On-the-Fly Controller Synthesis
for Discrete and Dense-Time Systems

Stavros Tripakis and Karine Altisen

! Verimag, currently at UC Berkeley,
stavros@eecs.berkeley.edu
2 Verimag,
altisen@imag.fr

Abstract. We present novel techniques for efficient controller synthesis
for untimed and timed systems with respect to invariance and reacha-
bility properties. In the untimed case, we give algorithms for controller
synthesis in the context of finite graphs with controllable and uncon-
trollable edges, distinguishing between the actions of the system and its
environment, respectively. The algorithms are on-the-fly, since they re-
turn a controller as soon as one is found, which avoids the generation of
the whole state space.

In the timed case, we use the model of timed automata extended with con-
trollable and uncontrollable discrete transitions. Our controller-synthesis
method here is only half on-the-fly, since it relies on the a-priori genera-
tion of a finite model (graph) of the timed automaton, as quotient of the
time-abstracting bisimulation. The quotient graph is essentially an un-
timed graph, upon which we can apply the untimed on-the-fly algorithms
to compute a timed controller.

Keywords. Controller Synthesis, On-The-Fly Algorithms, Timed Auto-
mata, Time-Abstracting Bisimulation.

1 Introduction

An embedded system can be usually considered as a reactive machine that co-
operates with an environment to provide a service. The environment generates
input events triggering actions that change the state of the machine, which may
in turn produce output events that affect the environment. The formal analysis
of such systems requires models and techniques that take into account not only
the properties of the embedded machine, but also the characteristics of the en-
vironment, and in particular, the unpredictable (sometimes even hostile) nature
of the latter.

In formal verification (or model-checking) there is no distinction between
actions of the system and those of the environment. Usually the model of the
system is “closed” by descriptions of the environment and the model-checking
procedure checks that all execution sequences of the closed model satisfy a set of

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 233-252, 1999.
© Springer-Verlag Berlin Heidelberg 1999

234 Stavros Tripakis and Karine Altisen

properties. In such an approach, the description of the system must be complete
(often deterministic) at the time of verification, and there is little or no possibility
at all of exploiting non-determinism of the system’s description to perform “fine-
tuning” of the application.

An alternative approach is to start from an “open” model where actions
of the system and actions of the environment are distinguished. Such a model
can be considered as “incomplete” in the sense that it describes a more liberal
behavior and usually the question arises of “closing” the system so that the
requirements are met. This is the problem of controller synthesis [RWRT]. It
consists in computing a controller which observes the state/actions of the envi-
ronment and restricts the choices of the system, ensuring that the given property
is satisfied no matter how the environment behaves.

Although more interesting (and more general) than verification, controller
synthesis is also a more difficult problem. On the other hand, a number of
heuristics which have improved the efficiency of model-checking, such as on-
the-fly techniques, have not been developed, to our knowledge, in the context of
controller synthesis. This is perhaps the reason why the latter has not found so
much application in practice as model-checking has.

In this paper we propose on-the-fly methods for controller synthesis for dis-
crete (i.e., finite-state) and dense-time systems, with respect to invariance and
reachability properties. A controller for invariance tries to keep the system inside
a set of “safe” states. A controller for reachability tries to lead the system to a
set of “target” states.

For the description of discrete systems we use game graphs (GG), that is,
finite graphs with edges marked as controllable or uncontrollable, modeling the
actions of the system (and possible choices of the controller) and those of the
environment, respectively. For game graphs we define the notion of strategies,
which are sub-graphs representing the choices of the controller for each possible
choice of the environment. Controller synthesis consists in computing a strategy
with respect to invariance (all nodes are safe) or reachability (all paths lead to
the target nodes).

Our method in the untimed case is fully on-the-fly, that is, game graphs can
be implicitly represented using a higher-level formalism and generated at the
same time as the calculation of the strategy. A strategy is returned as soon as
it is found, which means that the whole state space does not necessarily have
to be generated. The method is based on a forward reachability analysis using
a depth-first search and its worst case complexity is O(n 4+ m), where n and m
is, respectively, the number of nodes and edges in the graph.

In the timed case, we describe systems using the model of game timed
automata (GTA) [MPS95], [AMP95], which are simply timed automata (TA)
[ACDI3], [HNSY94] with discrete transitions marked as controllable or uncon-
trollable. We define timed strategies, a notion similar to the untimed case but
adapted to take into account the density of the time domain, as well as the fact
that “time can be in favor of both the controller and the environment” [MPS95].

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems 235

Our controller-synthesis method in the timed case is only half on-the-fly, since
it involves two steps: first, we generate a finite-state model of the GTA (a graph);
then we apply the on-the-fly untimed synthesis algorithms on this graph. The
latter is the quotient of the GTA with respect to the time-abstracting bisimula-
tion defined in [T'Y96]. This equivalence abstracts away exact time delays while
preserving all properties of interest. We show how the time-abstracting quotient
graph of a GTA can be viewed as a game graph so that GTA controller synthesis
is reduced to GG controller synthesis.

We illustrate our approach on a toy-example, the Train-Gate-Controller sys-
tem of [ATu91] (viewed as a GTA). We show how a strategy can be obtained
for this system in an on-the-fly manner, that is, without having to explore the
whole quotient graph.

