boolean combination of atomic propositions and formulas 
of the form Eg is called a stateformula. Note that in a structure all fullpaths starting from the 
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same state satisfy the same set of state formulas. We write M, s b f , and say that in struc- 
ture M at state s formula f is true, provided that M, x + f for all fullpaths x starting at S. 

We find it convenient to use the other standard temporal operators F (sometime), G 
(always), and propositional connectives v (or), + (implies), A (universal path quantifier). 
All these operators and connectives can be defined in terms of the basic symbols in the 
usual way; e.g., Af abbreviates -E-f and g v h abbreviates -((-g) A (-A)). The logic 
CTL (see [6]) is strict subset of CTL* which restricts how the temporal operators can be 
used with path quantifiers. 

2.2.2. The Mu-calculus. We define the syntax and semantics of the (propositional) Mu- 
calculus (cf. [Ko83], [ECSO]). We assume that we have a set X of variables whose 
members are denoted by y, z, . . . . The formulas of the Mu-calculus are formed using 
(indexed) atomic propositions, variables, the propositional connectives 1 and A, the modal 
operator CR> and the least fixpoint operator p, which is formally analogous to a quantifier. 
The set of formulas of the Mu-calculus is the smallest set satisfying the following properties: 

s each atomic proposition P and each variable y in K is a formula 
l if f and g are formulas then f A g, -f, <R>f are also formulas 
l if f(y) is a formula, then py .f (y) is also a formula, provided all occurrences of the 

variable y in f are in the scope of an even number of negations 

To define the semantics, we need the following terminology. A variable y is free in a 
formula f if there is at least one occurrence of y which is not in the scope any py. The set of 
variables that are free in f is denoted by free-var( f). A formula without any free variables 
is called a closedformula or sentence. Let M = (S, R) be a structure. A valuation p is a 
mapping that associates a subset of S with each variable in X. With each structure M as 
given above and with each formula f, we define a function &M,J) from the set of valuations 
to subsets of S, by induction on the structure off as follows: 

l &M,P)(P) = {s E S: M, s /= P) where P is an atomic proposition 
. l(M,y)(d = P(Y) 

. l:(M,f~g)(P) =&M,,,(P) n ‘?M,g)(d 

. c(M,-f,(p) =s - c(M,f,(P) 

. l(M,Wf)(P) = { s. 3s’ E &M,&(P) such that (s, s’) E ‘I?.] 
l L(M,jq.f(y))(P) = n(s’ E s: s’= c (M,f(y))(p’) where p’(y) = S’ and for all other z E X, 

P’(Z) = P(Z)). 

Note that the value of f&,@y.f(y))(P) is given as a least fixed point. For finite Kripke 
structures, the least fixed point can be computed by starting with the empty set and iterat- 
ing f at most Is( times until a fixed point is reached, by the well-known Tarski-Knaster 
theorem. 

Other connectives can then be introduced as abbreviations: uy.f(y) abbreviates ‘KY. 
-f(-y) and represents the greatest fixpoint of f(y), while [R] f abbreviates -<R>- f. 

Other propositional connectives are defined as abbreviations in the usual way. 
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2.3. Applicable group theory 

We summarize the essential notions from group theory needed here. We refer the reader to 
one of the many standard texts discussing this topic (cf. [14]) for additional information. 
A group 6 is a set G together with a binary operation on G, called the group multiplication, 
that is associative, has an identity, and has an inverse for each group element. In practice, we 
write just G for G, and multiplication may be indicated by concatenation. H I G denotes 
H is a subgroup of G. 

A permutation n on a finite set of objects I is a I- 1, onto mapping n : I -+ I. The set of all 
permutations on I, denoted Sym I, forms a group under functional composition: if permu- 
tations n’, x” E Sym Z then TC = n” o X’ E Sym I. Here the order of functional composition 
in JC” o T’ is to first apply n’ then apply x”. If J s Z then Pstab J denotes {n: V j E 
J rc(j) = j}, the pointwise stabilizer of J. Id is the identity permutation or relation on I. 

Given an indexed object 6, i.e., one whose description depends on I, we can define a 
notion of permutation TC being applied to b, denoted x(b). In general, n(b) is obtained 
from b by simultaneously replacing every occurrence of index i E Z by n(i). 

For example, given state s = (NI , T2, C3, turn = l), where {N, T, C} s L, turn is a 
shared variable, and n: 1 t+ 2,2 H 1,3 I+ 3, we have n(s) = (N,(l), Tn(2), C&, turn = 
n(l))=(N2,T~,C3,turn=2)=(T~,N2,Cg,turn=2). 

Roughly speaking, we can then define Aut b to be the set (which is, in fact, a group) of 
permutations n E Sym Z such that n(b) is “equivalent” to b. The notion of equivalence 
used depends on the type of object b and the intended application. 

2.4. Automorphisms of states 

We define Aut s = {n E Sym I: n(s) = s} for any state s E S. Similarly, for any 7 c S we 
define Aut 7 = {n E Sym I: n(7) = T). 

2.5. Automorphisms of a structure 

We will define a notion of automorphism h of structure M into itself. By analogy with the 
usual definition of graph automorphism for labeled, directed graphs we say the following: 

An automorphism h of structure M = (S, R) is a mapping h: S -+ S that 

1. is l-l, onto on S, 
2. preserves edge structure: s + t E R implies h(s) + h(t) E R, and 
3. preserves “labeling” of states up to a permutation: h(s) = n’(s) for some n’ E Sym I. 

If M = (S, R, SO) is initialized, we also require that 
4. h(so) = SO. 

Observe, in particular, that a permutation ?r on I, viewed as a mapping S + S, vacuously 
satisfies the 1 stand 3rd criteria. If it also fulfills the 2nd criterion then it is an automorphism 
of M. We define Aut M = {n E Sym I: 15 defines an automorphism of M]. More simply, 
wehaveAutM={lr ~Syml:x(M)=M}. 
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2.6. Automorphisms of formulas 

For a CTL* formula f, we let Aut f = {n E Sym I: x(f) = f), where 3 denotes logi- 
cal equivalence under all propositional interpretations. For example, for f = PI A P2 and 
n = Flip, the permutation transposing 1 and 2, we have n(f) = P,(l) A Pnc2, = P2 A PI s 
PI A Pz = f. Hence, Aut f = {Id, Flip). In general, Aut f is intended to capture the “top- 
level” symmetry of f. 

We also use a subset (subgroup) of Aut f, denoted by Auto f which is used to capture 
the “internal” symmetry of f  and certain significant subformulas thereof. This internal 
symmetry will subsequently turn out to be vital to formulating inductive arguments on 
formula structure in proving the Compression Theorem below. Auto f is defined as follows: 

l For a propositional formula f, we define Auto f = Aut f. 
l For a general CTL* formula f, we define Auto f inductively according to the following 

cases. 

-f=XXgorf=Eg:Inthiscase,Autof=Autog. 
- f  = g U h: In this case, Auto f = Auto g n Auto h. 
- Other cases: If neither of the above conditions hold then f  is a boolean combination 

of atomic propositions and subformulas of the form Xg, g U h and Eg. That is, 
f=b(el,ez,...,ek,fi,fi,..., fi) where b is a boolean formula over the atomic 
propositions ei , ez, . . . , ek and subformulas f, , f2, . . . , fl where each fi is of the form 
Xg, or g U h, or Eg. Now, we replace each fi in b by a new unindexed proposition Fi , 
anddefineAutof=Autob(er,e2 ,..., ek,Fl,F2 ,..., F~)nAutof,n~..nAutof~. 
Itistobenotedthatb(ei ,..., ek, Fl,..., FI) is a propositional formula. 

