
Analyzing Timed Systems Using Tree Automata

S. Akshay1, Paul Gastin2, and Shankara Narayanan Krishna1

1 Dept. of CSE, IIT Bombay, Powai, Mumbai 400076, India
{akshayss,krishnas}@cse.iitb.ac.in

2 LSV, ENS-Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
paul.gastin@lsv.ens-cachan.fr

Abstract. Timed systems, such as timed automata, are usually analyzed using their operational
semantics on timed words. The classical region abstraction for timed automata reduces them to (untimed)
finite state automata with the same time-abstract properties, such as state reachability. We propose a
new technique to analyze such timed systems using finite tree automata instead of finite word automata.
The main idea is to consider timed behaviors as graphs with matching edges capturing timing constraints.
Such graphs can be interpreted in trees opening the way to tree automata based techniques which are
more powerful than analysis based on word automata. The technique is quite general and applies to many
timed systems. In this paper, as an example, we develop the technique on timed pushdown systems, which
have recently received considerable attention. Further, we also demonstrate how we can use it on timed
automata and timed multi-stack pushdown systems (with boundedness restrictions).

1 Introduction

The advent of timed automata [3] marked the beginning of an era in the verification of real-time
systems. Today, timed automata form one of the well accepted real-time modelling formalisms, using
real-valued variables called clocks to capture time constraints. The decidability of the emptiness
problem for timed automata is achieved using the notion of region abstraction. This gives a sound
and finite abstraction of an infinite state system, and has paved the way for state-of-the-art tools like
UPPAAL [5], which have successfully been used in the verification of several complex timed systems.
In recent times [1, 6, 13] there has been a lot of interest in the theory of verification of more complex
timed systems enriched with features such as concurrency, communication between components and
recursion with single or multiple threads. In most of these approaches, decidability has been obtained
by cleverly extending the fundamental idea of region or zone abstractions.

In this paper, we give a technique for analyzing timed systems, inspired from a different approach
based on graphs and tree automata. This approach has been exploited for analyzing various types of
untimed systems, e.g., [17, 10]. The basic template of this approach has three steps: (1) capture the
behaviors of the system as graphs, (2) show that the class of graphs that are actual behaviors of the
system is MSO-definable, and (3) show that this class of graphs has bounded tree-width (or clique-
width or split-width), or restrict the analysis to such bounded behaviors. Then, non-emptiness of the
given system boils down to the satisfiability of an MSO sentence on graphs of bounded tree-width,
which is decidable by Courcelle’s theorem. Since, graphs of bounded tree-width can be interpreted in
binary trees, the problem reduces to non-emptiness of a tree automaton whose existence follows from
Courcelle’s theorem. But, by providing a direct construction of the tree automaton, it is possible to
obtain a good complexity for the decision procedure.

Our technique starts similarly, by replacing timed word behaviors of timed systems with graphs
consisting of untimed words with additional time-constraint edges, called words with timing con-
straints (TCWs). However, the main complication here is that a TCW describes an abstract run of
the timed system, where the constraints are recorded but not checked. The TCW corresponds to
an actual concrete run iff it is realizable. So, we are interested in the class of graphs which are
realizable TCWs. The structural property that a graph must be a TCW is MSO-definable. However,

ar
X

iv
:1

60
4.

08
44

3v
1

 [
cs

.F
L

]
 2

8
A

pr
 2

01
6

2 Analyzing Timed Systems Using Tree Automata

we conjecture that realizability is not MSO definable over words with timing constraints. Given this,
we cannot directly appeal to the approach of [17, 10]. Instead, we work on decomposition trees and
construct a finite tree automaton checking realizability, which is the most involved part of the paper.

a c

(2,∞)
b d

(1, 3)

a b c d

(2,∞) (1, 3)

a b c d

(2,∞) (1, 3)

More precisely, we show that words with timing constraints (TCWs)
which are behaviors of certain classes of timed systems (like timed
pushdown systems) are graphs of bounded split/tree-width. Hence,
these graphs admit binary tree decompositions as depicted in the
adjoining figure. Each node of the tree depicts an incomplete behavi-
or/graph of the system, and by combining these behaviors as we go up
the tree, we obtain a full or complete behavior (run) of the system. We
construct a tree automaton that checks if the generated graph encoded
as a tree satisfies the ValCoRe property (1) Validity: The root node
depicts a syntactically correct labeled graph (TCW); (2) Correctness
of run: The graph is indeed a correct run of the underlying timed system and; (3) Realizability: The
root node depicts a realizable graph, i.e., we can find timestamps that realize all timing-constraints. To
check realizability, the tree automaton needs to maintain a finite abstraction for each subtree encoding
a TCW. Thanks to the bound on split/tree-width, our abstraction keeps a bounded number of posi-
tions, called end-points, in the (arbitrarily large) TCW. It subsumes (arbitrarily long) paths of timing
constraints in the TCW by new timing constraints between these end-points. The constants in these
new constraints are sums of original constants and may grow unboundedly. Hence, a key difficulty
is to introduce suitable abstractions which aid in bounding the constants, while at the same time
preserving realizability. Using tree decompositions of graph behaviors of bounded split/tree-width
and tree automata proved to be a very successful technique for the analysis of untimed infinite state
systems [17, 11, 10, 2]. This paper opens up this powerful technique for analysis of timed systems.

To illustrate the technique, we have reproved the decidability of non-emptiness of timed automata
and timed pushdown automata (TPDA), by showing that both these models have a split-width (|X|+2
and 4|X| + 2) that is linear in the number of clocks. This bound directly tells us the amount of
information that we need to maintain in the construction of the tree automata. For TPDA we obtain
an EXPTIME algorithm, matching the known lower-bound for the emptiness problem of TPDA. For
timed automata, since the split-trees are word-like (at each binary node, one subtree is small) we may
use word automata instead of tree automata, reducing the complexity from EXPTIME to PSPACE,
again matching the lower-bound. Interestingly, if one considers TPDA with no explicit clocks, but
the stack is timed, then the split-width is a constant, 2. In this case, we have a polynomial time
procedure to decide emptiness, assuming a unary encoding of constants in the system. To further
demonstrate the power of our technique, we derive a new decidability result for non-emptiness of
timed multi-stack pushdown automata under bounded rounds, by showing that the split-width of this
model is again linear in the number of clocks, stacks and rounds. Exploring decidable subclasses
of untimed multi-stack pushdown systems is a very active research area [4, 12, 14, 16, 15], and our
technique can easily extend these to handle time.

It should be noticed that the tree automata for validity and realizability (the most involved
construction of this paper) are independent of the timed system under study. Hence, to apply the
technique to other systems, one only needs to prove the bound on split-width and to show that their runs
can be captured by tree automata. This is a major difference compared to many existing techniques
for timed systems which are highly system dependent. Finally, we mention an orthogonal approach
to deal with timed systems given in [6], where the authors show the decidability of the non-emptiness
problem for a class of timed pushdown automata by reasoning about sets with timed-atoms.

S. Akshay, P. Gastin, S. Krishna 3

2 Graphs for behaviors of timed systems

We fix an alphabet Σ and use Σε to denote Σ ∪ {ε} where ε is the silent action. We also fix a finite
set of closed intervals I which contains the special interval [0, 0]. For a set S, we use ≤ ⊆ S × S to
denote a partial or total order on S. For any x, y ∈ S, we write x < y if x ≤ y and x 6= y, and xl y

if x < y and there does not exist z ∈ S such that x < z < y.

2.1 Abstractions of timed behaviors

Definition 1. A word with timing constraints (TCW) over Σ, I is a structure V = (P,→, λ,B, θ)
where P is a finite set of positions or points, λ : P → Σε labels each position, the reflexive transition
closure ≤ =→∗ is a total order on P and→ = l is the successor relation, B ⊆ < =→+ gives the
pairs of positions carrying a timing constraint, whose interval is given by θ : B→ I.

For any position i ∈ P , the indegree (resp. outdegree) of i is the number of positions j such that
(j, i) ∈ B (resp. (i, j) ∈ B). A TCW is simple (denoted STCW) if each position has at most one
timing constraint (incoming or outgoing) attached to it, i.e., for all i ∈ P , indegree(i) + outdegree(i)
≤ 1. A TCW is depicted below (left) with positions 1, 2, . . . , 5 labelled over {a, b}. indegree(4)=1,
outdegree(1)=1 and indegree(3)=0. The curved edges decorated with intervals connect the positions
related by B, while straight edges are the successor relation→. Note that this TCW is simple.

a b a b b

[3,3] [2,5]
a b a b b

3

-3

5

-2
0000

An ε-timed word is a sequence w = (a1, t1) . . . (an, tn) with a1 . . . an ∈ Σ+
ε and (ti)1≤i≤n is a

non-decreasing sequence of real time values. If ai 6= ε for all 1 ≤ i ≤ n, then w is a timed word. The
projection on Σ of an ε-timed word is the timed word obtained by removing ε-labelled positions.

Consider a TCW W = (P,→, λ,B, θ) with P = {1, . . . , n}. A timed word w is a realization of
W if it is the projection on Σ of an ε-timed word w′ = (λ(1), t1) . . . (λ(n), tn) such that tj − ti ∈
θ(i, j) for all (i, j) ∈ B. In other words, a TCW is realizable if there exists a timed word w which is
a realization of W . For example, the timed word (a, 0.9)(b, 2.1)(a, 2.1)(b, 3.9)(b, 5) is a realization
of the TCW depicted above (left), while (a, 1.2)(b, 2.1) (a, 2.1)(b, 3.9)(b, 5) is not.

We can (and often will) view a TCW W as a directed weighted graph with edges E = B ∪
B−1 ∪→−1 and weights induced by θ as follows: if (i, j) ∈ B and θ(i, j) = [I`, Ir] then the weight
of the forward edge is the upper constraint wt(i, j) = Ir and the weight of the back edge is the
negative value of the lower constraint wt(j, i) = −I`. Further, to ensure that time is non-decreasing
we add 0-weight back edges between consecutive positions that are not already constrained, i.e., if
(i, j) ∈ l \ B then wt(j, i) = 0. The directed weighted graph depicted above (right) corresponds
to the TCW on its left. A directed path in W is a sequence of positions ρ = p1, p2, . . . , pn (n > 1)
linked with edges: (pi, pi+1) ∈ E for all 1 ≤ i < n. It is a cycle or loop if pn = p1. Its weight is
wt(ρ) =

∑
1≤i<n wt(pi, pi+1). Then, we have the following standard result:

Proposition 2 ([7]). A TCW W is realizable iff it has no negative cycles.

Proof. This follows from the well-known method for checking feasibility of systems of difference
constraints using constraint graphs. The characterization can be found in any standard textbook
on algorithms and constraint solving, for instance, see [7, Chapter 24.4]. (We have additional
constraints of the form xi ≥ 0, but this is easy to handle since if (s1, . . . , sn) is a solution vector then
(s1 + d, . . . ; sn + d) is also a solution vector for all constants d.) �

4 Analyzing Timed Systems Using Tree Automata

To check if a TCW is realizable, we only need to check for absence of negative weight cycles, which
can be done in polynomial time, for instance, using the Bellman Ford algorithm (see [7] for details).

2.2 TPDA and their semantics as simple TCWs
Dense-timed pushdown automata (TPDA), introduced in [1], are an extension of timed automata, and
operate on a finite set of real-valued clocks and a stack which holds symbols with their ages. The
age of a symbol in the stack represents time elapsed since it was pushed on to the stack. Formally,
a TPDA S is a tuple (S, s0,Σ,Γ,∆, X, F) where S is a finite set of states, s0 ∈ S is the initial
state, Σ, Γ, are respectively a finite set of input, stack symbols, ∆ is a finite set of transitions, X is a
finite set of real-valued variables called clocks, F ⊆ S are final states. A transition t ∈ ∆ is a tuple
(s, γ, a, op, R, s′) where s, s′ ∈ S, a ∈ Σ, γ is a finite conjunction of atomic formulae of the kind
x ∈ I for x ∈ X and I ∈ I, R ⊆ X are the clocks reset, op is one of the following stack operations:

1. nop does not change the contents of the stack,
2. ↓c where c ∈ Γ is a push operation that adds c on top of the stack, with age 0.
3. ↑Ic where c ∈ Γ is a stack symbol and I ∈ I is an interval, is a pop operation that removes the top

most symbol of the stack provided it is a c with age in the interval I .

Timed automata (TA) can be seen as TPDA using nop operations only. This definition of TPDA is
equivalent to the one in [1], but allows checking conjunctive constraints and stack operations together.
In [6], it is shown that TPDA of [1] are expressively equivalent to timed automata with an untimed
stack. Nevertheless, our technique is oblivious to whether the stack is timed or not, hence we focus
on the syntactically more succinct model TPDA with timed stack and get good complexity bounds.

We define the semantics in terms of simple TCWs. An STCW V = (P,→, λ,B, θ) is said to be
generated or accepted by a TPDA S if there is an accepting abstract run ρ = (s0, γ1, a1, op1, R1, s1)
(s1, γ2, a2, op2, R2, s2) · · · (sn−1, γn, an, opn, Rn, sn) of S such that, sn ∈ F and

the sequence of push-pop operations is well-nested: in each prefix op1 · · · opk with 1 ≤ k ≤ n,
number of pops is at most number of pushes, and in the full sequence op1 · · · opn, they are equal.
We have P = P0] P1] · · ·] Pn with Pi × Pj ⊆ →+ for 0 ≤ i < j ≤ n. Each transition
δi = (si−1, γi, ai, opi, Ri, si) gives rise to a sequence of consecutive points Pi in the STCW.
The transition δi is simulated by a sequence of “micro-transitions” as depicted below (left) and
it represents an STCW shown below (right). Incoming red edges check guards from γi (wrt
different clocks) while outgoing green edges depict resets from Ri that will be checked later.
Further, the outgoing edge on the central node labeled ai represents a push operation on stack.

si−1 δ0

i
δ1

i
· · · δhi−1

i
δhi

i
δx1

i
· · · δxm

i
si

{ζ} γ1

i
γhi

i ai, opi

{x1}

ε

{xm}

ζ = 0

ε ε ε ai ε ε ε

[0,0]

where γi = γ1
i ∧ · · · ∧ γ

hi
i and Ri = {x1, . . . , xm}. The first and last micro-transitions,

corresponding to the reset of a new clock ζ and checking of constraint ζ = 0 ensure that all
micro-transitions in the sequence occur simultaneously. We have a point in Pi for each micro-
transition (excluding the ε-micro-transitions between δxj

i). Hence, Pi consists of a sequence
`i → `1i → · · · → `hi

i → pi → r1
i → · · · → rgi

i → ri where gi is the number of timing
constraints corresponding to clocks reset during transition i and checked afterwards. Similarly, hi
is the number of timing constraints checked in γi. We have λ(pi) = ai and all other points are
labelled ε. The set P0 encodes the initial resets of clocks that will be checked before being reset.
So we let R0 = X and P0 is `0 → r1

0 → . . .→ rg0
0 → r0 .

the relation for timing constraints can be partitioned as B = Bs]
⊎
x∈X∪{ζ}B

x where

S. Akshay, P. Gastin, S. Krishna 5

Bζ = {(`i, ri) | 0 ≤ i ≤ n} and we set θ(`i, ri) = [0, 0] for all 0 ≤ i ≤ n.
We have pi Bs pj if opi = ↓b is a push and opj = ↑Ib is the matching pop (same number of
pushes and pops in opi+1 · · · opj−1), and we set θ(pi, pj) = I .
for each 0 ≤ i < j ≤ n such that the t-th conjunct of γj is x ∈ I and x ∈ Ri and x /∈ Rk
for i < k < j, we have rsi B

x `tj for some 1 ≤ s ≤ gi and θ(rsi , `tj) = I . Therefore, every
point `ti with 1 ≤ t ≤ hi is the target of a timing constraint. Moreover, every reset point rsi for
1 ≤ s ≤ gi should be the source of a timing constraint: rsi ∈ dom(Bx) for some x ∈ Ri. Also,
for each i, the reset points r1

i , . . . , r
gi

i are grouped by clocks (as suggested by the sequence
of micro-transitions simulating δi): if 1 ≤ s < u < t ≤ gi and rsi , r

t
i ∈ dom(Bx) for some

x ∈ Ri then rui ∈ dom(Bx). Finally, for each clock, we request that the timing constraints
are well-nested: for all uBx v and u′ Bx v′, with u, u′ ∈ Pi, if u < u′ then u′ < v′ < v.

We denote by STCW(S) the set of simple TCWs generated by S and define the language of S as the
set of realizable STCWs, i.e., L(S) = Real(STCW(S)). Indeed, this is equivalent to defining the
language as the set of timed words accepted by S, according to a usual operational semantics [1].

The STCW semantics of timed automata (TA) can be obtained from the above discussion by just
ignoring the stack components (using nop operations only). To illustrate these ideas, we now provide
a simple example of a timed automaton and an STCW that is generated by it.

1start 2 3
a, y ∈ [0, 1]
x := 0

b, x ∈ [1, 2], y ∈ [0, 2]
y := 0

c, x ∈ [5,∞), y ∈ [2, 3]

P0

a

P1

b

P2

c

P3

[0, 1]

[0, 2]

[2, 3][1, 2]

[5,∞)

[0, 0]
[0, 0] [0, 0] [0, 0]

Figure 1 A timed automaton (top) with 2 clocks x, y. An STCW generated by an accepting run of the TA is
depicted just below. The blue edges represent matching relations induced by clock y, while the green represent
those induced by clock x. The violet edges are the [0, 0] timing constraints for the extra clock ζ ensuring that all
points in some Pi representing transition i occur precisely at the same time. Black lines are process edges.

3 Bounding the width of graph behaviors of timed systems

In this section, we check if the graphs (STCWs) introduced in the previous section have a bounded
tree-width. As a first step towards that, we introduce special tree terms (STTs) from Courcelle [8]
and their semantics as labeled graphs. It is known [8] that special tree terms using at most K colors
(K-STTs) define graphs of “special” tree-width at most K − 1. Formally, a (Σ,Γ)-labeled graph
is a tuple G = (V, (Eγ)γ∈Γ, λ) where λ : V → Σ is the vertex labeling and Eγ ⊆ V 2 is the set of
edges for each label γ ∈ Γ. Special tree terms form an algebra to define labeled graphs. The syntax
of K-STTs over (Σ,Γ) is given by

τ ::= (i, a) | Addγi,j τ | Forgeti τ | Renamei,j τ | τ ⊕ τ

where a ∈ Σ, γ ∈ Γ and i, j ∈ [K] = {1, . . . ,K} are colors. The semantics of each K-STT is
a colored graph JτK = (Gτ , χτ) where Gτ is a (Σ,Γ)-labeled graph and χτ : [K]→ V is a partial
injective function assigning a vertex of Gτ to some colors.

6 Analyzing Timed Systems Using Tree Automata

J(i, a)K consists of a single a-labeled vertex with color i.
Addγi,j adds a γ-labeled edge to the vertices colored i and j (if such vertices exist).
Forgeti removes color i from the domain of the color map.
Renamei,j exchanges the colors i and j.
⊕ is the disjoint union of two graphs if they use different colors and is undefined otherwise.

