
Discrete Event Dyn Syst (2009) 19:213–265
DOI 10.1007/s10626-008-0040-9

Control of Parameterized Discrete Event Systems

Hans Bherer · Jules Desharnais · Richard St-Denis

Received: 4 May 2007 / Accepted: 20 February 2008 /
Published online: 24 April 2008
© Springer Science + Business Media, LLC 2008

Abstract This paper investigates the control of parameterized discrete event systems
when specifications are given in terms of predicates and satisfy a similarity assump-
tion. This study is motivated by a weakness in current synthesis methods that do not
scale well to huge systems. For systems consisting of similar processes under total
or partial observation, conditions are given to deduce properties of a system of n
processes (arbitrary size) from properties of a system of n0 processes (bounded size),
with n ≥ n0. Furthermore, it is shown how to infer a control policy for the former
from the latter’s, while taking into account interconnections between processes.

Keywords Parameterized discrete event system · State feedback control ·
Scalable control policy · Interconnection relation · Weak and strong soundness

H. Bherer
xtranormal Inc., 5555, avenue Casgrain, 2e étage,
H2T 1Y1 Montréal, Québec, Canada
e-mail: Hans.Bherer@xtranormal.com

J. Desharnais
Département d’informatique et de génie logiciel, Université Laval,
Pavillon Adrien-Pouliot, 1065, avenue de la Médecine,
G1V 0A6 Québec, Québec, Canada
e-mail: Jules.Desharnais@ift.ULaval.ca

R. St-Denis (B)
Département d’informatique, Université de Sherbrooke,
2500, boulevard de l’Université, J1K 2R1 Sherbrooke, Québec, Canada
e-mail: Richard.St-Denis@USherbrooke.ca

214 Discrete Event Dyn Syst (2009) 19:213–265

1 Introduction

It is well known that the state-space explosion problem constitutes a barrier to
the modeling and control of discrete event systems (DESs) in the framework of
the supervisory control theory (SCT). This renders automatic synthesis methods
unworkable for many realistic applications, since the state space to be considered
is so huge as to be intractable, even if ad hoc implementations of supervisors
are relatively small in terms of lines of code. A potential solution consists in
representing a system by a parameterized model, synthesizing a control policy with
size independent of parameter values and determining properties about the closed-
loop system behavior for arbitrary (sometimes bounded) parameter values. Control
policies obtained in this way are, in essence, scalable.

The method proposed in this paper combines the modular control paradigm
with an abstraction technique. First, it relies on three main concepts developed
in the verification domain, but exploited here in the context of SCT: reduction,
parameterization and symmetry. By analogy with the synthesis of concurrent pro-
grams with many similar processes (Attie and Emerson 1998), supervisor synthesis
for a concrete system of n processes is reduced to the synthesis of a supervisor
for a simplified system of n0 processes, with n0 ≤ n. This is possible if both the
system and specifications are parameterized and if symmetries emerge from their
modeling. Second, based on some similarity assumptions, it considers the supervisor
as a modular supervisor formed from m individual supervisors, each derived from
an instance of the parameterized system and specifications, except that the synthesis
of m individual supervisors is replaced by the off-line synthesis of only one small
supervisor with m on-line syntactic renaming transformations, where m ≤ (n

n0

)
.

Problems for parameterized discrete event systems (PDESs) are, in general,
undecidable. Therefore, one of the main ambitions with this new approach is to
develop synthesis methods that are sound, but necessarily incomplete, or to con-
sider some restricted supervisory control problems that are decidable. A method,
founded on attributed control (AC), has been proposed for totally observed PDESs
(Frappier and St-Denis 2001; St-Denis 2002). While more general than the one
described in this paper, it is incomplete since it requires human intervention. A
sound synthesis method has been suggested for bounded-data PDESs (BDPDESs)
under total observation (Bherer et al. 2003). It integrates an automatic verification
technique (Pnueli et al. 2001) into a synthesis procedure. The verification technique
is based on a heuristic for an algorithmic construction of an inductive assertion, but
it is incomplete because the algorithm may fail after two trials. As illustrated in
Fig. 1, this paper considers a class of decidable control problems, namely that of
the state feedback control (SFBC) of PDESs under total and under partial obser-
vation, for which the synthesis method is sound and does not need any heuristic to
synthesize supervisors.

Essentially, the study of PDESs includes two main issues. The first consists in
determining if properties, such as controllability, observability and nonblockingness,
are preserved when the state space is expanded from dimension n0 to dimension n
whatever the value of n ≥ n0. The second issue concerns conditions to be satisfied in
order to ensure that synthesis methods intended to deal with parameters are sound.
A synthesis method is said to be strongly sound if the supervisor calculated from the
simplified model is behaviorally equivalent to the one corresponding to the concrete

Discrete Event Dyn Syst (2009) 19:213–265 215

Fig. 1 Classes of supervisory control problems for PDESs

model. It is said to be weakly sound if the system of n processes under control never
violates the specification, but such a control may be unduly restrictive.

The case of partial observation raises some difficulties. On the one hand, even
if the supremal controllable and normal subpredicate always exists (Li 1991), the
normality property is generally too restrictive for real systems. On the other hand, the
notion of strong M-controllability (Takai and Kodama 1997)—a strong version of M-
controllability (Takai et al. 1995)—ensures the existence of a supremal element. Both
notions depend on the concept of bad event set, which merges states that are observed
in the same way, but, unlike the latter, the states are merged whether they satisfy the
specification or not in the case of strong M-controllability. Notwithstanding these
differences, all these notions hide some pitfalls that significantly impact the goal
of achieving strong soundness. First, supremal elements are only expressed in their
simplest form as an iterative computational schema, which rather limits the scope
of theoretical results in modular control. Second, the notion of M-controllability
includes a reachability property, similar to the one for the notion of controllability,
which cannot be preserved (Bherer et al. 2006b).

1.1 Characterization of the class of PDESs

While modular systems are, in general, heterogenous, some have constituent ele-
ments with the same structure. Processes in such systems can be partitioned into
classes defined by parameters. For instance, a parameter symbolizes the number
of processes in a class or an internal dimension of a data structure (which is often
represented by an automaton in the SCT framework). Adding parameters to a model
entails adding corresponding parameters to the specifications. Addition of parame-
ters that can be replaced by arbitrary natural numbers constitutes a major obstacle in
synthesizing supervisors, because such systems may have infinitely many reachable
states. Since there exists no algorithm for deciding any relevant property formulated
in SCT (e.g., controllability) for recursively enumerable languages (Kumar and Garg
1995), several researchers assume that the languages involved in the computation
of supervisors are regular. This is equivalent to computing a new supervisor for each
instance of the parameters. This solution is not in the spirit of the method proposed in
this paper, because it is not scalable. When the languages are not regular, Petri nets
are often used, but they must satisfy strict structural conditions so that procedures
for verifying properties of interest can become decidable. For instance, Elementary
Composed State Machines, which appear to be a restrictive class of Petri nets, can
be used to model realistic systems and synthesize supervisors (Giua and DiCesare
1994). Petri nets are not used in this paper, but comparable restrictions must be made

216 Discrete Event Dyn Syst (2009) 19:213–265

to obtain a class of PDESs for which control problems are decidable. A good starting
point is to study the case in which all processes belong to a unique group with a
single parameter, which represents the number of similar processes. To achieve a
capability comparable to existing synthesis procedures for modular systems, families
of similar processes should be combined. A reasonable approach would consist in
dealing with them case by case, from the simplest (e.g., connection of a pair of
replicated structures through a shared variable) to the hardest (e.g., split, merge,
parallel connections between a multitude of replicated structures). The study of such
compositions is beyond the scope of this paper.

1.2 Overview of the assumptions

PDESs exhibit symmetries that record an invariance property with respect to a
change of process identity. This property constitutes the essence of PDESs and is
expressed by three similarity assumptions throughout this paper:

• process similarity assumption (PSA),
• mask similarity assumption (MSA), and
• specification similarity assumption (SSA).

PSA and MSA limit processes to be defined from a replicated structure. SSA narrows
the form of those predicates representing constraints to be satisfied. These assump-
tions appear very restrictive, but they are necessary to ensure that the different
objects (e.g., processes, masks, predicates) manipulated in the higher dimension (n)
are always consistent with the corresponding objects in the lower dimension (n0).
Overall, they capture homogeneity in a system.

In addition to these assumptions, a condition is imposed on the events shared by
the processes. They must be controllable. This condition is required to establish a
fundamental result (Proposition 7) that is used to prove soundness of the synthesis
method.

How far is it possible to relax some of these assumptions with respect to achieving
soundness remains an open question that is discussed in the conclusion.

1.3 Overview of the paper

The remainder of this paper is structured as follows. The rest of this section
presents a brief survey of methods and techniques to tackle the state-space explosion
problem that arises in basic control problems. Section 2 provides a concise review
of concepts and results developed in the context of SFBC when DESs are totally or
partially observed. Section 3 introduces the notation, basic definitions and properties
required to consider subjects related to PDESs. These subjects are elaborated and
extended in subsequent sections from earlier treatments (Bherer et al. 2004, 2005,
2006a). Sections 4 and 5 focus on the preservation of properties and synthesis of
SFBC functions for PDESs, respectively. Section 6 shows under what conditions the
synthesis method achieves strong soundness. Finally, Section 7 situates this work
from a more technical perspective and ends with a few concluding remarks.

Discrete Event Dyn Syst (2009) 19:213–265 217

1.4 Major ways to reduce computational complexity

Since the elaboration of SCT by Ramadge and Wonham, computational complexity
has been a major concern resulting in a constant stream of research. A number of
formal treatments have been proposed and solutions to this issue can be classified
according to the following criteria: control paradigm, semantic model, data structure,
algorithmic technique, abstraction technique and problem reduction.

1.4.1 Control paradigms

Control paradigms to lower the computational complexity are based on modularity,
hierarchical structure and on-line control. These paradigms solve basic control
problems for totally or partially observed DESs. Formulated in its most conventional
form, a basic control problem consists in synthesizing a supervisor to restrain the
uncontrolled behavior of a DES, represented by an automaton G, in order to achieve
a given specification, represented by a language K.

The modular control paradigm is based on an horizontal decomposition of G and
K. A specification K is written as an intersection of specifications, K = K1 ∩ · · · ∩
Km, and the control policy is established from the conjunction of m supervisors,
each synthesized from G and Ki to avoid the generation of a huge state space that
stems from the calculation of an intersection (Ramadge and Wonham 1987; Wonham
and Ramadge 1988). The computational complexity can be reduced much more if
a DES is modeled as a composition of asynchronous subsystems, G =‖n

i=1 Gi. A
local specification Ki is applied to a subset of subsystems directly restricted by Ki

and represented by a set of indices Ii. A supervisor is synthesized from each local
specification Ki and Gi =‖ j∈Ii G j (de Queiroz and Cury 2000). This is particularly
useful when a specification is not applied to the whole system and when synchronous
subsystems share the same local specifications. Recently, other variants, in which
languages are prefix-closed, have been proposed by considering indecomposable
specifications and only one element corresponding to Gi for the computation of
a local supervisor (Komenda and van Schuppen 2005; Komenda et al. 2005). In
general, the realization of a control policy in a modular fashion results in memory
savings, but the supervisors may be blocking. Unfortunately, checking this property
is intrinsically a global problem (Cassandras and Lafortune 1999). However, several
approaches have been proposed to achieve better experimental and computational
outcomes than the worst case (Pena et al. 2006).

The hierarchical control paradigm is based on a vertical decomposition of systems
and supervisors. They are exemplified by aggregate models, aggregate (bottom-up)
multilevel hierarchies and structural (top-down) multilevel hierarchies. An aggregate
model is obtained from a low-level model by refining the information sent up from
the low-level model to the next one in order to ensure that the high-level supervisor
can be implemented in the low-level model. This property is called hierarchical
consistency (Zhong and Wonham 1990) and its fulfillment results in a hierarchy with
tightly coupled levels. The primary purpose of this approach is the concrete expres-
sion of a report-command strategy by considering more abstract information at a
given level; the higher the supervisor level, the fewer the computational resources
used by synthesis algorithms. In the aggregate multilevel hierarchy approach, a
master-slave or client-server mode is established through an interface that prescribes

218 Discrete Event Dyn Syst (2009) 19:213–265

the interaction between the high-level and low-level models (Leduc et al. 2005).
Engineers must initially provide the interface and supervisors. Then, controllability
and nonblockingness properties must be independently verified for each level. There-
fore, engineers must repeatedly modify the models by hand, including the interface
and supervisors, until they satisfy the properties. In this verification process, there
is no global model. Recently, a synthesis procedure was designed to automatically
derive locally maximally permissive supervisors from separate specifications (Song
and Leduc 2006). Computational savings are possible as long as the client and server
have roughly the same size and the interface is relatively small compared with their
size. Furthermore, verification is more appropriate for larger systems, because the
verification procedure requires fewer resources than the synthesis procedure. In
the structural multilevel hierarchy approach, DESs are modeled by using state tree
structures (STSs), a kind of hierarchical state machine (Ma and Wonham 2005).
Connections between levels must satisfy boundary consistency and local coupling.
Contrary to the previous approaches, only one nonblocking supervisor is synthesized
for a given system modeled by an STS. Appropriate techniques that take advantage
of this representation must be used to deal with larger systems. Generally speaking,
hierarchical approaches are not sufficient in themselves to solve the state-space
explosion problem because nothing assures that the cost of verifying the underlying
properties and synthesizing all the supervisors is less than that of deriving a global
supervisor.

In the on-line control paradigm, the off-line synthesis of a complete control policy
for all possible behaviors of the DES (which has exponential complexity in the
number of its components) is replaced by a multitude of polynomial complexity cal-
culations along the specific trace of events generated by the DES at run-time. Thus,
the supervisor prescribes the next control action after each step of the closed-loop
system based on an N–step forward projection of the DES behavior and a limited
lookahead control policy (Chung et al. 1992). The broader the available information
about the DES the supervisor has, the lower the computational complexity. Several
algorithms using this schema have been proposed with significant computational
advantages (Heymann and Lin 1994; Ben Hadj-Alouane et al. 1994, 1996). This
paradigm is, however, most relevant when DES behavior is modeled by recursive
functions. In addition, the polynomial computational complexity is achieved to the
detriment of a weaker validation procedure, since faults may be discovered at run-
time due to the limited lookahead.

1.4.2 Semantic models

Formal notations used to represent various aspects that are needed in the modeling
of DESs are generally assessed with respect to their power of expressivity. Their
semantics must be sufficiently rich to specify concurrency, synchronization, hierar-
chy, timing information, infinite behaviors, safety properties or liveness properties.
For instance, automata can only express the order in which events occur in a system
and Petri nets are particularly useful to describe interacting concurrent components.
Both formalisms have been extended to satisfy other specific needs (Cassandras and
Lafortune 1999). In order to consider systems with huge state spaces, it is also impor-
tant to have compact representations for preserving memory space in the computer
and take advantage of algebraic regularity of their internal structure to develop more
efficient, more powerful synthesis algorithms that operate on them in comparison

Discrete Event Dyn Syst (2009) 19:213–265 219

with those that work on an unstructured state set. Assorted Petri net models with
various design approaches have been extensively exploited for these purposes in the
context of SCT (Holloway et al. 1997). To be efficient, however, these approaches
must avoid the explicit construction of the reachability tree. This is particularly the
case of vector DESs (Li and Wonham 1993) with linear predicates on the set of
n-dimensional integer vectors as specifications. Based on a characterization of the
reachable set from a given state by a system of linear inequalities, the calculation of
an optimal policy is reduced to solving linear integer programming problems, one per
pair consisting of a reachable state and a controllable event such that there exists at
least one uncontrollable path beyond the transition defined by the pair. However, if
strict structural conditions associated with the uncontrollable part of the system (e.g.,
mutual independence between some uncontrollable events and some conditions
on the trees of the forest representing the uncontrollable part of the system) are
satisfied, then the construction of an optimal policy is reduced to solving smaller
linear integer programming problems in an appropriate form. This requires solving
only one per tree of the forest in order to algorithmically express the control policy
in a disjunction of linear inequalities, which can be evaluated for any of reachable
states at run-time (Li and Wonham 1994). A more recent formalism adapted from
statecharts (Harel 1987), the STSs (Ma and Wonham 2005), is especially effective
when a DES, expressed in terms of coordinating components, has a high degree of
concurrency, synchronization and hierarchy. An STS is composed of a state tree and
holons that describe the local dynamics. Models are manipulated in a fashion which
is logarithmically concise compared with the size of the underlying state spaces.
This formalism impacts on the way supervisors are synthesized. The ultimate goal
is exploring a set of objects significantly smaller than the overall state set.

1.4.3 Data structures

In the areas of model checking and VLSI computer-aided verification, sizable
progress has been achieved through an intensive use of BDDs, a data structure
for compact representations of Boolean functions (Dreschsler and Sieling 2001).
Such representations do not eliminate the state-space explosion problem, but allow
verification of larger systems. Their application in the SCT framework, particularly
for the derivation of optimal supervisors that result from calculation of fixed points, is
more modest. Fixed point procedures implemented with BDDs have been developed
both in the SCT language-based formulation and SCT state-based formulation. In
the former, the fixed point procedure is expressed in terms of Boolean functions
describing the DES and specification automata (Balemi et al. 1993). In the latter,
it is formulated in terms of predicates characterizing the hierarchical state space,
transition structures and forbidden state specifications (Ma and Wonham 2005).
BDDs are not a panacea, even though they may be of substantial help in many
control problems, since the theoretical computational complexity remains beyond
existing computational resources.

1.4.4 Algorithmic techniques

A synthesis procedure can be implemented in many ways. Major improvements
to conventional synthesis algorithms can be carried out by considering well-known

220 Discrete Event Dyn Syst (2009) 19:213–265

algorithmic techniques. One of them consists in postponing very expensive process-
ing until the construction of the supervisor by performing some computations on the
fly. For instance, instead of explicitly calculating the product transition structure of
components and specifications from which the supervisor is extracted (the extensional
approach), an efficient implementation expands such structures on the fly from
the transition functions of components and specifications (the intensional approach)
simultaneously with, and guided by, supervisor construction. Such a synthesis al-
gorithm does not require the generation of any global behavioral model for the
whole system or explicit storage of the entire workspace. This is efficient when the
specifications severely constrain system behavior (Barbeau et al. 1997). This tech-
nique is particularly useful when the system is modeled by an STS (Ma and Wonham
2005). Since this kind of structure is more complex than an automaton, the inten-
sional definition of the global transition function must be sound in the sense that it
must be equivalent to that defined over a flat state set. Other algorithmic techniques
are based on search mechanisms with heuristics and control-directed backtracking
(Ben Hadj-Alouane et al. 1996; Barbeau et al. 1997). Exploring implementation
details is important, but complete comparison studies must be conducted (Kerjean
et al. 2006).