It is not difficult to see that Auto f is well-defined for any CTL* formula. For ex- 
ample, letting I = [ 1 : 21, consider f = Pi A EX(Qi v Q2) v P2 A EX(Qi v Qz). From the 
definitions we get Auto f = Auto (PI A B v P2 A B) n Auto (EX( Ql v Q2)) where B is con- 
sidered as unindexed proposition, while PI and P2 are considered as indexed propositions. 
Now, Auto (Pi A B v P2 A B) = Sym I and we also see that Auto EX( Ql v Qz) is also Sym I, 
and hence Auto f = Sym I. 

Remark. There is an alternate way of capturing internal symmetry of f. If 91, . . , q,,, are 
the maximal propositional subformulae of f with respect to the subformula relation, then 
define Auto’f =Autq, cl ... nAutq,. Auto’ f consists of those permutations respecting 
the symmetry not only off but also of its major constituent propositional subformulae qi, It 
can be shown that the first definition, Auto f, is more general; i.e., for any f, the Auto’ f & 
Auto f. In addition, for some formulas, the containment is strict. The formula f given in 
the previous paragraph is such an example. In the rest of the paper, we will only use Auto f .3 

For a Mu-calculus formula f, Auto f is defined inductively according to the following 
cases: 

. f =Fy.gor f =<R>g: Inthiscase,Autof =Autog. 
. f = y: In this case, Auto f = Sym I. 
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l Other cases: In all other cases f can be written as a boolean combination of indexed 
atomic propositions and subformulas which are variables or of the form @y.g or <R>g. 
That is, f=b(ei, . . . ,ek, fi,. .., jr) where each ei is an indexed atomic proposition 
and each fj is a variable or a subformula of the form <R>g or of the form wy . g. In 
this case, we define Auto f =Auto b(el , . . . , ek, F, , . . . , Fl) fl Auto fl f~ . . . n Auto fr 
whereFi,..., F/ are unindexed atomic propositions. Note that b(er , . . . , ek, Fl , . . . , 4) 
is simply a propositional formula. 

For example, if f = my .( (Pi V Pz) V <R>( Qi A Q2 A <R>y)) then Auto f = Sym I. 

2.7. Quotient construction 

Finally, let G be any subgroup of Sym I. Then we can define an equivalence relation 36 
on states in S where s “o t iff 3 n E G such that t = n(s). The equivalence class of s, 
denoted [SIG, is also referred to as the G-orbit of s. In the sequel, our task will be to find 
a subgroup G of Sym I that is a subgroup of Aut M thus respecting the symmetry of M 
and also is a subgroup of Auto f, thus respecting the symmetry of f. We then collapse 
G-equivalent states to get a “quotient structure” as defined below. We emphasize that any 
subgroup G of Aut M n Auto f is sufficient for our application. The largest one possible is 
desirable for maximal compression. 

Let M = (S, R) be a structure and let = be an equivalence relation on S. Let 3 be a set 
ofrepresentatives of the partition of S into equivalence classes induced by =, i.e., for each 
s E S there exists a unique representative S of s such that S E [s] flz. Then the quotient 
of M mod&o =, as specified by the set of representatives 3, is $i = M/ = 

-- 
= (S, R) 

where S + t E %! iff there exists s’ 3 S and there exists t’ z i such that s’ + t’ E R. 
When = is =o, for some G, we denote Ml so by M/G or simply by M. 

3. Group-theoretic approach 

3.1. Model checking CTL* 

In this section we present the correspondence lemma and the results showing that model 
checking of CTL* formulas on the original structure can be reduced to that on the quo- -- 
tient structure. Let M = (S, ‘RJ and M/G = (S, 7%) be as defined above. For a sequence 
X=(SO,S] ,... yJi,..o ) of states in S, we let 2 denote the sequence of corresponding rep- 
resentatives in S, i.e., X = 6, S;, . . . (5, . . .). 

Lemma 3.1 (Correspondence lemma). There is a bidirectional correspondence between 
paths of the original structure M and the quotient structure M = M/G for any G _< 
AutM: 
(i) Zf x = SO, SI, s2, . . . , is a path in M, then X is a path in a. 
(ii) ZfX=io,S~,i~, . . . , is a path in .%?, then for every state s; =G .?o in M there exists a 

corresponding path x’ = s& si, sa, . . . , in M of states such that S: =o Si. 
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Proof: Part (i) is immediate from the definition of quotient structure. To prove (ii), let 
x=io,s,,s2 )..., be a path in a. Choose an arbitrary sh So SO. By definition of quotient 
structure and since ia -+ Si E %!, there exists sI( =o Sa and there exists sy =G Si such that 
s; + si’ E R. 

Thus, by transitivity s; =o s;i and s; =n-(~6) for some permutation rc E G. Let 
si =n(s;“). Now, sI, + si =rr($‘) + n(sy) E M since sfi -+ s;’ E M and n E 
G ( Aut M. Moreover, s{ = n(sy) zo Si as desired. 

The first edge of x’ is thus defined by s; -+ si . Continuing with si the same argument 
can be applied to exhibit s; such that si -+ s; E M and si =G &. Proceeding, in this 
fashion we see that there is si -+ sl+i E M corresponding to each Si -+ Si+i of..? in ,&!. 
The process continues for all natural numbers i or until the terminal i of X if it is finite. Let 
x’ = sI, -+ si -+ si + . . be the resulting path in M. By construction, it corresponds to 
X in the desired way. q 

Remark. If the Correspondence Lemma is restricted to paths consisting of a single tran- 
sition, it amounts to saying that there is a bisimulation between M and .&? defined by zG. 

Let f be any CTL* formula. We define a subset of subformulas off, called signi$cant 
subformulas, as follows 

l f is a significant subformula of itself. 
l For every subformula g off which is of the form Xg’ or Eg’, both g and g’ are significant 

subformulas of f. Similarly, for every subformula g of the form g’ U h’, all of g, g’ and 
h’ are significant subformulas off. 

Intuitively, g is a significant subformula of f if either g is same as f, or the outer most 
connective of g is a temporal operator or is a path quantifier, or g appears as an immediate 
argument of a subformula whose outer most connective is a temporal operator or a path 
quantifier. For example, for the formula f =Egwheregisgivenby(Pi v P~)A ((Ql v 

Qd U (RI v Rd), the suthmulas f, g, <QI v Qd U (RI v Rd, <QI v QA (RI v Rd 
and (Pi v P2) are all the significant subformulas. Note that, in this case, none of the atomic 
propositions is a significant subformula. 

Lemma 3.2. For every significant subformula h off, Auto f 2 Auto h. 

Proof: Let g be any significant subformula of f. We define the immediate significant 
subformulas of g as follows. If g is of the form Xg’ or Eg’ then g’ is an immediate significant 
subformula of g. If g is of the form g’ U h’, then both g’ and h’ are the immediate significant 
subformulas of g. If neither of these conditions holds then g is a boolean expression over 
atomic propositions and significant subformula f,, . . . , fk where each fj is of the form 
Xg’ or Eg’ or g’ U h’; in this case f,, . . . , fk are the immediate significant subformulas 
of g. From the definition of Autog the following condition holds: for every immediate 
subformula g’ of g, Auto g E Auto g’. Applying this inductively we get the following: for 
every significant subformula g’ of g, Auto g C Auto g’. The lemma follows by using f and 
h in place of g and g’, respectively, in the above observation. q 
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The Correspondence Lemma and the previous lemma make it easy to prove the following 
fundamental result showing that model checking over M can be reduced to model checking 
over M. 