Relation to the Literature

Controller synthesis is close to the theory of games. In the domain of formal
methods, pioneering have been the works of [RW87, [PR89], who studied the
problem in the untimed case. Algorithms for this theory have been given based on
a backward fix-point calculation of a predecessor operator which returns the set
of states which can be led to a set of target states independently of uncontrollable
actions. Symbolic versions of this algorithm (i.e., reasoning in terms of sets of
states instead of single states) have been presented in [HW92] [Le 93] [MPS95|
AMP95] and prototype implementations in [WM99]. The fix-point algorithms
are not on-the-fly, since the fix-point calculation has to terminate in order for
the (maximal) strategy to be computed. Moreover, the method is based on a
predecessor operator, therefore, may needlessly consider states which are not
reachable. To our knowledge, on-the-fly algorithms for controller synthesis have
not been presented before in the literature.

In the timed case, [HW9I] use the framework of [RWS8T] to solve controller
synthesis for deterministic TA. [MPS95] present a fix-point controller-synthesis
algorithm for general TA and with respect to a large class of properties, includ-
ing invariance and reachability. The main drawback in the above works is the
implementation of the symbolic predecessor operator, which is expensive in the
dense-time case (it involves the exponential-cost operation of complementation
of polyhedra).

Organization of the Paper

In section B2, we treat the problem in the untimed case. We introduce game
graphs and strategies, we define the problem of controller synthesis in terms of
a search for strategies and we present the two on-the-fly algorithms for strate-
gies with respect to invariance and reachability. In section Bl we review timed
automata and the time-abstracting bisimulation and define the quotient graph
with respect to this relation. In section], we extended timed automata to game
timed automata and define timed strategies and controller synthesis in the timed
case. We also show how the on-the-fly algorithms of section 2] can be applied on

236 Stavros Tripakis and Karine Altisen

the quotient graph in order to solve the problem for the timed case. Section
presents our conclusions.

2 On-the-Fly Controller Synthesis for Finite
Discrete-State Systems

In this section we give an on-the-fly solution to the controller-synthesis problem
for the untimed case. We first present our model and its semantics in terms of
strategies. Then we give two algorithms for computing on-the-fly strategies with
respect to invariance or reachability.

2.1 The Model: Finite Graphs with Controllable/Uncontrollable
Edges

We would like to describe finite-state systems which involve an unpredictable
(or even hostile) environment. To model such systems we use finite graphs the
edges of which are labeled as controllable or uncontrollable, to model the actions
of the system and its environment, respectively.

More formally, a game graph (GG) is a finite labeled graph G = (V, vg, —),
where V' is a finite set of nodes, vg € V is the initial node and — C V x{c,u} xV
is a set of edges. For two nodes v,w € V, we write v > w (resp. v — w) if
(v, ¢,w) € — (resp. (v,u,w) € —). An edge v = w is called controllable and w
is a controllable successor of v. An edge v — w is called uncontrollable and w is
a uncontrollable successor of v.

We assume that a GG does not contain any nodes without any controllable
successor, that is, for each v € V there exists w € V such that v — w. This is
not a restriction to the model since “dummy” self-looping controllable edges can
be added to nodes without controllable successors. Notice that this assumption
implies that a GG does not contain any sink nodes, that is, nodes with no
SUCCessors.

Ezample. Figure [shows two game graphs. Their nodes are numbered 0 to 3
and 0 to 4, respectively.

Remark 1. The model of game graphs is at least as general as the game-theoretic
model where controllable and uncontrollable actions alternate, that is, AND-OR
graphs: AND nodes correspond to game-graph nodes having only uncontrollable
successors (except the self-loop controllable edge) and OR nodes correspond to
game-graph nodes having only controllable successors.

Strategies. We are interested in controlling game graphs with respect to two
types of properties, namely, invariance (where the controller tries to keep the
system inside a set of safe states) and reachability (where the controller tries to
lead the system to a set of target states).

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems 237

Fig. 1. Two game graphs.

Consider a GG G = (V,vp, —) and a set of nodes VCv.
A strategy of G with respect to invariance of V is a graph G1 = (Vi,v9, —1)
such that:

1. 1 C V and —1C—.
2. For each node v € V7, if v A w, then w € V1 and v -1 w.
3. For each node v € Vi, there is an edge v 5 w.

In other words, a strategy with respect to invariance is a subgraph of G re-
stricted to the “safe nodes” V (condition 1), and such that for each node, all its
uncontrollable successors (condition 2) and at least one of its controllable suc-
cessors (condition 3) are kept. Condition 1 also ensures that the system remains
in the set of safe states. All nodes in Vi are said to be winning with respect to
invariance of V.