1.4.5 Abstraction techniques

Abstraction techniques lead to simplification because they discard irrelevant de-
tails for the problem at hand. They are especially relevant when both the DES
and specifications exhibit symmetry. Instead of working with the automaton-based
representations of the DES and specifications, a smaller supervisor can be derived
from their quotient structures (Eyzell and Cury 2001) using techniques originally
developed in model checking (Emerson and Sistla 1997). Another possibility is
to take advantage of colored Petri nets with symmetry specifications to solve a
forbidden state avoidance problem (Makungu et al. 1999). Colored Petri nets with
a finite color set have the same expressive power as ordinary place/transition nets,
but they offer a more compact representation of large systems consisting of many
similar interacting components. The former approach is less restrictive than the
latter, because it does not limit a specification to that of a specific forbidden state
type. It requires, however, the use of a permutation index table that occupies an
exponential space in the general case. Nevertheless, the computational complexity
of the synthesis algorithm is reduced by a factor of N2 when the DES consists of N
similar components. Generally, this is clearly insufficient for conventional synthesis
algorithms with an exponential growth rate in terms of N. Finally, the use of PDESs,
as proposed in this paper, constitutes an approach in which abstraction techniques
are dominant.

1.4.6 Problem reduction

One way to reduce the computational complexity is to transpose SCT control
problems into equivalent but easier problems into another theoretical framework.
Under the assumption that L(H) ⊆ L(G), where L(H) = K, and that all states of G

Discrete Event Dyn Syst (2009) 19:213–265 221

and H are marked, the problem of computing the supremal controllable sublanguage
of K with respect to L(G) and �u (the set of uncontrollable events) is equivalent
to finding the greatest bisimulation relation between H and G with respect to
�u (Barret and Lafortune 1998). The computational complexity of the latter is
significantly smaller than the former. Exploiting this solution in synthesis procedures
can be advantageous, particularly in the construction of on-line supervisors in which
reachability and blockingness are not of interest.

In conclusion, none of these paradigms and techniques offer universal solutions,
since they all have strengths and weaknesses compared with the others. Some of
them may be particularly effective for a family of applications, while others may be
inappropriate.

2 Preliminaries

The concepts introduced in this section are part of the work originally developed by
Ramadge and Wonham (1987), Li and Wonham (1988) and Li (1991). It was later
extended by others, including Kumar et al. (1993), Takai et al. (1995) and Takai and
Kodama (1997).

A DES is modeled by an automaton G := (X, �, δ, x0, Xm), where X is a set
of states; � is a finite set of events divided into two disjoint subsets �c and �u of
controllable and uncontrollable events, respectively; δ : X ×� → X is the partial
transition function; x0 is the initial state; and Xm is the subset of marked states, which
represents the completed tasks. It is assumed that G is accessible; that is, all states
are reachable from x0 (Takai and Kodama 1997).

An SFBC function for G is a total function f : X → �, where � := {�′ | �u ⊆
�′ ⊆ �}. If σ ∈ f (x), then σ is enabled at x; otherwise, it is disabled. An element of
� is called a control action. For σ ∈ �, the predicate fσ on X is defined by fσ (x) :⇔
σ ∈ f (x). Thus, f may be described by a family of predicates { fσ | σ ∈ �}.

Let δ(x, σ)!mean that δ(x, σ) is defined (for s ∈ �∗, δ(x, s) and δ(x, s)! are defined
in the usual way and in particular δ(x, ε)! always holds). The supervisor, represented
by f , and the DES, represented by G, are embodied in a closed loop defined
by G f := (X, �, δ f , x0, Xm), where δ f (x, σ) := δ(x, σ) if δ(x, σ)! and fσ (x), and is
undefined otherwise.

When the states of the DES are partially observed, X is partitioned into a set Y of
equivalence classes, called observability classes. The membership map M : X → Y,
called the mask, is defined as a mapping from the state space X to the observation
space Y. At the current state x ∈ X, the supervisor observes the value M(x) ∈ Y. Let
Fo be the set of SFBC functions that satisfy the following assumption (Li 1991).

Assumption 1 Restriction of an SFBC f to the observability classes—For any x,

x′ ∈ X, M(x) = M(x′)⇒ f (x) = f (x′).

An SFBC f ∈ Fo selects a control action f (x) based on M(x). The pair (Fo,≤) is
a partially ordered set, with f ≤ g if f (x) ⊆ g(x) for all x ∈ X. It is sometimes useful
to denote the observability class of x by its representative element x′ ∈ X and simply
write M(x) = x′.

222 Discrete Event Dyn Syst (2009) 19:213–265

2.1 Predicates and predicate transformers

Let Pred(X) := {true, false}X be the set of all predicates on the state space X. A
predicate Q ∈ Pred(X) generally represents the specification to be fulfilled. A partial
order on Pred(X) is defined1 as:

Q1 ≤ Q2 :⇔
(∀x | x ∈ X : Q1(x)⇒ Q2(x)

)
.

The symbols true and false are overloaded to also denote the predicates that are
true and false everywhere; that is, true(x) = true and false(x) = false for all x.

The predicate Re(G| f) ∈ Pred(X) holds exactly at the reachable states in G f . It
is defined inductively as:

1. Re(G| f)(x0) holds;
2. Re(G| f)(x) ∧ δ f (x, σ)! ⇒ Re(G| f)(δ(x, σ));
3. no other states satisfy Re(G| f).

The predicate transformers M, M−1 M, wpσ and wlpσ (for a fixed σ ∈ �) on
Pred(X) are defined as:

M(Q)(y) :⇔ (∃x | x ∈ X : y = M(x) ∧ Q(x)
);

M−1(M(Q))(x) :⇔ (∃x′ | x′ ∈ X : M(x) = M(x′) ∧ Q(x′)
);

wpσ (Q)(x) :⇔ δ(x, σ)! ∧ Q(δ(x, σ));
wlpσ (Q)(x) :⇔ ¬δ(x, σ)! ∨ Q(δ(x, σ)).

In order to prevent the violation of a specification Q by disabling controllable
events at a state x or a state observed as y, various definitions of bad event set have
been introduced in the literature:

A(Q, x) := {σ ∈ �c | ¬wlpσ (Q)(x)};
Â(Q, y) := {

σ ∈ �c |
(∃x | x ∈ X : y = M(x) ∧ ¬wlpσ (Q)(x)

)};
Ă(Q, y) := {

σ ∈ �c |
(∃x | x ∈ X : y = M(x) ∧ Q(x) ∧ ¬wlpσ (Q)(x)

)}
.

The set Ă(Q, y) is used in the case of partial observation and its definition imposes
that Q(x) holds if x is observed as y (Takai et al. 1995). This condition is removed in
the definition of Â(Q, y) (Takai and Kodama 1997). Finally, the set A(Q, x) is used
in the case of total observation, for which M is the identity function.

1Quantifications have the form (quantifier bound variable | range restriction : quantified expression)
(see, e.g., Gries and Schneider 1995); an empty range in a quantification means that the bound
variable ranges over all possible values. (∃x | P : Q) is read as “there exists x such that P and Q”.
(∀x | P : Q) is read as “for all x such that P, Q holds” or as “for all x, P implies Q”.

Discrete Event Dyn Syst (2009) 19:213–265 223

Reachability predicates can be defined from the above definitions of bad event set.
For instance, R(G, Q) is defined in the usual way. Let Q ∈ Pred(X). If Q(x0) does
not hold, then R(G, Q) := false; otherwise, R(G, Q) is defined by induction as:

1. R(G, Q)(x0) holds;
2. R(G, Q)(x) ∧ σ �∈ A(Q, x) ∧ wpσ (Q)(x)⇒ R(G, Q)(δ(x, σ));
3. no other states satisfy R(G, Q).

The reachability predicate R̂(G, Q) (resp. R̆(G, Q)) is defined in the same manner,
except that A(Q, x) is replaced by Â(Q, M(x)) (resp. Ă(Q, M(x))) in the inductive
case.

Remark 1 If Q is �u-invariant (see the definition in Section 2.2), then the inductive
case (case 2) of the definition of R(G, Q) can be replaced by

R(G, Q)(x) ∧ σ /∈ A(Q, x) ∧ δ(x, σ)! ⇒ R(G, Q)(δ(x, σ))

because of the following property:

R(G, Q)(x) ∧ σ /∈ A(Q, x) ∧ δ(x, σ)!
⇔ R(G, Q)(x) ∧ σ /∈ A(Q, x) ∧ wpσ (Q)(x).

(1)

The remark also holds for R̂(G, Q) and R̆(G, Q).

Finally, the predicate transformer 〈·〉 : Pred(X)→ Pred(X) is defined by

〈Q〉(x) :⇔ (∀s | s ∈ �∗
u : ¬δ(x, s)! ∨ Q(δ(x, s))

)
.

The next proposition shows that 〈·〉 is idempotent.

Proposition 1 Let Q ∈ Pred(X). Then 〈〈Q〉〉 = 〈Q〉.

Proof From ε ∈ �∗
u and δ(x, ε) = x, it is immediate that 〈〈Q〉〉 ≤ 〈Q〉. Next, for

x ∈ X, suppose that 〈Q〉(x) holds but 〈〈Q〉〉(x) does not. Hence, there must exist
s ∈ �∗

u such that δ(x, s)! holds but 〈Q〉(δ(x, s)) does not. This implies that there
exists t ∈ �∗

u such that δ(δ(x, s), t)! and Q(δ(δ(x, s), t)) does not hold. So, δ(x, st)! and
¬Q(δ(x, st)) both hold with st ∈ �∗

u , implying that 〈Q〉(x) does not hold. This is a
contradiction and completes the proof. ��

2.2 Various definitions of controllability

Let Q ∈ Pred(X). The predicate Q is �u-invariant with respect to G if Q ≤ wlpσ (Q)

for all σ ∈ �u. It is normal if M−1(M(Q)) ≤ Q. It is controllable with respect to G if
Q is �u-invariant with respect to G and satisfies a reachability condition that depends
on the underlying context:

(∀σ | σ ∈ �u : Q ≤ wlpσ (Q)
) ∧

⎧
⎨

⎩

Q ≤ R(G, Q) if controllability;
Q ≤ R̆(G, Q) if M-controllability;
Q ≤ R̂(G, Q) if strong M-controllability.

Intuitively, Q is controllable if, for any x that satisfies Q, x is reachable from x0 via a
sequence of states satisfying Q and Q is invariant under a sequence of uncontrollable

224 Discrete Event Dyn Syst (2009) 19:213–265

events. The following theorem states that a nontrivial predicate Q is controllable
when it can be inferred from an SFBC f .

Theorem 1 Let Q ∈ Pred(X), Q �= false. Then Q is controllable if and only if there
exists an SFBC f ∈ Fo such that Re(G| f) = Q.

This theorem is valid whatever the reachability condition considered and its proof
gives a way to construct f . For each σ ∈ �:

fσ (x) :⇔
⎧
⎨

⎩

σ �∈ A(Q, x) if Q is controllable;
σ �∈ Ă(Q, M(x)) if Q is M-controllable;
σ �∈ Â(Q, M(x)) if Q is strongly M-controllable.

The condition σ �∈ A(Q, x) is equivalent to σ ∈ �c ⇒ wlpσ (Q)(x).
Theorem 1 raises the natural question of what kind of control can be exercised

when Q fails to be controllable. Following the conventional procedure, define the
following families of predicates:

CP(Q) := {
Q′ ∈ Pred(X) | Q′ ≤ Q and Q′ is controllable

};
C(Q) := {

Q′ ∈ Pred(X) | Q′ ≤ Q and Q′ is M-controllable
};

SC(Q) := {
Q′ ∈ Pred(X) | Q′ ≤ Q and Q′ is strongly M-controllable

};
CN (Q) := {

Q′ ∈ Pred(X) | Q′ ≤ Q and Q′ is controllable and normal
}
.

The supremal element supCP(Q) exists in CP(Q) and is equal to R(G, 〈Q〉). The
supremal elements supSC(Q) and sup CN (Q) exist, but they are obtained from an
iterative computational procedure rather than being given by a compact expres-
sion as for sup CP(Q) (Takai and Kodama 1997; Li 1991). The supremal element
sup C(Q) does not always exist, because, contrary to Â, Ă fails to be antimonotone
with respect to its first argument. Finally, CN (Q) ⊆ SC(Q) ⊆ C(Q) ⊆ CP(Q), where
the first inclusion is valid under a certain condition on the mask (Takai and
Kodama 1997).

2.3 State feedback supervisors

The �u-invariance property plays a key role in the derivation of SFBC functions,
particularly when reachability is not a concern. If Q fails to be �u-invariant, the
predicate supCI(Q) is then targeted, where CI(Q) is the set of all �u-invariant
predicates stronger than Q. Let the function H : Pred(X)→ Pred(X) be defined by
(Ramadge and Wonham 1987)

H(T) := Q ∧
∧

σ∈�u

wlpσ (T).

Then, sup CI(Q) is the greatest fixed point of H, which is equal to 〈Q〉 as shown by
the following proposition.

Proposition 2 νH = 〈Q〉.

Discrete Event Dyn Syst (2009) 19:213–265 225

Proof By a standard result of lattice theory (Davey and Priestley 1990), it is sufficient
to show (i) 〈Q〉 ≤ H(〈Q〉) and (ii) for any U ∈ Pred(X), U ≤ H(U) implies U ≤ 〈Q〉.
(i) Let x ∈ X and suppose that 〈Q〉(x) holds. Then Q(x) must hold. By

Proposition 1, 〈·〉 is idempotent. Also, �u ⊆ �∗
u . Thus:

true ⇔ 〈Q〉(x)⇔ 〈〈Q〉〉(x) ⇔ (∀s | s ∈ �∗
u : ¬δ(x, s)! ∨ 〈Q〉(δ(x, s))

)

⇒ (∀σ | σ ∈ �u : ¬δ(x, σ)! ∨ 〈Q〉(δ(x, σ))
)

⇔ (∀σ | σ ∈ �u : wlpσ (〈Q〉)(x)
)⇔ (∧

σ∈�u
wlpσ (〈Q〉)) (x).

This shows that

〈Q〉 ≤ Q ∧
∧

σ∈�u

wlpσ (〈Q〉) = H(〈Q〉).

(ii) Suppose U ≤ H(U). The goal is to show that U ≤ 〈Q〉. So, assume U(x). Let us
show that 〈Q〉(x) holds by proving that if δ(x, s)!, then Q(δ(x, s)), for any s ∈ �∗

u .
Because U ≤ H(U) ≤ Q, it is sufficient to prove that if δ(x, s)!, then U(δ(x, s)),
for any s ∈ �∗

u . The proof is by induction on the length of s.

• Base case, s = ε: This is direct by δ(x, ε)! and U(x) ⇔ U(δ(x, ε)).
• Induction step: Let s = tσ , for some t ∈ �∗

u and σ ∈ �u. Assume δ(x, s)!.
Then, δ(x, t)!, so that, by the induction hypothesis, U(δ(x, t)). Because
U ≤ H(U) ≤ wlpσ (U), then U(δ(δ(x, t), σ)); that is, U(δ(x, s)). ��

Based on this result, the �u-invariance property for a given predicate Q, which
has been defined as Q ≤ wlpσ (Q) for all σ ∈ �u, is equivalent to Q ≤ 〈Q〉. Both
conditions are used in this paper.

Proposition 3 Let Q ∈ Pred(X) be such that Q is �u-invariant and Q(x0) holds, and
let f be the SFBC function that corresponds to Q.

1. If δ f (x, σ)! ⇔ σ /∈ A(Q, x) ∧ δ(x, σ)! for all x ∈ X and σ ∈ �, then Re(G| f) =
R(G, Q).

2. If δ f (x, σ)! ⇒ σ /∈ A(Q, x) for all x ∈ X and σ ∈ �, then Re(G| f) ≤ R(G, Q).

The same properties hold if A and R are replaced by Ă (with M(x) instead of x) and
R̆, respectively, or by Â (with M(x) instead of x) and R̂, respectively.

Proof

1. When Q(x0) holds, there is only one difference in the formal structure of the
definition of Re(G| f) and that of R(G, Q): the antecedent of the implication
in the inductive case (case 2) of the definitions. Because Q is �u-invariant,
Eq. 1 holds, and thus the antecedent in the definition of R(G, Q) is equivalent
to R(G, Q)(x) ∧ σ /∈ A(Q, x) ∧ δ(x, σ)!. Thus the definitions of Re(G| f) and
R(G, Q) have the same structure when δ f (x, σ)! ⇔ σ /∈ A(Q, x) ∧ δ(x, σ)!.

2. The argument is similar, using the hypothesis and δ f (x, σ)! ⇒ δ(x, σ)!.
The proof is the same for Ă, R̆ and for Â, R̂. ��

226 Discrete Event Dyn Syst (2009) 19:213–265

Let the SFBC functions f ∗, f̆ and f̂ be defined as follows for all σ ∈ �c and x ∈ X:

f ∗σ (x) :⇔ σ �∈ A(〈Q〉, x); (2)

f̆σ (x) :⇔ σ �∈ Ă(〈Q〉, M(x)); (3)

f̂σ (x) :⇔ σ �∈ Â(〈Q〉, M(x)). (4)

Let Q be such that 〈Q〉(x0) holds. In the case of total observation, f ∗ is optimal
and Re(G| f ∗) = R(G, 〈Q〉) (by Proposition 3 (1)). This SFBC function is slightly
different from the one given by Wonham (2006), but it should be noted that
f ∗σ (x) may be evaluated arbitrarily when δ(x, σ) is undefined. In the case of partial
observation, the SFBC f̆ is such that supSC(Q) ≤ R̆(G, 〈Q〉) = Re(G| f̆). Thus,

f̂ ∗ ≤ f̆ ,

where f̂ ∗ is the optimal SFBC function that corresponds to the supremal element
supSC(Q) (Takai and Kodama 1998).

