
Form Methods Syst Des (2009) 34: 238–304
DOI 10.1007/s10703-009-0065-1

Conformance testing for real-time systems

Moez Krichen · Stavros Tripakis

Published online: 14 February 2009
© Springer Science+Business Media, LLC 2009

Abstract We propose a new framework for black-box conformance testing of real-time sys-
tems. The framework is based on the model of partially-observable, non-deterministic timed
automata. We argue that partial observability and non-determinism are essential features for
ease of modeling, expressiveness and implementability. The framework allows the user to
define, through appropriate modeling, assumptions on the environment of the system under
test (SUT) as well as on the interface between the tester and the SUT. We consider two types
of tests: analog-clock tests and digital-clock tests. Our algorithm for generating analog-clock
tests is based on an on-the-fly determinization of the specification automaton during the exe-
cution of the test, which in turn relies on reachability computations. The latter can sometimes
be costly, thus problematic, since the tester must quickly react to the actions of the system
under test. Therefore, we provide techniques which allow analog-clock testers to be repre-
sented as deterministic timed automata, thus minimizing the reaction time to a simple state
jump. We also provide algorithms for static or on-the-fly generation of digital-clock tests.
These tests measure time only with finite-precision digital clocks, another essential condi-
tion for implementability. We also propose a technique for location, edge and state coverage
of the specification, by reducing the problem to covering a symbolic reachability graph. This
avoids having to generate too many tests. We report on a prototype tool called TTG and two
case studies: a lighting device and the Bounded Retransmission Protocol. Experimental re-
sults obtained by applying TTG on the Bounded Retransmission Protocol show that only a
few tests suffice to cover thousands of reachable symbolic states in the specification.

Keywords Conformance testing · Test generation · Coverage · Partial observability ·
On-the-fly algorithms · Real-time systems · Timed automata · Specification and verification

M. Krichen · S. Tripakis (�)
Verimag Laboratory, Centre Equation, 2, avenue de Vignate, 38610 Gières, France
e-mail: tripakis@imag.fr
e-mail: stavros.tripakis@gmail.com
url: http://www-verimag.imag.fr

M. Krichen
e-mail: moez.krichen@gmail.com

mailto:tripakis@imag.fr
mailto:stavros.tripakis@gmail.com
http://www-verimag.imag.fr
mailto:moez.krichen@gmail.com

Form Methods Syst Des (2009) 34: 238–304 239

1 Introduction

Testing is a fundamental step in any development process. It consists in applying a set of
experiments to a system (system under test—SUT). There exist many types of testing with
multiple aims, from checking correct functionality to measuring performance. In this work,
we are interested in so-called conformance testing where the aim is to check conformance
of the SUT to a given specification. The SUT is often a “black box” in the sense that we do
not have knowledge about its internals (e.g., its state is not known), thus, can only rely on
its observable input/output behavior.

We focus our attention on real-time systems. These are systems that operate in an en-
vironment with strict timing constraints. Examples of such systems are many: embedded
control systems from the automotive, aerospace or other domains, mobile phones, multime-
dia systems, and so on. When testing a real-time system, it is not sufficient to check whether
the SUT produces the correct outputs. It must also be checked that the timing of the outputs
is correct. Moreover, the timing of these outputs depends on the timing of the inputs. In turn,
the timing of applicable future inputs is determined by the outputs.

Classical testing frameworks are based on Mealy machines (e.g., see [19, 40]) or finite
labeled transition systems (e.g., see [3, 16, 20, 26, 48]). These formalisms are not well-suited
for modeling real-time systems. In Mealy machines, inputs and outputs are synchronous,
which is a reasonable assumption when modeling synchronous hardware, but not when the
delays among inputs and outputs are governed by complex timing constraints. In testing
methods based on LTSs, time is typically abstracted away and timeouts are modeled by
special δ actions [47] which can be interpreted as “no output will be observed” (this is
the property of quiescence). This is problematic, because timeouts need to be instantiated
with concrete values upon testing (e.g., “if nothing happens for 10 seconds, output FAIL”).
However, there is no systematic way to derive the timeout values (indeed, durations are not
expressed in the specification). Thus, one must rely on empirical, ad-hoc methods.

A model which has become quite popular during the past decade for modeling real-time
systems is the model of timed automata—TA [1]. A number of methods for testing real-time
systems based on variants of the above model (or other similar models such as timed Petri
nets) have been proposed (e.g., see [14, 17, 18, 21, 25, 29, 30, 33, 38, 42, 43, 46]). However,
these methods present one or both of the following two limitations.

First, only restricted subclasses of timed automata are considered, thus limiting the ex-
pressiveness of specifications. For example, [29, 46] consider TA where outputs are isolated
and urgent. The first condition states that, at any given state, the automaton can only output
a single action. Therefore, a specification such as “when input a is received, output either b

or c” cannot be expressed in this model. Worse, the second condition states that, at any given
state, if an output is possible, then time cannot elapse. This essentially means that outputs
must be emitted at precise points in time. Therefore, a specification such as “when input a is
received, output b must be emitted within at most 10 time units” cannot be expressed. Most
other works consider deterministic or determinizable subclasses of TA. For instance, [42]
use event-recording automata [2] and [33] use a determinizable TA model with restricted
clock resets. Most of the works also assume that specifications are fully-observable, meaning
that it is assumed that all events can be observed by the tester. All these restrictions limit the
applicability of the methods. Indeed, a specification must be able to leave freedom to poten-
tial implementations, especially on choosing different outputs or output times. Also, as we
argue below, partial observability and non-determinism are essential for ease of modeling,
expressiveness and implementability.

The second limitation is that only analog-clock tests are considered in the works above.
These are tests which can observe the delays between inputs and outputs precisely. For

240 Form Methods Syst Des (2009) 34: 238–304

Fig. 1 A compositional
specification with internal
(unobservable) actions

example, a test like “emit a; if b is received at most 5 time units later, announce PASS and
stop, otherwise, announce FAIL” is an analog-clock test. Analog-clock tests are problematic
since they are difficult (if not impossible) to implement with finite-precision clocks. The
tester which implements the test of the example above must be able to measure the delay
t between a and b and announce PASS if and only if t ≤ 5. In practice, the tester will
typically sample time periodically, say, every 0.1 time units. Thus, it cannot distinguish
between t being anywhere in the interval (4.9,5.1). In this case, in order to be sound, the
tester should announce PASS for every t in this interval, thus accepting also some non-
conforming specifications (those where 5 < t < 5.1). A modeling framework which allows
to formally specify such implementation considerations and derive sound tests from them is
not provided in the above works.1

In this work, we propose a testing framework for real-time systems, which lifts the
above limitations. Our framework is expressive: it can fully handle partially-observable,
non-deterministic timed automata. It is also implementable: the tests we generate can be
implemented using digital clocks of finite precision. Our framework has been presented in
previous publications [34–36]. This paper unifies and extends the results presented in these
publications.

We next summarize the main characteristics of our framework.
We model specifications as timed automata with input, output or unobservable actions

(without loss of generality, a single unobservable action is enough). The automata can also
be non-deterministic, in the sense that a given action at a given time might lead the automa-
ton to two different states. Such models arise often in practice. Specifications are usually
built in a compositional way, from many components. This greatly simplifies modeling.
Figure 1 illustrates this fact: it shows a specification (solid-line box) communicating with
the external world through some observable interface (solid arrows). The specification is
built internally using three components (dotted boxes). These components communicate us-
ing signals that are unobservable to the external world (dotted arrows). Abstractions from
low-level details are also used often, to simplify modeling and manage complexity. Such
abstractions could, for instance, “hide” some variables and behavior, which typically results
in non-determinism.

In general, timed-automata cannot be determinized [1] and unobservable actions cannot
be removed [6]. It can be argued that, in practice, many models will be determinizable.
However, checking this (and performing the determinization) is undecidable [50]. Thus, the
user is left with two alternatives. Either attempt to fit the specification into a deterministic,
fully-observable TA model, or use a framework like ours, which handles non-determinism
and partial observability directly. Clearly, the first alternative is hardly feasible in practice,
especially for large specifications consisting of many components, as it implies that the user
has to perform determinization of such a model “manually”.

1In particular, no direct support for implementability using digital clocks is provided in [17, 38], where testing
frameworks similar to ours are presented (the main differences are discussed in Sect. 3.3).

Form Methods Syst Des (2009) 34: 238–304 241

In order to capture conformance of a SUT to a specification we propose a formal rela-
tion, called timed input-output conformance or tioco. The latter is inspired from the “un-
timed” conformance relation ioco of [47]. The main difference is that ioco uses the notion of
quiescence, according to which absence of outputs is observable. In tioco we do not use qui-
escence because we want timeouts to be explicitly specified as said above. For instance, we
do not allow specifications stating “a must eventually occur” but only “a must occur with x

time units”. Apart from this important difference, tioco is similar in spirit to ioco: intuitively
A conforms to B if for each observable behavior specified in B , the possible outputs of A

after this behavior is a subset of the possible outputs of B . In tioco time delays are included
in the set of observable outputs. This permits to capture the fact that an implementation
producing an output too early or too late (or never, whereas it should) is non-conforming.

We consider both analog-clock and digital-clock tests. The former measure time pre-
cisely, whereas the latter can only count how many “ticks” of a digital clock have occurred
between two events. In our framework, the digital clock is itself modeled as a timed automa-
ton. In that way, the user has full control on the assumptions about the execution platform
where the tester will execute. We provide examples that show how to model different types
of digital clocks, from simple strictly-periodic clocks to more complex clocks with jitter or
skew. Note that generating digital-clock tests does not mean that we assume a discrete-time
setting. Indeed, the specification is still continuous-time. The SUT operates in dense time as
well. Only the tester (which is a digital system) is sampling this time using a digital clock.

We propose algorithms to generate tests both on-line (or on-the-fly) and off-line. On-line
test generation means that the test is generated essentially during execution. Thus, a large
number of computations and choices must be performed and resolved on-the-fly: compute
the next state of the tester, decide whether to wait and for how long, etc. In off-line test
generation these choices are resolved at generation time. The test is usually represented as a
finite tree with PASS/FAIL annotations on the leaves. All that the tester has to do then during
test execution is follow this tree. On-line versus off-line test generation is essentially a time
versus space trade-off: on-line generation saves space at the expense of requiring more time
during the execution of the test (reaction time). This in turn limits the reactivity of the tester
to the actions of the SUT. On the other hand, off-line test generation requires space to store
the generated tests.

Classic test generation algorithms use a pre-processing step consisting in determinizing
the specification [26]. For reasons explained above, this is impossible in the case of timed
automata. To solve this problem, we employ different techniques. In the case of on-line
generation of analog-clock tests, we use an on-the-fly subset construction technique. This
consists in determinizing the specification on-the-fly, based on the sequence of observed
time delays and discrete actions. This technique has been first introduced in [49] where it
was used for monitoring and fault-detection purposes.

The case of off-line generation of analog-clock tests is tricky. The question is how to
represent analog-clock tests in a “static” way? An immediate thought is to use timed au-
tomata. However, the tester automata must be deterministic, otherwise determinization must
be performed during test execution, and we are back to the case of on-the-fly generation.
But generating a deterministic test from a non-deterministic specification raises the unde-
cidability issues discussed above. We thus take a pragmatic approach. We suppose that the
user fixes the number of clocks that the tester automaton has and also the points where these
clocks are to be reset (we call the latter a reset skeleton). The user must also specify the
maximum constants the clocks are to be compared to in the guards of the tester. We provide
an algorithm which, given this information, generates a test represented as a deterministic
timed automaton.

242 Form Methods Syst Des (2009) 34: 238–304

Generation of digital-clock tests (both on-line and off-line) is based on the following idea:
if we consider the “tick” of the digital clock as any other discrete action, then digital-clock
tests become ordinary “untimed” automata. Such automata can be generated from special
“untiming” constructions of the product of the two input timed automata: the specification
and the digital clock model.

All our test-generation methods rely on symbolic reachability algorithms similar to those
used in timed automata model-checking tools such as Kronos [22]. Test generation suffers
from the state-explosion problem less than model-checking. On the other hand, the number
of tests that can be generated from a given specification is infinite! Even up to a given depth,
the number of possible tests is exponentially large. To limit explosion in the number of tests,
we consider coverage criteria such as state or transition coverage, inspired from software
testing [41]. These criteria can drastically reduce the number of generated tests: the tests
required to cover a specification are often a very small subset of the set of all possible tests
up to a given depth. We provide algorithms to generate digital-clock tests with respect to
location, state or edge coverage. The algorithms are based on the fact that in the symbolic
reachability graph of a timed automaton every node or edge can be associated to a set of
locations, states or edges of the specification automaton. Thus, covering locations, states or
edges of the specification reduces to covering nodes or edges in the symbolic reachability
graph.

We have implemented our real-time testing framework in a prototype tool called TTG.
TTG is implemented on top of the IF environment [12]. We have experimented with TTG on
a few case studies, including the execution software of the K9 Rover by NASA [5, 15] and
the Bounded Retransmission Protocol [27, 36].

The rest of this document is organized as follows. In Sect. 2 we introduce timed automata
with inputs and outputs. In Sect. 3 we define the conformance relation tioco and illustrate
its usage with examples. Section 4 provides a description of analog-clock and digital-clock
tests. In Sect. 5 we show how to automatically generate such tests, using on-line or off-line
methods. Section 6 presents test generation based on coverage criteria. Section 7 discusses
our tool and two case studies. In Sect. 8 we present our conclusions and future work plans.

2 Timed automata with inputs and outputs

2.1 Real-time sequences

Let R be the set of non-negative reals and Q the set of non-negative rationals. Given a finite
set of actions Act, the set (Act ∪ R)∗ of all finite-length real-time sequences over Act will
be denoted RT(Act). ε ∈ RT(Act) is the empty sequence. Given Act′ ⊆ Act and ρ ∈ RT(Act),
PAct′(ρ) denotes the projection of ρ to Act′ ∪R, obtained by “erasing” from ρ all actions not
in Act′ ∪ R. Similarly, DPAct′(ρ) denotes the (discrete) projection of ρ to Act′. For example,
if Act = {a, b}, Act′ = {a} and ρ = a 1b 2a 3, then PAct′(ρ) = a 3a 3 and DPAct′(ρ) = a a.
The time spent in a sequence ρ, denoted time(ρ) is the sum of all delays in ρ, for example,
time(ε)= 0 and time(a 1b 0.5)= 1.5.

In the rest of the document, we assume given a set of actions Act, partitioned in two
disjoint sets: a set of input actions Actin and a set of output actions Actout. Actions in Actin ∪
Actout are called observable actions. We also assume there is an unobservable action τ �∈ Act.
Let Actτ = Act∪ {τ }.

Form Methods Syst Des (2009) 34: 238–304 243

2.2 Timed labeled transition systems

A timed labeled transition system (TLTS) over Act is a tuple (S, s0,Act, Td, Tt), where:

• S is a set of states;
• s0 is the initial state;
• Td is a set of discrete transitions of the form (s, a, s ′) where s, s ′ ∈ S and a ∈ Act;
• Tt is a set of timed transitions of the form (s, t, s ′) where s, s ′ ∈ S and t ∈ R.

Timed transitions must be deterministic, that is, (s, t, s ′) ∈ Tt and (s, t, s ′′) ∈ Tt implies
s ′ = s ′′. Tt must also satisfy the following conditions:

• (s, t, s ′) ∈ Tt and (s ′, t ′, s ′′) ∈ Tt implies (s, t + t ′, s ′′) ∈ Tt ;
• (s, t, s ′) ∈ Tt implies that for all t ′ < t , there is some (s, t ′, s ′′) ∈ Tt .

A given TLTS (S, s0,Act, Td, Tt) is said to be rational-delay if for each timed-transition
(s, t, s ′) ∈ Tt the duration t is rational (i.e., t ∈Q).

We use standard notation concerning TLTS. For s, s ′, si ∈ S, μ,μi ∈ Actτ ∪ R, a, ai ∈
Act∪ R, ρ ∈ RT(Actτ) and σ ∈ RT(Act), we have:

• General transitions:
– s

μ→ s ′ Def= (s,μ, s ′) ∈ Td ∪ Tt ;

– s
μ→ Def= ∃s ′ : s μ→ s ′;

– s � μ→ Def= � ∃s ′ : s μ→ s ′;
– s

μ1···μn−→ s ′ Def= ∃s1, . . . , sn : s = s1
μ1→ s2

μ2→ ·· · μn→ sn = s ′;
– s

ρ→ Def= ∃s ′ : s ρ→ s ′;
– s � ρ→ Def= � ∃s ′ : s ρ→ s ′.

• Observable transitions:
– s

ε⇒ s ′ Def= s = s ′ or s
τ ···τ−→ s ′;

– s
a⇒ s ′ Def= ∃s1, s2 : s ε⇒ s1

a→ s2
ε⇒ s ′;

– s
a⇒ Def= ∃s ′ : s a⇒ s ′;

– s � a⇒ Def= � ∃s ′ : s a⇒ s ′;
– s

a1···an�⇒ s ′ Def= ∃s1, . . . , sn : s = s1
a1⇒ s2

a2⇒ ·· · an⇒ sn = s ′;
– s

σ⇒ Def= ∃s ′ : s σ⇒ s ′;
– s � σ⇒ Def= � ∃s ′ : s σ⇒ s ′.

A sequence of the form s0
μ1→ s

μ2→ ·· · μn→ s ′ is called a run and a sequence of the form
s0

a1⇒ s
a2⇒ ·· · an⇒ s ′ an observable run.

2.3 Timed automata

We use timed automata [1] with deadlines to model urgency [9, 45]. A timed automaton
over Act is a tuple A= (Q,q0,X,Act,E), where:

• Q is a finite set of locations;
• q0 ∈Q is the initial location;
• X is a finite set of clocks;
• E is a finite set of edges.

Each edge is a tuple (q, q ′,ψ, r,d, a), where:

244 Form Methods Syst Des (2009) 34: 238–304

• q, q ′ ∈Q are the source and destination locations;
• ψ is the guard, a conjunction of constraints of the form x#c, where x ∈X, c is an integer

constant and # ∈ {<,≤,=,≥,>};
• r⊆X is a set of clocks to reset to zero;
• d ∈ {lazy,delayable,eager} is the deadline;
• a ∈ Act is the action.

A timed automaton A defines an infinite TLTS which is denoted LA. Its states are pairs
s = (q, v), where q ∈Q and v :X→ R is a clock valuation. �0 is the valuation assigning 0 to
every clock of A. SA is the set of all states and sA

0 = (q0, �0) is the initial state. Discrete transi-

tions are of the form (q, v)
a→ (q ′, v′), where a ∈ Act and there is an edge (q, q ′,ψ, r,d, a),

such that v satisfies ψ and v′ is obtained by resetting to zero all clocks in r and leaving the

others unchanged. Timed transitions are of the form (q, v)
t→ (q, v + t), where t ∈ R, t > 0

and there is no edge (q, q ′′,ψ, r,d, a), such that: (1) either d = delayable and there exist
0 ≤ t1 < t2 ≤ t such that v + t1 |= ψ and v + t2 �|= ψ ; (2) or d = eager and v |= ψ . Notice
that lazy edges do not impact the semantics, they are simply there to denote that an edge is
neither delayable, nor eager. The latter two types do impact the semantics. Thus, lazy edges
cannot block time progress, whereas delayable and eager edges can.

We will not allow delayable edges with guards of the form x < c and eager edges with
guards of the form x > c. For the former, there is no latest time when the guard is still true.
For the latter, there is no earliest time when the guard becomes true.

A state s ∈ SA is reachable if there exists ρ ∈ RT(Act) such that sA
0

ρ→ s. The set of
reachable states of A is denoted Reach(A).

2.4 Timed automata with inputs and outputs

A timed automaton with inputs and outputs (TAIO) is a timed automaton over the parti-
tioned set of actions Actτ = Actin ∪ Actout ∪ {τ }. For clarity, we will explicitly include inputs
and outputs in the definition of a TAIO A and write (Q,q0,X,Actin,Actout,E) instead of
(Q,q0,X,Actτ ,E).

A TAIO is called observable if none of its edges is labeled by τ .
Given a set of inputs Act′ ⊆ Actin, a TAIO A is called input-enabled with respect to Act′

if it can accept any input in Act′ at any state: ∀s ∈ Reach(A) .∀a ∈ Act′ : s
a→. It is simply

said to be input-enabled when Act′ = Actin. A is called lazy-input with respect to Act′ if
the deadlines on all the transitions labeled with input actions in Act′ are lazy. It is called
lazy-input if it is lazy-input with respect to Actin. Note that input-enabled does not imply
lazy-input in general.

A is called deterministic if

∀s, s ′, s ′′ ∈ Reach(A) .∀a ∈ Actτ : s
a→ s ′ ∧ s

a→ s ′′ ⇒ s ′ = s ′′.

A is called non-blocking if

∀s ∈ Reach(A) .∀t ∈ R .∃ρ ∈ RT(Actout ∪ {τ }) : time(ρ)= t ∧ s
ρ→ . (1)

This condition guarantees that A will not block time in any environment.
The set of timed traces of a TAIO A is defined to be

TTraces(A)= {ρ | ρ ∈ RT(Actτ)∧ sA
0

ρ→}. (2)

Form Methods Syst Des (2009) 34: 238–304 245

Fig. 2 Two interacting TAIO

The set of observable timed traces of A is defined to be

ObsTTraces(A)= {PAct(ρ) | ρ ∈ RT(Actτ)∧ sA
0

ρ→}. (3)

The TLTS defined by a TAIO is called a timed input-output LTS (TIOLTS). From now
on, unless otherwise stated, all the considered TAIO are defined with respect to the same
sets Actin and Actout and unobservable action τ . As for TAIO, a given TIOLTS L is denoted
(S, s0,Actin,Actout, Td, Tt) instead of (S, s0,Actτ , Td, Tt).

2.5 Parallel composition of TAIO

Most of the time, it is easier to write models in a modular way. That is, to consider models
which are the product of some interacting components. For that, we introduce the notion of
parallel composition for the case of TAIO.

We are given two TAIO A1 = (Q1, q
1
0 ,X1,Act1in ∪ Act2→1,Act1out ∪ Act1→2,E1) and A2 =

(Q2, q
2
0 ,X2, ,Act2in ∪ Act1→2,Act2out ∪ Act2→1,E2). The pair of TAIO (A1,A2) is said to be

compatible with respect to the pair of action sets (Act1→2,Act2→1) if X1 ∩ X2 = ∅, the
sets Act1in, Act1out, Act2in, Act2out, Act1→2 and Act2→1 are pairwise disjoint. This is illustrated
in Fig. 2. Incoming arrows denote input events and outgoing arrows output events. Solid
lines denote observability and dotted lines non-observability. We also assume that each Ai is
input-enabled with respect to Act(3−i)→i in order to avoid having time blocked due to internal
actions awaiting an input from the other automaton. Notice that this assumption only refers
to the internal input actions and not to the external inputs of the product automaton.

