
Verification of Population Protocols
Javier Esparza1, Pierre Ganty2, Jérôme Leroux3, and
Rupak Majumdar4

1 TUM, Germany
2 IMDEA Software Institute, Spain
3 LaBRI, CNRS & Université Bordeaux, France
4 MPI-SWS, Germany

Abstract
Population protocols (Angluin et al., PODC, 2004) are a formal model of sensor networks con-
sisting of identical mobile devices. Two devices can interact and thereby change their states.
Computations are infinite sequences of interactions satisfying a strong fairness constraint.

A population protocol is well-specified if for every initial configuration C of devices, and every
computation starting at C, all devices eventually agree on a consensus value depending only on
C. If a protocol is well-specified, then it is said to compute the predicate that assigns to each
initial configuration its consensus value.

While the predicates computable by well-specified protocols have been extensively studied,
the two basic verification problems remain open: is a given protocol well-specified? Does a
protocol compute a given predicate? We prove that both problems are decidable. Our results
also prove decidability of a natural question about home spaces of Petri nets.

1998 ACM Subject Classification C.2.2 Network Protocols, D.2.4 Software/Program Verifica-
tion, F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases population protocols, Petri nets, parametrized verification

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.470

1 Introduction

Population protocols [2] are a model of distributed computation by anonymous, interacting
finite-state agents. In each step, a fixed number of agents are chosen nondeterministically,
and the agents interact and update their states according to a joint transition function. A
population protocol is said to compute a predicate on the initial states of the agents if, in
all fair executions, all agents eventually converge to the correct value of the predicate. An
execution is fair if it is finite and cannot be extended, or it is infinite and every configuration
of agent states that is reachable at infinitely many positions along the execution is also
reached infinitely often along that execution.

The original motivation for population protocols was to model distributed computation in
passively mobile sensors [2], but the model captures the essence of distributed computation
in diverse areas such as trust propagation [7] and chemical reactions [15].

Much of the work on population protocols has concentrated on characterizing what
predicates on the input values can be computed by well-specified protocols. A protocol is
well-specified if, on every input, every fair execution eventually converges to configurations in
which every agent agrees on a consensus value that depends only on the input. Angluin et al.
[2] gave explicit well-specified protocols to compute every predicate definable in Presburger
arithmetic. Later, Angluin et al. [4] showed that well-specified population protocols compute
exactly the Presburger-definable predicates.

© Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar;
licensed under Creative Commons License CC-BY

26th International Conference on Concurrency Theory (CONCUR 2015).
Editors: Luca Aceto and David de Frutos Escrig; pp. 470–482

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.470
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


J. Esparza, P. Ganty, J. Leroux, and R. Majumdar 471

Since it is easy to erroneously design protocols that are not well-specified, one can ask
the natural verification question: given a population protocol, is it well-specified? In this
paper, we show that the well-specification problem for population protocols is decidable. We
also study the correctness problem: given a protocol and a Presburger specification, does
the protocol compute the specification? Our techniques show decidability of the correctness
problem as well.

The semantics of a population protocol is an infinite family of finite-state transition
systems, one for each possible input. Whether the protocol reaches consensus for a given
input can be decided by inspecting only one of these transition systems. However, the
well-specification problem asks if consensus is reached for all inputs, and so it is not obviously
decidable; indeed, similar questions are undecidable for many parameterized systems [5].
Moreover, the set of configurations where all agents agree on a value is not upward-closed;
thus, coverability-like techniques are not immediately applicable.

Our main result is a characterization of well-specification using Presburger-definable
predicates. We show that for every well-specified protocol, one can find a witness consisting
of four Presburger-definable predicates (S0,S1,B0,B1) and a bounded regular language W
such that:

each predicate is inductive (closed under taking a step of the protocol),
each initial state is either in S0 or in S1, but not in both,
for i ∈ {0, 1}, all configurations of Bi agree on the consensus value i; moreover, Bi is
reachable from each configuration in Si using a string from W .

Using the decidability of Presburger arithmetic, we show that each condition above is
decidable. Our proof of correctness uses recent results from the theory of Petri nets. We use
the existence of Presburger-definable inductive sets that separate unreachable markings [11]
to identify S0 and S1. We use the Presburger-definability of the mutual reachability relation
[12] to identify B0 and B1. Finally, we use the theory of accelerations [14] to identify W .
Along the way, we obtain an alternative proof of the theorem that well-specified protocols
compute only Presburger-definable predicates.

