
A game approach to determinize timed automata

Nathalie Bertrand, Amélie Stainer, Thierry Jéron, Moez Krichen

To cite this version:

Nathalie Bertrand, Amélie Stainer, Thierry Jéron, Moez Krichen. A game approach to de-
terminize timed automata. Formal Methods in System Design, Springer Verlag, 2015, pp.39.
.

HAL Id: hal-01102472

https://hal.inria.fr/hal-01102472

Submitted on 12 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01102472

Form Methods Syst Des
DOI 10.1007/s10703-014-0220-1

A game approach to determinize timed automata

Nathalie Bertrand · Amélie Stainer ·
Thierry Jéron · Moez Krichen

© Springer Science+Business Media New York 2014

Abstract Timed automata are frequently used to model real-time systems. Their deter-
minization is a key issue for several validation problems. However, not all timed automata can
be determinized, and determinizability itself is undecidable. In this paper, we propose a game-
based algorithm which, given a timed automaton, tries to produce a language-equivalent deter-
ministic timed automaton, otherwise a deterministic over-approximation. Our method gen-
eralizes two recent contributions: the determinization procedure of Baier et al. (Proceedings
of the 36th international colloquium on automata, languages and programming (ICALP’09),
2009) and the approximation algorithm of Krichen and Tripakis (Form Methods Syst Des
34(3):238–304, 2009). Moreover, we extend it to apply to timed automata with invariants
and ε-transitions, and also consider other useful approximations: under-approximation, and
combination of under- and over-approximations.

Keywords Determinization · Timed automata · Approximate determinization · Game

1 Introduction

Computers and software systems are ubiquitous, and it is of great importance that they
behave in the expected way. Beyond their logical correctness, most of these systems have to

N. Bertrand · T. Jéron
Inria Rennes Bretagne Atlantique, Rennes, France
e-mail: nathalie.bertrand@inria.fr

T. Jéron
e-mail: thierry.jeron@inria.fr

A. Stainer (B)
University of Rennes 1, Rennes, France
e-mail: amelie.stainer@gmail.com

M. Krichen
National School of Engineers of Sfax, Sfax, Tunisia
e-mail: moez.krichen@redcad.org

123

Form Methods Syst Des

satisfy some timing constraints: they are real-time systems and call for the need of dedicated
modelling formalisms. Timed automata (TA), introduced in [1], form a usual model for
the specification of real-time embedded systems. Essentially TAs are an extension of finite
automata with guards and resets of continuous clocks. They are extensively used in the context
of many validation problems such as verification, control synthesis or model-based testing.
One of the reasons for this popularity is that, despite the fact that they represent infinite
state systems, their reachability is decidable, thanks to the construction of the region graph
abstraction.

A timed automaton is said non-deterministic whenever two runs read the same timed
word. The determinization, that is, the construction of an equivalent deterministic timed
automaton, is used to address several problems such as implementability, diagnosis or test
generation, where the underlying analyses depend on the observable behavior. For example,
in the context of offline test generation, the specification has to be determinized in some
sense, since the testing artefact needs to foresee the allowed outputs after a trace (i.e. a
sequence of observations), thus the set of states after this trace. More generally, restricting
to the class of deterministic timed automata makes a lot of problems simpler. In particular, a
deterministic timed automaton can easily be complemented, and it is for instance useful for
model-checking: given a deterministic timed automaton Aϕ representing a property ϕ, one
can easily decide whether another timed automaton satisfies the formula ϕ by performing the
intersection with the complement of Aφ , and then checking the emptiness of the language of
the resulting timed automaton.

However, considering deterministic timed automata only is very restrictive, for several
reasons. First of all, non-determinism is often used in an early design process to encompass
all possible implementation choices. The synthesis of timed automata, from timed logic
may also yield non-deterministic models. Last but not least, the asynchronous composition
of deterministic models, e.g. in a distributed system, is typically non-deterministic. This
motivates the consideration of non-deterministic specifications.

In the context of timed automata, determinization is problematic for two reasons. First,
determinizable timed automata form a strict subclass of timed automata [1]. Second, the
problem of the determinizability of a timed automaton, (i.e. does there exist a deterministic TA
with the same language as a given non-deterministic one?) is undecidable [2,3]. Therefore, in
order to determinize timed automata, two alternatives have been investigated: either restricting
to determinizable classes or choosing to ensure termination for all TAs by allowing over-
approximations, i.e. deterministic TAs accepting more timed words. For the first approach,
several classes of determinizable TAs have been identified, such as strongly non-Zeno TAs [4],
event-clock TAs [5], or TAs with integer resets [6]. In a recent paper, Baier et al. [7] propose
a procedure which does not terminate in general, but allows one to determinize TAs in a class
covering all the aforementioned determinizable classes. It is based on an unfolding of the
TA into a tree, which introduces a new clock at each step, representing original clocks by a
mapping; a symbolic determinization using the region abstraction; a folding up by the removal
of redundant clocks. To our knowledge, the second approach has only been investigated by
Krichen and Tripakis [8]. They propose an algorithm that produces a deterministic over-
approximation based on a simulation of the TA by a deterministic TA with fixed resources
(number of clocks and maximal constant). Its locations encode (over-approximate) estimates
of possible states of the original TA, and the algorithm uses a fixed policy governed by a
finite automaton for resetting clocks.

In this paper we propose a method that combines the approaches of [7] and [8], despite their
notable differences. It is inspired by a game-based approach to decide the diagnosability of
TAs with fixed resources presented by Bouyer et al. [9]. Similarly to [8], in our approach, the

123

Form Methods Syst Des

resulting deterministic TA is given fixed resources (number of clocks and maximal constant)
in order to simulate the original TA by an encoding of relations between new clocks and
original ones. The core principle is the construction of a finite turn-based safety game between
two players, spoiler and determinizator, where Spoiler chooses an action and the region of
its occurrence, while determinizator chooses which clocks to reset. Our main result states
that if determinizator has a winning strategy, then it yields a deterministic timed automaton
accepting exactly the same timed language as the initial automaton, otherwise it produces a
deterministic over-approximation.

Our approach is more general than the procedure of [7], thus allowing one to enlarge the set
of timed automata that can be automatically determinized, thanks to an increased expressive
power in the encoding of relations between new and original clocks, and robustness to some
language inclusions (e.g. a non-determinizable sub-automaton can be ignored if its language
is included in the one for the rest of the timed automaton). Moreover, in contrast to [7], our
technique applies to a larger class of timed automata: TAs with ε-transitions and invariants.
It is also improves the algorithm of [8] in several respects with an adaptative and timed reset
policy, governed by a strategy, compared to a fixed untimed one, and a more precise update of
the relations between clocks. The model used in [8] includes silent transitions, and edges are
labeled with urgency status (eager, delayable, or lazy), but urgency is not preserved by their
over-approximation algorithm. These observations illustrate the benefits of our game-based
approach compared to existing work.

Another contribution is the generalization of our game-based approach to generate deter-
ministic under-approximations or deterministic approximations combining under- and over-
approximations. The motivation for this generalization is to tackle the problem of off-line
model-based test generation from non-deterministic timed automata specifications [10].
Indeed in this context, input actions and output actions have to be considered differently
to build the approximation. We provide a notion of refinement (and the dual abstraction) and
explain how to extend our approach to generate deterministic abstractions.

The structure of this paper is as follows. In Sect. 2 we recall definitions and properties
relative to timed automata, and present the two recent pieces of work to determinize timed
automata or provide a deterministic over-approximation. Section 3 is devoted to the presenta-
tion of our game approach and its properties. A comparison with existing methods is detailed
in Sect. 4. Extensions of the method to timed automata with invariants and ε-transitions are
then presented in Sect. 5. In Sect. 6, we finally discuss how the construction can be adapted
to perform under-approximations, or combinations of under- and over-approximations.

This article is a long version of the paper [11] and extends it in several aspects: we
provide the full proofs of our results; the contribution is illustrated on more examples; the
comparison to related work is deepened; and beyond over-approximations, we also consider
here under-approximations and combinations of over- and under-approximations.

2 Preliminaries

In this section, we start by introducing the model of timed automata, and then review two
approaches for their determinization.

2.1 Timed automata

We start by introducing notations and useful definitions concerning timed automata [1].
Given a finite set of clocks X , a clock valuation is a mapping v : X → R+, where R+

denotes the set of non-negative reals. We note 0 the valuation that assigns 0 to all clocks. If

123

Form Methods Syst Des

v is a valuation over X and t ∈ R+, then v + t denotes the valuation which assigns to every
clock x ∈ X the value v(x) + t . For X ′ ⊆ X we write v[X ′←0] for the valuation equal to v

on X\X ′ and to 0 on X ′, v|X ′ for the valuation v restricted to X ′, and v[X ′←0]−1 for the set of
valuations v′ such that v′[X←0] = v.

Given a non-negative integer M , an M-bounded guard, or simply guard when M is clear
from the context, over X is a finite conjunction of constraints of the form x ∼ c where
x ∈ X, c ∈ [0, M] ∩ N and ∼∈ {<,≤,=,≥,>}. We denote by G M (X) the set of
M-bounded guards over X . Given a guard g and a valuation v, we write v |� g if v sat-
isfies g. Invariants are restricted cases of guards: given M ∈ N, an M-bounded invariant over
X is a finite conjunction of constraints of the form x � c where x ∈ X, c ∈ [0, M] ∩ N and
� ∈ {<,≤}. We denote by IM (X) the set of invariants.

Definition 1 A timed automaton (TA) is a tuple A = (L , �0, F,Σ, X, M, E, Inv) such that:
L is a finite set of locations, �0 ∈ L is the initial location, F ⊆ L is the set of final locations,
Σ is a finite alphabet, X is a finite set of clocks, M ∈ N, E ⊆ L×G M (X)×(Σ∪{ε})×2X×L
is a finite set of edges, and Inv : L → IM (X) is the invariant function.

The constant M is called the maximal constant of A, and we will refer to (|X |, M) as the
resources of A.

The semantics of a timed automaton A is given as a timed transition system TA =
(S, s0, SF , (R+ × (Σ ∪ {ε})),→) where S = L × R

X+ is the set of states of the form
(�, v), made of a location and a valuation of all clocks in X , s0 = (�0, 0) is the initial state,
SF = F × R

X+ is the set of final states, and→⊆ S × (R+ ∪ (Σ ∪ {ε}))× S is the transition
relation composed of the following moves:

– Discrete moves: (�, v)
a−→ (�′, v′) for a ∈ Σ ∪ {ε} whenever there exists an edge

(�, g, a, X ′, �′) ∈ E such that v |� g ∧ Inv(�), v′ = v[X ′←0] and v′ |� Inv(�′).
– Time elapse: (�, v)

τ−→ (�, v + τ) for τ ∈ R+ if v + τ |� Inv(�).

A run ρ of A is a finite sequence of moves alternating time elapse and discrete moves,

starting in s0 and ending with a discrete move, labeled by an action in Σ , i.e., ρ = s0
τ0−→

s′0
a1−→ s1 · · · τk−1−→ s′k−1

ak−→ sk with ak �= ε. Runρ is accepting if sk ∈ SF . A timed word over
Σ is a sequence (ti , bi)i≤n ∈ (R+×Σ)∗ such that (ti)i≤n is non-decreasing. The timed word
associated with ρ (defined above) is w = (t0, b0) . . . (tm, bm) where (bi)i≤m ∈ (R+×Σ)m+1

is the subsequence of labels of the non-ε discrete moves in ρ (bi ∈ Σ) and ti = ∑i−1
j=0 τ j .

The τ j ’s are the delays elapsed between actions a j ’s along ρ, whereas the ti ’s are the absolute
time at which non-ε actions happen. Conversely, we say that the run ρ reads w in A. We
write L(A) for the language of A, that is the set of timed words associated with an accepting
run. We say that two timed automata A and B are equivalent whenever L(A) = L(B). In
order to compare behaviors of timed transition systems in a more precise way, we introduce
the notion of weak timed simulation relation.

Definition 2 A weak timed simulation of a timed transition systems T1 = (S1, s1
0 , S1

F , (R+×
(Σ∪{ε})),→1) by a second timed transition systems T2=(S2, s2

0 , S2
F , (R+×(Σ∪{ε})),→2)

is a relation R ⊆ S1 × S2 such that:

(1) (s1
0 , s2

0) ∈ R,
(2) for all (s1, s2) ∈ R, if s1 ∈ S1

F then s2 ∈ S2
F ,

(3) for all (s1, s2) ∈ R, for all b ∈ Σ , whenever s1
b−→1 s′1, there exists s′2 ∈ S2 such that

(s′1, s′2) ∈ R and s2
b−→2 s′2,

123

Form Methods Syst Des

(4) for all (s1, s2) ∈ R, for all τ 1
1 , · · · τ 1

n ∈ R+, whenever s1
τ 1

1−→1
ε−→1 s1

1 · · ·
τ 1

n−1−−→1
ε−→1

s1
n−1

τ 1
n−→1 s′1, there exists s′2 ∈ S2 and τ 2

1 , · · · τ 2
m ∈ R+ such that (s′1, s′2) ∈ R and

s′
τ 2

1−→2
ε−→2 s2

1 · · ·
τ 2

m−1−−→2
ε−→2 s2

m−1
τ 2

m−→2 s′2 with
∑n

i=1 τ 1
i =

∑m
j=1 τ 2

j .

If such a relation exists, T2 weak timed simulates T1.

In this paper, we will consider weak timed simulations on timed transition systems induced
by timed automata. Given two TAs A1 and A2, the existence of a weak timed simulation of
TA1 by TA2 , implies the language inclusion L(A1) ⊆ L(A2).

2.1.1 Determinization of timed automata

A deterministic timed automaton (abbreviated DTA) A is a TA such that for every timed
word w, there is at most one run in A reading w.

Example A running example of a non-deterministic timed automaton is depicted in Fig. 1.
This timed automaton has �0 as initial location (denoted by a pending incoming arrow), �3

as final location (denoted by a pending outgoing arrow) and accepts the language: L(A) =
{(t1, a) · · · (tn, a)(tn+1, b) | tn+1 < 1}.

A TA A is determinizable if there exists a deterministic timed automaton B with L(A) =
L(B). It is well-known that some timed automata are not determinizable [1], and an example
of such an automaton is represented in Fig. 2.

Moreover, the determinizability of timed automata is an undecidable problem, even with
fixed resources [2,3]. Nevertheless, there are well-known classes of timed automata which are
determinizable: event-clock TAs [5] that are timed automata where each clock is associated
with one action of the alphabet Σ and thus is reset exactly along transitions over this action;
TAs with integer resets [6] that are timed automata where there is a reset along a transition
if and only if there is an equality constraint in the guard; and strongly non-Zeno TAs [4] that
are timed automata where along every cycle, there is at least one clock which is tested to be
larger than a positive constant and reset.

0

1

2

3

0 < x < 1, a
0 < x < 1, a

0 < x < 1, a, {x}

0 < x < 1, b, {x}

x = 0, b

Fig. 1 A timed automaton A

0 1 2

a

a, {x} x = 1, a

a a

Fig. 2 A non-determinizable timed automaton from [1]

123

Form Methods Syst Des

2.1.2 Region abstraction

The region abstraction forms a partition of valuations over a given set of clocks. It allows
one to make abstractions in order to decide properties like the reachability of a location. We
let X be a finite set of clocks, and M ∈ N. We write �t� and {t} for the integer part and
the fractional part of a real t , respectively. The equivalence relation ≡X,M over valuations
over X is defined as follows: v ≡X,M v′ if (i) for every clock x ∈ X , v(x) ≤ M iff
v′(x) ≤ M ; (i i) for every clock x ∈ X , if v(x) ≤ M , then �v(x)� = �v′(x)� and {v(x)} = 0
iff {v′(x)} = 0 and (i i i) for every pair of clocks (x, y) ∈ X2 such that v(x) ≤ M and
v(y) ≤ M , {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)}. The equivalence relation is called the
region equivalence for the set of clocks X w.r.t. M , and an equivalence class is called a
region. The set of regions, given X and M , is denoted RegX

M . A region r ′ is a time-successor
of a region r if there is v ∈ r and t ∈ R+ such that v + t ∈ r ′. The set of time-successors
of r is denoted −→r ; formally −→r = {r ′ | ∃v ∈ r, t ∈ R+, v′ = v + t, v′ ∈ r ′}. Further

we define←→r = {r ′ | r ′ ∈ −→r or r ∈ −→r ′ }. A relation C over X is the union of the regions
intersecting a given conjunction of atomic constraints of the form x− y ∼ c, where x, y ∈ X ,
∼∈ {<,=,>} and c ∈ N. Assuming all constants c belong to [−M, M], for some integer
M ∈ N we write RelM (X) for the set of relations over X . Relations will be used in the sequel
to express constraints between the clocks of two timed automata, hence the name.