The two TAIO synchronize both on time and on their shared common actions Act1→2 ∪
Act2→1. When connected to each other, the interaction between the two TAIO is assumed to
be unobservable from outside. We further assume that (A1,A2) is compatible with respect
to (Act1→2,Act2→1).

The parallel composition of A1 and A2 is denoted A1||A2. It is the TAIO (Q1 ×
Q2, (q

1
0 , q2

0),X1 ∪X2,Actin,Actout,E) such that

Actin =
⋃

i=1,2

Actiin, Actout =
⋃

i=1,2

Actiout

and E is the smallest set such that:

246 Form Methods Syst Des (2009) 34: 238–304

• For (q1, q2) ∈Q1 ×Q2 and a ∈ Act1in ∪ Act1out ∪ {τ1}:
(q1, q

′
1,ψ1, r1,d1, a) ∈ E1 ⇒ ((q1, q2), (q

′
1, q2),ψ1, r1,d1, a) ∈ E; (4)

• For (q1, q2) ∈Q1 ×Q2 and a ∈ Act2in ∪ Act2out ∪ {τ2}:
(q2, q

′
2,ψ2, r2,d2, a) ∈ E2;⇒ ((q1, q2), (q1, q

′
2),ψ2, r2,d2, a) ∈ E; (5)

• For a ∈ Act1→2:

(q1, q
′
1,ψ1, r1,d1, a) ∈ E1 ∧ (q2, q

′
2,ψ2, r2, lazy, a) ∈ E2

⇒ ((q1, q2), (q1, q
′
2),ψ1 ∧ψ2, r1 ∪ r2,d1, τa) ∈ E; (6)

• For a ∈ Act2→1:

(q1, q
′
1,ψ1, r1, lazy, a) ∈ E1 ∧ (q2, q

′
2,ψ2, r2,d2, a) ∈ E2

⇒ ((q1, q2), (q1, q
′
2),ψ1 ∧ψ2, r1 ∪ r2,d2, τa) ∈ E. (7)

2.6 Parallel composition of TIOLTS

Similarly, it is also useful to define parallel composition over TIOLTS. Given two TIOLTS
L1 and L2, the corresponding parallel product is denoted L1||L2. For i = 1,2, Li =
(Si, s

i
0,Actiin ∪ Act(3−i)→i ,Actiout ∪ Acti→(3−i), T

i
d , T i

t). The sets Act1in, Act1out, Act2in, Act2out,
Act1→2 and Act2→1 are pairwise disjoint (as illustrated in Fig. 2). The two TIOLTS syn-
chronize on time delays and their common shared actions Act1↔2 = Act1→2 ∪ Act2→1. The
parallel product of the two TIOLTS is

L1||L2 = (S, (s1
0 , s

2
0),Actin,Actout, Td, Tt)

such that

Actin =
⋃

i=1,2

Actiin, Actout =
⋃

i=1,2

Actiout

and S, Td and Tt are the smallest sets such that:

• (s1
0 , s

2
0) ∈ S;

• For (s1, s2) ∈ S and δ ∈ R:

s1
δ→ s ′1 ∈ T 1

t ∧ s2
δ→ s ′2 ∈ T 2

t ⇒ (s ′1, s
′
2) ∈ S ∧ (s1, s2)

δ→ (s ′1, s
′
2) ∈ Tt ; (8)

• For (s1, s2) ∈ S and a ∈ Act1in ∪ Act1out ∪ {τ1}:

s1
a→ s ′1 ∈ T 1

d ⇒ (s ′1, s2) ∈ S ∧ (s1, s2)
a→ (s ′1, s2) ∈ Td; (9)

• For (s1, s2) ∈ S and a ∈ Act2in ∪ Act2out ∪ {τ2}:

s2
a→ s ′2 ∈ T 2

d ⇒ (s1, s
′
2) ∈ S ∧ (s1, s2)

a→ (s1, s
′
2) ∈ Td; (10)

• For (s1, s2) ∈ S and a ∈ Act1↔2:

s1
a→ s ′1 ∈ T 1

d ∧ s2
a→ s ′2 ∈ T 2

d ⇒ (s ′1, s
′
2) ∈ S ∧ (s1, s2)

τa→ (s ′1, s
′
2) ∈ Td. (11)

Form Methods Syst Des (2009) 34: 238–304 247

It is not difficult to see that from each possible run λ of L1||L2 it is possible to extract
two (unique) timed traces σ1 and σ2 of L1 and L2, respectively. For example for

λ= (s1
0 , s

2
0)

1.5→ (s, t)
τa→ (p, q)

?b→ (r, q)
!c→ (r, u)

we have σ1 = 1.5 ?a ?b and σ2 = 1.5 !a !c, where a ∈ Act2→1, b ∈ Act1in and c ∈ Act2out.
Conversely, the two traces σ1 and σ2, in ObsTTraces(L1) and ObsTTraces(L2) respec-

tively, are said to be synchronizable in L1||L2 if there exists a run λ of L1||L2 from which
the two traces can be extracted. In general, the run from which σ1 and σ2 can be extracted
may not be unique, due to different possible interleavings. For instance, the two traces σ1

and σ2 given above can be also extracted from the run

λ′ = (s1
0 , s

2
0)

1.5→ (s, t)
τa→ (p, q)

!c→ (p,u)
?b→ (r, u).

Let L′1 and L′2 be two new TIOLTS. For i = 1,2, L′i has the same sets of inputs and out-
puts as Li . Moreover, L′1 and L′2 synchronize on the same set of actions Act1↔2 as for L1 and
L2. Let σ1 ∈ObsTTraces(L1)∩ObsTTraces(L′1), σ2 ∈ObsTTraces(L2)∩ObsTTraces(L′2),
λ a run of L1||L2 and σ ∈ ObsTTraces(L1||L2) the observable timed trace corresponding
to λ.

Lemma 1 If σ1 and σ2 are the traces extracted from λ, then σ1 and σ2 are synchronizable
in L′1||L′2 and σ ∈ObsTTraces(L′1||L′2).

Proof Here, we assume, with no loss of generality, that the four TIOLTSs have the same un-
observable action τ . Let γ = a1 · · ·an be the projection of the run λ to Actin∪Actout∪Act1↔2.
For i = 1,2, since σi ∈ ObsTTraces(Li), there exists γi ∈ TTraces(Li) such that σi is
the projection of γ to Acti .2 Thus, there exist [i1, . . . , iN], [j1, . . . , jN], [k1, . . . , kM] and
[l1, . . . , lM] such that γ1 = τ j1ai1 · · · τ jN aiN

3 and γ2 = τ l1ak1 · · · τ lM akM
. Similarly, there ex-

ist γ ′1 = τ j ′1ai1 · · · τ j ′
N aiN ∈ TTraces(L′1) and γ ′2 = τ l′1ak1 · · · τ l′

M akM
∈ TTraces(L′2). Clearly,

σ1 = ai1 · · ·aiN and σ2 = ak1 · · ·akM
. Since σ1 and σ2 are extracted from λ, it is possible to

synchronize the traces γ1 and γ2 in L1||L2 by considering the trace β = τ r1a1 · · · τ rnan ∈
TTraces(L1||L2), where for p = 1, . . . , n: rp = js + lt , if ap = ais = akt appears in both γ1

and γ2; rp = js , if ap = ais appears only in γ1; and rp = lt , if ap = akt appears only in γ2.
Then in the same way, it is possible to synchronize γ ′1 and γ ′2 in L′1||L′2 by considering the

trace β ′ = τ r ′1a1 · · · τ r ′nan ∈ TTraces(L′1||L′2), where for p = 1, . . . , n, r ′p is defined similarly
to rp . Hence, we are done. �

Let A1 = (Q1, q
1
0 ,X1,Act1in ∪ Act2→1,Act1out ∪ Act1→2,E1) and A2 = (Q2, q

2
0 ,X2, Act2in ∪

Act1→2,Act2out ∪ Act2→1,E2) be two TAIO. Then we have the following.

Proposition 1 If (A1,A2) is compatible with respect to (Act1→2,Act2→1) then

LA1||A2 = LA1 ||LA2 .

Proof Clearly, the two TIOLTS are equal iff they have the same initial state and the same
set of transitions.

2Acti = Actiin ∪ Actiout ∪ Act1↔2.
3τ j1 is the sequence made up of j1 τ ’s.

248 Form Methods Syst Des (2009) 34: 238–304

• First, it is not difficult to see that ((q1
0 , �0), (q2

0 , �0)) is the initial state of both LA1||A2 and
LA1 ||LA2 .

• Let t = (s1, s2)
a→ (s ′1, s

′
2) be an arbitrary transition. We abuse notation and write t ∈

LA1||A2 when t is a possible transition of LA1||A2 . We prove that

t ∈ LA1||A2 ⇐⇒ t ∈ LA1 ||LA2 . (12)

1. If a ∈ R, t is possible in A1||A2 iff s1
a→ s ′1 is possible in A1 and s2

a→ s ′2 in A2. That is
because A1||A2 is defined in a way as to accept a time delay a iff t is accepted by both
A1 and A2. By definition of LA1||A2 , t ∈ LA1||A2 iff t is possible in A1||A2. By rule (8),

t ∈ LA1 ||LA2 iff s1
a→ s ′1 is possible in A1 and s2

a→ s ′2 in A2. Thus, (12) holds.

2. If a ∈ Act1in ∪ Act1out ∪ {τ1}, t is possible in A1||A2 iff s1
a→ s ′1 is possible in A1. That

is because the edges labeled with a, both in A1||A2 and A1, have the same guard,
deadline and set of clocks to reset (see rule (4)). By definition of LA1||A2 and by
rule (9), (12) holds.

3. If a ∈ Act2in ∪Act2out ∪{τ2}, t possible in A1||A2 iff s2
a→ s ′2 possible in A2. By the same

reasoning as for a ∈ Act1in ∪ Act1out ∪ {τ1}, (12) holds.

4. If a = τb such that b ∈ Act1↔2, t is possible in A1||A2 iff s1
b→ s ′1 is possible in A1

and s2
b→ s ′2 in A2. That follows immediately from rules (6) and (7). By definition of

LA1||A2 and by rule (11), (12) holds. �

3 Timed input-output conformance

We now describe our testing framework. We assume that the specification of the system to
be tested is given as a non-blocking TAIO AS . We assume that the implementation (i.e.,
the system to be tested) can be modeled as a non-blocking, input-enabled TAIO AI . Notice
that we do not assume that AI is known, simply that it exists. Input-enabledness is required
so that the implementation can accept inputs from the tester at any state (possibly ignoring
them or moving to an error state, in case of illegal inputs).

3.1 Examples

Before we proceed to define the conformance relation, we give some examples that illustrate
the meaning of our testing framework. In the examples, input actions are denoted a?, b?,
etc., and output actions are denoted a!, b!, etc. Unless otherwise mentioned, deadlines of
output edges are delayable and deadlines of input edges are lazy. In order not to overload
the figures, we do not always draw input-enabled (implementation) automata. We assume
that implementations ignore the missing inputs. This can be modeled by adding self-loop
edges covering the missing inputs. Note that, for specifications, which are not assumed to be
input-enabled, missing inputs have a different meaning: they correspond to “don’t cares”, as
will be explained below.

Consider the specification Spec1 shown in Fig. 3. Spec1 could be expressed in English
as follows: “after the first a received, the system must output b no earlier than 2 and no later
than 8 time units”. Implementations Impl1 and Impl2 conform to Spec1. Impl1 produces b

exactly 5 time units after reception of a. Impl2 produces b within 4 to 5 time units. Impl3 and

Form Methods Syst Des (2009) 34: 238–304 249

Fig. 3 Examples of specifications and implementations

Fig. 4 More examples of specifications and implementations

Impl4 do not conform to Spec1. Impl3 may produce a b after 1 time unit, which is too early.
Impl4 fails to produce a b at all.

Now consider specification Spec2 shown in Fig. 4. This specification could be expressed
as: “if the first input is a then the system must output b within 10 time units; if the first input
is c then the system must either output d within 5 time units or, failing to do that, output
e within 7 time units”. The second branch of Spec2 is a typical specification of a timeout.
If the “normal” result d does not appear for some time, the system itself must recognize
the error and output an error message not much later. None of the four implementations
of Fig. 3 conform to Spec2, as they do not react to input c (they ignore it). On the other
hand, Impl5 and Impl6 of Fig. 4 conform to Spec2. Notice that Impl6 accepts input f which
does not appear in Spec2. This is an example of a “don’t care” input mentioned above. The
specification states nothing about the case where this input is provided. Thus, it imposes no
requirements on this case, and the implementation is “free” to behave as it wishes.

3.2 Timed input-output conformance relation: tioco

In this section, we define our conformance relation tioco and we state some of its prop-
erties.We first compare specifications with the same set of observable traces and we show
that there are equivalent with respect to tioco. Next, we compare between tioco and the
timed trace inclusion relation. Also, we show that only lazy-inputs are needed in specifi-
cations and how deterministic specifications can be made input-enabled without changing
their conformance semantics. In the remaining part of the section we prove the transitiv-
ity, undecidability, compositionality of tioco and its stability with respect to decreasing the
number of observable actions.

250 Form Methods Syst Des (2009) 34: 238–304

3.2.1 Definition

In order to formally define the conformance relation, we define a number of operators. Given
a TAIO A and σ ∈ RT(Act), A after σ is the set of all states of A that can be reached by some
timed sequence ρ whose projection to observable actions is σ . Formally:

A after σ = {s ∈ SA | ∃ρ ∈ RT(Actτ) : sA
0

ρ→ s ∧ PAct(ρ)= σ }. (13)

Given state s ∈ SA, elapse(s) is the set of all delays which can elapse from s without A

making any observable action. Formally:

elapse(s)= {t > 0 | ∃ρ ∈ RT({τ }) : time(ρ)= t ∧ s
ρ→}. (14)

Given state s ∈ SA, out(s) is the set of all observable “events” (outputs or the passage of
time) that can occur when the system is at state s. The definition naturally extends to a set
of states S. Formally:

out(s)= {a ∈ Actout | s a→}∪ elapse(s), out(S)=
⋃

s∈S

out(s). (15)

The timed input-output conformance relation, denoted tioco, is defined as

AI tioco AS iff ∀σ ∈ObsTTraces(AS) : out(AI after σ)⊆ out(AS after σ). (16)

The relation states that an implementation AI conforms to a specification AS iff for any ob-
servable behavior σ of AS , the set of observable outputs of AI after any behavior “matching”
σ must be a subset of the set of possible observable outputs of AS . Notice that observable
outputs are not only observable output actions but also time delays.

As expected, in the examples above, we have Impl1 tioco Spec1 and Impl2 tioco Spec1.
On the other hand, Impl3 ���tioco Spec1 and Impl4 ���tioco Spec1 because out(Impl3 after a 1)

= (0,4] ∪ {b} and out(Impl4 after a 1)= (0,∞), whereas out(Spec1 after a 1)= (0,7].
We proceed in giving a number of properties of tioco. The first states that specifications

that have the same set of observable timed traces are equivalent with respect to tioco, in
other words, they specify the same requirements.

Lemma 2 Given two TAIO AS and A′S , if ObsTTraces(AS)=ObsTTraces(A′S) then

∀AI :AI tioco AS ⇐⇒ AI tioco A′S .

Proof Let σ ∈ ObsTTraces(AS) = ObsTTraces(A′S). We claim that out(AS after σ) =
out(A′S after σ). Indeed, for any a ∈ Actout ∪R, a ∈ out(AS after σ) \ out(A′S after σ) implies
σa ∈ ObsTTraces(AS) \ ObsTTraces(A′S) which contradicts the hypothesis. Thus, for any
implementation AI , out(AI after σ)⊆ out(AS after σ) iff out(AI after σ) ⊆ out(A′S after σ),
and the result follows by definition of tioco. �

The next lemma relates tioco to observable timed trace inclusion.

Lemma 3 Consider two TAIO A and B .

1. ObsTTraces(A)⊆ObsTTraces(B) implies A tioco B .
2. If B is input-enabled then A tioco B implies ObsTTraces(A)⊆ObsTTraces(B).

Form Methods Syst Des (2009) 34: 238–304 251

Proof

1. Let σ ∈ ObsTTraces(B) and a ∈ out(A after σ). a ∈ out(A after σ) implies σa ∈
ObsTTraces(A). Since ObsTTraces(A)⊆ ObsTTraces(B), σa ∈ ObsTTraces(B). Thus,
a ∈ out(B after σ), and out(A after σ)⊆ out(B after σ). The result follows by definition
of tioco.

2. Suppose there exists σ ∈ ObsTTraces(A) \ ObsTTraces(B). Thus, there exist σ1, σ2 ∈
RT(Act) and a ∈ Act ∪ R, such that σ = σ1aσ2, σ1 ∈ ObsTTraces(B) and σ1a /∈
ObsTTraces(B). If a ∈ Actin then σ1a /∈ ObsTTraces(B) is a contradiction since σ1 ∈
ObsTTraces(B) and B is input-enabled. If a ∈ Actout ∪R then we have again a contradic-
tion, since σ1 ∈ObsTTraces(B), a ∈ out(A after σ1) and A tioco B . �

Figure 4 gives an example for which the second part of Lemma 3 does not hold
when B is not input-enabled. That is, Impl6 tioco Spec2 though ObsTTraces(Impl6) �⊆
ObsTTraces(Spec2).

3.2.2 Only lazy inputs are needed in specifications

In all our examples so far, input edges of specifications have been annotated with lazy dead-
lines (and not delayable or eager). This is not a coincidence. As we show in this section,
considering only lazy-input TAIO is enough for describing all possible (non-blocking) spec-
ifications. A lazy-input TAIO is one where every edge labeled with a ∈ Actin has deadline
lazy. Given a TAIO A, let Lazy(A) be the TAIO obtained by setting the deadline of every
edge of A labeled by an input to lazy.

Lemma 4 For any non-blocking TAIO A, ObsTTraces(A)=ObsTTraces(Lazy(A)).

Proof It should be clear that ObsTTraces(A)⊆ ObsTTraces(Lazy(A)), since Lazy(A) is at
least as “permissive” as A (i.e., every transition in the TLTS defined by A is also a transi-
tion of the TLTS defined by Lazy(A)). It remains to prove that ObsTTraces(Lazy(A)) ⊆
ObsTTraces(A). Suppose there exists σ ∈ ObsTTraces(Lazy(A)) \ ObsTTraces(A). Let

s0
σ1→ s1 · · · σN→ sN a possible run of Lazy(A) corresponding to the trace σ . Since σ �∈

ObsTTraces(A), there must exist some k ≤ N such that s0
σ1→ s1 · · · σk−1→ sk−1 is a possible

path in A and sk−1 � σk→ in A. Let q and v be the location and the clock valuation, respectively,
such that sk−1 = (q, v). Depending on the value of σk , two cases are possible:

• σk ∈ Actτ : By construction, location q has outgoing edges which are labeled with the same
actions and have the same deadlines and clocks to reset, both in A and Lazy(A). Thus for
the same valuation v, the discrete transition sk−1 = (q, v)

σk→ sk , possible in Lazy(A), is
also possible in A. Contradiction.

• σk ∈ R: The fact that sk−1 � σk→, in A, means that there is some delayable or eager outgoing
edge e from q which prevents the delay σk from elapsing. e cannot be labeled with τ or
an output action, since then it would block time in Lazy(A) as well. Thus, e is labeled
with an input action. This implies that at state sk−1 time is blocked unless this input action
is received, which contradicts the hypothesis that A is non-blocking. �

From Lemma 2 and Lemma 4, we obtain the following.

Proposition 2 For any non-blocking TAIO AS ,

∀AI :AI tioco AS ⇐⇒ AI tioco Lazy(AS).

252 Form Methods Syst Des (2009) 34: 238–304

Fig. 5 How to transform a
deterministic, fully-observable,
but not input-enabled
specification to an equivalent
input-enabled specification

3.2.3 Making specifications input-enabled

A deterministic (and fully observable) specification can be made input-enabled without
changing its conformance semantics by adding edges covering the missing inputs and lead-
ing to a “don’t care” location where all inputs and outputs are accepted. More precisely, this
transformation is done as follows. Given a TAIO A= (Q,q0,X,Act,E), we build the corre-
sponding input-enabled TAIO Ã= (Q̃, q0,X,Act, Ẽ). First, Q̃=Q ∪ {qdc} where qdc /∈Q

is the “don’t care” location. Second,

Ẽ = E ∪ {(qdc, qdc, true,∅, lazy, a) |a ∈ Act}
∪ {(q, qdc,¬ψ,∅, lazy, a) |q ∈Q∧ a ∈ Actin}

such that for each q ∈Q and each a ∈ Actin, ψ =ψ1 ∨ψ2 ∨ · · · ∨ψk where ψ1, ψ2, . . . ,ψk

are the guards of the outgoing edges of q labeled with a. An example showing how this
transformation works is given in Fig. 5. We transform A to Ã. The TAIO A has only one
input (a) and one output (b). The added edges are the dashed ones.

Proposition 3 Let Spec be a deterministic and fully observable TAIO and let ˜Spec be the
input-enabled TAIO corresponding to Spec obtained by the transformation given above. For
any input-enabled TAIO Impl, Impl tioco Spec iff Impl tioco ˜Spec.

The proof of the above proposition is based on the following two lemmata.

Lemma 5 ObsTTraces(Spec)⊆ObsTTraces(˜Spec).

Proof Because ˜Spec is obtained by adding edges to Spec and all added edges have deadline
lazy. �

Lemma 6 Let σ ∈ ObsTTraces(˜Spec). If σ ∈ ObsTTraces(Spec) then out(Spec after σ)

= out(˜Spec after σ). Otherwise, out(Spec after σ)⊆ out(˜Spec after σ)= R∪ Actout.

Proof If σ ∈ ObsTTraces(Spec) then the qdc location is not reached yet and ˜Spec still
has the same behavior as Spec. If σ /∈ ObsTTraces(Spec) then the sink location qdc

has been reached. Since ˜Spec is defined with respect to the same set of outputs Actout

as Spec, out(˜Spec after σ) = R ∪ Actout. Hence, out(˜Spec after σ) = R ∪ Actout and
out(Spec after σ)⊆ out(˜Spec after σ). �

Now, we give the proof of Proposition 3.