Ultimately, our decision procedure consists of running two semi-decision procedures in
parallel and does not provide a complexity upper bound. For lower bounds, we show that
reachability for Petri nets can be reduced in polynomial-time to the complement of the
well-specification problem.

While we focus on population protocols, our techniques also lead to new results for the
theory of Petri nets. The home space problem asks, given a Petri net and two sets I and H
of markings, if every marking reachable from I can also reach H. De Frutos and Johnen
[8] showed that the home space problem is decidable if I is a single marking and H is a
linear set. They left the case in which H is a Presburger-definable set open. We make the
first partial progress on this problem. Our results show that the home space problem is
decidable for Presburger-definable sets I and H, provided the set of markings reachable from
any marking in I is finite.

The paper is organized as follows. Section 2 introduces population protocols. Section 3
formally defines witnesses of well-specification, shows decidability of the conditions to be
met by a witness, and proves that existence of a witness implies well-specification. The proof
of the converse (well-specification implies existence of a witness) is more involved. Section 4
introduces the results of Petri net theory needed for the proof, and Section 5 the proof itself.
Section 6 reduces Petri net reachability to the complement of the well-specification problem.
Finally, Section 7 proves the result about home spaces in Petri nets.

CONCUR’15



472 Verification of Population Protocols

2 Population Protocols

A population on a finite set E is a mapping P : E → N such that P (e) > 0 for some e ∈ E.
Intuitively, P (e) denotes the number of individuals of type e ∈ E in the population. The
set of all populations on E is denoted by Pop(E). Operations on populations, like addition
or maximum, are implicitly defined component wise. Given e ∈ E, we denote by e the
population consisting of one individual of type e, that is, the population satisfying e(e) = 1
and e(e′) = 0 for every e′ 6= e. The support of a population P ∈ NE , denoted by Sup(P ), is
the subset of E given by {e ∈ E | P (e) > 0}. A set of populations C ⊆ Pop(E) is said to be
Presburger if it can be denoted by a formula in Presburger arithmetic, i.e., in the first-order
theory of addition FO(N,+).

I Example 1. Let E = {a, b}. The set of populations {P ∈ Pop(E) | P (a) ≥ P (b)} is
Presburger, since it is denoted by the Presburger formula F (Xa, Xb) = ∃Y : Xa = Y +Xb.
The set {P ∈ Pop(E) | P (a) = P (b)2} is not Presburger.

2.1 Protocol Scheme
A protocol scheme A = (Q,∆) consists of a finite non-empty set Q of states and a set ∆ ⊆ Q4.
If (q1, q2, q

′
1, q
′
2) ∈ ∆, we write (q1, q2) 7→ (q′1, q′2) and call it a transition. The populations

of Pop(Q) are called configurations. Intuitively, a configuration C describes a collection of
identical finite-state agents with Q as set of states, containing C(q) agents in state q for every
q ∈ Q. Pairs of agents interact using transitions from ∆.1 Formally, given two configurations
C and C ′ and a transition δ = (q1, q2) 7→ (q′1, q′2), we write C δ−→ C ′ if

C ≥ (q1 + q2) holds, and C ′ = C − (q1 + q2) + (q′1 + q′2) .

We write C w−→ C ′ for a word w = δ1 . . . δk of transitions if there exists a sequence C0, . . . , Ck

of configurations satisfying C = C0
δ1−→ C1 · · ·

δk−→ Ck = C ′. In this case, we say that C ′ is
reachable from C. We also write C → C ′ if C δ−→ C ′ for some transition δ ∈ ∆. We have:

I Lemma 2. For every configuration C, the set of configurations reachable from C is finite.

Proof. Follows immediately from the fact that an interaction does not create or destroy
agents, just changes their current states. Since Q is finite, there are only finitely many
configurations C ′ satisfying

∑
q∈Q C(q) =

∑
q∈Q C

′(q). J

Observe that (Pop(Q),→) defines a directed graph with infinitely many vertices and
edges. Consider the partition {Pop(Q)i}i≥1 of Pop(Q), where Pop(Q)i = {C ∈ Pop(Q) |∑
q∈Q C(q) = i}. (Note that i starts at 1 because every population contains at least

one agent.) Since interactions do not create or destroy agents, the set {→i}i≥1, where
→i=→ ∩Pop(Q)2

i , is also a partition of →. Therefore (Pop(Q),→) consists of the infinitely
many disjoint and finite subgraphs {(Pop(Q)i,→i)}i≥1.