The special tree-width of a graph G is defined as the least K such that G = Gτ for some (K + 1)-
STT τ . See [8] for more details and its relation to tree-width. For TCWs, we have successor edges
and B-edges carrying timing constraints, so we take Γ = {→} ∪ {(x, y) | x ∈ N, y ∈ N} with
N = N ∪ {∞}. In this paper, we will actually make use of STTs with the following restricted syntax,
which are sufficient and make our proofs simpler:

atomicSTT ::= (1, a) | Addx,y1,2 ((1, a)⊕ (2, b))
τ ::= atomicSTT | Add→i,j τ | Forgeti τ | Renamei,j τ | τ ⊕ τ

with a, b ∈ Σε, 0 ≤ x < M , 0 ≤ y < M or y = +∞ for some M ∈ N and i, j ∈ [2K] =
{1, . . . , 2K}. The terms defined by this grammar are called (K,M)-STTs. Here, timing constraints
are added directly between leaves in atomic STTs which are then combined using disjoint unions and
adding successor edges. For instance, consider the 4-STT given below

τ = Forget3 Add→1,3 Forget2 Add→2,4 Add→3,2(Add2,∞
1,2 ((1, a)⊕ (2, c))⊕ Add1,3

3,4((3, b)⊕ (4, d)))

a b c d

(2,∞) (1, 3)
Its semantics JτK is the adjoining STCW where only endpoints

labelled a and d are colored, as the other two colors were “forgotten”
by τ . Abusing notation, we will also use JτK for the graph Gτ
ignoring the coloring χt. The term τ is depicted as a tree in Figure 3
in Appendix A.

3.1 Split-TCWs and split-game

We find it convenient to prove that a simple TCW has bounded special tree-width by playing a
split-game, whose game positions are simple TCWs in which some successor edges have been cut,
i.e., are missing. Formally, a split-TCW is a structure V = (P,→, 99K, λ,B, θ) where→ and 99K are
the present and absent successor edges (also called holes), respectively, such that→∩ 99K = ∅ and
(P,→∪99K, λ,B, θ) is a TCW. A block or factor of a split-TCW is a maximal connected component
of (P,→). We denote by EP(V) ⊆ P the set of left and right endpoints of blocks of V . A left
endpoint e is one for which there is no f with f → e. Right endpoints are defined similarly. Points
in P \ EP(V) are called internal. The number of blocks is the width of V: width(V) = 1 + |99K|.
TCWs may be identified with split-TCWs of width 1, i.e., with 99K = ∅. A split-TCW is atomic
if it consists of a single point (|P | = 1) or a single timing constraint with a hole (P = {p1, p2},
p1 99K p2, p1 B p2). The directed weighted graph for a split-TCW is defined on the associated TCW
under→∪ 99K and hence has back edges with wt = 0 across a hole as well.

The split-game is a two player turn based game G = (V∃] V∀, E) where Eve’s set of game
positions V∃ consists of all connected (wrt.→∪B) split-TCWs and Adam’s set of game positions
V∀ consists of non-connected split-TCWs. The edges E of G reflect the moves of the players. Eve’s
moves consist of splitting a factor in two, i.e., removing one successor edge in the graph. Adam’s
moves amount to choosing a connected component of the split-TCW. Atomic split-TCWs are terminal
positions in the game: neither Eve nor Adam can move from an atomic split-TCW. A play on a
split-TCW V is a path in G starting from V and leading to an atomic split-TCW. The cost of the play
is the maximum width of any split-TCW encountered in the path. Eve’s objective is to minimize the
cost, while Adam’s objective is to maximize it.

S. Akshay, P. Gastin, S. Krishna 7

Notice that Eve has a strategy to decompose a TCW V into atomic split-TCWs if and only if V is
simple, i.e, at most one timing constraint is attached to each point. The cost of a strategy σ for Eve
from a split-TCW V is the maximal cost of the plays starting from V and following strategy σ.

The split-width of a simple (split-)TCW V is the minimal cost of Eve’s (positional) strategies
starting from V . Let STCWK(Σ) (resp. STCWK,M (Σ)) denote the set of simple TCWs with split-
width bounded by K (resp. and using constants at most M). The crucial link between special
tree-width and split-width is given by the following lemma.

Lemma 3. STCWs of split-width at most K have special tree-width at most 2K − 1.

Starting from a STCW having constants ≤ M , and a strategy of Eve of cost ≤ K, we show in
Appendix A how to build a (K,M)-STT.

3.2 Split-width for timed systems

Viewing these terms as trees, our goal in the next section will be to construct tree automata to
recognize sets of (K,M)-STTs, and thus capture the (K split-width) bounded behaviors of a given
system. A possible way to show that these capture all behaviors of the given system, is to show that
we can find a K such that all the (graph) behaviors of the given system have a K-bounded split-width.
We do this now for a TPDA and also mention how to modify the proof for a timed automaton. In
Section 7, we also show how it extends to multi-pushdown systems.

Theorem 4. Given a timed system S using a set of clocks X , all words in its STCW language have
split-width bounded by K, i.e., STCW(S) ⊆ STCWK , where

1. K = |X|+ 4 if S is a timed automaton,
2. K = 4|X|+ 6 if S is a timed pushdown automaton,

We prove a slightly more general result, by identifying some properties satisfied by STCWs generated
by a TPDA, and showing that all STCWs satisfying these properties have bounded split-width. Let
V = (P,→, 99K, λ,B, θ) be a split STCW and let l =→∪ 99K. We say that V is well timed w.r.t. a
set of clocks Y and a stack s if the B relation can be partitioned as B = Bs]

⊎
x∈Y B

x where

(T1) the relationBs corresponds to the matching push-pop events, hence it is well-nested: for all iBs j
and i′ Bs j′, if i < i′ < j then i′ < j′ < j.

(T2) For each x ∈ Y , the relation Bx corresponds to the timing constraints for clock x and is well-
nested: for all iBxj and i′Bxj′, if i < i′ are in the same x-reset block (i.e., a maximal consecutive
sequence i1 l · · ·l in of positions in the domain of Bx), and i < i′ < j, then i′ < j′ < j. Each
guard should be matched with the closest reset block on its left: for all i Bx j and i′ Bx j′, if
i < i′ are not in the same x-reset block then j < i′ (see Figure 4 in Appendix A).

It is easy to check that STCWs defined by a TPDA with set of clocks X are well-timed for the set of
clocks Y = X ∪ {ζ}, i.e., satisfy the properties above (Appendix A, Claim 21). Then, the following
lemma completes the proof of Theorem 4 (2).

Lemma 5. The split-width of a well-timed STCW is bounded by 4|Y |+ 2.

Proof (sketch). We prove this by playing the “split-width game” between Adam and Eve in which
Eve has a strategy to disconnect the word without introducing more than 4|Y | + 2 blocks. Eve’s
strategy processes the word from right to left. We have three cases as follows.

Case (1) is when the last/right-most event, say j, is an internal point, i.e., it is not the target of a B
relation. In this case, Eve will just split the process-edge before the last point with a single cut. Case

8 Analyzing Timed Systems Using Tree Automata

(2) is when the last event is the target of Bx for some clock x ∈ Y . In this case, she will detach the
last timing constraint iBx j where j is the last point of the split-TCW. By (T2) we deduce that i is
the first point of the last reset block for clock x. Eve splits three process-edges to detach the matching
pair iBx j: these three edges are those connected to i and j. Since the matching pair iBx j is atomic,
to prolong the game Adam should choose the remaining split-TCW V ′. Notice that we have now a
hole instead of position i. We call this a reset-hole for clock x. During the inductive process, we may
have at most one such reset hole for each clock x ∈ Y , since the hole only widens in the reset block
for each clock.

Note that the last event cannot be a push or the source of a timing constraint. So, the remaining
Case (3) is a stack edge iBs j where the pop event j is the last event of the split-TCW. If there is
already a hole before the push event i, or if i is the first event of the split-TCW, then Eve detaches
the atomic matching pair i Bs j by splitting after i and before j and the game continues from the
remaining split-TCW. Otherwise, we cannot proceed as before, since this would create a push-hole
and the pushes are not arranged in blocks (which results in holes widening, rather than increasing
their number). Hence, removing push-pop edges as we removed timing constraints would create an
unbounded number of holes. Instead, Eve divides the TCW in two parts, the left one contains the
points before i from which she detaches the resets that will be checked in the right part, the right
one contains all points between i and j together with the matching resets. This may create at most
|Y | reset holes in the left part and requires at most 2|Y | + 1 cuts. The resulting split-TCW is not
connected. Indeed, push-pop edges are well-nested (T1) and since j is the last point of the split-TCW,
there are no push-pop edges crossing position i: i′ Bs j′ and i′ < i implies j′ < i. Hence, only clock
constraints may cross position i. See Appendix A (page 21) for details and examples.

Using this strategy, we can show that after a move of Adam, the split-TCW has at most 2|Y |+ 1
blocks, and Eve will disconnect it using at most 2|Y |+1 cuts. Therefore Eve wins without introducing
more than 4|Y |+ 2 blocks. The details are in Appendix A (page 21). �

Now, if the STCW is from a timed automaton then, Bs is empty and Eve’s strategy only has the
first two cases above. Thus, we obtain a bound of |Y |+ 3 on split-width, which proves Theorem 4 (1).

Figure 2 illustrates our strategy starting from the STCW depicted in Figure 1, generated by the
TA shown in that figure.

4 The tree automata technique illustrated via TPDA and TA

We now describe our proof technique of using tree automata to analyze timed systems. At a high level,
given a timed system S using constants less than M (say a timed automaton or a TPDA), we want to
construct a tree automaton that accepts (K,M)-STTs whose semantics are STCWs of split-width at
most K which are realizable and accepted by S. We break this into three parts.

First, recall that STCWs of bounded split-width are graphs of bounded STTs (Lemma 3). However,
not all graphs defined by bounded STTs are STCWs. We construct a tree automaton AK,Mvalid which
accepts only valid (K,M)-STTs, i.e., those representing STCWs of split-width at most K.

Proposition 6. We can build a tree automaton AK,Mvalid of size O(M) · 2O(K2) which accepts only
(K,M)-STTs and such that STCWK,M = {JτK | τ ∈ L(AK,Mvalid)}.

Our next step is to define a tree automaton AK,Mreal which accepts all valid STTs whose semantics are
realizable STCWs. This is the hardest part of the proof due to timing constraints (over dense time).

Proposition 7. We can build a tree automaton AK,Mreal of size MO(K2) · 2O(K2 lgK) such that
L(AK,Mreal) = {τ ∈ L(AK,Mvalid) | JτK is realizable}.

S. Akshay, P. Gastin, S. Krishna 9

a b c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a b c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19

a b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18

a b

1 2 3 4 5 6 7 8 9 10 11 12 13

a b

1 2 3 4 5 6 9 10 11 12 13

a b

1 2 3 4 5 6 9 12 13

a

1 2 3 4 5 6 9 12

Figure 2 The first 4 steps of the split-game on the STCW of Figure 1. Note that we do not write the time
intervals or transition names as they are irrelevant for this game. In the first step, Eve detaches the last timing
constraint by cutting the 3 successor edges 16, 17 and 20. Adam chooses the non atomic STCW of the second
line. In the second step, Eve detaches the last internal event labelled c by cutting edge 19. The resulting
STCW is on the third line, from which Eve detaches the last timing constraint by cutting edges 14, 15, 18. She
continues by cutting edges 7, 8 to detach the green timing constraint, and so on. Notice that we have three clocks
X = {x, y, ζ} and that the maximal number of blocks |X| + 3 = 6 is reached on the last STCW when Eve
cuts edges 1, 2 and 12.

Note that AK,Mreal may not accept all (K,M)-STTs which denote realizable STCWs, but it will accept
all such valid STTs. Once we have this, our third and final step is to build a tree automaton which
accepts the valid STTs denoting STCWs accepted by the timed system.

Proposition 8. Let S be a TPDA of size |S| (constants encoded in unary) with set of clocks X and
using constants less than M . Then, we can build a tree automaton AK,MS of size
|S|O(K2) · 2O(K2(|X|+1)) such that

In Section 5, we detail the most complex tree automaton construction, AK,Mreal for realizability, thus
proving Proposition 7. The construction of AK,Mvalid is somewhat similar (and easier) and its proof,
Proposition 6, is in Appendix B, while AK,MS (Proposition 8) is in Appendix D. We remark that for
AK,Mvalid ,A

K,M
S we can also define an MSO formula and use Courcelle’s theorem [9], but the direct tree

automata construction gives us complexity bounds and helps for AK,Mreal as explained in Appendix B.
Thus, the tree automatonA checking ValCoRe (i.e., validity, correctness and realizability) isA =

AK,Mreal ∩A
K,M
S . We haveL(A) 6= ∅ iff there exist some realizable STCWs in STCW(S)∩STCWK,M .

Since checking emptiness of a finite tree automaton is decidable in PTIME, we obtain that emptiness
is decidable for the corresponding timed system restricted to STCWs of split-width at most K.

Theorem 9. Checking whether the timed system S accepts a realizable STCW of split-width at
most K is decidable.

10 Analyzing Timed Systems Using Tree Automata

By Theorem 4, all STCWs in the semantics of a TPDA S have split-width bounded by some fixed
K and Theorem 9 gives a complete decision procedure for checking emptiness of TPDA. From these
bounds on split-width and the size of the tree automata for validity, realizability and the system given
in the above propositions, we obtain EXPTIME decision procedures for checking emptiness of TPDA.

In the above technique, the only system-specific component is the automaton AK,MS for the timed
system S. However, Proposition 8 can easily be adapted for timed automata and for several other
timed systems, which are discussed in Section 7. Hence, this technique is generic and can be used for
several other timed systems.

Moreover, for timed automata, it can be seen, for instance, from the analysis of Cases (1) and
(2) of proof of Lemma 5 that one of the connected components (the pair i Bx j) is always atomic.
This is illustrated in the decomposition of the STCW in Figure 2, where Eve, at each step, breaks
a split-STCW into two, an atomic and a non-atomic split-STCW (and subsequently Adam always
picks the non-atomic STCW to proceed). Therefore the split-tree is “word-like”, i.e., for each binary
node, one subtree is small, in our case atomic. Therefore, we can encode the subtree in the label
of the binary node itself and use word automata instead of tree automata to check for emptiness (in
NLOGSPACE instead of PTIME), yielding the complexity stated below.

Corollary 10. Emptiness of TPDA and TA are decidable in EXPTIME and PSPACE respectively.

5 Tree automata for realizable valid (K, M)-STTs

Our goal in this section is to define a finite bottom-up tree automaton AK,Mreal that runs on (K,M)-
STTs and accepts only valid (K,M)-STTs whose semantics are realizable STCWs. Let us first give
a high-level picture. A state of the tree automaton will be a split-TCW with at most K blocks and
2K points. At any stage of the run, while processing a subtree τ of the (K,M)-STT, the state, i.e.,
split-TCW q reached will be a finite abstraction of the split-TCW JτK generated by τ , such that q is
valid and realizable iff the TCW JτK is. At a leaf, the state of an atomic-STT is just a single matching
edge with a hole. At each subsequent step going up, the tree automaton simulates the operations of
τ : at a ⊕ move, it combines two split-TCW q1 and q2 to form a new valid split-TCW q by guessing
an ordering between the blocks such that no new negative cycle is introduced (i.e., q continues to
be realizable), and at an Add→i,j node, it adds a process edge to fill up the corresponding hole in
the split-TCW. At a Forgeti node, it removes an internal point, but to maintain realizability, the
constraints on internal positions must be propagated to the end-points of the block and this process is
continued. Finally, at the root, we obtain a TCW which is a finite abstraction of the semantics JτK of
a valid (K,M)-STT τ such that JτK is a realizable TCW. Then, we show that the tree automaton
accepts all such (K,M)-STTs, which concludes the proof of Proposition 7.

There are two key difficulties that we have glossed over in this sketch:

first, the propagation of constraints can increase the bounds arbitrarily, along an arbitrarily long
(even if finite) run. Fixing this is the hardest part and we carefully define abstractions such that
we can bound the constraints by a constant M ′ = O(M), while preserving realizability.
This leads to another subtle issue: while checking that realizability is preserved under our
operations (of combining split-TCW and adding process edges), it is no longer sufficient to just
check whether this combination is “safe”. It may be that currently no negative cycle is formed, but
at a later stage, some other operation (⊕) gives rise to a negative cycle, which we do not observe
since we capped the value of timing constraints. So, we need to show that all operations are
safe no matter what happens in the future. For this we start by defining the notion of preserving
realizability “under all contexts” as well as the formal notion of a “shuffle” used at ⊕ nodes.

S. Akshay, P. Gastin, S. Krishna 11

5.1 Shuffle and Realizability under contexts

Let V1 = (P1,→1, 99K1, λ1,B1, θ1) and V2 = (P2,→2, 99K2, λ2,B2, θ2) be two split-TCWs such
that their respective set of positions P1 and P2 are disjoint. Further, let ≤ be a total order on
P = P1∪P2 such that 99K1∪99K2 ⊆ < and→1∪→2 ⊆ l. Such orders are called admissible. Then,
we define the split-TCW V = (P,→, 99K, λ,B, θ) by P = P1] P2, λ = λ1 ∪ λ2,→ =→1 ∪→2,
99K = l \ →, B = B1 ∪B2, and θ = θ1 ∪ θ2. Indeed, this corresponds to shuffling the blocks V1
and V2 with respect to the admissible order ≤ and is called a shuffle, denoted by V = V1 tt≤ V2.

Let M be a positive integer. An M -context C is a split-TCW such that the maximal constant in
the intervals is strictly smaller than the fixed constant M . Given a context C and a split-TCW V , we
define an operation C ◦V if width(C) = width(V) + 1. C ◦V is the split-TCW obtained by shuffling
the blocks of C and V in strict alternation.

Two split-TCWs U and V are equivalent, denoted U ∼M V , iff they have the same number
of blocks and preserve realizability under all M -contexts. That is, there exists k ∈ N such that
width(U) = width(V) = k and for all M -contexts C ∈ STCW with width(C) = k + 1, C ◦ U is
realizable iff C ◦ V is realizable. It is easy to see that ∼M is an equivalence relation. A function
f : STCW→ STCW is said to be sound if it preserves realizability under all M -contexts, i.e., for all
W ∈ STCW we have W ∼M f(W). The idea is to come up with a sound abstraction of finite index,
so that a finite tree automaton can be defined which works only on the representatives. The operation
tt preserves the equivalence between split-TCW (Appendix C).

Lemma 11. (Congruence lemma) Let U1, U2, U ′1 and U ′2 be split-TCWs such that U1 ∼M U ′1 and
U2 ∼M U ′2. Then, U1 tt≤ U2 ∼M U ′1 tt≤ U ′2 for all admissible orders ≤ on the blocks.

5.2 A (possibly infinite) tree automaton for realizability

We now build the tree automaton for realizability in two steps. First, we detail a construction which is
correct and sound (i.e., preserves realizability under all contexts), but in which constants can grow
unboundedly. Subsequently, we show (i) conditions under which it has finitely many states and (ii)
additional abstractions to ensure that it is always finite.