Form Methods Syst Des (2009) 34: 238–304 253

Fig. 6 An example showing that the transformation of Fig. 5 is incorrect for non-deterministic or par-
tially-observable specifications

Proof of Proposition 3

(⇒) We assume that Impl tioco Spec and we prove that Impl tioco ˜Spec. Let σ ∈
ObsTTraces(˜Spec). If σ ∈ ObsTTraces(Spec) then by Lemma 6 out(Spec after σ)

= out(˜Spec after σ). Moreover since Impl tioco Spec we have out(Impl after σ) ⊆
out(Spec after σ). So out(Impl after σ) ⊆ out(˜Spec after σ) and we are done. If
σ /∈ ObsTTraces(Spec), by Lemma 6 we have out(˜Spec after σ) = R ∪ Actout. Thus,
we clearly have out(Impl after σ)⊆ out(˜Spec after σ) and we are done once again.

(⇐) We assume that Impl tioco ˜Spec and we prove that Impl tioco Spec. Let σ ∈
ObsTTraces(Spec). By Lemma 5, we have σ ∈ ObsTTraces(˜Spec) By Lemma 6,
out(Spec after σ) = out(˜Spec after σ). Moreover, we have out(Impl after σ) ⊆
out(˜Spec after σ) since Impl tioco ˜Spec and σ ∈ ObsTTraces(˜Spec). Thus,
out(Impl after σ)⊆ out(Spec after σ) and we are done. �

Combined with Lemma 3, Proposition 3 implies that for deterministic and fully ob-
servable specifications, tioco can be replaced by timed trace inclusion, modulo the above
input-enabling transformation. Notice that the proposed transformation is not correct for the
case of non-deterministic or partially observable specifications. A simple counter-example
is given in Fig. 6. The specification Spec has one input a and two outputs b and c. The
implementation Impl is input-enabled.4 We have Impl tioco ˜Spec but Impl���tioco Spec.

Also note that the determinization of TAIO is undecidable in general [50]. Hence, re-
ducing tioco to timed trace inclusion is not always possible and a specific framework for
checking conformance with respect to tioco needs to be established for the case of non-
deterministic or partially-observable specifications.

4We omit self-loops labeled with a in order not to overload the figure.

254 Form Methods Syst Des (2009) 34: 238–304

3.2.4 Transitivity

Next we show that tioco is a transitive relation, given the usual assumption that implemen-
tations are input-enabled. That is an interesting property of the relation tioco. For instance,
it may be helpful in case the specification model is obtained after several refinements.

Proposition 4 Let A,B and C be three TAIO such that A and B are input-enabled, If
A tioco B and B tioco C then A tioco C.

Proof Let σ ∈ObsTTraces(C). Two cases are possible:

• σ ∈ ObsTTraces(B). From A tioco B and B tioco C we obtain out(A after σ) ⊆
out(B after σ) and out(B after σ)⊆ out(C after σ), thus, out(A after σ)⊆ out(C after σ).

• σ /∈ ObsTTraces(B). By part 2 of Lemma 3, input-enabledness of B and A tioco B , we
get σ /∈ObsTTraces(A). Thus, out(A after σ)= ∅⊆ out(C after σ).

The result follows by definition of tioco. �

3.2.5 Undecidability

In this section we show the undecidability of tioco which is indeed a result of only a theoret-
ical interest for instance to check directly (without testing) whether a (known) implementa-
tion conforms to its specification.

Proposition 5 Checking tioco is undecidable.

Proof We reduce the timed trace inclusion problem for timed automata which is known
to be undecidable [1] to the problem of checking tioco. Let A and B be two TA over
the set of actions Act. The timed trace inclusion problem consists in checking whether
ObsTTraces(A)⊆ObsTTraces(B). Let Actout = Act, i.e., Actin = ∅. Then, both A and B are
input-enabled. By part 2 of Lemma 3, ObsTTraces(A)⊆ObsTTraces(B) iff A tioco B . �

It is worth noting that the undecidability of tioco is not a problem for black-box testing:
since the implementation AI is unknown, we cannot check conformance directly, anyway.

3.2.6 Compositionality

We prove that tioco is compositional as well. That is, if we succeed to check conformance
of modules with respect to their models, then the product of the several modules conforms
to the product of the models. That makes the task easier since checking conformance at the
module levels is likely to be easier and cheaper than checking conformance at the whole
product level.

Let A1,A
′
1,A2 and A′2 be four TAIO such that, for i = 1,2, Ai and A′i have the same

sets of inputs and outputs, as shown in Fig. 2. Suppose that all four automata are input-
enabled with respect to their respective sets of inputs. Furthermore, suppose that A1 and A2

are compatible with respect to (Act1→2,Act2→1), and so are A′1 and A′2. Then, we have the
following compositionality result.

Proposition 6 If A′1 tiocoA1 and A′2 tiocoA2 then A′1||A′2 tiocoA1||A2.

Form Methods Syst Des (2009) 34: 238–304 255

Fig. 7 A counter example
showing that tioco is not
compositional for the case of
non-input-enabled TAIO

Proof Observe that both A1||A2 and A′1||A′2 have the same set of inputs Actin = Act1in ∪Act2in
and set of outputs Actout = Act1out ∪ Act2out.

• We first prove that A1||A2 is input-enabled with respect to Act1in ∪ Act2in. A state s of
A1||A2 is a pair (s1, s2) where si is a state of Ai for i = 1,2. By assumption, each Ai is
input-enabled with respect to Actiin. Thus for each a ∈ Actiin, si

a→. By (4) and (5), for each

a ∈ Act1in ∪ Act2in, s
a→.

• By the same reasoning, A′1||A′2 is input-enabled with respect to Act1in ∪ Act2in.
• Now, we show that A′1||A′2 tiocoA1||A2. By Lemma 3, it suffices to prove that

ObsTTraces(A′1||A′2)⊆ObsTTraces(A1||A2). Let Act= Actin∪Actout, Act1↔2 = Act1→2∪
Act2→1 and σ ∈ ObsTTraces(A′1||A′2). Since Act1↔2 ∪ {τ } are internal unobservable ac-
tions of A′1||A′2, there exists γ ∈ TTraces(A′1||A′2) such that PR∪Act(γ)= σ . For i = 1,2,
let Acti = (Actiin∪Actiout∪Act1↔2) (i.e., the observable actions of Ai) and σi = PR∪Acti (γ).
Then σi ∈ ObsTTraces(A′i). By part 2 of Lemma 3, input-enabledness of Ai and A′i and
the assumption A′i tiocoAi , we get σi ∈ ObsTTraces(Ai). By Lemma 1, σ1 and σ2 are
synchronizable in A1||A2 and σ ∈ObsTTraces(A1||A2). �

Note that the above result does not generally hold for the case of non input-enabled
TAIO. A counter-example is given in Fig. 7. We consider four TAIO A1,A2,A

′
1 and A′2.

TAIO A2 and A′2 are the same. The action a (dashed arrows in the figure) is shared between
A1 and A2, as well as between A′1 and A′2. That is, Act1in = {c}, Act1out = {d, e}, Act2→1 = {a}
and Act2in = Act2out = Act1→2 = ∅. The two TAIO A1 and A′1 are input-enabled with respect
to {a}. A1 is not input-enabled with respect to {c}. The guards of the transitions of all the
automata are equal to true with deadline lazy. We clearly have A′2 tiocoA2 since A′2 =A2. It
is also not difficult to see that A′1 tiocoA1. The figure also shows the two product automata

256 Form Methods Syst Des (2009) 34: 238–304

A1||A2 and A′1||A′2. After receiving input c, A′1||A′2 may generate either output d or e while
A1||A2 may generate only d . Thus, A′1||A′2���tiocoA1||A2.

3.2.7 Decreasing the number of observable actions

In this section, we prove the stability of tioco with respect to the decreasing of the number of
observable actions. That is under the input-enabledness assumption, if one succeeds to prove
the conformance of the SUT to the considered specification with respect to some given set of
observable actions then conformance still holds with respect to any smaller set of observable
actions. For example, if due to any reason some observable action is no longer accessible
(i.e., no longer observable), then that does not affect conformance.

Given a TAIO A and an observable action a ∈ Act, we denote by A[τ/a] the TAIO obtained
from A by replacing action a, anywhere it appears, by τ . We have the following result.

Proposition 7 Given two input-enabled TAIO A and A′ and an observable action a ∈ Act,
if A′ tiocoA then A′[τ/a] tiocoA[τ/a].

Proof We first prove that A[τ/a] is input-enabled. Let Actain be the set of inputs of A[τ/a] and
A′[τ/a]. Actain ⊆ Actin since either Actain = Actin (if a is an output) or Actain = Actin \ {a} (if a is
an input). A[τ/a] has exactly the same set of states as A. A is input-enabled, and the result
follows. In the same manner, we prove that A′[τ/a] is input-enabled.

Now, by Lemma 3, it suffices to prove that ObsTTraces(A′[τ/a]) ⊆ ObsTTraces(A[τ/a]).
Let σ ∈ ObsTTraces(A′[τ/a]). There exists a trace σ ′ ∈ ObsTTraces(A′) such that σ =
PR∪Act\{a}(σ ′). Since A and A′ are input-enabled and A′ tiocoA, σ ′ ∈ ObsTTraces(A) (by
Lemma 3). Since σ = PR∪Act\{a}(σ ′), σ ∈ObsTTraces(A[τ/a]). �

The above result is not valid for non-input-enabled TAIO, in general. We use the counter-
example of Fig. 7. We consider the two TAIO A1 and A′1. As already mentioned, A′1 tiocoA1.
It is easy to see that A1[τ/a] =A1||A2 and A′1[τ/a] =A′1||A′2. So, clearly A′1[τ/a]���tiocoA1[τ/a].

3.3 Comparison of tioco with other conformance relations

Different conformance relations have been used in the literature in the context of timed
testing. We review some of these and compare them to tioco.

[46] define conformance as timed bisimulation (TB), which in their case reduces to timed
trace equivalence (TTE), since determinism is assumed. [42] define conformance using a
must/may preorder (MMP). None of Impl1, Impl2 conform to Spec1 with respect to TB,
TTE or MMP. We believe that this is too strict.5

[29, 33] define conformance as timed trace inclusion (TTI). As stated in Lemma 3, TTI is
generally stricter than tioco: tioco allows an implementation to accept inputs not accepted by
the specification, whereas TTI does not. For instance in Fig. 4, we have Impl6 tioco Spec2

though ObsTTraces(Impl6) �⊆ ObsTTraces(Spec2). As also stated in Lemma 3, when the
specification is input-enabled, tioco and TTI are equivalent.

5It should be noted, however, that the issue does not arise in [46] because outputs are assumed to be urgent,
thus, Spec1 cannot be expressed.

Form Methods Syst Des (2009) 34: 238–304 257

Finally, as stated in Proposition 3, TTI may replace tioco in the case of deterministic and
fully-observable specifications, modulo an input-enabling transformation. Note, however,
that when this transformation is performed care must be taken to instruct the test generation
algorithm not to explore the added “don’t care” inputs, so that it does not generate useless
tests. We opt for tioco, which avoids these complications in a simple way.

Next we compare tioco with two other conformance relations proposed in the literature.

3.3.1 Comparison with the relativized timed conformance relation

In [38], the relativized timed conformation relation, or rtioco, is defined. It is “relativized”
in the sense that it compares the implementation I and the specification S with respect to
some given environment E . Both S , I and E are given as TIOLTS. S and I are assumed to
be input-enabled with respect to Actin; and E input-enabled with respect to Actout. S , I and E
are also non-blocking. For comparing S and I , the first step consists in making the parallel
composition of each of them with E . The used parallel composition is slightly different from
the one we propose. To avoid confusion, we denote it ||r . What is different with ||r is that it
does not hide the actions on which the two TIOLTS synchronize (i.e., in Condition (11) the
action a remains observable after synchronization). Formally, rtioco is defined as follows:

I rtiocoE S iff ∀σ ∈ObsTTraces(E) : out((I ||r E)afterσ)⊆ out((S ||r E)afterσ),

where the function ObsTTraces(·) is extended in a natural way to the case of TIOLTS.
It follows that ObsTTraces(S ||r E) = ObsTTraces(S) ∩ ObsTTraces(E) and similarly
ObsTTraces(I ||r E)=ObsTTraces(I)∩ObsTTraces(E).

To be able to compare rtioco and tioco, we extend the conformance relation tioco in a
natural way to the case of TIOLTS. Then we have the following result.

Proposition 8 Let S and I be two input-enabled and non-blocking TLTS. Furthermore, let
E be an environment of S given as an input-enabled and non-blocking TLTS. Then we have

I rtiocoE S ⇐⇒ (I ||r E) tioco (S ||r E).

Proof

(⇒) Let σ ∈ ObsTTraces(S ||r E). Since ObsTTraces(S ||r E) = ObsTTraces(S) ∩
ObsTTraces(E), σ ∈ ObsTTraces(E). I rtiocoE S implies out((I ||r E)afterσ) ⊆
out((I ||r E)afterσ).

(⇐) Let σ ∈ObsTTraces(E). Two cases are possible:
• σ ∈ ObsTTraces(S). ObsTTraces(S ||r E) = ObsTTraces(S) ∩ ObsTTraces(E) im-

plies σ ∈ ObsTTraces(S ||r E). (I ||r E) tioco (S ||r E) implies out((I ||r E)after σ) ⊆
out((I ||r E)afterσ).

• σ /∈ ObsTTraces(S). Thus there exist σ ′ ∈ RT(Act) and b ∈ R∪ Act such that: σ ′b is a
prefix of σ , σ ′ ∈ ObsTTraces(S) and σ ′b /∈ ObsTTraces(S). Since S is input-enabled
we deduce that b ∈ R ∪ Actout. Since (I ||r E) tioco (S ||r E), σ ′ ∈ ObsTTraces(E) ∩
ObsTTraces(S) and b /∈ out((S ||r E)afterσ ′), we deduce that b /∈ out((I ||r E)afterσ ′)
either. The latter means that σ ′b /∈ ObsTTraces(I) which, in turn, means that σ /∈
ObsTTraces(I) either. So, out((I ||r E)afterσ)= out((S ||r E)afterσ)= ∅ and we are
done. �

258 Form Methods Syst Des (2009) 34: 238–304

Fig. 8 I tioco S but I ��M
tioco

S , for any M

The above result shows that tioco can capture rtioco simply by modeling the assumptions
on the environment and the requirements from the system-under-test separately, and then
taking their composition (see also Sect. 3.4.1 below).

3.3.2 Comparison with the conformance relation �t ioco

Another conformance relation, denoted �t ioco, is introduced in [17]. The main goal of this
work is to propose a testing framework which extends the notion of quiescence to the case
of timed systems. The relation �t ioco bears a lot of similarity with tioco too. It is defined
with respect to TIOLTS. The considered TLTS are assumed to be non-blocking and input-
enabled.6 Given two TLTS S the specification and I the implementation, the first step for
comparing S and I consists in identifying the quiescent states of both of them. A given state
s of S is said to be quiescent if ∀t ∈ R: out(s after t) = R (i.e., starting from s no discrete
output can be generated if no input is received). For each detected quiescent state s, a self

loop s
δ→ s is added to the corresponding TLTS. Thus the action δ models the fact that no

output must be generated. The new obtained TLTS are denoted �(S) and �(I), respectively.
The relation �t ioco is defined with respect to an arbitrary duration M . Given a duration M ,
we let ObsTTracesM(S)=ObsTTraces(�(S))∩ (R ·Act∪ {Mδ})∗. Given a state s and a set
of states S, we let

outM(s)= {tb ∈ R · Actin | s tb⇒}∪ {Mδ | s Mδ⇒}; outM(S)=
⋃

s∈S

outM(s).

Then, the conformance relation �t ioco with respect to M , denoted �M
tioco, is defined as fol-

lows

I �M
tioco S iff ∀σ ∈ObsTTracesM(S) : outM(�(I)afterσ)⊆ outM(�(S)afterσ).

�t ioco and tioco are different. It is possible to find many examples where there is confor-
mance with respect to �t ioco but not with respect to tioco. A simple such example is given
in Fig. 8. For simplicity, both S , I , �(S) and �(I) are given as TAIO and not TLTS. For
this example, it is not difficult to see that I tioco S . However for any possible value of M

we clearly have I ��M
tioco S , since �(I) produces δ after receiving input a while �(S) does

not.
Now, we check the other direction. That is, we assume we are given S , I and a duration

M such that I �M
tioco S and we want to know whether I tioco S holds. For that, we first

introduce the following intermediary result.

6In [17], the authors use the term “no forced inputs” instead of “non-blocking”. Moreover, the notion of
input-enabledness they introduce is slightly less strict than ours.

Form Methods Syst Des (2009) 34: 238–304 259

Lemma 7 Let S be a non-blocking TLTS and S a set of states of S .

1. For b ∈ Actout: b ∈ out(S) ⇐⇒ 0b ∈ outM(S).
2. For t ∈ R: t ∈ out(S) ⇐⇒ Mδ ∈ outM(S) or ∃t ′b ∈ outM(S)∩ (R · Actout) : t ≤ t ′.

Proof

1. This first point is obvious. It follows immediately from the definitions of “out” and
“outM”.

2. (⇒) We assume that t ∈ out(S). Let s ∈ S such that ∃s ′ : s t⇒ s ′. If s ′ is quiescent then
we clearly have Mδ ∈ outM(s). In case s ′ is not quiescent, since S is non-blocking

then there must exist t ′′b ∈ R · Actout such that s ′ t ′′b⇒. Thus, we only need to consider
t ′ = t + t ′′ and we are done.

(⇐) This direction is obvious. �

Now, we give the following result.

Proposition 9 Given two non-blocking and input-enabled TLTS S and I and a duration M .
If I �M

tioco S then I tioco S .

Proof Let σ ∈ ObsTTraces(S). Since ObsTTraces(S) ⊆ ObsTTracesM(S) then σ ∈
ObsTTracesM(S) too. By definition of �(S), it is not difficult to see that S afterσ =
�(S)afterσ . Similarly, we have I afterσ = �(I)afterσ , as well. Let b ∈ out(I afterσ).
Two cases are possible then. Either b ∈ Actout or b ∈ R.

• For b ∈ Actout: By Lemma 7, we know that 0b ∈ outM(�(I)afterσ). Moreover since
I �M

tioco S , 0b ∈ outM(�(S)afterσ), too. Then once again by Lemma 7, we have b ∈
out(S afterσ) and we are done.

• For b ∈ R: Since I afterσ =�(I)afterσ , b ∈ out(�(I)afterσ). By point 2 of Lemma 7,
Mδ ∈ outM(�(I)afterσ) or ∃b′c ∈ outM(�(I)afterσ) ∩ (R · Actout): b ≤ b′. Since
I �M

tioco S , outM(�(I)afterσ)⊆ outM(�(S)afterσ). Thus, Mδ ∈ outM(�(S)afterσ) or
∃b′c ∈ outM(�(S)afterσ) ∩ (R · Actout) : b ≤ b′. Then by point 2 of Lemma 7, we have
b ∈ out(S afterσ)= out(�(S)afterσ) and we are done. �

In practice, it is clearly infeasible to check whether the implementation really produced a
δ action or not (i.e., whether we have waited enough time or not). To alleviate this problem,
the authors of [17] make the extra-assumption that the implementation I is M-quiescent.
I is said to be M-quiescent if for any state s of I any state in (s afterM) is quiescent.
Intuitively this means that M is an upper bound on the “reactivity” of I : if I does not react
within M , it is assumed that it will never react.

For an extensive discussion of various untimed conformance relations, see [48].

3.4 Modeling issues

The main goal of this section is to illustrate some methodological aspects of our framework.
We show how it is possible to alleviate modeling issues regarding environment assumptions
and interface conditions between the tester and the SUT using the timed automaton model
on which our framework is based.

3.4.1 Modeling assumptions on the environment

Often, the SUT is supposed to operate correctly only in a particular environment, not in any
environment. This brings up the issue of how to incorporate assumptions on the environ-

260 Form Methods Syst Des (2009) 34: 238–304

Fig. 9 Specification including assumptions on the environment: generic scheme (left) and example of a task
scheduler (right)

ment when building a model of specification. Figure 9 shows how this can be done. The
specification can be modeled compositionally, in two parts: one part modeling the environ-
ment (assumptions) and another part the nominal behavior of the SUT in this environment
(requirements). In this case, the interactions between the two components are not unobserv-
able, but are exported as inputs and outputs of the global specification. A simple example of
such a situation is shown in Fig. 9. The specification expresses schedulability of an aperiodic
task in a typical real-time operating system: “assuming the minimal inter-arrival time of task
A is 20 time units, the task must be executed within 10 time units”. Notice that environment
assumptions generally make the specification non-input-enabled. In the above example, the
second arrive input cannot be accepted until at least 20 time units have elapsed since the first
arrive. In order to keep the specification non-blocking, as it should be, the urgency of inputs
must be set to lazy.

3.4.2 Modeling input/output variables

The TA model we have presented uses the notion of input/output actions, implying an event-
based interface between the tester and the SUT. In practice, many systems communicate with
the external world using input/output variables. We now show how to model such situations
in our framework.

There are basically two possibilities to specify real-time requirements related to vari-
ables. One is to refer to variable updates and the other to refer to value durations. The first
can be modeled in our framework using an action for each update. The second corresponds
to the amount of time during which the variable keeps the same value. It can be modeled
using a “begin” action for the point in time where a variable changes its value to the value
that is of interest and an “end” action for the moment where the variable changes to a dif-
ferent value. For example, assume y is an input variable and z an output variable. Consider
the requirement “z will be updated at most 10 time units after y is updated”. Notice that y

is updated by the environment (or the tester) while z is updated by the SUT. Thus, updatey

can be introduced as an input action and updatez as an output action. The specification can
be modeled as a TA similar to the one for Spec1 of Fig. 3, with a replaced by updatey and
b replaced by updatez (in this case the guard 2≤ x ≤ 8 must also be changed into x ≤ 10).

This simplistic way of modeling supposes that updates are immediately perceived (by
the SUT or by the tester) when they occur. This is obviously not always true. For instance,
a sampling controller typically reads its inputs only periodically (but may write the outputs

Form Methods Syst Des (2009) 34: 238–304 261

Fig. 10 Specification composed
with interface-delay automata

as soon as they are ready). In this case, it could be that the specification only requires that
the output be produced at most 10 time units after the input is sampled by the controller, not
after it is updated by the environment. This situation can also be modeled in our framework
by explicitly adding automata modeling the sampling (either at the SUT side, or at the tester
side, or both). In fact, we will add such an automaton, called a tick-automaton, in order to
generate digital-clock tests (see Sect. 4.2). A tick-automaton models in some sense sampling
at the tester side. A similar automaton can be used to model sampling at the SUT side,
with the difference that the tick event would in this case be an input event. More elaborate
interfaces (e.g., event handlers with buffering, and so on) can also be modeled, as long as
they can be expressed as (extended) timed automata.