Theorem 3.3 (Compression theorem for CTL*). For all structures M, all CTL* for- 
mulas f , all subgroups G _< Aut M n Auto f , and allfullpaths x in M, 

M,x b f iffMIG,i !=.f 

Proof: We argue by induction on formula structure that, for every significant subformula g 
off and every fullpath x in M, M, x + g iff M/G, X /= g. Formally, let count(g) denote 
the number of occurrences in g of symbols from {U, X, E}. We proceed by induction on 
count(g), letting x = (sa, si , . . . , sj, . . .). 

Base case: count(g) = 0. In this case g is a propositional formula. Hence, M, x j= g iff SO 
satisfies g and .%?, X /= g iff S;; satisfies g. Clearly, there exists a permutation n E G such 
that G = n(sa). Using Lemma 3.2 and the fact that g is a maximal subformula of f and 
K E Auto f, we see that 7t E Autog. From this, we deduce that g is equivalent to n(g). 
Clearly, se satisfies g iff rr(sa) satisfies n(g) iff So satisfies g. Hence, M, x + g iff M/G, 
Xkg. 

Induction step: Assume that the lemma holds for all maximal subformulas g’ such that 
count(g’) 5 k and for all maximal paths in M. Let g be any maximal subformula with 
count(g) = k + 1. Now, we have the following cases: 

g = Eg’: M, x b g iff there exists a maximal path x’ in M starting from SO such that 
M, x’ + g’. From the induction hypothesis and the fact that count(g’) = k, it follows 
that M, x’ k g’ iff M/G, 7 b g’. Since, 2 and X start from the same state in 3, it is 
the case that M/G, x’bg iff M/G, X ,l=g. The induction step follows from these 
observations. 

g=Xg’: M,x~giffM,x(“~g’iffM/G,x”‘~g’iffM/G,~~g. Thesecondstep 
follows from the induction hypothesis, and the last step follows from the fact that x(I) = i 
and the definition of nexttime. 

g = g’ Uh’: count(g’), count(h’) 5 k. Now, M, x j= g iff for some i 2 0, M, xci) b h’ 
and for all j, 0 5 j c: i, M, x(j) l= g’. By induction hypothesis, the later condition - 
holds iff M/G, x(I) l= h’ and for all j, 0 5 j < i, M/G, x(j) l=g’. The last condition 
holds iff M /G, X + g. The induction step follows from these observations. 

Other cases: In this case, it is easy to see that g is a boolean combination of atomic 
propositions and maximal subformulas whose outer most connective is from (X, U, E). 
That is, g = b(el, e2, . . . , ek, fl, f2, . . . , fi) where b is a boolean expression over 
the indexed atomic propositions el , . . . , ek and maximal subformulas ft , . . . , fr such 
that, for each i, 1 5 i 5 1, the outer most connective of fi belongs to {X, U, E} and 
count( fi) = k + 1. Using the induction hypothesis for the previous three cases, we see 
that,foreachi,l (isl, M,x+~iffM/G,x~~. 

Now,letFi,..., F, be some distinct unindexed atomic propositions. From Lemma 4.2, 
we get Auto f s Auto g. From the definition of Auto g, we get Auto g 5 Auto b(el, . . . , 
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ek,FI,..., F~).Hence,G~Aurob(et ,..., ek,F~ ,..., F~).Now,foreachi,l~i~l, 
let ui be a boolean constant defined as follows: if M, x b fi then ui = true else 
Ui = false. It should be easy to see that M, x ‘F g iff the state SO satisfies b(e, , . . , ek, 
ui, . . . , ul) and M/G, X kg iff the state SO satisfies b(et, . . . , ek, u], . . . , ut). Let 
TC E G be such that ia = n(sa). Clearly, so satisfies b(el, . . , ek, ui, . , u,) iff So sat- 
isfies n(b(e,, . . , ek, ~1,. . . , ut)). Since G IAutob(el, . . , ek, F,, . . , Ft), it is the 
case that n E Auto b(el, . . . , ek, FI, . . , Ft). From this, we see that n(b(e,, . . . , ek, 
UI,..., ul)) is equivalent to b(el , . . , ek, ui, . , u(>. Hence, SO satisfies b(el, . . , ek, 
ui, . . , ~1) iff &, satisfies b(el, . . , ek, ui , . . . , ~1). Putting all the above observations 
together, we get the induction step. q 

3.2. Model checking the Mu-calculus 

We now prove a result analogous to Theorem 3.3 showing that model checking for the Mu- 
calculus over the original structure M can be reduced to model checking over the quotient 
structure ~77. 

First, we define the significant subformulas of a formula f as follows: 

l f is a significant subformula of itself. 
l Every variable appearing in f is a significant subformula. 
l For every subformula g of f which is of the form py. g’ or <R>g’, both g and g’ are 

significant subformulas. 

The following technical lemma is similar to Lemma 3.2, and its proof is left to the reader. 

Lemma 3.5. If h is a signi$cant subformula off then Auto h C Auto f. 

Theorem 3.6. For every structure M = (S,‘R), closed Mu-calculusformula f, subgroup 
G such that G 5 Auto M n Auto f, and state s in S, we have M, s + f iff M/G, S b f. 

Let M, f and G be as given in the statement of Theorem 3.5. In order to prove the 
theorem, we need the following definitions. Let D, D’ be subsets of S and 3, respectively. 
We say that D and D’ correspond if D = {s : for some t E D’ s =o t); i.e., D is the union 
of all the equivalence classes that have a representative in D’. Let p and p’ be evaluations 
having same domains and with ranges being the power sets of S and 3, respectively. We 
say that p and ,o’ correspond if for each variable x, p(x) and p’(x) correspond. 

Proof of Theorem 3.6: We argue by induction on formula structure that, for every sig- 
nificant subformula g of f and for any two evaluations p and p’ that correspond with each 
other, l~~,~)(p) and Cc,-,,I($) correspond with each other. Intuitively, this asserts that 
for any significant subformula g of f, a state s in the structure M satisfies g with respect 
to an evaluation p iff its representative S in m satisfies g with respect to a corresponding 
evaluation p’. Formally, for any significant subformula g, let count(g) denote the num- 
ber of occurrences in g of symbols from the set {,/J, CR>}. We proceed by induction on 
count(g). 
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Base case: count(g) =O. In this case, g is simply a propositional formula over atomic 
propositions and variables. From Lemma 3.6, it is the case that Auto f C Auto g and hence 
G ~Autog. From these observations it should be easy to see that l,,,(p) and LG.&‘) 
correspond. 

Induction step: Assume that the theorem holds for all significant subformulas g’ such that 
count@‘) 5 k. Let g be a significant subformula such that count(g) = k -I- 1. Now we have 
the following cases: 

g = <R>g': This case is straightforward from the induction hypothesis. 
g = py . g’: Let PO, PI, . . . , ~1 and PA, pi, . . . , p,’ be sequences of evaluations obtained by 

iteratively computing the least fixed points in the structures M and M/G, respectively. 
Formally, these sequences of evaluations are defined as follows. For i = 0, . . . ,1 and 
for each z # y, pi(Z) = p(z) and p,‘(z) = p’(z). PO(Y) = p;(y) = 0. For i = 1, . . . ,I, 
pi(y) = L~,~f(pi-t) and pi(y) = ~5~,+(pf-t); pi = pi-1 and pi = pi-, . Using the main 
induction hypothesis and by induction on i, it can easily be shown that pi and pi’ corre- 
spondfori=O,..., 1. By Tarski-Knaster theorem, it is the case that Lc,,,(p) = m(y) 
and L,-,,(p’) = p;(y). Hence L,,,(p) and L,-,,(p’) correspond. 