An execution of A is a finite or infinite sequence of configurations C0, C1, . . . such that
Ci → Ci+1 for each i ≥ 0. An execution is fair if it is finite and cannot be extended, or it is
infinite and for every step C → C ′, if C occurs infinitely often along the execution, then C ′
also occurs infinitely often. It follows from Lemma 2 that every execution reaches a strongly

1 While protocol schemes model pairwise interactions only, one can model k-way interactions for a fixed
k > 2 by adding additional states.



J. Esparza, P. Ganty, J. Leroux, and R. Majumdar 473

connected component (SCC) of (Pop(Q),→) and never leaves it. We deduce the following
lemma, where a bottom SCC of (Pop(Q),→) is an SCC such that every edge of → whose
source is in the SCC also belongs the SCC. (In particular, a single vertex with no outgoing
transition forms a bottom SCC.)

I Lemma 3. Every fair execution eventually reaches a bottom SCC of (Pop(Q),→).

Proof. If the execution is finite, then, since it cannot be extended, its last configuration is a
bottom SCC with one single vertex and no outgoing transitions. If the execution is infinite,
then the fairness condition forces it to eventually leave every non-bottom SCC it enters. J

2.2 Computation by Population Protocols
We define what it means for a protocol scheme to compute a predicate Π: Pop(Σ)→ {0, 1},
where Σ is a non-empty, finite set of inputs.

An initial mapping of a protocol scheme A = (Q,∆) is a function I : Pop(Σ)→ Pop(Q)
that maps each input population X to a configuration of A. The set of initial configurations
is I = {I(X) | X ∈ Pop(Σ)}. An initial mapping I is Presburger if the predicate C = I(X),
where C ∈ Pop(Q) and X ∈ Pop(Σ), is definable in Presburger arithmetic. An initial
mapping I is simple if there exists a sequence (qσ)σ∈Σ of states of Q satisfying

I(X) =
∑
σ∈Σ

X(σ) qσ

for every input population X on Σ.
An output mapping of a protocol scheme A = (Q,∆) is a function O : Pop(Q)→ {0,⊥, 1}

that associates to each configuration C of A an output value in {0,⊥, 1}. A population C
on Q such that O(C) = b for some b ∈ {0,⊥, 1} is called a b-population. An output mapping
O is Presburger if the predicate O(C) = b where C ∈ Pop(Q) and b ∈ {0, 1} is definable in
Presburger arithmetic. An output mapping O is simple if there exists a partition (Q0, Q1) of
Q such that

O(C) =


0 if Sup(C) ⊆ Q0

1 if Sup(C) ⊆ Q1

⊥ otherwise

for every configuration C. Notice that O is well-defined because Sup(C) 6= ∅. An execution
C0, C1, . . . stabilizes to b for a given b ∈ {0,⊥, 1} if there exists n ∈ N such that O(Cm) = b

for every m ≥ n (if the execution is finite, then this means for every m between n and the
length of the execution). So, intuitively, an execution stabilizes to b if from some moment on
all agents stay within the subset of states with output b. Notice that there may be many
different executions from a given configuration C0, each of which may stabilize to 0, 1, or ⊥,
or not stabilize at all.

Most papers only consider population protocols with simple initial and output mappings.
We study the more general class of Presburger initial and output mappings. In our general
setting, a population protocol is a triple (A, I, O), where A is a protocol scheme, I(X,C) is
a formula in Presburger arithmetic denoting a Presburger initial mapping C = I(X), and
O(C, b) is a formula in Presburger arithmetic denoting a Presburger output mapping O(C) = b.
This definition encompasses population protocols with leader [3]. In these protocols the
initial configuration contains one agent, called the leader, occupying a distinguished initial

CONCUR’15



474 Verification of Population Protocols

state ql not initially occupied by any other agent. This corresponds to the initial mapping
I(X) = ql +

∑
σ∈ΣX(σ) qσ which is obviously Presburger.