3.4.3 Modeling interfacing delays

As a last example of modeling methodology, we show how to model interfacing delays
between the tester and the SUT. That is the amount of time needed for messages to be
transmitted between the SUT and the environment. This can again be done by composing the
specification with “delay automata”, as shown in Fig. 10. A simple input delay automaton
is shown to the right of the figure. Input action a is the original action whereas at is the
output command of the tester. This automaton models the assumption that the tester output
may experience a delay of at most 2 time units until it is perceived by the SUT. Notice that
this automaton does not allow a new input to be produced while the previous one is still in
“transit”. For this, a more complicated automaton is necessary, which buffers input events.
The point is that, as mentioned above, such elaborate interfaces can all be modeled explicitly.
Thus, the user has full control on how the assumptions made on the tester equipment affect
the generated tests.

4 Tests

A test (or test case) is an experiment performed on the implementation by an agent (the
tester). There are different types of tests, depending on the capabilities of the tester to ob-
serve and react to events. Here, we consider two types of tests (the terminology is borrowed
from [28]). Analog-clock tests can measure precisely the delay between two observed ac-
tions and can emit an input at any point in time. We always use terms “input” and “output”
to mean input/output of the implementation. Thus, we write “the test emits an input” rather
than “emits an output”. We follow the same convention when drawing test automata. For
example, the edge labeled a? in the TAIO of Fig. 11 corresponds to the tester emitting a,
upon execution of the test. Digital-clock tests can only count how many “ticks” of a digital
clock have occurred between two actions and emit an input immediately after observing an
action or tick. For simplicity, we assume that the tester and the implementation are started
precisely at the same time. In practice, this can be achieved by having the tester issuing the
start command to the implementation.

262 Form Methods Syst Des (2009) 34: 238–304

Fig. 11 Analog-clock test represented as a TAIO or a function

It should be noted that we consider adaptive tests (following the terminology of [40]),
where the action the tester takes depends on the observation history. Adaptive tests can be
seen as trees representing the strategy of the tester in a game against the implementation.
Due to restrictions in the specification model, which essentially remove non-determinism
from the implementation strategy, some existing methods [29, 46] generate non-adaptive
test sequences.

4.1 Analog-clock tests

Analog-clock tests can be represented as either total functions or TAIO.

4.1.1 Analog-clock tests as total functions

An analog-clock test for a specification AS over Actτ is a total function

T : RT(Act)→ Actin ∪ {Wait,Pass,Fail}. (17)

T (ρ) specifies the action the tester must take once it observes ρ. If T (ρ)= a ∈ Actin then
the tester emits input a. If T (ρ) =Wait then the tester waits (lets time elapse). If T (ρ) ∈
{Pass,Fail} then the tester produces a verdict (and stops). To represent a valid test, T must
satisfy a number of conditions:

∃t ∈ R : ∀ρ ∈ RT(Act) : time(ρ) > t ⇒ T (ρ) ∈ {Pass,Fail}, (18)

∀ρ ∈ RT(Act) : T (ρ) ∈ {Pass,Fail}⇒ ∀ρ ′ ∈ RT(Act) : T (ρ · ρ ′)= T (ρ). (19)

Condition (18) states that the test reaches a verdict in bounded time t (called the completion
time of the test). Condition (19) is a “suffix-closure” property ensuring that the test does
not recall a verdict. We also need to ensure that the test does not block time, for instance,
by emitting an infinite number of inputs in a bounded amount of time. This can be done
by specifying certain conditions on the TIOLTS defined by T . The states of this TIOLTS
are sequences ρ ∈ RT(Act). The initial state is ε. For every a ∈ Actout there is a transition

ρ
a→ ρ ·a. There is also a transition ρ

t→ ρ · t for every t ∈ R, provided ∀t ′ ≤ t : T (ρ)=Wait.

If T (ρ) = b ∈ Actin then there is a transition ρ
b→ ρ · b. As a convention, all states ρ such

that T (ρ)= Pass are “collapsed” into a single sink state Pass, and similarly with Fail. We
require that states of this TIOLTS are non-blocking as in Condition (1), unless Pass or Fail
is reached.

Form Methods Syst Des (2009) 34: 238–304 263

4.1.2 Analog-clock tests as TA

Analog-clock tests can sometimes be represented as TAIO.7 For example, the test defined
in the right part of Fig. 11 can be equivalently represented by the TAIO shown in the left
part. Function T is partially defined in the figure. The remaining cases are covered by the
suffix-closure property of Pass/Fail—Condition (19). For instance, T (a? 9b!) = Fail, be-
cause T (a? 9)= Fail.

4.1.3 Execution of an analog-clock test

The execution of the test T on the implementation AI can be defined as the parallel composi-
tion of the TIOLTS defined by T and AI , with the usual synchronization rules for transitions
carrying the same label. We will denote the product TIOLTS by AI‖T . The execution of the
test reaches a pass/fail verdict after bounded time. However, since the implementation can
be non-deterministic or non-observable, the verdict need not be the same in all experiments
(i.e., runs of the product). To declare that the implementation passes the test, we require that
all possible experiments lead to a pass verdict. This implies that in order to gain confidence
in pass verdicts, the same test must be executed multiple times, unless the implementation
is known to be deterministic.

Formally, we say that AI passes the test, denoted AI passes T , if state Fail is not reach-
able in the product AI‖T . We say that an implementation passes (resp. fails) a set of tests
(or test suite) T if it passes all tests (resp. fails at least one test) in T .

4.1.4 Correctness requirements

We say that an analog-clock test suite T is sound with respect to AS if

∀AI : AI tioco AS ⇒AI passes T .

We say that T is complete with respect to AS if

∀AI : AI passes T ⇒AI tioco AS.

Soundness is a minimal correctness requirement. It is rather weak, since many tests can
be sound and useless (by always announcing Pass). Completeness, on the other hand,
is usually impossible to achieve with a finite test suite (see Sect. 6). We are thus mo-
tivated to define another notion. We say that a test T is strict with respect to AS if
∀AI : AI passes T ⇒ AI‖T tioco AS . What the above definition says is that a strict
test must not announce Pass when the implementation has behaved in a non-conforming
manner during the execution of the test. In the untimed setting, a similar notion of lax
tests is proposed in [32]. The test shown in Fig. 11 is sound and strict with respect
to Spec1 of Fig. 3. Consider an arbitrary implementation AI such that AI passes T .
Let T ′ be the TA obtained from the test by removing the node Fail and its incom-
ing edges. Since AI passes T , ObsTTraces(AI‖T) ⊆ ObsTTraces(T ′). Moreover clearly,
ObsTTraces(T ′) ⊆ ObsTTraces(AS). Thus, ObsTTraces(AI‖T) ⊆ ObsTTraces(AS). By
Lemma 3, AI‖T tioco AS . Changing the Fail state of the test into Pass would yield a test
which is still sound, but no longer strict.

7But not always: the test which moves to Pass once it observes a sequence of a’s such that the time distance
between two a’s is 1 cannot be captured by a timed automaton with a bounded number of clocks. This is
related to the fact that timed automata are not determinizable whereas a test is by definition deterministic.

264 Form Methods Syst Des (2009) 34: 238–304

Fig. 12 Extending the specification with a tester clock model and possible such models

4.2 Digital-clock tests

Consider a specification AS over Actτ and let tick be a new output action, not in Actτ .
A digital-clock test for AS is a total function

D : (Act∪ {tick})∗ → Actin ∪ {Wait,Pass,Fail}. (20)

The digital-clock test can observe all input and output actions, plus the action tick which is
assumed to be the output of the tester’s digital clock. We assume that the tester’s digital clock
is modeled as a tick-automaton, which is a special TAIO with a single output action tick. We
further assume that the clock is never reset, and that ticks have priority over other observable
actions (i.e., if tick and a occur at the same time, tick will be always observed before a).
With these assumptions, if action a is observed after the i-th and before the (i + 1)-st tick,
then the tester knows that a occurred at some time in the interval [n,n+ 1), for the case of
a periodic digital-clock with one time unit period.

The digital-clock can be either periodic or not. Three possible tick-automata are shown in
Fig. 12. The first models a perfectly periodic clock with period equal to 10 time units: in this
case, the n-th tick occurs precisely at time 10n. The second automaton models a clock with
“skew”: in this case, the n-th tick may occur anywhere in the interval [9n,11n]. The third
automaton models a clock with “jitter”: in this case, the n-th tick may occur anywhere in
the interval [10n−1,10n+1]. Notice that this automaton contains unobservable transitions
(the ones with deadline eager).

The above examples show different models of digital clocks. How realistic the model of
a digital clock is depends on the digital clock itself as well as the application. What we have
aimed to show is that our framework allows the user to make this decision explicitly, instead
of relying on implicit (and sometimes unrealistic) assumptions encoded in the framework.

We will assume that the tick-automata modeling digital clocks are non-zero, that is, that
the clock does not stop ticking and that the clock “allows” time to progress. Formally, a
tick-automaton Tick is zero, if there exists a time bound tmax and an infinite execution σ of
Tick, such that for any positive integer n, time(σ [n]) < tmax , where σ [n] is defined to be
the prefix of σ up to the n-th tick (if there are fewer than n ticks in σ then σ [n] is taken by
definition to be the empty sequence). Otherwise Tick is said to be non-zeno. From now on,
we will assume that all tick-automata we consider are non-zeno.

Validity conditions similar to those for analog-clock tests apply to digital-clock tests.
A digital-clock test D defines a TIOLTS with states in (Act ∪ {tick})∗ and labels in Act ∪

Form Methods Syst Des (2009) 34: 238–304 265

{tick} ∪ R. Given state π , if D(π) =Wait then π has a self-loop transition labeled with t ,
for all t ∈ R. The reason such transitions are missing from states such that D(π) = a ∈
Actin∪{Pass,Fail} is that we assume that the digital-clock test emits a immediately after the
last event in π is observed.

4.2.1 Execution of a digital-clock test

The execution of a digital-clock test is defined by forming the parallel product of three
TIOLTSs, namely, the ones of the test D, the implementation AI , and the tick-automaton
Tick. Tick implicitly synchronizes with AI through time. Tick explicitly synchronizes with D

on transitions labeled tick. The parallel product is built so that tick transitions have priority

over other observable transitions. Thus, if s is a state of the product and s
tick→, then s has

no other outgoing transition. The definition of passes for digital-clock tests is as follows.
Formally, we say that AI passes the digital-clock test D with respect to digital clock Tick,
denoted AI passes (D,Tick), if state Fail is not reachable in the product AI‖Tick‖D. In the
same manner we have AI fails (D,Tick) if Fail is reachable in AI‖Tick‖D.

4.2.2 Correctness requirements

Given a set of digital-clock tests D and a tick-automaton Tick, D is said to be sound with
respect to AS and Tick if

∀AI : AI tioco AS ⇒AI passes D.

We say that D is complete with respect to AS and Tick if

∀AI : AI passes D ⇒AI tioco AS.

We say that a test D is strict with respect to AS and Tick if

∀AI : AI passes D⇒AI‖Tick‖D tioco AS‖Tick.

In this case for the relation conformance tioco between AI‖Tick‖D and AS‖Tick, the
action tick must be considered as an output.

Digital-clock tests are not strict in general. This is expected, since the tester cannot dis-
tinguish between outputs being produced exactly at time 1 or, say, at time 1+ε before the
next tick happens. If the output is b, in both cases the tester will observe tickb tick. Thus the
faulty behavior gives the same digital-clock observation as the non-faulty one and the tester
will announce Pass in both cases.

A weaker notion of strictness may be introduced for the case of digital-clock testing. It
will be weaker in the sense that a digital-clock test cannot be as strict as an analog-clock one
due to its limited observation capability. The formal definition of digital-clock strictness can
be based on the use of an untimed conformance relation instead of tioco and the inclusion of
the tick-automaton in the definition. Providing such a formal definition is beyond the scope
of this paper.

5 Test Generation

We adapt the untimed test generation algorithm of [47]. Roughly speaking, the algorithm
builds a test in the form of a tree. A node in the tree is a set of states S of the specification

266 Form Methods Syst Des (2009) 34: 238–304

Fig. 13 Generic test-generation
scheme

and represents the “knowledge” of the tester at the current test state. The algorithm extends
the test by adding successors to a leaf node, as illustrated in Fig. 13. For all illegal outputs ai

(outputs which cannot occur from any state in S) the test leads to Fail. For each legal output
bi , the test proceeds to node Si , which is the set of states the specification can be in after
emitting bi (and possibly performing unobservable actions). If there exists an input c which
can be accepted by the specification at some state in S, then the test may decide to emit this
input (dashed arrow from S to S ′). At any node, the algorithm may decide to stop the test
and label this node as Pass.

Two features of the above algorithm are worth noting. First, the algorithm is only partially
specified. One may say the algorithm is “non-deterministic”. Indeed, a number of decisions
need to be made at each node: (1) whether to stop the test or continue, (2) whether to wait
or emit an input if possible, (3) which input, in case there are many possible inputs. Some of
these choices can be made according to user-defined parameters, such as the desired depth
of the test. They can also be made randomly or systematically using some book-keeping, in
order to generate a test suite, rather than a single test. We discuss this option in more detail
in Sect. 6.

The second feature of the algorithm is that it implicitly determinizes the specification
automaton. Indeed, building Si, Sj and so on corresponds to a classical subset construction.
The latter can be performed either off-line, that is, before the test generation, or on-line, that
is, during the test generation or even during the test execution. Test generation during test
execution has been termed on-the-fly and is supported by the tool Torx [3].

5.1 Generating analog-clock tests

Analog-clock tests cannot be directly represented as a finite tree, because there is an a-priori
infinite set of possible observable delays at a given node. To remedy this, we use the idea
of [49]. We represent an analog-clock test as an algorithm. The latter essentially performs
subset construction on the specification automaton, during the execution of the test. Thus,
our analog-clock testing method can be classified as on-the-fly or on-line, meaning that the
test is generated at the same time it is executed.

More precisely, the tester will maintain a set of states S of the specification TAIO, AS .
S will be updated every time an action is observed or some time delay elapses. Since the
time delay is not known a-priori, it must be an input to the update function. We define the
following operators:

dsucc(S, a) = {s ′ | ∃s ∈ S : s
a→ s ′} (21)

tsucc(S, t) = {s ′ | ∃s ∈ S . ∃ρ ∈ RT({τ }) : time(ρ)= t ∧ s
ρ→ s ′} (22)

where a ∈ Act and t ∈ R. dsucc(S, a) contains all states which can be reached by some
state in S performing action a. tsucc(S, t) contains all states which can be reached by some
state in S via a sequence ρ which contains no observable actions and takes exactly t time
units. The two operators can be implemented using standard data structures for symbolic

Form Methods Syst Des (2009) 34: 238–304 267

representation of the state space and simple modifications of reachability algorithms for
timed automata [49]. In fact the sets S are generally dense due to the continuous state-space
of the clocks. The sets are represented symbolically using simple constraints on clocks. For
instance, the constraint 1 ≤ x ≤ 2 ∧ x = y represents the fact that clock x has some value
within [1,2] and clock y is equal to x. The constraints are implemented using a matrix data
structure called DBM (difference bound matrix) [7, 24]. Computing successor nodes is also
done symbolically, using a bounded-time reachability analysis for timed automata, as shown
in [34, 49].

The test operates as follows. It starts at state S0 = tsucc({sAS

0 },0). Given current state S, if
output a is received t time units after entering S, then S is updated to dsucc(tsucc(S, t), a).
If no event is received until, say, 10 time units later, then the test can update its state to
tsucc(S,10). If ever the set S becomes empty, the test announces Fail. At any point, for an
input b, if dsucc(S, b) �= ∅, the test may decide to emit b and update its state accordingly.

On-line analog-clock test generation is performed by Algorithm 1. The algorithm keeps
running as long as no non-conformance is detected. At any time the tester can stop testing
and declare Pass.

The algorithm uses the following notation. Given a nonempty set X, pick(X) chooses
randomly an element in X. Given a set of states S, valid_inputs(S) is defined as the set of
valid inputs at S, that is: {a ∈ Actin|dsucc(tsucc(S,0), a) �= ∅}.

Notice that for practical reasons, we assume that the SUT is a rational-delay TLTS and
the clock x of Algorithm 1 ranges over rational values. Thus, it is possible to consider again
the DBM structure for symbolic successor computation.

1 S← tsucc({sAS

0 },0);
2 while(true)
3 x← 0; /∗ x is a clock measuring elapsing time ∗/
4 await(output b is received at x < T or x = T)
5 if (b received at x)
6 S← dsucc(tsucc(S, x), b);
7 else
8 S← tsucc(S,T);
9 endif ;

10 if (S = ∅)
11 announce Fail;
12 exit ;
13 endif ;
14 if (valid_inputs(S) �= ∅)
15 i← pick({0,1}); /∗ 0 to send an input and 1 to continue observation ∗/
16 endif ;
17 if (i = 0)
18 a← pick(valid_inputs(S));
19 S← dsucc(S, a);
20 endif ;
21 endwhile;

Algorithm 1: On-the-fly analog-clock test generation

268 Form Methods Syst Des (2009) 34: 238–304

5.1.1 Soundness, strictness and completeness of analog-clock test generation

Next we prove that Algorithm 1 is sound.

Proposition 10 If verdict Fail is observed while executing Algorithm 1, then AI ���tioco AS .

Proof Let σ = a0a1 · · ·an ∈ RT(Act) the trace corresponding to the interaction be-
tween the tester and AI from the starting of the algorithm until the announcement
of Fail. Let σn−1 = a0a1 · · ·an−1. According to the algorithm, an ∈ R ∪ Actout. Thus,
out(AI afterσn−1) �= ∅. It contains at least an. Since Fail is declared, out(AS afterσn−1)= ∅.
Hence, out(AI afterσn−1) �⊆ out(AS afterσn−1) and AI ���tioco AS . �

We prove that Algorithm 1 is strict too.

Proposition 11 Let AI be a possible implementation and T a test generated by Algorithm 1:

AI ||T ���tioco AS ⇒ AI Fail T .

Proof Since Algorithm 1 works online, T is a simple trace σ = a0a1 · · ·an ∈ RT(Act).
Since, AI ||T ���tioco AS , there exists a prefix σ ′ = a0a1 · · ·ak of σ such that ak+1 ∈
out(AI ||T after σ ′) and ak+1 /∈ out(AS after σ ′). Thus, (AS after a0a1 · · ·ak+1) = ∅. Then
by Algorithm 1, the execution of a0a1 · · ·ak+1 must lead to verdict Fail and we are done. �

Algorithm 1 is parameterized with the time elapse T . Thus, the tester waits at most T

time units before announcing that the timeout occurs if this duration is not accepted by the
specification.

Furthermore, Algorithm 1 is “complete” in the sense that, for any non-conforming im-
plementation given as a rational TLTS AI , there exists an execution of the algorithm that
detects non-conformance of this implementation.

Proposition 12 Let AI be a rational-delay TLTS. If AI ���tioco AS then there exists an execu-
tion of Algorithm 1 that announces Fail.

Proof If AI ���tioco AS then there exists σ ∈ (Q ∪ Act)∗ ∩ ObsTTraces(AS) and a ∈ Q ∪
Actout such that a ∈ out(AI afterσ) and a �∈ out(AS afterσ). Since out(AI afterσ) �= ∅,
σ ∈ ObsTTraces(AI) as well. By induction on the length of σ , it is easy to show that
the tester and AI may interact together to produce σ . We assume σ = a0a1 · · ·an. For
i = 1, . . . , n:

• If ai ∈ Q, the algorithm will force pick() to choose this duration. Since ai is accepted by
both AS and AI , the tester continues running the algorithm and does not announce Fail.

• If ai ∈ Actin, since ai is accepted by AS the algorithm will detect that valid_inputs(S) �= ∅
and will force the tester to send immediately ai to AI .

• If ai ∈ Actout, the algorithm decides to wait until AI generates an output. Since ai is
accepted by AI , the implementation will output ai . The tester receives it immediately and
does not announce Fail since ai is accepted by AS as well.

After generating σ , the tester will wait for an output to be generated by the imple-
mentation. If a ∈ Q, the tester calculates S ′ = tsucc(S, a), where S is the current estima-
tion of the tester. If a ∈ Actout, it calculates S ′ = dsucc(S, a). In both cases S ′ = ∅ since
a �∈ out(AS afterσ). Thus, the tester announces immediately Fail and the non-conformance
is detected. �

Form Methods Syst Des (2009) 34: 238–304 269

5.2 Generating digital-clock tests

The conformance relation tioco is “ideal” in the sense that it captures non-conformance of
a SUT at an infinite-precision time-measuring level. For instance in the case of one-time-
unit periodic digital-clock, if the guard 1 ≤ x ≤ 5 of SUT Impl3 of Fig. 3 was replaced by
1.9≤ x ≤ 5 then Impl3 would still be non-conforming. In fact, the same would be true if the
guard was replaced by 2−ε ≤ x ≤ 5, for any ε > 0. It is reasonable to define tioco in such an
“ideal” way, since we do not want conformance to depend on implementation details such
as tester equipment. On the other hand, the tester’s time-observation capabilities are limited
in practice: testers only dispose of a finite-precision digital clock (a counter) and cannot
distinguish among observations which elude their clock precision. Our framework takes this
limitation into account. First, we allow the user to explicitly model the assumptions on the
tester’s digital clock. Second, we generate tests with respect to this model.

Since its set of observable events is finite (Act ∪ {tick}), a digital-clock test can be rep-
resented as a finite tree. In this case, we can decide whether to generate tests on-line or
off-line. This is a matter of a space/time trade-off. The on-line method does not require
space to store the generated tests. On the other hand, a test computed on-line has a longer
reaction time than a test which has been computed off-line, because the former takes more
time to compute the next state of the test. Independently of which option we choose, we
proceed as follows.