Proposition 12. We can build a tree automaton AK,Minf such that
L(AK,Minf) = {τ ∈ L(AK,Mvalid) | JτK is realizable}.

Proof. The construction builds on the construction ofAK,Mvalid , which is detailed in Appendix B. States
ofAK,Minf are pairs (q,wt) where q = (P,<,→) is a state ofAK,Mvalid , i.e., P ⊆ [2K], < is a total order
on P ,→ ⊆ l is the successor relation between points in the same block, q has at most K blocks; and
wt : P 2 → Z = Z∪{+∞} gives the timing constraints. The first component is finite but weights can
grow unboundedly. We assume wt(k, k) = 0 for all k ∈ P and if i < j then wt(j, i) ≤ 0 ≤ wt(i, j).
We identify (q,wt) with a split-TCW (ignoring B,Σ, as these are irrelevant for realizability).

We first give the invariant that will be maintained by the automaton. Let τ be a (K,M)-STT
with JτK = (V,→, λ,B, θ, χ). If a (bottom-up) run of AK,Minf reads τ and reaches state (q,wt) with
q = (P,<,→), it induces a total order on blocks of JτK and turns it into a split-TCW (JτK, 99K) (this
is Property (A3) of AK,Mvalid proved formally in Appendix B). We say that the abstraction (q,wt) of τ
computed by AK,Minf is sound if it preserves realizability under contexts, i.e., (JτK, 99K) ∼M (q,wt).

The key invariant is that AK,Minf always computes a sound abstraction of the given STT.
We now formalize the definition of the tree automaton.

AtomicSTTs: When reading the atomic STT τ = (1, a) with a ∈ Σ, AK,Minf moves to state
(q,wt) where q = ({1}, ∅, ∅) and wt(1, 1) = 0. Similarly, when reading an atomic STT τ =
Addc,d1,2((1, a) ⊕ (2, b)), AK,Minf moves to state (q,wt) where q = ({1, 2}, 1 < 2, ∅), wt(1, 1) =

12 Analyzing Timed Systems Using Tree Automata

0 = wt(2, 2), wt(1, 2) = d and wt(2, 1) = −c. In both cases, it is easy to check that (q,wt) is a
sound abstraction of τ .

Renamei,j : We define transitions (q,wt) Renamei,j−−−−−−→ (q′,wt′) where (q′,wt′) is obtained by
exchanging colors i and j in (q,wt), which clearly preserves soundness.

Add→i,j : We define transitions (q,wt)
Add→

i,j−−−−→ (q′,wt), when q′ is obtained from q = (P,<,→) by
adding a successor edge between (i, j) ∈ l \→. Then, if τ ′ = Add→i,j τ and (q,wt) is a sound
abstraction of τ , it follows that (q′,wt′) is a sound abstraction of τ ′ (adding an edge only reduces
the number of contexts to be considered to show equivalence of realizability under contexts.)

⊕: We define transitions (q1,wt1), (q2,wt2) ⊕−→ (q,wt) when q = (P,<,→) is a shuffle of
q1 and q2 and for all i, j ∈ P = P1] P2, wt(i, j) is wt1(i, j) if i, j ∈ P1 and wt2(i, j) if
i, j ∈ P2. If they do not come from the same state, i.e., if (i, j) ∈ (P1 × P2) ∪ (P2 × P1), then
wt(i, j) is∞ if i < j and 0 otherwise, i.e., i ≥ j. Now, if τ = τ1 ⊕ τ2 and (q1,wt1), (q2,wt2)
are sound abstractions of τ1, τ2 then (q,wt) is a sound abstraction of τ . The total ordering <
of q indicates how blocks of q1 and q2 are shuffled. Hence (q,wt) = (q1,wt1) tt≤ (q2,wt2).
Now, the induced ordering on the blocks of JτK corresponds to the same shuffle of blocks, i.e.,
(JτK, 99K) = (Jτ1K, 99K1)tt≤ (Jτ2K, 99K2). Now, applying the congruence Lemma 11, we obtain
that (q,wt) is a sound abstraction of τ .

Forgeti: We define transitions (q,wt) Forgeti−−−−→ (q′,wt′) when the following hold

i is not an endpoint and q′ is obtained from q = (P,<,→) by removing the internal point i,

i is not part of a negative cycle of length 2: for all j 6= i we have wt(j, i) + wt(i, j) ≥ 0,

for all j, k ∈ P ′ = P \ {i}, we define wt′(j, k) = min(wt(j, k),wt(j, i) + wt(i, k)), i.e., wt′
is obtained by eliminating i.

If the second condition above is not satisfied then the tree automaton AK,Minf has no transitions
from (q,wt) reading Forgeti. With this we can prove that if τ ′ = Forgeti τ and (q,wt) is a sound
abstraction of τ , then (q′,wt′) is a sound abstraction of τ ′ (Claim 28 in Appendix C).

Accepting condition: Finally, we define a state (q,wt) to be accepting if q consists of a single
block with no internal points, left endpoint i and right endpoint j (possibly i = j), and the pair
(q,wt) is realizable, i.e., wt(i, j) + wt(j, i) ≥ 0.

We can now check (see Appendix C.1) that L(AK,Minf) = {τ ∈ L(AK,Mvalid) | JτK is realizable}. �

Observe that the constants in wt′ increase only at forget transitions, where a back edge j > k with
j > i > k grows in absolute value with the update wt′(j, k) = min(wt(j, k),wt(j, i) + wt(i, k)). A
forward edge j < k may get a big value only if wt(j, k) =∞, else it can only decrease due to the
min operation. A first question is if there are classes where they will not grow unboundedly. A simple
solution is to consider time-bounded classes where all behaviors must occur within some global time
bound T : if some back edge grows > T in absolute value after a forget move we reject the STT;
while if the same happens with a forward edge, then replace it with∞. Thus, we obtain,

Corollary 13. If the system is time-bounded by some constant T , then there exists a finite tree
automaton AK,Mreal of size at most TO(k2) · 2O(k2 lg k) for checking realizability.

However, in general, when we do not assume a global time bound the constants in the states of
AK,Minf may grow unboundedly. We next show how to modify the above construction so that the
constants are always bounded. This generalizes the above corollary with a better complexity.

S. Akshay, P. Gastin, S. Krishna 13

5.3 Bounding the constants

The finite tree automaton AK,Mreal will work on a finite subset of the states of AK,Minf . More precisely, a
state (q,wt) of AK,Minf with q = (P,<,→) is a state of AK,Mreal if for all i, j ∈ P we have wt(i, j) =
+∞ or |wt(i, j)| ≤ 8KM .

Now, to bound back edges we define a transformation β which reduces the weight of a back
edge when it goes above a certain constant, while preserving realizability under all contexts. In
fact, we define it on back edges across a block. Let (q,wt) be a state of AK,Minf with q = (P,<,→).
A pair of points (j, i) ∈ P 2 is said to be a block back edge (denoted BBE) if i < j are the end
points of a block in q, i.e., i →+ j and this →-path cannot be extended (on the left or on the
right). A big block back edge (BBBE) is block back edge e such that M + wt(e) ≤ 0. For any
two positions i < j, we define BBE(i, j) to be the set of block back edges between i and j. That
is, BBE(i, j) = {(`, k) | (`, k) is a BBE and i ≤ k < ` ≤ j}. We also define B(i, j) to be the set
of big block back edges between i and j: B(i, j) = {e ∈ BBE(i, j) | e is big}. We now define
β(q,wt) = (q,wt′) where, for any i < j,

wt′(i, j) = wt(i, j) +
∑

e∈B(i,j)

(M + wt(e)) wt′(j, i) = wt(j, i)−
∑

e∈B(i,j)

(M + wt(e))

The idea is to change the weight of big BBE to −M by adding an offset to all the other edges
(backward and forward) crossing this block. Note that this does not increase the absolute value of
any constant. Further, after the backward abstraction, the absolute value of weights of block back
edges is bounded by M , i.e., for all BBE i x j, we have wt′(j, i) ≥ −M . Indeed, either the edge
was big and we get wt′(j, i) = −M or it was not big and wt′(j, i) = wt(j, i) > −M . Notice also
that a BBE is big in (q,wt) iff it is big in β(q,wt). The crucial property is that we leave the weights
of all cycles unchanged (under all contexts). Thus, we have (Appendix C.2, page 31),

Lemma 14. For all states W = (q,wt) of AK,Minf with q = (P,<,→) such that all points are
endpoints P = EP(W), we have W ∼M β(W).

While block back edges are now bounded (and back edges across holes can also be bounded by
−M), this does not suffice to bound all back edges. To obtain such a bound on all back edges, we
need to relate large back edges to edges contained within them.

Definition 15. A split-TCW W is said to satisfy the back edge property (BEP) if for all i ≤ j ≤
k ≤ ` with either j 99K k or j = k, we have wt(`, i) > wt(`, k)−M + wt(j, i).

With this, we have our second and crucial invariant, that we maintain inductively in the tree
automaton, (I2): AK,Mreal always satisfies BEP. Preserving this invariant requires a slight transformation
of the shuffle operation (at a ⊕ node). Namely, after every shuffle we must strengthen the constraints
of the back edges. Formally, we define a map σ, σ(q,wt) = (q,wt′) where for all i < j, wt′(i, j) =
wt(i, j) and wt′(j, i) = min{wt(j′, i′) | i ≤ i′ ≤ j′ ≤ j} and perform this after every ⊕ move of
the tree automaton. It is easy to check that σ preserves realizability under contexts (Appendix C.2,
page 30) and this allows us to show that the invariant (I2) is preserved (Lemma 36 in Appendix
C.3). Now, under the BEP assumption, we can show that all back edges are bounded (Appendix C.2,
page 32).

Lemma 16. Let W = (q,wt) be a state of AK,Minf with q = (P,<,→) such that P = EP(W). If
β(W) satisfies BEP, then the weight of all back edges in β(W) are bounded by 2KM .

Finally, forward abstraction γ removes all forward edges (i.e., changes their weight to ∞) that
are too large to be useful for creating negative cycles. Let W = (q,wt) be a state of AK,Minf with

14 Analyzing Timed Systems Using Tree Automata

q = (P,<,→). A forward edge (i, j) ∈ P 2 with i < j is called big if wt(i, j)+
∑
e∈BBE(i,j) wt(e) ≥

(3K−1)M . Note, wt(e) ≤ 0 as it is a (block) back edge. Then, we define γ(q,wt) = (q,wt′) where,
for any i < j, wt′(j, i) = wt(j, i) and wt′(i, j) =∞ if (i, j) is big and unchanged otherwise. While
the definition of this abstraction is simple, it turns out that showing that it is sound (i.e., it preserves
realizability under all contexts) is rather tricky. With details in Appendix C.2 (page 32) we have,

Lemma 17. If W = (q,wt) is a state of AK,Minf which satisfies BEP, then we have W ∼M γ(W).

Thus, AK,Mreal is derived from AK,Minf by applying the abstractions at ⊕ nodes and at Forgeti nodes.

More precisely, (q1,wt1), (q2,wt2) ⊕−→ σ(q,wt) is in AK,Mreal if (q1,wt1), (q2,wt2) ⊕−→ (q,wt) is in

AK,Minf . Similarly, if (q,wt) Forgeti−−−−→ (q′,wt′) is a transition in AK,Minf then (q,wt) Forgeti−−−−→ (q′′,wt′′)
is in AK,Mreal where (q′′,wt′′) = γ(β(q′,wt′)) if q′ has no internal points and (q′′,wt′′) = (q′,wt′)
otherwise. The reason for assuming that q′ has no internal points before applying the abstractions
is that it is a precondition for Lemmas 14 and 16. Note that reachable states of AK,Mvalid (and hence
AK,Mreal) can have at most two internal points. Thus, along a run, if a state (q,wt) has no internal
points, then the constants are bounded by 4KM , otherwise, the constants are bounded by 8KM .
Thus the constants never exceed 8KM in states of AK,Mreal , which bounds our state space.

Since the transformations σ, β, γ preserve realizability under contexts (Lemma 14 and Lemma 17)
we conclude that the key invariant holds, i.e., AK,Mreal always computes a sound abstraction of the
given STT. The acceptance condition of AK,Mreal is the same as for AK,Minf , and the correctness of the
construction now follows as for AK,Minf . This completes the proof of Proposition 7.

6 Dense time multi-stack pushdown systems

As another application of our technique, we now consider the model of dense-timed multi-stack
pushdown automata (dtMPDA), which have several stacks. The reachability problem for untimed
multi-stack pushdown automata (MPDA) is already undecidable, but several restrictions have been
studied on (untimed) MPDA, like bounded rounds [14], bounded phase, bounded scope and so on to
regain decidability.

In this section, we consider dtMPDA with the restriction of “bounded rounds”. To the best of our
knowledge, this timed model has not been investigated until now. Our goal is to illustrate how our
technique can easily be applied here with a minimal overhead (in difficulty and complexity).

Formally, a dtMPDA is a tuple S = (S,Σ,Γ, X, s0, F,∆) similar to a TPDA defined in Sec-
tion 2.2. The only difference is the stack operation op which now specifies which stack is being
operated on. That is,

1. nop does not change the contents of any stack (same as before),
2. ↓ic where c ∈ Γ is a push operation that adds c on top of stack i, with age 0.
3. ↑ic∈I where c ∈ Γ and I ∈ I is a pop operation that removes the top most symbol of stack i

provided it is a c with age in the interval I .

A sequence σ = op1 · · · opm of operations is a round if it can be decomposed in σ = σ1 · · ·σn where
each factor σi is a possibly empty sequence of operations of the form nop, ↓ic, ↑c∈I .

Let us fixed an integer bound k on the number of rounds. The semantics of the dtMPDA in terms
of STCWs is exactly the same as for TPDA, except that the sequence of stack operations along any
run is restricted to (at most) k rounds. Thus, any run of dtMPDA can be broken into a finite number
of contexts, such that in each context only a single stack is used. As before, the sequence of push-pop
operations of any stack must be well-nested. We denote by STCW(S, k) the set of simple TCWs
generated by runs of S using at most k rounds. We let L(S, k) be the corresponding language of
realizable STCWs in STCW(S, k).

S. Akshay, P. Gastin, S. Krishna 15

We now lift the definition of well-timed STCWs to k-round well-timed STCWs and show that
such STCWs have bounded split-width and thus all simple TCWs in STCW(S, k) have bounded
split-width (note that the realizable STCWs are a subset of this and hence will also have a bounded
split-width). An STCW V = (P,→, λ,B, θ) is k-round well timed with respect to a set of clocks Y
and stacks 1 ≤ s ≤ n if it uses at most k-rounds and the B relation for timing constraints can be
partitioned asB =

⊎
1≤s≤nB

s]
⊎
x∈Y B

x where for each 1 ≤ s ≤ n, the relationBs corresponds to
the matching push-pop events of stack s as in (T1), and for each x ∈ Y , the relation Bx corresponds
to the timing constraints for clock x and is well-nested as in (T2).

Lemma 18. A k-round well-timed simple TCW has split-width at most (4nk + 4)(|Y |+ 1), where
n is the number of stacks.

Proof sketch. Again, we play the split-game between Adam and Eve. Eve should have a strategy
to disconnect the word without introducing more than (4nk + 4)(|Y |+ 1) blocks. The strategy of
Eve is as follows: Given the k-round word w, Eve first breaks this into two words. The first word
only has stack 1 edges, and the second word has stack edges corresponding to stacks 2, . . . , n. The
first word can now be dealt with as we did in the case of TPDA. Eve then breaks the second word into
two words, the first of which has only stack 2 edges, while the second word has edges of stacks 3,4
. . . , n, and so on. Finally, we obtain n split-STCW’s, each having edges corresponding to only one
stack. Once this is achieved, these words can be processed as was done in the case of TPDA. The
only thing to calculate is the number of cuts required in isolating each word, whose details are in
Appendix E. �

Having established a bound on the split-width for dtMPDA restricted to k rounds, we now discuss
the construction of a tree automaton that checks ValCoRe when the underlying system is a dtMPDA.
As a first step, we keep track of the current round (context) number in the finite control. This makes
sure that the tree automaton only accepts runs using at most k-rounds. The validity and realizability
checks (Val and Re parts) are as discussed in Appendices B and C. The only change pertains to the
automaton that checks correctness of the underlying run, namely, AK,MS , as we need to handle n
stacks (and k rounds) instead of the single stack. As shown in Appendix E, this results in the blow up
of the number of locations of AK,MS by n · k. Thus the size of the tree automaton AK,MS that checks
correctness when the underlying system is a k-round dtMPDA is (nk|S|)O(K2) · 2O(nK2(|X|+1)),
where K = (4nk + 4)(|X|+ 2).

Combining this with Lemma 18, we can apply our technique (i.e., exactly the same reasoning as)
explained in Section 4 to obtain our decidability result.

Theorem 19. Checking emptiness for k-round dtMPDA is decidable in EXPTIME.

7 Discussion and Future work

The main contribution of this paper is the technique for analyzing timed systems via tree automata.
As a result, we have made a few simplifying assumptions to best illustrate this method. However, our
technique can easily be adapted to remove these. We give two examples of this:

For simplicity, we only considered closed intervals in this paper, but our technique can be easily
adapted to work for all kinds of intervals, i.e., open, half-open etc. Of course this requires us to
consider a few more cases, but it is not hard to see that our complexity bounds do not change.
Diagonal constraints of the form x− y ∈ I can be handled easily by adding matching edges. For
a constraint x − y ∈ [1, 5], we add an edge between the last reset of x and last reset of y with
[1, 5] interval. Thus, we can check the diagonal constraint at the time of last reset. Unlike in the

16 Analyzing Timed Systems Using Tree Automata

classical removal of diagonal guards, this does not induce any blowup in the number of states of
the system.

Future work We can also extend our results to other restrictions for dtMPDA such as bounded
scope and phase. Further, our techniques can be applied to the more general model [13] of recursive
hybrid automata, where we can already see some (new) decidability results.

As future work, an interesting question is to use our technique to go beyond reachability and show
results on model checking for timed systems. While model-checking against untimed specifications
is easy to obtain with our approach, the challenge is to extend it to timed specifications. We also see a
strong potential to investigate the emptiness problem for classes of alternating timed automata and
hybrid automata.

References
1 P. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown automata. In LICS Proceedings,

pages 35–44, 2012.
2 C. Aiswarya and P. Gastin. Reasoning about distributed systems: WYSIWYG (invited talk). In

FSTTCS Proceedings, pages 11–30, 2014.
3 R. Alur and D. Dill. A theory of timed automata. In TCS, 126(2):183–235, 1994.
4 M. F. Atig. Model-checking of ordered multi-pushdown automata. LMCS, 8(3), 2012.
5 G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In International School on Formal

Methods for the Design of Computer, Communication and Software Systems, pages 200–236, 2004.
6 L. Clemente and S. Lasota. Timed pushdown automata revisited. In LICS Proceedings, pages

738–749, 2015.
7 T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill

Higher Education, 2nd edition, 2001.
8 B. Courcelle. Special tree-width and the verification of monadic second-order graph properties. In

FSTTCS Proceedings, pages 13–29, 2010.
9 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A Language-

Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications. CUP, 2012.
10 A. Cyriac. Verification of Communicating Recursive Programs via Split-width. Thèse de doctorat,

LSV, ENS Cachan, January 2014.
11 A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown systems via

split-width. In CONCUR Proceedings, pages 547–561, 2012.
12 W. Czerwinski, P. Hofman, and S. Lasota. Reachability problem for weak multi-pushdown auto-

mata. In CONCUR Proceedings, pages 53–68. 2012.
13 S. N. Krishna, L. Manasa, and A. Trivedi. What’s decidable about recursive hybrid automata? In

HSCC Proceedings, pages 31–40, 2015.
14 S. La Torre, P. Madhusudan, and G. Parlato. The language theory of bounded context-switching.