A strategy of G with respect to reachability ofV is a graph G1 = (V1,v0, —1)
such that:

1. Vi1 CV and —-1C—.

2. For each node v € V; \V, if v % w, then w € V; and v = w.

3. For each node v € V} \V, there is an edge v S w.

4. For ez{ch node v € Vi, there exists a path v S0 v 59 -+ 51 v, such that
vp € V.

In other words, a strategy with respect to reachability is a subgraph of G (con-
dition 1) such that each node can reach the “target nodes” 1% by a path of
controllable edges (condition 4), and for each non-target node, all its uncon-
trollable successors (condition 2) and at least one of its controllable successors
(condition 3) are kept. Condition 4 ensures that the controller can lead the sys-
tem to the set of target states. All nodes in Vi are said to be winning with
respect to reachability of V.

238 Stavros Tripakis and Karine Altisen

Ezample. Figure[(a) shows a strategy for the game graph of figure I{a) with
respect to invariance of {0,1,2}. Notice that the controllable edge 0 % 2 is
eliminated, since from node 2 the system can be led to the unwanted node 3 by
an uncontrollable edge.

Fig. 2. Two strategies.

Figure[(b) shows a strategy for the game graph of figure [[(b) with respect
to reachability of {3}. The controller, being at node 1, chooses to move to node
2, from where reachability of node 3 is guaranteed.

Controller Synthesis for Game Graphs. Given a GG G = (V,vg, —) and
a set of nodes V C V, the controller-synthesis problem for G with respect to
invariance (resp. reachability) of V is to find a strategy (if one exists) with
respect to invariance (resp. reachability) of V.

Remark 2. Notice that the controller-synthesis problems for reachability and
invariance are almost dual. As we see below the algorithms for the two problems
are similar, however, we cannot encode one problem as the negation of the other
by simply changing controllable edges to uncontrollable and vice-versa. This is
because of the assumption that the environment is “faster” than the controller:
in a node where both controllable and uncontrollable actions are possible, our
definition of strategy assumes that the environment can force an uncontrollable
action before the controller can make a choice.

2.2 The On-the-Fly Algorithms for Invariance and Reachability

Based on the definition of strategies we derive two algorithms, shown in figures Bl
and M for computing a strategy with respect to invariance and reachability, re-
spectively. The algorithms are on-the-fly in the sense that they return a strategy

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems 239

as soon as one is found. Therefore, the input graph need not be fully gener-
ated/explored, which can result in significant savings in performance.

Both algorithms use a depth-first search (DFS) on the input GG. In the
figures, the DFS is represented by procedures calling each other in a recursive
manner. In practice, a stack is used to eliminate recursion and implement the
DFS directly. This stack holds the currently visited path. The set of nodes which
are in the stack is denoted Stack.

The DFS is adapted to the definition of a strategy, so that whenever a node is
explored, all its uncontrollable successors and at least one controllable successor
are also explored. Nodes are marked with a controllability status during the
search. In the algorithm for invariance, a node is initially marked maybe, until
it is found that it cannot be winning, whereupon its mark is updated to no.
Dually, in the algorithm for reachability, a node is initially marked maybe, until
it is found that it is winning, whereupon its mark is updated to yes. The sets
Maybe, No and Yes are used to store visited nodes and represent their marks.

The algorithms also use a set of edges Strat representing the strategy. The
set of edges NegStrat in the algorithm for invariance represents the “counter-
strategy” showing how the environment can lead the system out of the set of
safe nodes. This can be used as diagnostics in case a strategy for the controller
does not exist. In the case of reachability, such a special structure is not needed,
since the explored graph is also the counter-example.

The Algorithm for Invariance. Intuitively, the invariance algorithm works
as follows. Procedure Reach explores the graph in depth-first order. For each
newly visited node v, the uncontrollable successors of v are explored first. If not
all of them are winning then v cannot be winning either, and control moves to
procedure UndoMaybe (line 1). Otherwise, its controllable successors are explored
by procedure CheckControllable (line 2). If none of them is winning then again
v cannot be winning. Procedure UndoMaybe updates a node v which was falsely
assumed to be winning, as well as all predecessors of v, since their computed
strategies are no longer valid. In particular, all uncontrollable predecessors of
v are not winning. Also, if w is a controllable predecessor of v, then a new
controllable successor should be found for w (line 10). This is done by procedure
CheckControllable, which explores the remaining controllable successors of v.

At the end of the algorithm, and if the answer is not no, then the sub-graph
represented by the set of edges Strat contains the strategy. If the answer is no,
then NegStrat contains a counter-example, that is, a “counter-strategy” showing
that the controller has no way to avoid the environment leading the system to
a bad state.

The Algorithm for Reachability. The algorithm for reachability works in
a dual manner. A difference is that edges which are inserted in Strat are no
longer removed. A node v is inserted in Yes (procedure UndoMaybe) only if all
its uncontrollable successors and at least one controllable successor are already
in Yes. When v is inserted in Yes, its predecessors are also updated: if v was

240

Stavros Tripakis and Karine Altisen

FindStrategyForInvariance ((V,vo,—),V) {
No := Maybe := {} ;
Strat := NegStrat := {} ;
Controllable := {vi = v2 | v1,v2 € V};
if (Reach(vg) = no) then return “No strategy exists” ;
else return “Found strategy Strat” ;