In the following, we often abuse notations for guards, invariants, regions and relations,
and write g, I , r and C , respectively, for both the constraints over clock variables and the
sets of valuations they represent.

2.1.2.1 Diagonal constraints In the literature, guards in timed automata are sometimes more
general than the ones we introduced in G M (X) and can contain atomic constraints of the
form x − y ∼ c for x, y ∈ X , ∼∈ {<,≤,=,≥,>} and c ∈ [0, M] ∩ N. These so called
diagonal constraints do not extend the expressive power of timed automata: from any timed
automaton with diagonal constraints, one can build an equivalent one without diagonal con-
straints (potentially with an exponential blowup of the state space). In the sequel, we almost
always consider timed automata without diagonal constraints, with the exception of the timed
automata our game approach constructs.

2.2 Existing approaches to the determinization of TAs

To overcome the non-feasibility of determinization of timed automata in general, two
alternatives have been explored: either exhibiting subclasses of timed automata which are
determinizable and provide determinization algorithms, or constructing deterministic over-
approximations. We relate here, for each of these directions, a recent contribution.

2.2.1 Determinization procedure

An abstract determinization procedure which effectively constructs a deterministic timed
automaton for several classes of determinizable timed automata is presented in [7]. Given a
timed automaton A, this procedure first produces a language-equivalent infinite timed tree,
by unfolding A, introducing a fresh clock at each step. This allows one to preserve all timing
constraints, using a mapping from clocks of A to the new clocks. Then, the infinite tree is
split into regions, and symbolically determinized. Assuming that at each level of the tree,
only a finite number of clocks is used (this condition is the clock-boundedness assumption),
the infinite tree with infinitely many clocks can be folded up into a timed automaton (with

123

Form Methods Syst Des

finitely many locations and clocks). The clock-boundedness assumption is satisfied by the
determinizable syntactic classes of timed automata presented in Sect. 2.1 (event-clock, integer
reset and strongly non-Zeno), which can thus be determinized by this procedure. In general,
the resulting deterministic timed automaton is doubly exponential in the size of A: more
precisely, the number of locations of the resulting automaton is doubly exponential in its
number of clocks and in the number of clocks of A and exponential in the number of locations
of A.

2.2.2 Deterministic over-approximation

By contrast, Krichen and Tripakis propose in [8] an algorithm applicable to any timed automa-
ton A, which produces a deterministic over-approximation, that is a deterministic TA B
accepting at least all timed words in L(A). Given a set of new clocks, the TA B is built by
simulation of A using only information stored in the new clocks. A location of B constitutes
a state estimate of A consisting of a (generally infinite but finitely represented) set of pairs
(�, v) where � is a location of A and v a valuation over the union of clocks of A and B. This
method is based on the use of a fixed finite automaton, called the skeleton. It governs the
resetting policy for the clocks of B, so that the resets only depend on the untimed word. Here
also the TA B is doubly exponential in the size of A.

3 A game approach to determinization

Intuitively, the subset construction, which successfully determinizes finite atomata, fails for
timed automata because of non-uniform resets. When performing a subset construction, it
could thus be necessary to use an unbounded number of clocks to store information from all
possible paths so far. This phenomenon on a particular timed automaton indicates that it is
not determinizable by the approach of [7]. Our objective is to design a finer approach, yet the
main problem remains to find a sufficient number of clocks and suitable resets to preserve all
the timing information needed for the subset construction. One key feature of our approach
lies in the use of relations between the clocks of the input timed automaton and the ones of
the deterministic over-approximation, to encode the important timing information.

Our approach is partly inspired by [9] in which, given a plant—modeled by a timed
automaton—and fixed resources, the authors build a game where one player has a winning
strategy if and only if the plant can be diagnosed by a timed automaton using the given
resources. Inspired by this construction, given a timed automaton A, over some resources,
and given fixed resources (k, M ′), we derive a game between two players Spoiler and Deter-
minizator, such that if Determinizator has a winning strategy, then a deterministic timed
automaton B, over resources (k, M ′), with L(B) = L(A) can be effectively generated.
Moreover, any strategy for Determinizator (winning or not) yields a deterministic over-
approximation for A. For clarity, we first expose the method for timed automa without
ε-transitions and in which all invariants are true. The general case is presented as an exten-
sion in Sect. 5.

3.1 Game definition

Let A = (L , �0, F,Σ, X, M, E) be a timed automaton. We aim at building a deterministic
timed automaton B with L(A) = L(B) if possible, or L(A) ⊆ L(B). In order to do so, we fix
resources (k, M ′) for B and build a finite 2-player turn-based safety game GA,(k,M ′). Players

123

Form Methods Syst Des

Spoiler and Determinizator alternate moves, and the objective of player Determinizator is
to avoid a set of bad states (to be defined later). Intuitively, in the safe states, for sure, no
over-approximation has been performed.

For simplicity, we first detail the approach in the case where A has no ε-transitions and
all invariants are true. Note that the definition can be difficult to read, but some details of the
construction of the game for the small timed automaton in Fig. 1 with a single clock are then
given to illustrate the different steps.

Let Y be a set of clocks, disjoint from X , and of cardinality k, which will serve as set of
clocks of B. The encoding of clocks of A by clocks of B will be described through relations
over X ∪ Y .

The idea is to perform a subtle subset construction using relations to try to determinize A.
Using unions of regions (with a fixed maximal constant) instead of conjunctions of diagonal
constraints allows to deal with a finite number of relations, in the same way as for regions. In
the sequel, we often abuse notations and write conjunctions of constraints rather than unions
of regions, for readability. As an example,

∧
z,z′∈Z z − z′ = 0 represents the union of all

regions in which all clocks are equal, together with the unbounded region (M,∞)Z . In our

game construction, relations are updated using the operation
←→
R which assigns to a union of

regions R, the union of all time-successors and time-predecessors of regions in R.
States of the game (future locations of the resulting deterministic timed automaton) are

state estimates, symbolically represented using locations of A and regions over clocks in Y
together with relations for the clocks in X ∪ Y . The risk of over-approximation is marked
and propagated thanks to booleans.

The initial state of the game is a state of Spoiler consisting of a single configuration with
location �0 (initial location of A), the simplest relation over X∪Y : ∀z, z′ ∈ X∪Y, z−z′ = 0,
and the marking � (no over-approximation was done so far), together with the null region
over Y .

In each of its states, Spoiler challenges Determinizator by proposing an M ′-bounded
region r over Y , and an action a ∈ Σ , representing the fact that Spoiler chooses to read an
a in the region r . Determinizator answers by deciding the set of clocks Y ′ ⊆ Y it wishes
to reset. The next state of Spoiler contains a region over Y (r ′ = r[Y ′←0]), and a finite set
of configurations: triples formed of a location of A, a relation on clocks in X ∪ Y , and a
boolean marking (� or ⊥). A state of Spoiler thus constitutes a state estimate of A, and the
role of the markings is to indicate whether over-approximations possibly happened. A state
of Determinizator is a copy of the preceding state estimate of Spoiler together with the move
of Spoiler.

Bad states player Determinizator wants to avoid are those where an over-approximation
may have occurred, namely, on the one hand states of the game where all configurations are
marked⊥ and, on the other hand, states where all final configurations (if any) are marked⊥.

Definition 3 Let A = (L , �0, F,Σ, X, M, E) be a timed automaton and (k, M ′) some given
resources. We let M = max(M, M ′), and Y be a set of k clocks. The game associated with
A and (k, M ′) is GA,(k,M ′) = (V, v0, Act, δ, Bad) where:

– V = VS � VD is a finite set of vertices, made of the disjoint union of the set VS ⊆
2L×RelM(X∪Y)×{�,⊥}×RegY

M ′ of vertices of Spoiler, and the set VD ⊆ VS×RegY
M ′ ×Σ

of vertices of Determinizator.
– v0 = ({(�0,

∧
z,z′∈X∪Y z − z′ = 0,�)}, {0}) is the initial vertex; v0 ∈ VS ;

– Act is the set of possible actions partitioned into ActS = RegY
M ′ ×Σ and ActD = 2Y ;

– δ = δS ∪ δD is the transition relation with δS and δD defined as follows:

123

Form Methods Syst Des

– δS ⊆ VS ×ActS ×VD consists of all edges of the form (E, r)
(r ′,a)−−−→ ((E, r), (r ′, a))

if r ′ ∈ −→r and there exist (�, C, b) ∈ E and �
g,a,X ′−−−→ �′ ∈ E such that

[r ′ ∩ C]|X ∩ g �= ∅ ; (C�=∅)

– δD ⊆ VD×ActD×VS is the set of edges of the form ((E, r), (r ′, a))
Y ′−→ (E ′, r ′[Y ′←0])

where E ′ = ∪γ∈ESucce[r ′, a, Y ′](γ) and Succe is the elementary successor func-
tion:

Succe[r ′, a, Y ′](�, C, b)

=
⎧
⎨

⎩
(�′, C ′, b′) | ∃� g,a,X ′−−−→ �′ ∈ E s.t.

⎡

⎣
[r ′ ∩ C]|X ∩ g �= ∅
C ′ = up(r ′, C, g, X ′, Y ′)
b′ = b ∧ ([r ′ ∩ C]|X ⊆ g)

⎫
⎬

⎭
, (1)

with up the update function for relations

up(r ′, C, g, X ′, Y ′) =←−−−−−−−−−−−−−−−→(r ′ ∩ C ∩ g)[X ′←0][Y ′←0] ; (2)

– Bad ⊆ VS is the set of bad vertices, defined by Bad = {
({(� j , C j ,⊥)} j , r)

} ∪{
({(� j , C j , b j)} j , r) | ∃ j, � j ∈ F ∧ ∀ j, � j ∈ F ⇒ b j = ⊥

}
.

The objective of the game for player Determinizator is to avoid the set Bad. Player Spoiler
has the opposite objective.

Let us comment the definition of the game. The edge relation δ gives the possible moves
for each player and is deterministic: for every vS ∈ VS and (r ′, a) ∈ ActS there is a single
successor vertex vD ∈ VD such that (vS, r ′, a, vD) ∈ δ and for every vD ∈ VD and Y ′ ∈ ActD

there is a single successor vertex vS ∈ VS such that (vD, Y ′, vS) ∈ δ. We now detail how
these successors are defined.

A state vS = (E, r) ∈ VS is composed of a state estimate E together with a region over Y ,
and elements of E are called configurations. Given vS = (E, r) ∈ VS a state of Spoiler and
(r ′, a) ∈ ActS one of its moves, the successor state is defined, provided r ′ is a time-successor
of r , as the state vD = (E, (r ′, a)) ∈ VD if the successors of this state have a non-empty set
of configurations (condition C�=∅).

Given vD = (E, (r ′, a)) ∈ VD a state of Determinizator and Y ′ ∈ ActD one of its moves,
the successor state of vD is the state (E ′, r ′[Y ′←0]) ∈ VS where E ′ is obtained as the set of
all elementary successors of configurations (�, C, b) ∈ E by (r ′, a) and after resetting Y ′:
E ′ = {

Succe[r ′, a, Y ′](�, C, b) | (�, C, b) ∈ E
}
. The formal definition of the elementary

successor function is given above in Eq. (1) for a configuration (�, C, b).
up(r ′, C, g, X ′, Y ′) is the update of the relation on clocks in X ∪Y after the moves of the

two players, that is after taking action a in r ′, resetting X ′ ⊆ X and Y ′ ⊆ Y , and ensuring the
satisfaction of g. The resulting updated relation is also formally defined above, in Eq. (2), as
a union of regions on X ∪ Y with maximal constant M. In the update, the intersection with g
aims at stopping runs that for sure will correspond to timed words outside of L(A). Taking
the time-successor and time-predecessor permits to obtain a relation. Region r ′, relation C
and guard g can all be seen as zones (i.e. unions of regions) over clocks X ∪ Y . It is standard
that elementary operations on zones, such as intersections, resets, future and past, can be
performed effectively. As a consequence, the update of a relation can also be computed
effectively.

The boolean b keeps track of potential over-approximations. Boolean b′ is set to ⊥ if
either b = ⊥ or the induced guard [r ′ ∩ C]|X over-approximates g: ¬([r ′ ∩ C]|X ⊆ g) (this

123

Form Methods Syst Des

condition is written C¬⊆ for short). Therefore, if the boolean is�, necessarily there has been
no over-approximations. In a state, it is thus sufficient to have a configuration with boolean
� to know that the language was not over-approximated. The set Bad is defined accordingly,
and avoiding it ensures that at each step, but also for the acceptance condition, the language
is not overapproximated.

3.1.1 Size of GA,(k,M ′)

State estimates are sets of configurations, each of which contains a relation over X ∪ Y .
Therefore, the number of states in GA,(k,M ′) is doubly exponential in the size of A. Also,
Determinizator’s states have exponentially many outgoing edges in k, the size of Y . We will
see in Proposition 2 that the number of edges in GA,(k,M ′) can be impressively decreased,
since restricting to atomic resets (resets of at most one clock at a time) does not diminish the
power of Determinizator. Nevertheless, the complexity order is not impacted and the size of
the resulting deterministic timed automaton could even be larger than with multiple resets.

3.2 Example

As an example, the construction of the game is illustrated on the non-deterministic timed
automaton A depicted in Fig. 1, page 5. Part of the construction of the associated game
GA,(1,1) is represented in Fig. 3. A has a single clock called x , and the game uses a single
clock y (for simplicity, but the construction would work with an arbitrary number of clocks).
Rectangular states belong to Spoiler and circular ones to Determinizator. Note that, to simplify
the picture, the labels of states of Determinizator are omitted (recall that they contain the
predecessor state together with the move of Spoiler).

Let us detail the first steps of the game construction. The initial state v0 contains the single
configuration (�0, x−y = 0,�) together with the initial region {0} over {y}. The computation
of the possible moves of Spoiler from the initial state is performed by examination of the
outgoing transitions from �0 in A: they all read letter a and are guarded by 0 < x < 1. Given
the relation x− y = 0, this guard can be expressed using clock y without any approximation:
0 < y < 1. Thus, the only possible move for Spoiler from the initial state of GA,(1,1) is
(0 < y < 1, a) and the successor configurations will still have � as boolean, reflecting that
no overapproximation happened so far (condition C¬⊆ is not fulfilled). The successor state
by this move is a state of Determinizator, defined as the pair formed of its predecessor state
v0 and the move of Spoiler ((0, 1), a).

From there, Determinizator has two possible moves: resetting y or not. We explain the
computation of the successor configurations by the move ∅ of Determinizator, yielding the
state v1. Since in A, from location �0, there are three transitions corresponding to the move
(0 < y < 1, q) of Spoiler, three successor configurations need to be computed. The transi-
tions to locations �0 and �1 do not reset x , and Determinizator chooses not to reset y, thus the
relation for the corresponding configurations remains x − y = 0. For the last configuration,
associated with the target location �2, x is reset in A, but y is not and 0 < y < 1, so the
derived relation is −1 < x − y < 0. Recall that the markers of all the configurations are �
because the guard 0 < x < 1 has not been approximated. Last, the region on {y} of v1 is
naturally 0 < y < 1.