In LATIN Proceedings, pages 96–107, 2010.
15 S. La Torre, M. Napoli, and G. Parlato. Scope-bounded pushdown languages. In DLT Proceedings,

pages 116–128. 2014.
16 S. La Torre, M. Napoli, and G. Parlato. A unifying approach for multistack pushdown automata. In

MFCS Proceeedings, pages 377–389. 2014.
17 P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL Proceedings, pages

283–294, 2011.

S. Akshay, P. Gastin, S. Krishna 17

Appendix
In this appendix, we give details of proofs as well as a few more illustrative examples and

explanations. In order to make the appendix easier to read and somewhat self-contained, we have
chosen to repeat some of the material given in the main paper. The appendix is organized section-wise.

A Details for Section 3

Special tree terms We start by giving the formal semantics of specital tree terms in more detail
together with an example. To help reading this appendix, we also recall some definitions from
Section 3.

The formal syntax of K-STTs over (Σ,Γ) is given by

τ ::= (i, a) | Addγi,j τ | Forgeti τ | Renamei,j τ | τ ⊕ τ

where a ∈ Σ, γ ∈ Γ and i, j ∈ [K] = {1, . . . ,K} are colors.
A (Σ,Γ)-labeled graph is a tuple G = (V, (Eγ)γ∈Γ, λ) where λ : V → Σ is the vertex labeling

and Eγ ⊆ V 2 is the set of edges for each label γ ∈ Γ. Special tree terms form an algebra to define
labeled graphs.

Each K-STT represents a colored graph JτK = (Gτ , χτ) where Gτ is a (Σ,Γ)-labeled graph
and χτ : [K]→ V is a partial injective function assigning a vertex of Gτ to some colors.

J(i, a)K consists of a single a-labeled vertex with color i.
Addγi,j adds a γ-labeled edge to the vertices colored i and j (if such vertices exist).
Formally, if JτK = (V, (Eγ)γ∈Γ, λ, χ) then JAddαi,j τK = (V, (E′γ)γ∈Γ, λ, χ) with E′γ = Eγ if

γ 6= α and E′α =
{
Eα if {i, j} 6⊆ dom(χ)
Eα ∪ {(χ(i), χ(j))} otherwise.

Forgeti removes color i from the domain of the color map.
Formally, if JτK = (V, (Eγ)γ∈Γ, λ, χ) then JForgeti τK = (V, (Eγ)γ∈Γ, λ, χ

′) with dom(χ′) =
dom(χ) \ {i} and χ′(j) = χ(j) for all j ∈ dom(χ′).
Renamei,j exchanges the colors i and j.
Formally, if JτK = (V, (Eγ)γ∈Γ, λ, χ) then JRenamei,j τK = (V, (Eγ)γ∈Γ, λ, χ

′) with χ′(`) =
χ(`) if ` ∈ dom(χ) \ {i, j}, χ′(i) = χ(j) if j ∈ dom(χ) and χ′(j) = χ(i) if i ∈ dom(χ).
Finally, ⊕ constructs the disjoint union of the two graphs provided they use different colors. This
operation is undefined otherwise.
Formally, if JτiK = (Gi, χi) for i = 1, 2 and dom(χ1) ∩ dom(χ2) = ∅ then Jτ1 ⊕ τ2K =
(G1]G2, χ1] χ2). Otherwise, τ1 ⊕ τ2 is not a valid STT.

The special tree-width of a graph G is the least K such that G = Gτ for some (K + 1)-STT τ .
For TCWs, we have successor edges and B-edges carrying timing constraints, so we take Γ =

{→} ∪ {(x, y) | x ∈ N, y ∈ N} with N = N ∪ {∞}. For instance, consider the 4-STT

τ = Forget3 Add→1,3 Forget2 Add→2,4 Add→3,2(Add2,∞
1,2 ((1, a)⊕ (2, c))⊕ Add1,3

3,4((3, b)⊕ (4, d))) .

The term τ is depicted as a binary tree on the left of Figure 3 and its semantics JτK is the following
simple TCW where only the endpoints labelled a and d are colored.

a b c d

(2,∞) (1, 3)

18 Analyzing Timed Systems Using Tree Automata

Forget3

Add→
1,3

Forget2

Add→
2,4

Add→
3,2

⊕

Add2,∞
1,2

⊕

(1, a) (2, c)

Add1,3
3,4

⊕

(3, b) (4, d) a c

(2,∞)
b d

(1, 3)

a b c d

(2,∞) (1, 3)

a b c d

(2,∞) (1, 3)

a b c d

(2,∞) (1, 3)

a b c d

(2,∞) (1, 3)

Figure 3 An STT and a simple TCW with its split-tree

Split-game and split-tree Split-TCWs and the split-game were defined in Section 3. A strategy
for Eve from a split-TCW V can be described with a split-tree T which is a binary tree labeled with
split-TCWs satisfying:

1. The root is labeled by V = labroot(T).
2. Leaves are labeled by atomic split-TCWs.
3. Eve’s move: Each unary node is labeled with some connected (wrt.→∪B) split-TCW V and

its child is labeled with some V ′ obtained by splitting a factor of V in two, i.e., by removing one
successor edge. Thus, width(V ′) = 1 + width(V).

4. Adam’s move: Each binary node is labeled with some non connected split-TCW V = V1] V2
where V1 and V2 are the labels of its children. Note that width(V) = width(V1) + width(V2).

The width of a split-tree T , denoted width(T), is the maximum width of the split-TCWs labeling the
nodes of T . In other words, the cost of the strategy encoded by T is width(T). A K-split-tree is a
split-tree of width at most K.

An example of a split-tree is given in Figure 3 (right). Observe that the width of the split-tree is 4.
Hence the split-width of the simple TCW labeling the root is at most four.

Let V = (P,→, 99K, λ,B, θ) be a split-TCW. Recall that we denote by EP(V) the subset of
events that are endpoints of blocks of V . A left endpoint is an event e ∈ V such that there are no f
with f → e. We define similarly right endpoints. Note that an event may be both a left and right
endpoint. The number of endpoints is at most twice the number of factors: |EP(V)| ≤ 2 · width(V).

Lemma 20. A (split) simple TCW of split-width at most K has special tree-width at most 2K − 1.

Proof. We associate with every split-tree T of width at most K a 2K-STT T such that JT K = (V, χ)
where V = labroot(T) is the label of the root of T and the range of χ is the set of endpoints of
V: Im(χ) = EP(V). Notice that dom(χ) ⊆ [2K] since T is a 2K-STT. The construction is by
induction on T .

Assume that labroot(T) is atomic. Then it is either an internal event labeled a ∈ Σ, and we
let T = (1, a). Or, it is a pair of events e B f with a timing constraint θ(e, f) = [c, d] and we let
T = Addc,d1,2((1, λ(e))⊕ (2, λ(f))).

S. Akshay, P. Gastin, S. Krishna 19

Figure 4 Well-timed: relations Bs in red, Bx in blue and By in green.

If the root of T is a binary node and the left and right subtrees are T1 and T2 then labroot(T) =
labroot(T1)] labroot(T2). By induction, for i = 1, 2 the STT T i is already defined and we
have JT iK = (labroot(Ti), χi). We first rename colors that are active in both STTs. To this end,
we choose an injective map f : dom(χ1) ∩ dom(χ2) → [2K] \ (dom(χ1) ∪ dom(χ2)). This is
possible since |dom(χi)| = |Im(χi)| = |EP(labroot(Ti))|. Hence, |dom(χ1)| + |dom(χ2)| =
|EP(labroot(T))| ≤ 2K.

Assuming that dom(f) = {i1, . . . , im}, we define

T = T 1 ⊕ Renamei1,f(i1) · · ·Renameim,f(im) T 2 .

Finally, assume that the root of T is a unary node with subtree T ′. Then, labroot(T ′) is obtained
from labroot(T) by splitting one factor, i.e., removing one word edge, say e→ f . We deduce that
e and f are endpoints of labroot(T ′), respectively right and left endpoints. By induction, the STT
T ′ is already defined. We have JT ′K = (labroot(T ′), χ′) and e, f ∈ Im(χ′). So let i, j be such that
χ′(i) = e and χ′(j) = f . We add the process edge with τ = Add→i,j T ′. Then we forget color i if e is
no more an endpoint, and we forget j if f is no more an endpoint:

τ ′ =
{
τ if e is still an endpoint,

Forgeti τ otherwise
T =

{
τ ′ if f is still an endpoint,

Forgetj τ ′ otherwise.

�

Bound on split-width for TPDA. We complete this section by providing a detailed proof of
Theorem 4. We provide more intuition and pictures to elucidate the ideas presented succinctly in
Section 3. We show that for a TPDA S, all words in STCW(S) have bounded split-width. As
mentioned, we identify some properties satisfied by all simple TCWs generated by a TPDA, and then
we show that all simple TCWs satisfying these properties have bounded split-width.

Let V = (P,→, 99K, λ,B, θ) be a simple-TCW. We say that V is well timed with respect to a set
of clocks Y and a stack s if the B relation can be partitioned as B = Bs]

⊎
x∈Y B

x where

(T1) the relationBs corresponds to the matching push-pop events, hence it is well-nested: for all iBs j
and i′ Bs j′, if i < i′ < j then i′ < j′ < j.

(T2) An x-reset block is a maximal consecutive sequence i1 l · · · l in of positions in the domain
of the relation Bx. For each x ∈ Y , the relation Bx corresponds to the timing constraints for
clock x and is well-nested: for all iBx j and i′ Bx j′, if i < i′ are in the same x-reset block then
i′ < j′ < j. Each guard should be matched with the closest reset block on its left: for all iBx j
and i′ Bx j′, if i < i′ are not in the same x-reset block then j < i′, (see Figure 4).

Claim 21. Simple TCWs defined by a TPDA with set of clocks X are well-timed wrt. set of clock
Y = X ∪ {ζ}, i.e., satisfy properties (T1) and (T2).

Proof. The first condition (T1) is satisfied by STCW(S) by definition. For (T2), let i Bx j and
i′ Bx j′ for some clock x ∈ X . If i, i′ are points in the same x-reset block for some x ∈ X , then by
construction of STCW(S), if i < i′ then i′ < j′ < j which gives well nesting. Similarly, if i < i′ are

20 Analyzing Timed Systems Using Tree Automata

Figure 5 Removing timing constraints. At most one reset hole per clock. Edges below are stack edges. Clock
edges labeled with x, y.

points in different x-reset blocks, then by definition of STCW(S), we have j < i′. Also, it is clear
that the new clock ζ satisfies (T2). �

Then, the following lemma completes the proof of Theorem 4 (2).

Lemma 22. The split-width of a well-timed simple TCW is bounded by 4|Y |+ 2.

This lemma is proved by playing the split-width game between Adam and Eve. Eve should have a
strategy to disconnect the word without introducing more than 4|Y |+ 2 blocks. The strategy of Eve
uses three operations processesing the word from right to left.

Removing an internal point. If the last/right-most event on the word (say event j) is not the
target of a B relation, then she will split the→-edge before the last point, i.e., the edge between point
j and its predecessor.

Removing a clock constraint Assume that we have a timing constraint iBx j where j is the
last point of the split-TCW. Then, by (T2) we deduce that i is the first point of the the last reset block
for clock x. Eve splits three word-edges to detach the matching pair i Bx j: these three edges are
those connected to i and j. Since the matching pair iBx j is atomic, Adam should continue the game
from the remaining split-TCW V ′. Notice that we have now a hole instead of position i. We call this
a reset-hole for clock x. For instance, starting from the split-TCW of Figure 4, and removing the last
timing constraint of clock x, we get the split-TCW on top of Figure 5. Notice the reset hole at the
beginning of the x reset block.

During the inductive process, we may have at most one such reset hole for each clock x ∈ Y . Note
that the first time we remove the last point which is a timing constraint for clock x, we create a hole
in the last reset block of x which contains a sequence of reset points for x, by removing two edges.
This hole is created by removing the leftmost point in the reset block. As we keep removing points
from the right which are timing constraints for x, this hole widens in the reset block, by removing
each time, just one edge in the reset block. Continuing the example, if we detach the last internal
point and then the timing constraint of clock y we get the split-TCW in the middle of Figure 5. Now,
we have one reset hole for clock x and one reset hole for clock y.

We continue by removing from the right, one internal point, one timing constraint for clock x,
one timing constraint for clock y, and another internal point, we get the split-TCW at the bottom of
Figure 5. Notice that we still have a single reset hole for each clock x and y.

S. Akshay, P. Gastin, S. Krishna 21

Figure 6 Splitting the TCW at a position with no crossing stack edge.

Removing a push-pop edge Assume now that the last event is a pop: we have iBs j where j
is the last point of the split-TCW. If there is already a hole before the push event i or if i is the first
point of the split-TCW, then we split after i and before j to detach the atomic matching pair iBs j.
Adam should choose the remaining split-TCW and the game continues.

Note that if i is not the first point of the split-TCW and there is no hole before i, we cannot
proceed as we did in the case of clock constraints, since this would create a push-hole and the pushes
are not arranged in blocks as the resets. Hence, removing push-pop edges as we removed timing
constraints would create an unbounded number of holes. Instead, we split the TCW just before the
matching push event i. Since push-pop edges are well-nested (T1) and since j is the last point of
the split-TCW, there are no push-pop edges crossing position i: i′ Bs j′ and i′ < i implies j′ < i.
Hence, only clock constraints may cross position i.

Consider some clock x having timing constraints crossing position i. All these timing constraints
come from the last reset block Bx of clock x which is before position i. Moreover, these resets form
the left part of the reset block Bx. We detach this left part with two splits, one before the reset block
Bx and one after the last reset of block Bx whose timing constraint crosses position i. We proceed
similarly for each clock of Y . Recall that we also split the TCW just before the push event i. As a
result, the TCW is not connected anymore. Notice that we have used at most 2|Y |+ 1 new splits to
disconnect the TCW. For instance, from the bottom split-TCW of Figure 5, applying the procedure
above, we obtain the split-TCW on top of Figure 6 which has two connected components. Notice
that to detach the left part of the reset block of clock x we only used one split since there was already
a reset hole at the beginning of this block. The two connected components are depicted separately at
the bottom of Figure 6.

Invariant. The split-TCW at the bottom right of Figure 6 is representative of the split-TCW which
may occur during the split-game using the strategy of Eve described above. These split-TCW satisfy
the following invariant.

(I1) The split-TCW starts with reset blocks, at most one for each clock in Y . For instance, the
split-TCW of Figure 7 starts with two reset blocks, one for clock x and one for clock y (see the
two hanging reset blocks on the left, one of x and one of y).

(I2) After these reset blocks, the split-TCW may have reset holes, at most one for each clock in Y .
For instance, the split-TCW of Figure 7 has two reset holes, one for clock z and one for clock y.
A reset hole for clock x is followed by the last reset block of clock x, if any. Hence, for all timing
constraints iBx j such that j is on the right of the hole, the reset event i is in the reset block that
starts just after the hole.

Lemma 23. A split-TCW satisfying (I1–I2) has at most 2|Y |+ 1 blocks. It is disconnected by Eve’s
strategy using at most 2|Y |+ 1 new splits, and the resulting connected components satisfy (I1–I2).
Therefore, its split-width is at most 4|Y |+ 2.

22 Analyzing Timed Systems Using Tree Automata

Figure 7 A split-TCW satisfying (T1–T2) and (I1–I2).

Figure 8 Splitting the TCW at a position with no crossing stack edge.

Proof. Let us check that starting from a split-TCW satisfying (I1–I2), we can apply Eve’s strategy
and the resulting connected components also satisfy (I1–I2). This is trivial when the last point is
internal in which case Eve makes one split before this last point.

In the second case, the last event checks a timing constraint for some clock x: we have i Bx j
and j is the last event. If there is already a reset hole for clock x in the split-TCW, then by (I2) and
(T2), the reset event i must be just after the reset hole for clock x. So with at most two new splits
Eve detaches the atomic edge i Bx j and the resulting split-TCW satisfies the invariants. If there
is no reset hole for clock x then we consider the last reset block Bx for clock x. By (T2), i must
be the first event of this block. Either Bx is one of the first reset blocks of the split-TCW (I1) and
Eve detaches with at most two splits the atomic edge iBx j. Or Eve detaches this atomic edge with
at most three splits, creating a reset hole for clock x in the resulting split-TCW. In both cases, the
resulting split-TCW satisfies the invariants.

The third case is when the last event is a pop event: i Bs j and j is the last event. Then there
are two subcases: either, there is a hole before event i then Eve detaches with two splits the atomic
edge i Bx j and the resulting split-TCW satisfies the invariants. Or we cut the split-TCW before
position i. Notice that no push-pop edges cross i: if i′ Bs j′ and i′ < i then j′ < i. As above, for
each clock x having timing constraints crossing position i, we consider the last reset block Bx for
clock x which is before position i. The resets of the timing constraints for clock x crossing position i
form a left factor of the reset block Bx. We detach this left factor with at most two splits. We proceed
similarly for each clock of Y . The resulting split-TCW is not connected anymore and we have used
at most 2|Y |+ 1 more splits. For instance, if we split the TCW of Figure 7 just before the last push
following the procedure described above, we get the split-TCW on top of Figure 8. This split-TCW
is not connected and its left and right connected components are drawn below.

To see that the invariants are maintained by the connected components, let us inspect the splitting
of block Bx. First, Bx could be one of the beginning reset blocks (I1). This is the case for clock x
in Figures 7 and 8. In which case Eve use only one split to divide Bx in B1

x and B2
x. The left factor

B1
x corresponds to the edges crossing position i and will form one of the reset block (I1) of the right

connected component. On the other hand, the suffix B2
x stays a reset block of the left connected

component. Second, Bx could follow a reset hole for clock x. This is the case for clock z in Figures 7
and 8. In which case again Eve only needs one split to detach the left factor B1

x which becomes a
reset block (I1) of the right component. The reset hole before Bx stays in the left component. Finally,
assume that Bx is neither a beginning reset block (I1), nor follows a reset hole for clock x. This is

S. Akshay, P. Gastin, S. Krishna 23

the case for clock y in Figures 7 and 8. Then Eve detaches the left factor B1
x which becomes a reset

block (I1) of the right component and creates a reset hole in the left component. �

B Tree automata for Validity

Not all graphs defined by (K,M)-STTs are TCWs of split-width at most K. Indeed, if τ is such an
STT, the edge relation→ may have cycles or may be branching, which is not possible in a TCW.
Also, the timing constraints given by B need not comply with the→ relation: for instance, we may
have a timing constraint e B f with f →+ e. Moreover, some subterm may define graphs having
more than K blocks. So we use AK,Mvalid to check for validity.