Other cases: In this case g is a boolean combination of atomic propositions, variables and 
significant subformulas of the form <R>g' or py .g’. Hence g = b(et , . . . , el, ft , . . , fm) 
where each ei is an atomic proposition or a variable, and each fi is a formula of the form 
<R>g' or py.g’ such that cOUnt(fi) 5 k + 1. Using the induction step for the previous 
two cases, we can show that L,,,,fi (p) and ~Z,,J; (p’) correspond. From this observation 
and the fact that G 5 Auto f C Auto b(el, . . . , el, FI, . . . , F,,,), where F,, . . . , F, are 
unindexed atomic propositions, it is easy to show that CM,,(~) and CM,, (p’) correspond. 

The theorem now follows by taking f itself for g and the empty evaluation, assigning 
false to every variable, for p and p’. 0 

4. Applications 

We wish to determine whether M, SO l= f, where M is the global state transition graph 
of ‘P = Ni Ki and f is an arbitrary CTL* or Mu-calculus formula, without incurring the 
potentially enormous cost of constructing M. By Theorem 3.3, it suffices to construct 
M/G, where G is a subgroup of Aut M rl Auto f , and then check whether M/G, so b f . 
If G is large, reflecting a good deal of symmetry common to M and f, then we should 
realize a significant savings. 

4.1. Determination of a suitable group G 

We can take G to be G’ n Auto f for any subgroup G’ of Aut M. Thus, to calculate 
G we should determine (i) Auto f, (ii) largest possible G’ and (iii) the intersection of (i) 
and (ii). Each of these appears to be a difficult problem. Fortunately, with certain reasonable 
restrictions on M and f the computations of (i)-(iii) become much easier. 
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It is to be noted that if we have an algorithm for computing Aut p for a propositional for- 
mula p, then we can use it inductively to compute Auto f for an arbitrary CTL* formula f. 
However, automatic computation of Aut p for a propositional formula p is a computationally 
hard problem. For example, the following proposition shows that three important problems 
associated with Aut p, namely universality, membership and non-triviality are computa- 
tionally hard problems. Here the universality problem is to determine if Aut p = Sym I for 
a propositional formula p. The membership problem is to check if a given permutation 3~ 
is in Aut p for a propositional formula p. The non-triviality problem is to check that there 
exists at least one non-identity permutation in Aut p. 

Proposition 4.1. All the three problems, i.e., universality, membership and non-triviality, 
are co-NP-hard. 

Proof: We reduce the validity problem for propositional formulas to the universality 
problem. Let p be any propositional formula. It has some number n of atomic propositions, 
and we may assume without loss of generality, that they are indexed by I = [I : n], viz., 
Ql , . . , Q,. We may also assume that there exists an alphabet of n distinct propositions 
Pi, also indexed by I, such that no Pi appears in p. 

We claim that p is valid iff Aut (p v PI) = Sym I. If p is valid, then any formula 
resulting from any permutation of the indices on its propositions is also valid, and simi- 
larly for the validity p v PI; hence, Aut (p v PI) = Sym I. Conversely, let us assume that 
Aut (p v PI) = Sym I. Let 71 be a permutation such that n(l) = 2. Now, by assumption, 
we have that n(p v PI) = (p v PI), simplifying to n(p) v P2 3 p v PI. Consider any 
assignment of truth values to all the propositions Qi. Extend it to assignment to all the 
propositions such that PI and P2 are set to false and true, respectively; for any such assign- 
ment p should evaluate to true. Since no Pi, for any i, appears in p, we can conclude that 
p is valid. With slight modifications we can also exhibit similar reductions to the other two 
problems. 0 

It should be obvious that both the universality and membership problem are in co-NP, 
and hence are co-NP-complete. 

In practice, for a CTL* formula f, Auto f can often be determined through inspection 
or by using some heuristics. For example, if f = AF(Cl v C2 v . . v C,) then it is easy to 
see that Auto f = Sym I. 

For many systems we can also determine Aut M by inspection of program P, and in these 
cases we can take G to be Aut M nAuto f . Sometimes, we can take G to be Aut P fl Auto f . 
Here Aut P is the set of automorphisms of the program P defined as follows. 

In order to define Aut P, we first define the notion of equivalences of transitions and 
equivalence of processes. Recall that each process is comprised of a set of transitions. 
We say that a transition 1: B -+ A: m is equivalent to another transition I’: B’ -+ A’: m’ 
if 1 = l’, m = m’, the boolean expressions B, B’ are (semantically) equivalent, and finally 
A, A’ are (semantically) equivalent, i.e., update the same variables and assign equivalent 
expressions to identical variables. We say that two processes K and K’ are equivalent if 
there exists a bijection mapping each transition of K to an equivalent transition of K’. 
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Now, let P = //i Ki be a program (with start state so). Let n be a permutation on the 
process indices. We extend rr to the processes in P as follows. For each Ki, let n( Ki) be 
the process obtained by replacing each occurrence of index j by n(j) for each j E I. We 
say that a permutation n on process indices is an automorphism of P if for each i, n(Ki) 
and K=(i) are equivalent (and n(se) = se). Let Aut P denote the set of automorphisms of P. 
Clearly, Aut P forms a group. 

Lemma 4.2. Aut P 5 Aut M where M is the global transition graph of program P (with 
start stafe so). 

Proof: Let n be a permutation in AutP. Assume s + t E M. Then for some i, 
s +i t, and in process Ki there is some local transition r driving s to t in M. Clearly, 
the transition n(r) in n( Ki) drives n(s) to x(t) in n(M). Since the processes n( Ki) 
and Kt,(i) are equivalent, there is a transition t’ in Kx(i) of the program P generating 
M that is (semantically) equivalent to rr(t) and that drives rr(s) to Is(t) in M. Hence, 
n(s) +x(i) n(t), and n(s) + It(t) EM. Since the above property holds for any transition 
s -+ t of M, we conclude that n E Aut M, while noting that if P has start state so, it must 
be that n (so) = SO. 0 

It may not be easy to determine the automorphism group of P. However, sometimes 
when all the processes in P are normal and are isomorphic, we can use the automorphism 
group of the under1 ying communication graph to determine an appropriate G. We formalize 
this below. 

Let P = Ni Ki be the concurrent program. We assume that each shared variable in P is 
shared between exactly two processes. Corresponding to P, we define an undirected graph 
CR as follows. The nodes of CR are the process indices and there is an edge connecting i 
and j iff i and j share a variable Xij. (Shared variable xij is also equivalently denoted Xji.) 
For any node i, we let CR(i) denote the neighbors of i. We say that the processes in P are 
normal if every transition t in each process Ki is of the form: 

8 : A B(i, j) + IljEcR(i)A(iT j>: m 
j&R(i) 

where B(i, j) is a boolean expression over atomic formulas that are either atomic proposi- 
tions Qi or Qj, or equality tests of shared variables of the form Xii = yij or xij = d, where 
X, y are variable names and d is the name of a domain element; and A(i, j) is a concurrent 
assignment to variables shared between i and j of the form xii := yij or xij := d. 