In the state v2 obtained when y is reset by Determinizator, the relations differ. For the
configuration with location �2 the relation is simply x− y = 0 since both x and y were reset.
The two other configurations share the relation 0 < x − y < 1 derived from 0 < x < 1
and y reset. In v2 again all the booleans are true and the associated region is {0}. Note that

123

Form Methods Syst Des

0, x − y = 0, 0} v0

0, x − y = 0,
(0,1)1, x − y = 0,

2, −1 < x − y < 0,
v1

0, 0 < x − y < 1,
{0}1, 0 < x − y < 1,

2, x − y = 0,
v2

0, 0 < x − y < 1, ⊥
(0,1)1, 0 < x − y < 1, ⊥

2, −1 < x − y < 0, ⊥
v3

0, 0 < x − y < 1, ⊥
{0}1, 0 < x − y < 1, ⊥

2, x − y = 0, ⊥
v4

{y}

(0, 1), a

{y}∅

{y}∅
(0, 1), a

(0, 1), a

{y}
∅

Fig. 3 Excerpt the game GA,(1,1)

from v1, the move (0 < y < 1, a) of Spoiler yields exactly the same successors as from
v0. Indeed, the only relevant configuration when firing action a is the one with location �0

(because there no a-transition can be fired from �1 or �2) and the configuration associated
with �0 in v1 is exactly the same as the unique configuration in v0.

We end this example by detailing the construction of the successors for v2, assuming
Spoiler chose the move (0 < y < 1, a). Here also the only relevant configuration in v2 is
(�0, 0 < x − y < 1,�), because there are no a transitions in A from �1 and �2. Since the
relation 0 < x − y < 1 is different from x − y = 0, the guard on x induced by the region
0 < y < 1 is not trivial. Figure 4 illustrates the computation of the guard over x induced by
the relation C = 0 < x − y < 1 and the region r ′ = 0 < y < 1. The dotted area represents
the set of valuations over {x, y} which satisfy 0 < y < 1, and the dashed area represents
the relation C = 0 < x − y < 1. The induced guard [r ′ ∩ C]|{x} (i.e. the guard over x
encoded by the guard r ′ on y through the relation C) is then the projection over clock x of the
intersection of these two areas. In this example, the induced guard is 0 < x < 2. Note that
the figure represents the computation of the induced guard, without taking into account the
maximal constant. Since the maximal constant in this example is 1, the real induced guard
will be 0 < x rather than 0 < x < 2. Therefore, the transitions of A corresponding to the
choice of Spoiler (0 < y < 1, a) are the three possible transitions with source �0, but they

123

Form Methods Syst Des

r

C

r ∩ C

x

y

1 2

1

2

[r ∩ C]|{x}

Fig. 4 Construction of the induced guard

are over-approximated. Indeed, the induced guard [r ′ ∩ C]|{x} = 0 < x < 2 is not included
in the original guard g = 0 < x < 1 in A, i.e., the region r ′ possibly encodes more values
than the guard g. As a consequence, all the configurations in v3 and v4 are marked ⊥, and
thus these states belong to Bad, represented by the grey color in Fig. 3.

It remains to detail the computation of the relations in v3 and v4. Assuming Deter-
minizator chooses not to reset y leads to v3, in which for the configuration with loca-
tion �0, the relation is the smallest one containing (0 < x − y < 1) ∩ (0 < y < 1)

∩ (0 < x < 1), that is 0 < x − y < 1. The relation for the last configuration is←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
(0 < x − y < 1) ∩ (0 < y < 1) ∩ (0 < x < 1)

)
[x←0], which is same as

←−−−−−−−−−→
(x = 0 < y < 1),

that is −1 < x − y < 0.
The complete construction of the game GA,(1,1) is depicted in Fig. 5, together with a

winning strategy for Determinizator represented by bold edges.

3.3 Properties of the strategies

Given A a timed automaton and resources (k, M ′), the game GA,(k,M ′) is a finite-state safety
game for Determinizator. The possible behaviors in the game are expressed by means of
strategies. Intuitively, a strategy for player Determinizator (resp. Spoiler) chooses which
move to perform from vertex vD ∈ VD (resp. vS ∈ VS) based on the history of the game so
far. It is a classical result that, for safety games, winning strategies can be chosen positional
(the chosen move only depends on the current vertex) and they can be computed in linear
time in the size of the arena [12]. Therefore, in the following, we only consider positional
strategies, and simply write “strategies” for “positional strategies”.

A strategy for player Determinizator is thus described by a function σ : VD → ActD

assigning to each state vD ∈ VD a set Y ′ ⊆ Y of clocks to reset; the successor state is then
vS ∈ VS such that (vD, Y ′, vS) ∈ δ. Symmetrically, a strategy for Spoiler is a mapping
σ ′ : VS → ActS assigning to each state vS ∈ VS a region over Y and an action a ∈ Σ ; the
successor state is then vD ∈ VD such that (vS, (r ′, a), vD) ∈ δ. A pair of strategies (σ, σ ′)
(one for each of the players) yields a path, written πσ,σ ′ in the game graph, which is finite
or has a lasso shape: a prefix path starting from v0 followed by a cycle. A strategy σ for
Determinizator is winning if whatever the strategy σ ′ for Spoiler, the path πσ,σ ′ does not visit
any Bad states.

123

Form Methods Syst Des

0, x − y = 0, 0}

0, x − y = 0,
(0,1)1, x − y = 0,

2, −1 < x − y < 0,

3, −1 < x − y < 0, (0,1)
3, −1 < x − y < 0, ⊥

3, x − y = 0, {0}
3, x − y = 0, ⊥

0, 0 < x − y < 1,
{0}1, 0 < x − y < 1,

2, x − y = 0,

0, 0 < x − y < 1, ⊥
(0,1)1, 0 < x − y < 1, ⊥

2, −1 < x − y < 0, ⊥

0, 0 < x − y < 1, ⊥
{0}1, 0 < x − y < 1, ⊥

2, x − y = 0, ⊥

3, x − y = 0, 0}

3, x − y = 0, ⊥ {0}

3, 0 < x − y < −1, ⊥ (0, 1)

(0, 1), a

(0, 1), b
(0, 1), a

{0}, b

{0}, a{y} ∅{y}∅

{y}∅
(0, 1), a

{y}

∅

∅

∅

(0, 1), a

(0, 1), b

{y}

{y}

{y}
(0, 1), a

{y}∅

{0}, b {0}, a

{y}
∅

{y}

∅

{y}

∅

{y}{y}

∅
∅

∅

(0
, 1

),
b

(0
, 1), b

Fig. 5 The game GA,(1,1) and an example of winning strategy σ for Determinizator

With every strategy for Determinizator σ is associated the timed automaton Aut(σ)

obtained by merging a transition of Spoiler with the transition chosen by Determinizator
just after, and setting as final locations those states of Spoiler containing at least one final
location of A.

Definition 4 Let GA,(k,M ′) = (V, v0, Act, δ, Bad) be the game built from a timed automaton
A = (L , �0, F,Σ, X, M, E) and resources (k, M ′). With a strategy for Determinizator
σ : VD → ActD , is associated the timed automaton Aut(σ) = (VS, v0, F ′,Σ, Y, M ′, E ′)
defined by:

– VS is the set of locations, with v0 the initial location;
– F ′ = {vS = (E, r) ∈ VS | ∃(�, C, b) ∈ E : � ∈ F} is the set of final locations;
– Y is the set of k clocks used in GA,(k,M ′);

123

Form Methods Syst Des

0, x − y = 0, 0}
0, x − y = 0,

(0,1)1, x − y = 0,

2, −1 < x − y < 0,

3, x − y = 0, {0}
3, x − y = 0, ⊥

0 < y < 1, a

0 < y < 1, a

0 < y < 1, b

{y}

Fig. 6 The deterministic TA Aut(σWin) obtained by our construction

– the set of edges is E ′ = {(vS, g, a, Y ′, v′S) ∈ VS × G M ′(Y) × Σ × 2Y × VS | ∃vD ∈
VD such that (vS, (g, a), vD) ∈ δ, (vD, Y ′, v′S) ∈ δ and σ(vD) = Y ′}.

The main result of the paper is stated in the following theorem and links strategies of
Determinizator with deterministic over-approximations of the initial timed language.

Theorem 1 Let A be a timed automaton with no ε-transition and no invariant, and (k, M ′)
resources. For every strategy σ of Determinizator in GA,(k,M ′), Aut(σ) is a deterministic
timed automaton over resources (k, M ′) and satisfies L(A) ⊆ L(Aut(σ)). Moreover, if σ is
winning, then L(A) = L(Aut(σ)).

The full proof is given in the general case with ε-transitions and invariants in A in Sect. 5.3;
however the main ideas for this simpler case are given below.

Proof (Sketch) Given a strategy σ for Determinizator, we show that there exists a weak
timed simulation between A and Aut(σ), namely the relation ρ defined by: R =
{((�, v), ((E, r), v′)) | ∃(�, C, b) ∈ E, (v, v′) ∈ C ∧ v′ ∈ −→r }. This entails the language
inclusion L(A) ⊆ L(Aut(σ)).

Assuming now that σ is winning, given a run ρ in Aut(σ), one can build backwards a
path in A, from an accepting configuration to the initial one by application of elementary
predecessors. Since σ is winning, guards are not over-approximated in Aut(σ), and there
is a run in A with the same delays as in ρ and following the path. This entails the reverse
language inclusion L(Aut(σ)) ⊆ L(A). ��

Standard techniques based on the computation of attractors allow one to check for the
existence of a winning strategy for Determinizator, and in the positive case, to extract such a
strategy [12]. Our game construction can thus be applied to construct deterministic equivalent
(or deterministic over-approximations) to timed automata. On our running example, on Fig. 5,
a winning strategy σWin for Determinizator is represented by the bold edges. This strategy
yields the deterministic equivalent for Aut(σWin) depicted in Fig. 6.

In the approach for the diagnosability problem [9] from which our game construction is
inspired, the existence of a winning strategy is equivalent to the existence of a diagnoser
with given resources. In comparison, since the determinizability under fixed resources is
undecidable, we cannot hope for a reciprocal statement to the one of Theorem 1.

Proposition 1 There exists a TA A that admits an equivalent deterministic TA over resources
(k, M ′), and such that Determinizator has no winning strategy in GA,(k,M ′).

To illustrate this phenomenon, Fig. 7 represents a timed automaton A which is deter-
minizable with resources (1, 1), but for which Determinizator has no winning strategy in
GA,(1,1). Intuitively the self loop on �0 forces Determinizator to reset the clock in its first
move; afterwards, on each branch of the automaton (via �1, �2 or �3), the behavior of A is
strictly over-approximated in the game. However, each over-approximation on a branch is

123

Form Methods Syst Des

0 2 4

1

3

0 < x < 1, a

0 < x < 1, a

0 < x < 1, a

0 < x < 1, a, {x}
x = 1, a, {x}

1 < x, a, {x}

0 < x < 1, a, {x}

Fig. 7 A determinizable TA for which there is no winning strategy for Determinizator

0, x − y = 0, 0}
0, x − y = 0,

{0}1, 0 < x − y < 1,

2, 0 < x − y < 1,

3, 0 < x − y < 1,

0, x − y = 0,

{0}
1, 0 < x − y < 1,

2, 0 < x − y < 1,

3, 0 < x − y < 1,

4, x − y = 0, ⊥

4, x − y = 0, 0}

0 < y < 1, a

{y}

0 < y < 1, a, {y}

0 < y < 1, a

{y}

y
=

1, a{y}

y
>

1, a, {y}

y
=

1,
a

{y
}

y
>

1,
a
, {

y
}

y
=

0, a

y
=

0,
a

Fig. 8 A deterministic equivalent to the TA in Fig. 7 obtained with a losing strategy

“covered” by the other branches, so that the losing strategy yields a deterministic equivalent
to A, represented on Fig. 8. However, if one sets the resources to (2, 1), Determinizator has
a winning strategy in GA,(2,1). This example suggests an iterative approach to construct a
deterministic equivalent. One starts with resources (1, 1) and increases the resources until
a winning strategy is found. However, we have no guarantee that this method will indeed
terminate. It remains an open problem whether given a determinizable timed automaton,
there exist resources so that the resulting game admits a winning strategy.

Remark 1 The size of the game is doubly exponential in the size of the original timed
automaton and we do not have a better upper bound for the resulting deterministic timed
automaton. Note that any deterministic timed automaton Aut(σ) has diagonal guards, since
its transitions are guarded by regions over Y . Yet, this diagonal guards can be removed
avoiding the traditional exponential blowup, because the satisfaction of diagonal constraints is
already encoded in the region associated with each location. From a timed automaton without
diagonal guards, our method thus allows one to construct a deterministic over-approximation
without diagonal guards.

3.3.1 Atomic resets

We now establish that winning strategies for Determinizator can be chosen in the restricted
class of positional strategies with atomic resets. A strategy σ for Determinizator has atomic
resets if for every move Y ′ ⊆ Y in σ , |Y ′| ≤ 1: in words, at most one clock is reset on each
move of Determinizator.

123

Form Methods Syst Des

0, x = y

0, 0 < x − y < 1
1, 0 < x − y < 1
2, x = y

0, 0 ≤ x − y

1, 0 ≤ x − y

2, x = y

3, 0 ≤ x − y

0 < y < 1, a, {y}

0 ≤ y < 1, a, {y}

0 ≤ y < 1, a, {y}
0 ≤ y < 1, b, {y}

0 ≤ y < 1, b, {y}

Fig. 9 The result of algorithm [8] on the running example

Proposition 2 Determinizator has a winning strategy σ : VD → ActD if and only if it has
a winning strategy with atomic resets σ ′ : VD → Y ∪ {∅}.

Proof (sketch) The proof only treats the direct implication because the other one is trivial.
Intuitively two clocks of Y with the same value do not give more information than a single one,
so that it is never worth resetting two or more clocks. More precisely, any timed automaton
can be turned into a weakly timed bisimilar one with atomic resets only, using a construction
similar to the one that removes clock transfers (i.e., updates of the form x := x ′) [13]. ��

We gave the definition of our game approach for the determinization of timed automata
without invariants and ε-transitions. Before extending the procedure to a richer model, we
compare, in Sect. 4 this first version to the two existing approaches introduced for this class
of timed automata.

4 Comparison with existing methods

In this section, we compare the game approach presented in Sect. 3 to the existing methods: on
the one hand, the approximate determinization algorithm from [8] and on the other hand the
determinization procedure from [7]. We argue that our approach often improves the algorithm
of [8] and is more general than the procedure of [7].

4.1 Comparison with [8]

In [8] the construction of a deterministic over-approximation is guided by a skeleton, a
finite automaton which governs the clock resets in the deterministic timed automaton in
construction. The resets are thus defined by a regular untimed language. Strategies can be
seen as skeletons with additional timing information, since the resets also depend on the
regions the actions are taken in. Moreover the game allows us to choose a good strategy,
contrary to the a priori fixed skeletons. On the running example, no skeleton would imply
an exact determinization by [8]. As an example, we depict, on Fig. 9, the resulting strict
over-approximation, when a single clock y is used and reset after each action. In contrast,
our approach, with the resources (1, 1), is exact.

Our approach improves the precision of the relations between clocks by taking the original
guard into account when computing the updated relation. Precisely, an intersection with the
guard in the original TA is performed during the computation of the update up. This refinement
of the update computation could be incorporated into [8]’s algorithm.

123

Form Methods Syst Des

0

4

1 2

3

b

a

a, {x} x = 1, a

a a

b
0 1

x = 1, a

x ≥ 2, ax = 1, a, {x}

Fig. 10 Examples of determinizable TA not treatable by [7]

However, this does not guarantee that our methodology returns tighter over-approximations.
It remains an open problem to compare the outputs of the two methods in case there is no
winning strategy. Recall that if a game admits no winning strategy, we cannot conclude that
no deterministic equivalent over the given resources exist. Unfolding the game (i.e. using
additional finite memory) cannot yield the existence of a winning strategy, yet it may imply
the existence of a strategy yielding a tighter approximation or even an exact determinization.
Therefore, it could be that the algorithm by [8] produces an exact determinization while our
approach doesn’t, whatever the strategy. Indeed, unfolding the behaviour of the input timed
automaton, skeletons may induce an unfolding of the timed automaton, which we cannot do.

