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Abstract
We explore the notion of history-determinism in the context of timed automata (TA). History-
deterministic automata are those in which nondeterminism can be resolved on the fly, based on the
run constructed thus far. History-determinism is a robust property that admits different game-based
characterisations, and history-deterministic specifications allow for game-based verification without
an expensive determinization step.

We show yet another characterisation of history-determinism in terms of fair simulation, at the
general level of labelled transition systems: a system is history-deterministic precisely if and only if
it fairly simulates all language smaller systems.

For timed automata over infinite timed words it is known that universality is undecidable for
Büchi TA. We show that for history-deterministic TA with arbitrary parity acceptance, timed
universality, inclusion, and synthesis all remain decidable and are ExpTime-complete.

For the subclass of TA with safety or reachability acceptance, we show that checking whether
such an automaton is history-deterministic is decidable (in ExpTime), and history-deterministic TA
with safety acceptance are effectively determinizable without introducing new automata states.
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1 Introduction

Automata offer paradigmatic formalisms both for specifying and for modelling discrete
transition systems, i.e. for providing descriptive as well as executable definitions of formal
languages. Given a finite or infinite word, an automaton specifies whether or not the word
belongs to the defined language. Deterministic automata are executable, because the word
can be processed left-to-right, with each transition of the automaton determined by the
current input letter. Descriptive automata allow the powerful concept of nondeterminism,
which yields more succinct or even more expressive specifications.

The notion of history-determinism lies between determinism and nondeterminism. History-
deterministic automata are still executable, provided the execution engine is permitted to
keep a record of all past inputs. Formally, a strategy r (a.k.a. “resolver”) is a function from
finite prefix runs to transitions that suggests for each input word w a specific run r∗(w) of
the automaton over w, namely, the run that results from having the function r determine,
after each input letter, the next transition based on the prefix of the word processed so far.
An automaton is history-deterministic if there exists a resolver r so that for every input
word w, the automaton has an accepting run over w iff the specific run r∗(w) is accepting.
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14:2 History-Deterministic Timed Automata

The concept of history-determinism was first identified in [21], where it was noted that
for solving graph games, it is not necessary to determinize history-deterministic specifications
of ω-regular winning conditions. For this reason, history-deterministic automata were called
“good-for-games”. The term “history-determinism” was first used by [12]. The concept itself
has since been referred to as both “history-determinism” and “good-for-gameness.” Since [9]
recently showed that, in a general context of quantitative automata, the two notions do not
always coincide (specifically: for certain quantitative winning conditions, history-determinism
implies the “good-for-games” property of an automaton, but not vice versa), we follow their
more nuanced terminology and use the term “history-determinism” to denote the existence
of a resolver and “good-for-games” for automata that preserve the winner of games under
composition, as required for solving games without determinization.

There is also a tight link between a variant of the Church synthesis problem, called
good-enough synthesis [2], and deciding history-determinism. Church synthesis asks whether
a system can guarantee that its interaction with an uncontrollable environment satisfies a
specification language for all possible environment behaviours. This model assumes that the
environment is hostile and will, if possible, sabotage the system’s efforts. This pessimistic
view can be counter-productive. In the canonical example of a coffee machine, if the
users (the environment) do not fill in the water container, the machine will fail to produce
coffee. Church synthesis would declare the problem unrealisable: the machine may not
produce coffee for all environment behaviours. In the good-enough synthesis problem, on
the other hand, such failures are acceptable, and we can still return an implementation
that produces coffee (satisfies the specification) whenever the environment behaves in a way
that allows the desired behaviour (fills in the water container). Deciding the good-enough
synthesis problem for a deterministic automaton is polynomially equivalent to deciding
whether a nondeterministic automaton of the same type is history-deterministic [15, 9, 17].
The decidability and complexity of checking history-determinism is therefore particularly
interesting.

In this paper, we study, for the first time, history-determinism in the context of timed
automata. In a timed word, letters alternate with time delays, which are nonnegative real
numbers. The resolver gets to look not only at all past input letters, but also at all past
time delays, to suggest the next transition. We consider timed automata over infinite timed
words with standard ω-regular acceptance conditions [3]. For the results of this paper, it
does not matter whether or not the sum of all time delays provided by an infinite input word
is required to diverge.

Our results can be classified into two parts. The first part of our results applies to
all timed automata, and sometimes more generally, to all labelled transition systems. In
this part we are concerned with solving the quintessential verification problem for timed
systems, namely timed language inclusion, in the special case of history-deterministic (i.e.
executable) specifications. Since universality is undecidable for general timed automata,
so is the timed language-inclusion problem for nondeterministic specifications [3]. This
is the reason why much previous work in timed verification has focused on identifying
determinizable subclasses of timed automata, such as event-clock automata [4], and on
studying deterministic extensions of the timed-automaton model, such as deterministic two-
way timed automata [5]. Determinizable specifications can be complemented, thus supporting
the complementation-based approach to language inclusion: in order to check if every word
accepted by the implementation A is also accepted by the specification B, first determinize
and complement B, and then check the intersection with A for emptiness. We show that the
history-determinism of specifications suffices for deciding timed language inclusion, which
demonstrates that determinizability is not required. More precisely, we prove that if A is a
timed automaton and B is a history-deterministic timed automaton, it can be decided in
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ExpTime if every timed word accepted by A is also accepted by B (Corollary 18).
In contrast to the traditional complementation-based approach to language inclusion, the

history-deterministic approach is game-based. Like the complementation-based approach,
the game-based approach is best formulated in the generic setting of labelled transition
systems with acceptance conditions, so-called fair LTS. The acceptance condition of a fair
LTS declares a subset of the infinite runs of the LTS to be fair (a special case is safety
acceptance, which declares all infinite runs to be fair). Given two fair LTS A and B, the
language of A is included in the language of B if for every fair run of A there is a fair run of
B over the same (infinite) word. A sufficient condition for the language inclusion between A

and B is the existence of a fair simulation relation between the states of A and the states
of B, or equivalently, the existence of a winning strategy for player pB in the following
2-player fair simulation game: (i) every transition chosen by player pA on the state-transition
graph A can be matched by a transition chosen by player pB on the state-transition graph
B with the same label (letter or time delay), and (ii) if the infinite sequence of transitions
chosen by pA produce a fair run of A, then the matching transitions chosen by pB produce a
fair run of B [20]. Solving the fair simulation game is often simpler than checking language
inclusion; it may be polynomial where language inclusion is not (e.g. in the case of finite
safety or Büchi automata), or decidable where language inclusion is not (e.g. in the case of
timed safety or Büchi automata [28]).

We show that for all fair LTS A and all history-deterministic fair LTS B, the condition
that the language of A is included in the language of B is equivalent to the condition
that A is fairly simulated by B. This observation reduces the language inclusion problem
for history-deterministic specifications to the problem of solving a fair simulation game
between implementation and specification. The solution of fair simulation games depends
on the complexity of the acceptance conditions of A and B, but is often simpler than
the complementation of B, and fair simulation games can be solvable even in the case of
specifications that cannot be complemented. In the concluding Section 7, we conjecture the
existence of such a timed language. The game-based approach to checking language inclusion,
which requires history-determinism, is therefore more general, and often more efficient,
than the traditional complementation-based approach to checking language inclusion, which
usually requires full determinization. Indeed, history-determinism is exactly the condition
that allows the game-based approach to language inclusion: for a given fair LTS B, if it is
the case that B can fairly simulate all fair LTS A whose language is included in the language
of B, then B must be history-deterministic (Theorem 4).