We say that two processes Ki and Kit, where i EA,,~CR i’, are isomorphic if there exists 
a bijection mapping each transition t E Ki to a transition t’ E Kil such that if t is 

c: A B(i, j> + IljeCR(i)A(i, j>:m 
j&R(i) 
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then t’ is 

t : A B(i’, j) -+ Illjux(r)A(i’, j): m. 
jcCR(i’) 

It should be noted that B(i’, j) is the same B(i, j) and A(i’, j) is the same as A(i, j) except 
that the subscript i is replaced by i’. 

Theorem 4.3. If M is the global state transition graph of P = /Ii Ki where all Ki are 
normal and isomorphic then Aut CR 5 Aut M. 

Proof: We will show that Aut CR 5 Aut P, and from Lemma 4.2, it would follow that 
Aut CR 5 Aut M. Let n E Auf CR. For any i, consider the processes Ki and Kn(i). Since 
these two processes are normal and isomorphic, there exists a bijection that maps each 
transition t of Ki of the form 

C : A B(i, j) + IIjecR(i)A(it j): m 
j&R(i) 

to a transition t’ of Kn(i) which is of the form 

.!!: A B(n(i), j> + Ilj~cR(n(i))A(~(i), j>: m. 
jcCR(n(i)) 

Since TC E Aut CR, the transition n(t) is equivalent to t’. Hence the processes n(Ki) and 
Kn(i) are equivalent, and TT E Aut P. 0 

Since in designing the program P, the choice of CR is (one hopes!) explicitly and 
carefully considered, and often chosen from a standard pattern, determination of Aut CR is 
often easy in practice, and frequently is just a well-known fact of graph theory. We have 
for example: 

l If CR = I x I \ Id so that the communication topology is the complete graph on I, then 
AutCR=SymI. 

l If the processes K,, . . , K, of P are arranged in a ring then CR= {(i, i @,, I), 
(i, i 8 nl): i E I ), where @, denotes wrap-around addition where n Bn 1 = 1, and 
analogously for subtraction. This indicates that each process can only communicate with 
its two neighbors in the ring. Thus, Aut CR = D,, the dihedral group of order 2n. 

To determine the intersection of A.uto f and Aut CR, we can often proceed by inspection. 
In practice, it is likely to turn out that one or both of Auto f or Aut CR is large, for example 
Sym I or Sym I \ (i}, or at least a well-known permutation group which simplifies our task. 
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Let 3 := 0 
Let SO := so 
Add x0 to 3 
While unprocessed(S) # do 

Remove some unprocessed B from 3 
For each i E [l : TZ] do 

For each t E &(z) do 
Ensure Z ends up in 3: 

If 3i E s t =‘G Ti then 
Note T = z E 3 already 

Else 
Let $ := t 
Add E to unprocessed@) 

Adda-+ftoE 
End 

End 
Mark 3 processed 

End 
Figure 1. Incremental construction of quotient. 

4.2. Constructing the quotient structure 

We can construct M/G from P with start state SO incrementally, without building M itself, 
as shown in figure 1 (cf. [16, 7,211). 

An important part of the above procedure is the test t “G U. Since G may in the worst 
case be Aut M, this could conceivably be intractable (cf. [7, 151). However, in practice M 
has special structure derived from P, which can simplify matters. In some cases, the test 
is particularly simple, For example, if S = L’ and L = {8,, . . . , fZ,] and G = Sym I, then 
s “G t iff for each i E [ 1 : m] the number of processes in local state ei is the same for both 
global states s and t. 

4.3. Decomposing formulae 

In some instances G may be very small essentially because f is a large composite formula. 
Consider, for example, f = pi AG(Ni =S AFCi). We see that Auto f = Pstab 1 n . . . n 
Pstab n = Id. Since G r&to f, it is the case that G = Id. So, no compression is possible 
in forming the quotient M = M/G. Sometimes it is possible to overcome this problem 
by breaking down the composite formula into its basic modalities (or other appropriate 
subformulae) and checking them individually. While this may entail computing multiple 
quotients, it can still be more efficient. For the formula f specified above, we can check 



SYMMETRY AND MODEL CHECKING 121 

for each conjunct fi = AG(Ni + AFCi) in turn. Since Auto fi = Pstub i = Sym I\ {i} is of 
exponential size, any G obtained from such an Auto fi is likely to be large. Thus computing 
n different exponentially smaller quotients can be more efficient than computing one large 
quotient, actually equal to the full, original structure. 

4.4. State symmetry 

Sometimes we can take advantage of symmetry in the initial states to achieve faster model 
checking. Suppose s is a state that is fully symmetric in a fully symmetric structure M, 
viz., Aut s = Aut M = Sym I. For example, s could be the start state (Ni , . . . , ZV,) for a 
solution to the mutual exclusion problem with each process in its noncritical region (cf. 
[2,9], Section 6). 

Consider the formula Aigi where gi is a temporal formula over the atomic propositions 
with index i . Here Ai denotes a conjunction over all process indices i, i.e., all i E I. Now, 
it can be shown that M, s /= pi gi iff M, s b gJ. The + direction is obvious. To see 
the e= direction, choose an arbitrary i E I. Then pick some n E Aut s = Sym I such that 
n(1) = i. The right-hand-side implies that for all permutations n’ that M, n’(s) j= n’(gJ) 

and hence M, n’(s) b g+(r); this is due to the fact that each permutation n’ is in Aut M. 
For n’ = rr this simplifies to the desired property M, s k gi . 

Thus, in reference to the previous Section 4.3, in checking a formula such as r\iAG(Ni + 
AFCi) evaluation of multiple conjuncts over multiple quotients is not required if the initial 
state and the structure are fully symmetric. 

This idea can be generalized to states and systems with somewhat less symmetry. Let s 
be any state in M. Auts nAutM induces an equivalence relation on I: i = j iff i = n(j) 
for some n E Aut s fl Aut M. Let Part be the partition induced by the above equivalence 
relation. Let Rep be a set of representatives, one from each equivalence class in Part. 

Theorem 4.4. M, s b Ai gi iff M, S b Aj E Rep gj. 

Proof: The =+ direction is obvious. To see the + direction, assume the left-hand-side 
holds. Choose an arbitrary i E Z. Let j be the representative equivalent to i. For some 
n E AutsnAutM, we have i =x(j). Moreover, M,s + gj. SO M,n(s) b n&j) 
because rr E Aut M. Because n(s) = s, n(gj) = gn(i) and n(j) = i, the above simplifies 
toM,s +ggi. 0 

Thus, instead of checking all n = (I ] conjuncts, it suffices to check JRep( conjuncts which 
may be significantly smaller. In the extreme case, as above, only one conjunct need be 
checked. If Aut M = Sym Z then matters simplify so that at most (L 1, the number of distinct 
local states, need be checked. Typically IL] < n = ]I 1. If Aut s = Sym I, so that s is a start 
state with all process in the same local state, then if Auf CR is nontrivial, some equivalence 
class on Z has 2 or more members, )Repl < n, and some savings is obtained. In many 
practical cases Aut CR may yield a small IRepI. Any of the vertex-transitive connectivity 
graphs, which includes such “sparse” graphs as rings, yields only a single equivalence class. 
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5. Automata-theoretic approach 

We can give an alternative, uniform method using automata for model checking temporal 
properties of systems of processes that exhibit symmetry. The main feature of this approach 
is that a single, annotated quotient structure M = M/G, where G is a subgroup of Aut M, 
can be used to model check with respect to a variety of different specifications f. Each 
transition in the annotated quotient structure is labelled with additional information denoting 
how coordinates are permuted from one state to the next state. The annotated quotient 
structure is a succinct representation of the original structure. In order to verify that all 
computations satisfy a linear temporal specification f, we construct an automaton d that 
accepts exactly those strings that satisfy the formula -f, construct the cross product of fi 
with A and check that the product automaton does not accept any input strings. 