Combining the finite-state skeleton of [8] and our game-approach by incorporating a
finite memory in the game would be a way to really subsume the previously existing over-
approximation method.

Also, when a winning strategy exists, we know that the determinization is exact, while
there is no such criterion in the work of Krichen and Tripakis [8].

4.2 Comparison with [7]

Our approach generalizes the one in [7] since, for any timed automaton A such that the pro-
cedure in [7] yields an equivalent deterministic timed automaton with k clocks and maximal
constant M ′, there is a winning strategy for Determinizator in GA,(k,M ′). Intuitively this is
a consequence of the fact that relations between clocks of A and clocks in the game gener-
alize the mappings from [7], since a mapping can be seen as a restricted relation, namely a
conjunction of constraints of the form x − y = 0.

Moreover, our approach strictly broadens the class of automata determinized by the pro-
cedure of [7] in two respects.

– First of all, our method allows one to cope with some language inclusions. For example,
the TA depicted on the left-hand side of Fig. 10 cannot be treated by the procedure of [7]
but is easily determinized using our approach. In this example, the language of timed
words accepted in location �3 is not determinizable. This will cause the failure of [7].
However, all timed words accepted in �3 are also accepted in �4, and the language of timed
words accepted in �4 is clearly determinizable. Our approach allows one to deal with such
language inclusions thanks to the boolean (� or ⊥) associated with each configuration,
and will thus provide an equivalent deterministic timed automaton. This determinized
version of the TA from Fig. 10, left, was computed using a prototype implementation.
We do not reproduce it here because it is quite large: it has 41 locations.

– Second, the relations between clocks of the TA and clocks of the game are more precise
than the mappings used in [7]. For instance, the relation x− y = 2 suffices to express the
value of a clock x thanks to a clock y; as another example, one can deduce that x ′ < 2 from
y′ < 1 assuming the relation 0 < x ′ − y′ < 1. The improvement in precision obtained by

123

Form Methods Syst Des

y = 1, a, {y} y = 1, a y > 1, a y > 1, a

y > 1, a

y > 1, a y = 1, a
y > 1, a

y = 1, ay > 1, a

Fig. 11 A deterministic equivalent of the TA of Fig. 10, right

0, y0 {0}
0, y0

(0, 1) × {0}1, y0

2, y1

3, y0 {0}
3, y1

3, y0 {0} × (0, 1)

0 < y0 < 1, a, {y1}

0 < y0 < 1, a, {y1}

y1 = 0, b, {y0}

0 < y1 < y0 < 1, b, {y0}

Fig. 12 The result of procedure [7] on our running example

considering relations rather than mappings is sometimes crucial for the determinization.
For example, the TA represented on the right-hand side of Fig. 10 can be determinized
by our game-approach, but cannot by [7]. Intuitively, the loop in location �0 forces the
procedure of [7] to introduce a new clock at each step of its unfolding, whereas the
language remains the same if this loop is removed. A deterministic timed automaton
obtained using our prototype using resources (1, 1) for the TA from Fig. 10, right, is
depicted on Fig. 11.

Beyond broadening the class of timed automata that can be automatically determinized,
our approach performs better on some timed automata by providing a deterministic timed
automaton with fewer resources. This is the case on the running example of Fig. 1. The
deterministic automaton obtained by [7] is depicted in Fig. 12: it needs 2 clocks when our
method only needs one.

The same phenomenon happens with timed automata with integer resets. Timed automata
with integer resets, introduced in [6], form a determinizable subclass of timed automata, where
every edge (�, g, a, X ′, �′) satisfies X ′ �= ∅ if and only if g contains an atomic constraint of
the form x = c for some clock x . Intuitively, a single clock is needed to represent clocks of
A since they all share a common fractional part.

Proposition 3 For every timed automaton A with integer resets and maximal constant M,
Determinizator has a winning strategy in GA,(1,M).

Proof Let A be a timed automaton with integer resets over set of clocks X and maximal
constant M . Note that, by definition of TA with integer resets, along any run of A, all clocks
share the same fractional part. This crucial property ensures that an equivalent deterministic
TA with one clock can be constructed. Precisely, in GA,(1,M) we consider the strategy σ

for Determinizator which resets the single clock y exactly for transitions that correspond
to at least one transition of A containing an equality constraint (atomic constraint of the
form x = c). Since A is a TA with integer resets, clocks in X cannot be reset out of these

123

Form Methods Syst Des

0 1
x = 0, a

x = 1, ε, {x}

0, x − y = 0, , {0}
1, x − y = 0, , {0}
1, x − y = −1, , {1}
1, x − y = −2, , {2}
1, x − y < −2, ⊥, (2, ∞)

y = 0, a

{y}

∅

Fig. 13 A timed automaton with ε-transitions and the resulting ε-closure

transitions. Therefore, for every clock x ∈ X , the value of y is always smaller than the one of
x in Aut(σ) and each relation contains either x − y = c with 0 ≤ c ≤ M , or x − y > M . In
the latter case, necessarily x > M . As a consequence, guards over X can always be exactly
expressed in G M ({y}). This ensures that only states where all configurations are marked �
will be visited in Aut(σ). Hence, σ is winning and L(Aut(σ)) = L(A). Note that Aut(σ) is
still a TA with integer resets and its size is doubly exponential in the size of A. ��

As a consequence of Proposition 3, any timed automaton with integer resets can be deter-
minized into a doubly exponential single-clock timed automaton with the same maximal con-
stant. This improves the result given in [7] where any timed automaton with integer resets and
maximal constant M can be turned into a doubly exponential deterministic timed automaton,
using M + 1 clocks. Moreover, our procedure is optimal on this class thanks to the lower-
bound provided in [14]. Note also that the one-clock timed automaton we obtain coincides
with the one obtained by the ad hoc determinization of integer reset timed automata [14].

We discussed how our game approach improves the two existing methods for the deter-
minization of timed automata. In the sequel, we define extensions of the game construction
in order to deal with invariants and ε-transitions.

5 Extension to ε-transitions and invariants

In Sect. 3 the construction of the game and its properties were presented for a restricted class
of timed automata with no ε-transitions and no invariants. Let us now explain how to extend
the previous construction to deal with these two aspects.

5.1 ε-transitions

Let us first explain informally the modifications that are needed in the definition of the game
to deal with ε-transitions.

Quite naturally, in order to remove ε-transitions, an ε-closure has to be performed when
computing new states in the game. This closure calls for an extension of the structure of
the states: delays might be mandatory before taking an ε-transition, and hence, potentially
distinct regions are attached to configurations of a state in the game. This phenomenon is
illustrated on the example of TA depicted in Fig. 13, left. The resulting game is represented
in Fig. 13, right, for resources (1, 2). There, the rightmost state is composed of the state
reached without ε-transitions {(�1, x − y = 0,�, {0})}, and its ε-closure. For instance, the
configuration (�1, x− y = −2,�) can only be reached after two ε-transitions of the original
TA, taken respectively after one and two time units. Thus this configuration can only happen
when the clock y reaches the region {2} or later, whereas the configuration (�1, x− y = 0,�)

could be observed already in region {0}. More generally, in a given state, a configuration may
be associated with several regions, all those being time-successors of the initial region of that
state.

123

Form Methods Syst Des

1, x − y = 0, , {0} 1, x − y = −1, , {1}

1, x − y = −2, , {2}1, x − y < −2, ⊥, (2, ∞)

y = 1, ε

y = 2, ε

y > 2, ε

y > 2, ε

Fig. 14 Step-wise computation of the ε-closure, before merging

Computing the ε-closure of a state in the game amounts to computing the set of reachable
configurations by ε-transitions, and associating with every new configuration its correspond-
ing region. This computation can be seen as a construction of a branch of the game where ε

would be a standard action, but where Determinizator is not allowed to reset any clock; all the
states obtained this way are then gathered into a unique state. For instance, Fig. 14 represents
the computation of the ε-closure discussed above, for a single clock y and maximum constant
2. This alternative point of view justifies that the computation always terminates.

Apart from the structure of the individual states, the set Bad also requires to be redefined
when taking into account possible ε-transitions, in particular because regions are now attached
to configurations and no longer to states. Intuitively, a state is safe (that is, not in Bad) as
soon as, if it contains final configurations, then there exists a final configuration marked �,
and corresponding to the initial region in that state. The set Bad should therefore include
those states where either the ε-closure leads to a final configuration after some delay or the
final configurations with initial region (upper part of the state in the examples) are all marked
⊥. Indeed, in both cases, the state will be declared as final in the timed automaton Aut(σ) for
any fixed strategy σ . However, Determinizator should avoid these states in order to ensure
that no over-approximation occurred.

We now come to the formal definition of the game.

Definition 5 Let A = (L , �0, F,Σ, X, M, E) be a timed automaton and (k, M ′) resources.
We let M = max(M, M ′), and Y a set of k clocks. The game associated with A and (k, M ′)
is GA,(k,M ′) = (V, v0, Act, δ, Bad) where:

– V = VS � VD is the finite set of vertices, with VS ⊆ 2L×RelM(X∪Y)×{�,⊥}×RegY
M ′ and

VD ⊆ VS × RegY
M ′ ×Σ ;

– v0 = clε({(�0,
∧

z,z′∈X∪Y z − z′ = 0,�, {0})}) is the initial vertex, where clε is defined
in Eq. (5) below, and v0 ∈ VS ;

– Act = ActS � ActD is the set of possible actions, ActS = RegY
M ′ ×Σ and ActD = 2Y ;

– δ = δS ∪ δD is the transition relation with δS and δD defined as follows:

– δS ⊆ VS × ActS × VD is the set of edges of the form E (r ′,a)−−−→ (E, (r ′, a)) if there

exists (�, C, b, r) ∈ E such that r ′ ∈ −→r and there exists �
g,a,X ′−−−→ �′ ∈ E such that

condition C�=∅ is satisfied, that is [r ′ ∩ C]|X ∩ g �= ∅,
– δD ⊆ VD × ActD × VS is the set of edges of the form (E, (r ′, a))

Y ′−→ E ′ where

E ′ =
⋃

γ∈E

⋃

γ ′∈Succε
e [r ′,a,Y ′](γ)

clε(γ ′); (3)

123

Form Methods Syst Des

• where Succε
e is the elementary successor function

Succε
e[r ′, a, Y ′](�, C, b, r) = {(�′, C ′, b′, r ′[Y ′←0]) |

(�′, C ′, b′)∈Succe[r ′, a, Y ′](�, C, b)}, (4)

• and clε is the ε-closure, clε(�, C, b, r) is defined as the smallest fixpoint of the
functional

X �→ (�, C, b, r) ∪
⋃

(�′,C ′,b′,r ′)∈X

⋃

r ′′∈−→r ′
Succε

e[r ′′, ε,∅](�′, C ′, b′, r ′), (5)

– Bad = {{(� j , C j ,⊥, r j)} j
} ∪ {{(� j , C j , b j , r j)} j | ∀h

(
(∪ j r j ⊆ −→rh) ⇒ (�h ∈ F ⇒

bh = ⊥)
) ∧ (∃i, �i ∈ F)

}
is the set of bad states.

We now detail the edge relation δ which gives the possible moves of the players. Given
a state of Spoiler vS = {(� j , C j , b j , r j) j } ∈ VS and (r ′, a) one of his moves, the successor
state is defined as the state vD = ({(� j , C j , b j , r j)} j , (r ′, a)) ∈ VD provided there exists

(�, C, b, r) ∈ vS , such that r ′ ∈ −→r and there exists �
g,a,X ′−−−→ �′ ∈ E with [r ′ ∩C]|X ∩g �= ∅.

Given vD = ({(� j , C j , b j , r j)} j , (r ′, a)) ∈ VD a state of Determinizator and Y ′ ⊆ Y
one of his moves, the successor state vS , formally defined above in Eq. (3), is obtained as
the ε-closure of the set of all elementary successors of configurations in {(� j , C j , b j , r j)} j
by (r ′, a) and resetting Y ′. Precisely, if (�, C, b, r) is a configuration such that r ′ ∈ −→r , its
elementary successors set by (r ′, a) and resetting Y ′ is defined in Eq. (4) using the basic
elementary successor Succe defined in Eq. (1) on page 9. To complete this definition, let
us discuss the ε-closure of a state of Spoiler. The ε-closure of a configuration (�, C, b, r),
denoted by clε(�, C, b, r), is the smallest set of configurations containing (�, C, b, r) and
closed under elementary successor for any pair (r ′, ε) where r ′ is a time successor of the
source configuration and without resetting any clocks in Y . It is thus the smallest fixpoint of
the functional in Eq. (5). The termination in finite time of the iterative computation of the
fixpoint comes from the fact that the number of configurations is finite.

5.2 Invariants

We now explain how to adapt the framework to timed automata with invariants. Note that
any timed automaton with invariants can be transformed into an equivalent one without
invariants. Yet, this comes with a cost: one obtains a TA in which the guards are regions,
and therefore contain diagonal constraints. Also, the size of the resulting automaton may be
exponential in the size of the original TA. In our work, we chose to focus on TAs without
diagonal guards. One motivation for this is that the forward reachability analysis using the
natural extrapolation operator is not correct when applied to TAs with diagonal guards [15].

The adaptation of the game from Definition 5 to TAs with invariants can be summarized
as follows. First, while computing the elementary successors for configurations, invariants
have to be taken into account. Second, with each state of the game, we associate an invariant
corresponding to the invariants of the original locations. Last, the set of bad states needs to
be redefined.

An invariant over clocks of Y is attached to each state of Spoiler. A state vS of Spoiler
thus has the form vS = ({(� j , C j , b j , r j)} j , I) where I ∈ IM ′(Y) is intuitively the most
restrictive invariant that over-approximates every invariant for the configurations composing
vS . Formally,

I =
⋃{

r ′′ ∈ RegY
M ′ | ∃ j, r ′′ ∈ −→r j ∧ [r ′′ ∩ C j]|X ∩ Inv(� j) �= ∅

}
. (6)

123

Form Methods Syst Des

Fig. 15 A timed automaton with
invariants

0

1 2

1 2

x < 2

x < 2

0 < x < 1
x = 1

0 < x < 1, {x}
0 < x < 1

In the computation of the successor states, the invariants are taken care of similarly to the
guards: their satisfaction is checked on both end-points of the transitions. In order to do so, in

the definition of Succε
e for a transition �

g,a,X ′−−−→ �′ the condition C�=∅, that is [r ′ ∩C]|X ∩g �=
∅, is replaced with the condition D �=∅ := [r ′ ∩ C]|X ∩ g ∩ Inv(�) ∩ (Inv(�′))[X ′←0]−1 �= ∅.

The boolean has to take into account the potential over-approximation of the invariant. It
is thus redefined as follows:

b′ = b ∧
(
[r ′ ∩ C]|X ⊆ (g ∩ Inv(�) ∩ (Inv(�′))[X ′←0]−1)

)
∧

×
([[Inv(�) ∩ C]|Y ∩ C

]
|X = Inv(�)

)
∧

(
[Inv(�) ∩ C]|Y = I

)
(7)

where I is the invariant of the state containing this configuration. Indeed, in order to have
no over-approximation of the invariant for a configuration, it is necessary that the invariant
associated to the state of the game is not larger than the invariant induced by the configuration,
moreover this latter should not be an approximation of the invariant in A. As a consequence,
the configurations which are built via an approximation of some invariant are marked⊥. The
relation update is also redefined, to enforce the satisfaction of the invariants:

up(r ′, C, g, �, �′, X ′, Y ′) =←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(r ′ ∩ C ∩ g ∩ Inv(�))[X ′←0][Y ′←0] ∩ Inv(�′). (8)

Note that in this definition, the invariant and the configurations are interdependent. This is
no problem. Configurations can be first computed assuming that the last condition

([Inv(�)∩
C]|Y = I

)
for b′ to be � is true. Then, I can be computed using configurations and last

markers can be updated taking into account I.
Some over-approximation in the invariants can yield a strict over-approximation of the

original timed language. The preservation of the property that any winning strategy for
Determinizator yields a deterministic equivalent of the original timed automaton is ensured
thanks to the booleans in configurations taking into account this risk. The definition of the
set Bad is thus unchanged.