More generally, turn-based timed games for which the winning condition is defined by a
history-deterministic timed automaton are no harder to solve than those with deterministic
winning conditions: the winner of such a timed game can be determined on the product of
the (timed) arena with the automaton specifying the winning condition. We conjecture that
this is the case also for the concurrent timed games of [13] (cf. Section 7). Timed games
have also been defined for the synthesis of timed systems from timed I/O specifications.
Again, we show that the synthesis game of [14] can be solved not only for I/O specifications
that are given by deterministic timed automata, but more generally, for those given by
history-deterministic timed automata (Theorem 20).

The second part of our results investigates the problem of deciding history-determinism for
timed automata and the determinizability of history-deterministic timed automata. In this
part, we have only partial results, namely results for timed safety and reachability automata.
Timed safety automata, in particular, constitute an important class of specifications, as many
interesting timed and untimed properties can be specified by timed safety automata if time is
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14:4 History-Deterministic Timed Automata

required to diverge [18, 19]. We prove that for timed safety automata and timed reachability
automata, it can be decided in ExpTime if a given timed automaton is history-deterministic
(Theorem 16). Checking history-determinism remains open for more general classes of
timed automata, such as timed Büchi and coBüchi automata. We also show that every
history-deterministic timed safety automaton can be determinized, without increasing the
number of automaton states, but with an exponential increase in the number of transitions
or length of guards (Theorem 9). While the question of determinizability is undecidable
for nondeterministic timed reachability automata [16], it is open for history-deterministic
timed reachability automata and for history-deterministic timed automata with more general
acceptance conditions. Finally, we show that if a timed safety or reachability automaton
is good-for-games (in the sense explained earlier), then the automaton must be history-
deterministic (Theorem 23). This implication is open for more general classes of timed
automata.

Related Work. The notion of history-determinism was introduced independently, with
slightly different definitions, by Henzinger and Piterman [21] for solving games without de-
terminization, by Colcombet [12] for cost-functions, and by Kupferman, Safra, and Vardi [24]
for recognising derived tree languages of word automata. Initially, history-determinism was
mostly studied in the ω-regular setting, where these different definitions all coincide [8]. For
some coBüchi-recognisable languages, history-deterministic automata can be exponentially
more succinct than any equivalent deterministic automaton [23], and for Büchi and coBüchi
automata, history-determinism is decidable in polynomial time [6, 23]. For transition-based
history-deterministic automata, minimisation is PTime [1], while for state-based ones, it is
NP-complete [27]. Recently, the notion has been extended to richer automata models, such
as pushdown automata [25, 17] and quantitative automata [9, 10], where deterministic and
nondeterministic models have different expressivity, and therefore, allowing a little bit of
nondeterminism can, in addition to succinctness, also provide more expressivity.

Paper Structure. After defining preliminary notions we proceed to introduce history-
determinism, and show a new, fair-simulation-based characterisation in Section 3. In Section 4
we demonstrate that history-deterministic TA with safety acceptance are determinizable,
and in Section 5 that one can decide whether a given safety or reachability TA is history-
deterministic. Section 6 considers questions concerning timed games, timed synthesis,
and timed language inclusion and shows that history-determinism coincides with good-for-
gameness for reachability and safety TA.

2 Preliminaries

Numbers, Words. Let N and R≥0 denote the nonnegative integers and reals, respectively.
For c ∈ R≥0 we write ⌊c⌋ for its integer and fract(c) def= c − ⌊c⌋ for its fractional part.

An alphabet Σ is a nonempty set of letters. Σε denotes Σ ∪ {ε}. Σ∗ and Σω denote the
sets of finite and infinite words over Σ, respectively and Σ∞ = Σ∗ ∪ Σω denotes their union.
The empty word is denoted by ε, the length of a finite word v is denoted by |v|, and the n-th
letter of a finite or infinite word is denoted by w[n] (starting with n = 0).

Labelled Transition Systems, Languages, Fair Simulation. A labelled transition system
(LTS) is a graph S = (V, Σ, E) with set V of states and edges E ⊆ V × Σ × V , labelled by
alphabet Σ. It is deterministic if for all (s, a) ∈ V × Σ there is at most one s′ with s

a−→ s′,
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and complete if for all (s, a) ∈ V × Σ there is at least one s′ with s
a−→ s′. We henceforth

consider only complete LTSs. Together with an acceptance condition Acc ⊆ Eω this can be
used to define languages over Σ as usual: a word w = l0l1 . . . ∈ Σω is accepted from s0 if
there is a path (also run) ρ = s0

l1−→ s1
l2−→ s2 . . . that is accepting, i.e., in Acc. The language

L(s0) ⊆ Σω of an initial state s0 ∈ V consists of all words for which there exists an accepting
run from s0. We will write s ⊆L s′ to denote language inclusion, meaning L(s) ⊆ L(s′). The
acceptance condition Acc can be given by a parity condition but does not have to be. We
consider in this paper especially reachability (does the run visit a state in a given target set
T ⊆ V ?) and safety conditions (does the run always stay in a “safe” region F ⊆ V ?). An
LTS together with an accepting condition is referred to as fair LTS [20].

Fair simulations [20] are characterised by simulation games on (a pair of) fair LTSs in
which Player 1 stepwise produces a path from s, and Player 2 stepwise produces an equally
labelled path from s′. Player 2 wins if she produces an accepting run whenever Player 1
does. That is, s is fairly simulated by s′ (write s ⪯ s′) iff Player 2 has a strategy in the
simulation game so that, whenever the run produced by Player 1 is accepting then so is the
run produced by Player 2 in response. Fair simulation s ⪯ s′ implies language inclusion
L(s) ⊆ L(s′) but not vice versa.

Timed Alphabets, Words, and LTSs. For any alphabet Σ let ΣT denote the timed alphabet
{(a, t)|a ∈ Σ, t ∈ R≥0}. A timed word is a finite or infinite word w ∈ (ΣT )∞ consisting of
letters in Σ paired with distinct non-negative non-decreasing real-valued timestamps. We will
also write d0a0d1a1... to denote a timed word (ai, ti) ∈ Σ∞

T where t0 = d0 and ti+1 = ti +di+1.
Conversely, the duration and the timed word of any sequence in (Σ ∪R)∞ is given inductively
as follows. For any d ∈ R≥0, τ ∈ Σ, α ∈ (Σ ∪ R)∗, and β ∈ (Σ ∪ R)∞ let duration(τ) def= 0;
duration(d) def= d; duration(αβ) = duration(α) + duration(β); tword(ε) = tword(d) def= ε;
tword(αd) def= tword(α); and tword(ατ) def= tword(α)(τ, duration(α)). An infinite timed word
of finite duration is called a zeno word. Our results hold whether time must diverge (i.e.,
zeno words are not considered) or not; we note whenever time divergence affects proofs.

A timed LTS is one with edge labels in Σ ⊎R≥0, so that edges labelled by R≥0 (modelling
the passing of time) satisfy the following conditions for all α, β, γ ∈ V and d, d′ ∈ R≥0.
1. (Zero-delay): α

0−→ α,
2. (Determinism): If α

d−→ β ∧ α
d−→ γ then β = γ,

3. (Additivity): α
d−→ β

d′

−→ γ then α
d+d′

−−−→ γ.
The timed language L(s) ⊆ Σω

T of a state s consists of all the timed words read along
accepting runs L(s) def= tword(L(s)). We write L(S) for the timed language of the initial
state of the LTS S.