The following proposition gives a means to compute f̆ or f̂ from f ∗.

Proposition 4

f̆ (x) =
(⋂

x′ | M(x) = M(x′) ∧ 〈Q〉(x′) : f ∗(x′)
)
; (5)

f̂ (x) =
(⋂

x′ | M(x) = M(x′) : f ∗(x′)
)
. (6)

Proof

σ �∈ f̆ (x)

⇔ σ ∈ Ă(〈Q〉, M(x))

⇔ σ ∈ �c ∧
(∃x′ | x′ ∈ X : M(x) = M(x′) ∧ 〈Q〉(x′) ∧ ¬wlpσ (〈Q〉)(x′)

)

⇔ (∃x′ | x′ ∈ X : M(x) = M(x′) ∧ 〈Q〉(x′) ∧ σ ∈ A(〈Q〉, x′)
)

⇔ (∃x′ | x′ ∈ X : M(x) = M(x′) ∧ 〈Q〉(x′) ∧ σ �∈ f ∗(x′)
)

⇔ σ ∈
(⋃

x′ | x′ ∈ X ∧ M(x) = M(x′) ∧ 〈Q〉(x′) : f ∗(x′)
)

,

where f ∗(x′) := � − f ∗(x′).
The other result is proved in a similar manner. ��

The reasons behind the selection of these SFBC functions are based on the follow-
ing observations. Recently, the notion of weak controllability has been introduced
and defined by dropping the reachability condition Q ≤ R(G, Q) in the definition of
controllability (Ma and Wonham 2005). This condition is computationally expensive
and unnecessary for the synthesis of an SFBC function. The main argument is that,
if Q is weakly controllable, then R(G, Q) is controllable. Unfortunately, this result
cannot be extended to the case of partial observation when R̂ is used instead of
R (Bherer et al. 2006a). Nevertheless, if Q is weakly controllable, then R̆(G, Q)

is M-controllable (Takai and Kodama 1998). It follows that R̆(G, 〈Q〉) is a better

Discrete Event Dyn Syst (2009) 19:213–265 227

approximation for Q than supSC(Q). Furthermore, f̆ as defined by Eq. 3 is maximal
in the sense that there is no f such that Re(G| f) = R̆(G, 〈Q〉) and f̆ < f (Takai
et al. 1995).

3 Parameterized discrete event systems

Let us consider a PDES GN , where N is a parameter that denotes the number of
processes, defined from the finite composition of a replicated structure

Pi := (Xi, �s ∪�i, δi),

where Xi is a finite set of states indexed by i; �s is a finite set of non-indexed,
controllable events; �i is a finite set of events indexed by i and partitioned into
two subsets �c,i and �u,i of controllable and uncontrollable events, respectively; and
δi : Xi × (�s ∪�i)→ Xi is the partial transition function. The replicated structure
represents the behavior of similar processes. The parameter N can be replaced by
any number n ∈ N. The events that belong to �s are shared by all processes and
allow for synchronization.

The concept of replicated structure is translated into a PSA (Attie and Emerson
1998). Formally, let θ := { j/ i} be a substitution such that θ i = j (1 ≤ i, j ≤ N).

Assumption 2 PSA—(∀i, j | 1 ≤ i, j ≤ N : Pj = θ Pi), where

θ Pi := (θ Xi, �s ∪ θ�c,i ∪ θ�u,i, θδi);
θ Xi := Xθ i := {xθ i | xi ∈ Xi};

θ�c,i := �c,θ i := {σθ i | σi ∈ �c,i};
θ�u,i := �u,θ i := {σθ i | σi ∈ �u,i};

θδi(xi, σ) := δθ i(xθ i, σ) if σ ∈ �s;
θδi(xi, σi) := δθ i(xθ i, σθ i) if σi ∈ �i.

Therefore, a process can be derived from any other process by index substitution.
A global state x ∈ X N is represented by a tuple of N local states. Let x[i] denote
the i-th component of x. The transition structure GN is defined from a synchronous
composition for events in �s and an interleaving composition for events in each
�i. Thus, GN := (X N, �N, δN), where �N = �s ∪�1 ∪ · · · ∪�N and (δN(x, σ))[i] =
δi(x[i], σ) if σ ∈ �s ∪�i and (δN(x, σ))[i] = x[i] otherwise. An instance of a PDES,
GN , is denoted by (Gn, xn

0), where xn
0 ∈ Xn is the initial state.

To illustrate the previous definitions, let us consider the running example of
N users under control trying to acquire a single resource while satisfying various
constraints based on their identity.

Example 1 Figure 2a shows a transition diagram that represents the behavior of user
i (1 ≤ i ≤ N). It includes three states: Ii (Idle), Ri (Requesting) and Ui (Using).
For instance, the user can move from state Ii to state Ri on event αi (request
the resource), then from state Ri to state Ui on event βi (allocate the resource)

228 Discrete Event Dyn Syst (2009) 19:213–265

a b

Fig. 2 Replicated structures for the users (a, b)

and, finally, from state Ui to state Ii on event γi (release the resource). There are
two additional controllable transitions, labeled r, to reset all users in the initial
configuration in which all users are idle, one from state Ri to state Ii and a self loop
on state Ii. Events αi and βi are controllable.

Definition 1 Let x := 〈x[1], x[2], . . . , x[n]〉 ∈ Xn. Then

Mn(x) := 〈M1(x[1]), M2(x[2]), . . . , Mn(x[n])〉,
where Mi : Xi → Yi is the mask for process i.

The next definitions introduce the projection and substitution operators on global
states, events, sets of events and strings of events. They are useful to establish
relationships between a system consisting of n processes and a system consisting of
n0 processes, where n0 ≤ n.

Definition 2 Let n0, n ∈ N, where 1 ≤ n0 ≤ n. Let J n
n0

be the set of subsets of indices
defined by J n

n0
:= {J | J ⊆ {i | 1 ≤ i ≤ n} ∧ |J| = n0}.

In the sequel, the expression “Let J ∈ J n
n0

” means “Let J = { j1, . . . , jn0} and 1 ≤
j1 < · · · < jn0 ≤ n”.

Definition 3 Let J ∈ J n
n0

. The projection operator ↑J on a global state x ∈ Xn is a
function ↑J : Xn → X j1 × · · · × X jn0

that is defined as:

↑J x := 〈x[j1], . . . , x[jn0]〉.

Definition 4 Let J ∈ J n
n0

. The substitution operator θJ on a global state x ∈ X j1 ×
· · · × X jn0

is a function θJ : X j1 × · · · × X jn0
→ Xn0 that expresses the simultaneous

replacement of process indices j1, . . . , jn0 by process indices 1, . . . , n0, respectively.
It is defined as:

θJ x := 〈{1/j1}(x[1]), . . . , {n0/jn0}(x[n0])〉.

Discrete Event Dyn Syst (2009) 19:213–265 229

Definition 5 Let J ∈ J n
n0

. The projection operator ↑J on an event σ ∈ �n is a function
↑J : �n → �s ∪� j1 ∪ · · · ∪� jn0

∪ {ε} that is defined as: ↑Jσ := σ if σ ∈ �s or σ ∈ �i

and i ∈ J; and ↑Jσ := ε if σ ∈ �i and i �∈ J.

Definition 6 Let J ∈ J n
n0

. The substitution operator θJ on an event σ ∈ �s ∪� j1 ∪
· · · ∪� jn0

∪ {ε} is a function θJ : �s ∪� j1 ∪ · · · ∪� jn0
∪ {ε} → �n0 ∪ {ε} that is de-

fined as: θJσ := σ if σ ∈ �s; θJσ := {k/jk}σ if σ ∈ � jk and jk ∈ J; and θJε := ε.

Definition 7 Let � ⊆ �s ∪� j1 ∪ · · · ∪� jn0
∪ {ε} and J ∈ J n

n0
. The operator θJ on a

set of events is a function θJ : 2�s∪� j1∪···∪� jn0
∪{ε} → 2�n0∪{ε} that is defined as: θJ� :=

{θJσ | σ ∈ �}.

Let J := θJ ◦ ↑J . If x ∈ Xn, J x is well defined and J : Xn → Xn0 . Further-
more, if σ ∈ �n, Jσ is well defined and J : �n → �n0 ∪ {ε}.

Definition 8 Let J ∈ J n
n0

. The operator J on a string of events is a function J :
(�n)∗ → (�n0)∗ that is recursively defined as: Jε := ε and Jsσ := (Js)(Jσ),
where σ ∈ �n and s ∈ (�n)∗.

Example 2 Let n0 = 3, n = 5 and consider the system introduced in Example 1. Let
x = 〈U1, I2, R3, U4, R5〉 and s = α2γ4γ1rα3. If J = {2, 3, 4}, then J x = 〈I1, R2, U3〉
and Js = α1γ3rα2.

Remark 2 Let s ∈ (�n0)∗, J ∈ J n
n0

and θJ = {1/j1, . . . , n0/jn0}. Then θ−1
J s exists, since

θ−1
J = { j1/1, . . . , jn0/n0}. Also, J(θ

−1
J s) = θJ(θ

−1
J s) = s and s = θJt ⇔ t = θ−1

J s. It
should be noted that an element of (�n0)∗ is also an element of (�n)∗.

Remark 3 Let x ∈ Xn0 and J ∈ J n
n0

. Then J(θ
−1
J x) = θJ(θ

−1
J x) = x and x = θJ y ⇔

y = θ−1
J x. The last equivalence also holds if k/jk ∈ θJ , x ∈ Xk and y ∈ X jk .

Remark 4 Let x ∈ Xn, J ∈ J n
n0

and s ∈ (�n −�s)
∗. Then δn(x, s)! ⇒ δn(x,↑Js)!. This

is easy to see by noting that a transition with event σi does not affect the definedness
of transitions with event σ j if i �= j, because no synchronization occurs.

Besides PSA as a condition on the processes, a system under partial observation
must satisfy another similarity assumption imposed on the mask. Intuitively, it
ensures that the mask is the same for every system process up to index substitution.

Assumption 3 MSA—(∀i | 1 ≤ i ≤ N : θ Mi(xi) = Mθ i(xθ i)).

Several relationships may be established between a system composed of n
processes and a system of n0 processes under the assumptions PSA and MSA. Some
of them are presented here. The following lemmas show that each diagram in Fig. 3

230 Discrete Event Dyn Syst (2009) 19:213–265

Fig. 3 Commutative diagrams

commutes and give necessary and sufficient conditions for δn(x, s) to be defined with
respect to equivalent information in the state space of dimension n0.

Lemma 1 Let x ∈ Xn and J ∈ J n
n0

. Then Mn0(J x) = J Mn(x).

Proof

Mn0 (J x)

= 〈Typing of J〉
Mn0(〈(J x)[1], . . . , (J x)[n0]〉)

= 〈Definition 1 〉
〈M1((J x)[1]), . . . , Mn0((J x)[n0])〉

= 〈Definitions 3 and 4 〉
〈M1({1/j1}(x[j1])), . . . , Mn0({n0/jn0}(x[jn0]))〉

= 〈MSA 〉
〈{1/j1}Mj1(x[j1]), . . . , {n0/jn0}Mjn0

(x[jn0])〉
= 〈Definition 4 〉

θJ〈Mj1(x[j1]), . . . , Mjn0
(x[jn0])〉

= 〈Definition 1 〉
θJ〈(Mn(x))[j1], . . . , (Mn(x))[jn0]〉

= 〈Definition 3 and definition of J 〉
J Mn(x) ��

Lemma 2 Let x ∈ Xn, σ ∈ �n and J ∈ J n
n0

. If δn(x, σ)!, then

δn0(J x,Jσ) = Jδ
n(x, σ).

If σ ∈ �i with i ∈ J, then δn0(J x, Jσ)! ⇔ δn(x, σ)!.

Discrete Event Dyn Syst (2009) 19:213–265 231

Proof There are three cases to consider.

1. First case: σ is an indexed event, say σi ∈ �i and i �∈ J.

δn0 (J x, Jσi)

= 〈 Definitions 5 and 6 〉
δn0(J x, ε)

= 〈 δ(x, ε) = x 〉
J x

= 〈 i �∈ J and hence, for j ∈ J, (δn(x, σi))[j] = x[j] & δn(x, σ)! 〉
Jδ

n(x, σi)

2. Second case: σ is an indexed event, say σ jk ∈ � jk and jk ∈ J.

δn0(J x, Jσ jk)

= 〈Typing of J & Definitions 5 and 6 〉
δn0(〈(J x)[1], . . . , (J x)[n0]〉, σk)

= 〈Definition of δn0 〉
〈(J x)[1], . . . , δk((J x)[k], σk), . . . , (J x)[n0]〉

= 〈Definitions 3 and 4 〉
〈{1/j1}(x[j1]), . . . , δk({k/jk}(x[jk]), σk), . . . , {n0/jn0}(x[jn0])〉

= 〈PSA 〉
〈{1/j1}(x[j1]), . . . , {k/jk}δ jk(x[jk], σ jk), . . . , {n0/jn0}(x[jn0])〉

= 〈Definition 4 〉
θJ〈x[j1], . . . , δ jk(x[jk], σ jk), . . . , x[jn0]〉

= 〈Definition of δn 〉
θJ〈(δn(x, σ jk))[j1], . . . , (δn(x, σ jk))[jk], . . . , (δn(x, σ jk))[jn0]〉

= 〈Definition 3 and definition of J 〉
Jδ

n(x, σ jk)

Since the hypothesis δn(x, σ)! is not used in the proof, each term of the equality
is defined precisely when the other is. Because the operator J is total, this
means that δn0(J x, Jσ)! ⇔ δn(x, σ)!. This also implies that if δn(x, σ)!, then
the equality holds.

232 Discrete Event Dyn Syst (2009) 19:213–265

3. Third case: σ is a common event, σ ∈ �s.

δn0(J x, Jσ)

= 〈Typing of J & Definitions 5 and 6 〉
δn0(〈(J x)[1], . . . , (J x)[n0] 〉, σ)

= 〈Definition of δn0 〉
〈δ1((J x)[1], σ), . . . , δn0((J x)[n0], σ)〉

= 〈Definitions 3 and 4 〉
〈δ1({1/j1}(x[j1]), σ), . . . , δn0({n0/jn0}(x[jn0]), σ)〉

= 〈PSA 〉
〈{1/j1}δ j1(x[j1], σ), . . . , {n0/jn0}δ jn0

(x[jn0], σ)〉
= 〈Definition 4 〉

θJ〈δ j1(x[j1], σ), . . . , δ jn0
(x[jn0], σ)〉

= 〈Definition of δn & δn(x, σ)! 〉
θJ〈(δn(x, σ))[j1], . . . , (δn(x, σ))[jn0]〉

= 〈Definition 3 and definition of J 〉
Jδ

n(x, σ) ��

Lemma 3 Let x ∈ Xn and J ∈ J n
n0

.

1. If s ∈ (�n)∗ and δn(x, s)!, then δn0(J x,Js) = Jδ
n(x, s).

2. If s ∈ (�n −�s)
∗ and s = ↑Js, then δn0(J x,Js)! ⇔ δn(x, s)!.

Proof

1. The proof is by induction. The base case is s = ε. The result follows by using
Jε = ε and the fact that, for all x, δ(x, ε) = x:

δn0(J x, Js) = δn0(J x, ε) = J x = Jδ
n(x, ε) = Jδ

n(x, s).

The induction case is s = tσ , for some t ∈ (�n)∗ and σ ∈ �n. Assume that
δn0(J x,Jt) = Jδ

n(x, t) if δn(x, t)!. Since δn(x, s)! implies δn(x, t)!, this is
equivalent to assuming δn0(J x,Jt) = Jδ

n(x, t). The result follows by using
Definition 8, the fact that δ(x, ab) = δ(δ(x, a), b) for all x, a, b, the induction
hypothesis and Lemma 2 (noting that δn(x, s)! implies δn(δn(x, t), σ)!):

δn0(J x, Js) = δn0(J x, J(tσ)) = δn0(J x, (Jt)(Jσ))

= δn0(δn0(J x, Jt), Jσ) = δn0(Jδ
n(x, t), Jσ)

= Jδ
n(δn(x, t), σ) = Jδ

n(x, tσ) = Jδ
n(x, s).

2. The proof by induction is similar to the preceding one. For the base case s = ε,
the result follows from δn0(J x, ε)! and δn(x, ε)!. For the induction case s = tσ ,

Discrete Event Dyn Syst (2009) 19:213–265 233

assume that δn0(J x, Jt)! ⇔ δn(x, t)! if t ∈ (�n −�s)
∗ and t = ↑Jt. Since the

hypotheses on s imply t ∈ (�n −�s)
∗ and t = ↑Jt, this is equivalent to assuming

δn0(J x,Jt)! ⇔ δn(x, t)!.

δn0(J x, Js)!
⇔ 〈Detailed steps are as in the proof of the first item 〉

δn0(δn0(J x,Jt),Jσ)!
⇔ 〈 For all x, a, b,δ(δ(x, a), b)! ⇒ δ(x, a)! 〉

δn0(J x,Jt)! ∧ δn0(δn0(J x,Jt), Jσ)!
⇔ 〈 Induction hypothesis 〉

δn(x, t)! ∧ δn0(δn0(J x, Jt),Jσ)!
⇔ 〈 Part 1 of this lemma 〉

δn(x, t)! ∧ δn0(Jδ
n(x, t), Jσ)!

⇔ 〈 s ∈ (�n −�s)
∗ ∧ s = ↑Js ⇒ σ ∈ �n −�s ∧ σ = ↑Jσ

⇒ σ ∈ �i with i ∈ J & Lemma 2 〉
δn(x, t)! ∧ δn(δn(x, t), σ)!

⇔ 〈 s = tσ & Definition of ! for δ 〉
δn(x, s)! ��

Lemma 4 Let x ∈ Xn and σ ∈ �n. Then

δn(x, σ)! ⇔ (∀J | J ∈ J n
n0
: δn0(J x, Jσ)!) .

Proof The right implication (⇒) is a direct consequence of Lemma 2.
The proof of (⇐) is by contraposition. Suppose that δn(x, σ) is undefined.