Example Let us illustrate the construction of the game, and in particular, the computation
of invariants, on an example. Figure 15 represents a timed automaton with invariants. An
excerpt of the corresponding game, over resources (1, 3), is depicted in Fig. 16. We consider
the right-most state in the picture, and explain how its configurations and its invariant are
derived. For the first configuration, with location �2, the induced invariant is y < 2, it is
trivially obtained from the invariant x < 2 in �2 and the relation x − y = 0. The region
over y is simply y = 1, and there was no over-approximations so far. The first configuration
thus should be (�2, x − y = 0,�, {1}). Concerning the configuration with location �′2, the
induced invariant is y < 3, since x < 2 and the relation 0 > x − y > −1 imply y < 3. Note
that the region 2 < y < 3 is necessarily included in this invariant because e.g., the valuation

123

Form Methods Syst Des

(2, x − y = 0, ⊥, {1})
(2, 0 > x − y > −1, ⊥, {1})

(1, x − y = 0, , (0, 1))
(1, 0 > x − y > −1, , (0, 1))

(0, x − y = 0, , {0})

y < 3

tt

tt

∅

y = 1

∅

0 < y < 1

Fig. 16 Excerpt of the game with resources (1, 3) for the TA from Fig. 15

x = 1.9 and y = 2.1 satisfies 0 > x− y > −1, 2 < y < 3 and x < 2. Also, the boolean is⊥
since over-approximations occurred in the last step leading to this configuration. The second
configuration is thus (�′2, 0 > x − y > −1,⊥, {1}). Last, the invariant associated with the
state is the union of the invariants for each configuration y < 2 and y < 3. It is therefore
over-approximated for the first configuration, which explains that its boolean is set to ⊥ in
the end.

5.3 Properties of the strategies in the extended game

Theorem 1, for timed automata with no ε-transitions and no invariants, extends to timed
automata with these features, using the extended game defined above. Recall that Aut(σ),
the timed automaton derived from the game by fixing a strategy σ for Determinizator, is
defined in Definition 4.

Theorem 2 Let A be a timed automaton, and (k, M ′) resources. For every strategy σ of
Determinizator in GA,(k,M ′), Aut(σ) is a deterministic timed automaton over resources
(k, M ′) and satisfies L(A) ⊆ L(Aut(σ)). Moreover, if σ is winning, then L(A) = L(Aut(σ)).

Note that the game construction described in the current section is a conservative extension
of the one given in Sect. 3.1 for timed automata with no ε-transitions and no invariants. As
a consequence, the following proof of Theorem 2 also serves as a proof for Theorem 1.

Proof The proof is split in two parts. First of all, we show that any strategy σ for Deter-
minizator ensures L(A) ⊆ L(Aut(σ)). Then we prove that the reverse inclusion also holds
for every winning strategy σ .

(⊆): Let σ be any strategy for Determinizator in GA,(k,M ′). To show that L(A) ⊆
L(Aut(σ)) we prove a stronger fact on the transition systems TA and TAut(σ) associated with A
and Aut(σ): TAut(σ) weak timed simulates TA. Let TA = (S, s0, SF , (R+×(Σ∪{ε})),→A),
TAut(σ) = (S′, S′0, S′F , (R+ ×Σ),→Aut(σ)), and R ⊆ S×S′ the following binary relation:

R = {(
(�, v), ((E, I), v′)

) | ∃(�, C, b, r) ∈ E, (v, v′) ∈ C ∧ v′ ∈ −→r }
.

Let us prove that R satisfies the four conditions from Definition 2, to be a weak timed
simulation. Given that Aut(σ) has no ε-transitions, the fourth condition can be simplified.
We will thus prove the following on R:

(1) (s0, S′0) ∈ R,
(2) (s, S′) ∈ R and s ∈ SF implies S′ ∈ S′F ,

123

Form Methods Syst Des

(3) for all (s, S′) ∈ R, for all a ∈ Σ whenever s
a−→A s̃, there exists S̃′ ∈ S′ such that

(s̃, S̃′) ∈ R and S′ a−→Aut(σ) S̃′,
(4) for all (s, S′) ∈ R, whenever s

τ1−→A
ε−→A s2 · · · τn−1−−→A

ε−→A sn
τn−→A s̃, there exists

S̃′ ∈ S′ such that (s̃, S̃′) ∈ R and S′ τ−→Aut(σ) S̃′ with τ =∑n−1
i=1 τi .

(1) The first condition about the initial states is trivially satisfied, by definition of the initial
state in the game, and thus the initial location in Aut(σ).

(2) Accepting locations in Aut(σ) are locations in which there is at least one configuration
whose location is accepting in A. As a consequence, the second condition is satisfied by
R.

Assume now that s = (�s, vs) and S′ = ((ES′ , IS′), vS′) are states of TA and TAut(σ)

respectively such that (s, S′) ∈ R. Then, there exists a configuration (�s, C, b, r) ∈ ES′
such that vs and vS′ satisfy the relation C , i.e. (vs, vS′) ∈ C , and vS′ ∈ −→r . Moreover, if
vs ∈ Inv(�s), which is true as soon as s is reachable from s0, then vS′ ∈ IS′ . Indeed, if
vs ∈ Inv(�s), then the region rS′ containing vS′ is such that rS′ ∈ −→r and (vs, vS′) ∈ rS′ ∩C ,
hence the condition D�=∅ is satisfied because vs ∈ [rS′ ∩ C]|X ∩ Inv(�s). Therefore, by
definition of IS′ (see Eq. (6)), rS′ ⊆ IS′ and thus vS′ ∈ IS′ .

(3) Let us prove that the third condition is satisfied. Let a ∈ Σ such that s
a−→A s̃. This

transition comes from some edge (�s, g, a, X ′, �s̃) in A where �s̃ is the location of s̃.
Let rS′ be the region containing vS′ . Then, (vs, vS′) ∈ C implies that the condition
D�=∅ is satisfied, because vs ∈ [rS′ ∩ C]|X ∩ g ∩ Inv(�s) ∩ (Inv(�s̃))[X ′←0]−1 . Hence,
Succε

e[rS′ , a, Y ′](�s, C, b, r) is not empty (whatever is Y ′ ⊆ Y). As a consequence,

by definition of the game, there exists an edge (ES′ , IS′)
rS′ ,a,Y ′−−−−→ (ES̃′ , IS̃′) in Aut(σ),

with some Y ′ ⊆ Y , and there exists a configuration (�s̃, C ′, b′, rS′ [Y ′←0]) ∈ ES̃′ which
is an elementary successor of (�s, C, b, r). Letting S̃′ = ((ES̃′ , IS̃′), vS̃′) where vS̃′ =
vS′ [Y ′←0], we observe that (vs̃, vS̃′) ∈ C ′ using the definition of the updates for the
relation (Eq. (8) on page 24). Hence (s̃, S̃′) ∈ R, which proves condition (3) for R.

(4) Finally, let us prove that R satisfies the last condition. Consider s
τ1−→A

ε−→A
s2 · · · τn−1−−→A

ε−→A sn
τn−→A s̃, a sequence of delays and ε-transitions from s in A. Letting

s j = (� j , v j) (for 1 ≤ j ≤ n) and s = s1, for every 1 ≤ j ≤ n−1 there exists an edge in
A of the form (� j , g j , ε, X j , � j+1) with v j + τ j |� g j ∩ Inv(� j)∩ (Inv(� j+1))[X j←0]−1

and v j+1 = (v j + τ j)[X j←0]. By definition of the ε-closure operator clε (Eq. (5) on
page 23), for each index 1 ≤ j ≤ n there is a configuration (� j , C j , b j , r j) ∈ Es′

such that (v j , vS′ + ∑ j−1
i=1 τi) ∈ C j and vS′ + ∑ j−1

i=1 τi ∈ r j . As a consequence,

((� j , v j), ((ES′ , IS′), vS′ + ∑ j−1
i=1 τi)) ∈ R and, since the invariant Inv(� j) is sat-

isfied by v j , we get that vS′ + ∑ j−1
i=1 satisfies IS′ . In particular, this is true for

j = n. Hence, (vn + τn, vS′ + ∑n
i=1 τi) ∈ Cn and vs̃ = vn + τn . Then, letting

S̃′ = ((ES̃′ , IS̃′), vS′ +∑n−1
i=1 τi), we obtain that condition (4) is satisfied by R.

This concludes the proof that Aut(σ) weakly timed simulates A, which implies the language
inclusion L(A) ⊆ L(Aut(σ)).

(⊇): Assume now that σ is a winning strategy in GA,(k,M ′). Let us prove that L(Aut(σ)) ⊆
L(A).

Let w ∈ L(Aut(σ)). Then, there exists a run ρ′w = S′0
w−→Aut(σ) S′n in Aut(σ), such that

S′n is accepting. We want to prove that w also belongs to L(A). To do so, we first build a
configuration path going from the initial configuration (�0,

∧
z,z′∈X∪Y z − z′ = 0,�, {0Y })

123

Form Methods Syst Des

to a configuration of S′n whose location is accepting. This is performed backwards, using the
definition of the function Succε

e for elementary successors. By Eq. (4), this configuration
sequence corresponds to a path in A (that is, an alternating sequence of locations and edges
of A). Then we show that along this path in A, there exists a run of A reading w. This will
allow us to conclude that w ∈ L(A) and thus L(Aut(σ)) ⊆ L(A).

Before the proof of these two steps, we introduce some notations. The accepting run over

w in Aut(σ) is ρ′w = S′0
τ0−→Aut(σ)

a1−→Aut(σ) S′1 · · · S′n−1
τn−1−−→Aut(σ)

an−→Aut(σ) S′n with w =
(
∑ j−1

l=0 τl , a j)1≤ j≤n . We further write S′i = (L S′i , vS′i) for all 0 ≤ i ≤ n with L S′i = (E ′i , I′i)
and denote by �γ , Cγ , bγ and rγ respectively the location, the relation, the boolean and the
region of a configuration γ .

5.3.1 Construction of a path π inA

Let j be a fixed index such that 1 ≤ j ≤ n. Then, for every configuration in E ′j , one can
follow backwards the elementary successors by ε-transitions until a configuration which
is the elementary successor of a configuration in E ′j−1. Repeating this, one can backwards
follow the whole run ρ′w . Formally, for every configuration γ j ∈ E ′j marked � of S′j there is

a finite sequence (γ i
j)0≤i≤n j of configurations marked � in L S′j such that:

– there exists γ j−1 ∈ S′j−1 such that γ 0
j ∈ Succε

e[r0
γ j

, a j , σ (L S′j−1
, (rγ 0

j
, a j))](γ j−1),

– γ
n j
j = γ j ,

– for all 1 ≤ i ≤ n j , γ i
j ∈ Succε

e[rγ i
j
, ε,∅](γ i−1

j).

Remark that the fact that configurations are marked � is implied, by definition of Succε
e

(see Eq. (4)), by the fact that γ j itself is marked �.
We can thus consider the configuration path π , corresponding to the entire run ρ′w starting

the backward construction from an accepting configuration γn marked � in L S′n , because
accepting locations of Aut(σ) are states containing at least one configuration whose location
is accepting, and by definition of Bad because σ is winning. The path π is thus of the
following form:

π = (�0,
∧

z,z′∈X∪Y

z − z′ = 0,�, {0Y }) ε−→ γ 1
0

ε−→ · · · ε−→ γ
n0
0

a1−→ ε−→

· · · ε−→ γ 0
j−1

ε−→ · · · ε−→ γ
n j−1
j−1

a j−→ γ 0
j

ε−→ · · · an−→ γn .

Then, still by definition of the function Succε
e in Eq. (4), this configuration path corre-

sponds to a path in A. It is thus sufficient to prove that there is a run ρπ reading w in A along
this path, that is:

ρπ = (�0, {0})
τ 0

0−→ ε−→ (
�γ 1

0
, v1

0

) τ 1
0−→ ε−→ · · · ε−→

(

�
γ

n0
0

, v
n0
0

)
τ

n0
0−−→ a1−→

(

�γ 0
1
, v0

1

)
τ 0

1−→ ε−→

· · · ε−→
(

�γ 0
j−1

, v0
j−1

)
τ 0

j−1−−→ ε−→ · · · ε−→
(

�
γ

n j−1
j−1

, v
n j−1
j−1

)
τ

n j−1
j−1−−−→ a j−→ · · · an−→

(

�γn , vn

)

where for all 0 ≤ j ≤ n − 1,
∑n j

i=1 = τ j .

5.3.2 Reading w along π inA

Let us prove that one can define delays along π to obtain a run in A reading w. We even prove
a stronger fact: for each fragment of the path corresponding to one transition of the run ρ′w in

123

Form Methods Syst Des

Aut(σ), from any valuation v ∈ R
X+ in relation with the valuation vS′j−1

∈ R
Y+, one can define

suitable delays. Formally, let us prove that for every 1 ≤ j ≤ n, if (v0
j−1, vS′j−1

) ∈ Cγ 0
j−1

then

there are delays (τ i
j−1)’s such that (�γ 0

j−1
, v0

j−1)
τ 0

j−1−−→ ε−→ · · · ε−→ (�
γ

n j−1
j−1

, v
n j−1
j−1)

τ
n j−1
j−1−−−→ a j−→

(�γ 0
j
, v0

j) is a run of A with
∑n j

i=1 τ i
j−1 = τ j and (v0

j , γ
0
j) ∈ Cγ 0

j
. Observe that this

property holds for j = 1 since (�0, {0X }) corresponds to (�0,
−−−−→{0X∪Y },�, {0Y }), formally

({0X }, {0Y }) ∈
−−−−→{0X∪Y }.

The proof is structured as follows. We first show that invariants of A are satisfied in all the
states corresponding to configurations of the path. Then we prove that transition a j can be
fired in states of A corresponding to the configuration γ

n j−1
j−1 (with the associated valuation

in ρ′w) and reach a state corresponding to γ 0
j . Finally we explain how to define delays in

such a way that from any state corresponding to γ 0
j−1, one reaches a state corresponding to

γ
n j−1
j−1 .

– Invariants assuming that (vi
j−1+τ i

j−1, vS′j−1
+∑i

h=0 τ h
j−1) ∈ Cγ i

j−1
, we prove thatvi

j−1+
τ i

j−1 ∈ Inv(�γ i
j−1

). Indeed, as γ i
j−1 is marked �,

[[Inv(�γ i
j−1

) ∩ Cγ i
j−1
]|Y ∩ Cγ i

j−1

]
|X =

Inv(�γ i
j−1

) and [Inv(�γ i
j−1

)∩Cγ i
j−1
]|Y = I′ j−1 by definition of I′ j−1 (Eq. (6) on page 23).

As a consequence vS′j−1
+∑i

h=0 τ h
j−1 ∈ I′ j−1 implies vi

j−1 + τ i
j−1 ∈ Inv(�γ i

j−1
). In

words, assuming that valuations in A satisfy corresponding relations with corresponding
valuations in Aut(σ), invariants of locations of A are satisfied.

– Discrete transitions labeled in Σ let (�
γ

n j−1
j−1

, v
n j−1
j−1 + τ

n j−1
j−1)

a j−→ (�γ 0
j
, v0

j) be a discrete

transition of ρπ , labeled in Σ . Assuming that (v
n j−1
j−1 + τ

n j−1
j−1 , vS′j−1

+ τ j−1) ∈ C
γ

n j−1
j−1

,

we prove that it is a transition of A and that (v0
j , vS′j) ∈ Cγ 0

j
.