Reach(v) {
if (v € No or v ¢ V) then return no ;
if (v € Maybe) then return maybe ;
Maybe := Maybe U{v}; /* new node */
for each (v % w) do
if (Reach(w) = no) then
NegStrat := NegStrat U {v % w} ;

goto FAIL ; (1)
end for
if (CheckControllable(v) # no) then
Strat := Strat U {v %o’ | v € V}; (2)

return maybe ;
else NegStrat := NegStrat U {v = w |w € V} ;

FAIL:
UndoMaybe (v) ;
return no ;
}
CheckControllable(v) {
while (Jv = w € Controllable) do 3)
Controllable := Controllable \ {v > w} ;
if (Reach(w) # no) then (4)
Strat := Strat U {v = w} ; (5)
return maybe ;
end while
return no ; (6)
}
UndoMaybe(v) { /* Update from Maybe to No */
Maybe := Maybe \ {v} ; (7)
No := No U {v} ; (8)
while (3w € Maybe \ Stack . w — v € Strat) do 9)

Strat := Strat \ {w — v} ;

NegStrat := NegStrat U {w — v} ;

if (w5 v) then (10)
UndoMaybe(w) ;

elsif (CheckControllable(v) = no) then
UndoMaybe(w) ;

end while
}
}

Fig. 3. On-the-fly controller synthesis for invariance.

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems 241

the single “missing” successor for a node w to be winning (line 6), then proce-
dure UndoMaybe is called recursively for w; otherwise, the remaining unexplored
successors of w are explored (line 7). Another difference from the algorithm for
invariance is that here the counter-example strategy is not explicitly shown: this
is because the explored graph itself is a counter-example.

Ezample. Consider again the game graphs of figure [Il Suppose that the nodes
are numbered in the order they are visited by a DFS (for instance, the edge
0 % 1 in the graph (a) is visited before the edge 0 % 2). Then, the on-the-
fly algorithms presented above compute the strategies shown in figure 2] without
exploring the whole graphs. In particular, the algorithm for invariance only visits
nodes 0 and 1 of graph (a) and algorithm for reachability avoids visiting node 4
and the corresponding edges.

A more realistic example demonstrating the on-the-fly aspect of the algo-
rithms is given in sections B] and [where we apply the technique to controller
synthesis for timed automata.

Complexity. The worst-case complexity of the algorithms is O(n + m), where
n and m are, respectively, the number of nodes and edges in the graph. Let us
see why this is so, for the case of invariance. Each node and edge is considered
at most twice: one time when they are inserted in Maybe or Strat and possibly a
second time to be removed. This costs O(n+m). In the worst case, when a node is
removed by procedure UndoMaybe, all its previously explored predecessors which
are not in the stack need to be examined (line 9 of figure). This also means
that at most m predecessors are going to be considered during the backtracking
procedure. In practice, the complexity of the algorithms can be reduced by using
clever book-keeping to mark predecessors of a node that are likely to be updated.

3 Timed Automata and Time-Abstracting Bisimulations

In this section we briefly review the model of timed automata and define the
time-abstracting bisimulation which reduces the infinite state space of timed
automata into a finite graph which preserves most properties of interest. In the
next section, we show how this graph can be used for controller synthesis in the
timed context.

3.1 Timed Automata

Clocks, Bounds, and Polyhedra. Let R be the set of non-negative reals and
X = {z1,...,z,} be a set of variables in R, called clocks. An X-valuation is a
function v : X — R. For some X C X, v[X := 0] is the valuation v’, such that
Ve e X . vi(z) =0and Vo & X . v/(x) = v(x). For every § € R, v+ 4 is a
valuation such that for all z € X, (v + §)(x) = v(z) + 4.

242 Stavros Tripakis and Karine Altisen

FindStrategyForReachability ((V,vo,—),V) {
Yes := Maybe := {} ;
Strat := ExploredEdges := {} ;
if (Reach(vo) = yes) then return “Found strategy Strat” ;
else return “No strategy exists” ;

Reach(v) {

if (v € Yes or v € V) then return yes ;

if (v € Maybe) then return maybe ;

Maybe := Maybe U{v}; /* new node */

for each (v = w ¢ ExploredEdges) do
EzploredEdges := ExploredEdges U {v % w} ;
if (Reach(w) # yes) then return maybe ; (1)

end for

if (CheckControllable(v) = yes) then (2)
UndoMaybe (v) ; (3)
return yes ;

end if

return maybe ;

}

CheckControllable(v) {
for each (v > w ¢ ExploredEdges) do
EzploredEdges := ExploredEdges U {v > w} ;
if (Reach(w) = yes) then

Strat := Strat U {v > w} ; (4)
return yes ;
end if
end for

return maybe ;

}

UndoMaybe(v) { /* Update from Maybe to Yes */
Maybe := Maybe \ {v} ;
Yes := Yes U {v} ;

Strat := Strat U{v %' |v' € V}; (5)
while (Jw € Maybe \ Stack . w — v) do
if (w5 vAVYw 5o .0 € Yes) then (6)
Strat = Strat U {w % v} ;
UndoMaybe(w) ;
else (7)

Maybe := Maybe \ {w} ;
if (Reach(w) = yes) then UndoMaybe(w) ;
end if
end while

Fig. 4. On-the-fly controller synthesis for reachability.