We first form the product ATick
S = AS‖Tick. The extended specification ATick

S may also
include other automata to model environment assumptions, interface delays, etc., as shown
previously. This yields a new TAIO which has as inputs the inputs of AS and as outputs the
outputs of AS plus the new output tick of Tick. Notice that AS and Tick do not synchronize
on any discrete transitions, they only synchronize in time (time elapses at the same rate for
both). We define the set of observable discrete traces of AS with respect to Tick to be:

ObsDTraces(ATick
S)= {DPAct∪{tick}(β) |β ∈ObsTTraces(ATick

S)}. (23)

For example, for the 10 time-unit periodic tick-automaton of Fig. 12, if the timed trace
of the specification is σ = a 11b 9 c 10 ∈ ObsTTraces(AS), then the observable trace of the
product ATick

S will be β = a 10 tick 1b 9 tick c 10 tick ∈ObsTTraces(ATick
S), and the observable

discrete trace will be λ = a tickb tick c tick ∈ ObsDTraces(ATick
S). Notice that, as mentioned

in Sect. 4.2.1, the product ATick
S is defined so that tick transitions have priority over other

observable transitions. Thus, tick is observed before c in the above example.
The observable discrete trace λ is said to be a possible digitization of σ with respect to

Tick. If the tick-automaton is not deterministic a given timed-trace σ ∈ RT(Act) may have
more than one digitization with respect to Tick. Let Acttick = Act ∪ {tick} and AAct denote
the TAIO that can generate all real-time sequences in RT(Act). This can be modeled simply
as a TAIO without any clocks, a single control state, and self-loop transitions labeled with
each action in Act. Recall that ATick

Act =AAct‖Tick. The set of possible digitizations of σ with
respect to Tick is defined as follows.

DigitizationsTick(σ)= {DPActtick(β) | β ∈ObsTTraces(ATick
Act)∧ σ = PAct(β)}. (24)

We also define the following operator on ATick
S :

usucc(S)= {s ′ | ∃s ∈ S . ∃ρ ∈ RT({τ }) : s
ρ→ s ′}. (25)

270 Form Methods Syst Des (2009) 34: 238–304

usucc(S) contains all states which can be reached by some state in S via a sequence ρ

which contains no observable actions. Notice that, by construction of ATick
S , the duration of

ρ is bounded: since tick is observable and has to occur after a bounded duration.
Finally, we apply the generic test-generation scheme presented above. The root of the

test tree is defined to be S0 = {sATick
S

0 }. Successors of a node S are computed as follows. For

each a ∈ Actout ∪ {tick}, there is an edge S
a→ S ′ with S ′ = dsucc(usucc(S), a), provided

S ′ �= ∅, otherwise there is an edge S
a→ Fail. For this first possible choice, the node S is said

to be an output node. If there exists b ∈ Actin such that S ′′ = dsucc(tsucc(S,0), b) �= ∅, then

the test generation algorithm may decide to emit b at S, adding an edge S
b→ S ′′. For this

second choice, S is said to be an input node. Notice the asymmetry in the ways S ′ and S ′′

are computed. The reason is that the tester is assumed to emit an input b immediately upon
entering S. Thus, S ′′ should only contain the immediate successors of S by b.

Off-line digital-clock test generation is performed by Algorithm 2. We use the same
notation as in Algorithm 1. D denotes the digital-clock test the algorithm generates. It is
worth noticing that Algorithm 2 may produce a test tree of infinite depth. To avoid this we
can force the test generator to go to “case(i = 2)” when the depth of the test becomes too big.
The choices “case(i = 0)” and “case(i = 1)” correspond to the possibilities of considering
the current node S as an output or an input node, respectively.

1 S←{sATick
S

0 };
2 D← the one-node tree with root S;
3 while(true)
4 foreach(leaf S of D distinct from Pass and Fail)
5 if (valid_inputs(S) �= ∅)
6 i← pick({0,1,2});
7 else i← pick({1,2});
8 endif ;
9 case(i = 0) :

10 b← pick(valid_inputs(S));
11 S ′ ← dsucc(tsucc(S,0), b);

12 append edge S
b−→ S ′ to D;

13 case(i = 1) :
14 foreach(a ∈ Actout ∪ {tick})
15 S ′ ← dsucc(usucc(S), a);
16 if (S ′ �= ∅)

17 append edge S
a−→ S ′ to D;

18 else append edge S
a−→ Fail to D;

19 endif ;
20 endforeach;
21 case(i = 2) : replace S with Pass in D;
22 endforeach;
23 endwhile;

Algorithm 2: Off-line digital-clock test generation

Form Methods Syst Des (2009) 34: 238–304 271

Fig. 14 A digital-clock test (top) and two alternative representations (bottom)

It is not difficult to see that Algorithm 2 can be transformed in a straightforward way to
an on-line digital-clock test generation algorithm. In that case, there will be no longer any
need for storing the considered test. The tester will observe the outputs generated by the
SUT and the tick-actions generated by the digital clock. From time to time, the tester will
decide to send inputs to the SUT. The choices of the tester are made non-deterministically.
As soon as the tester reaches an empty set, it will announce Fail and stop testing.

5.2.1 Soundness of digital-clock test generation

Now, we prove that Algorithm 2 generates only sound tests.

Proposition 13 Let D be a test generated by Algorithm 2 with respect to AS and Tick. For
any TAIO AI , if AI fails (D,Tick) then AI ���tioco AS .

Proof Let σ = a0a1 · · ·an ∈ (Act ∪ {tick})∗ the trace corresponding to the interaction be-
tween the tester and AI from the starting of D until the announcement of Fail. Let
σn−1 = a0 · · ·an−1. According to the algorithm an ∈ Actout∪{tick}. Since no Fail is announced
during the occurrence of σn−1, the set S of possible reachable states after executing σn−1 is
non-empty. However since the execution of an leads to Fail, S ′ = dsucc(usucc(S), a) = ∅.
Moreover since the interaction between the tester and AI is instantaneous, there exists
λ ∈ ObsTTraces(AI) such that σn−1 is a digitization of λ with respect to Tick. Two cases
are possible:

• λ ∈ ObsTTraces(AS): After the execution of λ a time delay t will elapse before an is
observed.
– If t �∈ out(AS afterλ): Since t ∈ out(AI afterλ), we deduce that AI���tiocoAS .
– If t ∈ out(AS afterλ): an = tick can not be true since: (1) tick is the action with the

highest priority and (2) if tick occurred in AI ||Tick after t elapses then it will do so in
AS ||Tick as well. The latter will be a contradiction with S ′ = ∅. Thus, an ∈ Actout. Then
for the trace λt , we have an ∈ out(AI afterλt). S ′ = ∅ implies that an �∈ out(AS afterλt).
Hence, AI���tiocoAS .

272 Form Methods Syst Des (2009) 34: 238–304

Fig. 15 Illustration of
tick-robustness: AS is
Tick′-robust but not Tick-robust

• λ /∈ ObsTTraces(AS): Let λ′ ∈ RT(Act) and b ∈ Act ∪ R such that λ′b is a prefix of λ,
λ′ ∈ObsTTraces(AS) and λ′b /∈ObsTTraces(AS). If b ∈ Actin, that will be a contradiction
with the fact that Algorithm 2 chooses only valid input-actions (i.e., actions which are in
valid_inputs()). Thus, b ∈ Actout ∪R and we are done. �

5.2.2 Tick-robustness and completeness of digital-clock test generation

Algorithm 2 is not complete in general. This is due to the imprecision of digital-clocks. For
example, consider a periodic tick-automaton with period 2 time units (that is, ticks are gen-
erated at times 0,2,4, . . .). Suppose the specification states that output a should be emitted
no later than time 3. A tester that observes tick ticka must accept the sequence as conform-
ing, since a may have been emitted anywhere in the interval [2,4]. Thus, it might have been
emitted before time 3, and in order for the tester to be sound, it must not announce Fail. Of
course, this means that a non-conforming implementation that emits a at time 3.5 would
remain undetected.

We can prove some type of completeness result, using additional assumptions. For this,
we introduce the notion of tick-robustness. For a given tick-automaton Tick, a given TAIO
AS over Act is said to be robust with respect to Tick, or Tick-robust, if and only if it satisfies
the following closure property: for any trace σ ∈ ObsTTraces(AS‖Tick) and any trace σ ′ ∈
ObsTTraces(AAct‖Tick), the following condition holds:

DPAct∪{tick}(σ ′)= DPAct∪{tick}(σ) ⇒ σ ′ ∈ObsTTraces(AS‖Tick).

The notion of tick-robustness is illustrated in Fig. 15. Assuming Act= {b!}, and setting:

σ = 2 tick! 1 b!
and

σ ′ = 2 tick! b!
we have a counter-example to AS being Tick-robust.

On the other hand, we can prove that AS is Tick′-robust. For the given AS , any σ ∈
ObsTTraces(AS‖Tick′) is a prefix of:

3 tick! δ1 b! δ2 tick! 3 tick! · · ·
where δ1 ∈ [0,3), δ2 ∈ (0,3] and δ1 + δ2 = 3. Therefore, DPAct∪{tick}(σ) is a prefix of

tick! b! tick! tick! · · ·

Form Methods Syst Des (2009) 34: 238–304 273

Consider some σ ′ ∈ ObsTTraces(A{b!}‖Tick′) such that DPAct∪{tick}(σ ′) = DPAct∪{tick}(σ).
Then, σ ′ must be a prefix of

3 tick! δ′1 b! δ′2 tick! 3 tick! · · ·
where δ′1 ∈ [0,3), δ′2 ∈ (0,3] and δ′1 + δ′2 = 3. This implies that σ ′ ∈ObsTTraces(AS‖Tick′).

The following is a property of tick-robustness.

Lemma 8 Let Tick and Tick′ be two tick-automata such that ObsTTraces(Tick′) ⊆
ObsTTraces(Tick). For any TAIO AS , if AS is Tick-robust then it is also Tick′-robust.

Proof Follows from the definition of tick-robustness and the fact that ObsTTraces(Tick′)⊆
ObsTTraces(Tick) implies ObsTTraces(AS‖Tick′)⊆ObsTTraces(AS‖Tick) and
ObsTTraces(AAct‖Tick′)⊆ObsTTraces(AAct‖Tick). �

We will next show that Algorithm 2 is complete for Tick-robust specifications. We first
need the following technical results.

Lemma 9 Consider a tick-automaton Tick and a TAIO AS which is Tick-robust. For σ ∈
ObsTTraces(AS), λ ∈ DigitizationsTick(σ) and a ∈ Actout:

σa /∈ObsTTraces(AS)⇒ λa /∈ObsDTraces(ATick
S).

Proof We prove the result by contradiction. Recall that Acttick = Act ∪ {tick}. Assume λa ∈
ObsDTraces(ATick

S). There exists β ′ ∈ RT(Acttick) such that DPActtick(β
′a) = λa and β ′a ∈

ObsTTraces(ATick
S). Let β ∈ ObsTTraces(ATick

S) such that PAct(β) = σ and DPActtick(β) = λ.
Since σa �∈ ObsTTraces(AS), we have βa �∈ ObsTTraces(ATick

S). However, βa ∈
ObsTTraces(ATick

Act). Thus, we deduce that βa ∈ ObsTTraces(ATick
Act) \ ObsTTraces(ATick

S),
β ′a ∈ ObsTTraces(ATick

S) and DPActtick(βa) = DPActtick(β
′a) = λa. This contradicts the hy-

pothesis that AS is Tick-robust. �

Lemma 10 Consider a tick-automaton Tick and a TAIO AS which is Tick-robust. For σ ∈
ObsTTraces(AS), λ ∈ DigitizationsTick(σ) and t ∈ R \ {0}:

σ t /∈ObsTTraces(AS)⇒∃n ∈ N \ {0} : λtickn /∈ObsDTraces(ATick
S).

Proof Let β ∈ ObsTTraces(ATick
S) such that PAct(β)= σ and DPActtick(β)= λ. Since Tick is

non-zeno, there exist β ′ ∈ RT(Acttick) and t ′ > t such that ββ ′tick ∈ ObsTTraces(ATick
Act) and

PAct(ββ ′tick) = σ t ′. Thus, we deduce that there exists n ≥ 1 such that DPActtick(ββ ′tick) =
λtickn. Assume λtickn ∈ ObsDTraces(ATick

S). There exists β ′′ ∈ RT(Acttick) such that
DPActtick(β

′′) = λtickn and β ′′ ∈ ObsTTraces(ATick
S). Thus ββ ′tick ∈ ObsTTraces(ATick

Act) \
ObsTTraces(ATick

S), β ′′ ∈ ObsTTraces(ATick
S) and DPActtick(ββ ′tick) = DPActtick(β

′′) = λtickn.
This contradicts the hypothesis that AS is Tick-robust. �

We are now ready to prove our completeness result.

Proposition 14 Consider a tick-automaton Tick and a TAIO AS (the specification). If AS

is Tick-robust, then for any implementation AI such that AI���tiocoAS , there exists a test D

generated by Algorithm 2 with respect to AS and Tick, such that AI fails (D,Tick).

274 Form Methods Syst Des (2009) 34: 238–304

Proof Let σ ∈ ObsTTraces(AS) and a ∈ Actout ∪ R such that a ∈ out(AI afterσ) and a �∈
out(AS afterσ). Let λ= b0 · · ·bN ∈ DigitizationsTick(σ) be a digitization of σ with respect to
Tick. We apply Algorithm 2 to generate a test-tree D which contains the trace λ. For each bk ,
we apply “case(i = 0)” of Algorithm 2 if bk ∈ Actin and “case(i = 1)” if bk ∈ Actout ∪ {tick}.
Since σ ∈ ObsTTraces(AS) and λ is a digitization of σ , λ ∈ ObsDTraces(ATick

S) and no Fail
is generated while following λ. We extend D by applying “case(i = 1)”. Two cases are then
possible:

• a ∈ Actout: σa /∈ ObsTTraces(AS) and the specification AS is Tick-robust implies, by
Lemma 9, that λa /∈ObsDTraces(ATick

S). Thus, a is appended to λ and it leads to Fail.
• a ∈ R: σa /∈ ObsTTraces(AS) and AS is Tick-robust implies, by Lemma 10, that there

exists a positive integer n such that λ tickn /∈ ObsDTraces(ATick
S). Thus, the sequence tickn

is appended8 to λ and it leads to Fail.

It remains to show that the non-conformance is detected by the test D generated as stated
above, that is, that the Fail state of D is reachable in the product AI‖Tick‖D. Since a ∈
out(AI afterσ), we have σa ∈ObsTTraces(AI). Moreover, from the above, the behavior σa,
when interleaved with some behavior of Tick, yields the discrete projection λa, in case
a ∈ Actout, or λ tickn, in case a ∈ R. In both cases, by observing the corresponding discrete
sequence test D reaches state Fail. �

5.2.3 Tick-robustness and digitizability

Our notion of tick-robustness is inspired from the notion of digitizability introduced and
studied in [28], and used in a testing context in [38]. In this section, we relate tick-robustness
and digitizability. The results of this section are not directly aimed at testing. They are pro-
vided in order to better comprehend the notions of tick-robustness and digitizability. Tick-
robustness, of course, is important for digital-clock testing, as Proposition 14 shows.

We briefly recall digitizability. For a thorough discussion, see [28]. First, note that a
real-time sequence

δ1a1δ2a2 · · ·
can be written in an equivalent form with absolute timestamps:

(a1, t1)(a2, t2) · · ·
where tk =∑

i=1,...,k δi .
Then, let ART(Act) be the set of all real-time sequences with absolute timestamps over

the set of actions Act. Let U be a set of such sequences, that is, U ⊆ ART(Act). U is said to
be digitizable iff the following condition holds:9

∀ρ ∈ ART(Act) : ρ ∈U ⇐⇒ [ρ] ⊆U

where [ρ] is defined as follows:

[ρ] = {[ρ]ε |0≤ ε < 1}

8The sequence tickn is obtained by the concatenation of n consecutive ticks. In this case, “case(i = 1)” is
applied n times consecutively.
9[28] use an infinite sequence framework, but we can adapt their definition to our finite-length sequences in
a direct way.

Form Methods Syst Des (2009) 34: 238–304 275

Fig. 16 Tick-automata Tick1 and
Tick2

and if ρ = (a1, t1)(a2, t2) · · · then

[ρ]ε = (a1, [t1]ε)(a2, [t2]ε) · · ·
with [ti]ε = �ti� if ti ≤ �ti� + ε, otherwise [ti]ε = �ti�.

Intuitively, [ρ]ε denotes the sequence corresponding to what is observed if ρ happens but
the observer only counts time with a digital clock ticking at times ε + k, for k = 0,1,2,
Then [ρ] is the set of all observations, for any initial phase of the digital clock, 0 ≤ ε < 1.
For example, if ρ = (a,0.2)(b,1.9) then [ρ]0 = (a,1)(b,2) and [ρ]0.5 = (a,0)(b,2).

Now, consider the two tick-automata Tick1 and Tick2 shown in Fig. 16. Tick1 produces a
tick at times 0,1,2, . . . , while Tick2 produces its first tick at some time t ∈ [0,1) and then
subsequent ticks at t + 1, t + 2, Observe that ObsTTraces(Tick1)⊂ObsTTraces(Tick2).

One may expect that digitizability is related to tick-robustness with respect to one of
these tick-automata. The following lemmas examine such possible relations.

Lemma 11 Digitizability does not imply Tick1-robustness, neither Tick2-robustness.

Proof Consider the set U containing all prefixes of ρ = (a,0)(a,1)(a,2) · · ·. U can be seen
as the set of observable real-time sequences of a TAIO AU over {a}, which repeatedly emits
output a at times 1,2, It can be seen that U is digitizable. Indeed, for the above ρ,
we have [ρ]ε = ρ, for any 0 ≤ ε < 1. Thus [ρ] = {ρ} and U is digitizable. On the other
hand, AU is not Tick1-robust (thus, by Lemma 8, AU is not Tick2-robust either). To see this,
it suffices to consider σ = a 1a = (a,0)(a,1) and σ ′ = 0.1a 1a = (a,0.1)(a,1.1). The
discrete projections of both σ and σ ′ with respect to Tick1 are the same: ticka ticka. But
σ ∈U and σ ′ �∈U . �

Lemma 12 Tick1-robustness does not imply digitizability.

Proof Consider the set W consisting of all prefixes of ρt = (a, t), for all 0 ≤ t < 1. W

can be seen as the set of observable real-time sequences of a TAIO AW over {a}, which
emits a only once, at some time t ∈ [0,1). First we show that AW is Tick1-robust. Let
σ ∈ ObsTTraces(AW‖Tick1) and σ ′ ∈ ObsTTraces(AAct‖Tick1), such that DP{a,tick}(σ) =
DP{a,tick}(σ ′). From the structure of W and Tick1, the first tick occurs at time 0, and a oc-
curs after that, in the interval [0,1). From the hypothesis DP{a,tick}(σ) = DP{a,tick}(σ ′), it

276 Form Methods Syst Des (2009) 34: 238–304

follows that DP{a,tick}(σ ′) = ticka. Thus, a occurs in the interval [0,1) in σ ′, which im-
plies σ ′ ∈ObsTTraces(AW‖Tick1). Thus, AW is Tick1-robust. But W is not digitizable, since
(a,1) �∈W , although (a,1)= [(a,0.7)]0. �

In what follows, we show that Tick2-robustness is a sufficient condition for digitizability.
Notice, however, that Tick2-robustness is a very strict condition, which holds essentially only
on untimed specifications (see following corollaries). In what follows we allow ourselves
the convenience to “mix” freely real-time sequences with real-time sequences with absolute
timestamps, since there is a bijection between the two representations.

It is also convenient, for the proofs that follow, to extend the notion of parallel compo-
sition to timed traces. Let σ ∈ ObsTTraces(AAct) and γ ∈ RT({tick}) such that time(σ) =
time(γ). The trace σ‖γ is obtained by making the parallel product of the two traces σ and
γ giving priority to tick over actions in Act as for TIOLTS.10 The trace σ‖γ is called the
parallel composition of σ and γ . We have time(σ‖γ)= time(σ)= time(γ).

Lemma 13 Let AS be a TAIO which is non-blocking and Tick2-robust, σ ∈ RT(Act), λ ∈
Act∗ and t ∈ R. If σ t λ ∈ObsTTraces(AS) then:

σ t ′ λ ∈ObsTTraces(AS) for all t ′ ∈ R∩ (t − 0.5, t + 0.5].

Proof Let t ′ ∈ R ∩ (t − 0.5, t + 0.5]. Let �= time(σ)+ t + 0.5 and let γ be the behavior
of Tick2 which produces a tick at � and such that time(γ)=�. Since AS is non-blocking,
there exists σ ′ ∈ RT(Act) such that σ1 = σ t λσ ′ ∈ ObsTTraces(AS) and time(σ ′) = 0.5.
Let λ′ = DPAct(σ

′) and σ2 = σ t ′ λλ′ δ. Thus, time(σ1) = time(σ2) = �. Consider the two
traces σ1‖γ and σ2‖γ . We need to prove that DPActtick(σ1‖γ) = DPActtick(σ2‖γ). Two cases
are possible.

• t ′ ∈ R ∩ (t − 0.5, t]: Let δ = 0.5+ t − t ′. Let γ ′ be the prefix of γ such that time(γ ′)=
time(σ)+ t ′.11 Thus γ = γ ′ δ tick and

DPActtick(σ1‖γ) = DPActtick(σ t ′‖γ ′)DPActtick((t − t ′)λσ ′‖δtick)
= DPActtick(σ t ′‖γ ′) λDPAct(σ

′)tick
= DPActtick(σ t ′‖γ ′) λλ′tick,

DPActtick(σ2‖γ) = DPActtick(σ t ′‖γ ′)DPActtick(λλ′δ‖δtick)
= DPActtick(σ t ′‖γ ′) λλ′tick.

This implies DPActtick(σ1‖γ)= DPActtick(σ2‖γ).
• t ′ ∈ (t, t + 0.5]: This time let γ ′ be the prefix of γ such that time(γ ′)= time(σ)+ t . δ is

the same as above. Then we have

DPActtick(σ1‖γ) = DPActtick(σ t‖γ ′)DPActtick(λσ ′‖0.5tick)
= DPActtick(σ t‖γ ′) λDPAct(σ

′)tick
= DPActtick(σ t‖γ ′) λλ′tick,

DPActtick(σ2‖γ) = DPActtick(σ t‖γ ′)DPActtick((t
′ − t)λλ′δ‖0.5tick)

= DPActtick(σ t‖γ ′) λλ′tick.

10The priority of tick over other actions guarantees the trace σ‖γ to be unique.
11The trace γ ′ is unique since by definition the trace γ of Tick2 generates a tick at time � and generates no
other tick actions during the whole interval (�− 1,�)∩R.

Form Methods Syst Des (2009) 34: 238–304 277

Thus once again we have DPActtick(σ1‖γ)= DPActtick(σ2‖γ).

σ1‖γ ∈ ObsTTraces(ATick2
S), σ2‖γ ∈ ObsTTraces(ATick2

Act) and AS is Tick2-robust imply
σ2‖γ ∈ ObsTTraces(ATick2

S). Hence σ2 ∈ ObsTTraces(AS). σ t ′ λ is a prefix of σ2 implies
σ t ′ λ ∈ObsTTraces(AS). �

Corollary 1 Let AS be a TAIO which is non-blocking and Tick2-robust, σ ∈ RT(Act), λ ∈
Act∗ and t ∈ R. If σ t λ ∈ObsTTraces(AS) then σ t ′ λ ∈ObsTTraces(AS) for all t ′ ∈ R.