By construction of ρπ , γ 0
j ∈ Succε

e[r j , a j , Y j](γ n j−1
j−1). Moreover, by definition of ρ′w,

vS′j−1
+ τ j−1 ∈ r j . Then, by definition of Succε

e in Sect. 5.2, and because γ 0
j is marked

�, there exists an edge (�
γ

n j−1
j−1

, g j , a j , X j , �γ 0
j
) in A such that conditions D �=∅ and D⊆

are satisfied, i.e. ∅ �= [r j ∩ C
γ

n j−1
j−1
]|X ⊆ g j ∩ Inv(�

γ
n j−1
j−1

) ∩ (Inv(�0
j))[X j←0]−1 , and

Cγ 0
j
= up(r j , C

γ
n j−1
j−1

, g j , �γ
n j−1
j−1

, �γ 0
j
, X j , Y j) (defined in Eq. (8) on page 24). As a

consequence, this edge is fireable from (�
γ

n j−1
j−1

, v
n j−1
j−1 + τ

n j−1
j−1), indeed v

n j−1
j−1 + τ

n j−1
j−1 ∈

[vS′j−1
+ τ j−1 ∩ C

γ
n j−1
j−1
]|X ⊆ [r j ∩ C

γ
n j−1
j−1
]|X ⊆ g j ∩ Inv(�

γ
n j−1
j−1

) ∩ (Inv(�0
j))[X j←0]−1 .

Finally, (v0
j , vS′j) ∈ Cγ 0

j
by definition of up (Eq. (8)).

– Delays and ε-transitions let (�γ 0
j−1

, v0
j−1)

τ 0
j−1−−→ ε−→ · · · ε−→ (�

γ
n j−1
j−1

, v
n j−1
j−1)

τ
n j−1
j−1−−−→

(�
γ

n j−1
j−1

, v
n j−1
j−1 + τ

n j−1
j−1) be a sequence of delays and ε-transitions of ρπ corresponding

to the delay τ j−1 of ρ′w in Aut(σ). Assuming that (v0
j−1, vS′j−1

) ∈ Cγ 0
j−1

, we prove that

one can fix τ i
j−1’s such that this is a sequence of transitions of A,

∑n j−1−1
h=0 τ h

j−1 = τ j−1

and (v
n j−1
j−1 + τ

n j−1
j−1 , vS′j−1

+ τ j−1) ∈ C
γ

n j−1
j−1

. Note that vS′j−1
∈ r

γ
n j−1
j−1

and vS′j−1
+ τ j ∈

123

Form Methods Syst Des

r j ⊆ −−−→r
γ

n j−1
j−1

. Let us define τ i
j−1 as follows: τ

n j−1
j−1 = τ j −∑n j−1−1

i=0 τ i
j−1 and for all

0 ≤ i < n j−1, τ i
j−1 = 0 if vS′j−1

+∑i−1
h=0 τ h

j−1 ∈ r i
j−1, otherwise we fix τ i

j−1 as any

delay such that vS′j−1
+∑i

h=0 τ h
j−1 ∈ r i

j−1 and vS′j−1
+∑i

h=0 τ h
j−1 ≤ τ j−1.

Let us prove by induction over i that for all 0 ≤ i < n j−1, (�γ i
j−1

, vi
j−1)

τ i
j−1−−→ ε−→

(�
γ i+1

j−1
, vi+1

j−1) is a transition of A and (vi+1
j−1, vS′j−1

+∑i
h=0 τ h

j−1) ∈ C
γ i+1

j−1
.

First of all, we initialize thanks to the assumption (v0
j−1, vS′j−1

) ∈ Cγ 0
j−1

.

Let us fix 0 ≤ i < n j−1 and assume that (vi
j−1 + τ i

j−1, vS′j−1
+∑i

h=0 τ h
j−1) ∈ Cγ i

j−1
.

Hence (vi
j−1 + τ i

j−1, vS′j−1
+∑i+1

h=0 τ h
j−1) ∈ Cγ i

j−1
. Then, we can conclude about the

inductive step in the same way as in the previous step for a j ’s.

We obtain that it is a sequence of transitions of A and that (v
n j−1
j−1 , vS′j−1

+∑n j−1−1
h=0 τ h

j−1) ∈
C

γ
n j−1
j−1

, which implies that (v
n j−1
j−1 + τ

n j−1
j−1 , vS′j−1

+ τ j−1) ∈ C
γ

n j−1
j−1

. ��

5.4 Comparison with [8]

In Sect. 4, we compared our approach with existing methods in the restricted case where timed
automata neither have invariants nor ε-transitions. The determinization procedure of [7] does
not deal with invariants and ε-transitions. We therefore compare our extended approach only
with the over-approximation algorithm of [8].

The models in [8] are timed automata with silent transitions, and actions are classified with
respect to their urgency: eager, lazy or delayable. First of all, the authors propose an ε-closure
computation which does not terminate in general, and rely on the fact that termination can be
ensured by some abstraction. Second, the urgency in the model is not preserved by the over-
approximation construction: the resulting DTA only contains lazy transitions (intuitively the
type lazy over-approximates all kinds of urgency). Note that we classically decided to rather
use invariants to model urgency, but our approach could be adapted to the same model as
in [8], and would preserve urgency more often, the same way as we do for invariants. These
observations underline the benefits of our game-based approach for TAs with invariants and
ε-transitions compared to existing work.

6 Beyond over-approximation

In the previous sections, a game-based approach has been presented to yield a deterministic
over-approximation of a given timed automaton. Yet, we advocate that over-approximations
are not always appropriate, and, depending on the context, under-approximations or other
approximations might be more suitable. We therefore explain in this section how to adapt
our framework in order to generate deterministic under-approximations, and also combine
over- and under-approximations.

6.1 Under-approximation

One motivation for building deterministic under-approximations of a regular timed lan-
guage is that one can decide whether the timed language is approximated provided that
the ’largest’ language is recognized by a deterministic timed automaton. Therefore, given A

123

Form Methods Syst Des

a non-deterministic timed automaton, for every deterministic under-approximation B, one
can decide whether the approximation is strict or not, that is whether the reverse inclusion
L(A) ⊆ L(B) also holds. Contrary to what happens for over-approximations, one would
thus be able to detect if a losing strategy yet yields a deterministic equivalent to the original
timed automaton.

We now briefly explain how to modify the game construction, so that any strategy yields
an under-approximation, and any winning strategy provides a deterministic equivalent. When
we aim at building an over-approximation, during the construction of the game, all litigious
successors (i.e. configurations marked⊥) are built, possibly introducing more behaviors than
in the original TA. In order to obtain an under-approximation, the litigious successors are
simply not constructed. Also, ε-transitions and invariants are not more difficult to handle:
(1) the ε-closure is under-approximated (by avoiding to build configurations marked ⊥); (2)
the invariant of a state is redefined as the union of all regions such that the induced guard is
included in the invariant of the location of some configuration marked�; and (3) finally, the
set Bad is defined as the set of states where, either some litigious successor existed (but was
not built), or for which the invariant or the ε-closure has been under-approximated. We do
not give the complete details of this construction, since in the next subsection we present an
extension that subsumes both over-approximations and under-approximations.

6.2 Combining over- and under-approximation

Beyond over-approximations and under-approximations, combinations of both can be mean-
ingful in some contexts. Model-based testing is an example of such contexts. Given a non-
deterministic timed automaton A, it can be proved that a deterministic timed automaton B
which over-approximates outputs and under-approximates inputs, preserves the conformance
relation tioco. As a consequence, test cases can be generated from B, as sound test cases for
B remain sound for A. Details on the application of deterministic approximations to the test
generation from nondeterministic timed automata models can be found in [10,16].

Let us now explain more generally how to combine over-approximations and under-
approximations. To this aim, we consider timed automata with a partitioned alphabet,
Σ = Σ1�Σ2, and introduce the notion of (Σ1,Σ2)-refinement relation. Note that (Σ1,Σ2)-
refinement is defined here only for a pair of timed automata (A, A′) when A′ has no
ε-transition.

First of all, let us introduce some notations to shorten the definition. For any timed word
w, we write s0

w�⇒ s if there exists a run from s0 to s reading w. If s is left implicit, we write
s0

w�⇒, thus meaning that there exists a state s such that s0
w�⇒ s. We also use this convention

for the transition relation→.

Definition 6 Let A be a timed automaton and A′ be a timed automaton without ε-transitions
over the alphabet Σ = Σ1 � Σ2, and TA = (S, s0, SF , (R+ × (Σ∪{ε})),→A), TA′ =
(S′, s′0, S′F , (R+ × Σ),→A′) their associated transition systems. We say that A (Σ1,Σ2)-
refines A′ and write A � A′ when:

1. if s0
w�⇒A

τ0−→A
ε−→A · · · τn−1−−→A

ε−→A
τn−→A with τi ∈ R+ (0 ≤ i ≤ n), and s′0

w�⇒A′ then

s′0
w�⇒A′

τ−→A′ with τ =∑n
i=0 τi ;

2. if s0
w.(t,a2)����⇒A where a2 ∈ Σ2, and s′0

w�⇒A′ then s′0
w.(t,a2)����⇒A′ ;

3. if s′0
w.(t,a1)����⇒A′ where a1 ∈ Σ1, and s0

w�⇒A
τ0−→A

ε−→A · · · τn−1−−→A
ε−→A

τn−→A with τi ∈ R+
(0 ≤ i ≤ n) and the accumulated delay in w is t −∑n

i=0 τi , then s0
w.(t,a1)����⇒A.

123

Form Methods Syst Des

Intuitively, the (Σ1,Σ2)-refinement is in the spirit of the alternating simulation from [17],
with timing aspects. Apart from time, the notable difference is that (Σ1,Σ2)-refinement is
defined at a language level and is not a binary relation between states. Roughly speaking, the
link between refinement and alternating simulation is the same as between language inclusion
and simulation.

Let us explain the three properties of the definition. The first property specifies that if
a given word can be read in both timed automata and that a delay τ can be observed in
A (through possible ε-transitions), then such a delay τ can also be observed in A′. No ε-
transitions are allowed in A′ for readability, but a natural extension of this definition can be
easily written allowing them. The second property states that if a given word can be read in
A and A′ can read this word except up to the last action, and if this last action belongs to Σ2,
then A′ should be able to read the complete word. These two properties thus express that A′
simulates A, at a language level for Σ2-actions and delays. Last, the third requirement states
the simulation of A′ by A at a language level for Σ1-actions.

Remark that even if there is no ε-transitions in A, the definition is not symmetric: A
(Σ1,Σ2)-refines A′ does not imply that A′ (Σ2,Σ1)-refines A, due to the way delays
are taken care of. Our targetted application to test selection is responsible for this choice.
In particular, if Σ1 and Σ2 consist respectively of the input and output alphabets, the
(Σ1,Σ2)-refinement relation generalizes the io-refinement relation between deterministic
timed automata introduced in [18], which was inspired by the alternating simulation [17].
Then, the inverse relation (which we refer to as generalized io-abstraction) still preserves the
tioco conformance relation [8]: implementations that conform to a specification also con-
form to any io-abstraction of this specification. As a consequence soundness of test cases is
preserved by io-refinement: a test suite which is sound for a given specification is also sound
for any io-refinement of the specification.

Our goal here is to combine over- and under-approximations in the construction of the
game so that any strategy for Determinizator yields a deterministic (Σ1,Σ2)-abstraction
of the original automaton. The game construction is adapted: transitions over actions of
Σ2 and invariants are over-approximated, whereas transitions over actions of Σ1 are under-
approximated. The definition of the (Σ1,Σ2)-refinement imposes global, i.e. language-based,
conditions. As a consequence, when performing an over-approximation, information about
configurations which are removed by an under-approximation must be kept. Moreover, to
deal with ε-transitions, the ε-closure should be over-approximated before a Σ2-action, and
under-approximated before a Σ1-action. As a consequence, the structure of the states of
Spoiler is enriched as follows. The set of configurations is replaced by a pair of sets (E1, E2)

where E1 is the over-approximation of the set of configurations, and E2 is the set of con-
figurations built after successive over- and under-approximations, depending on the moves
leading to its construction to which we applied the under-approximating ε-closure. The
invariant associated with a state of Spoiler is then defined in the same way as before,
using the first set of configurations (the over-approximation). Formally, given a state of
Spoiler whose first set of configurations is {(� j , C j , b j , r j)} j , the invariant is defined as
follows:

I =
⋃{

r ′′ ∈ RegY
M ′ | ∃ j, r ′′ ∈ −→r j ∧ [r ′′ ∩ C j]|X ∩ Inv(� j) �= ∅

}
. (9)

The over-approximation of the invariants is compatible with under-approximations of some
behaviors, since guards always are intersected with the original invariants, rather than the
approximated one, in the construction of the game. However, under-approximating invariants
could hinder over-approximations by constraining too much the guards.

123

Form Methods Syst Des

Before giving the formal definition of the game, we introduce the two elementary successor
operators (one for over-approximation, the other for under-approximation) as well as the two
ε-closure operators. Given (�, C, b, r) a configuration such that r ′ is a time-successor of r , we
detail the computation of elementary successors depending on a. If a ∈ Σ2, its elementary
successors set by (r ′, a) and Y ′ are:

Succ+e [r ′, a, Y ′](�, C, b, r)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�′, C ′, b′, r ′[Y ′←0]) | ∃�
g,a,X ′−−−→ �′ ∈ E such that

[r ′ ∩ C]|X ∩ g ∩ Inv(�) ∩ Inv(�′)[X ′←0]−1 �= ∅
C ′ = up(r ′, C, g, Inv(�), Inv(�′), X ′, Y ′)
b′ = b ∧ ([r ′ ∩ C]|X ⊆ g)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10)

Now, if a ∈ Σ1, its elementary successors set by (r ′, a) and Y ′ are:

Succ−e [r ′, a, Y ′](�, C, b, r)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�′, C ′, b′, r ′[Y ′←0]) | ∃�
g,a,X ′−−−→ �′ ∈ E such that

[r ′ ∩ C]|X ⊆ g ∩ Inv(�) ∩ Inv(�′)[X ′←0]−1

C ′ = up(r ′, C, g, Inv(�), Inv(�′), X ′, Y ′)
b′ = b

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11)

In both definitions, up(r ′, C, g, Inv(�), Inv(�′), X ′, Y ′) is the update of the relation C
between clocks in X and Y after the moves of the two players, that is after taking action a in
r ′, resetting X ′ ⊆ X and Y ′ ⊆ Y , and forcing the satisfaction of g, Inv(�) and Inv(�′). The
formal definition is given in Eq. (8) page 24.

Roughly, Succ+e yields a set of configurations over-approximating the set of successor
states in A. Indeed, successor configurations are built as soon as D �=∅ is satisfied. On the
other side, Succ−e under-approximates the set of states using the restrictive condition D⊆.

To formalize over- and under-approximated ε-closures of a set of configurations, we define
ε-closures of a single configuration. The closure of a set of configurations being the union of
the closures of the individual configurations. Given (�, C, b, r) a configuration, its ε-closures
noted cl+ε (�, C, b, r) and cl−ε (�, C, b, r), are the smallest fixpoints of the functionals

X �→ (�, C, b, r) ∪
⋃

(�′,C ′,b′,r ′)∈X

r ′′∈−→r ′

Succ+e [r ′′, ε,∅](�′, C ′, b′, r ′), and (12)

X �→ (�, C, b, r) ∪
⋃

(�′,C ′,b′,r ′)∈X

r ′′∈−→r ′

Succ−e [r ′′, ε,∅](�′, C ′, b′, r ′), respectively. (13)

We are now in the position to provide the formal definition of the game.