Timed Automata. Timed automata are finite-state automata equipped with finitely many
real-valued variables called clocks, whose transitions are guarded by constraints on clocks.
Constraints on clocks C = {x, y, . . .} are (in)equalities x ◁ n where x ∈ C, n ∈ N and
◁ ∈ {≤, <}. Let B(C) denote the set of Boolean combinations of clock constraints, called
guards. A clock valuation ν ∈ RC assigns a value ν(x) to each clock x ∈ C. We write ν |= g

if ν satisfies the guard g. A timed automaton (TA) T = (Q, ι, C, ∆, Σ, Acc) is given by
Q a finite set of states including an initial state ι;
Σ an input alphabet;
C a finite set of clocks;
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14:6 History-Deterministic Timed Automata

∆ ⊆ Q × B(C) × Σ × 2C × Q a set of transitions; each transition is associated with a
guard, a letter, and a set of clocks to reset. A transition that reads letter a ∈ Σ will be
called an a-transition. We assume that for all (s, ν, a) ∈ Q × RC

≥0 × Σ there is at least
one transition (s, g, a, r, s′) ∈ ∆ so that ν satisfies g.
Acc ⊆ ∆ω an acceptance condition.

Timed automata induce timed LTSs, and can thus be used to define timed languages, as
follows. A configuration is a pair consisting of a control state and a clock valuation. These
can evolve in two ways, as follows. For all configurations (s, ν) ∈ Q × RC

≥0,
there is a delay step (s, ν) d−→ (s, ν + d) for every d ≥ 0, which increments all clocks by d.
there is a discrete step (s, ν) τ−→ (s′, ν′) if τ = (s, g, a, r, s′) ∈ ∆ is a transition so that ν

satisfies g and ν′ = ν[r → 0], that is, it maps r to 0 and agrees with ν on all other values.
Naturally, each delay d yields a unique successor configuration and ν

d−→ d′

−→ ν′ ⇐⇒ ν
d+d′

−→ ν′

for any two d, d′ ≥ 0 and valuations ν, ν′. So this indeed induces a timed LTS.
Discrete steps, however, are a source of nondeterminism: a configuration may have several

a-successors induced by different transitions whose guards are satisfied. T is deterministic if
its induced LTS is deterministic, which is the case iff for every state s, all transitions from s

have mutually exclusive guards.
A path ρ = (s0, ν0) l1−→ (s1, ν1) l2−→ (s2, ν2) . . . is called reduced if it does not contain

consecutive delay steps. It is a run on timed word w ∈ (ΣT )∞ if tword(l1l2 . . .) = w. The
acceptance condition is lifted to the LTS as expected. Namely, a run is accepting if ρ ∈ Acc.
This way, the language L(s, ν) ⊆ Σω

T of a configuration (s, ν) consists of all timed words for
which there exists an accepting run from (s, ν). The language of T is L(T ) def= L((ι, 0)), the
languages if the initial configuration with state ι and all clocks set to zero.

3 History-determinism

Informally, an automaton or LTS is history-deterministic if the non-determinism can be
resolved on-the-fly, based only on the history of the word and run so far. We give two equivalent
definitions, each being more convenient than the other for some technical developments.

▶ Definition 1 (History-determinism). A fair LTS S = (V, Σ, E) is history-deterministic
(from initial state s0 ∈ V ) if there is a resolver r : E∗ × Σ → E that maps every finite run
and letter a ∈ Σ to an a-labelled transition such that, for all words w = a0a1 · · · ∈ L(s0) the
run ρ defined inductively for i > 0 by ρi+1

def= ρir(ρi, ai+1), is an accepting run on w from s0.

Equivalently (from [8] for ω-regular automata), a resolver corresponds exactly to a winning
strategy for Player 2 in the following letter game.

▶ Definition 2 (Letter game). The letter game on a fair LTS S = (V, Σ, E) with initial state
s0 ∈ V is played between Players 1 and 2. At turn i:

Player 1 chooses a letter ai ∈ Σ.
Player 2 chooses an ai labelled edge τi ∈ E.

A play is a pair (w, ρ) where w = a0a1 . . . is an infinite word and ρ = τ0τ1... is a run on w.
A play is winning for Player 2 if either w /∈ L(s0) or ρ is an accepting run on w from s0.

In these and other games we consider, strategies for both players are defined as usual,
associating finite histories (runs) to valid player choices. Now winning strategies for Player 2
in the letter game exactly correspond to resolvers for S and vice-versa.

▶ Proposition 3. Player 2 wins the letter game on a fair LTS S if and only if S is history-
deterministic.
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While history-determinism is known to relate to fair simulation, in the sense that history-
deterministic automata simulate deterministic ones for the same language [21], their relation
has so far not been studied in more details. Below we show that history-determinacy can
equivalently be characterised in terms of fair simulation.

▶ Theorem 4. For every fair LTS S and initial state q the following are equivalent:
1. S is history-deterministic.
2. For all complete fair LTS S′ with initial state q′, q′ ⊆L q if and only if q′ ⪯ q.

Proof.

(1) =⇒ (2). Fair simulation q ⪯ q′ trivially implies q ⊆L q′ by definition.
For the other implication, assume that q ⊆L q′. By assumption (1) there exists a resolver,

i.e. a winning strategy in the letter game. Player 2 can win the fair simulation game
by ignoring her opponent’s configuration and moving according to this resolver. By the
completeness assumption on S′, Player 1 can never propose a letter for which there is no
successor in S′. So each player produces an infinite run on the same word w and the run
produced by Player 2 is the same as that produced by the resolver in S′. If w ∈ L(q) then it
is in L(q′) and Player 2’s run accepts. If w /∈ L(q) then Player 2 wins due to the fairness
condition. In both cases she wins the fair simulation game and therefore q ⪯ q′.

(2) =⇒ (1). If condition (2) holds for all complete fair LTSs then q can fairly simulate
the one consisting of a single state with self-loops for all transitions of S whose acceptance
condition contains exactly all accepting runs from q. Then the strategy for Player 2 in the
fair simulation game can be used as a strategy in the letter game. ◀

4 Expressivity

In this section we show that history-deterministic timed automata with safety acceptance are
determinizable. To do so, we show (in Lemma 8) that these automata have simple resolvers,
which only depend on the equivalence class of the current clock configuration with respect to
the region abstraction. That is to say, the resolver only needs to know the integer part of
clock values (up to the maximal value that appears in clock constraints) and the ordering of
their fractional parts. We can then use such a simple resolver to determinize the automaton
by adding guards that restrict transitions so that the automaton can only take one transition
per region, as dictated by the resolver.

The following is the standard definition of regions (cf. [3], def. 4.3).

▶ Definition 5 (Region abstraction). Let T = (Q, ι, C, ∆, Σ, Acc) be a timed automaton and
for any clock x ∈ C let cx denote the largest constant in any clock constraint involving x.
Two valuations ν, ν′ ∈ RC

≥0 are (region) equivalent (write ν ∼ ν′) if all of the following hold.
1. For all x ∈ C either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or both ν(x) and ν′(x) are greater than cx.
2. For all x, y ∈ C with ν(x) ≤ cx and ν(y) ≤ cy, fract(ν(x)) ≤ fract(ν(y)) iff fract(ν′(x)) ≤

fract(ν′(y)).
3. For all x ∈ C with ν(x) ≤ cx, fract(ν(x)) = 0 iff fract(ν′(x)) = 0.