Then, there exists i (1 ≤ i ≤ n) such that δi(x[i], σ) is undefined and either σ = σi or
σ ∈ �s. Let J ∈ J n

n0
, with i = jk ∈ J. If σ = σi, then, by PSA, δk({k/jk}(x[jk]), σk) is

undefined; it follows that δn0(J x,Jσ) is undefined, because δk({k/jk}(x[jk]), σk) =
δk((J x)[k], Jσ jk). If σ ∈ �s, then, by PSA, δk({k/jk}(x[jk]), σ) is undefined;
it follows that δn0(J x, Jσ) is undefined, because δk({k/jk}(x[jk]), σ) =
δk((J x)[k], Jσ). ��

Lemma 5 Let x ∈ Xn and s ∈ (�n)∗. Then

δn(x, s)! ⇔ (∀J | J ∈ J n
n0
: δn0(J x, Js)!) .

Proof The right implication (⇒) is a direct consequence of Lemma 3.
The proof of (⇐) is by contraposition. Suppose that δn(x, s) is undefined. Then

s = tσu for some t, u ∈ (�n)∗ and σ ∈ �n such that δn(x, t)! and δn(δn(x, t), σ) is

234 Discrete Event Dyn Syst (2009) 19:213–265

undefined. By Lemma 4, there exists J ∈ J n
n0

such that δn0(Jδ
n(x, t), Jσ) is un-

defined. But

δn0(J x, Js)!
⇔ 〈 s = tσu 〉

δn0(J x, J(tσu))!
⇔ 〈Definition 8 〉

δn0(J x, (Jt)(Jσ)(Ju))!
⇔ 〈 δ(x, ab) = δ(δ(x, a), b) for all x, a, b 〉

δn0(δn0(δn0(J x, Jt),Jσ),Ju)!
⇒ 〈 Since the outer δn0 is defined, its left argument is defined 〉

δn0(δn0(J x,Jt), Jσ)!
⇔ 〈 δn(x, t)! & Lemma 3 〉

δn0(Jδ
n(x, t), Jσ)!

so that δn0(J x, Js) is undefined. ��

4 Soundness of properties under similarity assumptions

In order to draw conclusions about a system of arbitrary size from a system of
bounded size with properties of interest (e.g., �u-invariance, normality), specifica-
tions must exhibit symmetries. The method proposed in this paper relies on no
particular specification language. The specification must, however, be given by a
parameterized predicate QN ∈ Pred(X N), which expresses conditions on indexed
states. The predicates Qn0 and Qn, with n0 ≤ n, are instances of QN and represent
the specifications for the system of bounded size (with n0 processes) and a system of
arbitrary size (with n processes), respectively.

Example 3 Let us consider the PDES described in Example 1. The following para-
meterized predicates are possible specifications for this system:

QN
1 (x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i �= j : ¬(x[i] = Ui ∧ x[j] = U j)

);
QN

2 (x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i < j : ¬(x[i] = Ri ∧ x[j] = U j)
);

QN
3 (x) :⇔ (∀i, j, k, l | 1 ≤ i, j, k, l ≤ N ∧ distinct(i, j, k, l) :

¬(x[i] = Ui ∧ x[j] = U j ∧ x[k] = Uk ∧ x[l] = Ul)
)
.

The first predicate forbids two users from sharing the resource. The second predicate
is equivalent to giving priority to the user with the lowest number when the resource

Discrete Event Dyn Syst (2009) 19:213–265 235

is free and simultaneously requested by some users or preventing a user to request
the resource when it is already used by a user with a higher number. Finally, the last
predicate permits at most three users to share the resource.

Assumption 4 SSA—The assumption is

(∃n0 |:
(∀n | n ≥ n0 :

(∀x | x ∈ Xn : Qn(x)⇔ (∀J | J ∈ J n
n0
: Qn0(J x)

))))
.

Intuitively, SSA imposes the following restriction on instances of QN : a state x ∈
Xn satisfies Qn if and only if all the projections of x on the state space of dimension
n0 satisfy Qn0 . SSA is closed under arbitrary conjunctions and disjunctions as shown
by the next two propositions and illustrated by the companion examples.

Proposition 5 Let QN be a parameterized predicate that satisfies SSA for a given n0.
Then QN satisfies SSA for any m ≥ n0.

Proof The proof is by induction on the value of m.

• Base case, m = n0: This is direct, since QN satisfies SSA with n0.
• Induction step: Assume that QN satisfies SSA for a given k ≥ n0. Then

(∀J | J ∈ J n
k+1 : Qk+1(J x)

)

⇔ 〈 Induction hypothesis with the specific instance Qk+1 〉
(∀J | J ∈ J n

k+1 :
(∀J′ | J′ ∈ J k+1

k : Qk(J′(J x))
))

⇔ 〈 {J′(J x) | J ∈ J n
k+1 ∧ J′ ∈ J k+1

k } = {J x | J ∈ J n
k } 〉

(∀J | J ∈ J n
k : Qk(J x)

)

⇔ 〈 Induction hypothesis 〉
Qn(x). ��

For a given n0, if QN and Q′N satisfy SSA, then QN ∧ Q′N satisfies SSA (by
distributivity of ∀ over ∧). According to Proposition 5, if QN and Q′N satisfy SSA
for given n0 and n′0, respectively, then QN ∧ Q′N satisfies SSA with max(n0, n′0).

236 Discrete Event Dyn Syst (2009) 19:213–265

Example 4 Let us consider the parameterized predicates QN
1 and QN

2 in Example 3.
The following proof shows that QN

2 satisfies SSA with n0 = 2.

(∀J | J ∈ J n
2 : Q2

2(J x)
)

⇔ 〈Definitions of Qn
2 and J n

n0
& De Morgan 〉

(∀ j1, j2 | 1 ≤ j1 < j2 ≤ n : (∀i, j | 1 ≤ i, j ≤ 2 ∧ i < j :
({ j1, j2}x)[i] �= Ri ∨ ({ j1, j2}x)[j] �= Uj

))

⇔ 〈 The constraints on i and j yield i = 1 and j = 2 〉
(∀ j1, j2 | 1 ≤ j1 < j2 ≤ n : ({ j1, j2}x)[1] �= R1 ∨ ({ j1, j2}x)[2] �= U2

)

⇔ 〈 J := θJ ◦ ↑J & Applying ↑{ ji, j2} 〉
(∀ j1, j2 | 1 ≤ j1 < j2 ≤ n : (θ{ j1, j2}〈x[j1], x[j2]〉)[1] �= R1

∨ (θ{ j1, j2}〈x[j1], x[j2]〉)[2] �= U2
)

⇔ 〈Definition 4 〉
(∀ j1, j2 | 1 ≤ j1 < j2 ≤ n : 〈{1/j1}(x[j1]), {2/j2}(x[j2])〉[1] �= R1

∨ 〈{1/j1}(x[j1]), {2/j2}(x[j2])〉[2] �= U2
)

⇔ 〈 Component selection 〉
(∀ j1, j2 | 1 ≤ j1 < j2 ≤ n : {1/j1}(x[j1]) �= R1 ∨ {2/j2}(x[j2]) �= U2

)

⇔ 〈 Remark 3 〉
(∀ j1, j2 | 1 ≤ j1 < j2 ≤ n : x[j1] �= { j1/1}(R1) ∨ x[j2] �= { j2/2}(U2)

)

⇔ 〈 Index substitution 〉
(∀ j1, j2 | 1 ≤ j1 < j2 ≤ n : x[j1] �= R j1 ∨ x[j2] �= Uj2

)

⇔ 〈 Renaming the bound variables 〉
(∀i, j | 1 ≤ i < j ≤ n : x[i] �= Ri ∨ x[j] �= Uj

)

⇔ 〈Definition of Qn
2 & De Morgan 〉

Qn
2(x)

It can similarly be shown that QN
1 also satisfies SSA with n0 = 2. Therefore, QN

1 ∧
QN

2 satisfies SSA with n0 = 2. It should be noted that SSA is not closed under
negation, since the predicate ¬QN

1 does not satisfy SSA.

Proposition 6 Let QN and Q′N be two parameterized predicates that satisfy SSA for
given n0 and n′0, respectively. Then QN ∨ Q′N satisfies SSA with n0 + n′0; that is, SSA
is closed under arbitrary disjunctions.

Proof The equivalent formula

¬(Qn ∨ Q′n)(x)⇔ (∃J | J ∈ J n
n0+n′0

: ¬(Qn0+n′0 ∨ Q′n0+n′0)(J x)
)

Discrete Event Dyn Syst (2009) 19:213–265 237

is proved instead.

¬(Qn ∨ Q′n)(x)

⇔ ¬Qn(x) ∧ ¬Q′n(x)

⇔ 〈 SSA 〉
(∃J | J ∈ J n

n0
: ¬Qn0(J x)

) ∧ (∃J′ | J′ ∈ J n
n′0
: ¬Q′n′0(J′x)

)

⇔ 〈For ⇒, choose J′′ ∈ J n
n0+n′0

such that J ⊆ J′′ ∧ J′ ⊆ J′′ and

use Proposition 5 & For ⇐ , use SSA 〉
(∃J′′ | J′′ ∈ J n

n0+n′0
: ¬Qn0+n′0(J′′x) ∧ ¬Q′n0+n′0(J′′x)

)

⇔ (∃J′′ | J′′ ∈ J n
n0+n′0

: ¬(Qn0+n′0 ∨ Q′n0+n′0)(J′′x)
) ��

Example 5 Let us consider the parameterized predicate QN
1 in Example 3 and the

following parameterized predicate:

QN
4 (x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i �= j : ¬(x[i] = Ri ∧ x[j] = R j)

)
.

These predicates satisfy SSA with n0 = 2. Let x = 〈R1, R2, U3, U4〉. Q4
1 ∨ Q4

4(x)

does not hold even if Q2
1 ∨ Q2

4 holds for all the projections of x. However, according
to Proposition 6, QN

1 ∨ QN
4 satisfies SSA with n0 = 4.

The following proposition establishes that, if QN satisfies SSA, then so does 〈QN〉.
It should be noted that the strings of uncontrollable events s and t used in the proof of
this proposition do not contain shared events because �s ∩�n

u = ∅ and �s ∩�n0
u = ∅,

respectively, by definition of �s.

Proposition 7 Let QN be a parameterized predicate that satisfies SSA for a given n0.
Then 〈QN〉 satisfies SSA with n0; that is, for all n ≥ n0 and for all x ∈ Xn, 〈Qn〉(x)⇔
(∀J | J ∈ J n

n0
: 〈Qn0〉(J x)).

Proof Suppose Qn(x)⇔ (∀J | J ∈ J n
n0
: Qn0(J x)). Proving the formula 〈Qn〉(x)⇔

(∀J | J ∈ J n
n0
: 〈Qn0〉(J x)) amounts to the same thing as proving the equivalent

formula ¬〈Qn〉(x)⇔ (∃J | J ∈ J n
n0
: ¬〈Qn0〉(J x)).

¬〈Qn〉(x)

⇔ 〈 Definition of 〈·〉 〉
(∃s | s ∈ (

�n
u

)∗ : δn(x, s)! ∧ ¬Qn(δn(x, s))
)

⇔ 〈 SSA 〉
(∃s | s ∈ (

�n
u

)∗ : δn(x, s)! ∧ (∃J | J ∈ J n
n0
: ¬Qn0(Jδ

n(x, s))
))

⇔ 〈 Distributivity of ∧ over ∃ & J not free in δn(x, s)! 〉
(∃s | s ∈ (

�n
u

)∗ : (∃J | J ∈ J n
n0
: δn(x, s)! ∧ ¬Qn0(Jδ

n(x, s))
))

238 Discrete Event Dyn Syst (2009) 19:213–265

⇔ 〈 Lemma 3 & Interchange of dummies 〉
(∃J | J ∈ J n

n0
: (∃s | s ∈ (

�n
u

)∗ : δn(x, s)! ∧ ¬Qn0(δn0(J x, Js))
))

⇔ 〈 (∃t | t ∈ (
�n0

u

)∗ : t = Js
)

is true 〉
(∃J | J ∈ J n

n0
: (∃s | s ∈ (

�n
u

)∗ : (∃t | t ∈ (
�n0

u

)∗ : t = Js
)

∧ δn(x, s)! ∧ ¬Qn0(δn0(J x,Js))
))

⇔ 〈 Distributivity of ∧ over ∃ &

t not free in δn(x, s)! ∧ ¬Qn0(δn0(J x,Js)) 〉
(∃J | J ∈ J n

n0
: (∃s | s ∈ (

�n
u

)∗ : (∃t | t ∈ (
�n0

u

)∗ :
t = Js ∧ δn(x, s)! ∧ ¬Qn0(δn0(J x,Js))

)))

⇔ 〈 Interchange of dummies & Using t = Js 〉
(∃J | J ∈ J n

n0
: (∃t | t ∈ (

�n0
u

)∗ : (∃s | s ∈ (
�n

u

)∗ :
t = Js ∧ δn(x, s)! ∧ ¬Qn0(δn0(J x, t))

)))

⇔ 〈 Distributivity of ∧ over ∃ & s not free in ¬Qn0(δn0(J x, t)) 〉
(∃J | J ∈ J n

n0
: (∃t | t ∈ (

�n0
u

)∗ : (∃s | s ∈ (
�n

u

)∗ : t = Js ∧ δn(x, s)!)

∧ ¬Qn0(δn0(J x, t))
))

⇔ 〈 For ⇐, choose s := ↑Js &

For ⇒, use s ∈ (
�n

u

)∗ ⇒ ↑Js ∈ (
�n

u

)∗
,Js = J↑Js and

δn(x, s)! ⇒ δn(x,↑Js)! (by Remark 4) 〉
(∃J | J ∈ J n

n0
: (∃t | t∈(

�n0
u

)∗ : (∃s | ↑Js∈(
�n

u

)∗ : t=J↑Js ∧ δn(x,↑Js)!)

∧ ¬Qn0(δn0(J x, t))
))

⇔ 〈 J↑Js = θJ↑J↑Js = θJ↑Js &

t = θJ↑Js ⇔ θ−1
J t = ↑Js (by Remark 2) 〉

(∃J | J ∈ J n
n0
: (∃t | t ∈ (

�n0
u

)∗ : (∃s | ↑Js∈(
�n

u

)∗ : θ−1
J t=↑Js ∧ δn(x, θ−1

J t)!)

∧ ¬Qn0(δn0(J x, t))
))

⇔ 〈 Distributivity of ∧ over ∃ & s not free in δn(x, θ−1
J t)! 〉

(∃J | J ∈ J n
n0
: (∃t | t ∈ (

�n0
u

)∗ : (∃s | ↑Js ∈ (
�n

u

)∗ : θ−1
J t = ↑Js

)

∧ δn(x, θ−1
J t)! ∧ ¬Qn0(δn0(J x, t))

))

⇔ 〈 Since t ∈ (
�n0

u

)∗
, there exists a string of events s such that

↑Js ∈ (
�n

u

)∗ and θ−1
J t = ↑Js, namely, s := θ−1

J t 〉
(∃J | J ∈ J n

n0
: (∃t | t ∈ (

�n0
u

)∗ : δn(x, θ−1
J t

)! ∧ ¬Qn0(δn0(J x, t))
))

⇔ 〈 Lemma 3(2) & Remark 2 〉
(∃J | J ∈ J n

n0
: (∃t | t ∈ (

�n0
u

)∗ : δn0(J x, t)! ∧ ¬Qn0(δn0(J x, t))
))

⇔ 〈 Definition of 〈·〉 〉
(∃J | J ∈ J n

n0
: ¬〈Qn0〉(J x)

) ��

Discrete Event Dyn Syst (2009) 19:213–265 239

Example 6 This example shows that Proposition 7 would not stand in the presence
of uncontrollable events in �s. Consider the replicated structure in Fig. 2b, in which
event r is uncontrollable, and the predicate QN

1 in Example 3. It is easy to observe
that 〈Q2

1〉(〈R1, R2〉) does not hold (with the string s = r), but 〈Q3
1〉(〈R1, R2, U3〉)

holds, since event r cannot occur for user 3.
Therefore, wlpα1

(〈Q3
1〉)(〈I1, R2, U3〉) �⇒ wlpα1

(〈Q2
1〉)(〈I1, R2〉), which means that

disabling an event σ �∈ �s, such as α1, in the lower dimension may be too restrictive
in the higher dimension. This is not the case for an event σ ∈ �s, because disabling
such an event has no impact if the users cannot synchronize in the higher dimension.

SSA relates Qn and Qn0 . In order to provide broader results, the restriction of Qn

with respect to a subset of J n
n0

is introduced.

Definition 9 Let QN be a parameterized predicate that satisfies SSA for a given n0

and let I ⊆ J n
n0

. The restriction of Qn with respect to I , denoted �Qn�I , is defined
as: �Qn�I(x) :⇔ (∀J | J ∈ I : Qn0(J x)), where it is implicitly assumed that if J ∈ I ,
J = { j1, . . . , jn0} and 1 ≤ j1 < · · · < jn0 ≤ n.

The definition of �Qn�I is consistent with SSA, because �Qn�J n
n0
=Qn for all n≥n0

is equivalent to QN satisfies SSA (with n0). Generally, �QN�I does not satisfy SSA
even if QN does (see Example 11). In the next section, a set of subsets of indices I
represents an interconnection relation between processes.

The following two propositions reveal the preservation, under the similarity
assumptions, of �u-invariance and normality properties when the state space is
expanded from dimension n0 to dimension n.

Proposition 8 Let QN be a parameterized predicate that satisfies SSA for a given n0.
For all n ≥ n0, predicate �Qn�I is �n

u-invariant if Qn0 is �n0
u -invariant.

Proof By definition of the �n
u -invariance property, the goal is to show that

(∀σ | σ ∈ �n
u : �Qn�I ≤ wlpσ (�Qn�I)

)
,

which is equivalent to

(∀σ | σ ∈ �n
u :

(∀x | x ∈ Xn : �Qn�I(x) ∧ δn(x, σ)! ⇒ �Qn�I(δn(x, σ))
))

.

Suppose that σ ∈ �n
u and δn(x, σ)!. Let us show that

�Qn�I(x)⇒ �Qn�I(δn(x, σ)).

�Qn�I(x)

⇔ 〈Definition 9 & δn(x, σ)! & Lemma 4 〉
(∀J | J ∈ I : Qn0(J x)

) ∧ (∀J | J ∈ J n
n0
: δn0(J x, Jσ)!)