Definition 7 Let A = (L , �0, F,Σ, X, M, E, Inv) be a timed automaton and (k, M ′)
resources. We let M = max(M, M ′), and Y a set of k clocks. The game associated with
A and (k, M ′) is GA,(k,M ′) = (V, v0, Act, δ, Bad) where:

– V = VS � VD is a finite set of vertices, made of the disjoint union of the set VS ⊆
(2L×RelM(X∪Y)×{�,⊥}×RegY

M ′)2 × IM ′(Y) of vertices of Spoiler, and the set VD ⊆ VS ×
RegY

M ′ ×Σ of vertices of Determinizator.

123

Form Methods Syst Des

– v0 = ((cl+ε , cl−ε)({(�0,
∧

z,z′∈X∪Y z − z′ = 0,�, {0})}), I0) with I0 the invariant from
Eq. (9), is the initial vertex and belongs to player Spoiler;

– Act is the set of possible actions partitioned into ActS = RegY
M ′ ×Σ and ActD = 2Y ;

– δ = δS ∪ δD is the transition relation with δS and δD defined as follows.

– δS ⊆ VS × ActS × VD is the set of edges of the form vS
(r ′,a)−−−→ (vS, (r ′, a)) for

vS = ((E1, E2), I) and
• if a ∈ Σ1 and one of the two following conditions is satisfied

· ∃(�, C,�, r) ∈ E2, r ′ ∈ −→r , ∃� g,a,X ′−−−→ �′ ∈ E such that D⊆ is satisfied, i.e.
[r ′ ∩ C]|X ⊆ g ∩ Inv(�) ∩ Inv(�′)[X ′←0]−1 ,

· ∀(�, C, b, r) ∈ E1, r ′ ∈ −→r , ∃� g,a,X ′−−−→ �′ ∈ E such that the condition
D⊆ is satisfied, i.e. [r ′ ∩ C]|X ⊆ g ∩ Inv(�) ∩ Inv(�′)[X ′←0]−1 ; or

• if a ∈ Σ2 and ∃(�, C, b, r) ∈ E1 such that r ′ ∈ −→r and D�=∅ is satisfied, i.e.

∃� g,a,X ′−−−→ �′ ∈ E s.t. [r ′ ∩ C]|X ∩ g ∩ Inv(�) ∩ Inv(�′)[X ′←0]−1 �= ∅;
– δD ⊆ VD × ActD × VS is the set of edges of the form vD

Y ′−→ ((E ′1, E ′2), I′) for
vD = (((E1, E2), I), (r ′, a)) and
• if a ∈ Σ1 and the target state satisfies the following conditions E ′1 =

cl+ε (∪γ∈E1Succ+e [r ′, a, Y ′](γ)), E ′2 = cl−ε (∪γ∈E2 Succ−e [r ′, a, Y ′](γ)) and I′
is defined above in Eq. (9); or
• if a ∈ Σ2 and the target state satisfies the following conditions E ′1 =

cl+ε (∪γ∈E1Succ+e [r ′, a, Y ′](γ)), E ′2 = cl−ε (∪γ∈E1Succ+e [r ′, a, Y ′](γ)) and I′
is defined above in Eq. (9);

– Bad = {(({(� j , C j ,⊥, r j)} j , E2), I)} ∪ {(({(� j , C j , b j , r j)} j , E2), I) | ∀h (
(∀ j, r j ∈−→rh) ⇒ (�h ∈ F ⇒ bh = ⊥)

) ∧ (∃i, �i ∈ F)} ∪ {((E1, E2), I) | ∃s ∈ E1, a ∈
Σ1, r ′ and Y ′ s.t. Succ+e [r ′, a, Y ′](s) �= ∅∧ ((E1, E2), I)

(r ′,a)−−−→} is the set of bad states.

In words, the possible moves of the players are defined as follows. Given vS =
((E1, E2), I) ∈ VS a state of Spoiler and (r ′, a) one of his moves, the successor state is
defined as a state vD = (vS, (r ′, a)) ∈ VD . Note that vD is built only if a condition depend-
ing on a is satisfied:

– if a ∈ Σ1, then one wants to under-approximate the behaviors. To force the under-
approximation, vD is defined only if, either there is a configuration marked� in E2 from
which a can be fired without approximation, or from all the configurations in E1, a can
be fired without approximation.

– when a ∈ Σ2, the goal is to over-approximate, thus vD is built if there is at least one
configuration in E1 from which a can be fired.

Given vD = (vS, (r ′, a)) ∈ VD a state of Determinizator and Y ′ ⊆ Y one of its moves,
the successor state is v′S = ((E ′1, E ′2), I′) ∈ VS such that E ′1 is the over-approximation of
successor configurations of E1, and E ′2 is the set of successor configurations obtained by
successive over-approximations and under-approximations (depending on the actions). In
particular, the ε-closure of E ′1 is over-approximated whereas the ε-closure of E ′2 is under-
approximated.

Last, in order to preserve the exactness of winning strategies for Determinizator, the set
Bad is extended: states obtained before an under-approximation, that is from which some
behaviors are cut, are added to Bad. More precisely, any state of Spoiler vS containing
a configuration (�, C, b, r) in the over-approximating set of configurations such that, for

123

Form Methods Syst Des

0

1

2

3

4

5

0 < x < 1, a

0 < x < 1, a, {x}

0 < x < 1, a

0 < x < 1, a

x = 1, b

x = 1, b

0, x − y = 0, 0} v0

1, x − y = 0, (0,1)
2, 0 < y − x < 1,

v1

3, x − y = 0, (0,1)
4, 0 < y − x < 1,

v2

5, x − y = 0, {1}
5, 0 < y − x < 1, ⊥ v3

4, 0 < y − x < 1, ⊥ (1, ∞)v4

4, 0 < y − x < 1, ⊥ {1}v5

{y}

(0, 1), a

∅

{y}

(0, 1), a

∅

{y}

{1}, b

∅

{y}

(1, ∞), a

∅

{y}

b

{1}
, a

∅

{y}

b

Fig. 17 A timed automaton A and excerpt of the game GA,(1,1) with under-approximation for Σ1 = {a}
and over-approximation for Σ2 = {b}

(r ′, a1) and Y ′ moves of the two players Succ+e [r ′, a1, Y ′](�, C, b, r) is not empty whereas
the successor is not built, is in Bad.

Example An example of a non-deterministic timed automaton is depicted in Fig. 17 with
Σ1 = {a} and Σ2 = {b}, with a part of the construction of the associated game GA,(1,1). For
simplicity, we ommitted labels of states of Determinizator in this figure. Also, the labels of
states of Spoiler should be understood as follows: the E1 component contains all configura-
tions, whereas the E2 component only contains the ones marked �.

Under all these modifications of the game, the following proposition holds:

Proposition 4 Let A be a timed automaton over the alphabet Σ = Σ1 � Σ2, and (k, M ′)
resources. For every strategy σ of Determinizator in GA,(k,M ′), Aut(σ) is a deterministic timed
automaton over resources (k, M ′) and satisfies A � Aut(σ). Moreover, if σ is winning, then
L(A) = L(Aut(σ)).

123

Form Methods Syst Des

Proof The difficult part of the proof concerns arbitrary strategies. Assuming σ is a strategy
for Determinizator in GA,(k,M ′), let us prove that Aut(σ) is a (Σ1,Σ2)-abstraction of A,
that is, A � Aut(σ). Let TA = (S, s0, SF , (R+ × (Σ∪{ε})),→A), TAut(σ) = (S′, S′0,
S′F , (R+ × Σ),→Aut(σ)), the respective timed transition systems associated with A and
Aut(σ).

Recall the three properties that we have to prove:

1. if s0
w�⇒A

τ0−→A
ε−→A · · · τn−1−−→A

ε−→A
τn−→A with τi ∈ R+ (0 ≤ i ≤ n) and S′0

w�⇒Aut(σ),

then S′0
w�⇒Aut(σ)

τ−→Aut(σ) with τ =∑n
i=0 τi ;

2. if s0
w.(t,a2)����⇒A where a2 ∈ Σ2, and S′0

w�⇒Aut(σ) then S′0
w.(t,a2)����⇒Aut(σ);

3. if S′0
w.(t,a1)����⇒Aut(σ) where a1 ∈ Σ1, and s0

w�⇒A
τ0−→A

ε−→A · · · τn−1−−→A
ε−→A

τn−→A with

τi ∈ R+ (0 ≤ i ≤ n) and the accumulated delay in w is t −∑n
i=0 τi , then s0

w.(t,a1)����⇒A.

Note that the proof of Theorem 2 on page 25 applies to prove the first and the second
properties. We define the same binary relation R ⊆ S × S′:

R = {(
(�, v), ((E, I), v′)

) | ∃(�, C, b, r) ∈ E, (v, v′) ∈ C ∧ v′ ∈ −→r }
.

By induction, s0
w�⇒A s and S′0

w�⇒Aut(σ) S′ imply (s, ((E1
S′ , IS′), vS′)) ∈ R assuming S′ =

(((E1
S′ , E2

S′), IS′), vS′). In words, the state estimate E1
S′ is exactly the contents of the state one

would have in the game for over-approximations only.
The heart of the proof thus concerns the third property. In fact, we prove a stronger

property:

3′. if S′0
w.(t,a1)����⇒Aut(σ) where a1 ∈ Σ1, and s0

w�⇒A then s0
w.(t,a1)����⇒A.

Indeed, we prove that if a timed word ending with an action in Σ1 can be read in A′ and
its largest strict prefix can be read in A, then the entire word can be read in A. Let us

assume that S′0
w·(t,a1)����⇒Aut(σ) with a1 ∈ Σ1, and that s0

w�⇒A, and write S′ for the state

of Aut(σ) such that S′0
w�⇒Aut(σ) S′. Note that S′ is unique because Aut(σ) is determinis-

tic. Writing S′ = (((E1
S′ , E2

S′), IS′), vS′), the a1-transition from S′ corresponds to an edge
(((E1

S′ , E2
S′), IS′), (r ′, a1, Y ′), v) of Aut(σ). Hence there are two cases. Either (i) there exists

(�, C,�, r) ∈ E2
S′ such that r ′ ∈ −→r and there exists an edge �

g,a,X ′−−−→ �′ in A such that
condition D⊆ is satisfied, that is [r ′ ∩ C]|X ⊆ g ∩ Inv(�) ∩ Inv(�′)[X ′←0]−1 ; or (i i) for all

(�, C, b, r) ∈ E1
S′ such that r ′ ∈ −→r , there exists an edge �

g,a,X ′−−−→ �′ in A such that condition
D⊆ holds.

(i) In this case, the second part of the proof of Theorem 2 applies. One can thus build a
path in A along which it is possible to read w, ending in a state of the form (�, ṽ),
such that (ṽ, vS′) ∈ C . As a consequence, (ṽ + τ, vS′ + τ) ∈ C , where τ is the delay

right before a1 in w(t, a1), and thus vS′ + τ ∈ r ′. Since there exists �
g,a,X ′−−−→ �′ in A

such that D⊆, (�, ṽ + τ)
a1−→A (�′, ṽ + τ|X ′) and in particular invariants of � and �′ are

satisfied. Hence s0
w·(t,a1)����⇒A (�′, ṽ + τ[X ′←0]).

(ii) By assumption, S′0
w�⇒Aut(σ) S′ and s0

w�⇒A s, then, as explained above, (s, ((E1
S′ , IS′),

v′S)) ∈ R. Then, E1
S′ contains a configuration of the form (�, C, b, r) with s = (�, vs),

and by (i i), there exists an edge �
g,a,X ′−−−→ �′ ∈ E such that D⊆ is satisfied. As a

consequence, by the same reasoning as above, s0
w·(t,a1)����⇒A (�′, vs + τ[X ′←0]).

123

Form Methods Syst Des

We thus proved that A � Aut(σ).
Assume now that σ is winning. Thanks to the new definition of the set Bad, in this case we

recover the properties of the original method. Indeed, by definition of Bad, for all locations
((E1, E2), I) of Aut(σ), on the one hand, (E1, I) is a state of the game built with only over-
approximations (see Sect. 5.2), which is not a bad state, and, on the other hand, this state has
the same successor as in the original game because of the inclusion

{
((E1, E2), I) | ∃s ∈ E1, ∃a ∈ Σ1, ∃r ′, ∃Y ′ s.t.

Succ+e [r ′, a, Y ′](s) �= ∅ ∧ ((E1, E2), I)
(r ′,a)−−−→} ⊆ Bad.

Therefore the proof of Theorem 2 applies and L(A) = L(Aut(σ)). ��

7 Conclusion

In this article, we propose a game-based approach for the determinization of timed automata.
Given a timed automaton A (with ε-transitions and invariants) and resources (k, M), we build
a finite turn-based safety game between two players Spoiler and Determinizator, such that
any strategy for Determinizator yields a deterministic over-approximation of the language of
A, and any winning strategy provides a deterministic equivalent for A, in both cases, with
k clocks and maximal constant M . We also detail how to adapt the framework to generate
deterministic under-approximations, or deterministic approximations combining under- and
over-approximations. The motivation for this generalization is to tackle the problem of off-line
model-based test generation from non-deterministic timed automata specifications [10,16].
Our approach combines the advantages of two existing methods. First, strategies can be seen
as a timed variant of the skeletons of [8]: strategies are timed and adaptive, compared to fixed
finite-state skeletons. Thus, our game approach yields exact deterministic equivalent TAs
on some instances where the over-approximation algorithm from [8] does not. In particular,
the game approach preserves deterministic timed automata (when sufficient resources are
provided). However, the converse could also be true, due to the faculty of skeletons to unfold
the TA. A perspective could then be to combine both approaches. Another interesting point
is that our method deals with urgency in a finer way, preserving as much as possible the
invariants, whereas the algorithm of [8] always over-approximates the urgency status of the
transitions as lazy.

Compared to the determinization procedure of [7], our approach deals with a richer model
of timed automata, including ε-transitions and invariants. Already without these extensions,
any timed automaton that can be determinized by [7], can also be determinized by our game-
approach. The class of automatically determinized timed automata is thus strictly increased,
thanks to a smoother treatment of relations between the original and the new clocks, and
also due to a partial treatment of language inclusion between distinct paths of the original
automaton.

The (approximate) determinization of timed automata is a complex problem and the three
above mentioned algorithms run in time doubly exponential in the size of the input. More
precisely for our approach, the number of locations of the resulting automaton is doubly
exponential in its number of clocks and in the number of clocks of A, and exponential in
the number of locations of A. We implemented a prototype tool during a visit in the team of
Kim G. Larsen at Aalborg University and in particular thanks to the help of Peter Bulychev.
Given the difficulty of the problem, it would be of interest to develop some heuristics.

123

Form Methods Syst Des

First, some timed automata are identified as “easily” determinizable. It is the case of integer
reset timed automata, event-clock timed automata or for input-determined timed automata (in
which resets depend only on the timed word, not on the run), for which greedy determinization
algorithms exist. A preprocessing could thus deal efficiently with these simple cases of non-
determinism, and the greedy algorithms could then be used to develop heuristics to choose a
good exploration of the game.

Second, the resources and other features of the algorithm could be optimized online. Dur-
ing the on-the-fly construction of the game while searching for a winning strategy, resource
clocks could be added if necessary, or the precision of the guards and relations could be
increased. For example, relations can be restricted to mapping, zones can be used instead of
regions, the maximal constant in the relations and the guards can be modified. The current
prototype implementation uses zones rather than regions which limits the size of the game
in practice, even if the complexity is unchanged.

Acknowledgments This work was partially funded by the TESTEC Project of the french research agency
(ANR).

Appendix

Proof of Proposition 2 Let us assume that Y is totally ordered, and for Y ′ ⊆ Y , we write
min(Y ′) for the smallest element in Y ′ according to the total order, with the convention that
min(∅) = ∅. Given a winning strategy σ : VD → ActD for Determinizator, we define
σ ′ : VD → Y ∪ {∅}, with atomic resets, iteratively. The idea is to simulate σ using only
atomic resets. Instead of having several clocks with same value, we reset only one clock and
use a mapping, along the construction, to store which clock is used to represent which set
of clocks. Then, one considers triples with a state reached following σ ′, the corresponding
state reached following σ and a mapping γ which assigns to each clock, the clock used in
the state of σ ′ to represents its value in the state of σ .