Proposition 24. We can build a tree automaton AK,Mvalid of size O(M) · 2O(K2) such that

(V1) AK,Mvalid accepts only (K,M)-STTs τ such that JτK is a simpleTCW of split-width at most K.
(V2) AK,Mvalid accepts all (K,M)-STTs T arising from split-trees T of width at most K and using

constants less than M .

In particular, we have STCWK,M = {JτK | τ ∈ L(AK,Mvalid)}.
A (K,M)-STT τ defines a graph JτK = (V,→, (Bx,y)x∈{0,...,M}y∈{0,...,M,∞}, λ). The graph JτK is a

TCW if it satisfies several MSO-definable conditions. First,→ should be the successor relation of a
total order on V . Second, each timing constraint relation should be compatible with the total order:
Bx,y ⊆ →+. Also, a pair of points may have at most one timing constraint, hence the matching
relations should be disjoint: Bx,y ∩Bx′,y′ = ∅ if (x, y) 6= (x′, y′). If these conditions are satisfied,
with B =

⋃
x,y B

x,y and θ(i, j) = (x, y) for (i, j) ∈ Bx,y we see that JτK is a TCW. Further, we
should check that this TCW is simple. Since being a simple TCW is a graph property which is MSO
definable and since a graph JτK has an MSO-interpretation in the tree τ , we deduce that there is a tree
automaton that accepts all (K,M)-STTs τ such that JτK is a simple TCW (cf. [9]).

But this is not exactly what we want/need. So we provide in the proof below a direct construction
of another tree automaton. There are several reasons for directly constructing the tree automaton
AK,Mvalid . First, this allows to have a clear upper-bound on the size of AK,Mvalid (though maybe not
impossible, this would be technical via MSO). Second, simplicity of the TCW and the bound on
split-width can be enforced with no additional cost. Third and most importantly, AK,Mvalid does not
accept all (K,M)-STTs denoting TCWs. Instead, it accepts the STTs T arising from split-trees
T . We will take advantage of the special form of these STTs when constructing the tree automaton
AK,Mreal checking the realizability of simple-TCWs.

Proof. A state of AK,Mvalid will be an abstraction of the graph defined by the STT read so far. The
finite abstraction will keep only the colored points of the graph. The abstraction is enriched with a
guessed total order < on the colored points. This guessed total order will be compatible both with the
B-edges corresponding to the timing constraints defined at atomic STTs and with the→-edges added
later. When adding a new→-edge, we will check that it is compatible with the guessed total order <.
This will ensure that the graph defined by the STT is in fact a split-TCW.

Formally, states of AK,Mvalid are tuples of the form q = (P,<,→) where P ⊆ [2K] is the set of
points, < is a total order on P ,→ ⊆ l is the successor relation between points that are in the same
block, and q has at most K blocks, i.e., (P,→) has at most K connected components.

The automaton AK,Mvalid is non-deterministic since at ⊕-nodes it has to guess how the blocks will
eventually be ordered in the TCW denoted by the full STT. To help understanding the construction,
we first define properties that will be maintained by the automaton.

Let τ be a (K,M)-STT with JτK = (V,→, λ,B, θ, χ). Let q = (P,<,→) be a state of AK,Mvalid .
Notice some overloading of notations for→ but since we assume that P and V are disjoint this is not
a problem. We say that q is an abstraction of τ if it satisfies the following properties

24 Analyzing Timed Systems Using Tree Automata

(A1) dom(χ) = P and EP(JτK) ⊆ χ(P) i.e., the points of q are in bijection with the colored points of
JτK and the endpoints of JτK are colored,

(A2) for all i, j ∈ P , we have i→+ j in q iff χ(i)→+ χ(j) in JτK,
(A3) Let 99K = χ(l \ →) be the relation on V defined by {(χ(i), χ(j)) | (i, j) ∈ l \ →}. Then,

(JτK, 99K) is a split-STCW, i.e.,→∪99K is the direct successor relation of a total order (→∪99K)+

on V which is compatible with the timing constraints B ⊆ (→∪ 99K)+.

Claim 25. The blocks (resp. left/right endpoints) of q are in 1-to-1 correspondance with blocks (resp.
left/right endpoints) of JτK.

Proof. Let i ∈ P be a right endpoint, i.e., i has no outgoing→-edge. Assume that χ(i) is not a right
endpoint of JτK. Since (V,→) is acyclic by (A3), following from χ(i) a→-path, we must reach a
→-maximal point f ∈ V , i.e., a right endpoint. Since endpoints are colored, we find j ∈ P such that
f = χ(j). Now, we have χ(i) →+ χ(j) and we deduce that i →+ j, a contradiction. Conversely,
a right endpoint e of (V,→) is colored hence we find i ∈ P with χ(i) = e. Now, if i is not a right
endpoint then i → j for some j ∈ P . We deduce that χ(i) →+ χ(j), a contradiction. Therefore,
χ is a bijection between right endpoints of q and right endpoints of JτK. Similarly, χ is a bijection
between left endpoints of q and left endpoints of JτK. Now, we deduce that (i, j) is a block in q (i.e.,
i is a left endpoint, i→∗ j and j is a right endpoint) iff (χ(i), χ(j)) is a block of JτK. �

Now we can define the transitions of AK,Mvalid so that if AK,Mvalid admits a run on τ reaching state q at
the root of τ , then q is an abstraction of τ .

Atomic STTs: On an atomic STT τ = Addc,d1,2((1, a) ⊕ (2, b)) the automaton AK,Mvalid moves to
state q1,2 = ({1, 2}, 1 < 2, ∅) (we do not describe the intermediary transitions). When reading
an atomic STT τ = (1, a) the automaton AK,Mvalid moves to state q1 = ({1}, ∅, ∅). In both cases,
the state reached by AK,Mvalid on an atomic STT τ is indeed an abstraction of τ .

Renamei,j : We define transitions q
Renamei,j−−−−−−→ q′ when q′ is obtained from q by exchanging i and

j. If τ ′ = Renamei,j τ and q is an abstraction of τ then q′ is an abstraction of τ ′.

Forgeti: We define transitions q = (P,<,→) Forgeti−−−−→ q′ = (P ′, <′,→′) when the following hold

i ∈ P is not an endpoint (we do not allow forgetting the color of an endpoint), i.e., we find
i′, i′′ ∈ P with i′ → i→ i′′,
P ′ = P \ {i}, <′ is the restriction of < to P ′,→′ =→\ {(i′, i), (i, i′′)} ∪ {(i′, i′′)}.

If τ ′ = Forgeti τ and q is an abstraction of τ then we can check that q′ is an abstraction of τ ′. In
particular, condition (A3) follows from l′ \→′ = l \→. Note that if the first condition above is
not satisfied then the tree automaton AK,Mvalid has no transitions from q reading Forgeti.

Add→i,j : We define transitions q = (P,<,→)
Add→

i,j−−−−→ q′ = (P ′, <′,→′) when the following hold

q has no internal points, i.e., there are no k′, k, k′′ ∈ P with k′ → k → k′′ (internal points
should be abstracted away with Forgetk before adding a successor edge),
(i, j) ∈ l \→: successor edges are only added between <-consecutive points,
P ′ = P , <′ = < and→′ =→∪ {(i, j)}.

If τ ′ = Add→i,j τ and q is an abstraction of τ then q′ is an abstraction of τ ′. Indeed, conditions (A1—
A2) for q′ are easy to check. Condition (A3) follows from the fact that the relation→′∪χ(l′\→′)
in Jτ ′K equals the relation→∪ χ(l \ →) in JτK since the pair (χ(i), χ(j)) is added to→′ and
removed from χ(l′ \→′). Again, if the first two conditions above are not satisfied then the tree
automaton AK,Mvalid has no transitions from q reading Add→i,j .
⊕: We define transitions q1, q2

⊕−→ q when the following hold (with q1 = (P1, <1,→1) and
q2 = (P2, <2,→2))

S. Akshay, P. Gastin, S. Krishna 25

there are no internal points in q1 and q2 (internal points should be forgotten first),
P1 ∩ P2 = ∅: the ⊕ operation on STTs requires that the “active” colors of the two arguments
are disjoint,
q = (P,<,→) where P = P1 ∪P2,→ =→1 ∪→2, the total order < is obtained by guessing
how the blocks of q1 and q2 are shuffled: it could be any total order satisfying both→ ⊆ l
and <1 ∪<2 ⊆ <.

If τ = τ1 ⊕ τ2 and q1, q2 are abstractions of τ1, τ2 then q is an abstraction of τ . Again, conditions
(A1—A2) for q are easy to check. Now the relation l \ → on q defines how the blocks of q1
and q2 are shuffled in q. Similarly, the relation 99K = χ(l \→) defines how the blocks of Jτ1K
and Jτ2K are shuffled in JτK. Notice that if (i, j) ∈ l \ → then i is a right endpoint and j is
a left endpoint. Hence, the relation 99K connects right enpoints of JτK to left endpoints of JτK,
following the order dictated by q. We deduce that (A3) holds for q.
Again if the first two conditions above are not satisfied then the tree automaton AK,Mvalid has no
transitions from q1, q2 reading ⊕.

Claim 26. The number of internal points in each reachable state (q,wt) of AK,Mvalid is at most 2.

Proof. To see this, notice that when we begin, the states reached after reading atomic STTs have no
internal points. A ⊕ move can be taken only if there are no internal points. Similarly, an Add→i,j move
can be taken only if there are no internal points, but after this move, we may end up introducing either
one or at most two internal points. Finally, a Renamei,j move preserves the number of internal points
and a Forgeti move can only decrease the number of internal points. Hence overall, at any reachable
state, we can have only a maximum of two internal points. �

Accepting condition The accepting states of AK,Mvalid should correspond to abstractions of TCWs.
Hence the accepting states are of the form ({i}, ∅, ∅) or ({i, j}, i < j, i→ j) for i, j ∈ [2K]. With
this, we are able to show the correctness of the construction, i.e., properties (V1) and (V2) hold.

(V1) Let τ be an STT accepted byAK,Mvalid . There is an accepting run ofAK,Mvalid reading τ and reaching
state q at the root of τ . The state q is an abstraction of τ , hence (JτK, 99K) is a split-STCW. But since
q is accepting, we have 99K = ∅. Hence JτK is a simple TCW. Moreover, for every subterm τ ′ of τ ,
the number of blocks in Jτ ′K is the number of blocks in the state q′ that labels τ ′ in this accepting run.
By definition, the number of blocks of q′ is at most K. Therefore, τ describes a split-decomposition
of JτK of width at most K.

(V2) Let T be a (K,M)-STTs arising from a split-tree T of width at most K and using constants
less than M . Following the inductive construction of T from T given in the proof of Lemma 20, it
is easy to see that AK,Mvalid admits a run on T . The conditions for applying the transitions of AK,Mvalid
are always satisfied. The only non-deterministic transitions of AK,Mvalid are at ⊕ nodes, where the
automaton should guess how blocks of the children are shuffled. The correct guess is obtained by
following the total order in the simple TCW JT K. The state q reached byAK,Mvalid when reading T is an
abstraction of a simple TCW, hence it must be one of the accepting states of AK,Mvalid .

Finally, we show that STCWK,M = {JτK | τ ∈ L(AK,Mvalid)}. The right to left inclusion follows
immediately from (V1). Conversely, let V ∈ STCWK,M . By Lemma 20 there exists a (K,M)-STT
τ such that JτK = V . Moreover, τ = T where T is a split-tree for V . By (V2) we deduce that
τ ∈ L(AK,Mvalid). �

26 Analyzing Timed Systems Using Tree Automata

C Section 5: Tree automaton for realizability

Shuffle operation Let V1 = (P1,→1, 99K1, λ1,B1, θ1) and V2 = (P2,→2, 99K2, λ2,B2, θ2) be
two split-TCWs such that their respective set of positions P1 and P2 are disjoint. Further, let ≤ be a
total order on P = P1 ∪ P2 such that 99K1 ∪ 99K2 ⊆ < and→1 ∪→2 ⊆ l. Such orders are called
admissible. Then, we define the split-TCW V = (P,→, 99K, λ,B, θ) by P = P1] P2, λ = λ1 ∪ λ2,
→ =→1 ∪→2, 99K = l \→, B = B1 ∪B2, and θ = θ1 ∪ θ2. Indeed, this corresponds to shuffling
the blocks V1 and V2 with respect to the admissible order ≤ and is called a shuffle, denoted by
V = V1 tt≤ V2. This total order can be unambiguously specified by a word over the alphabet {`, r}
as follows. If width(V1) = k and width(V2) = m, then the shuffle of V1, V2 is specified by a word
x ∈ {`, r}k+m denoted V1 ttx V2. If the ith letter of x is `, then the ith block, 1 ≤ i ≤ k + m of
V1 ttx V2 is taken from V1; otherwise it is taken from V2, respecting <. An example is shown below.

W1

a b c c a a

W2

a g c a h e f a

a b c a g c a h c a a e f a

W1 ttlrrlr W2

a b c a g c a h e f a c a a

W1 ttlrrrl W2

Contexts, realizability under contexts Let M be a positive integer. An M -context C is a
split-TCW such that the maximal constant in the intervals is strictly smaller than the fixed constantM .
Given a context C and a split-TCW V , we define an operation C ◦ V if width(C) = width(V) + 1.
C ◦ V is the split-TCW obtained by shuffling the blocks of C and V in strict alternation. For
width(V) = k, C ◦V = CttxV with x = (`r)k`. Two split-TCWs U and V are equivalent, denoted
U ∼M V , iff they have the same number of blocks and preserve realizability under all M -contexts.
That is, there exists k ∈ N such that width(U) = width(V) = k and for all M -contexts C ∈ TCW
with width(C) = k + 1, C ◦ U is realizable iff C ◦ V is realizable. It is easy to see that ∼M is an
equivalence relation.

A function f : STCW → STCW is said to be sound if it preserves realizability under all M -
contexts, i.e., for all W ∈ STCW we have W ∼M f(W). The idea is to come up with a sound
abstraction of finite index, so that a finite tree automaton can be defined which works only on the
representatives. The operation tt preserves the equivalence between split-TCW as shown below.

Lemma 27 (Congruence lemma). Let U1, U2, U ′1 and U ′2 be split-TCWs such that U1 ∼M U ′1
and U2 ∼M U ′2. Then, for all x ∈ {`, r}n with n = width(U1)+width(U2), we have U1ttxU2 ∼M
U ′1 ttx U ′2.

Proof. Let width(U1) = K1,width(U2) = K2 and letC ∈ TCW be a context of widthK1+K2+1.
Also, Let U = U1 ttx U2 and let U ′ = U ′1 ttx U ′2 with x ∈ {`, r}K1+K2 . Then it can be seen from
Figure 9 that there exist contexts C1 ∈ TCW of width K2 + 1 and C2 ∈ TCW of width K1 + 1 such
that C ◦ U = C2 ◦ U1 ∼ C2 ◦ U ′1 = C1 ◦ U2 ∼ C1 ◦ U ′2 = C ◦ U ′. �

C.1 The (possibly infinite) tree automaton for realizability

We now build a tree automaton for realizability, which can possibly have infinitely many states.
Subsequently, we show (i) some conditions under which it has finitely many states and (ii) additional
abstractions ensuring that it is always finite.

Proposition 12. We can build a tree automaton AK,Minf such that
L(AK,Minf) = {τ ∈ L(AK,Mvalid) | JτK is realizable}.

S. Akshay, P. Gastin, S. Krishna 27

U1

U2

U ′
1

U ′
2

C

C ◦ U
C2 C2

= C2 ◦ U1
C2

∼ C2 ◦ U ′
1

C1 C1 C1 C1
= C1 ◦ U2

∼ C1 ◦ U ′
2

C1 C1 C1 C1
= C ◦ U ′

Figure 9 The congruence Lemma

This construction will build on the construction of AK,Mvalid from Appendix B. States of AK,Minf
will be pairs (q,wt) where q = (P,<,→) is a state of AK,Mvalid and wt : P 2 → Z = Z ∪ {+∞} gives
the timing constraints. Note that as AK,Mvalid is finite the first component is finite. But as we will see
below the weights in the states can grow unboundedly in general. We assume that wt(k, k) = 0 for
all k ∈ P . Also, if i < j are points then wt(j, i) ≤ 0 ≤ wt(i, j).

Below, we identify such a pair (q,wt) with a split-TCW, ignoring the B relation since the weight
function is totally defined on P 2, and ignoring the Σ-labelings of nodes since they are irrelevant for
the realizability of TCWs.

To help understand the construction, we first give the invariant that will be maintained by the
automaton. Let τ be a (K,M)-STT with JτK = (V,→, λ,B, θ, χ). Assume that there is a (bottom-
up) run of AK,Minf reading τ and reaching state (q,wt) with q = (P,<,→). Then, projecting this run
on the first component, we obtain a run ofAK,Mvalid reading τ and reaching state q. From (A3) ofAK,Mvalid ,
the state q induces a total order on the blocks of JτK and turns JτK into a split-STCW (JτK, 99K). We
say that the abstraction (q,wt) of τ computed by AK,Minf is sound if it preserves realizability under
contexts:

(S) (JτK, 99K) ∼M (q,wt).

The key invariant is that AK,Minf always computes a sound abstraction of the given STT.

We now formalize the definition of the tree automaton.

Atomic STTs: When reading the atomic STT τ = (1, a) with a ∈ Σ, the tree automaton
AK,Minf moves to state (q,wt) where q = ({1}, ∅, ∅) is the state reached by AK,Mvalid on (1, a), and
wt(1, 1) = 0. Similarly, when reading an atomic STT τ = Addc,d1,2((1, a) ⊕ (2, b)), the tree
automaton AK,Minf moves to state (q,wt) where q = ({1, 2}, 1 < 2, ∅) is the state reached by
AK,Mvalid on τ , and wt(1, 1) = 0 = wt(2, 2), wt(1, 2) = d and wt(2, 1) = −c. In both cases, it is
easy to check that (q,wt) is a sound abstraction of τ .

Renamei,j : We define transitions (q,wt) Renamei,j−−−−−−→ (q′,wt′) where (q′,wt′) is obtained by
exchanging i and j in (q,wt). Exchanging colors preserves soundness: if τ ′ = Renamei,j τ and
(q,wt) is a sound abstraction of τ then (q′,wt′) is a sound abstraction of τ ′.