⇒ 〈 J ∈ I ⇒ J ∈ J n
n0

& Range strengthening 〉
(∀J | J ∈ I : Qn0(J x)

) ∧ (∀J | J ∈ I : δn0(J x, Jσ)!)

240 Discrete Event Dyn Syst (2009) 19:213–265

⇔ 〈Distributivity 〉
(∀J | J ∈ I : Qn0(J x) ∧ δn0(J x,Jσ)!)

⇔ 〈 Jσ = ε ∨Jσ �= ε & Distributivity 〉
(∀J | J ∈ I : (Jσ = ε ∧ Qn0(J x) ∧ δn0(J x, Jσ)!)

∨(Jσ �= ε ∧ Qn0(J x) ∧ δn0(J x, Jσ)!))

⇒ 〈 δ(x, ε)! & δ(x, ε) = x &

σ ∈ �n
u ∧Jσ �= ε ⇒ Jσ ∈ �n0

u & Qn0 is �n0
u -invariant 〉

(∀J | J ∈ I : (Jσ = ε ∧ Qn0(δn0(J x, Jσ)))

∨ (Jσ �= ε ∧ Qn0(δn0(J x,Jσ)))
)

⇔ 〈Distributivity & Jσ = ε ∨Jσ �= ε 〉
(∀J | J ∈ I : Qn0(δn0(J x, Jσ))

)

⇔ 〈Assumption δn(x, σ)! & Lemma 2 〉
(∀J | J ∈ I : Qn0(J(δ

n(x, σ)))
)

⇔ 〈Definition 9 〉
�Qn�I(δn(x, σ)) ��

Example 7 The following counterexample shows that, in Proposition 8, the reverse
implication does not hold, in particular when I = J n

n0
.

Consider a replicated structure close to the one in Fig. 2a, but with events αi and
γi as controllable events and without event r. The parameterized predicate2

QN(x) :⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i �= j : ¬(Ii ∧ I j) ∧ ¬(Ri ∧ R j) ∧ ¬(Ui ∧U j)
)

is such that, for n ≥ 4, Qn = false. Thus Qn ≤ 〈Qn〉 for n ≥ 4.
In this example, n0 = 2. The states 〈I1, R2〉, 〈I1, U2〉, 〈R1, I2〉, 〈R1, U2〉, 〈U1, I2〉 and

〈U1, R2〉 satisfy Q2, but only the states 〈I1, R2〉, 〈I1, U2〉, 〈R1, I2〉 and 〈U1, I2〉 satisfy
〈Q2〉. Therefore, Q2 �≤ 〈Q2〉.

Proposition 9 Let QN be a parameterized predicate that satisfies SSA for a given n0.
For all n ≥ n0, predicate �Qn�I is normal if Qn0 is normal.

Proof By definition of the normality property, the goal is to show that

(Mn)−1(Mn(�Qn�I)) ≤ �Qn�I

2In several examples, the abbreviation Ai is used for x[i] = Ai, where Ai ∈ Xi.

Discrete Event Dyn Syst (2009) 19:213–265 241

when assuming (Mn0)−1(Mn0(Qn0)) ≤ Qn0 . This is equivalent to showing

(∀x | x ∈ Xn : (Mn)−1(Mn(�Qn�I))(x)⇒ �Qn�I(x)
)
.

(Mn)−1(Mn(�Qn�I))(x)

⇔ 〈 See the definition of M−1 M in Section 2.1 〉
(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ �Qn�I(x′)

)

⇔ 〈Definition 1 & Definition 9 〉
(∃x′ | x′ ∈ Xn : (∀J | J ∈ J n

n0
: J Mn(x) = J Mn(x′)

)

∧ (∀J | J ∈ I : Qn0(J x′)
))

⇒ 〈 J ∈ I ⇒ J ∈ J n
n0

& Range strengthening & Lemma 1 〉
(∃x′ | x′ ∈ Xn : (∀J | J ∈ I : Mn0(J x) = Mn0(J x′)

)

∧ (∀J | J ∈ I : Qn0(J x′)
))

⇔ 〈Distributivity 〉
(∃x′ | x′ ∈ Xn : (∀J | J ∈ I : Mn0(J x) = Mn0(J x′) ∧ Qn0(J x′)

))

⇒ 〈 Interchange of dummies 〉
(∀J | J ∈ I : (∃x′ | x′ ∈ Xn : Mn0(J x) = Mn0(J x′) ∧ Qn0(J x′)

))

⇒ 〈 Taking x′′ = J x′ 〉
(∀J | J ∈ I : (∃x′′ | x′′ ∈ Xn0 : Mn0(J x) = Mn0(x′′) ∧ Qn0(x′′)

))

⇔ 〈 See the definition of M−1 M in Section 2.1 〉
(∀J | J ∈ I : (Mn0)−1(Mn0(Qn0))(J x)

)

⇒ 〈 Qn0 is normal 〉
(∀J | J ∈ I : Qn0(J x)

)

⇔ 〈Definition 9 〉
�Qn�I(x) ��

Example 8 The following counterexample shows that, in Proposition 9, the reverse
implication does not hold, in particular when I = J n

n0
.

Consider the replicated structure in Fig. 2a, the parameterized predicate in Exam-
ple 7 and the mask M defined as: Mi(Ii) = Mi(Ri) = Si and Mi(Ui) = Ti. For n ≥ 4,
Qn = false and thus (Mn)−1(Mn(Qn)) = false. Therefore, (Mn)−1(Mn(Qn)) ≤ Qn.

As in Example 7, n0 = 2 and the states 〈I1, R2〉, 〈I1, U2〉, 〈R1, I2〉, 〈R1, U2〉,
〈U1, I2〉 and 〈U1, R2〉 satisfy Q2. Since the observable states 〈S1, S2〉, 〈S1, T2〉 and
〈T1, S2〉 satisfy M2(Q2), (M2)−1(M2(Q2))(x) holds for any state x that belongs to
X2 − {〈U1, U2〉}. Especially, 〈I1, I2〉 satisfies (M2)−1(M2(Q2)), but not Q2.

Controllability, M-controllability and strong M-controllability cannot generally
be preserved, since they all contain a reachability condition in their definition.
Let a state x ∈ Xn be such that Qn(x) holds. Even if all the projections of x are

242 Discrete Event Dyn Syst (2009) 19:213–265

reachable in the state space of dimension n0, x may not be reachable. Generally,
Qn0 ≤ R(Gn0 , Qn0) �⇒ Qn ≤ R(Gn, Qn). The next example illustrates this fact.

Example 9 Consider the replicated structure in Fig. 4 and the following parameter-
ized predicate:

QN(x)⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i �= j :
¬(1i ∧ 3 j) ∧ ¬(1i ∧ 4 j) ∧ ¬(2i ∧ 2 j) ∧ ¬(2i ∧ 4 j)

∧¬(3i ∧ 3 j) ∧ ¬(3i ∧ 4 j) ∧ ¬(3i ∧ 5 j) ∧ ¬(4i ∧ 4 j)
)
.

The predicate QN satisfies SSA with n0 = 2. If the initial state of each instance
of the PDES is derived from the parameterized state xN

0 = 〈11, . . . , 1N〉, which is
automorphic, it is a simple matter to verify that Q2 ≤ R(G2, Q2) and Q3(〈11, 12, 53〉)
holds, but that R(G3, Q3)(〈11, 12, 53〉) does not hold. Hence, the SSA does not
preserve the reachability property when the state space is expanded from dimension
n0 to dimension n, even in the presence of synchronization.

Despite this negative result, the next propositions and corollaries establish re-
lationships between bad event sets in the state spaces of dimension n0 and n.
Knowing that an SFBC function can be expressed in terms of a bad event set
(see Eqs. 2 to 4 on page 14), these results are fundamental because they suggest a
means for computing an SFBC function on Xn from an SFBC function on Xn0 . In
the case of strong M-controllability, this association is not straightforward, because a
discordant condition appears (see Condition (8) of Proposition 10).

As usual, the occurrence of an event that belongs to a bad event set associated
with an observability class included in Xn0 leads to a state that violates Qn0 . The bad
event sets in dimension n are, however, calculated from the restriction of Qn.

Fig. 4 Replicated structure
for Example 9

Discrete Event Dyn Syst (2009) 19:213–265 243

Proposition 10 Let QN be a parameterized predicate that satisfies SSA for a given n0,
and let I ⊆ J n

n0
, x ∈ Xn and σ ∈ �n

c . If δn(x, σ)!, then

(∃J | J ∈ I : Jσ ∈ Â(Qn0 ,J Mn(x))
)

(7)

∨
(∃J | J ∈ I : Jσ = ε

∧ (∃x′ | x′ ∈ Xn0 : J Mn(x) = Mn0(x′) ∧ ¬Qn0(x′)
))

(8)

⇔
σ ∈ Â(�Qn�I, Mn(x)). (9)

Proof
(∃J | J ∈ I : Jσ ∈ Â(Qn0 ,J Mn(x))

)

∨ (∃J | J ∈ I : Jσ = ε ∧ (∃x′ | x′ ∈ Xn0 : J Mn(x) = Mn0(x′) ∧ ¬Qn0(x′)
))

⇔ 〈Definition of Â and wlpσ & δ(x, ε)! & δ(x, ε) = x 〉
(∃J | J ∈ I : Jσ ∈ �n0

c ∧
(∃x′ | x′ ∈ Xn0 : J Mn(x) = Mn0(x′)

∧ δn0(x′,Jσ)! ∧ ¬Qn0(δn0(x′, Jσ))
))

∨ (∃J | J ∈ I : Jσ = ε ∧ (∃x′ | x′ ∈ Xn0 : J Mn(x) = Mn0(x′)

∧ δn0(x′, Jσ)! ∧ ¬Qn0(δn0(x′,Jσ))
))

⇔ 〈 σ ∈ �n
c ⇒

(
Jσ ∈ �n0

c ⇔ Jσ �= ε
)

& Distributivity 〉
(∃J | J ∈ I : (Jσ �= ε ∨Jσ = ε)

∧ (∃x′ | x′ ∈ Xn0 : J Mn(x) = Mn0(x′)

∧ δn0(x′,Jσ)! ∧ ¬Qn0(δn0(x′,Jσ))
))

⇔ 〈 Excluded middle & Identity of ∧ 〉
(∃J | J ∈ I : (∃x′ | x′ ∈ Xn0 : J Mn(x) = Mn0(x′)

∧ δn0(x′,Jσ)! ∧ ¬Qn0(δn0(x′,Jσ))
))

⇔ 〈Use x′ = J x′′ with x′ ∈ Xn0 and x′′ ∈ Xn 〉
(∃J | J ∈ I : (∃x′′ | x′′ ∈ Xn : J Mn(x) = Mn0(J x′′)

∧ δn0(J x′′,Jσ)! ∧ ¬Qn0(δn0(J x′′,Jσ))
))

⇔ 〈 J is the complement of J & There exists a state x′ ∈ Xn such that

δn(x′, σ)! ∧ ↑J x′ = ↑J x′′ ∧ ↑J Mn(x′) = ↑J Mn(x), namely the state

x′ defined by ↑J x′ = ↑J x′′ ∧ ↑J x′ = ↑J x. Indeed,

• if i ∈ J, then (δn(x′, σ))[i] = (δn(x, σ))[i], since δn(x, σ)! by
hypothesis;

244 Discrete Event Dyn Syst (2009) 19:213–265

• if i ∈ J and σ ∈ �s ∪�i, then (δn(x′, σ))[i] = (δn(x′′, σ))[i] by
PSA and because δn0(J x′′, Jσ)!;

• if i ∈ J and σ ∈ � j, with i �= j, then (δn(x′, σ))[i] = x′ by defini-
tion of δn.

〉
(∃J | J ∈ I : (∃x′′ | x′′ ∈ Xn : J Mn(x) = Mn0(J x′′)

∧ δn0(J x′′,Jσ)! ∧ ¬Qn0(δn0(J x′′,Jσ))

∧ (∃x′ | x′ ∈ Xn : δn(x′, σ)! ∧ ↑J x′ = ↑J x′′

∧ ↑J Mn(x′) = ↑J Mn(x)
)))

⇔ 〈 Nesting & Distributivity of ∧ over ∃ & x′ not free in J Mn(x) =
Mn0(J x′′) ∧ δn0(J x′′, Jσ)! ∧ ¬Qn0(δn0(J x′′,Jσ)) 〉

(∃J | J ∈ I : (∃x′, x′′ | x′, x′′ ∈ Xn : J Mn(x) = Mn0(J x′′)

∧ δn0(J x′′,Jσ)! ∧ ¬Qn0(δn0(J x′′,Jσ))

∧ δn(x′, σ)! ∧ ↑J x′ = ↑J x′′ ∧ ↑J Mn(x′) = ↑J Mn(x)
))

⇔ 〈 J x′ = J x′′, because ↑J x′ = ↑J x′′〉
(∃J | J ∈ I : (∃x′, x′′ | x′, x′′ ∈ Xn : J Mn(x) = Mn0(J x′)

∧ δn0(J x′,Jσ)! ∧ ¬Qn0(δn0(J x′,Jσ))

∧ δn(x′, σ)! ∧ ↑J x′ = ↑J x′′ ∧ ↑J Mn(x′) = ↑J Mn(x)
))

⇔ 〈 Lemma 1 & Nesting & Distributivity of ∧ over ∃ & x′′ not

free in J Mn(x) = J Mn(x′) ∧ δn(x′, σ)! ∧ ¬Qn0(δn0(J x′,Jσ))

∧ ↑J Mn(x) = ↑J Mn(x′) & Lemma 4 〉
(∃J | J ∈ I : (∃x′ | x′ ∈ Xn : J Mn(x) = J Mn(x′) ∧ δn(x′, σ)!

∧ ¬Qn0(δn0(J x′,Jσ)) ∧ ↑J Mn(x) = ↑J Mn(x′)

∧ (∃x′′ | x′′ ∈ Xn : ↑J x′ = ↑J x′′
)))

⇔ 〈 J Mn(x) = J Mn(x′)⇔ ↑J Mn(x) = ↑J Mn(x′) (apply θ−1
J to the

left equality and θJ to the right one to get the other) &

There exists a state x′′ ∈ Xn such that ↑J x′ = ↑J x′′〉
(∃J | J ∈ I : (∃x′ | x′ ∈ Xn : ↑J Mn(x) = ↑J Mn(x′) ∧ δn(x′, σ)!

∧¬Qn0(δn0(J x′,Jσ)) ∧ ↑J Mn(x) = ↑J Mn(x′)
))

⇔ 〈 v = w ⇔ ↑Jv = ↑Jw ∧ ↑Jv = ↑Jw & Interchange of dummies 〉
(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : Mn(x) = Mn(x′) ∧ δn(x′, σ)!

∧¬Qn0(δn0(J x′,Jσ))
))

Discrete Event Dyn Syst (2009) 19:213–265 245

⇔ 〈 Lemma 2 & Distributivity of ∧ over ∃ &

J not free in Mn(x) = Mn(x′) ∧ δn(x′, σ)! 〉
(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ δn(x′, σ)!

∧ (∃J | J ∈ I : ¬Qn0(Jδ
n(x′, σ))

))

⇔ 〈 QN satisfies SSA & Definition 9 〉
(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ δn(x′, σ)! ∧ ¬�Qn�I(δn(x′, σ))

)

⇔ 〈Definition of Â and wlpσ & Hypothesis σ ∈ �n
c 〉

σ ∈ Â(�Qn�I, Mn(x)) ��

Corollary 1 Let QN be a parameterized predicate that satisfies SSA for a given n0,
and let I ⊆ J n

n0
, x ∈ Xn and σ ∈ �n

c . If δn(x, σ)!, �〈Qn〉�I(x) holds and the mask is the
identity function, then

(∀J | J ∈ I ∧Jσ �= ε : Jσ �∈ A(〈Qn0〉, J x)
)⇔ σ �∈ A(�〈Qn〉�I, x).

Proof M(x) = x and Â(Q, M(x)) = A(Q, x) when the mask is the identity function.
Since 〈QN〉 satisfies SSA with n0 by Proposition 7, Qn0 and Qn can be replaced in
Proposition 10 by 〈Qn0〉 and 〈Qn〉, respectively, and Condition (8) is false because
�〈Qn〉�I(x)⇒ 〈Qn0〉(J x) for any J ∈ I . Finally, Jσ ∈ A(〈Qn0〉,J x)⇒ Jσ �= ε.

��

Corollary 1 shows that, under total observation, σ is not a bad event for the system
with n processes if and only if Jσ is not a bad event for the system with n0 processes
for any projection J ∈ I such that Jσ �= ε. This result makes it possible to conceive
a strongly sound synthesis method.

Corollary 2 Let QN be a parameterized predicate that satisfies SSA for a given n0, and
let I ⊆ J n

n0
, x ∈ Xn and σ ∈ �n

c . If δn(x, σ)!, then

(∀J | J ∈ I ∧Jσ �= ε : Jσ �∈ Â(〈Qn0〉, J Mn(x))
)

∧ (∀J | J ∈ I ∧Jσ = ε : (∀x′ | x′ ∈ Xn0 ∧J Mn(x) = Mn0(x′) : 〈Qn0〉(x′)
))

⇔
σ �∈ Â(�〈Qn〉�I, Mn(x)).

Compared with Proposition 10, only a weaker result can be established for Ă be-
cause of a further condition in its definition with respect to that of Â. Unfortunately,
this will only lead to a weakly sound synthesis method.

Proposition 11 Let QN be a parameterized predicate that satisfies SSA for a given n0,
and let I ⊆ J n

n0
, x ∈ Xn and σ ∈ �n

c . Then

σ ∈ Ă(�Qn�I, Mn(x))⇒ (∃J | J ∈ I : Jσ ∈ Ă(Qn0 ,J Mn(x))
)
.

246 Discrete Event Dyn Syst (2009) 19:213–265

Proof

σ ∈ Ă(�Qn�I, Mn(x))

⇔ 〈 Definition of Ă & Hypothesis σ ∈ �n
c 〉

(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ �Qn�I(x′) ∧ δn(x′, σ)!
∧ ¬�Qn�I(δn(x′, σ))

)

⇔ 〈 QN satisfies SSA & Definition 9 〉
(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ �Qn�I(x′) ∧ δn(x′, σ)!

∧ ¬(∀J | J ∈ I : Qn0(Jδ
n(x′, σ))

))

⇔ 〈 De Morgan & Lemma 2 〉
(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ �Qn�I(x′) ∧ δn(x′, σ)!