Two configurations (q, ν) and (q′, ν′) are (region) equivalent, write (q, ν) ∼ (q′, ν′), if q = q′

and ν ∼ ν′.

▶ Definition 6 (Run-trees). A run-tree on a timed word u = (a0, t0)(a1, t1) . . . from TA
configuration (s0, ν0) is a tree where nodes are labelled by configurations, and edges by
transitions such that
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14:8 History-Deterministic Timed Automata

1. The labels along every branch form a run on u from (s0, ν0)
2. It is complete wrt. discrete steps: suppose the path leading towards some node is labelled

by a run ρ which reads tword(ρ) = (a0, t0) . . . (ai, ti), ends in a configuration (s, ν), and
has duration(ρ) = ti+1. Then for every transition τ = (s, g, ai+1, r, s′) ∈ ∆ with ν |= g

and so that (s, ν) τ−→ (s′, ν′), there is a τ -labelled edge to a new node labelled by (s′, ν′).
A run-tree is reduced if all its branches are. That is, there are no consecutive delay steps.

Notice that for every initial configuration and timed word, there is a unique reduced run-tree,
all of whose branches are runs on the word (since we have no deadlocks), and vice versa, all
reduced runs on the word appear as branches on the run-tree.

We extend the region equivalence from configurations to run-trees in the natural fashion:
two run-trees are equivalent if they are isomorphic and all corresponding configurations are
equivalent. That is, they can differ only in fractional clock values and the duration of delays.

The following is our key technical lemma.

▶ Lemma 7. Consider two region equivalent configurations (s, ν) ∼ (s′, ν′).
For every timed word u there is a timed word u′ so that the reduced run-tree on u from

(s, ν) is equivalent to the reduced run-tree on u′ from (s′, ν′).

Proof sketch. It suffices to show that for some (not necessarily reduced) run-tree on u from
(s, ν) there exists some equivalent run-tree from (s′, ν′) as this implies the claim by collapsing
all consecutive delay steps and thus producing the reduced tree on both sides.

We proceed by stepwise uncovering a suitable run-tree from (s, ν) for ever longer prefixes
of u and constructing a corresponding equivalent run-tree from (s′, ν′). The intermediate
finite trees we build have the property that all branches have the same duration. In each
round we extend all current leafs, in both trees, either by
1. all possible non-deterministic successors (for the letter prescribed by the word u), in case

the duration of the branch is already equal to the next time-stamp in u, or
2. one successor configuration due to a delay, which must be the same on all leafs.

For the second case, the delays used to extend the two trees need not be the same because
we only want to preserve region equivalence. Also, the delay chosen for the tree rooted in
(s, ν) need not follow the timestamps in u but can be shorter, meaning the run-tree may not
be reduced.. The difficulty lies in systematically choosing the delays to ensure that the two
trees remain equivalent and secondly, that in the limit this procedure generates a run-tree on
the whole word u from (s, ν). Together this implies the existence of a corresponding word u′

and a run-tree from (s′, ν′).
To this end we propose a stronger invariant, namely that the relative orderings of the

fractional values in all leafs are the same on both sides. The delays will be chosen in such
a way as to always increase the maximal fractional clock value among all leafs to the next
higher integer. Due to space constraints full details are deferred to Appendix A. ◀

We are now ready to show that history-deterministic TA with safety acceptance have
simple resolvers based on the region abstraction.

▶ Lemma 8. Every history-deterministic TA with safety acceptance has a resolver r that bases
its decision only on the current letter and region. That is, for any letter a ∈ Σ and any two
finite runs (ι, 0) ρ−→ (s, ν) and (ι, 0) ρ′

−→ (s′, ν′) consistent with r and so that (s, ν) ∼ (s′, ν′),
it holds that r(ρ, a) = r(ρ′, a).
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Proof. Let r be a resolver for a history-deterministic safety TA T .
We now build a resolver that only depends on the region of the current configuration. To

do so, we choose a representative configuration within each region, which will determine the
choice of the resolver for the whole region: For every region R ∈ [Q × RC

≥0]∼, consider the
configurations that are reached by at least one r-consistent run, and mark one of them mR,
if at least one exists, along with one r-consistent run ρR leading to the configuration mR.

Let r′ be the aspiring resolver that, when reading a letter a, considers the region R of the
current configuration, and follows what r does when reading a after the marked r-consistent
run ρR. We set r′(ρ, a) def= r(ρR, a) where R is the final region of the prefix-run ρ. Note that
r′ is well defined since it always follows transitions consistent with some r-consistent run
and can therefore only visit marked regions.

We claim that r′ is indeed a resolver. Towards a contradiction, assume that it is not a
resolver, that is, there is some word w ∈ L(T ) for which r′ builds a rejecting run. As T is a
safety automaton, we can consider the last configuration (s, ν) along this run from which the
remaining suffix au of w can be accepted 1.

Suppose that ρ is the prefix of the run built by r′ on w, which ends in (s, ν) and let
τ = r′(ρ, a) be the a-transition chosen by r′. We know that τ leads from (s, ν) to some
configuration (s′, ν′) from where u is not accepted. By definition of r′, there must be a
marked configuration mR ∼ (s, ν) reached by some run ρR from which r chooses the same
a-transition τ . By Lemma 7 there must be a word au′ so that the run-tree on au from (s, ν)
is equivalent to that on au′ from mR. This means that au′ ∈ L(mR) and, as r is a resolver,
there must be an accepting run that begins with a step (mR) τ−→ (m′

R). We derive that
u also has an accepting run from (q, ν) that begins with τ , contradicting the assumption
that (q, ν) is the last position on the run r′ built on w so that its suffix can be accepted.
Therefore, r′ is indeed a resolver. ◀

We can now use the region-based solver to determinize history-deterministic safety TA.

▶ Theorem 9. Every history-deterministic safety TA is equivalent to a deterministic TA.

Proof. Consider a history-deterministic TA T = (Q, ι, C, ∆, Σ, Acc), with a region-based re-
solver (as in Lemma 8) r, and let R be the region graph of T . Define T ′ = (Q, ι, C, ∆′, Σ, Acc)
where (q, g ∧ z, a, X, q′) ∈ ∆′ for z a guard defining a region of R, that is, a guard that
is satisfied exactly by valuations in R, if (q, g, a, X, q′) ∈ ∆ is the transition chosen by r

in the region defined by the guard z. In other words, T ′ is T with duplicated transitions
guarded so that a transition can only be taken from a region from which r chooses that
transition. Observe that T ′ is deterministic: the guards describing regions are mutually
exclusive, therefore the guards of any two transitions from the same state over the same
letter have mutually exclusive guards.

As runs of T ′ corresponds to a run of T with added guards, L(T ′) ⊆ L(T ). Conversely,
if w ∈ L(T ), then its accepting run consistent with r is also an accepting run in T ′, since
each transition along this run, being chosen by r, is taken at a configuration that satisfies
the additional guards in T ′. We can therefore conclude that L(T ) = L(T ′). ◀

1 The fact that a rejecting run produced by a non-resolver must ultimately reach a configuration that
cannot accept the remaining word also holds for TAs over finite words. However, this is not the case for
reachability acceptance, which is why we only state the claim for safety here. Still, we conjecture that
history-deterministic TA with reachability acceptance admit region-based resolvers.
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While this determinization procedure preserves the state-space of the automaton, it
multiplies the number of transitions (or the size of guards) by the size of the region abstraction.
Then, while history-deterministic safety TA are no more expressive than deterministic ones,
they could potentially be exponentially more succinct, when counting transitions and guards.