Add→i,j : We define transitions (q,wt)
Add→

i,j−−−−→ (q′,wt′), when q
Add→

i,j−−−−→ q′ is a transition in AK,Mvalid ,
and wt′ = wt. Then, if τ ′ = Add→i,j τ and (q,wt) is a sound abstraction of τ , it immediately
follows that (q′,wt′) is a sound abstraction of τ ′. This is because adding of an edge only reduces
the number of contexts to be considered to show equivalence of realizability under contexts.
⊕: We define transitions (q1,wt1), (q2,wt2) ⊕−→ (q,wt) when the following hold

q1, q2
⊕−→ q = (P,<,→) is a transition in AK,Mvalid ,

28 Analyzing Timed Systems Using Tree Automata

the weights are inherited and completed as follows: for all i, j ∈ P = P1] P2,

wt(i, j) =

wt1(i, j) if i, j ∈ P1

wt2(i, j) if i, j ∈ P2

∞ if (i, j) ∈ (P1 × P2) ∪ (P2 × P1) and i < j

0 if (i, j) ∈ (P1 × P2) ∪ (P2 × P1) and i > j

Now, if τ = τ1 ⊕ τ2 and (q1,wt1), (q2,wt2) are sound abstractions of τ1, τ2 then (q,wt) is a
sound abstraction of τ . Indeed, by definition of ⊕-transitions in AK,Mvalid , the total ordering < of
q indicates how blocks of q1 and q2 are shuffled. Hence (q,wt) = (q1,wt1) ttx (q2,wt2) for
some x ∈ {`, r}∗. Now, the induced ordering 99K on the blocks of JτK corresponds to the same
shuffle of blocks, i.e., (JτK, 99K) = (Jτ1K, 99K1)ttx (Jτ2K, 99K2). Now, applying the congruence
Lemma 27, we obtain that (q,wt) is a sound abstraction of τ .

Forgeti: We define transitions (q,wt) Forgeti−−−−→ (q′,wt′) when the following hold

q = (P,<,→) Forgeti−−−−→ q′ = (P ′, <′,→′) is a transition of AK,Mvalid (in particular, i is not an
endpoint),
i is not part of a negative cycle of length 2: for all j 6= i we have wt(j, i) + wt(i, j) ≥ 0,
for all j, k ∈ P ′ = P \ {i}, we define wt′(j, k) = min(wt(j, k),wt(j, i) + wt(i, k)), i.e., wt′
is obtained by eliminating i.

Notice that if the second condition above is not satisfied then the tree automaton AK,Minf has no
transitions from (q,wt) reading Forgeti. With this we have

Claim 28. If τ ′ = Forgeti τ and W = (q,wt) is a sound abstraction of τ , then W ′ = (q′,wt′)
is a sound abstraction of τ ′.

Proof. We will first show thatW ∼M W ′. Notice that since i is not an endpoint,W andW ′ have
the same number of blocks. Let C ∈ TCW be an M -context with width(C) = 1 + width(W) =
1 + width(W ′). We show that C ◦W is realizable iff C ◦W ′ is realizable. Suppose C ◦W has a
negative cycle Q. Wlog we may assume that Q is simple.

1. If this cycle Q does not pass through i, then the same cycle Q is present in C ◦W ′, and by
definition of wt′, the weight of Q in C ◦W ′ is at most the weight of Q in C ◦W .

2. Let the cycleQ pass through i. Since i is not part of a negative cycle of length 2, there are points
j 6= i 6= k such that j, i, k is a part of the cycle. Removing i, we obtain a cycle Q′ containing
j, k in C ◦W ′. By definition, wt′(j, k) ≤ wt(j, i) + wt(i, k), and hence wt′(Q′) ≤ wt(Q).

In both cases, we obtain a negative cycle Q′ in C ◦W ′.
Conversely, assume that there is a negative cycle Q′ in C ◦W ′. We obtain a cycle Q in C ◦W
by inserting i between each pair of consecutive points j, k in Q′ such that wt′(j, k) < wt(j, k).
Notice that in this case wt′(j, k) = wt(j, i) + wt(i, k), and otherwise wt′(j, k) = wt(j, k).
Therefore, wt(Q) = wt′(Q′) and we have a negative cycle in C ◦W as well. This completes the
proof that W ′ ∼M W .
Now, we know by hypothesis that W ∼M (JτK, 99K). Further, we also have (JτK, 99K) ∼M
(Jτ ′K, 99K′) since τ ′ differs from τ only in the coloring; the remaining part is the same and in
particular 99K′ = 99K. Hence the paths (and cycles) are exactly the same. Thus, combining these,
we obtain W ′ ∼M (Jτ ′K, 99K), which completes the proof of the claim. �

Accepting condition: Finally, we define a state (q,wt) to be accepting if

q is an accepting state of AK,Mvalid , hence it consists of a single block with left endpoint i and
right endpoint j (possibly i = j),

S. Akshay, P. Gastin, S. Krishna 29

the pair (q,wt) is realizable, i.e., wt(i, j) + wt(j, i) ≥ 0.

This completes the construction of AK,Minf , whose correctness follows from the claim below and thus,
completes the proof of Proposition 12.

Claim 29. L(AK,Minf) = {τ ∈ L(AK,Mvalid) | JτK is realizable}.

Proof. Suppose AK,Minf has an accepting run reading τ reaching state (q,wt) at the root. Then τ
is accepted by AK,Mvalid . Moreover, (q,wt) is a sound abstraction of τ , which implies (JτK, 99K) ∼M
(q,wt). Now, since q has a single block, so does JτK and the hole relation is empty. Therefore,
JτK ∼M (q,wt). Since the latter is realizable by definition of accepting states, we deduce that JτK is
realizable.

Conversely, let τ ∈ L(AK,Mvalid) be a (K,M)-STT such that JτK is realizable. Each accepting run
of AK,Mvalid on τ defines a unique run of AK,Minf on τ . Indeed,

(existence) the only additional precondition for a transition to be enabled in AK,Minf is the fact
that i should not be part of a negative cycle of length 2 when reading Forgeti. Assume that there
is a subterm Forgeti τ ′ of τ and that in the state (q′,wt′) associated with τ ′, point i is part of a
negative cycle of length 2. Then (q′,wt′) is not realizable and since it is a sound abstraction of
τ ′ it follows that (Jτ ′K, 99K′) is not realizable either. But Jτ ′K is a subgraph of JτK. This would
imply that JτK is not realizable, a contradiction.
(uniqueness) the wt component in the states of AK,Minf is always computed deterministically by its
transitions.

Finally, let (q,wt) be the state reached at root of τ in this run of AK,Minf . Since we started from
an accepting run of AK,Mvalid , state q is accepting in AK,Mvalid . Moreover, since JτK is realizable and
(q,wt) is a sound abstraction of τ , we also have (q,wt) realizable. Therefore, (q,wt) is accepting in
AK,Minf . �

Observe that the number of states ofAK,Minf may grow unboundedly, since the constants in wt′ can
grow in the automaton (due to taking sum during forget transitions). A backward edge j > k with
j > i > k may grow in absolute value with the update wt′(j, k) = min(wt(j, k),wt(j, i) + wt(i, k)).
On the other hand, a forward edge j < k may get a big value due to the formula above only if
wt(j, k) =∞. After having a finite value, the weight of a forward edge may only decrease due to the
min operation.

A first question we ask is if there are classes where this does not happen. A simple solution is
to consider time-bounded classes where all behaviors must occur within some global time bound T .
The idea here is to check if some backward edge grows above T in absolute value after a forget move,
in which case we reject it; while if the same happens with a forward edge, then replace it with∞.

Corollary 30. If the system is time-bounded by some constant T , then there exists a finite tree
automaton AK,Mreal of size at most TO(k2) · 2O(k2 lg k) for checking realizability.

However, in general, when we do not assume a global time bound, the constants in the states
of AK,Minf may grow unboundedly. We next show how to modify the above construction so that we
can make sure that the constants are always bounded and hence obtain a finite tree automaton for
realizability. Thus, this generalizes the above corollary with a better complexity.

C.2 Bounding the constants

We now prove Proposition 7, by constructing a finite tree automaton AK,Mreal to check realizability.
The set of states of AK,Mreal will be a finite subset of the states of AK,Minf . More precisely, a state (q,wt)

30 Analyzing Timed Systems Using Tree Automata

of AK,Minf with q = (P,<,→) is a state of AK,Mreal if for all i, j ∈ P we have wt(i, j) = +∞ or
|wt(i, j)| ≤ 8KM , where K and M are constants defined earlier.

As mentioned earlier, the weights on back and forward edges may grow (due to taking sums) after
each forget transition. We will define three transformations σ, β, γ which change the weights of a
state without affecting its realizability under contexts1. Each transformation maps a state (q,wt) of
AK,Minf to another state (q,wt′) of AK,Minf such that (q,wt′) ∼M (q,wt).

For instance, the simplest of these transformations is the map σ defined by σ(q,wt) = (q,wt′)
where for all i < j, wt′(i, j) = wt(i, j) and wt′(j, i) = min{wt(j′, i′) | i ≤ i′ ≤ j′ ≤ j}. In other
words, the transformation σ strengthens the constraints of backward edges. It is then easy to check
that σ preserves realizability under contexts:

Claim 31. For all states (q,wt) of AK,Minf we have σ(q,wt) ∼M (q,wt).

Proof. Let W = (q,wt) and W ′ = σ(W) = (q,wt′). Observe that since we apply only min
operations, the weights of edges given by wt′ in σ(W) can only be lower than the weights of edges
given by wt in W . Let C be a context. If Q is a negative cycle in C ◦W , then the same cycle
taken in σ(W) will have either the same or a lower total weight and hence be negative. In the
other direction, suppose C ◦ σ(W) has a negative weight cycle Q: i1i2 . . . ir = i1. Consider the
weight of the same cycle in W . The weights of the forward edges are the same. For each backedge
e = (ij , ij+1), by definition of σ, there exists a backedge e′ contained in (or possibly equal to) e such
that wt′(e) = wt(e). That is, e′ = (k, `) such that ij+1 ≤ ` < k ≤ ij . Then we can replace in Q,
each such backedge e by the backward path segment ij k ` ij+1, whose weight is lesser than or equal
to wt′(e) = wt(e′). Thus, we have a negative cycle in C ◦W . �

The backward abstraction β Next, to bound back edges we define a transformation β which
reduces the weight of a back edge when it goes above a certain constant in absolute value, while
preserving realizability under all contexts. In fact, we define it on back edges across a block. Let
(q,wt) be a state ofAK,Minf with q = (P,<,→). A pair of points (j, i) ∈ P 2 is said to be a block back
edge (denoted BBE) if i < j are the end points of a block in q, i.e., i→+ j and this→-path cannot be
extended (on the left or on the right). A big block back edge (BBBE) is a block back edge e such that
M + wt(e) ≤ 0. For any two positions i < j, we define BBE(i, j) to be the set of block back edges
between i and j. That is, BBE(i, j) = {(`, k) | (`, k) is a BBE and i ≤ k < ` ≤ j}. We also define
B(i, j) to be the set of big block back edges between i and j: B(i, j) = {e ∈ BBE(i, j) | e is big}.
We now define β(q,wt) = (q,wt′) where, for any i < j,

wt′(i, j) = wt(i, j) +
∑

e∈B(i,j)

(M + wt(e)) (1)

wt′(j, i) = wt(j, i)−
∑

e∈B(i,j)

(M + wt(e)) (2)

The idea is to change the weight of big BBE to −M by adding an offset to all the other edges
(backward and forward) crossing this block. Note that this does not increase the absolute value of
any constant. Further, after the backward abstraction, the absolute value of weights of block back
edges is bounded by M , i.e., for all BBE i x j, we have wt′(j, i) ≥ −M . Indeed, either the edge
was big and we get wt′(j, i) = −M or it was not big and wt′(j, i) = wt(j, i) > −M . Notice also
that a BBE is big in (q,wt) iff it is big in β(q,wt). The crucial property is that we leave the weights
of all cycles unchanged (under all contexts).

1 To be precise, β, γ will preserve realizability under contexts only under additional hypotheses, which we will define
later and preserve throughout.

S. Akshay, P. Gastin, S. Krishna 31

Lemma 32. For all states W = (q,wt) of AK,Minf with q = (P,<,→) such that all points are
endpoints P = EP(W), we have W ∼M β(W).

C ◦W
k

n i

`

case 1

e
mj

case 2

Figure 10 Backward Abstraction

Proof. Let C be an M -context. Recall that constants in C have absolute value less than M .
Case 1. Assume that there is forward edge k y ` in C going over a BBBE e = i x j in W . In
C ◦W , we have the cycle Q consisting of i k, ` j, i, Here, represent backward paths
that lead from one point to another. The cycle Q is negative in both W and β(W). This follows
since wt(Q) = wt(i k) + wt(k, `) + wt(` j) + wt(j, i) ≤ 0 + wt(k, `) + 0 + wt(j, i) <
M + 0−M + 0 = 0. The strict inequality follows from the fact that C is an M -context and (k, `)
belongs to C. Thus in this case W ∼M β(W).
Case 2. Assume below that there is no forward edges in C going over a BBBE of W .

Let Q be a path in C ◦ W . Assume Q uses a backedge n x m in C going over a BBBE
e = ix j in W . Then we replace in Q the edge nx m by the path m j, i n. We then have
wt(m j) + wt(j, i) + wt(i n) ≤ 0 + wt(j, i) + 0 < wt(m,n) since C is an M -context. Thus
we obtain a path Q′ in C ◦W with wt(Q′) < wt(Q). We deduce that C ◦W has a negative cycle
Q iff C ◦W has a negative cycle Q′ using no edges in C crossing over a BBBE of W , forward or
backward.

Similarly, we can show that C ◦ β(W) has a negative cycle Q iff C ◦ β(W) has a negative cycle
Q′ using no edges in C crossing over a BBBE of β(W). Recall that a BBE is big in W iff it is big in
β(W).

Therefore, in order to prove that C ◦W is realizable iff C ◦β(W), it suffices to consider cycles Q
using no edges in C crossing over a BBBE of W . Now, for such a cycle, we can show that the weight
wt(Q) in C ◦W equals the weight wt′(Q) in C ◦ β(W). Indeed, for each BBBE e = i x j in W ,
the number of forward edges k y ` in Q going accross e (i.e., k ≤ i < j ≤ `) equals the number of
backward edges k′ x `′ going across e (i.e., k′ ≤ i < j ≤ `′). This uses the fact that all points of W
are endpoints. Moreover, by the hypothesis on Q, none of these edges are from C. We deduce that
wt(Q) = wt′(Q). �

While block back edges are now bounded (and back edges across holes can also be bounded by −M),
this does not suffice to bound all back edges. To obtain such a bound on all back edges, we need to
relate large back edges to edges contained within them. For this, we need to define another property,
that we will inductively maintain as an invariant in the tree automaton.

Definition 33 (Backward-edge property (BEP)). A split-TCW W is said to satisfy the backward-
edge property (BEP) if for all i ≤ j ≤ k ≤ ` with either j 99K k or j = k, we have wt(`, i) >
wt(`, k)−M + wt(j, i).

With this, we have our second and crucial invariant.

(I2) AK,Mreal always satisfies BEP.

Note that, by definition, any M -context C satisfies BEP. Preserving this invariant requires a slight
transformation of the shuffle operation (at a ⊕ node), which we will discuss later in this appendix.
However, assuming that Invariant (I2) holds, we now show that all back edges are bounded.

32 Analyzing Timed Systems Using Tree Automata

Lemma 34. Let W = (q,wt) be a state of AK,Minf with q = (P,<,→) such that P = EP(W). If
β(W) satisfies BEP, then the weight of all back edges in β(W) are bounded by 2KM .

Proof. Assume that W ′ = β(W) = (q,wt′) satisfies BEP. Let i x j be some backward edge in
W ′, i.e., i < j. Then there exist some n ≥ 0 points i = jn+1 l jn l jn−1 l . . . l j1 l j0 = j.
Notice that in W ′ also, all points are endpoints. Hence, for all 0 ≤ k ≤ n we have either jk+1 99K jk
or jk+1 → jk and in the latter case, (jk+1, jk) is a block.

i jn jn−1 jn−2 j3j5 j4 j2 j1 j

We show by induction onm−k that for 0 ≤ k < m ≤ n+1 we have wt′(jk, jm) ≥ −(m−k)M .
In particular, we deduce that wt′(j, i) ≥ −(n+ 1)M .

If m = k + 1 then either jk+1 99K jk is a hole and applying BEP we get wt′(jk, jk+1) >
wt′(jk, jk)−M + wt′(jk+1, jk+1) = −M , or jk+1 → jk is a block and by definition of β we get
wt′(jk, jk+1) ≥ −M .

Now, assume that m > k + 1. Since we only have endpoints, there must be a hole j`+1 99K j`
for some k ≤ ` < m. Then applying BEP we get wt′(jk, jm) > wt′(jk, j`)−M + wt′(j`+1, jm).
Applying the induction hypothesis we obtain wt′(jk, j`) ≥ −(`− k)M and wt′(j`+1, jm) ≥ −(m−
(`+ 1))M . We deduce that wt′(jk, jm) ≥ −(m− k)M as desired.

Applying the above property to k = 0 and m = n+ 1, we deduce that wt′(j, i) ≥ −(n+ 1)M .
Now the number of points in P is at most 2K, therefore, n+ 1 ≤ 2K − 1, which concludes the proof
of the lemma. �

Forward abstraction γ. Finally, we turn to forward edges. We apply a forward abstraction γ
that removes all forward edges (i.e., changes their weight to∞) that are too large to be useful for
creating negative cycles. Let W = (q,wt) be a state of AK,Minf with q = (P,<,→). A forward edge
(i, j) ∈ P 2 with i < j is called big if wt(i, j) +

∑
e∈BBE(i,j) wt(e) ≥ (3K − 1)M . Note that as e is

a (block) back edge, its weight is negative. Then we define γ(q,wt) = (q,wt′) where, for any i < j,
wt′(j, i) = wt(j, i) and

wt′(i, j) =
{
∞ if (i, j) is big

wt(i, j) otherwise.

While the definition of this abstraction is simple, it turns out that showing that it is sound (i.e., it
preserves realizability under all contexts) is rather tricky, even with the additional BEP assumption
(which will be maintained inductively on the tree automaton).

Lemma 35. If W = (q,wt) is a state of AK,Minf which satisfies BEP, then we have W ∼M γ(W).

Proof. Let W = (q,wt) be a state of AK,Minf with q = (P,<,→). Assume that W satisfies BEP.
Let C be an M -context. Note that C ◦W and C ◦ γ(W) have the same paths and the same cycles.
Moreover, if Q is such a cycle, its weight wt′(Q) in C ◦ γ(W) is at most its weight wt(Q) in C ◦W .
Therefore, if there is a negative cycle in C ◦ γ(W) then the same cycle is negative in C ◦W .

Conversely, we have to prove now that if there is a negative cycle in C ◦W then there is also a
negative cycle in C ◦ γ(W). So we assume that C ◦W has a negative cycle. Let Q be a shortest (in
terms of path length) negative cycle in C ◦W . We will show that Q must be also a negative cycle in
C ◦ γ(W), i.e., wt′(Q) < 0.

If Q does not pass through any big forward edge then wt′(Q) = wt(Q) and we are done.

S. Akshay, P. Gastin, S. Krishna 33

ii′′ j

big

j′i′ j′′

Q1

Q2

Q3

Figure 11 il jn l jn−1 l · · ·l j1 l j0 = j. Also, i ≤ i′ ≤ j′ ≤ j

Else, suppose Q passed through i y j, a big edge in W . Then, we can always break Q into
ijQ1j

′′j′Q2i
′i′′Q3i as depicted in Figure 11, where j′ x j′′ is the last time Q crosses j backward

and i′′ x i′ is the first time that Q crosses i backward (both these must happen since the cycle has to
return from j to i). As a result, we have that Q2 lies completely within i and j, i.e., for all ` ∈ Q2,
i ≤ ` ≤ j.