– Temp := {(v, v, Id) ∈ VD × VD × Y Y | ∃(r, a) ∈ ActS s.t. (v0, r, a, v) ∈ δ}
– Vdef := ∅
– While Temp �= ∅

– take (v′, v, γ) in Temp
– if v′ /∈ Vdef then
• σ ′(v′) := min(σ (v))

• γ ′(y) :=
{

σ ′(v′) if y ∈ σ(v),

γ (y) otherwise

• Temp := Temp ∪ {(w′, w, γ ′) | ∃v′S, vS ∈ VS, ∃r ′′ ∈ RegY
M ′ , ∃b ∈

Σ s.t. v′ σ ′(v′)−−−→ v′S
(r ′′,b)−−−→ w′ ∧ v

σ(v)−−→ vS

(r ′′[y←γ ′(y)],b)

−−−−−−−→ w }
Note that by definition of the set of edges of the game, w = (vS, (r ′′[y←γ ′(y)], b))

and w′ = (v′S, (r ′′, b)).
• Vdef := Vdef ∪ {v′}

– For all vD ∈ VD\Vdef

– σ ′(vD) = ∅
Intuitively, the above algorithm is a search of Aut(σ). We propagate the encoding of the

clocks of σ by clocks in σ ′ and iteratively build σ ′. The set Temp represents the triples to be

123

Form Methods Syst Des

processed and the set Vdef represents the states of Determinizator in the game for which the
strategy σ ′ is defined. Moreover, the last step of the algorithm consists in arbitrarily defining
the strategy for the unvisited states. By construction, these states are not reachable when
Determinizator follows σ ′ hence this choice does not impact. Thus, σ ′ is well defined. The
correction is a bit tedious, but intuitive: relations in the states in σ ′ give at least as much
information as in σ because the time information of each clock x in σ is carried by γ (x) in
the corresponding state in σ ′. The duplication of the information does not help to win.

Let us prove formally that σ ′ is a winning strategy using the following lemma.

Lemma 1 For all (v′, v, γ) ∈ Vdef with v′ = (Ev′ , (r ′, a′)) and v = (Ev, (r, a)):

(i) a′ = a
(ii) r = r ′[y←γ (y)]

(iii) v has no predecessor in Bad

(iv) ∀w′ such that ∃(v′S, r ′′, b) ∈ VS × ActS with v′ σ ′(v′)−−−→ v′S
(r ′′,b)−−−→ w′, then ∃(w0, γ0) ∈

VD × Y Y such that (w′, w0, γ0) ∈ Vdef
(v) Ev ⊆ {(�, C ′[y←γ (y)],�) | (�, C ′,�) ∈ Ev′ } ∪ {(�, C,⊥)}

(vi) Ev′ ⊆ {(�, C ′, b′) | (�, C ′[y←γ (y)], b) ∈ Ev}

Let us first assume that this lemma is true. The fifth item implies that for all (v′, v, γ) ∈ Vdef,
(v /∈ Bad⇒ v′ /∈ Bad). The third item implies that the v′’s are not in Bad. The fourth item
implies that only these states v′ (appearing in Vdef) impact on the fact that σ ′ is winning or
not. As a consequence, if Lemma 1 is true, then σ ′ is winning.

Let us now prove Lemma 1.

Proof of Lemma 1 Items (i), (ii), (iii) are satisfied by triples initially added to Temp. More-
over, the updates of Temp only add triples satisfying (i) and (ii) and whose a predecessor vS

of the second element is a state of Spoiler reachable following σ , hence (iii) is satisfied too
(only the configurations of vS impact on whether vS ∈ Bad or not, and all the predecessors
of v share the same set of configurations, by definition of δ). Therefore, items (i), (ii), (iii)
are satisfied for all triples of Vdef.

Let us prove by induction that items (v) and (vi) are satisfied for all triples (v′, v, γ) ∈ Vdef.
Remark that all triples in Vdef are first added to Temp. Triples initially added to Temp are
such that Ev = Ev′ , hence they satisfy (v) and (vi). Let us prove now that if (v′, v, γ) ∈ Vdef
satisfies (v) and (vi), then triples added to Temp during the inner loop for this triple, satisfy
(v) and (vi) too. Let (w′, w, γ ′) with w′ = (Ew′ , (r ′′, b)) and w = (Ew, (r ′′[y←γ (y)], b)) be
any triple added to Temp from (v′, v, γ).

(v) Let us first prove that Ew ⊆ {(�, C ′[y←γ ′(y)],�) | (�, C ′,�) ∈ Ew′ } ∪ {(�, C,⊥)}. For
any (�, C,�) ∈ Ew, there exists (�0, C0,�) ∈ Ev such that by definition of the game:

– ∃�0
g,a,X ′−−−→ � ∈ E s. t. [r ′[y←γ (y)] ∩ C0]|X ∩ g �= ∅

– C =←−−−−−−−−−−−−−−−−−−−−−−→(r ′[y←γ (y)] ∩ C0 ∩ g)[X ′←0][σ(v)←0]
– [r ′[y←γ (y)] ∩ C0]|X ⊆ g

By induction hypothesis, there exists (�0, C ′0,�) ∈ Ev′ such that C ′0[y←γ (y)] = C0,
then:

– [r ′[y←γ (y)] ∩ C ′0[y←γ (y)]]|X ∩ g �= ∅
– [r ′[y←γ (y)] ∩ C ′0[y←γ (y)]]|X ⊆ g

123

Form Methods Syst Des

This implies that:

– [r ′ ∩ C ′0]|X ∩ g �= ∅
– [r ′ ∩ C ′0]|X ⊆ g

Indeed, [r ′ ∩ C ′0]|X ⊆ [r ′|I mγ∪X ∩ C ′0|I mγ∪X]|X = [r ′[y←γ (y)] ∩ C ′0[y←γ (y)]]|X . Then
[r ′′ ∩ C ′0]|X ∩ g = ∅ implies that [r ′ ∩ C ′0]|X = ∅ which is not possible if v′ is a
state of the game. As a consequence, there is a configuration (�, C ′,�) in Ew′ such that

C ′ = ←−−−−−−−−−−−−−−−−−−→(r ′ ∩ C ′0 ∩ g)[X ′←0][σ ′(v′)←0]. Then:

C ′[y←γ ′(y)] =
←−−−−−−−−−−−−−−−−−−→
(r ′ ∩ C ′0 ∩ g)[X ′←0][σ ′(v′)←0][y←γ ′(y)]

= ←−−−−−−−−−−−−−−−−−−→(r ′ ∩ C ′0 ∩ g)[X ′←0][σ ′(v′)←0][y←γ (y)][σ(v)←σ ′(v′)]

= ←−−−−−−−−−−−−−−−−−−−−−−−→(r ′[y←γ (y)] ∩ C ′0[y←γ (y)] ∩ g)[X ′←0][σ(v)←σ ′(v′)]

= ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(r ′[y←γ (y)] ∩ C ′0[y←γ (y)] ∩ g)[X ′←0][σ(v)←0].

Therefore, (w′, w, γ ′) satisfies (v). Finally, all the triples in Vdef are added in Temp
first, so that by induction v) is satisfied by all the triples in Vdef.

(vi) Let us now prove that Ew′ ⊆ {(�, C ′, b′) | (�, C ′[y←γ (y)], b) ∈ Ew}. For any (�, C ′, b′) ∈
Ew′ , there exists (�0, C ′0, b) ∈ Ev′ such that:

– ∃�0
g,a,X ′−−−→ � ∈ E s. t. [r ′ ∩ C ′0]|X ∩ g �= ∅

– C =←−−−−−−−−−−−−−−−−−−→(r ′ ∩ C0 ∩ g)[X ′←0][σ ′(v′)←0]
By induction hypothesis, there exists (�0, C ′0[y←γ (y)], b) ∈ Ev, then:

– ∅ �= [r ′ ∩ C ′0]|X ∩ g ⊆ [r ′[y←γ (y)] ∩ C ′0[y←γ (y)]]|X ∩ g

As a consequence, there is a configuration (�, C, b) in Ew such that the relation

C =←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(r ′[y←γ (y)] ∩ C ′0[y←γ (y)] ∩ g)[X ′←0][σ(v)←0], which has been proved to be equal to
C ′[y←γ ′(y)] above. Therefore vi) is satisfied by (w′, w, γ ′) and, by induction, by all the
triples in Vdef.

Finally, let us prove that (iv) is also satisfied for all triples in Vdef. Let (v′, v, γ) be a triple in
Vdef. Let w′ = (Ew′ , (r ′′, b)) be a state of Determinizator such that ∃(v′S, r ′′, b) ∈ VS×ActS

such that (v′, σ ′(v′), v′S) ∈ δ ∧ (v′S, (r ′′, b), w′) ∈ δ. Then, there exists (�0, C ′0, b′0) ∈ Ew′
such that:

– ∃�0
g,b,X ′−−−→ �′ ∈ E s. t. [r ′′ ∩ C ′0]|X ∩ g �= ∅

Moreover, there exists (�1, C ′1, b′1) ∈ Ev′ such that:

– ∃�1
g1,a,X ′1−−−−→ �0 ∈ E s. t. [r ′ ∩ C ′1]|X ∩ g1 �= ∅

– C ′0 =
←−−−−−−−−−−−−−−−−−−→
(r ′ ∩ C ′1 ∩ g1)[X ′←0][σ ′(v′)←0].

As a consequence there exists a configuration (�, C ′1[y←γ (y)], b1) ∈ Ev such that:

– ∅ �= [r ′ ∩ C ′1]|X ∩ g1 ⊆ [r ′[y←γ (y)] ∩ C ′1[y←γ (y)]]|X ∩ g1.

123

Form Methods Syst Des

Then there exists a configuration (�0, C0, b0) of the successor vS of v by the reset σ(v) such
that:

– C0 =←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(r ′[y←γ (y)] ∩ C ′1[y←γ (y)] ∩ g1)[X ′←0][σ(v)←0]

If we define γ ′ as expected (γ ′(y) = γ (y) if y /∈ σ(v), γ ′(y) = σ ′(v′) otherwise) then
C0 = C ′0[y←γ ′(y)]. Moreover, ∅ �= [r ′′ ∩ C ′0]|X ∩ g ⊆ [r ′′[y←γ ′(y)] ∩ C ′0[y←γ ′(y)]]|X ∩ g.
Hence (r ′′[y←γ ′(y)], b) is a possible move of Spoiler from vS . Therefore there exists w ∈ VD

such that (v, σ (v), vS) ∈ δ and (vS, (r ′′[y←γ ′(y)], b), w) ∈ δ. As a consequence, the triple
(w′, w, γ ′) is added to Temp, then when this triple is taken from Temp, either σ ′(w′) is
not already defined and this triple is added to Vdef, or σ ′(w′) has been already defined and
another triple of the form (w′, w0, γ0) has been added in Vdef. Therefore (iv) is satisfied by
all triples (v′, v, γ) in Vdef. ��

References

1. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235
2. Finkel O (2006) Undecidable problems about timed automata. In: Proceedings of the 4th international con-

ference on formal modeling and analysis of timed systems (FORMATS’06) (Lecture Notes in Computer
Science), vol 4202. Springer, pp. 187–199

3. Tripakis S (2006) Folk theorems on the determinization and minimization of timed automata. Inf Process
Lett 99(6):222–226

4. Asarin E, Maler O, Pnueli A, Sifakis J (1998) Controller synthesis for timed automata. In: Proceedings
of the 5th IFAC symposium on system structure and control (SSSC’98). Elsevier Science, Amsterdam,
pp. 469–474

5. Alur R, Fix L, Henzinger TA (1994) A determinizable class of timed automata. In: Proceedings of the 6th
international conference on computer aided verification (CAV’94) (Lecture Notes in Computer Science),
vol 818. Springer, New York, pp 1–13

6. Vijay SP, Pandya PK, Narayanan KS, Lakshmi M (2008) Timed automata with integer resets: language
inclusion and expressiveness. In: Proceedings of the 6th international conference on formal modeling and
analysis of timed systems (FORMATS’08) (Lecture Notes in Computer Science), vol 5215. Springer, pp.
78–92

7. Baier C, Bertrand N, Bouyer P, Brihaye T (2009) When are timed automata determinizable? In: Proceed-
ings of the 36th international colloquium on automata, languages and programming (ICALP’09) (Lecture
Notes in Computer Science), vol 5556. Springer, Rhodes, pp. 43–54

8. Krichen M, Tripakis S (2009) Conformance testing for real-time systems. Form Methods Syst Des
34(3):238–304

9. Bouyer P, Chevalier F, D’Souza D (2005) Fault diagnosis using timed automata. In: Proceedings of the 8th
international conference on foundations of software science and computational structures (FOSSACS’05)
(Lecture Notes in Computer Science), vol 3441. Springer, San Diego, pp. 219–233

10. Bertrand N, Jéron T, Stainer A, Krichen M (2012) Off-line test selection with test purposes for non-
deterministic timed automata. Log Methods Comput Sci 8(4:8):1

11. Bertrand N, Stainer A, Jéron T, Krichen M (2011) A game approach to determinize timed automata. In:
Proceedings of the 14th international conference on foundations of software science and computation
structures (FOSSACS’11) (Lecture Notes in Computer Science), vol 6604. Springer, pp. 245–259.

12. Grädel E, Thomas W, Wilke T (2002) (eds) Automata, logics, and infinite games: a guide to current
research (Lecture Notes in Computer Science), (vol 2500). Springer, Berlin

13. Bouyer P, Dufourd C, Fleury E, Petit A (2004) Updatable timed automata. Theor Comput Sci
321(2–3):291–345

14. Lakshmi M, Narayanan KS (2010) Integer reset timed automata: clock reduction and determinizability.
CoRR arXiv:1001.1215v1

15. Bouyer P (2004) Forward analysis of updatable timed automata. Form Methods Syst Des 24(3):281–320
16. Bertrand N, Jéron T, Stainer A, Krichen M (2011) Off-line test selection with test purposes for non-

deterministic timed automata. In: Proceedings of the 17th international conference on tools and algorithms
for the construction and analysis of systems (TACAS’11) (Lecture Notes in Computer Science), vol 6605.
Springer, pp. 96–111

123

http://arxiv.org/abs/1001.1215v1

Form Methods Syst Des

17. Alur R, Henzinger TA, Kupferman O, Vardi MY (1998) Alternating refinement relations. In: Proceedings
of the 9th international conference on concurrency theory (CONCUR’98) (Lecture Notes in Computer
Science), vol 1466. Springer, New York, pp 163–178

18. David A, Larsen KG, Legay A, Nyman U, Wasowski A (2010) Timed i/o automata: a complete specifi-
cation theory for real-time systems. In: Proceedings of the 13th ACM international conference on hybrid
systems: computation and control (HSCC’10). ACM, pp. 91–100

123

	A game approach to determinize timed automata
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Timed automata
	2.1.1 Determinization of timed automata
	2.1.2 Region abstraction

	2.2 Existing approaches to the determinization of TAs
	2.2.1 Determinization procedure
	2.2.2 Deterministic over-approximation

	3 A game approach to determinization
	3.1 Game definition
	3.1.1 Size of mathcalGmathcalA,(k,M')

	3.2 Example
	3.3 Properties of the strategies
	3.3.1 Atomic resets

	4 Comparison with existing methods
	4.1 Comparison with [8]
	4.2 Comparison with [7]

	5 Extension to ε-transitions and invariants
	5.1 ε-transitions
	5.2 Invariants
	5.3 Properties of the strategies in the extended game
	5.4 Comparison with [8]

	6 Beyond over-approximation
	6.1 Under-approximation
	6.2 Combining over- and under-approximation

	7 Conclusion
	Acknowledgments
	Appendix
	References