A population protocol (A, I, O) is well-specified if for every input population X ∈ Pop(Σ),
every fair execution of A starting at I(X) stabilizes to the same value, and ill-specified
otherwise. A population protocol (A, I, O) computes a predicate Π if every fair execution of
A starting at I(X) stabilizes to Π(X) for every X ∈ Pop(Σ).

The well-specification problem asks if a given protocol (A, I, O) is well-specified. The
correctness problem asks if a given population protocol (A, I, O) computes a given Presburger
predicate Π. Note that the correctness problem does not assume (A, I, O) to be well-specified.
Consequently, if (A, I, O) does not compute Π then either the population protocol is ill-
specified; otherwise it stabilizes to b for some input X ∈ Pop(Σ) such that Π(X) = 1− b.

3 A Decidable Criterion for Well-Specification

In this paper, the well-specification problem is shown to be decidable thanks to a decidable
criterion based on Presburger arithmetic. This criterion is defined as follows. Let A = (Q,∆)
be a protocol scheme. A set C of configurations of A is said to be inductive if C ∈ C and
C → C ′ implies C ′ ∈ C. Given a language W ⊆ ∆∗ and a set C of configurations, we denote
by preA(C,W ) the set of configurations C such that C w−→ C ′ for some word w ∈ W and
some configuration C ′ ∈ C.

I Definition 4. Let A = (Q,∆) be a protocol scheme. A witness of well-specification of
the population protocol (A, I, O) is a tuple (S0, S1, B0, B1, w1, . . . , wk), where S0, S1, B0, B1 are
predicates in Presburger arithmetic denoting Presburger sets of configurations S0,S1,B0,B1,
and w1, . . . , wk are words in ∆∗ denoting the language W = w∗1 . . . w

∗
k, such that:

(1) S0,S1,B0,B1 are inductive.
(2) The pair (I0, I1), where I0 = S0 ∩ I and I1 = S1 ∩ I, is a partition of I.
(3) B0 is a set of 0-populations and S0 ⊆ preA(B0,W ).
(4) B1 is a set of 1-populations and S1 ⊆ preA(B1,W ).

I Lemma 5. The set of witnesses of well-specification is recursive.

Proof. Let (A, I, O) and (S0, S1, B0, B1, w1, . . . , wk) be as in Definition 4. We show that
conditions (1)–(4) can be effectively expressed in Presburger arithmetic. For (1), a setM
of configurations denoted by a predicate M(C) in Presburger arithmetic is inductive iff the
following Presburger formula is valid:

∀C,C ′ : M(C) ∧ C → C ′ ⇒ M(C ′) .

So the inductiveness of S0,S1,B0,B1 is expressible. For (2), (I0, I1) is a partition of I iff

∀C : (∃X : I(X,C))⇔
(
(I0(C) ∧ ¬I1(C)) ∨ (¬I0(C) ∧ I1(C)

)
is valid, where Ib(C) = (∃X : I(X,C)) ∧ Sb(C). For (3-4), Bb is a set of b-populations iff

∀C : Bb(C)⇒ O(C, b)

is valid. It remains to express Sb ⊆ preA(Bb,W ). Observe that for every word w ∈ ∆∗, the
relation w∗−−→ defined by C w∗−−→ C ′ if C wn

−−→ C ′ for some n ∈ N is effectively definable in
Presburger arithmetic. (For w = δ, where δ = (q1, q2) 7→ (q′1, q′2), this follows easily from
C ′ = C − (q1 + q2) + (q′1 + q′2). For the general case, see [14].) So the inclusion holds iff

∀C0 :
(
Sb(C0)⇒ ∃C1, . . . , Ck : C0

w∗1−−→ C1 · · ·
w∗k−−→ Ck ∧ Bb(Ck)

)
is valid. J



J. Esparza, P. Ganty, J. Leroux, and R. Majumdar 475

3.1 The Criterion is Sound
We show that every population protocol satisfying the criterion is well-specified.

I Lemma 6. Every population protocol (A, I, O) admitting a witness (S0, S1, B0, B1, w1, . . . , wk)
of well-specification is well-specified. Moreover, in this case the population protocol computes
the predicate Π : Pop(Σ)→ {0, 1} defined by:

Π(X) =
{

0 if ∃C : I(X,C) ∧ S0(C)
1 if ∃C : I(X,C) ∧ S1(C) .