∧ (∃J | J ∈ I : ¬Qn0(δn0(J x′,Jσ))
))

⇔ 〈 J not free in Mn(x) = Mn(x′) ∧ �Qn�I(x′) ∧ δn(x′, σ)! &

Distributivity of ∧ over ∃ 〉
(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : Mn(x) = Mn(x′) ∧ �Qn�I(x′) ∧ δn(x′, σ)!

∧ ¬Qn0(δn0(J x′,Jσ))
))

⇒ 〈 QN satisfies SSA & �Qn�I(x′)⇒ Qn0(J x′) by Definition 9 &

Monotonicity of ∃ 〉
(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : Mn(x) = Mn(x′) ∧ Qn0(J x′) ∧ δn(x′, σ)!

∧ ¬Qn0(δn0(J x′,Jσ))
))

⇒ 〈 Jσ = ε ∧ Qn0(J x′) ∧ ¬Qn0(δn0(J x′,Jσ))

⇒ Qn0(J x′) ∧ ¬Qn0(δn0(J x′, ε))⇒ Qn0(J x′) ∧ ¬Qn0(J x′)

⇒ false & Monotonicity of ∃ 〉
(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : J Mn(x) = J Mn(x′) ∧ Qn0(J x′)

∧ δn(x′, σ)! ∧Jσ �= ε

∧ ¬Qn0(δn0(J x′,Jσ))
))

⇔ 〈 Lemma 1 & σ ∈ �n
c ⇒ (Jσ ∈ �n0

c ⇔ Jσ �= ε) 〉
(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : J Mn(x) = Mn0(J x′) ∧ Qn0(J x′)

∧ δn(x′, σ)! ∧Jσ ∈ �n0
c

∧ ¬Qn0(δn0(J x′,Jσ))
))

⇒ 〈 δn(x′, σ)! ⇒ δn0(J x′,Jσ)! by Lemma 4 & Monotonicity of ∃ 〉
(∃x′ | x′ ∈ Xn : (∃J | J ∈ I : J Mn(x) = Mn0(J x′) ∧ Qn0(J x′)

∧ δn0(J x′, Jσ)! ∧Jσ ∈ �n0
c

∧ ¬Qn0(δn0(J x′,Jσ))
))

Discrete Event Dyn Syst (2009) 19:213–265 247

⇔ 〈 Interchange of dummies & x′ not free in Jσ ∈ �n0
c &

Distributivity of ∧ over ∃ 〉
(∃J | J ∈ I : Jσ ∈ �n0

c

∧ (∃x′ | x′ ∈ Xn : J Mn(x) = Mn0(J x′) ∧ Qn0(J x′)

∧ δn0(J x′,Jσ)! ∧ ¬Qn0(δn0(J x′, Jσ))
))

⇔ 〈 Use x′′ = J x′ with x′′ ∈ Xn0 and x′ ∈ Xn 〉
(∃J | J ∈ I : Jσ ∈ �n0

c

∧ (∃x′′ | x′′ ∈ Xn0 : J Mn(x) = Mn0(x′′) ∧ Qn0(x′′)

∧ δn0(x′′,Jσ)! ∧ ¬Qn0(δn0(x′′, Jσ))
))

⇔ 〈 Definition of Ă 〉
(∃J | J ∈ I : Jσ ∈ Ă(Qn0 ,J Mn(x))

) ��

Corollary 3 Let QN be a parameterized predicate that satisfies SSA for a given n0, and
let I ⊆ J n

n0
, x ∈ Xn and σ ∈ �n

c . Then
(∀J | J ∈ I ∧Jσ �= ε : Jσ �∈ Ă(〈Qn0〉, J Mn(x))

)⇒ σ �∈ Ă(�〈Qn〉�I, Mn(x)).

Example 10 This example shows that the reverse implication does not hold in
Proposition 11, even if the state x is legal and δn(x, σ)! as in Proposition 10.

Consider the replicated structure Pi := ({Ai, Bi, Ci, Di, Ei}, {ai}, δi), where the
states Ai, Ci and Di are in the same observability class, the event ai is controllable,
and δi(Ai, ai) = Bi, δi(Bi, ai) = Ci, δi(Ci, ai) = Di and δi(Di, ai) = Ei.

Consider the case in which I = J n
n0

and the specification QN forbids any processes
i and j to be simultaneously in states Ci and E j. Therefore, n0 = 2.

It can be seen that 〈A1, A2, E3〉 is legal and a1 �∈ Ă(Q3, M3(〈A1, A2, E3〉)).
However, for J = {1, 2}, a1 ∈ Ă(Q2, M2(〈A1, A2〉)) because the legal state 〈D1, C2〉,
which is in the same observability class as 〈A1, A2〉, is such that δ2(〈D1, C2〉, a1) is an
illegal state.

Remark 5 Suppose that Qn0 is normal. Then �Qn�I is normal by Proposition 9, which
means that �Qn�I(x)⇔ �Qn�I(x′) for all x and x′ in the same observability class
(the evaluation of a normal predicate gives the same value for all states in the same
observability class). If �Qn�I(x) holds, then Ă(�Qn�I, Mn(x)) = Â(�Qn�I , Mn(x));
otherwise Ă(�Qn�I, Mn(x)) = ∅. Furthermore, if �Qn�I(x) holds, Condition (8) is
always false because Qn0(x′) holds for any x′ ∈ Xn0 observed as J x whatever the
projection J ∈ I (Lemma 1, Definition 9 and normality of Qn0). Therefore, under
the hypothesis that δn(x, σ)! and �Qn�I(x) holds, it can be shown that

(∀J | J ∈ I ∧Jσ �= ε : Jσ �∈ A(Qn0 ,J Mn(x))
)⇔ σ �∈ A(�Qn�I, Mn(x)),

where Ă or Â can substitute for A.

248 Discrete Event Dyn Syst (2009) 19:213–265

Unfortunately, if a predicate Q is normal, but not �u-invariant, then 〈Q〉 is not
necessarily normal and the previous result cannot be extended to 〈Qn0〉 and �〈Qn〉�I .

5 Supervisor synthesis under similarity assumptions

Since the state space grows exponentially with respect to n, it is unrealistic to
compute an SFBC function for an arbitrarily large value of n. Therefore, the synthesis
method proposed in this paper includes two phases: an off-line synthesis and an
on-line synthesis in which n0 and n are involved, respectively. As mentioned in
Prosser et al. (1998), the only assumption needed is that the elapsed time period
between event occurrences be longer than the on-line computation time. These
limitations are reasonable in systems whose events do not occur very frequently or
when computational resources are plentiful.

The off-line synthesis consists in calculating an SFBC function on Xn0 as permis-
sive as possible, with respect to (Gn0 , xn0

0), Qn0 and possibly Mn0 , where n0 usually
denotes a small value. This problem is, in general, undecidable (Wonham 2006),
but since Xi is finite, a correct solution can be mechanically constructed by using a
suitable synthesis algorithm for total observation. In the case of partial observation,
f̆ n0 and f̂ n0 can be computed from f n0∗ by using Eqs. 5 and 6, respectively.

The on-line synthesis includes the use of a symmetric interconnection relation
I ⊆ Nn0 , which is part of the specification process. An n0-ary relation is symmetric in
the sense that if (k1, . . . , kn0) ∈ I , then so is any permutation of (k1, . . . , kn0). Without
loss of generality, these tuples are considered as indistinguishable and (k1, . . . , kn0)

and {k1, . . . , kn0} will be used interchangeably. When using the latter form, I is
handled as a subset of J n

n0
. The goal of an interconnection relation is to indicate the

processes subjected to the specification. While a parameterized predicate captures
constraints on the states of processes, an interconnection relation imposes additional
constraints based on their identity.

Example 11 In addition to the predicates of Example 3, the following interconnec-
tion relations, which define classes of users, could be part of the specification of a
control problem.3

I1 = symmetric-closure({(k1, k2) | 1 ≤ k1, k2 ≤ n ∧ k2 = k1 ⊕ 1});

I2 = symmetric-closure({(k1, 10) | k1 ∈ N ∧ k1 �= 10});

I3 = {(k1, k2) | k1, k2 ∈ N ∧ k1 �= k2 ∧ k1 ≡ k2 (mod 3)};

I4 = {(k1, k2) | k1, k2 ∈ N ∧ k1 �≡ k2 (mod 3)}.

3i⊕ 1 equals 1 if i = n, and i+ 1 otherwise.

Discrete Event Dyn Syst (2009) 19:213–265 249

For instance, Qn
1 used in conjunction with I1 (which represents a ring) forbids two

adjacent users from sharing the resource (like in the dining philosophers problem)
and

�Qn
1�I1(x) ⇔ Q2

1({1,n}x) ∧ (∀i | 1 ≤ i ≤ n− 1 : Q2
1({i,i⊕1}x)

)

⇔ Q2
1(θ{1,n}〈x[1], x[n]〉)

∧ (∀i | 1 ≤ i ≤ n− 1 : Q2
1(θ{i,i⊕1}〈x[i], x[i⊕ 1]〉))

⇔ (∀i | 1 ≤ i ≤ n : ¬(x[i] = Ui ∧ x[i⊕ 1] = Ui⊕1)
)
.

The predicate �QN
1 �I1 is an example of a parameterized predicate that does not

satisfy SSA even if QN
1 does, because changing (through J) the identity of users

that satisfy �Qn
1�I1 can lead to users that do not satisfy �Qn0

1 �I1 .
The relation I2 (which represents a star) focuses on a specific user. The last

two relations enable users i and j to share the resource depending on whether
i �≡ j (mod 3) or not.

The arity of I must be equal to n0 for two reasons. On the one hand, if the arity
of I were less than n0, some limitations would appear. For instance, the irreflexive
and symmetric binary relation I1 used with Qn

3 (an instance of QN
3 defined in

Example 3) represents a mutual exclusion problem on pairs of adjacent users. In
that particular case, limiting the interconnection relation to a binary relation reduces
expressiveness. It prevents to only forbid the use of the resource by a group of more
than three consecutive users. On the other hand, if the arity of I were greater than
n0, some misinterpretations would be ineluctable. Computing an SFBC function on
Xn from an SFBC function on a state space in a lower dimension would be dealt with
case by case. For instance, what is the meaning of the following relation

I = {(i, j, k) | i, j, k ∈ N ∧ distinct(i, j, k) ∧ (i = 5 ∨ j = 5 ∨ k = 5)}
with respect to a state space of dimension two? However, based on Proposition 5, the
aforementioned computation could be done from an SFBC function on Xm, where
m is equal to the arity of I .

With these ingredients and based on the results in Section 4, the SFBC f n is
calculated in the following way for a given x ∈ Xn:

f n(x) := �n −
⋃

J∈I

(
θ−1

J (�n0 − fn0(J x)) ∪ ξ
)
, (10)

where the term θ−1
J (�n0 − fn0(J x)) yields events that are prohibited because their

projection, with respect to a given J, may lead from J x (or possibly another
state observed as J x under the mask) to a state in which the corresponding n0

interconnected processes violate Qn0 , either directly or after transitions with uncon-
trollable events. The other term, ξ , represents the set of controllable events erased by
J (Jσ = ε), but that must nevertheless be prohibited because there are unsafe
states in the observability class of J x. Recall that J ∈ I implies J = { j1, . . . , jn0}
and 1 ≤ j1 < · · · < jn0 ≤ n. The terms fn0 and ξ are written in bold because they are
the parameters of the synthesis procedure and the substitution of specific objects for

250 Discrete Event Dyn Syst (2009) 19:213–265

fn0 and ξ fixes the context: total observation or partial observation founded on M-
controllability or strong M-controllability.

5.1 The case of total observation

In the case of total observation, the mask is the identity function and ξ is replaced by
∅ in Eq. 10. Furthermore, it will be shown in Section 6 that the synthesis method is
strongly sound; that is,

if Re(Gn0 |fn0) = sup CP(Qn0), then Re(Gn| f n) = R(Gn, �〈Qn〉�I).

For instance, if fn0 is replaced by f n0∗, which is defined by Eq. 2 on page 14, f n is
behaviorally equivalent to the SFBC function derived from the same procedure as
that used to synthesize f n0∗, but by considering the predicate �Qn�I .

Example 12 For the system of Example 1 with QN
1 ∧ QN

2 as specification (QN
1 and

QN
2 are defined in Example 3) and I1 as interconnection relation (I1 is defined in

Example 11), the optimal SFBC is expressed as follows for n0 = 2:

f 2∗(〈I1, U2〉) = {α1}, f 2∗(〈R1, R2〉) = {β2}, f 2∗(〈U1, R2〉) = {β2}

and f 2∗(〈x1, x2〉) = ∅ for all other states, where f 2∗(·) := �2 − f 2∗(·) is the set of
prohibited controllable events (this notation is used to present the results in a concise
form). By using Eq. 10:

f 4(〈R1, I2, U3, R4〉) = θ−1
{1,2} f 2∗({1,2}〈R1, I2, U3, R4〉)

∪ θ−1
{1,4} f 2∗({1,4}〈R1, I2, U3, R4〉)

∪ θ−1
{2,3} f 2∗({2,3}〈R1, I2, U3, R4〉)

∪ θ−1
{3,4} f 2∗({3,4}〈R1, I2, U3, R4〉)

= θ−1
{1,2} f 2∗(〈R1, I2〉) ∪ θ−1

{1,4} f 2∗(〈R1, R2〉)
∪ θ−1

{2,3} f 2∗(〈I1, U2〉) ∪ θ−1
{3,4} f 2∗(〈U1, R2〉)

= θ−1
{1,2}{ } ∪ θ−1

{1,4}{β2} ∪ θ−1
{2,3}{α1} ∪ θ−1

{3,4}{β2}
= {β4} ∪ {α2} ∪ {β4}
= {α2, β4}.

Even if user 3 holds the resource, β1 is not forbidden because users 1 and 3 are not
connected ((1, 3) �∈ I1). Event β4 is prohibited for two reasons.

5.2 The case of partial observation

In the case of partial observation, the expression for ξ depends on the underlying
property. For strong M-controllability, the term θ−1

J (�n0 − fn0(J x)) in Eq. 10

Discrete Event Dyn Syst (2009) 19:213–265 251

Fig. 5 Replicated structure
for the carts

corresponds to Condition (7) in Proposition 10 and Condition (8) indicates that ξ

must be replaced by
{
σ ∈ �n

c | Jσ = ε ∧ (∃x′ | x′ ∈ Xn0 : Mn0(J x) = Mn0(x′) ∧ ¬〈Qn0〉(x′)
)}

. (11)

Indeed, J Mn(x) = Mn0(J x) by Lemma 1 and 〈Qn0〉 is used instead of Qn0 , because
fn0 is replaced by f̂ n0 , which is defined by Eq. 4 on page 14.

In this setting, the set ξ contains events erased by the projection J that is
considered, but that must be disabled because the projection of the state x on J is
in an observability class in which there is an unsafe state (for instance, x′ does not
satisfy 〈Qn0〉). If δn(x, σ)!, this implies that σ must be forbidden by definition of Â. In
fact, let x′′ ∈ Xn be such that x′′[i] = x[i] if i �∈ J, and x′′[jk] = { jk/k}(x′[k]) if jk ∈ J.
It can be checked that Mn(x) = Mn(x′′) and δn(x′′, σ)! (σ �∈ �s because Jσ = ε).
Furthermore, Jδ

n(x′′, σ) = δn0(J x′′,Jσ) = δn0(x′, ε) = x′. By Proposition 7 and
Definition 9, δn(x′′, σ) cannot satisfy �〈Qn〉�I .

When the synthesis method is founded on M-controllability, more states are
reachable under control while maintaining a predicate invariant and ξ is replaced by
∅ as indicated by Corollary 3. The following example illustrates the variation between
these two cases.

Example 13 Consider a cart-traffic control system over a floor-running carrier di-
vided into six sections. The replicated structure for the carts is depicted in Fig. 5.
The fact that cart i is in section k, 0 ≤ k ≤ 5, is represented by the state Sk,i.
The unidirectional movements of cart i from a given section are indicated by the
controllable events μi and νi, and the uncontrollable event ηi. The states S3,i, S4,i and
S5,i are in the same observability class; that is, Mi(S3,i) = Mi(S4,i) = Mi(S5,i). Each
section has a capacity of one, except sections 0 and 1, which have unlimited capacity.
This constraint is formulated by the following parameterized predicate:

QN(x) ⇔ (∀i, j, k | 1 ≤ i, j ≤ N ∧ i �= j∧ 2 ≤ k ≤ 5 : ¬(x[i] = Sk,i ∧ x[j] = Sk, j)
)
.

The system must be controlled in order to provide a safe automatic transportation
of materials for all carts (I = J n

n0
). By definition of Â,

Â(〈Q3〉, M3(〈S0,1, S2,2, S3,3〉)) = {μ1, μ2, ν3}.

252 Discrete Event Dyn Syst (2009) 19:213–265

For instance, the state 〈S0,1, S2,2, S4,3〉 is observed as the state 〈S0,1, S2,2, S3,3〉
and the transition with μ1 from the former to 〈S1,1, S2,2, S4,3〉 is defined, but
〈Q3〉(〈S1,1, S2,2, S4,3〉) does not hold because the uncontrollable transition with η3

from 〈S1,1, S2,2, S4,3〉 leads to 〈S1,1, S2,2, S2,3〉, which does not satisfy Q3.
The evaluation of Â for the projections of 〈S0,1, S2,2, S3,3〉 in the state space of

dimension 2 yields:

Â(〈Q2〉, M2(〈S0,1, S2,2〉)) = Â(〈Q2〉, M2(〈S0,1, S3,2〉)) = ∅;
Â(〈Q2〉, M2(〈S2,1, S3,2〉)) = {μ1, ν2}.

From the above bad event sets, it is impossible to recover the value of Â(〈Q3〉,
M3(〈S0,1, S2,2, S3,3〉)), in particular, event μ1, since θ−1

{2,3}{μ1, ν2} = {μ2, ν3}. However,
{2,3}μ1 = ε,

M2({2,3}〈S0,1, S2,2, S3,3〉) = M2(〈S2,1, S3,2〉) = M2(〈S2,1, S4,2〉)

and 〈Q2〉(〈S2,1, S4,2〉) does not hold. Therefore, the value associated with ξ is {μ1}
according to Eq. 11.

