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Let C=(V,E) be a digraph with n vertices. Let f be a function from E into the real
numbers, associating with each edg:: e€E a weight f(e). Given any sequence of edges
o=e¢,,é,,...,e, define w(a), the weizght of o, as ¥P_, f(¢,), and define m(o), the mean weight
of o, as w(o)/p. Let A* :=min. m(C) where C ranges over all directed cycles in G; A* is called .
the minimum cycle mean. We give a simple characterization of A*, as well as an algorithm for
computing it efficiently.

Let G =(V, E) be = digraph with n vertices. Let f be a function from E into the
real numbers, associating with each edge e € E a weight f(e). Given any sequence
of edges o =e,, e,,..., ¢, define w(a), the weight of o, as 37_, f(e;), and define
m(c), the mean weight of o, as w(o)/p. Let A* =minc m(C) where C ranges
over all directed cycles in G; A* is called the minimum cycle mean. We shall give
a simple characterization of A*, as well as an algorithm for computing it
efficiently.

I¥ G is not strongly connected then we can find the minimum cycle mean by
determining the minimum cycle mean for each strong component of G, and then
taking the least of these. The strong components can be found in O(n+|E|)
computational steps [6]. Henceforth we assume that G is strongly connected.

Let 5 be an arbitrarily chosen vertex. For every ve V, and every nonnegative
inieger k, define F{v\ as the minimum weight of an edge progression of length k
from < to v; if no such edge progression exists, then F,(v)=.

‘Theorem 1.
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The proof requires a lemma.
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Lemmma 2. If A* =0, then

{ () — Fk(v)] _
~min . max . |{~——————— =0,
n—k

veV: mk-=n~1

me. bmce A¥=0 there exists a cycle of weight zero, and there exists no cycle of
negative welghi Because there are no negative cycies there is a mmunum-wezght
edge progression from s to v, and its length is less than n. Let this minimum
weight be 7(v). Then F,(v)=w(v). Also, m(v) = Mingcy<n—1 Fi(v), s0

Flv)-m(v)= max (F(v)-F(v)=),

and

wax (A Bd) i;o. @
csksr-1 L n—k | R
Equality holds in (2) if and only if F,(v)=m(v). Hence we can complete the
proof by showing that there exists a v such that F,(v)= m(v). Let C be a cycle of
weight zero, and let w be a vertex in C, Lét P(w) be a path of weight w(w) from x
to w. Then P(w), followed by any number of repetitions of C, is also a
minimum-weight edge progression from s to w. Hence, any initial part of such an
edge progression must be a minimum-weight edge progression from s to its end
point. After sufficiently mar-y repetitions of C, such an initial part of length n will
occur; let its end point be w'. Then F (w')= m(w"). Choosmg v =w', the proof is
complete.

Proof of Theorem 1. We study the effect of reducing each =dge weight f(e) by a
constant c¢. Clearly A* is reduced by ¢, Fi(v) is reduced by ke, (F(v)—F(v))/(n—
k) is reduced by ¢, and

Fo(v) - F{v)"

min max [
n- k

veV O=k<n—~1

is reduced by c. Hence both sides of (1) are affected equally when the function f is
transiated by a constant. Choosir:z t-at translation which makes A* zero, and then
apnlying Lemma 2, the proof is couplete.

We can compute the quantities Fi(v) by the recurrence
Fk(v)=hp3§25 [(Fo \()+iuv)], k=1,2,....n

with the initial conditions
Fi(s)=10; Fy(v)==», v.#g

- e computation requires ()(n 5]} operations, and, once the quantities Fi(v)
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have been tabulated, we can compute

[Fr(v)—‘Fk(v)}

A*=min max
n—k

veV Osk=sn-—1

in O(n®) fu. her nperations. Since G is strongly connected n <|F|, so the over-all
computatior time is O(n |E]). If the actual cycle yielding the minimum cycle mean
is desired, i can be computed by seleciing the minimizing v and k in (1), finding a
minimum-weight edge progression of length n from s to v, and extracting a cycle
of length n—k occurring within that edge progr«ssion.

The minimum cycle mean problem is closely related to the negative cycle
problem; i.e., the proble.n of decicling whether a digraph with weighted edges has
a cycle of negative weigiii. The best algorithms known for solving the negative

cycle problem -equire timc Ofn |E|) (see [2. 4]). The best algorithm previously
known for computing the minimum cycle mean [3] makes O(log i) calls on a
subroutine for solving the negative cycle problem, and hence has a running time
of O(n |E|log nn). Any algorithm for the: minimum cycle mean problem yiclds a
sclution to the negative cycle problem quite simpiy: a negative cycle exists if and
cnly if A*<0. Thus any improvement on the O(n|E|) running time of our
minimum cycle mean algorithm would also give an improved upper bound on the
computational complexity of the negative cycle problem.
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