Proof. Let S0,S1,B0,B1 be the Presburger sets of configurations denoted by S0, S1, B0, B1,
respectively. Let W = w∗1 . . . w

∗
k. Since I0 and I1 form a partition of I, it suffices to prove

that every fair execution starting at Ib stabilizes to b. Let C ∈ Ib and let C0, C1, . . . be a
fair execution starting at C. Lemma 3 shows that the execution ends up in a bottom SCC.
Hence, there exists n ∈ N such that Cn is in a bottom SCC. As Sb is inductive, it follows
that Cn is in this set. Moreover, as Sb ⊆ preA(Bb,W ), there exists a word w ∈ W and a
configuration C ′ ∈ Bb such that Cn

w−→ C ′. Since Cn is in a bottom SCC, there exists a word
w′ ∈ ∆∗ such that C ′ w

′

−→ Cn. Now, let m ≥ n. Since Cm is reachable from Cn, it follows
that Cm is reachable from C ′. As C ′ ∈ Bb and Bb is inductive, it follows that Cm ∈ Bb. As
Bb is a set of b-populations, it follows that O(Cm) = b; thus, the execution stabilizes to b. J

In the rest of the paper we prove the converse of Lemma 6: every well-specified protocol
admits a witness of well-specification. But before, we close the section with an example.

3.2 Example
Let Σ = {σ}, and consider the predicate Π : Pop(Σ)→ {0, 1}, where Π(X) is the parity of
X(σ). In other words, Π(X) = 0 if X(σ) is even, and Π(X) = 1 otherwise. This predicate is
computed by a simple well-specified population protocol. The protocol scheme A = (Q,∆)
has Q = {A0, A1, P0, P1} as set of states. We call agents in A0 and A1 active, and those in
P0 and P1 passive. Further, we say that agents in Ab and Pb carry the value b. The set ∆ of
transitions is {δx,y, δx | x, y ∈ {0, 1}}. Transitions δx,y allow two active agents to add their
numbers modulo 2 and deactivate one of them:

δx,y = (Ax, Ay) 7→ (Ax+y, Px+y) .

Transitions δx allow an active agent to change the value of a passive agent:

δx = (Ax, P1−x) 7→ (Ax, Px) .

The simple population protocol computing Π is given by (A, I, O), where the simple input
mapping is defined by

I(X) = X(σ)A0

and the simple output mapping by Q0 = {A0, P0} and Q1 = {A1, P1}.

Let us provide a witness of well-specification explaining why the protocol computes Π. We
choose B0(C) =

(
C(A0) = 1 ∧ C(A1) = 0 ∧ C(P1) = 0

)
and B1(C) =

(
C(A1) = 1 ∧ C(A0) =

0 ∧ C(P0) = 0
)
. Notice that the set of configurations Bb denoted by Bb is inductive for every

b ∈ {0, 1}. In fact, since a configuration C ∈ Bb only has one active agent, and all agents

CONCUR’15



476 Verification of Population Protocols

carry the same value b, no transition in ∆ is enabled at C. Further, we define S0(C) as
“C(A1) is even” and S1(C) as “C(A1) is odd”. Inspection of the transitions in ∆ immediately
shows that the sets S0 and S1 denoted by these two Presburger predicates are inductive.
Notice that I ∩ S0 and I ∩ S1 is a partition of I.

It remains to define the language W . Let us first describe a strategy to reach B0 ∪ B1
from any configuration C. We first execute the transition δ0,0 as long as possible, until there
is at most one active agent carrying a 0. Then we execute δ1,1 as long as possible, until
there is at most one active agent carrying a 1. Then we execute δ1,0 if possible, reaching
a configuration with exactly one active agent carrying a value b. Finally, we execute δ0 as
long as possible, followed by δ1 as long as possible, leading to a configuration in which every
passive agent also carries the value b. The language W models this strategy:

W = δ∗0,0 δ
∗
1,1 δ

∗
1,0 δ

∗
0 δ
∗
1 .

4 Petri Net Theory for the Population Protocols Aficionados

The computation of a population protocol can be simulated by an associated Petri net. This
allows us to apply results on Petri nets to population protocols.