It should be noted that the state 〈S0,1, S2,2, S4,3〉 is ignored in the calculation of
Ă(〈Q3〉, M3(〈S0,1, S2,2, S3,3〉)), which is equal to {μ2, ν3}, because ¬〈Q3〉(〈S0,1,

S2,2, S4,3〉).

It will be shown in Section 6 that

if Re(Gn0 |fn0) = R̂(Gn0 , 〈Qn0〉), then Re(Gn| f n) = R̂(Gn, �〈Qn〉�I)

and

if Re(Gn0 |fn0) = R̆(Gn0 , 〈Qn0〉), then Re(Gn| f n) ≤ R̆(Gn, �〈Qn〉�I).

This means that the synthesis method is strongly sound if fn0 is replaced by f̂ n0 . Once
again, f n is behaviorally equivalent to the SFBC function derived from the same
procedure than the one used to synthesize f̂ n0 , namely the one that implements Eq. 4,
but by considering the predicate �Qn�I . This is not the case if fn0 is replaced by f̆ n0 ,
where f̆ n0 is defined by Eq. 3, because, in that particular case, it will be proved that
the method is only weakly sound.

5.3 Implementation of the on-line synthesis

Equation 10 involves some calculations that are unnecessary when considering the
history of the closed-loop system behavior at run-time. On a state change following
the occurrence of an event σ ∈ �n, it is sufficient to consider the projections that
contain the identity of at least one process among those that have progressed on
σ (this set of processes is denoted by P). The other projections, those for which
J ∩ P = ∅, can be ignored, because J x′ = J x if x′ = δn(x, σ). Indeed, the current

Discrete Event Dyn Syst (2009) 19:213–265 253

Fig. 6 Algorithm for the on-line synthesis

control action can be established by using positive counters, one per controllable
event that belongs to �n

c .
Let γσ be the counter associated with σ ∈ �n

c . Its value gives the number of
projections that prevent the evolution of all processes on σ if σ ∈ �s, or the evolution
of process i on σ if σ ∈ �i. Therefore, if γσ = 0, then σ is enabled; otherwise, it
is disabled. The counters, which are a representation of a multiset of prohibited
events, are updated according to the algorithm in Fig. 6. The initial step (lines 1
to 3) considers only the initial state and all its projections of interconnected processes
as in Eq. 10. Line 4 calculates the set P from local state changes, where M(x′) is the
current observable state that results from an observable state change following the
occurrence of an event when the system was in the previous observable state M(x).
Lines 5 to 11 increase or decrease some counters based on the information deduced
from the previous state. Consider the subset of n0 processes associated with a given
projection J ∈ I and an event σ such that Jσ �= ε. The evolution of these processes
through a sequence of observable states x1, . . . xl , such that Jσ ∈ fn0(J xk)⇔
Jσ ∈ fn0(J xk+1) (1 ≤ k < l), will never change the value of γσ with respect to J
(see the conditions in lines 7–8 and 10–11). If the next state xl+1 results from the
progression of exactly one (on an asynchronous event) or some (on a synchronous
event) of these processes (J ∩ P �= ∅) and¬(Jσ ∈ fn0(J xl)⇔ Jσ ∈ fn0(J xl+1)),
then γσ is increased (resp. decreased) because this time the condition in lines 7–8
(resp. lines 10–11) is satisfied. This indicates that the event σ that was enabled (resp.
disabled) is now disabled (resp. enabled) with respect to J. In the case of partial
observation, internal state changes are equivalent to self loops on a representative
state and the algorithm is still correct because of Assumption 1.

Example 14 This example shows how the counters are updated by the algorithm in
Fig. 6 when applied to a sequence of states from 〈I1, I2, R3, I4〉 to 〈I1, I2, I3, R4〉
on the admissible sequence of events α4α1β3γ3β1γ1, by using the SFBC f 2∗ in

254 Discrete Event Dyn Syst (2009) 19:213–265

Example 12 and the interconnection relation I1 in Example 11. The following trace
shows the evolution of counters:

The projection used to update a counter appears to the right of its value in order to
emphasize a modification. It can be seen that i belongs to this projection on a local
state change of Pi.

5.4 Computational complexity

The worst-case computational complexity for fn0 is still exponential with respect to
n0, but, as n0 is usually small, this step becomes tractable. Additional information
required in the space of dimension n0, namely, the set of states which are in an ob-
servability class that contains a state x such that ¬〈Qn0〉(x), can also be precomputed
before system execution. Thus, the term ξ can be calculated in constant time for a
given J.

The computation of f n(·), by using Eq. 10, relies on the number of elements in
I ⊆ J n

n0
, which is

(n
n0

)
in the worst-case, with n0 now being a constant. Therefore,

the worst-case computational complexity is in O(nn0), which is the same complexity
class as O((n− n0 + 1)n0), where the latter form better highlights the fact that when
n = n0, the computation of f n(·) is done in constant time. Of course, in this last
scenario, the method presents no gain in computational complexity.

However, the algorithm in Fig. 6 considers only
(n−1

n0−1

)
projections in the case of

the occurrence of an asynchronous event (because |P| = 1). The computational cost
is reduced by a factor n/n0. This linear gain on complexity is generally important. For
example, a quadratic algorithm (n0 = 2) becomes linear. Finally, the algorithm could

Discrete Event Dyn Syst (2009) 19:213–265 255

be adapted to the case where |P| is large, for which it is better to use Eq. 10 with
a memoization technique to record the control actions for later reuse. Furthermore,
if none of these control actions disable events, only the initialization of counters to
zero is then required.

6 Soundness of the synthesis method

The proof of the soundness of the synthesis method depends on the SFBC function
used in the state space of dimension n0 and the expression used for ξ when
considering Eq. 10 as (a specification of) the algorithm for computing enabled events.

The following lemmas characterize f n given by Eq. 10 with other expressions
according to substitutions for the parameters fn0 and ξ . These preliminary results
are mainly used for proving the soundness of the synthesis method, but they also
reveal something that is not apparent in Eq. 10. In the case of partial observation, it
seems that the supervisor, represented by Eq. 10, handles the system state x, which it
is not supposed to observe. The next two propositions clearly show that only Mn(x)

is used.

Lemma 6 Let Qn0 be an instance of a parameterized predicate QN, I ⊆ J n
n0

and x ∈
Xn. If, in Eq. 10, f̂ n0 (defined by Eq. 4) and Eq. 11 substitute for fn0 and ξ , respectively,
then

f n(x) = �n
u

∪ {
σ | σ ∈ �n

c

∧ (∀J | J ∈ I ∧Jσ �= ε : Jσ /∈ Â(〈Qn0〉, J Mn(x))
)

∧ (∀J | J ∈ I ∧Jσ = ε :
(∀x′ | x′ ∈ Xn0 ∧J Mn(x) = Mn0(x′) : 〈Qn0〉(x′)

))}
.

Proof
f n(x)

= 〈 Eq. 10 and substitution of f̂ n0 for fn0 〉
�n −⋃

J∈I
(
θ−1

J (�n0 − f̂ n0(J x)) ∪ ξ
)

= 〈 Definition of fσ & Definition 7 〉
�n −⋃

J∈I
({θ−1

J σ ′ | σ ′ ∈ �n0 ∧ ¬ f̂ n0
σ ′ (J x)} ∪ ξ

)

= 〈 Remark 2 & Changing dummy, σ = θ−1
J σ ′ ⇔ σ ′ = Jσ 〉

�n −⋃
J∈I

({σ | Jσ ∈ �n0 ∧ ¬ f̂ n0
Jσ

(J x)} ∪ ξ
)

= 〈 Jσ ∈ �n0 ⇔ Jσ �= ε 〉
�n −⋃

J∈I
({σ | Jσ �= ε ∧ ¬ f̂ n0

Jσ
(J x)} ∪ ξ

)

256 Discrete Event Dyn Syst (2009) 19:213–265

= 〈 Jσ �= ε ∧ ¬ f̂ n0
Jσ

(J x)⇒ Jσ �= ε ∧Jσ �∈ �n0
u ⇒ σ ∈ �n

c &

Replacement of ξ by Eq. 11 & Distributivity 〉
�n − {

σ | (∃J | J ∈ I : σ ∈ �n
c ∧Jσ �= ε ∧ ¬ f̂ n0

Jσ
(J x)

)

∨ (∃J | J ∈ I : σ ∈ �n
c ∧Jσ = ε

∧ (∃x′ | x′ ∈ Xn0 : Mn0(J x) = Mn0(x′)

∧ ¬〈Qn0〉(x′)
))}

= 〈 J not free in σ ∈ �n
c & Distributivity & De Morgan 〉

{
σ | σ �∈ �n

c

∨ (¬(∃J | J ∈ I ∧Jσ �= ε : ¬ f̂ n0
Jσ

(J x)
)

∧ ¬(∃J | J ∈ I ∧Jσ = ε : (∃x′ | x′ ∈ Xn0 ∧ Mn0(J x) = Mn0(x′) :
¬〈Qn0〉(x′)

)))}

= 〈 De Morgan & �n = �n
u ∪�n

c 〉
�n

u ∪
{
σ | σ ∈ �n

c

∧ (∀J | J ∈ I ∧Jσ �= ε : f̂ n0
Jσ

(J x)
)

∧ (∀J | J ∈ I ∧Jσ = ε :
(∀x′ | x′ ∈ Xn0 ∧ Mn0(J x) = Mn0(x′) : 〈Qn0〉(x′)

))}

= 〈 f̂ n0 defined by Eq. 4 & Lemma 1 〉
�n

u ∪
{
σ | σ ∈ �n

c

∧ (∀J | J ∈ I ∧Jσ �= ε : Jσ /∈ Â(〈Qn0〉,J Mn(x))
)

∧ (∀J | J ∈ I ∧Jσ = ε :
(∀x′ | x′ ∈ Xn0 ∧J Mn(x) = Mn0(x′) : 〈Qn0〉(x′)

))} ��

It should be noted that, if f̂ n0∗ (the optimal SFBC function that corresponds
to supSC(Qn0)) were substituted for fn0 in Eq. 10, then the equality should be
replaced by an inclusion. In general, f̂ ∗ ≤ f̂ , since supSC(Q) ≤ 〈Q〉 and Â(Q, y)

is antimonotone in Q.

Lemma 7 Let Qn0 be an instance of a parameterized predicate QN, I ⊆ J n
n0

and

x ∈ Xn. If, in Eq. 10, f̆ n0 (defined by Eq. 3) and ∅ substitute for fn0 and ξ , respectively,
then

f n(x) = �n
u ∪

{
σ | σ ∈ �n

c ∧
(∀J | J ∈ I ∧Jσ �= ε : Jσ /∈ Ă(〈Qn0〉, J Mn(x))

)}
.

Proof The proof is similar to that for Lemma 6, but ξ is replaced by ∅ and Ă is used
instead of Â. ��

Discrete Event Dyn Syst (2009) 19:213–265 257

Lemma 8 Let Qn0 be an instance of a parameterized predicate QN, I ⊆ J n
n0

and x ∈
Xn. If, in Eq. 10, f n0∗ (defined by Eq. 2) and ∅ substitute for fn0 and ξ , respectively,
then

f n(x) = �n
u ∪

{
σ | σ ∈ �n

c ∧
(∀J | J ∈ I ∧Jσ �= ε : Jσ /∈ A(〈Qn0〉, J x)

)}
.

Proof The proof is similar to that for Lemma 6, but ξ is replaced by ∅ and A is used
instead of Â. ��

The following theorems establish the strong or weak soundness of the synthesis
method with respect to various values of its parameters.

Theorem 2 Let QN be a parameterized predicate that satisfies SSA for a given n0 and
let I ⊆ J n

n0
. Let f̂ n0 and Eq. 11 substitute for fn0 and ξ , respectively, in Eq. 10. If

�〈Qn〉�I(xn
0) holds, then Re(Gn| f n) = R̂(Gn, �〈Qn〉�I).

Proof

δ f n
(x, σ)!
⇔ 〈 Definition 〉

σ ∈ f n(x) ∧ δn(x, σ)!
⇔ 〈 Lemma 6 & Corollary 2 〉

(σ ∈�n
u∨(σ ∈�n

c ∧ σ �∈ Â(�〈Qn〉�I, Mn(x)))) ∧ δn(x, σ)!
⇔ 〈 Definition of Â 〉

σ �∈ Â(�〈Qn〉�I, Mn(x)) ∧ δn(x, σ)!
The result then follows from Proposition 3(1) and the facts that �〈Qn〉�I(xn

0) holds
and �〈Qn〉�I is �n

u -invariant (by Proposition 8). ��

It should be noted that if I = J n
n0

then Re(Gn| f n) = R̂(Gn, 〈Qn〉) = Re(Gn| f̂ n).

Theorem 3 Let QN be a parameterized predicate that satisfies SSA for a given
n0 and let I ⊆ J n

n0
. Let f̆ n0 and ∅ substitute for fn0 and ξ , respectively, in Eq. 10. If

�〈Qn〉�I(xn
0) holds, then Re(Gn| f n) ≤ R̆(Gn, �〈Qn〉�I).

Proof The proof is similar to that for Theorem 2, except that Lemma 7, Corollary 3
and Proposition 3(2) are invoked. ��

The fact that the method founded on M-controllability is not strongly sound can
be justified by the presence of the term 〈Q〉(x′) in Eq. 5, which is absent in Eq. 6.
For f̆ n0 , the term 〈Qn0〉(J x′) is too conservative with respect to the corresponding
term 〈Qn〉(x′) for f̆ n. Indeed, for a given x′ ∈ Xn such that Mn(x) = Mn(x′), 〈Qn〉(x′)
might not hold, while 〈Qn0〉(J x′) might hold when Mn0(J x) = Mn0(J x′) for a

258 Discrete Event Dyn Syst (2009) 19:213–265

given J, as in Example 10 (with x = 〈A1, A2, E3〉, x′ = 〈D1, C2, E3〉 and J x′ =
〈D1, C2〉). When the method is founded on strong M-controllability, the deviant
cases (additional events that must be prohibited) are treated by replacing ξ by
Eq. 11. The synthesis method for M-controllability could similarly be adapted to
take into consideration the deviant cases (in order to remove the events that must
not be prohibited). However, contrary to the evaluation of Eq. 11 that uses only
information available in the state space of dimension n0 independently of knowledge
about objects in the state space of dimension n, the identification of a state x′′ ∈ Xn0

for which the evaluation of 〈Qn0〉(x′′) must be viewed as false requires objects in the
state space of dimension n.

So there is a choice for the on-line synthesis of an SFBC function in the case of
partial observation: using f̂ n0 or f̆ n0 . To distinguish between these two possibilities
for f n, the following notation is used:

f n
(Eq. 10)〈 f̂ n0 ,ξ〉 for the former and f n

(Eq. 10)〈 f̆ n0 ,∅〉 for the latter.

Suppose that I = J n
n0

. Since the method is strongly sound for strong M-
controllability, then

Re(Gn| f n
(Eq. 10)〈 f̂ n0 ,ξ〉) = R̂(Gn, 〈Qn〉) = Re(Gn| f̂ n).

However, again with I = J n
n0

,

Re(Gn| f n
(Eq. 10)〈 f̆ n0 ,∅〉) ≤ R̆(Gn, 〈Qn〉) = Re(Gn| f̆ n)

because the method is only weakly sound for M-controllability. The predicates
Re(Gn| f n) of these two SFBC functions are then incomparable in general, because,
by Proposition 4, Re(Gn| f̂ n) ≤ Re(Gn| f̆ n).

In other words, the results of a strongly sound synthesis procedure, like the one
described by Eq. 10 with 〈 f̂ n0 , ξ 〉, are in accordance with those expected in the state
space of dimension n and this choice can be qualified as conservative. In the absence
of strong soundness for M-controllability, the use of Eq. 10 with 〈 f̆ n0 ,∅〉 constitutes
an optimistic choice in the sense that one would expect that the SFBC f n would be
near f̆ n, which is more permissive than f̂ n. This can be the case if 〈Qn0〉 is almost
normal because, under the assumption that Qn0 is normal and �u-invariant, it can
be shown that the synthesis method is strongly sound (�Qn�I is �u-invariant by
Proposition 8 and Remark 5).

Theorem 4 Let QN be a parameterized predicate that satisfies SSA for a given n0

and let I ⊆ J n
n0

. Let f n0∗ and ∅ substitute for fn0 and ξ , respectively, in Eq. 10. If
�〈Qn〉�I(xn

0) holds, then Re(Gn| f n) = R(Gn, �〈Qn〉�I).

Proof The proof is similar to that for Theorem 2, except that Lemma 8 and
Corollary 1 are invoked. ��

The last theorem is compatible with a previous result dealing only with total
observation and the particular case I = J n

n0
(Bherer et al. 2004); that is, f n = f n∗

when f n0∗ substitutes for fn0 .

Discrete Event Dyn Syst (2009) 19:213–265 259

7 Conclusion

The theoretical framework investigated in this paper was originally stimulated by
a lack of scalable synthesis methods, mainly because of the state-space explosion
problem that causes considerable difficulties in the calculation of supervisors for
realistic systems. It is subsumed under the conventional modular control paradigm,
but specialized to systems that exhibit symmetries, for instance, a telephone system
with millions of devices that behave in the same way or a reliable system with many
redundant components. In this framework, a supervisor may demonstrate a form
of robustness because it can dynamically react to some perturbations (addition or
deletion of a process) occurring in the controlled system by taking into account
the number of processes that are alive during the calculation of control actions by
the underlying on-line synthesis algorithm. In the case of total observation and the
case of partial observation founded on strong M-controllability, strong soundness
of the synthesis method relies on the fulfillment of SSA by 〈QN〉, which is true
if i) QN satisfies SSA and ii) all the events that belong to �s are controllable
(otherwise the method would be weakly sound). Nevertheless, the introduction of
interconnection relations provides for considering predicates that do not satisfy SSA,
but they must, however, be obtained from those that satisfy SSA. In the case of partial
observation founded on M-controllability, we have proved that the method is only
weakly sound. Other sorts of soundness could be defined in the cases for which there
is a relationship between SFBC functions constructed in different ways. For instance,
if f̂ n0∗ is used in dimension n0 and f n is compared with f̂ n in dimension n.