Proof We make the proof by contradiction. Let R1 = {t ′ ∈ R |σ t ′ λ ∈ObsTTraces(AS)} and
R2 = {t ′ ∈ R |σ t ′ λ /∈ ObsTTraces(AS)}. R1 is nonempty since t ∈ R1. We assume R2 is
nonempty too. The fact that R1 and R2 are both nonempty and that R1 ∪ R2 = R implies
there exist t1 ∈ R1 and t2 ∈ R2 such that t2 ∈ (t1 − 0.5, t1 + 0.5]. The latter contradicts the
result given in Lemma 13. �

Corollary 2 Let AS be a TAIO which is non-blocking and Tick2-robust and σ ∈ RT(Act)

σ ∈ObsTTraces(AS) if and only if DPAct(σ) ∈ObsTTraces(AS).

Proof We first assume σ = t1a1 · · · tnan where ti ∈ R and ai ∈ Act. Let σ1 = λn+1 = ε,
σk+1 = t1a1 · · · tkak and λk = ak · · ·an for 1≤ k ≤ n. By Corollary 1, we have:

σktkλk ∈ObsTTraces(AS) ⇐⇒ σkλk ∈ObsTTraces(AS).

Since σktkλk = σk+1λk+1 we deduce that for 1≤ k ≤ n:

σk+1λk+1 ∈ObsTTraces(AS) ⇐⇒ σkλk ∈ObsTTraces(AS).

Thus:

σn+1λn+1 ∈ObsTTraces(AS) ⇐⇒ σ1λ1 ∈ObsTTraces(AS).

Finally since σ1 = λn+1 = ε, σn+1 = σ and λ1 = DPAct(σ) we conclude that

σ ∈ObsTTraces(AS) ⇐⇒ DPAct(σ) ∈ObsTTraces(AS).

In the second case, σ = t1a1 · · · tnantn+1. Then, by Corollary 1, we have

t1a1 · · · tnantn+1 ∈ObsTTraces(AS) ⇐⇒ t1a1 · · · tnan ∈ObsTTraces(AS).

Since as shown above we have

t1a1 · · · tnan ∈ObsTTraces(AS) ⇐⇒ a1 · · ·an ∈ObsTTraces(AS)

we deduce that

t1a1 · · · tnantn+1 ∈ObsTTraces(AS) ⇐⇒ a1 · · ·an ∈ObsTTraces(AS).

Hence once again we conclude that

σ ∈ObsTTraces(AS) ⇐⇒ DPAct(σ) ∈ObsTTraces(AS). �

278 Form Methods Syst Des (2009) 34: 238–304

We define the inverse operator of DPAct(·) denoted DP−1
Act(·). For λ ∈ Act∗:

DP−1
Act(λ)= {σ ∈ RT(Act) |DPAct(σ)= λ}.

A given TAIO AS is said to be DP-closed if and only if for any timed trace σ ∈ RT(Act)
if σ ∈ ObsTTraces(AS) then DP−1

Act(DPAct(σ)) ⊆ ObsTTraces(AS). Notice that, by defini-
tion, σ ∈ DP−1

Act(DPAct(σ)), so the inverse implication always holds. Also note that [σ] ⊆
DP−1

Act(DPAct(σ)).

Lemma 14 Let AS be a non-blocking TAIO. AS is Tick2-robust if and only if it is DP-closed.

Proof

• “If” direction: We assume AS is DP-closed and we prove it is Tick2-robust. Let β ∈
ObsTTraces(ATick2

S) and β ′ ∈ ObsTTraces(ATick2
Act) such that DPActtick(β) = DPActtick(β

′).
Thus there must exist σ ∈ ObsTTraces(AS), σ ′ ∈ ObsTTraces(AAct) and γ, γ ′ ∈
ObsTTraces(Tick2) such that β = σ‖γ and β ′ = σ ′‖γ ′. DPActtick(β) = DPActtick(β

′) im-
plies DPAct(σ)= DPAct(σ

′). Since AS is DP-closed and σ ∈ ObsTTraces(AS) we deduce
σ ′ ∈ ObsTTraces(AS). Moreover since we have γ ′ ∈ ObsTTraces(Tick2), we conclude
that σ ′‖γ ′ ∈ObsTTraces(ATick2

S). Hence AS is Tick2-robust.
• “Only if” direction: We assume AS is Tick2-robust and we prove it is DP-closed. Let

σ ∈ ObsTTraces(AS) and σ ′ ∈ DP−1
Act(DPAct(σ)). Thus there exists λ ∈ Act∗ such that

DPAct(σ) = DPAct(σ
′) = λ. By Corollary 2 since σ ∈ ObsTTraces(AS), we deduce that

λ ∈ ObsTTraces(AS). Once again by Corollary 2, λ ∈ ObsTTraces(AS) implies σ ′ ∈
ObsTTraces(AS). �

The lemma above allows to characterize the set of non-blocking and Tick2-robust TAIO.

Corollary 3 Let AS be a TAIO which is non-blocking. AS is Tick2-robust if and only if there
exists ψ ⊆ Act∗ such that ObsTTraces(AS)= DP−1

Act(ψ).

Proof It follows from Lemma 14, by taking ψ = DPAct(ObsTTraces(AS)). �

Corollary 4 Let AS be a non-blocking TAIO. If AS is Tick2-robust then ObsTTraces(AS) is
digitizable.

Proof AS is Tick2-robust, thus, by Lemma 14, it is DP-closed. We prove that for any ρ ∈
ART(Act), ρ ∈ObsTTraces(AS) if and only if [ρ] ⊆ObsTTraces(AS).

• We first assume ρ ∈ ObsTTraces(AS). Since AS is DP-closed, we deduce that
DP−1

Act(DPAct(ρ)) ⊆ ObsTTraces(AS). Moreover since [ρ] ⊆ DP−1
Act(DPAct(ρ)), we con-

clude that [ρ] ⊆ObsTTraces(AS).
• Now we assume [ρ] ⊆ ObsTTraces(AS). Let ρ ′ ∈ [ρ]. Clearly, we have DPAct(ρ) =

DPAct(ρ
′). Thus ρ ∈ DP−1

Act(DPAct(ρ
′)). Moreover since AS is DP-closed and ρ ′ ∈

ObsTTraces(AS), we deduce that DP−1
Act(DPAct(ρ

′)) ⊆ ObsTTraces(AS). Hence, ρ ∈
ObsTTraces(AS).

Thus, ObsTTraces(AS) is digitizable. �

Form Methods Syst Des (2009) 34: 238–304 279

5.2.4 Reducing the size of digital-clock tests

Digital-clock tests can sometimes grow large because they contain a number of “chains” of
ticks. On the other hand, standard test description languages such as TTCN [31] permit the
use of variables and richer data structures. We would like to use such features to make the
representation of digital-clock tests more “compact”. For example, the test shown in the top
of Fig. 14 can be equivalently represented as the automaton with counter i, shown in the
bottom-left of the figure.

Reducing the size of test representations is a non-trivial problem in general, related to
compression and algorithmic complexity theory (sometimes also called Kolmogorov com-
plexity). In our framework, we only use a heuristic which attempts to eliminate tick chains as
much as possible. To this purpose, we generalize the labels of the digital-clock test to labels
of the form k tick, where k is a positive integer constant. A transition labeled with k tick is
taken when the k-th tick is received, counting from the time the source node is entered. Nat-

urally, tick is equivalent to 1 tick. Now, consider two nodes S and S ′ such that: (1) S
tick→ S ′,

(2) for all a ∈ Act, the successors of S and S ′ are identical, (3) S ′ k tick→ S ′′. In this case, we

remove node S ′ (and corresponding edges) and add the edge S
(k+1) tick→ S ′′. We repeat the

process until no more nodes can be removed. The result of applying this heuristic to the test
in the top of Fig. 14 is shown in the bottom-right of the figure.

5.3 Generating TA testers: the monitor case

The motivation for representing analog-clock tests as deterministic timed automata arises
from the fact that on-line testing requires a time-efficient reachability algorithm, since the
tester must be able to react to the SUT in real-time.

The problem of generating an analog-clock test which is a TAIO can be anything from
trivial to undecidable, depending on its precise definition. If we require a test which is only
sound, then the problem is trivial, because a test always announcing “Pass” is sound. On
the other hand, if we require a test which is also complete, when such a test exists,12 then we
can show that the problem is undecidable, by reducing the timed automata determinization
problem [50].

Thus, we take a pragmatic approach. We suppose that the tester has only one clock which
is reset every time the tester observes an action, that is, at any edge of the tester TAIO. We
then provide techniques to compute the locations and edges of the tester automaton and the
guards and deadlines of the edges.

It should be noted that the above technique can be easily extended to generate testers
with more than one clock, provided the skeleton of the tester is given. The skeleton is a
deterministic finite automaton the transitions of which are labeled with resets of the clocks
of the tester. This information is necessary since, for a given number of clocks (even for
one clock) there exist many possible testers which differ in their logic of resetting clocks.
A special case is an event-clock tester which has one clock for each observable action, reset
when this action occurs, as in event-clock automata [2].

5.3.1 “One-clock determinization” of TA

For pedagogical reasons, we first explain our technique for plain timed automata, which
can be seen as TAIO with an empty set of input actions. For such an automaton A, the

12It may not exist because the specification is non-deterministic whereas the test has to be deterministic.

280 Form Methods Syst Des (2009) 34: 238–304

technique amounts to determinizing A “as best as possible”, given that we can only use one
clock. Formally, the deterministic counterpart of A, denoted Amon, will accept a superset of
TTraces(A). Notice that A may contain unobservable actions and non-determinism. Viewing
A as the specification, Amon is a monitor for A.

Amon is a TAIO which has as inputs the outputs of A. Amon is observable, deterministic
and input-enabled. All its locations are input locations. Amon uses a single clock, y, which
is reset to zero every time an action is observed. Amon tries to estimate the state of A based
on its current observation (including the value of its own clock y). Amon has no urgency
constraints: all its deadlines are lazy, thus, Amon is non-blocking. Amon needs no urgency
because it acts as an “acceptor” rather than a “generator” of traces. On the other hand, the
states of Amon (including locations and values of the clock y) are divided into accepting and
rejecting.

5.3.2 The equivalence relation “ ∼a
S ”

Let A= (Q,q0,X,Act,E) and suppose y is a new clock, not in X. Let S
y

A be the set of states
of A extended with the clock y, that is, S

y

A =Q× RX∪{y}. For an action a ∈ Act, let Ea ⊆ E
be the set of edges of A which are labeled with a. For a given set of extended states S ⊆ S

y

A

and a value u ∈ R of clock y, we define the set of edges:

Ea(S,u)= {e ∈ Ea | ∃s ∈ S : y(s)= u∧ s |= e}.13 (26)

Ea(S,u) contains all edges labeled a which are satisfied by a state in S where y equals u.
Finally, we define the following equivalence on values u1, u2 ∈ R of the clock y:

u1 ∼a
S u2 iff Ea(S,u1)= Ea(S,u2). (27)

The intuition is as follows. Two values of y are equivalent if they give the same information
on the enabledness of an edge labeled with a, assuming S holds. S captures the current
“knowledge” of the monitor. In particular, it captures the relation between values of y and
possible states where A can be in.

Let us illustrate the meaning of ∼a
S with the example shown in Fig. 17. We assume

that S = (q,−2 ≤ x − y ≤ 1) and that q has two outgoing edges e1 and e2 labeled a, with
guards φ1 ≡ x ≤ 3 and φ2 ≡ x ≥ 2, respectively. Then,∼a

S induces three equivalence classes,
namely, y < 1, 1≤ y ≤ 5 and y > 5. Indeed, given the assumption −2≤ x − y ≤ 1, y < 1
implies x < 2. Thus, when y < 1 we know that φ2 does not hold, therefore, e2 is not enabled.
Similarly, when y > 5 we know that e1 is not enabled. When 1≤ y ≤ 5, both e1 and e2 may
be enabled. It is important to note that not all states in S for which 1≤ y ≤ 5 satisfy φ1, and
similarly for φ2. However, given our information on y, we cannot be sure. Thus, we need to
include both e1 and e2 in the set of possible enabled edges, given the constraint 1≤ y ≤ 5.

5.3.3 Monitor construction

We now explain the construction of the monitor automaton Amon. A location of Amon

is associated with a set of extended states of A, S ⊆ S
y

A. For each action a, for each
equivalence class ψ in the (coarsest) partition induced by ∼a

S , Amon has an edge e =
(S,S ′,ψ, {y}, lazy, a), where the destination location S ′ is computed as follows:

S ′ = succ(S ∩ψ,a) (28)

13For s = (q, v) and e= (q ′, q ′′,ψ, r,d, a), s |= e is a shortcut for q = q ′ and v |=ψ .

Form Methods Syst Des (2009) 34: 238–304 281

Fig. 17 Illustration of the ∼a
S

equivalence

where

succ(S ∩ψ,a)= usucc(dsucc(S ∩ψ,a)) (29)

and S ∩ ψ denotes the set of all states s ∈ S such that y(s) |= ψ . Notice that S ′ can be
empty, even when S is non-empty. This is because ψ may be unsatisfied in S. Also note that
S ′ is the “best” possible estimate, in the sense that S ′ is the smallest set possible, given the
knowledge the monitor has when a arrives. This knowledge is captured by S ∩ ψ . Indeed,
the monitor knows that A cannot be in a state outside S. It also knows that clock y satisfies
ψ , which further restricts the possible states A can be in.

Let Ay be the automaton A extended with clock y and recall that sAy

0 denotes the initial
state of Ay . Then, the initial location of Amon is defined to be S0 = {s ∈ S

y

A | ∃ρ ∈ RT({τ }) :
sAy

0
ρ→ s} = usucc({sAy

0 }). S0 captures the initial knowledge of the monitor. The latter knows
that initially y and all clocks of A equal zero. However, S0 must also include all states that
A can move to by performing unobservable sequences.

The above algorithm is essentially a subset construction for A, with the addition that
clock y is used to infer knowledge about states that A can possibly be in. The construction
relies on repeating two basic steps: (a) computing the partition induced by equivalences
∼a

S , and (b) computing successor locations S ′ using reachability. We show how step (a) can
be implemented below. As for step (b), standard symbolic reachability techniques, coupled
with so-called extrapolation abstractions can be used to ensure that the number of possible
locations of Amon remains finite [4, 10, 23].

5.3.4 Computing the coarsest partition induced by “ ∼a
S ”

A simple algorithm for computing the coarsest partition induced by ∼a
S is the following.

Given a constraint ψ on clock y, let ES,ψ
a = {e ∈ Ea | S ∩ (ψ ∧ guard(e)) �= ∅}, where

guard(e) is the guard of edge e. ES,ψ
a contains all edges labeled a whose guards may be

satisfied by a state in S where y lies in the interval ψ . In other words, ES,ψ
a is the union of

Ea(S,u) over all values u satisfying ψ .

282 Form Methods Syst Des (2009) 34: 238–304

Fig. 18 A non-deterministic
timed automaton

Now, let K be the greatest constant appearing in a constraint defining S or a guard of an
edge in Ea . For each ψ in the set of intervals

{[0,0], (0,1), [1,1], (1,2), . . . , [K,K], (K,∞)},

compute ES,ψ
a . For this, the condition S ∩ (ψ ∧ guard(e)) �= ∅ needs to be checked. This can

be done symbolically, using standard techniques and data structures such as DBMs [24].
Once ES,ψ

a is computed for all intervals ψ , the coarsest partition is obtained by “merging”
(i.e., taking the union of) intervals having the same set ES,ψ

a . For the example of Fig. 17,
ES,y<1

a = {e1}, ES,1≤y≤5
a = {e1, e2} and ES,y>5

a = {e2}. Notice that the correctness of the above
algorithm relies on the fact that all values in an interval (i, i+1) are equivalent, and the same
is true for the interval (K,∞). This is because constraints only have integer constants.

5.3.5 Accepting and rejecting states

It remains to define the accepting and rejecting states of Amon. Given S ⊆ S
y

A, let S/y be
the projection of S on clock y, that is, S/y = {u ∈ R | ∃s ∈ S : y(s) = u}. Then, all states
(S,S/y) of Amon are accepting, provided S �= ∅. The rest of the states are rejecting.

The different steps for constructing the monitor automaton are given in Algorithm 3. It
is worth noting that the latter bears similarity with the common reachability algorithm.

5.3.6 Example of monitor construction

Let us give an example illustrating the construction of Amon. Consider the non-deterministic
timed automaton shown in Fig. 18. All its edges are lazy, except the one from location 2
to location 4, which is delayable. Its one-clock monitor automaton is shown in Fig. 19.
Not all locations and edges of the monitor are shown, in order not to overload the figure.
In particular, the empty location and all edges leading to it are not shown. For instance,
there is an edge labeled a with guard y > 5 from the initial location to the empty location,
since a is not accepted if it arrives after 5 time units from start. Apart from the empty
location, the rejecting states of the monitor are at location S = (2, x = y ≤ 2) and for y > 2
(notice that S/y = y ≤ 2). This is because c must be received at most 2 time units after a,
in order to be accepted. Note that there are no such rejecting states at location S ′ = (1,1≤
x−y ≤ 2)∪ (2, x = y ≤ 2). This is because the monitor does not know whether the original
automaton is at location 1 or 2, and there is no urgency at location 1. Indeed, S ′/y = true.

Form Methods Syst Des (2009) 34: 238–304 283

1 S0 ← usucc({sAy

0 });
2 list1 ←{S0};
3 list2 ←∅;
4 T ← the one node TA the initial location of which is S0;
5 compute the rejecting states corresponding to S0;
6 while(list1 �= ∅)
7 S← pick(list1);
8 foreach(a ∈ Actout)
9 P ← the coarsest partition induced by ∼a

S ;
10 foreach(ψ ∈ P)
11 S ′ ← succ(S ∩ψ,a);
12 if (S ′ �= ∅)
13 append edge (S,S ′,ψ, {y}, lazy, a) to T ;
14 compute the rejecting states corresponding to S ′;
15 if (S ′ /∈ list2) list1 ← list1 ∪ {S ′};
16 endif ;
17 else append edge (S,Fail,ψ, {y}, lazy, a) to T ;
18 endif ;
19 endforeach;
20 endforeach;
21 list1 ← list1 \ {S};
22 list2 ← list2 ∪ {S};
23 endwhile;

Algorithm 3: One-clock determinization of TA

5.3.7 The use of extrapolation techniques

A question that arises is the termination of Algorithm 3. Using the operator usucc may
lead to an infinite set of states (zones) [23]. Moreover, there are cases where the exact set
of reachable states is not representable as finite unions of zones [10]. The second problem
can be avoided only by restricting the class of timed automata considered to diagonal-free
automata, that is, without guards of the form x − y ≤ c [10]. To alleviate the first problem,
we use the so-called extrapolation abstractions [4, 10, 23]. These abstractions result in a
finite state space, thus ensuring termination of reachability-based algorithms.

Extrapolation abstractions rely on the maximal integer constants used in guards of the
timed automaton in question. In our case, this raises an issue when determining the constant
that is to bound the space of the monitor clock y. Indeed, this clock does not “participate” in
any guard a-priori (before the construction of the monitor) thus there is no reference constant
to use. We can show that increasing the maximal constant for y amounts to increasing the
observational power of the monitor. In fact, there are cases where there is no “optimal”
monitor: the greater the maximal constant allowed for y is, the more precise Amon will be,
in the sense of how “close” the language of Amon is to the language of A.

An example is shown in Fig. 20. The TAIO shown in the figure can produce a single
output a at any time k, where k ∈ {1,2, . . .}. It can be seen that for any such k, a monitor
able to compare y to constants up to k is “less accurate” than a monitor able to compare y to

284 Form Methods Syst Des (2009) 34: 238–304

Fig. 19 The one-clock deterministic monitor of the automaton of Fig. 18

Fig. 20 A TAIO which can
produce a! at times 1,2,3, . . .

constants up to k+ 1. Indeed, the former cannot distinguish between a! happening precisely
at time k or at time strictly greater than k, while the latter can.

Another observation to be made about Algorithm 3 is the following.14 There are cases
where it is possible to build more precise monitor automata by using partitions which are
finer than those induced by the equivalence relations “∼a

S”, used in Algorithm 3. We use the
example given in Fig. 21 to illustrate this. It can be checked that by applying Algorithm 3
on the TA A, we obtain the monitor automaton Amon.Note that though A is deterministic
and has only one clock the two TA A and Amon are distinct from each other. This is due the
fact that clock x of TA A is not reset after each transition as the clock y is supposed to be.
The initial location of Amon is labeled with the set of states S = (0, x = y). For the output
action a, we consider the relation equivalence ∼a

S . The coarsest partition with respect to ∼a
S

is made up of the two intervals 0≤ y < 1 and 1≤ y. The first interval is shown in the figure
while the second is hidden since it leads to the Fail-location. The monitor automaton A′mon is
obtained by considering a finer partition made up of the intervals y = 0, 0 < y < 1 and 1≤ y.
That is the only change we bring to Algorithm 3. All the other steps remain unchanged. It
is not difficult to check that ObsTTraces(A) ⊆ ObsTTraces(Amon) and ObsTTraces(A) ⊆
ObsTTraces(A′mon). Thus, both Amon and A′mon are monitor automata for A. However, A′mon

is more precise than Amon since ObsTTraces(A′mon)⊂ObsTTraces(Amon). This inclusion is
strict since for all t , such that 2 < t < 3, the traces “0a t b” are in ObsTTraces(Amon) but not
in ObsTTraces(A′mon).

14This issue has been pointed to us by Fabrice Chevalier and Patricia Bouyer.

Form Methods Syst Des (2009) 34: 238–304 285

Fig. 21 Computing a more precise monitor automaton: i.e., A′mon more precise than Amon

In general, a “forward” algorithm such as the one we propose above cannot determine
the partition that is sufficiently fine for precision purposes, thus, it has to rely on the finest
possible partition, namely, the region graph. This is the approach taken in [11]. Our method
opts for monitors that have weaker observational power, however, are much more efficient
to construct and store.

5.4 Generating TA testers: the general case

We now consider the general case of TAIO with both input and output actions. In this case,
the monitor becomes a tester, since it must supply inputs to the SUT. Formally, the tester is
an analog-clock test TAIO, denoted Atest, as defined in Sect. 4.