Now, let the points within i to j be iljnljn−1 . . . j1lj0 = j for some n ≥ 0. Applying BEP on
backedge j′ x j′′ with respect to point j0 = j, we obtain wt(j′′, j′) ≥ wt(j′′, j0)−M + wt(j0, j′).
Similarly we apply BEP on i′′ x i′ with respect to i. Denoting byR0 the path j0j′Q2i

′i, we maintain
the invariant that R0 lies to the left of j0 (and right of i). We have:

0 > wt(Q)
= wt(i, j) + wt(Q1) + wt(j′′, j′) + wt(Q2) + wt(i′, i′′) + wt(Q3)
≥ wt(i, j) + wt(Q1) + wt(j′′, j0)−M + wt(R0)−M + wt(i, i′′) + wt(Q3)
≥ wt(i, j) + 0−M + wt(R0)−M + 0
= wt(i, j)− 2M + wt(R0)

In the above we have wt(Q1) + wt(j′′, j0) ≥ 0, else we have a shorter negative cycle jQ1j
′′j.

Similarly wt(i, i′′) + wt(Q3) ≥ 0. Now, the sketch of the proof is as follows: We consider the points
between i and j and process them inductively, from the right. We start from j = j0 and for each point,
we use BEP to move left while maintaining the invariant that the resulting path cannot go right (this
is true when we begin since as we observed above R0 indeed stays within [i, j]). Finally, since the
number of points in R0 can at most be 2K we terminate and are left with a lower bound on wt(R0).
This in conjuction with the equation above gives the theorem.

i jj′ j1

big

i′ Q′

R1

Figure 12 R0 passes through j1. The blue path Q′ originates in j′ and ends in j1. The red path R1 originates
in j1 and reaches i, and stays between i and j1.

Let us start with j1 l j0. We have two cases:

Assume that R0 passes through j1 (see Figure 12). Then R0 = j0j
′Q′j1R1i where Q′ is the

part of R0 going from j′ to j1 and R1 is the part of R0 going from j1 to i. Thus R1 satisfies the
invariant property that it stays between i and j1. Applying BEP on backedge j′ x j wrt the point

34 Analyzing Timed Systems Using Tree Automata

j1 we have:

wt(R0) = wt(j0, j′) + wt(Q′) + wt(R1)
≥ wt(j0, j1)−M + wt(j1, j′) + wt(Q′) + wt(R1)
≥ wt(j0, j1)−M + 0 + wt(R1)

Again, we have wt(j1, j′) + wt(Q′) ≥ 0 by minimality of the negative cycle Q.
Assume R0 does not pass through j1. Then it cannot pass through anything on the right of j1, i.e.,
in this case j0. Thus, R0 (after the first backedge j′ x j0) stays on the left of j1, i.e., we write
R0 = j0j

′Q′ for some Q′ which stays to left of j1. We then define R1 = j1j
′Q′, which satisfies

the invariant property that it lies in [j1, i]. Applying BEP on backedge j′ x j1 wrt the point j1
we have:

wt(R0) = wt(j0, j′) + wt(Q′)
≥ wt(j0, j1)−M + wt(j1, j′) + wt(Q′)
≥ wt(j0, j1)−M + wt(R1)

Inductively, we can apply the same argument for j2, . . . , jn and obtain segments R2, . . . Rn (notice
that Rn must consist of the single backedge ix jn since il jn) such that finally, we have:

wt(R0) ≥ wt(j0, j1)−M + wt(j1, j2)−M + . . .+ wt(jn−1, jn)−M + wt(jn, i)

If any ji+1 x ji is a hole, we apply BEP on the backedge to obtain wt(ji, ji+1) ≥ −M . Now, since
W = (q,wt) where q is a state of AK,Mvalid , there are at most K blocks in W , hence at most K − 1
holes. Moreover, there are at most 2K points and n ≤ 2K − 2. We deduce that,

wt(R0) ≥
∑

e∈BBE(i,j)

wt(e)− (K − 1)M − (2K − 2)M

=
∑

e∈BBE(i,j)

wt(e)− (3K − 3)M

This gives:

0 > wt(Q) ≥ wt(i, j)− 2M +
∑

e∈BBE(i,j)

wt(e)− (3K − 3)M

≥ (3K − 1)M − (3K − 1)M = 0

which is a contradiction. The last inequality follows by the definition of a big edge. Thus, no big edge
can be part of the shortest negative weight cycle. This shows that the existence of negative cycles is
preserved by the forward abstraction. �

Construction of AK,Mreal The finite tree automaton AK,Mreal is derived from AK,Minf by applying
the abstraction σ (strengthening) at ⊕ nodes and β (backward) and γ (forward) at Forgeti nodes.
More precisely, (q1,wt1), (q2,wt2) ⊕−→ σ(q,wt) is in AK,Mreal if (q1,wt1), (q2,wt2) ⊕−→ (q,wt) is in

AK,Minf . Similarly, if (q,wt) Forgeti−−−−→ (q′,wt′) is a transition in AK,Minf then (q,wt) Forgeti−−−−→ (q′′,wt′′)
is in AK,Mreal where (q′′,wt′′) = γ(β(q′,wt′)) if q′ has no internal points and (q′′,wt′′) = (q′,wt′)
otherwise. The reason for assuming that q′ has no internal points before applying the abstractions is
that it is a precondition for Lemmas 14 and 16. The reason for performing the σ abstraction on ⊕

S. Akshay, P. Gastin, S. Krishna 35

nodes is to preserve BEP, which is needed for these Lemmas to work. The proof of preservation of
BEP is in the next subsection.

The remaining construction ofAK,Mreal is directly from AK,Minf . Atomic STTs are handled as before.
Now, if (q,wt) α−→ (q′,wt′) is a transition in AK,Minf for α ∈ {Renamei,j ,Add→i,j}, then we define
(q,wt) α−→ (q′,wt′) to be a transition in AK,Mreal as well. Notice that these transitions do not change
the weights, hence if (q,wt) is a state of AK,Mreal then so is (q′,wt′).

Let us explain why the constants never exceed 8KM in states of AK,Mreal . By Claim 26, all
reachable states ofAK,Mvalid (and henceAK,Mreal) have the property that they can have at most two internal
points. We show that along a run, if a state (q,wt) has no internal points, then the weights/constants
are bounded by 4KM , otherwise, the constants are bounded by 8KM .

To see this, observe first that after an atomic STT the constants are at most M . Now, transitions
Renamei,j , Add→i,j and ⊕ do not increase the constants. At ⊕ transitions, we apply the σ-abstraction
but this does not increase the largest constant occurring in the state. As remarked earlier Claim 26), a
transition Add→i,j may create (at most 2) internal points, but it can be applied only when starting from
a state with no internal points, hence having constants at most 4KM . Then, only Renamei,j and
Forgeti transitions may be applied. The first Forgeti eliminates one internal point and may double
the constants if an internal point remains. That is why the constants may grow up to 8KM . After
the second Forgetj transition, there are no internal points left, hence the backwared and forward
abstractions are applied resulting in a state whose weights are bounded by 4KM .

Recall that the backward abstraction makes sure that the weight of a back edge ix j is bounded:
wt′(j, i) ≥ −2KM (Lemma 16). And the forward abstraction makes sure that wt′(i, j) = +∞ or
wt′(i, j) ≤ 4KM . Therefore, for all states (q,wt) of AK,Mreal are bounded by 8KM in absolute value.

Since the transformations σ, β, γ preserve realizability under contexts (Lemma 14 and Lemma 17)
we deduce that the key invariant defined earlier is preserved by all transitions of AK,Mreal , i.e.,

(I1) AK,Mreal always computes a sound abstraction of the given STT.

The acceptance condition of AK,Mreal is the same as for AK,Minf . The correctness of the construction
now follows on the exact same lines as for AK,Minf since the same key invariant is preserved. This
completes the proof of Proposition 7.

C.3 Preservation of BEP

It remains to prove that the second key invariant, the BEP property is preserved throughout the tree
automaton and for this we will use the fact that at every ⊕ node we perform a σ strengthening.

Lemma 36. AK,Mreal preserves BEP, i.e, BEP is satisfied when we start and it continues to be satisfied
after each transition.

Proof. First, note that the atomic STTs trivially satisfy BEP since for all back edge ix ` we have
wt(`, i) > −M . Then, consider the transitions one by one.

Renamei,j : preservation of BEP is trivial since only the names of the points change.
Add→i,j : preservation of BEP is also trivial since we simply removed a hole, hence we have fewer
cases to consider for the backward edge property.

⊕: consider a transition (q1,wt1), (q2,wt2) ⊕−→ σ(q,wt) = (q,wt′) of AK,Mreal coming from

a transition (q1,wt1), (q2,wt2) ⊕−→ (q,wt) in AK,Minf . By induction hypothesis, (q1,wt1) and
(q2,wt2) satisfy BEP. We show that (q,wt′) also does. Let i ≤ j ≤ k ≤ ` in q be such that either
j = k or j 99K k. We have wt′(`, i) = wt(n,m) for some i ≤ m ≤ n ≤ `. We have three cases:

36 Analyzing Timed Systems Using Tree Automata

if m and n are not from the same qi, then
wt′(`, i) = wt(n,m) = 0 > −M ≥ wt′(`, k)−M + wt′(j, i).
So we assume below that m and n are both from the same state, say q1.
if m x n does not cross j, k. Wlog, let us say that it remains entirely to right of k, i.e.,
k ≤ m < n. Then, wt′(`, i) = wt(m,n) ≥ wt′(`, k) > wt′(`, k)−M + wt′(j, i) since last
two terms add a negative quantity.
if mx n crosses j, k, i.e., m ≤ j ≤ k ≤ n. Let k′ be the least point in q1 which is above k:
we have k ≤ k′ ≤ n. Similarly, let j′ be the greatest point in q1 below j: m ≤ j′ ≤ j. We
must have j′ = k′ or j′ 99K k′. In this case, applying BEP on edge (m,n) of (q1,wt1), we
get wt′(`, i) = wt1(n,m) ≥ wt1(n, k′)−M + wt1(j′,m) ≥ wt′(`, k)−M + wt′(j, i).

Forgetc: Let (q,wt) Forgeti−−−−→ (q′,wt′) be a transition of AK,Minf . We assume that (q,wt) satisfies
BEP. We show that (q′,wt′) also satisfies BEP. So let i ≤ j ≤ k ≤ ` be points in q′ such that
j 99K k or j = k. Notice that also in q we have j 99K k or j = k since a forget transition only
removes an internal point. We have wt(`, i) > wt(`, k)−M + wt(j, i). There are two cases.

Case 1: wt′(`, i) = wt(`, i). This case is easy. We have wt′(`, i) = wt(`, i) > wt(`, k)−M +
wt(j, i) ≥ wt′(`, k)−M + wt′(j, i).
Case 2: wt′(`, i) < wt(`, i). In this case, by definition of the transition, we must have
wt′(`, i) = wt(`, c) + wt(c, i). First, note that c 6∈ {i, j, k, `}, since these points are in P ′ but
by definition c 6∈ P ′. Now we have two cases, either k < c or c < j. Indeed, since j 99K k or
j = k, we cannot have j < c < k. Wlog let k < c (the other case is symmetric and follows by
similar arguments).

wt′(`, i) = wt(`, c) + wt(c, i)
≥ wt(`, c) +

(
wt(c, k)−M + wt(j, i)

)
(by BEP on edge (c, i) of (q,wt))

= wt(`, c) + wt(c, k)−M + wt(j, i)
≥ wt′(`, k)−M + wt′(j, i) (by defn on wt′)

β: Let (q,wt) be a state satisfying BEP and let β(q,wt) = (q,wt′) be its backward abstraction.
We will show that (q,wt′) also satisfies BEP. Let i ≤ j ≤ k ≤ ` be such that j 99K k or
j = k. Notice that the BBBE between i and ` are either between i and j or between k and `:
B(i, `) = B(i, j)] B(k, `). Hence, we have

wt′(`, i) = wt(`, i)−
∑

e∈B(i,`)

(wt(e) +M)

≥ wt(`, k)−M + wt(j, i)−
∑

e∈B(i,`)

(wt(e) +M) (by BEP on W)

=
(

wt(`, k)−
∑

e∈B(k,`)

(wt(e) +M)
)
−M +

(
wt(j, i)−

∑
e∈B(i,j)

(wt(e) +M)
)

= wt′(`, k)−M + wt′(j, i)

γ trivially preserves BEP as it does not change the weights of backedges. �

D Tree automata for timed systems

The goal of this section is to build a tree automaton which accepts the STTs denoting TCWs accepted
by a TPDA. We recall the formal statement given in Section 4.

S. Akshay, P. Gastin, S. Krishna 37

Proposition 8. Let S be a TPDA of size |S| (constants encoded in unary) with set of clocks X and
using constants less than M . Then, we can build a tree automaton AK,MS of size
|S|O(K2) · 2O(K2(|X|+1)) such that

Again, we could prove the existence of a tree automaton by arguing that the existence of a run
of S on a simple TCW is MSO definable and appealing to Courcelle’s theorem [9]. But, as for the
automaton AK,Mvalid in Appendix B we choose to directly construct the tree automaton AK,MS , allowing
in particular to analyse its size which is stated above.

Let us explain first how the automaton would work for an untimed system with no stack. At a
leaf of the STT of the form (i, a) the tree automaton guesses a transition δ from S which could be
executed reading action a. It keeps the transition in its state, paired with color i. After reading a
subterm τ , the tree automaton stores in its state a map ∆ which assigns with each active (free) color
k of τ the transition ∆(k) guessed at the corresponding leaf. The map ∆ can be easily updated at
nodes labelled ⊕ or Forgeti or Renamei,j . When, reading a node labelled Add→i,j , the tree automaton
checks that the target state of the transition ∆(i) equals the source state of the transition ∆(j). This
ensures that the transitions guessed at leaves form a run when taken in the total order induced by the
word denoted by the final term. At the root, we check that at most two colors remain free: i and j for
the leftmost (resp. rightmost) endpoint of the word. Then, the tree automaton accepts if the source
state of ∆(i) is initial in S and the target state of ∆(j) is final in S.

The situation is a bit more complicated for timed systems. First, we are interested in the simple
TCW semantics in which each event is blown-up in several micro-events. Following this idea, each
transition (s, γ, a, op, R, s′) of the timed system S is blown-up in micro-transitions as explained
in Section 2.2, assuming that γ = γ1 ∧ · · · ∧ γn has n conjuncts of the form x ∈ I , and that
R = {x1, x2, . . . , xm}:

s δ0 δ1 · · · δn−1 δn δx1
· · · δxm s′

{ζ} γ1 γn a, op

{x1}

ε ε

{xm}

ζ = 0

Notice the reset part at the end which allows an arbitrary number (possibly zero) resets of clock x1
(depending on how many timing constraints for clock x1 will originate from this reset), followed by
an arbitrary number (possibly zero) resets of clock x2, etc.

The second difficulty is to make sure that, when a guard of the form x ∈ I is checked in some
transition, then the source point of the timing constraint in the simple TCW indeed corresponds to
the latest transition resetting clock x. To check this property, the tree automaton AK,MS stores,

for each color k of the left endpoint of a block, the set C(k) of clocks reset by some transition
whose middle point (the one corresponding to a, op micro-transition) occurs in the block.
for each pair (i, j) of colors of left endpoints of distinct blocks, set D(i, j) of clocks that are reset
in block i and checked in j.

Finally, the last property to be checked is that the push-pop edges are well-nested. To this end,
the tree automaton AK,MS stores the set E of pairs (i, j) of left endpoints of distinct blocks such that
there is at least one push-pop edge from block i to block j.

Formally, a state of AK,MS is a tuple (q,∆, C,D,E) where q = (P,<,→) is a state of AK,Mvalid ,
the map ∆ assigns to each color k ∈ P the pair of states of the micro-transition ∆(k) guessed at the
leaf corresponding to color k, and the maps C, D and the set E are as described above. We describe
now the transitions of AK,MS .

Atomic STTs When reading an atomic STT τ = Addc,d1,2((1, ε) ⊕ (2, ε)), the tree automaton
AK,MS may guess that it encodes a clock constraint x ∈ [c, d] induced by two transitions δ1 =

38 Analyzing Timed Systems Using Tree Automata

(s1, γ1, a1, op1, R1, s′1) and δ2 = (s2, γ2, a2, op2, R2, s′2) of S, i.e., x ∈ R1 and some conjunct of
γ2, say the k-th, is x ∈ [c, d]. Then it moves to state (q1,2,∆, C,D,E) where q1,2 = ({1, 2}, 1 <
2, ∅) is the state reached by AK,Mvalid on τ , and ∆(1) = (δ1

x, δ
1
x) is the reset micro-transition for clock x

of δ1, ∆(2) = (δ2
k−1, δ

2
k) is the micro-transition checking the k-th conjunct of γ2, C(1) = C(2) = ∅,

D(1, 2) = {x} and E = ∅.
When reading an atomic STT τ = Addc,d1,2((1, a1)⊕ (2, a2)), the tree automaton AK,MS may also

guess two matching push-pop transitions of S: δ1 = (s1, γ1, a1, ↓b, R1, s′1) and δ2 = (s2, γ2, a2, ↑c,db
, R2, s′2). Then it moves to state (q1,2,∆, C,D,E) where q1,2 = ({1, 2}, 1 < 2, ∅) is the state
reached by AK,Mvalid on τ , and ∆(1) = (δ1

n, δ
1
x) is the middle micro-transition of δ1, ∆(2) = (δ2

m, δ
2
y)

is the middle micro-transition of δ2, C(1) = R1, C(2) = R2, D(1, 2) = ∅ and E = {(1, 2)}.
When reading an atomic STT τ = Add0,0

1,2((1, ε)⊕ (2, ε)), the tree automaton AK,MS may guess
that it encodes the ζ clock constraint of some transition δ = (s, γ, a, op, R, s′) of S. Then, it moves
to state (q1,2,∆, C,D,E) where q1,2 = ({1, 2}, 1 < 2, ∅) is the state reached by AK,Mvalid on τ , and
∆(1) = (s, δ0), ∆(2) = (δx, s′) are the first and last micro-transitions from δ, C(1) = C(2) = ∅,
D(1, 2) = ∅ and E = ∅.

Finally, when reading the atomic STT τ = (1, a) with a ∈ Σ, the tree automaton AK,MS guesses
a transition δ = (s, γ, a, nop, R, s′) of S and moves to state (q1,∆, C,D,E) where q1 = ({1}, ∅, ∅)
is the state reached by AK,Mvalid on (1, a), and ∆(1) = (δn, δx) is the middle micro-transition of δ
(assuming that γ has n conjuncts), C(1) = R since the set of clocks reset by δ is R, and D is
undefined and E = ∅ since we have a single block.

Renamei,j We simply exchange the colors i and j in the current state.