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems 243

A bound [Dil89] over X is a constraint of the form z; ~ c or x; —x; ~ ¢, where
1<i#j<n,~c{<,<,>>}and ¢c € NU{oo}. An X-valuation v satisfies
the bound x; ~ ¢ (resp. z; — x; ~ ¢) if v(a;) ~ ¢ (resp. v(z;) — v(z;) ~ ¢).

An X -polyhedron (is a set of X-valuations satisfying a conjunction of bounds
over X. We use the conjunction of bounds to refer to the A'-polyhedron itself,
for instance, if (is the set of valuations satisfying z < 5 A z < y then we write
x < 5Ax <y instead of {v | v(z) < 5Av(z) < v(y)}. If the bounds of ¢ are
unsatisfiable, ¢ defines the empty valuation set.

Syntax of Timed Automata. A timed automaton [ACD93| [HNSY94] (TA)
is a tuple A = (X, Q, qo, E, I), where:

— X is a finite set of clocks.

— (@ is a finite set of discrete states.

— Qo is the initial discrete state.

— FE is a finite set of edges of the form e = (¢q,(, X, ¢’), where ¢, ¢ € Q are the
source and target discrete states, (is an X-polyhedron, called the guard of
e, and X C X is a set of clocks to be reset.

— [is a function associating at each discrete state ¢ € @ an X-polyhedron I(q)
called the invariant of q.

Given an edge e = (q,¢, X, ¢'),we write guard(e) and reset(e) for ¢ and X, re-
spectively. Given a discrete state ¢, we write in(q) for the set of edges of the form

(_7 il q)

Semantics of Timed Automata. A state of A is a pair (¢, v), where ¢ € Q is
a location, and v is an X-valuation such that v € I(q). so = (qo, 0) is the initial
state of A, where 0 is the valuation assigning zero to all clocks in X.

The semantics of a TA A are given in terms of the semantic graph Ga,
which is generally an infinite (non-enumerable) structure, due to the density of
the time domain. The nodes of G4 are states of A, the initial node being sq.
G 4 has two types of edges: discrete edges of the form (q,v) = (¢/,Vv’), where
e € E,e =(q,(,X,q") such that v € ¢ and v/ = v[X := 0]; time edges of the

form (g, v) 2, (¢, v +0), where v + 0 € I(q). This graph has by definition the
following properties of time continuity and additivity:

s 5 s+ 0 implies s & s+ &, for all &' < (1)
5i5+§ands+§5~/>s+5+5’implyséﬂ/5+§+§’ (2)

For simplicity, we consider in the sequel only deadlock-free TA, that is, where

for each state s there exists some § € R and an edge e € E such that s LN s+55

s'.

244 Stavros Tripakis and Karine Altisen

Ezample. Timed automata can be composed in parallel, so that systems with
more than one components can be described more easily. We do not define for-
mally the parallel composition here, due to lack of space (see, for instance, [Tri98|
for more details). Instead, we present a well-known example of a system com-
posed by three TA (figure [[). The example is about a simple railway-crossing
system where a controller commands a gate to lower and raise according to the
arrivals and departures of a train. Assuming the usual parallel composition op-
eration with synchronization of edges with same labels, the composite timed
automaton modeling the global system is shown in figure [6l

near up 1 coming down
ower

far

approach
x

Controller

Fig. 5. The Train—Gate—Controller example.

3.2 Time-Abstracting Bisimulation and Quotient Graph

In order to apply algorithmic procedures to timed automata, we need a semantic
model which is finite. For this purpose, we define the time-abstracting bisimula-
tion, an equivalence which abstracts away from the quantitative aspect of time:
we know that some time passes, but not how much. Given a TA, the time-
abstracting bisimulation induces a finite graph, the quotient, which preserves all
properties of interest, and can be therefore used for controller synthesis in the
timed setting, as we show in the following section.

Time-Abstracting Bisimulation. Consider a TA A with set of edges E. A
binary relation ~ on the states of A is a (strong) time-abstracting bisimulation
(TaB) if for all states s & s, the following conditions hold:

2.
3.

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems 245

enter - exit
<5Ay<1(3) (4
= Y J T > 2 N z:=0

down

approach = >1 1 enter
r:=2z:=0 U T >2

s <B5ANy<2Az<3

Fig. 6. The composite TA for the Train—-Gate—Controller system.

Cifs; 3 s3, for some e; € F, then there exists es € F such that so 2 54 and

53 & S4;

. 5 . 1

if s1 = s3 then there exists do € R such that so = s4 and s3 ~ sg4;
the above conditions also hold if the roles of s; and so are reversed.

The definition is illustrated in figure [(left). The states s; and sy are said to be
Ta-bisimilar. In general, two TA A; and As are said to be Ta-bisimilar if there
exists a TaB ~ on the states of A; and As, such that s} ~ s3, where s}, is the
initial state of A;.

Given a set of states S of A and a TaB &~ on A, we say that ~ respects S if

for any s1 = s9, $1 GSiHSQ es.

S1 ... So S1 ... S9
€1 l l €2 01 L l 02
S3 T S4 S3 T S4

Fig. 7. Time-abstracting bisimulations.