5.4.1 Input and output locations

As for the case of digital-clock tests, an analog-clock test TAIO has two distinct types of
locations, namely input locations and output locations. The outgoing edges from an input
location are all labeled with output actions. When the tester is occupying such a location,
it just waits for outputs coming from the implementation and reacts accordingly. For the
second type of locations, each location must have exactly one outgoing edge labeled with
an input action and all the other edges must be labeled with output actions. For each output
location, the tester has an input action that it must send to the implementation at a precise
timing. When the tester occupies some output location, it waits till the time for sending
the corresponding input happens. If an output is received before that time the tester reacts
accordingly. Otherwise, it will send the specific input action to the implementation at the
precise chosen time and continues the execution of the test strategy accordingly.

5.4.2 Generation algorithm

The algorithm for constructing Atest is a generalization of the algorithm for building Amon.
As with Amon, each location of Atest is a set S ⊆ S

y

A. The choice of marking a location

286 Form Methods Syst Des (2009) 34: 238–304

Fig. 22 A possible analog-clock
test TAIO for of the automaton of
Fig. 18 considered as a TAIO
with input (a) and outputs
(b and c)

as input or output is made by the algorithm non-deterministically. For locations marked
as input, their outgoing edges are computed as shown in the previous section, using the
equivalence ∼a

S , where, in this case, a ∈ Actout.
For output-locations, in order to mark a location S as output, A must have an edge e

labeled with a ∈ Actin, such that S ∩ guard(e) �= ∅. If S is indeed marked as output, then
one of the above edges and a rational value u are chosen, such that ∃s ∈ S : y(s)= u∧ s |=
guard(e) (by the above condition, such a u exists). Then, an edge (S,S ′, y = u,eager, a)

is added to Atest, where S ′ is computed as shown in the previous section. Notice that the
deadline of the edge is eager: this is because we want the output to be emitted urgently, at
a precise point in time. Also note that if we cannot find an integer value u satisfying the
above condition, then we pick a rational value and multiply at the end of the construction
all constants in the automaton with a sufficiently large constant to make them integer. For
the interval 0≤ y < u, the outgoing edges labeled with input actions are computed exactly
as for the case of input-locations. The only difference is that we compute a partition of the
interval [0, u) instead of the whole set of reals R.

The states of Atest are defined to be either accepting or rejecting, as with Amon. Rejecting
states correspond to the tester emitting a “Fail” verdict. On the other hand, there is no specific
point in time where the tester emits a “Pass”. Indeed, the execution of the test can go on as
long as the tester remains in an accepting state. The user can stop the test when he/she is
tired of waiting.

The different steps for constructing a test TAIO are given in Algorithm 4. In the algo-
rithm, valid_inp_edges(S) denotes the set of edges {e |S ∩ guard(e) �= ∅} labeled with input
actions.

5.4.3 Example of test TAIO construction

An example Atest of an analog-clock test TAIO is given in Fig. 22. This test TAIO corre-
sponds to the automaton of Fig. 18. For the purpose of this example, the latter is considered
here as a TAIO with input a and outputs b and c. We write a!, b? and c? (instead of a?, b!
and c!) since, with respect to the tester, a is an output and b and c are inputs. The initial
location of Atest is an output-location and the two others are input-locations. If the tester
receives any input action during the time interval 0 ≤ y < 2, a Fail verdict is emitted and
the test is stopped. Otherwise, if no input is received within this interval, the tester produces

Form Methods Syst Des (2009) 34: 238–304 287

1 S0 ← usucc({sAy

0 });
2 list1 ←{S0}; list2 ←∅;
3 T ← the one-location TAIO with initial location S0;
4 while(list1 �= ∅)
5 S← pick(list1);
6 if (valid_inp_edges(S) �= ∅)
7 i← pick({0,1});
8 else i← 1;
9 endif ;

10 if (i = 0)
11 e← pick(valid_inp_edges(S));
12 u← a rational value s.t . ∃s ∈ S : y(s)= u∧ s |= guard(e);
13 b← the label of e;
14 S ′ ← succ(S ∩ (y = u), b);
15 append edge (S,S ′, y = u, {y},eager, b) to T ;
16 if (S ′ /∈ list2)
17 list1 ← list1 ∪ {S ′};
18 endif ;
19 else u←∞;
20 endif ;
21 foreach(a ∈ Actout)
22 P ← the coarsest partition of [0, u) induced by ∼a

S ;
23 foreach(ψ ∈ P)
24 S ′ ← succ(S ∩ψ,a);
25 if (S ′ �= ∅)
26 append edge (S,S ′,ψ, {y}, lazy, a) to T ;
27 if (S ′ /∈ list2)
28 list1 ← list1 ∪ {S ′};
29 endif ;
30 else append edge (S,Fail,ψ, {y}, lazy, a) to T ;
31 endif ;
32 endforeach;
33 endforeach;
34 list1 ← list1 \ {S}; list2 ← list2 ∪ {S};
35 endwhile;
36 compute the rejecting states of all the input-locations of T ;

Algorithm 4: A test TAIO generation

action a exactly at time y = 2, resets clock y and then waits for inputs. Then, only three
possible behaviors are accepted by the tester: (1) time elapse, (2) receiving input b within
interval 0 ≤ y ≤ 1, (3) receiving input c exactly at time y = 0. If one of these behaviors is
observed, the test may be stopped at any time and a Pass verdict is emitted. If any other
behavior is observed the test must be stopped and a Fail verdict must be emitted.

288 Form Methods Syst Des (2009) 34: 238–304

5.4.4 Soundness and completeness

Next, we discuss the soundness and completeness of Algorithm 4. First, we prove that the
algorithm is sound. Let T be a test TAIO generated by Algorithm 4.

Proposition 15 If verdict Fail is observed while applying T on AI , then AI ���tioco AS .

Proof Let σ = a0a1 · · ·an ∈ RT(Act) the trace corresponding to the interaction between the
tester and AI from the starting of T until the announcement of Fail. Let σn−1 = a0 · · ·an−1.
According to the algorithm, an ∈ Actout ∪ R. Two cases are possible:

• σn−1 ∈ ObsTTraces(AS): With no-restriction, it is possible to assume that an−2 ∈ Act and
an−1 ∈ R.15 Let v be the node of T reached after the execution of σn−2 = a0a1 · · ·an−2 and
S the set of states associated with v. Clearly, As afterσn−2 ⊆ S.
– If an ∈ R: Since Fail is announced, the duration an−1 + an is not accepted within v and

leads by the way to a rejecting state. That is an−1 + an /∈ out(AS afterσn−2). Hence,
AI���tiocoAS .

– If an ∈ Actout: Let ψ the element of the current partition P induced by∼an

S such that y =
an−1 ∈ ψ . Since Fail is announced, succ(s ∩ ψ,an)= ∅. Thus, an /∈ out(AS afterσn−1)

and by the way AI���tiocoAS .
• σn−1 /∈ ObsTTraces(AS): Let σ ′ = a0a1 · · ·ak such that k < n− 1, σ ′ ∈ ObsTTraces(AS)

and σ ′ak+1 /∈ ObsTTraces(AS). If ak+1 ∈ Actin, that will be a contradiction with
the fact that Algorithm 2 chooses only valid input-edges (i.e., edges which are in
valid_inp_edges()). Thus, ak+1 ∈ Actout ∪R and we are done. �

Algorithm 4 is not complete in general. The example given in Fig. 21 shows that depend-
ing on the kind of partitions we use there are mistakes that we can detect and others that we
can not.

6 Coverage

As already mentioned in Sect. 5.2, the digital-clock test generation algorithm takes as input
the extended specification model Atick

S and generates a test in the form of a tree. Nodes of the
tree correspond to sets of states of Atick

S . Nodes are marked as input or output. This algorithm
is only partially specified. It must be completed by specifying a policy for marking nodes as
input or output, for choosing which of the possible outputs to emit and for choosing when
to stop the test. One way is to resolve these choices randomly. This may not be satisfactory
when some completeness guarantees are required or when repetitions must be avoided as
much as possible. Another possibility is to generate an exhaustive test suite up to a depth k

specified by the user. This approach suffers from the explosion problem, since the number
of tests is generally exponential in k.

To remedy the above problems, many approaches have been proposed for generating
test suites with respect to a given coverage criterion. Different coverage criteria have been
proposed for software, such as statement coverage, branch coverage, and so on [41]. In the
TA case existing methods attempt to cover either finite abstractions of the state space (e.g.,
the region graph [46] or a time-abstracting quotient graph [42]) or structural elements of the

15We can insert “0” between an−1 and an if that is not the case.

Form Methods Syst Des (2009) 34: 238–304 289

1 S0 ← usucc({sATick
S

0 });
2 list1 ←{S0};
3 list2 ←∅;
4 OG← the one-node graph with initial node S0;
5 while(list1 �= ∅)
6 S← pick(list1);
7 foreach(a ∈ Actin ∪ Actout ∪ {tick})
8 if (a ∈ Actin)
9 S ′ ← dsucc(tsucc(S,0), a);

10 else S ′ ← dsucc(usucc(S), a);
11 endif ;
12 if (S ′ �= ∅)

13 append edge S
a→ S ′ to OG;

14 if (S ′ /∈ list2)
15 list1 ← list1 ∪ {S ′};
16 endif ;
17 endif ;
18 endforeach;
19 list1 ← list1 \ {S};
20 list2 ← list2 ∪ {S};
21 endwhile;

Algorithm 5: Construction of the observable graph OG

specification such as edges or locations [29]. In [8], a method for generating test cases from
coverage criteria is proposed. The coverage criteria are encoded as observer automata.

Here, we propose a new technique for covering states, locations or edges of the speci-
fication. As mentioned in the introduction, we cannot use the technique of [29] because it
relies on the assumption that outputs in the specification are urgent and isolated.

Our technique relies on the concept of observable graph.

6.1 The observable graph

The observable graph OG of the composed automaton ATick
S is generated as follows. The

initial node of the graph is S0 = {s | ∃ρ ∈ RT({τ }) : s
ATick

S

0
ρ→ s}. For each generated node

S and each a ∈ Act ∪ {tick}, a successor node S ′ is generated and an edge S
a→ S ′ is added

to the graph. Extrapolation abstractions can be used here as well, to ensure that the graph
remains finite. The way for constructing the observable graph OG is given in Algorithm 5.

6.1.1 Coverage criteria

Every node of OG corresponds to a set of states S of ATick
S . We say that the node covers S.

On the other hand, every static test-tree is essentially a sub-graph of OG. We say that such
a test covers the union of all sets of states covered by its nodes. We say that a set of tests
(or test suite) achieves state coverage if every reachable state of AS is covered by some

290 Form Methods Syst Des (2009) 34: 238–304

test in the suite. Unreachable states of AS can be ignored, since they play no role regarding
conformance.

Similarly, a node S of OG covers a location q of AS if S contains some state s = (q, v).
A test suite achieves location coverage if every reachable location of AS is covered by some
test in the suite. When AS is built compositionally, we can distinguish between global and
local location coverage. In global location coverage, we require that all reachable global
locations be covered. A global location is a vector (q1, . . . , qn) where n is the number of
components and qi is the local location of component i. In local location coverage, we
simply require that all reachable individual locations of components be covered. Clearly, a
test suite achieving global location coverage also achieves local location coverage, but the
converse is not generally true. Similarly, a test suite achieving state coverage also achieves
both local and global location coverage, but the converse is not always true.

Every edge of OG can be associated to a set of edges of AS . In particular, an edge S
a→ S ′

will be associated to all edges which are visited during the reachability algorithm which

computes S ′ from S. Formally, if s ∈ S, s ′ ∈ S ′ and s
ρ·a−→ s ′ for an unobservable sequence ρ,

all edges in the path from s to s ′ are covered by the edge S
a→ S ′. We say that a test suite

achieves edge coverage if every reachable edge of AS (i.e., an edge enabled at a reachable
state of AS) is covered by some test in the suite. A test suite achieving edge coverage also
achieves local location coverage. However, it may not achieve global location (or state)
coverage.

We also define action coverage as follows. If a given edge S
a→ S ′ is reachable then

the corresponding observable action a is said to be reachable as well. Action coverage is
achieved if all the reachable observable actions are covered by the considered test suite.
Clearly, action coverage is weaker than edge coverage.

Note that these coverage criteria, the way they are defined, should be interpreted merely
as a way to “guide” the test generation algorithm. We do not claim that a test suite achieving,
say, global location coverage, indeed guarantees such coverage during execution. This can-
not be guaranteed, simply because execution is partly controlled by the system under test.
The latter decides which outputs to emit to the tester, therefore, it also implicitly decides
which parts of the nodes of the test-tree will be “covered”. One could, of course, define also
a notion of “execution coverage”, book-keeping the locations of the specification covered
during execution of the tests. In this case, however, it cannot be guaranteed that all locations
will be covered, because the implementation may simply not allow to reach some parts of
the specification state-space, as already said.

6.2 Generation algorithm

We now give an algorithm to generate a test suite achieving coverage with respect to a given
criterion. The first step is to build the observation graph of ATick

S . Then, tests are extracted
statically from OG, until coverage is achieved. We first consider location coverage. Tests are
extracted as follows.

6.2.1 Generating a location-covering suite

While there are reachable locations not covered, the algorithm picks such a location, say q .
Next, it picks a node v of OG associated with q (such a node exists since q is reachable)
and finds a path in OG from the initial node to v. Then, it extends this path into a test-tree
as explained in Sect. 6.2.4 below. This new test is added to the set of tests already generated
and the algorithm repeats choosing a new uncovered location, until all locations are covered.

Form Methods Syst Des (2009) 34: 238–304 291

1 list← the set of reachable locations;
2 T ←∅;
3 while(list �= ∅)
4 q← pick(list);
5 v← a node of OG associated with q;
6 σ ← a path in OG from the initial node to v;
7 T ← the extension of σ into a test tree ;
8 list← list \ the set of locations covered by T ;
9 T ← T ∪ {T };

10 endwhile;

Algorithm 6: Generation of a location-covering suite T

The different steps for generating a location-covering suite are given in Algorithm 6. Notice
that the algorithm is essentially an AND/OR search in a finite graph, AND nodes being input
nodes and OR nodes being output nodes.

6.2.2 Generating a state-covering suite

A state-covering suite can be extracted in a similar way. If some state s is not covered, we
first find a node v of OG covering s. Then we extract a test including v as above. Notice
that this test will cover not only s, but a set of states containing s. It will at least cover the
region in which s belongs. This guarantees that the algorithm terminates with a finite test
suite, even though the set of states is infinite.

6.2.3 Generating an edge-covering suite

The algorithm is similar for edge coverage, with the difference that instead of finding a path
reaching a target node of OG, the algorithm finds a path reaching a target edge (the so-far
uncovered edge).

6.2.4 Extending a path into a test-tree

This can be done by completing the path with the missing edges, labeled with tester inputs.
Let v

a→ v′ be an edge in the considered path such that a ∈ Actout ∪ {tick}. For ai ∈ Actout ∪
{tick} \ {a}, if v

ai→ vi is an edge of the observable graph then an edge v
ai→ Pass is added

to the path. Otherwise, edge v
b→ Fail is added to it. In general, it is a good idea to continue

extending the test-tree in this way. This is because, using such a policy, a single test will
cover as many locations as possible. An example of how to extend a path into a test-tree is
given in Fig. 23. We are given the observable graph OG and a path σ of it. The figure shows
the test-tree T into which the path σ is extended. In this example, the considered system
has two inputs a, b and three outputs c, d, e. Since a is an input action then we can omit
the other outgoing edges from the initial node of the path σ (c! and b?). That is why these
edges do not appear in T . For the second location of σ , the outgoing edge is labeled with an
output action. For this location, all output actions must appear in T . The actions tick, c and
e lead to Pass since they appear in OG and d to Fail since it does not appear in OG (i.e., it
is not an expected output according to the specification).

292 Form Methods Syst Des (2009) 34: 238–304

Fig. 23 An example of how to
extend a path σ of the observable
graph OG into a test-tree T

6.2.5 Finiteness of the number of obtained tests and complexity

It is not difficult to see that for every reachable state of AS there exists a node S of OG
covering this state, and similarly for locations and edges. Thus, covering all nodes and edges
in OG suffices to achieve coverage for each of the three criteria above. Since OG is finite,
a finite number of tests suffices to achieve coverage, thus, the algorithm terminates. The
worst-case complexity of the algorithm is polynomial in the size of OG. Indeed, finding a
node (or edge) of OG associated with a location (or edge) of AS is linear. Finding a path in
OG and extending the path into a test-tree is also linear. These steps are performed at most
as many times as there are nodes in OG.

6.2.6 A limitation of the generation algorithm

One drawback of the algorithm is that it does not always generate minimal test suites. A test
suite is minimal in the sense that if any test is removed from the suite, then coverage is no
longer achieved. Clearly, a non-minimal suite contains some redundant tests, and one would
like to remove such tests. On the other hand, one would also like to have a minimal-number
suite, that is, a minimal suite with as few tests as possible. Notice that minimal does not
imply minimal-number: the first is a sort of “local optimum” while the second is a “global
optimum”. In general minimal or minimal-number suites are not unique. Moreover, adding a
new test to the suite may result in making one or more previously generated tests redundant.
Studying efficient methods of generating minimal or minimal-number test suites is beyond
the scope of this paper.

7 Tool and Case Studies

7.1 TTG

We have built a prototype test-generation tool, called TTG, on top of the IF environment [12].
The IF modeling language allows to specify systems consisting of many processes commu-
nicating through message passing or shared variables and includes features such as hier-
archy, priorities, dynamic creation and complex data types. The IF tool-suite includes a
simulator, a model checker and a connection to the untimed test generator TGV [26]. TTG
is implemented independently from TGV. TTG is written in C++ and uses the basic libraries
of IF for parsing and symbolic reachability of timed automata with deadlines.

Only digital-clock tests are generated by TTG at this point.16 As shown in Fig. 24, TTG
takes as inputs the specification and tick-automaton, written in IF language, as well as a set
of user options specifying the test-generation mode. There are four modes:

16On-line testing support is provided by the tool Uppaal-Tron [39].

Form Methods Syst Des (2009) 34: 238–304 293

Fig. 24 The TTG tool

Fig. 25 A lighting device

• Interactive: the user guides the test generation algorithm, resolving the non deterministic
points (whether to issue an output or wait for an input, which output if many are possible,
when to stop generating the test, etc.).

• Random: the non-deterministic points are resolved randomly.
• Exhaustive: all possible tests are generated up to a user-defined depth.
• Coverage: a set of tests that achieves a user-defined coverage criterion is generated. The

criteria implemented currently are: state, location, action or partial state (i.e., coverage
of the variables appearing in IF model).

In fact, TTG does not generate the tests itself. Instead, it generates an executable program,
the “test generator” depicted in Fig. 24. It is this program that generates the tests (one or
more tests, depending on the chosen mode). The test generator has additional options: for
instance, for exhaustive test generation the user specifies the desired test depth when running
the test generator, not when running TTG. The tests are output in the IF language.

In the rest of this section, we present two small case studies treated with TTG.

7.2 A lighting switch

This case study is a modification of the one presented in [29]. The (modified) specification
is shown in Fig. 25. It models a lighting device, consisting of two modules: the “Button”
module which handles the user interface through a touch-sensitive pad and the “Lamp”
module which lights the lamp to intensity levels “dim” or “bright”, or turns the light off.
The user interface logic is as follows: a “single” touch means “one level higher”, whereas a
“double” touch (two quick consecutive touches) means “one level lower”. It is assumed that
higher and lower are modulo three, thus, a single touch while the light is bright turns it off.

The device communicates with the external world through input touch and outputs
off,dim,bright. Events single and double are used for internal communication between the

294 Form Methods Syst Des (2009) 34: 238–304

Table 1 Exhaustive test generation results for the lighting-device case study

Depth Time # of Coverage of other criteria

(s) tests Config. Local loc. Global loc. Actions

1 0.03 2 3% 30% 7% 25%

2 0.03 4 7% 42% 19% 25%

3 0.03 8 12% 50% 26% 25%

4 0.04 16 18% 50% 33% 25%

5 0.08 28 22% 58% 37% 50%

6 0.14 57 38% 75% 52% 75%

7 0.22 101 50% 92% 74% 75%

8 0.35 176 63% 100% 93% 75%

9 0.62 306 77% 100% 100% 75%

10 1.14 533 91% 100% 100% 100%

11 1.86 928 98% 100% 100% 100%

12 3.52 1611 100%

two modules through synchronous rendez-vous and are unobservable to the external user.
The Button module uses the timing parameter D which specifies the maximum delay be-
tween two consecutive touches if they are to be considered as a double touch. The Lamp
module uses the timing parameters m and M which specify the minimum and maximum
delay for the lamp to change intensity (e.g., to warm-up a halogen bulb). In order not to
overload the figure, we omit most guards, resets and deadlines in the Lamp module. They
are placed similarly to the ones shown in the figure (i.e., resets in inputs, guards and dead-
lines in outputs).

7.2.1 Automatic test generation with TTG

We have used TTG to generate digital-clock tests for the above specification, with parameter
set D= 1,m= 1,M= 2 and with respect to the perfectly one-time-unit periodic Ticker. The
results of the exhaustive generation for various depth levels are shown in Table 1. Depth
levels are ranging from 1 to 12. Column “depth” shows the depth of the generated tests
(i.e., the length of the longest path from the root to a leaf). Column “time” shows the time
in seconds taken by TTG to generate a test suite with respect to the corresponding coverage
criterion. Column “# of tests” shows the number of tests in the suite. The remaining columns
show the coverage percentage for the different considered criteria.

Notice that these are the sets of all possible tests up to the specified depth: no test selec-
tion is performed. It is also worth noticing that in order to perform the complete coverage of
all the considered criteria, we need to consider the exhaustive test-suite of depth 12 which
is made of 1611 test cases.

We have also used TTG to perform test selection for this case-study with respect to the
several considered criteria. The obtained results are shown in Table 2. Column “size” shows
the number of elements to be covered. TTG succeeds to achieve all the coverage criteria but
the action coverage criterion. It succeeds only to generate a test suite made of 25 test cases
with depth ranging form 5 to 12 and with a coverage rate of 75%.

One of the tests generated by TTG is shown in Fig. 26. The drawing has been produced
automatically using the if2eps tool written by Marius Bozga, which is based on the dot/-
graphviz utility (http://www.graphviz.org).

http://www.graphviz.org

Form Methods Syst Des (2009) 34: 238–304 295

Fig. 26 A test generated automatically by TTG

296 Form Methods Syst Des (2009) 34: 238–304

Table 2 Test generation results for the lighting-device case study

Criterion Size Time # of Depth Coverage of other criteria

used (s) tests Config. Local loc. Global loc. Actions

Config. 175 0.2 25 5–12 100% 100% 100% 75%

Local loc. 12 0.12 11 10–12 67% 100% 89% 75%

Global loc. 27 0.18 22 5–12 91% 100% 100% 75%

Actions 4 0.2 25 5–12 100% 100% 100% 75%

7.2.2 Comparison with manually generated tests

In this section we show that it is possible to reduce the number of tests generated by TTG
for achieving coverage with respect to the several considered criteria. However the manually
generated tests are likely to be of bigger size.