A Petri net N = (P, T, F ) consists of a finite set P of places, a finite set T of transitions,
and a flow function F : (P × T )∪ (T ×P )→ N. A marking is a mapping from P to N, i.e. a
mapping in NP . A transition t ∈ T is enabled at marking M , written M [t〉, if F (p, t) ≤M(p)
for each place p ∈ P . A transition t that is enabled atM can fire, yielding a markingM ′ such
that M ′(p) = M(p)− F (p, t) + F (t, p) for each p ∈ P . We write this fact as M [t〉M ′. We
extend enabledness and firing inductively to words of transitions as follows. Let w = t1 . . . tk
be a finite word of transitions tj ∈ T . We define M [w〉M ′ if, and only if, there exists a
sequence M0, . . . ,Mk of markings such that M = M0 [t1〉M1 · · · [tk〉Mk = M ′. In that case,
we say that M ′ is reachable from M .

4.1 From Population Protocols To Petri Nets
Given a protocol scheme A = (Q,∆), we define the Petri net N(A) = (Q,∆, F ), whose
places and transitions are the states and transitions of the protocol, respectively, and where
F is defined for every transition δ = (q1, q2) 7→ (q′1, q′2) in ∆ and every state q ∈ Q by
F (q, δ) = q1(q)+q2(q) and F (δ, q) = q′1(q)+q′2(q). Note that a configuration of the protocol
scheme A is a marking of the Petri net N(A). Further, whenever C δ−→ C ′ for configurations
C and C ′, we have C [δ〉C ′ in the Petri net, and vice versa.

The correspondence between A and N(A) allows us to transfer results from Petri nets to
population protocols. Next, we briefly recall the results we need.

4.2 Acceleration Technique
Given a Petri net N = (P, T, F ), a setM of markings, and a language W ⊆ T ∗, we introduce
the sets:

postN (M,W ) = {M ′ ∈ NP | ∃M ∈M ∃w ∈W : M [w〉M ′}
preN (M,W ) = {M ∈ NP | ∃M ′ ∈M ∃w ∈W : M [w〉M ′} .

When W = T ∗ these sets are denoted by post∗N (M) and pre∗N (M), respectively.
The theory of acceleration (see for instance [14]) will provide a simple way for extracting

the language W introduced in Definition 4. A language W ⊆ T ∗ is said to be bounded [10] if



J. Esparza, P. Ganty, J. Leroux, and R. Majumdar 477

there exists a sequence w1, . . . , wk of words in T ∗ such that W ⊆ w∗1 . . . w∗k. The following
result will be useful for extracting the language W introduced in Definition 4.

I Theorem 7 ([14, Corollary XI.3]). For every Petri net N = (P, T, F ) and for every
Presburger sets of markings S and B such that S ⊆ pre∗N (B), there exists a bounded language
W ⊆ T ∗ such that S ⊆ preN (B,W ).

4.3 Separators For Reachability Problems
Recently, the reachability problem for Petri nets was proved to be decidable using a very
simple algorithm based on Presburger inductive sets of markings. Let us recall that a setM
of markings is inductive for a Petri net N = (P, T, F ), if postN (M, T ) ⊆M. The following
result will provide the sets S0 and S1 introduced in Definition 4.

I Theorem 8 ([13, Lemma 9.1]). For every Petri net N and for every Presburger set of
markingsM andM′ such that post∗N (M) ∩M′ = ∅, there exists a Presburger inductive set
of markings S for N such thatM⊆ S and S ∩M′ = ∅.

4.4 Mutual Reachability Relations
The mutual reachability relation of a Petri net N is the binary relation over the markings
that contains the pair (M,M ′) if M ′ is reachable from M and M is reachable from M ′.
Intuitively, M and M ′ coincide and otherwise they are in the same SCC for the reachability
graph. The following theorem will be useful for extracting the sets B0 and B1 introduced in
Definition 4.

I Theorem 9 ([12]). For every Petri net N , the mutual reachability relation is effectively
definable in Presburger arithmetic.

4.5 Decomposable sets
In this section, we introduce a new result for Petri nets. This result will be used for
characterizing the sets I0 and I1 introduced in Definition 4. The proof of this result is based
on the geometrical characterization of the reachability sets of Petri nets based on almost
semi-linear sets and decomposable sets (see [12] for definitions). It uses the technical result
that if the union of two disjoint decomposable sets X,Y is Presburger definable, then both X
and Y are Presburger definable as well. We defer the details to the full version of the paper.