5.1. The annotated quotient structure 

Let M = (S, 77,) be a structure which, for ease of exposition, is assumed to be total. We 
first fix a subgroup G of Aut M. We then define the annotated quotient structure of M with 
respect to G, denoted M, to be (3, AR) where 3 is the set of representative states as before, 
and AR is an annotated relation consisting of the following elements. Corresponding to 
each transition (i, t) E R, the triple (S, rr, f), where t = rr(f) for some rr E G, is contained 
in AR. All transitions in the original structure from a representative state S to another 
representative state tare included in AR as triples (S, rr, i) in which the permutation rr is 
the identity permutation. Also, all transitions in the original structure from a representative 
state S to a non-representative state t are encoded by some (S, n, i) in AR where n is not 
the identity. Those transitions from a non-representative state to a non-representative state 
in the original structure are not included in a. Due to this, many times, the size of the 
structure a can be much smaller than that of M. It is not difficult to see that we can obtain 
the original structure from the annotated quotient structure .%?. 

We prove some simple properties of the annotated quotient structure a. An annotated 
path p in M is an alternating infinite sequence G, ~1~5, . . , z, rr+i, . . . of states and 
permutations such that, for all i 2 0, 6, Iti+], si+l) E dR. We define a function h 
mapping annotated paths of m to paths of M as follows. For any annotated path p as given 
above,h(p)=to,tl,...,ti,...,whereto=soandti=nlon2o...o~i(~foralli>O. 

Lemma 5.1. The following properties are satisfied by M. 
l For every annotated path p in a, h(p) is a path in M. 
. For every path q in M startingfrom a representative state S;;, there exists an annotated 

path p in ,%? such that q = h(p). 

Proof: To prove the first part of the lemma, assume that p = to, nl , tl , ~2, . . . , ti , ni+l, . . . , 
is an annotated path in fi. From the definition of M, it should be easy to see that, for each 
i 2 0 the following properties are satisfied: ti += rri+i (ti+l) is a transition in M. Since 
no,n1, ... are all in the group G of automorphisms of M, it follows that that rri o 7r2 0. . . o 
7ZY<(ti) + 7iTl 0X20*‘* o ni+l(ti+l) is a transition of M. Hence h(p) is a path in M. 
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To prove the second part, we note that we can write any path q = so, ~1, ~2, . . . in A.4 
starting at a representative state So in the form so, #to, $20, . . . where, for each j 2 1, 
4j is any permutation in G such that $j ($ = St. We will argue by induction on j that we can 
take $i to be a permutation of the form rrr o . . o ni where 6, nl , m, . . . , 6, nj, sj+l) 
E AR. For j = 1, since 6, $1 (s1)) E R, by definition of %, there is some nl E G 
and 6, nt, ?i) E /l7Z such that rrt(Zi) = &(s;). Thus, we can take Cpt to be rri. In- 
ductively, we can take $j = rri o * . o nj. Because (4j(v, @j+r (sj+l)) E R, we have 
(sj, (Xl 0 ‘. ’ 0 7lj)-’ o @j+t (sj+l)) E R, by induction hypothesis and since 47’ is an au- 
tomorphism of M. Hence, there is some nj+t E G and some (q, rrj+t, si+l) E AR 
such that nj+t (sj+l) = (nr o . . o Xj)-’ o 4j+l(sj+l). Thus, we can take $j+t = 
n] 0 ‘.. o Jrj o nj+r, thereby completing the induction step. Then, the annotated path 
~=~,nt,K,n2,S2... issuchthath(p)=q. cl 

5.2. Model checking indexed CTL* 

The above lemma allows us to model check properties specified in an Indexed CTL* (ICTL*) 
efficiently. The set of ICTL* formulas are defined inductively. To do this, we assume that 
the set dP of atomic propositions is partitioned into two sets dP’ and AP” where dP’ is 
the set of global propositions and AP” is the set of local propositions. We further assume 
that the set AP” is an indexed set, while dP’ is not an indexed set. Global propositions 
denote global properties of a state, while local propositions denote properties of individual 
processes. An element Pi E AP” indicates a property of process i, and its satisfaction in 
a global state depends only on the state of process i. We also assume that all the states 
in an equivalence class satisfy the same set of global propositions (these are same as the 
invariant propositions of [7]). The set of ICTL* formulas are defined inductively using 
the propositional connectives, atomic propositions and quantified formulas of the form 
Vi Efi and Ai Efi where, fi is any propositional linear temporal logic (PLTL) formula that 
only uses global propositions and local propositions of process i. The symbol Vi acts as 
an existential quantifier ranging over processes indices. Similarly, Ai acts as a universal 
process quantifier. E acts as an existential path quantifier. We further stipulate that all local 
propositions should appear in the scope of a process quantifier. 

Lemma 5.2. Two equivalent states in M satisfy the same set of ICTL* formulas. 

Proof: Let s and t be two states such that t = n(s) for some x E G. For any ICTL* 
formula f, s satisfies f iff t satisfies n(f). Roughly speaking, the above property is 
satisfied due to the fact that, the tree rooted at the state t in M is obtained by taking the 
tree rooted at s and replacing each state s’ in the tree by the state n(s’). In addition, since 
f is an ICTL* formula, it is the case that f and n(f) are equivalent. Hence s satisfies f 
iff t satisfies f. cl 

From the above lemma it is enough if we give a procedure to check if a representative 
state satisfies an ICTL* formula. Furthermore, it is enough if we give the procedure for 
ICTL* formulas of the form Vi Efi and ~\i Efi. We show how to model check for these type 
of formulas using the annotated quotient structure. 
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As indicated previously, we will be using automata for model checking temporal prop- 
erties. A Buchi automaton A on infinite strings is quintuple (Q, C, 6, I, R) where Q is a 
finite set of automaton states, E is the input alphabet, 6 : (Q x C) + 2Q is the transition 
function, I C Q is the set of initial states and R C Q is the set of recurrent states. A run of 
the automaton on an input t = (to, . . . , ti, . . .) E Co is an infinite sequence (40, . . , qt, . . .) 
of automaton states such that qo E I, and for all i 2 0, qt+I E 6(qi, ti). We say that a run 
is accepting iff some recurrent state occurs infinitely often in the run. We say that an input 
t E Co is accepted by A iff there is an accepting run of A on t. 

We first construct a Buchi automaton A corresponding to the PLTL formula fi and check 
that there is no path in M that is accepted by it. The input alphabet of A is the set of 
subsets of local propositions and global propositions. We next construct a directed graph 
z which is a product of the annotated structure and the automaton A. The nodes of a are 
triples of the form (S, q, j) where S E 3, q is a state of the automaton A and j is a process 
index. The edges/transitions of B are defined as follows. For every transition of the form 
(Z, n, f) E AR and for every automaton state q and process index j, there is going to be 
an edge in B from node (S, q, j) to the node (f, r, n-‘(j)) where r is any state to which 
there is a transition of A from state q on the input which is the set of global propositions 
satisfied in S and local propositions satisfied in the process j’s component of S. We say that 
a node (S, q, j) of B is a recurrent node iff q is a recurrent state of A. Let qo be the initial 
state of A. 