7.1 Further remarks on related work

Apart from the few studies on synthesis methods for symmetric systems as men-
tioned in the introduction, much work exploiting symmetry has been done in model
checking. Most approaches suggest that a system be represented by a quotient model
defined from a state equivalence relation based on symmetry. Our method differs
from these as it uses symmetries in order to establish a small cutoff (Emerson
and Kahlon 2000) for the purpose of the off-line phase. It was inspired by work
on program synthesis, which details a method for constructing a program from a
temporal logic specification, for a system consisting of K similar interconnected
sequential processes executing in parallel, based on the calculation of a solution
to a pair-system (Attie and Emerson 1998). In this method, the interconnection
relation is a symmetric binary relation and the specification language is a subset of
an extension of CTL*. In particular, liveness properties cannot be expressed over
a pair of processes. In addition to the use of a different paradigm (SCT) in which
some events are uncontrollable and some states are unobservable, our method allows
expressing safety properties with the aid of general predicates that are not limited to
pair-systems (e.g., the mutual exclusion problem in which at most p > 2 processes
can simultaneously use a resource).

In the case of total observation, a comparison with the conventional modular
control approach is direct when the global specification Q is expressed as a conjunc-
tion of predicates: Q =∧m

i=1 Qi, where m = (n
n0

)
and each Qi represents the same

local constraint, but specific to a given combination of n0 processes. Formally, for

260 Discrete Event Dyn Syst (2009) 19:213–265

all x ∈ Xn, Qi(x)⇔ Qn0(J x) for a given J ∈ J n
n0

. On the one hand, if Re(G| fi) =
sup CP(Qi) and the SFBC f is calculated as fσ := ∧m

i=1 fi,σ for all σ ∈ �, then
Re(G| f) = sup CP(Q) under the assumption that each fi is balanced (Wonham
2006). Thus, the method is strongly sound. The synthesis of the fi cannot distinguish
between synchronous and asynchronous events, since it is done with respect to G, in
which these distinctions cannot be made. However, we have shown that our method
is strongly sound only if all synchronous events are controllable. This difference is
understandable by the synthesis of only one local supervisor with respect to Gn0

(in which only n0 processes agree on a synchronous event) and the use of on-line
renaming transformations. Within this setting and PSA, the unique supervisor does
not need to be balanced for achieving optimality. On the other hand, the modular
approaches, which avoid the calculation of the overall system, impose various
conditions incompatible or too restrictive compared with our approach. For instance,
some turn out badly if an event is shared by all processes (de Queiroz and Cury 2000),
some use natural projections (Komenda et al. 2005) and some take advantage of a
specification defined over a subset of the system alphabet (Schmidt et al. 2006). In
the case of partial observation, unsubstantial results in modular control confine the
ways of making comparisons. However, weak soundness established by Theorem 3
is compatible with a previous result that could achieve strong soundness to the
detriment of the verification of a global condition for each instance (i.e., for each
value of n ≥ n0) of a parameterized predicate (see Theorem 3 in Takai et al. 1995).
Nevertheless, this is contrary to the approach developed in this paper.

Differences between the state-feedback theory of vector DESs (VDESs) and
our framework must also be highlighted. The former is useful for solving control
problems for systems composed of concurrent processes when the specification is
the conjunction of a finite number of linear predicates and all states are observable
(Li and Wonham 1993, 1994). However, the calculation of an SFBC function is only
practicable under several restrictions. First, in general, the uncontrollable part of the
system must be loop-free and the number of processes must be fixed in order to solve
linear integer programming problems on-line (i.e., to avoid the explicit exploration
of the reachability tree off-line). Second, as mentioned in the introduction, an
SFBC function can be expressed in closed form (by using variables that represent
an arbitrary number of processes in a specific state) under additional conditions.
Such structural conditions are unnecessary in our approach. Other points must be
emphasized. For VDESs, parameters are not explicitly used in the modeling of the
specification, even if this possibility should not be excluded in the computation of an
SFBC function in closed form. Processes in a VDES have no identity, limiting the way
of considering some classes of processes unless duplicating some parts of the VDES.
Finally, any conjunction of a finite number of linear predicates, ai,1x1 + ai,2x2 + · · · +
ai,lxl ≤ bi, i = 1, . . . m, satisfies SSA with n0 = (max i |: � bi

(min j|ai, j �=0:ai, j)
�)+ 1 if ai, j ≥ 0

and bi ≥ 0. However, to achieve a power of expressivity comparable to that of
VDESs, the definition of PDES should be modified to cope with multiple classes
of similar processes and various ways of connecting them.

Overall, our approach puts together two paradigms and opens multiple research
subjects within another perspective, while providing an efficient implementation of
a supervisor. There is a linear gain of computational complexity with respect to the
naive solution and the use of an interconnection relation is explicitly integrated into

Discrete Event Dyn Syst (2009) 19:213–265 261

the on-line synthesis phase. To the best of our knowledge, such features have not
been examined before in conventional modular approaches.

7.2 Future directions

Important issues remain to be addressed within the reduction-parameterization
paradigm. First, the scope of this paper was limited to control problems with safety
properties. Enlargement to treat liveness properties, particularly fairness properties,
would require a different framework. Since liveness properties cannot be formalized
with the aid of a predicate Q ∈ Pred(X), a temporal logic should be used to
express such properties in conjunction with appropriate algorithms for checking the
underlying assumptions (Attie and Emerson 1998). Dynamic SFBC, which requires
memories to record history information, could be considered if a stronger notion of
fairness that avoids the analysis of infinite strings (Li and Wonham 1993) is adopted.
The use of abstract data types, such as queues, constitutes a good avenue (Gohari and
Wonham 2005). Second, efficient algorithms for determining if an arbitrary number
of similar processes under control may be blocking (with the smallest value of the
number of processes in the positive case) could fail in finite time, because of the
undecidability of equivalence between a system of arbitrary size and a system of
bounded size (Thistle and Nazari 2005). This issue is presently under investigation
(Bherer et al. 2006b). The idea is to consider a replicated structure as an n–bounded
state graph for a PDES with n processes and to construct its reachability graph by
using rewriting rules that manipulate symbolic expressions and symbolic constraints.
The power of a finite set of rewriting rules are, however, limited, especially if the
application of rules is regulated by criteria that ensure that the generation of nodes
progresses necessarily to a solution or until no rule can be applied. In the latter
case, the algorithm fails to generate a solution. Third, the way to make SSA more
flexible was to separate processes into different classes by using an interconnection
relation. Relaxing assumptions (e.g., weakening SSA or allowing some shared events
to be shared only by a subset of the processes, which conflicts with PSA) would
then require finding appropriate types of syntactic renaming transformations. Finally,
several studies could be initiated by examining other classes of control problems
with various forms of symmetry within the proposed paradigm. The key to the
advancement in this area will depend on solutions to the aforementioned inter-
woven issues.

Acknowledgements The research described in this paper was supported in part by the Natural
Sciences and Engineering Research Council of Canada. The authors would like to thank Michel
Embe Jiague for his suggestion about Proposition 4.

References

Attie PC, Emerson EA (1998) Synthesis of concurrent systems with many similar processes. ACM
Trans Program Lang Syst 20(1):1–65

Balemi S, Hoffmann GJ, Gyugyi P, Wong-Toi H, Franklin GF (1993) Supervisory control of a rapid
thermal multiprocessor. IEEE Trans Autom Contr 38(7):1040–1059

Barbeau M, Kabanza F, St-Denis, R (1997) An efficient algorithm for controller synthesis under full
observation. J Algorithms 25(1):144–161

262 Discrete Event Dyn Syst (2009) 19:213–265

Barrett G, Lafortune S (1998) Bisimulation, the supervisory control problem and strong model
matching for finite state machines. Discret Event Dyn Syst Theory Appl 8(4):377–429

Ben Hadj-Alouane N, Lafortune S, Lin F (1994) Variable lookahead supervisory control with state
information. IEEE Trans Autom Contr 39(12):2398–2410

Ben Hadj-Alouane N, Lafortune S, Lin F (1996) Centralized and distributed algorithms for on-line
synthesis of maximal control policies under partial observation. Discret Event Dyn Syst Theory
Appl 6(4): 379–427

Bherer H, Desharnais J, Frappier M, St-Denis R (2003) Intégration d’une technique de vérification
dans une procédure de synthèse de contrôleurs de systèmes paramétrés. In: Méry D, Rezg N,
Xie X (eds) Modélisation des systèmes réactifs (MSR 2003), pp 553–566

Bherer H, Desharnais J, Frappier M, St-Denis R (2004) Synthesis of state feedback controllers
for parameterized discrete event systems. In: Wang F (ed) Automated technology for verifi-
cation and analysis (ATVA’2004). Lecture notes in computer science, vol 3299. Springer, Berlin
Heidelberg New York, pp 487–490

Bherer H, Desharnais J, St-Denis R (2005) Synthesis of state feedback controllers for para-
meterized discrete event systems under partial observation. In: Proceedings of the 44th IEEE
conference on decision and control and European control conference 2005. IEEE, Seville,
pp 3499–3506

Bherer H, Desharnais J, St-Denis R (2006a) Parameterized discrete event systems under partial
observation revisited. In: Proceedings of the 8th IASTED international conference on control
and applications. IASTED, Montréal, pp 273–280

Bherer H, Desharnais J, St-Denis R (2006b) On the reachability and nonblocking properties for
parameterized discrete event systems. In: Proceedings of the 8th international workshop on
discrete event systems. Ann Arbor, MI, 10–12 July 2006, pp 113–118

Cassandras CG, Lafortune S (1999) Introduction to discrete event systems. Kluwer, Boston
Chung S-L, Lafortune S, Lin F (1992) Limited lookahead policies in supervisory control of discrete

event systems. IEEE Trans Autom Contr 37(12):1921–1935
Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press,

Cambridge
de Queiroz MH, Cury JER (2000) Modular supervisory control of large scale discrete event systems.

In: Boel R, Stremersch G (eds) Discrete event systems: analysis and control. The international
series in engineering and computer science, vol 569. Springer, Berlin Heidelberg New York,
pp 103–110

Dreschsler R, Sieling D (2001) Binary decision diagrams in theory and practice. Int J Softw Tools
Technol Transf 3(2):112–136

Emerson EA, Kahlon V (2000) Reducing model checking of the many to the few. In: McAllester DA
(ed) Automated deduction (CADE’2000). Lecture notes in computer science, vol 1831. Springer,
Berlin Heidleberg New York, pp 236–354

Emerson EA, Sistla AP (1997) Utilizing symmetry when model-checking under fairness assumptions:
an automata-theoretic approach. ACM Trans Program Lang Syst 19(4):617–638

Eyzell JM, Cury JER (2001) Exploiting symmetry in the synthesis of supervisors for discrete event
systems. IEEE Trans Autom Contr 46(9):1500–1505

Frappier M, St-Denis R (2001) Towards a computer-aided design of reactive systems. In: Moreno-
Díaz R, Buchberger B, Freire J-L (eds) Computer aided systems theory – EUROCAST
2001. Lecture notes in computer science, vol 2178. Springer, Berlin Heidelberg New York,
pp 421–436

Gohari P, Wonham WM (2005) Efficient implementation of fairness in discrete-event systems using
queues. IEEE Trans Autom Contr 50(11):1845–1849

Gries D, Schneider FB (1995) A logical approach to discrete math. Springer, Berlin Heidelberg New
York

Giua A, DiCesare F (1994) Petri net structural analysis for supervisory control. IEEE Trans Robot
Autom 10(2):185–195

Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8(3):
231–274

Heymann M, Lin F (1994) On-line control of partially observed discrete event systems. Discret Event
Dyn Syst 4(3):221–236

Holloway LE, Krogh BH, Giua A (1997) A survey of Petri net methods for controlled discrete event
systems. Discret Event Dyn Syst Theory Appl 7(2):151–190

Discrete Event Dyn Syst (2009) 19:213–265 263

Kerjean S, Kabanza F, St-Denis R, Thiébaux S (2006) Analyzing LTL model checking techniques
for plan synthesis and controller synthesis. Electron Notes Theor Comput Sci 149(2):91–104

Komenda J, van Schuppen JH (2005) Supremal sublanguages of general specification languages
arising in modular control of dicrete-event systems. In: Proceedings of the 44th IEEE conference
on decision and control and European control conference 2005. IEEE, Seville, pp 2275–2780

Komenda J, van Schuppen JH, Gaudin B, Marchand H (2005) Modular supervisory control with
general indecomposable specification languages. In: Proceedings of the 44th IEEE conference
on decision and control and European control conference 2005. IEEE, Seville, pp 3474–3479

Kumar R, Garg VK (1995) Modeling and control of logical discrete event systems. Kluwer, Boston
Kumar R, Garg V, Marcus SI (1993) Predicates and predicate transformers for supervisory control

of discrete event dynamical systems. IEEE Trans Autom Contr 38(2):232–247
Leduc RJ, Brandin BA, Lawford M, Wonham WM (2005) Hierarchical interface-based supervisory

control—part I: serial case. IEEE Trans Autom Contr 50(9):1322–1335
Li Y (1991) Control of vector discrete-event systems. Ph.D. thesis, University of Toronto, Toronto
Li Y, Wonham WM (1988) Controllability and observability in the state-feedback control of discrete-

event systems. In: Proceedings of 27th IEEE conference on decision and control. IEEE, Austin,
pp 203–208

Li Y, Wonham WM (1993) Control of vector discrete-event systems I—the base model. IEEE Trans
Autom Contr 38(8):1214–1227

Li Y, Wonham WM (1994) Control of vector discrete-event systems II—controller synthesis. IEEE
Trans Autom Contr 39(3):512–531

Ma C, Wonham WM (2005) Nonblocking supervisory control of state tree structures. Lecture notes
in control and information sciences, vol 317. Springer, Berlin Heidelberg New York

Makungu M, Barbeau M, St-Denis R (1999) Synthesis of controllers of processes modeled as colored
Petri nets. Discret Event Dyn Syst Theor Appl 9(2):147–169

Pena PN, Cury JER, Lafortune S (2006) Testing modularity of local supervisors: an approach based
on abstractions. In: Proceedings of the 8th international workshop on discrete event systems.
Ann Arbor, MI, 10–12 July 2006, pp 107–112

Pnueli A, Ruah S, Zuck L (2001) Automatic deductive verification with invisible invariants. In:
Margaria T, Yi W (eds) Tools and algorithms for the construction and analysis of systems.
Lecture notes in computer science, vol 2031. Springer, Berlin Heidelberg New York, pp 82–97

Prosser JH, Kam M, Kwatny HG (1998) Online supervisor synthesis for partially observed discrete-
event systems. IEEE Trans Autom Contr 43(11):1630–1634

Ramadge PJG, Wonham WM (1987) Modular feedback logic for discrete event systems. SIAM J
Contr Optim 25(5):1202–1218

Schmidt K, Marchand H, Gaudin B (2006) Modular and decentralized supervisory control of concur-
rent discrete event systems using reduced system models. In: Proceedings of the 8th international
workshop on discrete event systems. Ann Arbor, MI, 10–12 July 2006, pp 149–154

Song R, Leduc RJ (2006) Symbolic synthesis and verification of hierarchical interface-based super-
visory control. In: Proceedings of the 8th international workshop on discrete event systems. Ann
Arbor, MI, 10–12 July 2006, pp 419–426

St-Denis R (2002) Designing reactive systems: integration of abstraction techniques into a synthesis
procedure. J Syst Softw 60(2):103–112

Takai S, Kodama S (1997) M-controllable subpredicates arising in state feedback control of discrete
event systems. Int J Contr 67(4):553–566

Takai S, Kodama, S (1998) Characterization of all M-controllable subpredicates of a given predicate.
Int J Contr 70(4):541–549

Takai S, Ushio T, Kodama S (1995) Static-state feedback control of discrete-event systems under
partial observation. IEEE Trans Autom Contr 40(11):1950–1954

Thistle JG, Nazari S (2005) Analysis of arbitrarily large networks of discrete-event systems. In:
Proceedings of the 44th IEEE conference on decision and control and European control con-
ference 2005. IEEE, Seville, pp 3468–3473

Wonham WM (2006) Supervisory control of discrete-event systems. ECE 1636F/1637S, System
control group. University of Toronto, Toronto

Wonham WM, Ramadge PJG (1988) Modular supervisory control of discrete event systems. Math
Contr Signals Syst 1(1):13–30

Zhong H, Wonham WM (1990) On the consistency of hierarchical supervision in discrete-event
systems. IEEE Trans Autom Contr 35(10):1125–1134

264 Discrete Event Dyn Syst (2009) 19:213–265

Hans Bherer is the research lead of the Natural Language Processing and Knowledge Represen-
tation group at xtranormal Inc. He is pursuing a Ph.D. in software engineering at Université Laval
in Canada. His research interests include discrete event systems, complexity, reasoning and logical
formalisms. Bherer has a B.Sc. and an M.Sc. in mathematics from Université Laval.

Jules Desharnais received the B.Sc. and M.Sc. degrees in computer science from Université Laval
in 1983 and 1985, respectively, and the Ph.D. degree in computer science from McGill University in
1989. He is currently a professor of computer science at Université Laval. His main research interest
is that of the mathematics of program construction, with ongoing work both on the development
of mathematics (mostly Kleene algebra) and on applications to the derivation of programs and
controllers.

Discrete Event Dyn Syst (2009) 19:213–265 265

Richard St-Denis received the B.Sc. and M.Sc. degrees in computer science from Université de
Montréal in 1975 and 1977, respectively, and the Ph.D. degree in applied sciences from École
Polytechnique de Montréal in 1992. He is currently a professor of computer science at Université
de Sherbrooke, where his research interests include reactive systems, discrete event systems and
software engineering. He has published a book in French on programming with the Sparc assembly
language.

	Control of Parameterized Discrete Event Systems
	Abstract
	Introduction
	Characterization of the class of PDESs
	Overview of the assumptions
	Overview of the paper
	Major ways to reduce computational complexity
	Control paradigms
	Semantic models
	Data structures
	Algorithmic techniques
	Abstraction techniques
	Problem reduction

	Preliminaries
	Predicates and predicate transformers
	Various definitions of controllability
	State feedback supervisors

	Parameterized discrete event systems
	Soundness of properties under similarity assumptions
	Supervisor synthesis under similarity assumptions
	The case of total observation
	The case of partial observation
	Implementation of the on-line synthesis
	Computational complexity

	Soundness of the synthesis method
	Conclusion
	Further remarks on related work
	Future directions

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