5 Deciding History-determinism

Recall the letter game characterisation of history-determinism: Player 1 plays timed letters
and Player 2 responds with transitions. Player 2 wins if either the word is not in the language
of the automaton, or her run is accepting. As TA are not closed under complement, it isn’t
clear how to solve this game. Bagnol and Kuperberg [6] introduced token games, which
are easier to solve, but which coincide with the letter game for some types of automata, in
particular for Büchi [6], coBüchi [7] and some quantitative automata [10].

In the k-token game, in addition to providing letters, Player 1 also builds k runs, of
which at least one should be accepting. The fewer runs Player 1 is allowed to use, the more
information he gives Player 2 about the word he will play. We show that the 1 and 2-token
games characterize history-determinism for fair LTSs with safety and reachability acceptance.

▶ Definition 10 (k-token game [6]). Given a fair LTS S = (V, Σ, E) with initial state s0 ∈ V

and an integer k > 0, the game Gk(S) proceeds in rounds. At each round i:
Player 1 plays a letter ai ∈ Σ
Player 2 plays a transition τi in E

Player 1 plays transitions τ1,i, τ2,i . . . τk,i in S

This way, Player 1 chooses an infinite word w = a0a1 . . . and exactly k runs ρi = τi,0τi,1τi,2 . . .

for 1 ≤ i ≤ k, and Player 2 chooses a run ρ = τ0τ1 . . . . The play is winning for Player 1 if
some ρj is an accepting run over t0a0... from s0 but ρ is not. Else it is winning for Player 2.

We write Gk(T ) to mean the k-token game on the LTS induced by T .

▶ Remark 11. Gk(S) and the letter game are determined for any k and fair LTS S for any
Borel-definable acceptance condition [26]. In particular, the letter game is determined for
both safety and reachability TA. Indeed, the winning condition for Player 2 is a disjunction of
the complement of L(B) and of the acceptance condition of B. Then, as long as L(B) is Borel,
by the closure of Borel sets under complementation and disjunction, the letter-game is Borel,
and therefore determined, following Martin’s Theorem [26]. If time is not required to diverge,
then reachability timed languages and safety timed languages are clearly Borel. Since words
in which time diverges are also Borel (they can be seen as the countable intersection of words
where time reaches each unit time), this remains the case when we require divergence.

The next lemma was first stated for finite [6], then for quantitative automata [10]. The
same proof works for all (generally infinite) fair LTSs, and is given again in Appendix B.

▶ Lemma 12. Given an fair LTS S, if Player 2 wins G2(S) then she wins Gk(S) for all k.

G1(S) was shown to characterise history-determinism for a number of quantitative
automata in [10]. In Appendix B we show, using similar proof techniques, that this is also
the case for all safety LTSs. The key observation is that for Player 2 to win the letter game,
it suffices that she avoids mistakes. We then show that a winning strategy for her in G1(S)
can be used to build such a strategy.

▶ Lemma 13. Given a fair LTS S with a safety acceptance condition, Player 2 wins G1(S)
if and only if S is history-deterministic.
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This argument does not work for reachability TA: it is no longer enough for Player 2
to avoid bad moves to win; she needs to also guarantee that she will actually reach a final
state. Here, we characterise history-determinism with the 2-token game. However, our proof
requires finite branching in Player 2’s choices, so we can not state it for LTSs in general.

▶ Lemma 14. Given a finitely branching fair LTS S with a reachability acceptance condition,
Player 2 wins G2(S) if and only if S is history-deterministic.

Proof. If Player 2 wins in the letter game, she wins in G2(S) by ignoring Player 1’s tokens.
Else, since the letter game is determined (Remark 11), Player 1 wins in the letter game

on S with a strategy σ. All plays that agree with σ must eventually play a good prefix,
that is, a prefix of a timed word of which either all continuations are in L(S) if time is not
required to diverge, or all non-zeno continuations are in L(S) if time is required to diverge.
At each turn Player 2 has only a finite number of enabled transitions to choose from, because
S is finitely branching. Therefore the strategy-tree for σ is finitely branching and by König’s
lemma, there is a bound k such that any play that agrees with σ has played a good prefix
after k steps.

We now argue that Player 1 wins in Gk′(S) for a large enough k′. Let k′ be larger than
the number of distinct run prefixes of length k on any word of length k played by σ (that is,
at most bk where b is the branching degree of S). Then, in G′

k(S), Player 1 wins by using the
following strategy: he plays the letters according to σ and Player 2’s moves and moves his
k′ tokens along all possible run prefixes for the first k moves, and then chooses transitions
arbitrarily. Since after k steps σ guarantees that he has played a good prefix, at least one of
his runs built in this manner is accepting.

This strategy is winning: indeed, if Player 2 could beat it with some strategy σ′, then
she could use σ′ in the letter game to beat σ, a contradiction. From Lemma 12, and the
determinacy of Gk(S), Player 1 therefore wins G2(S) whenever he wins the letter game. ◀

We now consider the problem of deciding whether a given safety or reachability TA is
history-deterministic. We use the observation that the k-token games played on LTSs induced
by TA can be expressed as a timed parity game from [11] played on the (k + 1)-fold product.

▶ Lemma 15. For all k (given in unary) and timed safety or reachability automata T , the
game Gk(T ) is solvable in ExpTime.

Proof. Gk(T ) is a timed game on an arena consisting of the configuration space of the
product of k + 1 copies of T . The winning condition consists of a boolean combination of
safety or reachability conditions. Such games can be solved as timed parity games as defined
in [11] in time exponential in the number of clocks c and in k [11, Theorem 3]. Note that [11]
uses concurrent timed parity games, of which turn-based ones are a special case. ◀

▶ Theorem 16. Given a safety or reachability TA, deciding whether it is history-deterministic
is decidable in ExpTime.

Proof. From Lemma 13 and Lemma 14, deciding the history-determinism of a safety or
reachability TA T reduces to solving G1(T ) or G2(T ) respectively, both of which can be
done in ExpTime, from Lemma 15. ◀

As explained in the introduction, this also solves the good-enough synthesis problem of
deterministic safety and reachability TA.
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6 Synthesis, Games and Composition

In this section we consider several games played on (LTSs of) timed automata and how they
can be used to decide classical verification problems. We focus on turn-based games, although
our techniques can be generalised to concurrent ones. We first look at language inclusion,
then synthesis, and finally we consider good-for-games timed automata, that is, automata
that preserve the winner when composed with a game and show that good-for-gameness and
history-determinism coincide for both reachability and safety timed automata.

6.1 Language Inclusion and Fair Simulation Games
The connection between history-determinism and fair simulation, established in Theorem 4,
allows to transfer decidability results to history-deterministic TA. Let’s first recall that
simulation checking is decidable for timed automata using a region construction [28]. This
paper precedes the notion of fair simulation (restricting Player 1 to fair runs) and is thus only
applicable for safety conditions. However, the result holds for more general parity acceptance
(for which each state is assigned an integer priority and where a run is accepted if the highest
priority it sees infinitely often is even).

▶ Theorem 17. Fair simulation is decidable and ExpTime-complete for parity timed autom-
ata.

Proof. It suffices to observe that the simulation game can be presented as a timed parity
game, as studied in [11], played on the product of two copies of the automaton. These can be
solved in ExpTime. A matching lower bound holds even for safety or reachability acceptance
(see Lemma 24 in Appendix C for details).