Lemma 5.3. The following properties hold for all S E 3. 
l The formula Vi E fi is satisjied in the state S of the structure M ifffor some i, 1 5 i 5 n, 

there exists an infinite path in B starting from the node (S, qo, i) and containing infinitely 
many recurrent nodes. 

l The formula Ai E fi is satisfied in the state S of the structure M ifffor all i, 1 5 i 5 n, 
there exists an infinite path in B starting from the state (S, qo, i) and containing infinitely 
many recurrent nodes. 

Proof: We prove the first part of the lemma. The second part can be proved analogously. 
Assume that the formula viEfi is satisfied in the state 5. Let p = SO, ~1, . . . , sj, . . . , be 
a path in M and ia be a process index such that S = SO and p satisfies the formula fi,. 
Letqo,ql,...,qj,..., be an accepting run of A on the above path. From Lemma 5.1, 
we know that there exists an annotated path p’ = to, ~1, tl, 7x2, . . . , t, j, nj+l, . . . , such 
that h(p’) = p. Now define a sequence of process indices in, il, . . . , ij, . . . , such that 

-1 -1 
lj =Xj OXj-1 O'.' 0151 -r (io). From the definition of a, it can be shown that the sequence 

(t0,90, i0>, (tl,q1,4>, . . . , (tj, qj, ij) . . . is a path in B. This path contains infinitely many 
recurrent nodes, and in addition to = S. 

To prove the other direction of the first part, let (SO, qo, io), (~1, 41, il), . . . , 
(sj~ qj3 ij>v . . ‘9 be a path in B that contains infinitely many recurrent nodes and such 
that SO = S. From the construction of B we see that there exists an annotated path 
p’ = So,Itl,Sl,n2,...,Sj~ nj+lv...v in M such that, for each j > 0 ij =n,T’(ii-I), 
and qj is such that there is a transition of A from the state qj-1 on the input which is the set 
of global propositions and local propositions satisfied by process ii-1 in the state si-1. Let 
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h(p)=to,tl,..., ti ,..., whereti=niorr20.. - o Xj (Sj). From Lemma 5.1, we see that 
h(p) is a path in M. Also, it is not difficult to see that qo, 41, . . . qj, . . . , is a run of A on 
the sequence of sets of local propositions satisfied by process io in the path p. In addition 
this run is an accepting run. Hence, this path satisfies fi,. As a consequence, we see that S 
satisfies vi Efi . cl 

Checking if there exists an infinite path starting from a particular node s and containing 
infinitely many recurrent nodes is accomplished by checking if there exists a finite path 
from s to a strongly connected component containing a recurrent node. The later property 
can be checked using standard graph algorithms that are of linear time complexity in the 
size of the graph. The number nodes in the graph a is O(lSlmn) where m is the number 
of states of the automaton A and n is the number of processes. We can obtain A using 
standard tableau construction for PLTL, and in this case m is going to be of order 0 (2’fi’). 

5.3. Model checking indexed PLTL 

In the previous construction, we used Buchi automata to check properties involving local 
propositions of a single process together with global propositions. Now, we would like to 
use Buchi automata for checking properties that may involve local propositions of more 
than one process together with global propositions. The input alphabet to such automata are 
subsets of the set of all atomic propositions dP. We define a particular type of automata 
called symmetric automata. First, we need the following definitions. For any (D 5 dP, 
and permutation n, we define n(p) to be the set (p n AP’) U (Pn(i): Pi E bp}. Essentially, 
the n(p) is obtained by changing the indices of the local propositions in q according to the 
permutation n . 

We say that an automaton A = (Q, 2 dp, S, I, F) is symmetric with respect to a group of 
permutations G if there exists a group action of G on Q, a: (Q x G) -+ Q, satisfying the 
following properties: 

For every q E Q and n E G, 

l For every q’ E Q, and cp E dP, q’ E 6(q, cp) iff a(q’, n) E Va(q, ~1, I). 
l q E I iff a(q, rr) E I; also, q E F iff a(q, n> E F. 

Below, we present a procedure for checking if there exists a path in the original structure 
M that is accepted by a symmetric automaton A. We later use this procedure for model 
checking for a powerful linear temporal logic called Indexed PLTL (in short IPLIL). Let 
M = (S, R) be a structure and A be an automaton that is symmetric with respect to a 
group of permutations G, and let a be the function as defined above. First, we construct 
the annotated quotient structure M = (3, AR) with respect to the group of permutations 
Aut M n G. We define a graph B as follows. The nodes of is are pairs of the form (S, 4) 
where S E ‘s and q E Q. The set of edges of B is defined below. For every S E 3, q E Q, 
transition (S, n, t) in AR and r E 6(q, (p) where p is the subset of atomic propositions 
satisfied in the state S in the structure M, there is an edge in B from the node (S, q) to 
the node (f, a(r, n-l)). A recurrent node of B is a node of the form (S, ql) where qr is a 
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recurrent state of A. The following lemma is easily proved from the symmetry property of 
the automaton. 

Lemma 5.4. There existsapath in M startingfrom a representative state S that is accepted 
by A @there exists an infinite path in B starting from the node (S, qo) where qo is an initial 
state of A, and containing infinitely many recurrent nodes. 

We show below how the above lemma can be used for model checking for a powerful 
indexed temporal logic called IPLTL. In order to define the syntax of IPLTL, we assume 
that we have two sets of propositions dP' and AP" denoting global and local propositions 
repsectively. All the local propositions are indexed. Let dP denote dP' U AP". First we 
define the set of PLTL formulas over the set of atomic propositions kP. The set of PLTL 
formulas is the subset of CTL* consisting of all CTL* formulas over dP that do not use 
the path quantifier E, i.e., PLTL is the standard linear propositional temporal logic. 

IPLTL is the extension of PLTL that allows process quantifiers of the form pi and ~+j. 
The symbols of IPLTL include all those from PLTL together with some index variables 
such as i, j, etc., and the above two types of process quantifiers. We say that an index 
variable i is free in a formula f if i occurs as the index of a local proposition and this 
occurrence is not in the scope of a process quantifier of the form pi, or of the form A\i#j for 
some j. The set of IPLTL formulas is the smallest set satisfying the following conditions. 
Every global proposition is an IPLTL formula; if P is a local proposition symbol and i is 
an index variable then Pi is an IPLTL formula; if f, g are IPLTL formula then f A g, -f, 
X f, f U g, and Ai f are IPLTL formulas; if f is an IPLTL formula with free index variable 
j then Ai+jf is also an IPLTL formula. A closed IPLTL formula is one that has no free 
index variables. We fix the set of process indices to be I = { 1,2, . . . , n). The semantics 
of IPLTL formulas is defined by translation into PLTL. The translation maps each IPLTL 
formula f into a PLTL formula f’ inductively. The translation is achieved by expanding 
each process quantifier in the obvious way. It is to be noted that in the resulting formula f ', 
the indices of all local propositions are constants. It can also be shown that for any closed 
IPLTL formula f, Aut f’ is going to be the full symmetry set Sym Z.4 