Time-Abstracting Quotient Graph. Being an equivalence, a TaB induces
a partition C of the state space of a TA into equivalence classes. We can prove
that C has finite cardinality, by showing that the region equivalence of [ACD93|

246 Stavros Tripakis and Karine Altisen

is a special case of time-abstracting bisimulation (in general, much stronger than
necessary). Since the region equivalence induces a finite number of classes, so
does the greatest time-abstracting bisimulation (for more details, see [Tri9g]).
We need this observation to conclude that the quotient graph of a TA (defined
below) is finite.

Given a TA A and the greatest TaB &~ on A, the =-quotient of A is the graph
G7% = (C,Cy, —=), such that:

— C, the set of nodes of G is the set of classes induced by ~.
— (), the initial node of G is the class containing so.
— —4 contains two types of edges corresponding to the discrete and time edges
of the semantic graph of A. More precisely, for C1,Cs € C,
1. if there exist s1 € C1, s2 € Cy, e € E such that s; N s, then G has an
edge C; LNy Cs,
2. if there exist s € (1, € R such that s 2 s + 0, s+ 0 € Cy and
V8 <6 .s+ ¢ € CyUCy, then G has an edge C) 5 Cy.
3. if for all s € C1,9 € R such that s LR s+0, s+ 06 € C1, then G has an
edge C; 5 C}.
Notice that an edge C; = Cy of the quotient graph (item 2) represents
the continuous time passage from states in C7 to states in Cs. That is, from
each state in (1 time can pass until the system moves to Cy, without passing
from any other class meanwhile. Also, for classes containing all their time
successors we add a self-looping 7 edge (item 3).

It is worth noting that other definitions of the quotient graph are possible, es-
pecially concerning the choices of the set of 7 edges (for instance, we could
consider taking the transitive closure of the 7-edge relation, which corresponds
to the additivity of time successors in the semantic level). Defining the quotient
graph as we did above is essential for the correctness of the method to reduce
TA controller synthesis to controller synthesis for game graphs, presented in
section Ml

A technique to generate the time-abstracting quotient of a TA has been
presented in [T'Y96]. The technique consists in starting from an initial partition
of the set of states (possibly respecting a set of initial constraints) and then
refining the partition until it becomes stable with respect to discrete and time
edges. The final stable partition induces an equivalence which is a TaB. The
technique has been implemented in the module minim, part of the real-time
verification tool KrRonos [DOTY96, [BDMT98].

Example. Applying minim to the Train—Gate—Controller system of figure B we
obtain the quotient graph shown in figure[§ (self-looping T-edges are not shown,
for clarity).

Some of the nodes of the quotient graph are detailed in table [l. Being equiv-
alence classes with an infinite number of states each, the nodes are shown in
symbolic form (q,), where q is a vector of discrete states (one for each TA) and
¢ is a polyhedron representing the set of valuations associated in this discrete
state. In other words, (q, () represents the set of states {(q,v) | v € (}.

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems 247

e\ APRROAE
23 ot 25
N4

Fig. 8. The time-abstracting quotient graph of the Train—-Gate—Controller ex-
ample.

0: (far, up, 0,z <1)
1: (far, up, 0,z>1)
4: (near, up, Lz<lAz<z+1)
8: (near, coming down, 2, y < 1Az <y+ 1Az < z+2)
10: (near, down, 2,2<x<5)
11: (near, down, 2, x <2)
12: (in, down, 2, x <5)
16: (far, down, 3, x=0Az<x)
18: (far, going up, 0,z>1A1<y<?2)
20: (far, going up, 0,z <1Az=y)
24: (near, going up, Ly<2Az+1<yAz<z+1)

Table 1. Some of the nodes of the time-abstracting quotient of figure [

248 Stavros Tripakis and Karine Altisen

4 Timed Controller Synthesis

In this section we define the controller synthesis problem in the setting of timed
automata and give a partially on-the-fly solution. The model is a natural ex-
tension of the untimed model of game graphs, namely, timed automata with
controllable and uncontrollable edges. Our solution consists in generating the
time-abstracting quotient graph of a TA, then applying to this graph (viewed
as a game graph) the algorithms of section 2] to compute a timed strategy. The
method is only half on-the-fly since it relies on the generation of the quotient
first, before the on-the-fly search for a strategy is applied.

4.1 The Model: Game Timed Automata

A game timed automaton [MPS95] (GTA) is a TA whose set of edges E is
partitioned into two disjoint sets E° (the controllable edges) and E* (the un-
controllable edges).

Example. Consider again the Train-Gate-Controller system of figure [bl Regard-
ing the Train and Gate automata as being the environment, we can view the
composite TA of figure [0l as a GTA where edges labeled “lower” or “raise” are
controllable, while the rest are uncontrollable.

Timed Strategies. The semantics of a GTA A are given in terms of timed
strategies, which are extensions of strategies to account for the density of the
time domain. Consider a GTA A, its semantic graph G4, and a subset of its
states S.