◀

▶ Corollary 18. Timed language inclusion is decidable and ExpTime-complete for history-
deterministic TA. More precisely, given a TA S with initial state q and a history-deterministic
TA S′ with initial state q′, checking if q ⊆L q′ holds is ExpTime-complete.

Proof. As B is history-deterministic and by Theorem 4, we have q ⊆L q′ if, and only if,
q ⪯ q′. The result follows from Theorem 17. ◀

6.2 Synthesis Games
We show that as is the case in the regular [21], pushdown [25], cost function [12], and quant-
itative [9] settings, synthesis games with winning conditions given by history-deterministic
TA are no harder to solve than those with for winning condition given by deterministic TA.

▶ Definition 19 (Timed synthesis game). Given a timed language L ⊆ (ΣI × ΣO)ω
T , the

synthesis game for L proceeds as follows. At turn i:
Player I plays a delay di and a letter ai ∈ ΣI

Player II plays a letter bi ∈ ΣO.
Player II wins if d0

(
a0
b0

)
d1

(
a1
b1

)
... ∈ L or if time does not progress. If Player II has a winning

strategy in the synthesis game, we say that L is realisable.

▶ Theorem 20. Given a history-deterministic timed parity automaton T , the synthesis game
for L(T ) is decidable and ExpTime-complete.
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The proof (in Appendix C) follows a similar reduction to one in [25], in which the
nondeterminism of the automaton is moved into Player 2’s output alphabet, forcing her to
simultaneously build a word in the winning condition and an accepting run witnessing this.
Since accepting runs are recognised by deterministic automata, this reduces the problem to
the synthesis problem for deterministic timed automata. The lower bound follows from the
ExpTime-completeness of synthesis for deterministic TA [14].

The ExpTime decidability of universality for history-deterministic TA follows both from
the decidability of language inclusion in the previous section and from the decidability of
synthesis: the universality of T reduces to deciding the winner of the synthesis game over
{
(

w
w

)
| w ∈ L(T )}, recognised by a history-deterministic TA if T is history-deterministic.

6.3 Composition with Games
Implicitly, at the heart of these reductions is the notion of composition: the composition
of the game to solve with a history-deterministic automaton for the winning condition
yields an equivalent game with a simpler winning condition. We say that an automaton
is good-for-games if this composition operation preserves the winner of the game for all
games. While history-determinism always implies good-for-gameness, the converse is not
necessarily true. While the classes of history-deterministic and good-for-games automata
coincide for ω-regular automata [8], this is not the case for quantitative automata [9], which
can be good-for-games without being history-deterministic. We argue that for reachability
and safety timed automata, good-for-gameness and history-determinism coincide.

▶ Definition 21 (Timed Games). A timed game (roughly following [14]), consists of an arena
G = (Q, ι, C, ∆, Σ, L) and is similar to a TA except that Q, which need not be finite, is
partitioned into Q = Q1 ⊎ Q2, that is, positions Q1 belonging to Player 1 and positions Q2
belonging to Player 2, and L is a timed language, not an acceptance condition. Furthermore,
an a-transition produces the letter a, rather than reads it. Configurations are defined as for
TA and we assume every configuration to have at least one successor-configuration.

A timed game proceeds in the configuration space of G with Player 1 at each turn i

advancing time with a delay di ∈ R. Then, from the resulting configuration ci, the owner of
the state of ci chooses a transition in ∆ enabled in ci, leading to a transition ci+1 producing
a letter ai. An infinite play is winning for Player 2 if the word d0a0d1a1 . . . produced is in L.

▶ Definition 22 (Composition). Intuitively, the composition of a game G and an automaton
T consists of a game in which the two players play on G while Player 2 must also build,
letter by letter, a run of T on the outcome of the game in G. More formally, given a TA
T and a game G with winning condition L(T ), the composition T ◦ G consists of a game
played on the product of the configuration spaces of G and T , starting from the initial state
of both, in which, at each turn i, from a configuration (ci, c′

i), Player 1 plays a time delay
di ∈ R, the owner of the current G-state chooses a move in the configuration space of G to a
successor-configuration ci+1, producing a letter ai, and then Player 2 chooses a transition
over (di, ai) enabled at the current T -configuration c′

i, leading to a successor-configuration
c′

i+1. The game then proceeds from (ci+1, c′
i+1).

Player 2 wins infinite plays if the run built in T is accepting, and loses if it is rejecting
or if she cannot move in the G-component.

Observe that if Player 1 wins in G, then he also wins in T ◦ G with a strategy that produces
a word not in L(T ) in G, as then Player 2 can not produce an accepting run in T .

[9, Lemma 7] shows that for (quantitative) automata for which the letter-game is de-
termined, (threshold) history-determinism coincides with good-for-gameness. The lemma
is stated for quantitative automata, where thresholds are relevant; in the Boolean setting,
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it simply states that the determinacy of the letter game implies the equivalence of history-
determinism and good-for-gameness. In our timed setting, a similar argument, combined
with the determinacy of the letter game for safety and reachability TA, gives us the following.

▶ Theorem 23. Let T be a safety or reachability TA. The following are equivalent:
1. T is history-deterministic.
2. For all timed games G with winning condition L(T ), whenever Player 2 wins G, she also

wins T ◦ G.

Proof.

(1) =⇒ (2). If T is history-deterministic, the resolver can be used as a strategy in the
T component of T ◦ G. When combined with a winning strategy in G that guarantees that
the G-component produces a word in L(T ), the resolver guarantees that the T -component
produces an accepting run, thus giving the victory to Player 2.

(2) =⇒ (1). Towards a contradiction, assume T is not history-deterministic, that is, by
determinacy of the letter game from Remark 11, that Player 1 has a winning strategy σ in
the letter game. Now consider the game Gσ, without clocks or guards, in which positions,
all belonging to Player 1, consist of the prefixes of timed words played by σ, with moves
w

(t,a)−−−→ w(t, a). As σ is winning for Player 1, all maximal paths in Gσ are labelled by a timed
word in L(T ), so Gσ is winning for Player 2.

We now argue that Player 1 wins T ◦ Gσ by interpreting Player 2’s moves in the T
component as her moves in the letter game, and choosing moves in G mimicking the letter
dictated by σ. Then, if Player 2 could win against this strategy in T ◦ Gσ, she could also
win against σ in the letter game by interpreting Player 1’s choices of letters as moves in G,
and responding with the same transition as she plays in the T component of T ◦ Gσ. Such a
strategy is a valid strategy in the letter game on T , and while it might not be winning in
general, it is winning against σ, contradicting that σ is a winning strategy for Player 1. ◀

This proof fails for acceptance conditions beyond safety and reachability, as it isn’t
clear whether timed Büchi and coBüchi automata define Borel sets. If this was the case
then history-deterministic timed automata would be exactly those that preserve winners in
composition with games, as is the case in the ω-regular setting.

7 Conclusion

We introduced history-determinism for timed automata and showed that it suffices for solving
important problems that previously required full determinism, in particular, timed language
inclusion, universality and synthesis. We showed that for the important classes of timed
safety and timed reachability automata, history-determinism can be checked (and therefore
good-enough synthesis of deterministic reachability and safety automata can be solved) and
every history-deterministic timed safety automaton can be determinized.