Given an IPLTL formula f and the annotated structure M, we use the following method 
for checking if all paths in the original structure M starting from a state s satisfy the 
formulas. We first construct the automaton A corresponding to the PLTL formula 1 f ‘. 
Such an automaton is obtained directly from the tableau associated with -f’ (see [ESSS]). 
This automaton can be shown to be sym_metric with respect to the full symmetry group 
Sym I. We construct the product graph Z? obtained by taking the product of M and the 
automaton A, and check that there is no infinite path starting from a node of the form 
(5, qo) that contains infinitely many recurrent nodes where qo is the initial state of the 
automaton A. Clearly, after the annotated quotient structure is constructed, the complexity 
of the remainder of the procedure is simply proportional to the product of the size of the 
quotient structure and the size of the automaton A. The size of A is exponential in the 
length of f’. The length of f’ can itself be exponential in the length of f. However, the 
complexity of the procedure is going to be proportional to the size of the annotated structure 
which can be much smaller than the size of the original structure. 
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6. Example 

We now consider a simple example. A solution P to the mutual exclusion problem is given 
in figure 2. Each process Ki has a noncritical section, corresponding to location Ni, and 
a critical section, represented by location Ci. The transition from Ni to Ci is guarded by 
the predicate A\i#i ‘Cj . Hence, each process cycles through its two sections preserving the 
property of mutual exclusion: that no two processes are ever in their critical section at the 
same time. This can be expressed in CTL by (a formula of the form) AG( A\i+j -(Ci A Cj)). 
Thus the solution is safe. The starting condition can be captured as pi Ni, 

To verify mutual exclusion, for a system with n processes, for any fixed n, we could 
build its global state transition graph M, with n i- 1 states, as in figure 3. However, since 
the communication relation for P is the complete graph on n nodes, Aut M = Sym [ 1 : n]. 
Our rules also tell us that Aut f = Sym [ 1 : n] Thus we can take G = Sym [ 1: n]. Using 
(Nl, N2, . . . , N,) and (G,N2,..., N,) as representatives we obtain a quotient M/G 
shown in figure 4. We can now model check over the quotient using Theorem 3.3. 

Figure 2. Skeleton for two state II process mutual exclusion. 

C,,Nz ,..., Nn-r,K C,,Nz ,..., Nn-r,K NI,CZ,...,N,-~,N~ NI,CZ,...,N,-~,N~ . . . . . . . . . . . . 

. , . . . . . , . . . . 
Nl,Na,...,Cn-1,Nn Nl,Na,...,Cn-1,Nn N,,Nz, . . . . Nn-~,cn N,,Nz, . . . . Nn-~,cn 

Figure 3. Model for two state n process mutual exclusion. Figure 3. Model for two state n process mutual exclusion. 
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Figure 4. Quotient of model for two state n process mutual exclusion. 

7. Related work 

There has been much work done on various bisimulation equivalences and their relationship 
to program logics. However, none of this work considers automorphisms of a formula as 
we do and Theorem 3.3 was not established in any of the existing works. Moreover, our 
paper contains many other results including the formula decomposition, state symmetry 
and the alternate automata theoretic approach. 

The telling quote from Hermann Weyl [25] in the introduction shows that the basic 
idea of exploiting the group of automorphisms of a structure in order to understand its 
basic properties, symmetry and otherwise, is a rather old one in mathematics. However, 
its application to temporal logic model checking seems to be quite new. In the realm of 
program verification symmetry seems to have first been utilized, with varying degrees of 
formality, in the realm of reachability analysis for Petri nets [17]. Here, however, the 
work seems to have centered around simple reachability (AGp) rather than the full range 
of temporal correctness properties. Ip and Dill [ 161 also consider the problem of verifying 
reachability only, but not an arbitrary correctness specification given by a temporal logic 
formula. Their system provides a new, somewhat more abstract than usual programming 
language, to facilitate identifications of symmetrys. It has been implemented as the Mur@ 
system and applied to examples. In [2] and [ 191 an algebraic approach to reducing the cost 
of protocol analysis based on the use of quotient structures induced by automorphisms is 
proposed. For example, the symmetry between 0 and 1 in the alternating bit protocol is 
factored out to reduce the size of the state space by one half. 

The most directly related work is that of Clarke et al. [7], who have independently 
reported correspondence results similar to those of our Section 3 and follow a somewhat 
similar overall strategy [4,24]. Moreover, they have implemented their ideas using BDD’s, 
provided an analysis of the complexity of BDD-based manipulations of permutation groups 
showing that testing =o is graph isomorphism hard for BDD-based representations, and 
done practical examples. However they do not use formula decomposition, state symmetry, 
or the alternative automata theoretic approach. 
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There has been some work done on using symmetries in Petri nets [23] for computing 
reachability graphs of nets. However, this work does not consider checking temporal prop- 
erties over the reduced graph. The work presented in [8] elegantly combines the symmetry 
based method with other techniques (such as stubborn sets, etc.) to achieve state space 
reduction in Petri-net based analysis of deadlocks in ADA tasks. 

Our work may be distinguished by the most general explicit correspondence results, 
including CTL* and the Mu-Calculus, and by focusing on the symmetry induced by having 
many identical processes, which allows us to reduce the difficult problem of computing 
Aut M to Au? CR. We also permit auxiliary variables, exploit formula decomposition and 
state symmetry, and provide an alternative automata-theoretic approach. 

8. Conclusions 

We have described a framework for expediting model checking by forming the quotient 
structure modulo a subgroup of the group of automorphisms of the original structure and 
the specification. The resulting reduction in size can be dramatic when the degree of 
symmetry is high. The group of automorphisms of the structure depends on process network 
topology, which is possibly a crucial factor here. For massively parallel systems with high 
connectivity and high symmetry like hypercubes, we should get a very good savings. For 
rings, we would get much less. We have also shown how to improve the efficiency by 
decomposing large formulae into smaller subformulae. We have further shown that it is 
possible to exploit the symmetry of individual states to avoid redundant computation. An 
alternative approach using automata to track shifting indices was also given. 

It should be noted that, while we have focused on systems with many isomorphic pro- 
cesses, this is more in the nature of a restriction on the “systems” terminology. Excepting, 
for example, Theorem 4.1 showing Aut CR SAut M, the basic mathematical machinery 
here is applicable to systems containing multiple isomorphic “components”. All that is 
really essential is symmetry in the state space, whatever its “physical, systems” source. 

At present, we have a method, that is not fully automated. Obviously, we could mechanize 
it by using naive algorithms to compute automorphism groups, but this in general would not 
be efficient. Thus important open problems seem to us to be to identify useful special cases 
for when Aut b, for various objects b can provably be calculated efficiently, and the related 
problem of testing “G efficiently (cf. [7]). Of course, these are largely group-theoretic in 
nature. There is a vast literature in computational group theory which should be helpful 
(cf. [15]). In the interim, we are compiling a catalog of helpful special cases. 
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Notes 

1. We remark that D and V are optional, in which case we define S = L’. When present, D and V can have their 
own additional internal organization. In particular, they can depend on I. 

2. We stipulate that each guarded command be index independent, which means that the value of the guard and 
the effect of the action do not depend on the specific values chosen for the index set I. In particular, permuting 
the names of the indices should not alter their values. This excludes, for example, such guards as 1 < 3, whose 
truth value would change under transposition of 1 and 3. 

3. The definition of “Autof” in [12] amounts to Auto’f defined here. The Compression Theorems with the 
new, more generaJ definition of Auto f  are also true when Auto , f  is replaced by the “old” Auto’ ,f of [12]. 
The advantage of the new Aufo .f’ is that, since it is in general a superset of the old, it may provide greater 
compression. Moreover, it should be noted that Auto @ =Auto’ @ = (Id) for @ a fairness constraint [13]. 

4. Note that Auto ,f’ may not be Sym I. 
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