A timed strategy with respect to invariance of Sis a sub-graph G of G4,
which satisfies the time continuity and additivity conditions[I] and 2] as well as
the following conditions:

1. so (the initial state of A) is the initial node of Gj.
2. If s is a node of G and s <% &' is an edge of G4, for some e, € E¥, then
s &% ¢ is an edge of G1.
3. If s is a node of G; and s S + 4§ is an edge of G 4, for some § € R, then:
— either s il s+ 6 is an edge of Gy,

— or there exist 8’ < ¢ and e. € E°, such that s 6—l>1 s+¢ and s+8 =5, §”
are edges of G. R
4. Every node of G; belongs to S.

(Notice that when we say that s —1 s’ is a node of Gy, this implies that s’ must
be an edge of G1.) Intuitively, condition 2 makes sure that the controller does not
“cheat” : if the environment can make a move in the original graph then it can
also make this move in the strategy graph. Condition 3 deals with the passage
of time : if 4 time units can elapse in the original graph then ¢ time units should
be able to elapse in the strategy graph, unless if the controller can make a move

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems 249

earlier, at 0’ < §. Finally, condition 4 ensures that the system remains in the set
of safe states.

A timed strategy with respect to reachability of Sisa sub-graph G of Gy,
which satisfies the time continuity and additivity conditions [and 2 as well as
the following conditions:

1. so (the initial state of A) is the initial node of Gj.
2. If s ¢ S is a node of G and s &% s’ is an edge of G 4, for some e, € E*, then
s &% ¢ is an edge of G1.
3. If s ¢§isanode of G and s > s+ ¢ is an edge of G 4, for some § € R,
then:
— either s il s+ is an edge of Gy,

— or there exist 0’ < ¢ and e, € E¢, such that s iq s+0 and s+8 =5, s
are edges of GG;.

. 41 e do e on €
4. For each node s of G there exists a path s =131 851 2121 -+ =131 Sp

such that eq,...,e, € E€ and s, € S.

Conditions 2 and 3 differ from the case of invariance strategies in that for the
target states S there is no requirement to continue the game. Condition 4 ensures
that the controller can lead the system to the set of target states.

Controller Synthesis for Game Timed Automata. Given a GTA A and
a set of states S , the controller-synthesis problem for A with respect to invari-
ance (resp. reachability) to find a timed strategy (if one exists) with respect to
invariance (resp. reachability) of S,

4.2 Reducing Game-Timed-Automata Synthesis to On-the-Fly
Game-Graph Synthesis

We are now going to use the on-the-fly algorithms of section [2] to solve the
controller-synthesis problem for GTA. Consider a GTA A with set of edges F =
EcUE" and a set S of states of A. Let G7% = (C,Cy, —=) be the quotient graph
of A with respect to the greatest time-abstracting bisimulation respecting S,

From G we build the game graph G = (C,Cy, > U %), where 5 and %
are constructed as follows:

1. For each edge C %~ C’, for some e € E°, the edge C % C’ is added to G.
2. For each edge C %~ C', for some e € E*, the edge C % (' is added to G.
3. For each edge C' 5~ C’, the edge C' > C' is added to G.

In other words, discrete transitions do not change controllability status, while
time transitions are considered controllable. The intuition behind this choice is
the following. Consider a 7-edge C' =~ C'. There are two possibilities:

250 Stavros Tripakis and Karine Altisen

— Either C also has a controllable discrete edge C' <5~ C”, e, € E°. Then the
controller has a choice, either to let time pass, waiting for the environment to
make a move (this comes down to picking C' 5, C as the controllable edge),
or moving to C” (this comes down to picking C Yy C"). Thus, C ENYYeU
can be considered controllable.

— Or C has no controllable discrete edge in the quotient graph. Then the
controller has no choice but to wait for the environment to make a move
(recall that the TA is assumed deadlock-free). Therefore, also in this case,
C 5. C’' can be considered controllable as it is the controller’s only choice.

We claim that the above construction is enough to reduce timed controller syn-
thesis to the untimed case. Let C = {C' | C' C S} (i.e., C is the set of all classes
whose states satisfy .S).

Proposition 1. A has a strategy with respect to invariance (resp. reachabjlity)
of S iff G has a strategy with respect to invariance (resp. reachability) of C.

The strategy of G corresponds to a timed strategy of A given in symbolic
form. At each symbolic state (class) the controller chooses either to let time
pass (T-edge) or make a move (e-edge). In the latter case, the move can also be
delayed (that is, the strategy is not time-deterministic) as long as the system
remains in the same symbolic state.

Ezxample. We illustrate the on-the-fly algorithm for invariance on the Train—
Gate—Controller example of figurelfl The game graph corresponding to this sys-
tem is obtained from the quotient graph of figure[8 by simply marking all edges
labeled “tau”, “lower” or “raise” as controllable and the rest as uncontrollable.

We are interested in computing a controller keeping the system in a set of
safe states where whenever the train is in the crossing the gate is down. That
is, we want to solve the controller synthesis problem with respect to the above
invariance property. The property holds at all nodes of the graph of figure
except nodes 5 and 9.

Based on proposition [1, we solve the problem by applying the algorithm of
figure[d on the game graph of figure®, with set of safe nodes V = {5,9}.