We conjecture that determinizability does not hold for history-deterministic timed coBüchi
automata. Consider the timed coBüchi language “there is a real time t such that for every
nonnegative integer i, there is a letter a at time t + i.” This timed language is recognised by
a history-deterministic coBüchi automaton in which a nondeterministic transition guesses a
“witness time” t after which a occurs at every unit interval, and which allows for an unbounded
number of failed guesses (using the coBüchi condition). To see that this automaton is history-
deterministic, let the resolver repeatedly and deterministically pick the time with the most
previous occurences of a at unit-interval distances. If a timed input word is in the language,
then this resolver will eventually choose a correct witness time and produce an accepting run.
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We conjecture that the complement of this language cannot be defined by a (nondetermin-
istic) timed automaton. Informally, a timed automaton would require an unbounded number
of clocks to check that “for all occurrences of a there is a nonnegative integer distance i

such that a is not followed by another a after i time units.” If so, this timed language would
separate the classes of deterministic and history-deterministic timed languages.

Let us conclude with another conjecture. We showed that history-deterministic timed
automata are “good” for solving turn-based timed games, where in each turn of the game,
one of the two players chooses a time delay or an action. A more general, concurrent setting
for timed games is presented in [13]. In the concurrent version both players simultaneously
choose permissible pairs of time delays and actions, and the player who has picked the shorter
time delay gets to move. While concurrent games may not be determined, we conjecture
that these concurrent timed games can again be solved by composing the (timed) arena with
the (timed) winning condition, as long as the winning condition is history-deterministic.
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A Expressivity

▶ Lemma 7. Consider two region equivalent configurations (s, ν) ∼ (s′, ν′).
For every timed word u there is a timed word u′ so that the reduced run-tree on u from

(s, ν) is equivalent to the reduced run-tree on u′ from (s′, ν′).

Proof. It suffices to show that for some (not necessarily reduced) run-tree on u from (s, ν)
there exists some equivalent run-tree from (s′, ν′) as this implies the claim by collapsing all
consecutive delay steps and thus producing the reduced tree on both sides.

We proceed by stepwise uncovering the run-tree from (s, ν) for ever longer prefixes of u

and constructing a corresponding equivalent run-tree from (s′, ν′). The intermediate finite
trees we build have the property that all branches have the same duration. In each round we
extend all current leafs, in both trees, either by
1. all possible non-deterministic successors (for the letter prescribed by the word u), in case

the duration of the branch is already equal to the next time-stamp in u, or
2. one successor configuration due to a delay, which must be the same on all leafs.
For the second case, the delays used to extend the two trees need not be the same because
we only want to preserve region equivalence. Also, the delay chosen for the tree rooted in
(s, ν) need not follow the timestamps in u but can be shorter, meaning the run-tree may not
be reduced.. The difficulty lies in systematically choosing the delays to ensure that the two
trees remain equivalent and secondly, that in the limit this procedure generates a run-tree on
the whole word u from (s, ν). Together this implies the existence of a corresponding word u′

and a run-tree from (s′, ν′).

Invariant. To this end we propose a stronger invariant, namely that the relative orderings
of the fractional values in all leafs are the same on both sides. To be precise, let’s reinterpret
a clock valuation as a function ν : C × N → {⊥} ∪ [0, 1), that assigns to every clock and
possible integral value either a fractional value between 0 and 1, or ⊥ (indicating that the
given clock does not have the given integral value). This way for every clock x there is exactly
one n ∈ N with ν(x, n) ̸= ⊥ and the image ν(C × N) has at most |C| + 1 different elements.
For any ordered set F = {⊥ < f1 < f2 < · · · < fl} ⊇ ν(C × N) of fractional values, we can
thus represent ν as a function ν̂ : C × N → {⊥, 1, . . . l} that, instead of exact fractional clock
values only yields their index in F (and maps ⊥ 7→ ⊥).

Consider some run-tree with leafs (q1, ν1)(q2, ν2) · · · (qlνl) with combined fractional values
F =

⋃l
i=1 νi(C × N), and an equivalent run-tree with leafs (q′

1, ν′
1)(q′

2, ν′
2) · · · (q′

lν
′
l) with

combined fractional values F ′ =
⋃l

i=1 ν′
i(C ×N). The two trees are aligned if for all 1 ≤ i ≤ l,

ν̂i = ν̂′
i. Notice that this still allows the two trees to differ on their exact fractional values but

now they must agree on the relative order of all contained clocks on leafs, and in particular
which ones are maximal and therefore the closest to the next larger integer. We will always
select a delay of 1 − max{F} and 1 − max{F ′}, respectively, in step 2 above.
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To show the claim we produce the required run-trees starting in (s, ν) ∼ (s′ν′). These
are in particular two aligned run-trees on the empty word.

Assume two aligned trees as above, where leafs have fractional values F = {⊥ < f1 <

f2 < · · · < fm} and F ′ = {f ′
0 < f ′

1 < · · · < f ′
m}, respectively, and assume that the tree

rooted in (s, ν) reads a strict prefix (a0, t0), . . . (ai, ti) of u.
Case 1: the duration of all branches in the first tree equals ti+1, the timestamp of the

next symbol in u. Then we extend each leaf in both trees by all possible ai+1-successors.
This will produce two aligned trees because each leaf configuration in one must be region
equivalent to the corresponding configuration in the other, and therefore satisfies the same
guards, enabling the same ai+1-transitions leading to equivalent successors. Note also that
all branches in each tree still have the same duration, as no delay step was taken.

Case 2: the duration of all branches in the first tree is strictly less than ti+1. Then
we extend all leafs in the tree from (s, ν) by a delay of duration d = 1 − fm and all
leafs in the other tree by a delay of duration d′ = 1 − f ′

m. Naturally, this produces
exactly one successor for each former leaf. The sets of new fractional values on leafs are⋃m

i=1(µ + d)(C × N) = {⊥ < 0 < f1 + d < · · · < fm−1 + d} and for any former leaf (q, µ)
extended by a delay (q, µ) d−→ (q, µ + d), we have

µ̂(x, n − 1) = m ⇐⇒ ̂(µ + d)(x, n) = 0 (1)

and

µ̂(x, n) = i < m ⇐⇒ ̂(µ + d)(x, n) = i + 1 ≤ m (2)

Analogous equivalences hold for the corresponding step (q, µ′) d′

−→ (q, µ′ + d′) on the other
tree. Notice that the two cases above are exhaustive as again, for all x ∈ C there is exactly
one n ∈ N with µ(x, n) ̸= ⊥. We aim to show that ̂(µ + d) = ̂(µ′ + d′). Consider any x ∈ C

and n ∈ N. We have that

̂(µ + d)(x, n) = m
(1)⇐⇒ µ̂(x, n + 1) = 0

(IH)⇐⇒ µ̂′(x, n + 1) = 0
(1)⇐⇒ ̂(µ′ + d′)(x, n) = m

and

̂(µ + d)(x, n) = i < m
(2)⇐⇒ µ̂(x, n) = i + 1

(IH)⇐⇒ µ̂′(x, n) = i + 1
(2)⇐⇒ ̂(µ′ + d′)(x, n) = i < m

It follows that ̂(µ + d) = ̂(µ′ + d′) which means that the two trees are again aligned, as
required.