Forgeti We define (q,∆, C,D,E) Forgeti−−−−→ (q′,∆′, C ′, D′, E′) to be a transition if

q
Forgeti−−−−→ q′ is a transition of AK,Mvalid . In particular, i is not an endpoint.

We obtain ∆′ from ∆ by forgetting the entry of color i. Since i is not a left endpoint, the
components C, D and E are not affected: C ′ = C, D′ = D and E′ = E.

Add→i,j We define (q,∆, C,D,E)
Add→

i,j−−−−→ (q′,∆′, C ′, D′, E′) to be a transition if

q
Add→

i,j−−−−→ q′ is a transition of AK,Mvalid . In particular, i is a right endpoint, j is a left endpoint, and
il j.

Either the target state of ∆(i) equals the source state of ∆(j), or there is an ε-path of micro-
transitions ε−→ δxk

ε−→ · · · ε−→ δx`

ε−→ between the target state of ∆(i) and the source state of ∆(j):
indeed, adding → between i and j means that these points are consecutive in the final TCW,
hence it should be possible to concatenate the micro-transition taken at i and j.

∆′ = ∆.

Let k be the left end-point of the block of i. The blocks of k and j are merged, hence we set
C ′(k) = C(k) ∪ C(j) and C ′(`) = C(`) if ` /∈ {k, j} is another left endpoint. Also, if `, `′ /∈
{k, j} are other left endpoints, we set D′(`, `′) = D(`, `′) if ` < `′, D′(`, k) = D(`, k)∪D(`, j)
if ` < k, and D′(k, `) = D(k, `) ∪D(j, `) if j < `. Finally, E′ is the set of pairs (`, `′) of left
endpoints of distinct blocks such that either ` 6= j 6= `′ and (`, `′) ∈ E, or ` = k and (j, `′) ∈ E,
or ` < k = `′ and (`, j) ∈ E.

S. Akshay, P. Gastin, S. Krishna 39

⊕ We define (q1,∆1, C1, D1, E1), (q2,∆2, C2, D2, E2) ⊕−→ (q,∆, C,D,E) to be a transition if

q1, q2
⊕−→ q is a transition of AK,Mvalid .

The other components of are inherited: ∆ = ∆1 ∪ ∆2, C = C1 ∪ C2, D = D1 ∪ D2 and
E = E1 ∪ E2.
For all i < k < j left endpoints in q = (P,<,→), we have C(k) ∩ D(i, j) = ∅. This is the
crucial condition which ensures that a timing constraint always refers to the last transition resetting
the clock being checked. If some clock x ∈ D(i, j) is reset in block i and checked in block j,
it is not possible to insert a block k between blocks i and j if clock x is reset by a transition in
block k.
For all (i, j) ∈ E and (k, `) ∈ E, if i < k < j then ` < j. This ensures that the push-pop edges
are well-nested.

Accepting condition A state (q,∆, C,D,E) is accepting if

q is an accepting state of AK,Mvalid , hence it consists of a single block with left endpoint i and right
endpoing j (possibly i = j),
the source state of ∆(i) is an initial state of S , and the target state of ∆(j) is a final state of S , or
there is an ε-path of micro-transitions from the target state of ∆(j) to some final state of S.

If the underlying system is a timed automata, it is sufficient to store the maps C,D in the state,
since there are no stack operations.

E Dense-Time Multi-stack Pushdown Automata

In this section, we consider the model of dense-timed multistack push down automata (dtMPDA).
The reachability problem for untimed MPDA is already undecidable. Several restrictions have
been studied on MPDA like bounded phase, bounded context, bounded scope and so on to regain
decidability. We look at dtMPDA restricted to a bounded number of rounds.

A dtMPDA is a tuple S = (S,Σ,Γ, X, s0, F,∆) where S is a finite set of states, Σ is a finite
alphabet, Γ is the stack alphabet, s0 is the initial state, X is a finite set of clocks, F ⊆ S is a finite
set of final states, and ∆ is a finite set of transitions of the form (s, γ, a, op, R, s′) where s, s′ ∈ S,
a ∈ Σ, γ is a finite conjunction of atomic formulae of the kind x ∈ I for x ∈ X and I ∈ I, R ⊆ X
is the set of clocks reset, and op is a stack operation of one of the following kinds:

1. nop does not change the contents of any stack,
2. ↓ic where c ∈ Γ is a push operation that adds c on top of stack i, with age 0.
3. ↑ic∈I where c ∈ Γ and I ∈ I is a pop operation that removes the top most symbol of stack i

provided it is a c with age in the interval I .

A sequence σ = op1 · · · opm of operations is a round if it can be decomposed in σ = σ1 · · ·σn
where each factor σi is a possibly empty sequence of operations of the form nop, ↓ic, ↑ic∈I .

E.1 Simple TC-word semantics for dtMPDA
We define the semantics for dtMPDA in terms of simple TCWs. Let n denote the number of
stacks. A simple TCW V = (P,→, λ,B, θ) is said to be generated or accepted by a dtMPDA
S if there is an accepting abstract run ρ = (s0, γ1, a1, op1, R1, s1) (s1, γ2, a2, op2, R2, s2) · · ·
(sm−1, γm, am, opm, Rm, sm) of S such that sm ∈ F is a final state and

40 Analyzing Timed Systems Using Tree Automata

the sequence of push-pop operations of any stack 1 ≤ y ≤ n is well-nested. In each prefix
op1 · · · opo with 1 ≤ o ≤ m, the number of pops of stack y is at most the number of pushes on
stack y, and in the full sequence op1 · · · opm the number of pops equals the number of pushes.
the sequence op1 · · · opm of stack operations has (at most) k-rounds.
We have P = P0] P1] · · ·] Pm with Pi × Pj ⊆ →+ for 0 ≤ i < j ≤ n.
Each transition δi = (si−1, γi, ai, opi, Ri, si) gives rise to a sequence of consecutive points Pi in
the simple TCW. opi is an operation on some stack y. Intuitively, the transition δi is simulated by
a sequence of micro-transitions

si−1 δ0

i
δ1

i
· · · δhi−1

i
δhi

i
δx1

i
· · · δxm

i
si

{ζ} γ1

i
γhi

i ai, opi

{x1}

ε

{xm}

ζ = 0

where γi = γ1
i ∧ · · · ∧ γ

hi
i and Ri = {x1, . . . , xm}. The first and last micro-transtions, cor-

responding to the reset of a new clock ζ and checking the constraint ζ = 0 make sure that
all micro-transtions in the sequence occur simultaneously. We have a point in Pi for each
micro-transition (excluding the ε-micro-transitions between the δxj

i). Hence, Pi consists in a
sequence

`i → `1i → · · · → `hi
i → pi → r1

i → . . .→ rgi

i → ri

where gi is the number of timing constraints corresponding to clocks reset during transition i and
checked afterwards. Similarly, hi is the the number of timing constraints checked in γi. We have
λ(pi) = ai and all other points are labelled ε. The set P0 encodes the initial resets of clocks that
will be checked before being reset. So we let R0 = X and P0 consists of a sequence

`0 → r1
0 → . . .→ rg0

0 → r0 .

the relation for timing constraints can be partitionned asB =
⊎

1≤y≤nB
y]
⊎
x∈X∪{ζ}B

x where

Bζ = {(`i, ri) | 0 ≤ i ≤ m} and we set θ(`i, ri) = [0, 0] for all 0 ≤ i ≤ n.
We have pi By pj if opi =↓yb is a push and opyj =↑yb∈I is the matching pop for stack y (same
number of pushes and pops of stack y in opi+1 · · · opj−1), and we set θ(pi, pj) = I .
for each 0 ≤ i < j ≤ n such that the t-th conjunct of γj is x ∈ I and x ∈ Ri and x /∈ Rk
for i < k < j, we have rsi B

x `tj for some 1 ≤ s ≤ gi and θ(rsi , `tj) = I . Therefore, every
point `ti with 1 ≤ t ≤ hi is the target of a timing constraint. Moreover, every reset point rsi for
1 ≤ s ≤ gi should be the source of a timing constraint: rsi ∈ dom(Bx) for some x ∈ Ri. Also,
for each i, the reset points r1

i l · · ·l rgi

i are grouped by clocks (as suggested by the sequence
of micro-transitions simulating δi): if 1 ≤ s < u < t ≤ gi and rsi , r

t
i ∈ dom(Bx) for some

x ∈ Ri then rui ∈ dom(Bx). Finally, for each clock, we request that the timing constraints
are well-nested: for all uBx v and u′ Bx v′, with u, u′ ∈ Pi, if u < u′ then u′ < v′ < v.

We denote by STCW(S) the set of simple TCWs generated by S . The language of L(S) is the set
of realizable simple TCWs in STCW(S). Given a bound k on the number of rounds, we denote by
STCW(S, k) the set of simple TCWs generated by runs of S using at most k rounds. We let L(S, k)
be the corresponding language.

Given a dtMPDA S, we show that all simple TCWs in STCW(S, k) have bounded split-width.
Actually, we will prove a slightly more general result. We first identify some properties satisfied
by all simple TCWs generated by a dtMPDA, then we show that all simple TCWs satisfying these
properties have bounded split-width.

Let V = (P,→, λ,B, θ) be a simple TCW. Recall that < =→+ is the transitive closure of the
successor relation. We say that V is k-round well timed with respect to a set of clocks Y and stacks
1 ≤ s ≤ n if theB relation for timing constraints can be partitionned asB =

⊎
1≤s≤nB

s]
⊎
x∈Y B

x

where

S. Akshay, P. Gastin, S. Krishna 41

(T′1) for each 1 ≤ s ≤ n, the relation Bs corresponds to the matching push-pop events of stack s,
hence it is well-nested: for all iBs j and i′ Bs j′, if i < i′ < j then i′ < j′ < j, see Figure 4.
Moreover, V consists of at most k rounds, i.e., we have P = P1] · · ·] Pk with Pi × Pj ⊆ <

for all 1 ≤ i < j ≤ k. And each P` is a round, i.e., P` = P 1
`] · · ·] Pn` with P s` × P t` ⊆ < for

1 ≤ s < t ≤ n and push pop events of P s` are all on stack s (for all i Bt j with t 6= s we have
i, j /∈ P s`).

(T′2) An x-reset block is a maximal consecutive sequence i1 l · · · l in of positions in the domain
of the relation Bx. For each x ∈ Y , the relation Bx corresponds to the timing constraints for
clock x and is well-nested: for all iBx j and i′ Bx j′, if i < i′ are in the same x-reset block, then
i < i′ < j′ < j. Each guard should be matched with the closest reset block on its left: for all
iBx j and i′ Bx j′, if i < i′ are not in the same x-reset block then j < i′.

It is easy to check that the simple TCWs in STCW(S, k) where S is a dtMPDA using set of
clocks X are well-timed for clocks in Y = X ∪ {ζ}, i.e., satisfy the properties above. The first
condition (T′1) is satisfied by STCW(S, k) by definition. Consider (T′2). Let iBx j and i′ Bx j′ for
some clock x ∈ X . If i, i′ are points in the same x-reset block for some x ∈ X , then by construction
of STCW(S), if i < i′ then i′ < j′ < j which gives well nesting. Similarly, if i < i′ are points in
different x-reset blocks, then by definition of STCW(S), we have j < i′. It is clear that the new clock
ζ also satisfies (T′2).

Lemma 37. A k-round well-timed simple TCW has split-width at most (4nk + 4)(|Y |+ 1), where
n is the number of stacks.

Again, we play the split-game between Adam and Eve. Eve should have a strategy to disconnect
the word without introducing more than (4nk+ 4)(|Y |+ 1) blocks. The strategy of Eve is as follows:
Given the k-round word w, Eve first breaks this into two words. The first word only has stack 1 edges,
and the second word has stack edges corresponding to stacks 2, . . . , n. The first word can now be
dealt with as we did in the case of TPDA. Eve then breaks the second word into two words, the first
of which has only stack 2 edges, while the second word has edges of stacks 3,4 . . . , n, and so on.
Finally, we obtain n split-STCW’s, each having edges corresponding to only one stack. Once this is
achieved, these words can be processed as was done in the case of TPDA. The only thing to calculate
is the number of cuts required in isolating each word.

Obtaining a word containing only stack i edges Since we are dealing with k-round TCWs,
we know that the stack operations follow a nice order : stacks 1, . . . , n are operated in order k
times. More precisely, by (T′1), the set P of points of the simple TCW V can be partitionned in
P = P1 ∪ P ′1 ∪ · · · ∪ Pk ∪ P ′k such that P1 < P ′1 < · · · < Pk < P ′k and P1 ∪ · · · ∪ Pk contains all
and only stack operations from stack 1. Eve’s strategy is to separate all these sets, i.e., cut just after
P1, P ′1, . . . , Pk. This results in 2k − 1 cuts. This will not disconnect the word if there are edges with
clock timing constraints across blocks, i.e., from Pi or P ′i to some other block on the right.

Consider the case when we have timing constraints on some clock x which is reset in some block
Pi and checked in some block P ′j with i ≤ j. All these timing constraints come from the last reset
block Rx of clock x which lies in Pi. With two cuts, we detach the consecutive sequence of resets
in Rx which are checked in P ′j . So with at most 2|Y | cuts, we detach all the resets that come from
blocks Pi with i ≤ j and are checked in block P ′j . Similarly, with at most 2|Y | cuts, we detach all
the resets that come from blocks P ′i with i < j and are checked in block Pj .

In total, including the 2k − 1 cuts used to separate the blocks P1, P ′1, . . . , Pk, P ′k we have used
(2|Y |+ 1)(2k − 1) ≤ 4k(|Y |+ 1) cuts.

The split-TCW is now disconnected, and we obtain 2 words, one containing only stack 1 edges,
and the other containing only stack 2, . . . , n edges. Each word has at most k|Y | holes after the

42 Analyzing Timed Systems Using Tree Automata

disconnect: at most |Y | holes in each Pi of the first word, and at most |Y | holes in each P ′i of the
second word. If Y = {x1, . . . , xm}, then the first and second words look like

P 1 Hxg1 . . . Hxgm
P 2 Hxd1

. . . Hxdm
. . . P k

Gxi1
. . . Gxim

P
′
1 Gxh1

. . . Gxhm
P
′
2 . . . Gxj1

. . . Gxjm
P
′
k

Here, Gxij
consists of the bunches of edges coming from the last xij -reset block in P1, while Hxgj

consists of the bunches of edges coming from the last xgj
-reset block in P ′1 and so on. P 1 is the

word containing the holes which earlier contained Gxi1
. . . Gxim

in P1 and so on. Likewise, P
′
1 is

the word containing the holes which earlier contained Hxg1
. . . Hxgm

in P ′1 and so on.
Starting with the second word having at most k|Y | holes, we repeat the process to separate out

stack 2 edges. This will result again in at most 4k(|Y |+ 1) edges to be cut, and will result in two new
words, each having at most 2k|Y | holes. Continuing this, after the last separation, when we isolate
stack n edges, we will obtain two words each having at most nk|Y | holes.

Thus, by cutting at most 4nk(|Y |+ 1) edges, we can separate out the starting word into n words,
each having only one kind of stack edge. Applying the TPDA game on each of these words, we obtain
a split bound of (4nk + 4)(|Y |+ 1).

E.2 Tree Automata Construction for MultiStack and Complexity

Having established a bound on the split-width for dtMPDA restricted to k rounds, we now discuss
the construction of a tree automaton that checks ValCoRe when the underlying system is a dtMPDA.

Given a dtMPDA S = (S,Σ,Γ, X, s0, F,∆), we first construct a dtMPDA S ′ that only accepts
runs using at most k-rounds. The tree automaton that checks ValCoRe is for this dtMPDA S ′. The
idea behind constructing S ′ is to easily keep track of the k-rounds by remembering in the finite
control of S ′, the current round number and context number. The initial states of S ′ is (s0, 1, 1). Here
1,1 signifies that we are in round 1, and context 1 in which operations on stack 1 are allowed without
changing context. The states of S ′ are {(s, i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ n, s ∈ L}.

Assuming that (s, γ, a, op, R, s′) ∈ ∆ is a transition of S, then the transitions ∆′ of S ′ are as
follows:

1. ((s, i, j), γ, a, op, R, (s′, i, j)) ∈ ∆′ if op is one of nop, ↓jc or ↑jc∈I ,
2. ((s, i, j), γ, a, op, R, (s′, i, h)) ∈ ∆′ if j < h and op is one of ↓hc or ↑hc∈I ,
3. ((s, i, j), γ, a, op, R, (s′, i+ 1, h)) ∈ ∆′ if h < j and op is one of ↓hc or ↑hc∈I .

The final states of S ′ are of the form {(s, i, j) | s ∈ F}. It can be shown easily that accepting runs of
S ′ correspond to accepting k-round bounded runs of S.

Now, given the dtMPDA S ′, we discuss the tree automaton that checks ValCoRe. The validity
and realizability checks (Val and Re parts) are as discussed in Appendices B and C. The only change
pertains to the automaton that checks correctness of the underlying run. The tree automaton AK,MS
stores the set Es of pairs (i, j) of left endpoints of distinct blocks such that there is at least one
push-pop edge pertaining to stack s from block i to block j. Thus, instead of one set E as in the
case of TPDA, we require n distinct sets to ensure well-nesting for each stack edge. Secondly, we
need to ensure that the k-round property is satisfied. Rather than doing this at the tree automaton
level, we have done it at the dtMPDA level itself, by checking this in S ′. This blows up the
number of locations by nk, the number of stacks and rounds. Thus, the number of states of the
tree automaton AK,MS that checks correctness when the underlying system is a k-round dtMPDA is
(nk|S|)O(K2) · 2O(nK2(|X|+1)), where K = (4nk + 4)(|X|+ 2).

Proposition 38. Let S be a k-round multistack timed automaton of size |S| (constants encoded
in unary) with n stacks and set of clocks X . Then, we can build a tree automaton AK,MS of size
(nk|S|)O(K2) · 2O(nK2(|X|+1)) such that L(AK,MS) = {τ ∈ L(AK,Mvalid) | JτK ∈ STCW(S ′)}.

	1 Introduction
	2 Graphs for behaviors of timed systems
	2.1 Abstractions of timed behaviors
	2.2 TPDA and their semantics as simple TCWs

	3 Bounding the width of graph behaviors of timed systems
	3.1 Split-TCWs and split-game
	3.2 Split-width for timed systems

	4 The tree automata technique illustrated via TPDA and TA
	5 Tree automata for realizable valid (K,M)-STTs
	5.1 Shuffle and Realizability under contexts
	5.2 A (possibly infinite) tree automaton for realizability
	5.3 Bounding the constants

	6 Dense time multi-stack pushdown systems
	7 Discussion and Future work
	A Details for Section ??
	B Tree automata for Validity
	C Section ??: Tree automaton for realizability
	C.1 The (possibly infinite) tree automaton for realizability
	C.2 Bounding the constants
	C.3 Preservation of BEP

	D Tree automata for timed systems
	E Dense-Time Multi-stack Pushdown Automata
	E.1 Simple TC-word semantics for dtMPDA
	E.2 Tree Automata Construction for MultiStack and Complexity