Consider, for instance, the two tests shown in Fig. 27. In order not to overload the figure,
each node of the tests is labeled only with the set of corresponding global locations; states
are omitted. Also, for output nodes we only draw the outgoing edges which do not lead
to FAIL. For example, node (2,Off) of the leftmost test has three outgoing edges labeled
off?,dim?,bright? and leading to FAIL. Also, to save space, we draw the tree as a DAG
(directed acyclic graph).

It can be seen from the figure that these two tests cover local locations. It is not difficult
to check that the two tests cover edges as well. In fact, we can see from the figure that the
two tests “walk trough” all observable edges of the specification. So it only remains to check
that the unobservable edges are covered too. This is true since they are all visited between
one of the pairs of successive ticks the two tests have (this is why nodes of the tests between
successive ticks are labeled with pairs of global locations and not single global locations as
for the other nodes).

The two tests do not achieve global location (and, consequently, neither state) coverage.
For example, location (1,O-B) is not covered. However, 18 out of 30 global locations are
covered. For covering the rest, it is possible either to generate more tests or to extend one of
the two tests above. For instance, we can append the rightmost test at the end of the leftmost
one. Also, in order to cover location (1,O-B), say, we can consider node (0,O-B) of the
leftmost test as an output node instead of an input node (issuing the only possible output,
touch!) and keep the remaining part of the test unchanged. Doing this, we can obtain a single
test of depth 41 which achieves global location coverage. Alternatively, a suite of 8 tests of
lengths smaller than those of Fig. 27 suffices to achieve global location coverage. This suite
can be generated by the algorithm of Sect. 6. Notice that the depth of the leftmost test of
Fig. 27 is 19. Generating an exhaustive test suite up to this depth would be infeasible due to
explosion.

7.3 The bounded retransmission protocol

The Bounded Retransmission Protocol (BRP) [27] is a protocol for transmitting files over
an unreliable (lossy) medium. The architecture of the protocol is shown in Fig. 28. The
protocol is implemented by the Transmitter and the Receiver. The users of the protocol are
the Sending and Receiving clients. The medium is modeled by the Forward and Backward
channels. Upon receiving a file from the Sending client (action put), the Transmitter frag-
ments the file into packets and sends each packet to the Receiver (action send), awaiting an

Form Methods Syst Des (2009) 34: 238–304 297

Fig. 27 Two digital-clock tests covering most global locations of the specification of Fig. 25

298 Form Methods Syst Des (2009) 34: 238–304

Fig. 28 The BRP specification and interfaces

acknowledgment for each packet sent (action ack). If a timeout occurs without receiving an
acknowledgment, the Transmitter resends the packet, up to a maximum number of retrials.
At the end, if the file is transmitted successfully the Transmitter does not output anything to
the Sending client. Otherwise, the Transmitter responds either with “abort” (action T_abort)
if the packet that failed was a “middle” one, or with “don’t know” (action dk) if the packet
was the first or last one (in this case the file may or may not be received at the other end). In
case of success, the Receiving client receives the file (action get). In case the Receiver does
not hear from the Transmitter for some time, it outputs R_abort to the Receiving client.

7.3.1 IF model of BRP

Here, we use the BRP model developed in [13]. The model has been initially developed
in SDL, then automatically translated to IF.17 The model is shown in Fig. 29. States in
red (labeled “decision_...”) are transient states, meaning that time does not elapse and the
automaton moves through these states without being interrupted by other concurrent au-
tomata. The Transmitter has two clocks, “t_repeat” and “t_abort”, and the Receiver one
clock, “r_abort”.18 The keyword “when” precedes a clock guard and “provided” precedes a
guard on discrete variables. Keyword “task” is for assignments. The model is parameterized
by five parameters: p, the number of packets in a file; max_retry, the maximum number of
retries in sending a packet (after timeout); dt_repeat, the timeout delay; dt_abort, the time
the Transmitter waits before outputting T_abort; dr_abort, the time the Receiver waits before
outputting R_abort. The values used in our case study are:

p= 2, max_retry= 4, dt_repeat= 2, dt_abort= 15, dr_abort= 13.

For testing, we view the four components enclosed in dashed square in Fig. 28 as the BRP
specification. The Sending and Receiving clients play the role of the environment, but they
are not explicitly modeled, i.e., no assumptions are made on the environment. The interface
of the SUT with its environment is captured by actions put (input) and get, dk, T_abort,
R_abort (outputs).

17The model of BRP can be found in the IF web page: http://www-verimag.imag.fr/~async/IF/ under “exam-
ples”.
18The clocks are reset to a negative value and count upwards. This is not an essential difference with the TA
model presented earlier.

http://www-verimag.imag.fr/~async/IF/

Form Methods Syst Des (2009) 34: 238–304 299

Fig. 29 BRP Transmitter (up) and Receiver (down)

300 Form Methods Syst Des (2009) 34: 238–304

Table 3 Test generation results for the BRP case study

Criterion Size Time # of Depth Coverage of other criteria

used (s) tests Config. Locations Actions m b c i j

Config. 5808 25 9 22–53 100%

Locations 4 3 1 13 25% 100% 60% 100% 100% 100% 100% 100%

Actions 5 5 1 44 40% 100% 100% 100% 100% 100% 100% 100%

m 3 2 1 2 2% 75% 40% 100% 100% 100% 25% 100%

b 2 2 1 2 2% 75% 40% 100% 100% 100% 25% 100%

c 2 2 1 2 2% 75% 40% 100% 100% 100% 25% 100%

i 4 3 1 10 23% 75% 40% 100% 100% 100% 100% 100%

j 3 2 1 2 2% 75% 40% 100% 100% 100% 25% 100%

7.3.2 Automatic test generation using TTG

Using TTG, we generate tests for the perfectly periodic tick-automaton with clock period
equal to 1, with respect to various coverage criteria. The results are shown in Table 3. The
criteria used are: state, locations, actions, and the values of the five discrete variables of the
model, namely, m, b, c, i, j. For the case study, we will use the term configuration, instead of
“state”, for measuring coverage. A configuration corresponds to an entire “symbolic state”
and includes a vector of locations and values of variables for each automaton, plus a DBM
representing symbolically the set of clock states. Thus, a configuration is a set of TA states.
We can count configurations, but we cannot count TA states.

Thus, there are 5808 reachable configurations in total,19 there are 4 global locations (we
do not count transient locations) and 6 actions (the 5 input/output actions plus tick). Vari-
ables b and c are booleans (they encode the alternating bit for the Transmitter and Receiver,
respectively). Variable m takes three possible values (beginning, middle or end of file). Vari-
able i takes four possible values, from 1 to max_retry. Variable j takes three possible values,
from 0 to p. Notice that the configuration criterion requires 9 tests whereas all other criteria
can be covered with just one test.

For the configuration criterion, the depth varies between 21 and 52. The rest of the
columns show the percentage of coverage of the other criteria by the test suite generated
for the given criterion. For example, the test covering the four global locations also covers
1421 configurations, which amounts to approximately 25% of the total number of configu-
rations.

Perhaps the most interesting finding from the above experiments is that a relatively small
number of tests suffices to cover all reachable configurations of the specification (in fact,
we cover the states of the product automaton ATick

S). It is worth comparing this number to
the number of tests generated with the “exhaustive up to given depth” option. As shown in
Table 4, the size of exhaustive test suite grows too large even for relatively small depths.
The table also shows the percentage of the above criteria covered by the exhaustive test
suite. It can be seen that even though the number of tests is large, only a small percentage of
coverage is achieved: for instance, 21% configuration coverage for 222 tests at depth 7.

Sometimes not only the number of tests but also their size is important. By looking at our
test generation algorithm, where a test is obtained by completing a path, we can say that the

19The forward and backward channels are modeled by lossy FIFO buffers. These buffers remain bounded
because reception of messages are eager.

Form Methods Syst Des (2009) 34: 238–304 301

Table 4 Exhaustive test suites for the BRP case study

Depth Time # of Coverage of other criteria

(s) tests Config. Locations Actions m b c i j

1 2 2 1% 75% 20% 100% 100% 100% 25% 100%

2 2 3 2% 75% 40% 100% 100% 100% 25% 100%

3 2 5 5% 75% 40% 100% 100% 100% 50% 100%

4 2 8 7% 75% 40% 100% 100% 100% 50% 100%

5 5 18 12% 75% 40% 100% 100% 100% 75% 100%

6 13 42 14% 75% 40% 100% 100% 100% 75% 100%

7 79 222 21% 75% 40% 100% 100% 100% 100% 100%

size of a test is essentially its depth. As one can see from Table 3 the largest test depth is 52.
This can be explained as follows. In our implementation we use the following heuristic to
choose which configuration to cover next: we pick a configuration which is “far” from the
initial one, that is, at a large depth. The expectation is to cover as many configurations as
possible with every new test. Thus, this heuristic tends to favor the generation of fewer but
“longer” tests. Obviously, a different approach is to favor “shorter” (but perhaps more) tests.
This can be done by changing the heuristic to pick configurations which are “close” to the
initial one.

A test generated by TTG for the configuration coverage option is shown in Fig. 30.

8 Conclusions and perspectives

We have proposed a testing framework for real-time systems based on partially-observable,
non-deterministic timed-automata and a formal conformance relation called tioco. We have
provided algorithms to generate analog-clock or digital-clock tests in an on-line or off-line
fashion. We have shown how the number of generated tests can be reduced using coverage
criteria. Finally, we reported on a prototype test-generation tool and two case-studies.

We believe that this work opens a number of interesting perspectives. First, we have
only touched upon the problem of test execution. Building an actual test harness is particu-
larly challenging in a real-time context, where timing accuracies are critical. Digital-clock
tests are crucial in this respect, since they allow to formally define the assumptions on the
accuracy of the tester’s clocks and take it into account during test generation. We have stud-
ied some of the theoretical aspects of digital-clock tests, in particular, tick-robustness and
its links to digitizability, but more study is needed, for instance, relating tick-robustness to
other robustness notions for timed automata, such as Puri’s [44].

The topic of coverage also deserves to be studied in more depth in a real-time context.
Our notions of coverage mainly extend well-known notions developed for software. One
could imagine alternative notions that exploit some knowledge of our domain, in particu-
lar with respect to timing constraints and their topology. Also notice that we are applying
coverage at the specification level whereas usually in software it is applied for the system-
under-test (when the latter is “white-box”). Methods to generate minimal test suites (without
redundant tests) should also be examined.

Combining coverage with on-line test execution is another issue that seems to be little
explored. The problem is related to choosing online tester outputs and output times. Many
heuristics can be applied to resolve such choices, but an additional problem is how to manage

302 Form Methods Syst Des (2009) 34: 238–304

Fig. 30 A test generated by TTG for the BRP case study (the one ensuring the coverage of parameter i)

these choices across the execution of the entire test suite, using some appropriate book-
keeping techniques.

Another perspective is to study other testing problems in a real-time setting, except the
conformance testing problem. Classic testing problems include state identification prob-
lems [40]. Some preliminary work has been done in this direction but many problems remain
open [37].

Form Methods Syst Des (2009) 34: 238–304 303

Another direction is to use the techniques developed in this paper for testing in other
contexts, for instance, controller synthesis.

Acknowledgements We would like to thank Fabrice Chevalier and Patricia Bouyer for their comments on
monitor generation. We are grateful to Marius Bozga for his help with the implementation of TTG on top of
IF. We also express our gratitude to Mohamed Dergueche for his contributions to the implementation of TTG.

References

1. Alur R, Dill D (1994) A theory of timed automata. Theor Comput Sci 126:183–235
2. Alur R, Fix L, Henzinger T (1994) A determinizable class of timed automata. In: CAV’94. LNCS,

vol 818. Springer, Berlin
3. Belinfante A, Feenstra J, de Vries RG, Tretmans J, Goga N, Feijs L, Mauw S, Heerink L (1999) For-

mal test automation: a simple experiment. In: 12th international workshop on testing of communicating
systems. Kluwer, Dordrecht

4. Bengtsson J, Yi W (2003) On clock difference constraints and termination in reachability analysis of
timed automata. In: ICFEM’03. LNCS, vol 2885. Springer, Berlin

5. Bensalem S, Bozga M, Krichen M, Tripakis S (2005) Testing conformance of real-time applications
by automatic generation of observers. In: 4th international workshop on runtime verification (RV’04).
ENTCS, vol 113. Elsevier, Amsterdam, pp 23–43

6. Berard B, Petit A, Diekert V, Gastin P (1998) Characterization of the expressive power of silent transi-
tions in timed automata. Fund Inform 36(2–3):145–182

7. Berthomieu B, Menasche M (1983) An enumerative approach for analyzing time Petri nets. IFIP Congr
Ser 9:41–46

8. Blom J, Hessel A, Jonsson B, Pettersson P (2004) Specifying and generating test cases using observer
automata. In: Proceedings of formal approaches to software testing, pp 125–139

9. Bornot S, Sifakis J, Tripakis S (1998) Modeling urgency in timed systems. In: Compositionality. LNCS,
vol 1536. Springer, Berlin

10. Bouyer P (2004) Forward analysis of updatable timed automata. Formal Methods in System Design
24(3):281–320

11. Bouyer P, Chevalier F, D’Souza D (2005) Fault diagnosis using timed automata. In: FoSSaCS’05. LNCS,
vol 3441. Springer, Berlin, pp 219–233

12. Bozga M, Fernandez JC, Ghirvu L, Graf S, Krimm JP, Mounier L (2000) IF: a validation environment
for timed asynchronous systems. In: Proc CAV’00. LNCS, vol 1855. Springer, Berlin

13. Bozga M, Graf S, Kerbrat A, Mounier L, Ober I, Vincent D (2000) SDL for real-time: what is missing?
In: Proceedings of SAM’00: 2nd workshop on SDL and MSC, Grenoble, France, pp 108–122. IMAG,
June 2000

14. Braberman V, Felder M, Marre M (1997) Testing timing behavior of real-time software. In: International
software quality week

15. Brat G, Giannakopoulou D, Goldberg A, Havelund K, Lowry M, Pasareanu C, Venet A, Visser W (2003)
Experimental evaluation of V&V tools on martian rover software. In: SEI software model checking
workshop

16. Brinksma E, Tretmans J (2001) Testing transition systems: an annotated bibliography. In: MOVEP 2000.
LNCS, vol 2067. Springer, Berlin

17. Briones L, Brinksma E (2004) A test generation framework for quiescent real-time systems. In:
FATES’04. LNCS, vol 3395. Springer, Berlin

18. Cardell-Oliver R (2002) Conformance test experiments for distributed real-time systems. In: ISSTA’02.
ACM, New York

19. Chow TS (1978) Testing software design modeled by finite-state machines. IEEE Trans Softw Eng 4(1)
20. Clarke D, Jéron T, Rusu V, Zinovieva E (2002) STG: a symbolic test generation tool. In: TACAS’02.

LNCS, vol 2280. Springer, Berlin
21. Clarke D, Lee I (1997) Automatic generation of tests for timing constraints from requirements. In: 3rd

workshop on object-oriented real-time dependable systems (WORDS’97)
22. Daws C, Olivero A, Tripakis S, Yovine S (1996) The tool Kronos. In: Hybrid systems III, verification

and control. LNCS, vol 1066. Springer, Berlin, pp 208–219
23. Daws C, Tripakis S (1998) Model checking of real-time reachability properties using abstractions. In:

Tools and algorithms for the construction and analysis of systems ’98, Lisbon, Portugal. LNCS, vol 1384.
Springer, Berlin

304 Form Methods Syst Des (2009) 34: 238–304

24. Dill D (1989) Timing assumptions and verification of finite-state concurrent systems. In: Sifakis J (ed)
Automatic verification methods for finite state systems. LNCS, vol 407. Springer, Berlin, pp 197–212

25. En-Nouaary A, Dssouli R, Khendek F, Elqortobi A (1998) Timed test cases generation based on state
characterization technique. In: RTSS’98. IEEE, New York

26. Fernandez JC, Jard C, Jéron T, Viho G (1996) Using on-the-fly verification techniques for the generation
of test suites. In: CAV’96. LNCS, vol 1102. Springer, Berlin

27. Groote JF, van de Pol J (1996) A bounded retransmission protocol for large data packets. In: Algebraic
methodology and software technology, pp 536–550

28. Henzinger T, Manna Z, Pnueli A (1992) What good are digital clocks? In: ICALP’92. LNCS, vol 623.
Springer, Berlin

29. Hessel A, Larsen K, Nielsen B, Pettersson P, Skou A (2003) Time-optimal real-time test case generation
using UPPAAL. In: FATES’03

30. Higashino T, Nakata A, Taniguchi K, Cavalli A (1999) Generating test cases for a timed I/O automaton
model. In: IFIP international workshop on testing of Communicating Systems. Kluwer, Dordrecht

31. ISO/IEC (1992) Open systems interconnection conformance testing methodology and framework—part
1: general concept; part 2: abstract test suite specification; part 3: the tree and tabular combined notation
(TTCN). Technical Report 9646, International Organization for Standardization—Information Process-
ing Systems—Open Systems Interconnection, Genève

32. Jard C, Jéron T, Morel P (2000) Verification of test suites. In: TestCom 2000
33. Khoumsi A, Jéron T, Marchand H (2003) Test cases generation for nondeterministic real-time systems.

In: FATES’03
34. Krichen M, Tripakis S (2004) Black-box conformance testing for real-time systems. In: 11th interna-

tional spin workshop on model checking of software (SPIN’04). LNCS, vol 2989. Springer, Berlin
35. Krichen M, Tripakis S (2004) Real-time testing with timed automata testers and coverage crite-

ria. In: Formal techniques, modelling and analysis of timed and fault tolerant systems (FORMATS-
FTRTFT’04). LNCS, vol 3253. Springer, Berlin

36. Krichen M, Tripakis S (2005) An expressive and implementable formal framework for testing real-time
systems. In: The 17th IFIP international conference on testing of communicating systems (TestCom’05).
LNCS, vol 3502. Springer, Berlin

37. Krichen M, Tripakis S (2005) State identification problems for timed automata. In: The 17th IFIP in-
ternational conference on testing of communicating systems (TestCom’05). LNCS, vol 3502. Springer,
Berlin

38. Larsen K, Mikucionis M, Nielsen B (2004) Online testing of real-time systems using uppaal. In:
FATES’04. LNCS, vol 3395. Springer, Berlin

39. Larsen K, Mikucionis M, Nielsen B, Skou A (2005) Testing real-time embedded software using
UPPAAL-TRON: an industrial case study. In: 5th ACM international conference on embedded software.
ACM, New York, pp 299–306

40. Lee D, Yannakakis M (1996) Principles and methods of testing finite state machines—a survey. Proc
IEEE 84:1090–1126

41. Myers GJ (1979) The art of software testing. Wiley, New York
42. Nielsen B, Skou A (2001) Automated test generation from timed automata. In: TACAS’01. LNCS,

vol 2031. Springer, Berlin
43. Peleska J (2002) Formal methods for test automation—hard real-time testing of controllers for the airbus

aircraft family. In: IDPT’02
44. Puri A (2000) Dynamical properties of timed automata. Discrete Event Dyn Syst 10(1–2):87–113
45. Sifakis J, Yovine S (1996) Compositional specification of timed systems. In: 13th Annual symposium on

theoretical aspects of computer science, STACS’96. LNCS, vol 1046. Springer, Berlin
46. Springintveld J, Vaandrager F, D’Argenio P (2001) Testing timed automata. Theor Comput Sci 254
47. Tretmans J (1999) Testing concurrent systems: a formal approach. In: CONCUR’99. LNCS, vol 1664.

Springer, Berlin
48. Tretmans J (2002) Testing techniques. Lecture notes. University of Twente, The Netherlands
49. Tripakis S (2002) Fault diagnosis for timed automata. In: Formal techniques in real time and fault tolerant

systems (FTRTFT’02). LNCS, vol 2469. Springer, Berlin
50. Tripakis S (2004) Folk theorems on the determinization and minimization of timed automata. In: Formal

modeling and analysis of timed systems (FORMATS’03). LNCS, vol 2791. Springer, Berlin

	Conformance testing for real-time systems
	Abstract
	Introduction
	Timed automata with inputs and outputs
	Real-time sequences
	Timed labeled transition systems
	Timed automata
	Timed automata with inputs and outputs
	Parallel composition of TAIO
	Parallel composition of TIOLTS

	Timed input-output conformance
	Examples
	Timed input-output conformance relation: tioco
	Definition
	Only lazy inputs are needed in specifications
	Making specifications input-enabled
	Transitivity
	Undecidability
	Compositionality
	Decreasing the number of observable actions

	Comparison of tioco with other conformance relations
	Comparison with the relativized timed conformance relation
	Comparison with the conformance relation tioco

	Modeling issues
	Modeling assumptions on the environment
	Modeling input/output variables
	Modeling interfacing delays

	Tests
	Analog-clock tests
	Analog-clock tests as total functions
	Analog-clock tests as TA
	Execution of an analog-clock test
	Correctness requirements

	Digital-clock tests
	Execution of a digital-clock test
	Correctness requirements

	Test Generation
	Generating analog-clock tests
	Soundness, strictness and completeness of analog-clock test generation

	Generating digital-clock tests
	Soundness of digital-clock test generation
	Tick-robustness and completeness of digital-clock test generation
	Tick-robustness and digitizability
	Reducing the size of digital-clock tests

	Generating TA testers: the monitor case
	``One-clock determinization'' of TA
	The equivalence relation `` Sa ''
	Monitor construction
	Computing the coarsest partition induced by `` Sa ''
	Accepting and rejecting states
	Example of monitor construction
	The use of extrapolation techniques

	Generating TA testers: the general case
	Input and output locations
	Generation algorithm
	Example of test TAIO construction
	Soundness and completeness

	Coverage
	The observable graph
	Coverage criteria

	Generation algorithm
	Generating a location-covering suite
	Generating a state-covering suite
	Generating an edge-covering suite
	Extending a path into a test-tree
	Finiteness of the number of obtained tests and complexity
	A limitation of the generation algorithm

	Tool and Case Studies
	TTG
	A lighting switch
	Automatic test generation with TTG
	Comparison with manually generated tests

	The bounded retransmission protocol
	IF model of BRP
	Automatic test generation using TTG

	Conclusions and perspectives
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