Assuming that in the DFS order (procedure CheckControllable) the “tau”-
edges are explored last , the algorithm yields the strategy shown in figure 9l In
node 4, the controller chooses the action “lower” instead of the “tau”-edge and a
similar choice is made in node 16. For each node, all its uncontrollable successors
are included in the strategy, according to the semantics (for instance, see node
18). It is worth noticing that this strategy corresponds exactly to the part of
the graph explored during the DFS, which demonstrates that the algorithm is
on-the-fly: no other nodes except those belonging to the computed strategy were
needed to be explored, thus no other nodes were visited.

! This can sometimes be a good heuristic, since it corresponds to exploring first the
“as-soon-as-possible” policy: indeed, “tau”-edges correspond to the passage of time
(while the controller is waiting).

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems 251

Fig. 9. A strategy for the graph of figure [§

Examining the symbolic states corresponding to the nodes of the strategy
(see table [l) we get some intuition about the timing constraints induced by
the controller. For instance, node 4 corresponds to the symbolic state (near,
up, 1, 2 < 1Az < z+ 1). The discrete part (near, up, 1) corresponds to the
Controller having just received the signal “approach” from the Train. The bound
z < x + 1 means that the Controller waits less than 1 time unit before sending
the command “lower” to the gate (whereas in the initial automaton of figure B}
it could wait up to 3 time units).

In a more methodological way, we can use the symbolic representation of the
timed strategy in order to restrict the input GTA and obtain a closed system (but
still, possibly non-deterministic) which satisfies the given invariance/reachability
property. Restricting the initial GTA means replacing, for each controllable edge
(¢,¢,X,q") € E°, its guard ¢ by ¢ N¢’, where (g,¢’) is the node in the strategy
corresponding to the discrete state ¢. (If there is no winning node corresponding
to ¢, then ¢ can be replaced by the empty polyhedron.) The approach is explained
in more detail in [Alt98].

5 Conclusions

We have presented on-the-fly techniques for controller synthesis of untimed and
timed systems with respect to invariance and reachability. The technique in the
untimed case uses DFS-based algorithms which return a strategy as soon as one
is computed. In the timed case the technique relies on the generation of the
time-abstracting quotient of a timed automaton. The quotient can be viewed

252 Stavros Tripakis and Karine Altisen

as an untimed graph, and the previous algorithms can be applied on it to solve
the timed controller-synthesis problem. Although the worst-case complexity of
the algorithms is quadratic in the size of the graph (i.e., same as in [RW8T7]),
their on-the-fly nature (illustrated in some toy examples) proves their practical

interest.

References

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real
time. Information and Computation, 104(1):2-34, 1993.

[A1t98] K. Altisen. Génération automatique d’ordonnancements pour systémes
temporisés. Technical report, Mémoire de DEA, Ensimag, Grenoble, 1998.
In french.

[Alu91] Rajeev Alur. Techniques for Automatic Verification of Real-Time Systems.
PhD thesis, Department of Computer Science, Stanford University, 1991.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for
discrete and timed systems. In Hybrid Systems II, 1995.

[BDM*98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.
KRONOS: a model-checking tool for real-time systems. In CAV’98, 1998.

[Dil89] D.L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In J. Sifakis, editor, Automatic Verification Methods for Finite
State Systems, Lecture Notes in Computer Science 407, pages 197-212.
Springer—Verlag, 1989.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In
Hybrid Systems I11, Verification and Control, volume 1066 of LNCS, pages
208-219. Springer-Verlag, 1996.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111(2):193—
244, 1994.

[HWO91] G. Hoffmann and H. Wong Toi. The input-output control of real-time
discrete event systems. In 30th IEEE Conf. on Decision and Control,
1991.

[HW92] G. Hoffmann and H. Wong Toi. Symbolic synthesis of supervisory con-
trollers. In American Control Conference, 1992.

[Le 93] M. Le Borgne. Dynamical Systems over finite fields. PhD thesis, Université
de Rennes, 1993. In French.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems. In STACS ’95, 1995.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In ACM
Symp. POPL, 1989.

[RW8T7] P. Ramadge and W. Wonham. Supervisory control of a class of discrete
event processes. SIAM J. Control Optim., 25(1), January 1987.

[Tri9g] S. Tripakis. The formal analysis of timed systems in practice. PhD thesis,
Université Joseph Fourrier de Grenoble, 1998.

[TY96] S. Tripakis and S. Yovine. Analysis of timed systems based on time-
abstracting bisimulations. In Proc. 8th Conference Computer-Aided Ver-
ification, CAV’96, Rutgers, NJ, volume 1102 of LNCS, pages 232—243.
Springer-Verlag, July 1996.

[WM99] W. Wonham and C. Meder. The TTCT tool. Personal communication,

1999.

	Introduction
	On-the-Fly Controller Synthesis for Finite Discrete-State Systems
	The Model: Finite Graphs with Controllable/Uncontrollable Edges
	The On-the-Fly Algorithms for Invariance and Reachability

	Timed Automata and Time-Abstracting Bisimulations
	Timed Automata
	Time-Abstracting Bisimulation and Quotient Graph

	Timed Controller Synthesis
	The Model: Game Timed Automata
	Reducing Game-Timed-Automata Synthesis to On-the-Fly Game-Graph Synthesis

	Conclusions