To see why this procedure produces a run-tree on u (and an equivalent run-tree on some
word u′), observe that there can be at most |F | + 1 many consecutive delay extensions
according to step 2) before all integral clock values are strictly increased. ◀

B Deciding History-determinism

▶ Lemma 12. Given an fair LTS S, if Player 2 wins G2(S) then she wins Gk(S) for all k.
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This is the generalisation of [6, Thm 14] (on ω-regular automata) to fair LTSs. The
proof is similar to [6], without requiring positional strategies, and identical to that of [10,
Theorem 4] (on quantitative automata), without the quantitative aspects. If Player 2 wins
G2(S) then she obviously wins G1(S), using her G2 strategy with respect to two copies of
Player 1’s single token in G1. We therefore consider below k > 2.

Let σ2 be a winning strategy for Player 2 in G2(S). We inductively show that Player 2
has a winning strategy σi in Gi(S) for each finite i. To do so, we assume a winning strategy
σi−1 in Gi−1(S). The strategy σi maintains some additional (not necessarily finite) memory
that maintains the position of one virtual token in S, a position in the (not necessarily finite)
memory structure of σi−1, and a position in the (not necessarily finite) memory structure of
σ2. The virtual token is initially at the initial state of S. Then, the strategy σi then plays as
follows: at each turn, after Player 1 has moved his i tokens and played a letter (or, at the
first turn, just played a letter), it first updates the σi−1 memory structure, by ignoring the
last of Player 1’s tokens, and, treating the position of the virtual token as Player 2’s token in
Gi−1(S), it updates the position of the virtual token according to the strategy σi−1; it then
updates the σ2 memory structure by treating Player 1’s last token and the virtual token as
Player 1’s 2 tokens in G2(S), and finally outputs the transition to be played according to σ2.

We now argue that this strategy is indeed winning in Gi(S). Since σi−1 is a winning
strategy in Gi−1(S), the virtual token traces an accepting run if any of the runs built by the
first i − 1 tokens of Player 1 is accepting. Since σ2 is also winning, the run built by Player 2’s
token is accepting if either the run built by the virtual token or by Player 1’s last token
is accepting. Hence, Player 2’s is accepting whenever one of Player 1’s runs is accepting,
making this a winning strategy in Gi(S).

▶ Lemma 13. Given a fair LTS S with a safety acceptance condition, Player 2 wins G1(S)
if and only if S is history-deterministic.

Proof. If S is history-deterministic then Player 2 wins G1(S) by using the resolver to choose
her transitions. This guarantees that for all words in L(S) played by Player 1, her run is
accepting, which makes her victorious regardless of Player 1’s run.

For the converse, if Player 2 wins G1(S), consider the following family of copycat strategies
for Player 1: at first, Player 1 plays σ and chooses the same transitions as Player 2; if,
eventually, Player 2 chooses a transition τ from a configuration c that is not language-maximal,
that is, moves to a configuration c′ that does no accept some word w that is accepted by
some other configuration c′′ reachable by some other transition τ ′ from c, we call such a
move non-cautious, and Player 1 stops copying Player 2 and instead chooses τ ′. From there,
Player 1 wins by playing w and an accepting run on w from c′′. Since Player 2 wins G1(S),
her winning strategy σ does not play any non-cautious moves against copycat strategies.

Then, she can use σ in the letter-game, by playing as σ would play in G1(S) if Player 1
copies her transitions. This guarantees that she never makes a non-cautious move, and, in
particular, never moves out of the safe region of the automaton unless the prefix played by
Player 1 has no continuations in L(S). This is a winning strategy in the letter-game, so S is
history-deterministic. ◀

C Synthesis, Games and Composition

▶ Theorem 20. Given a history-deterministic timed parity automaton T , the synthesis game
for L(T ) is decidable and ExpTime-complete.

CONCUR 2022
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Proof. For the upper bound, we reduce the problem to solving synthesis games for determ-
inistic timed parity automata, which is in ExpTime [14].

Let T = (S, ι, C, ∆, Σ, Acc) be a timed automaton. Let T ′ be the deterministic timed
automaton (S, ι, C, ∆′, Σ × ∆, Acc) where:

∆′ = {(s, g, (σ, (s, g, σ, c, s′)), c, s′)|(s, g, σ, c, s′) ∈ ∆}

In other words, T ′ is a deterministic automaton with the state space of T , over the
alphabet Σ × ∆, where the transition in the input letter dictates the transition in the
automaton. The language of T ′ is the set of words (w, ρ) such that there is an accepting run
of T over w along the transitions of ρ.

We now claim that given a history-deterministic automaton T with resolver r, Player
II wins the synthesis game on T if and only if she wins it on T ′. First assume that Player
II wins the synthesis game for T with a strategy s. Then, to win the synthesis game for
T ′, at each turn i, after Player I plays di and ai, she needs to make two choices: she must
choose both a response letter bi and a transition in T over (ai, bi). Given Player I’s move
and the (first component of the) word built so far, she can use the strategy s to choose the
response letter bi; this guarantees that the first component of the play is a word accepted
by T . To choose the transition of T , she can use the resolver r: given the run ρ built from
the delays (including di) and transitions played so far, she plays r(ρ, (ai, bi)). Since r is a
resolver, this strategy guarantees that the resulting run is accepting, and hence that she wins
the synthesis game on T ′.

On the other hand, if Player I wins the synthesis game on T , he has a strategy s which
guarantees a play w ∈ (Σi × ΣO)T that is not in the language of T . He can use the same
strategy in the synthesis game of T ′ to guarantee a play (w, ρ) such that w is not in the
language of T , and by extension (w, ρ) is not in the language of T ′, as there are no accepting
runs over w in T .

The lower bound follows from the ExpTime-completeness of synthesis for deterministic
TA [14]. ◀

Below we demonstrate that fair simulation checking for TA is ExpTime-hard even for
very simple acceptance conditions.

▶ Lemma 24. Checking fair simulation between TA is ExpTime-hard already for reachability
or safety acceptance, or over finite words.

Proof. This can be shown by reduction from countdown games [22], which are two-player
games (Q, T, k) given by a finite set Q of control states, a finite set T ⊆ (Q × N>0 × Q) of
transitions, labelled by positive integers, and a target number k ∈ N. All numbers are given
in binary encoding. The game is played in rounds, each of which starts in a pair (p, n) where
p ∈ Q and n ≤ k, as follows. First Player 1 picks a number l ≤ k − n, so that at least one
(p, l, p′) ∈ T exists; Then Player 2 picks one such transition and the next round starts in
(p′, n + l). Player 1 wins iff she can reach a configuration (q, k) for some state q.

Determining the winner in a countdown game is ExpTime-complete [22] and can easily
encoded as a simulation game between two TAs A and B as follows. Let A be the TA with
no clocks and unrestricted (guards are True) self-loops for the two letters a and e; The idea
is that Player 1 proposes l by waiting that long and then makes a discrete a-labelled move.
Then Player 2, currently in some state p can update his configuration to mimic that of the
countdown game, and punish (by going to a winning sink) if Player 1 cheated or the game
should end. To implement this, B has two clocks: one to store n – the total time that passed
– and one to store the current l, which is reset in each round.
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Suppose Player 1 waits for l units of time and then proposes a. Player 2, currently in
some state p will have

a and e-labelled transitions to a winning state with a guard that verifies that there is no
transition (p, l, p′).
a-labelled transitions to a state p′, with a guard that verifies that a some (p, l, p′) ∈ T

exists, and which resets clock x2.
a, and e-labelled transitions to a winning state guarded by x1 > k. This enables Player 2
to win if the global time has exceeded the target k.

The only way that Player 1 can win is by following a winning strategy in the countdown
game and by playing the letter e once B is in a configuration (q, k). Player 2 will not be able
to respond. ◀
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