I Theorem 10. For every Petri net N , and for every Presburger sets of markings B0,B1
and I such that I0 = I ∩ pre∗N (B0) and I1 = I ∩ pre∗N (B1) is a partition of I, it follows that
I0 and I1 are Presburger.

5 The Criterion is Complete

We use the previous results to prove that every well-specified protocol admits a witness.

5.1 Characterization of Bottom Strongly Connected Components
Given a protocol scheme A = (Q,∆), a bottom SCC of the graph (Pop(Q),→) of A is said
to be b-bottom (b ∈ {0, 1}) if all its configurations, which are called bottom configurations,
are b-populations. When this holds, the configurations of the SCC are called b-bottom
configurations. We denote the sets of bottom configurations and b-bottom configurations by
B and Bb, respectively.

CONCUR’15



478 Verification of Population Protocols

I Proposition 11. Given a protocol scheme, the sets B, B0 and B1are effectively Presburger.

Proof. We show that the predicate B(C) associated to the set of bottom configurations is
definable in Presburger arithmetic. Let us introduce the predicate MR(C,C ′) associated to
the mutual reachability relation. Theorem 9 shows that MR(C,C ′) is effectively Presburger.
Now, we just observe that C is a bottom configuration iff for every configuration C ′ such
that C and C ′ are mutually reachable and for every C ′′ such that C ′ → C ′′, we have C and
C ′′ are also mutually reachable:

B(C) = ∀C ′ ∀C ′′ : (MR(C,C ′) ∧ C ′ → C ′′)⇒ MR(C,C ′′) .

We claim that Bb is a Presburger set of configurations. To prove this, we just notice that Bb
is denoted by the following formula:

Bb(C) = B(C) ∧ ∀C ′ : MR(C,C ′)⇒ O(C ′, b) . J

5.2 The final piece
In the rest of this section, we show that a population protocol is well-specified if, and only
if, it admits a witness of well-specification. We deduce from this characterization that the
well-specification problem, and the correctness problem are decidable.

I Theorem 12. A population protocol is well-specified iff it admits a witness of well-
specification.

Proof. Lemma 6 shows that a population protocol that admits a witness of well-specification
is well-specified. Conversely, let us consider a population protocol (A, I, O) that is well-
specified. We define B0 and B1 as the 0-bottom configurations and 1-bottom configurations,
respectively. Proposition 11 shows that these sets are Presburger. Notice these two sets are
also inductive.

Let us show that (I0, I1) defined by Ib = I ∩ pre∗A(Bb) is a partition of I. Since the
population protocol is well specified, it follows that I0 ∩ I1 = ∅. Now let C be an initial
configuration in I. Notice that there exists at least one fair execution C0, C1, . . . with C0 = C

that stabilizes to b. Lemma 3 shows that the execution ends up in a bottom SCC. It follows
that there exists n ∈ N such that Cn is a bottom configuration. Thanks to the fairness of the
execution, all the configurations of the strongly connected component of Cn are b-populations.
Thus Cn ∈ Bb. We have proved that C ∈ Ib. Thus (I0, I1) is a partition of I. Following
Section 4.1, define N(A) as the Petri net associated with A. From Theorem 10, we derive
that I0 and I1 are Presburger.

Since the population protocol is well-specified, it follows that post∗A(I0)∩ (B\B0) is empty.
Hence post∗N(A)(I0)∩(B\B0) is also empty and Theorem 8 shows that there exists a Presburger
inductive set of markings and, by extension, configurations S0 such that I0 ⊆ S0 and such
that S0 ∩ (B\B0) is empty. Let us prove that S0 ⊆ pre∗A(B0). Let C be a configuration in S0
and let us consider a fair execution C0, C1, . . . starting from C0 = C. Lemma 3 shows that
the execution ends up in a bottom SCC. It follows that there exists n ∈ N such that Cn is a
bottom configuration. As S0 is inductive, it holds that Cn ∈ S0. Moreover, as S0 ∩ (B\B0)
is empty, we derive Cn ∈ B0. We have proved that S0 ⊆ pre∗A(B0). Theorem 7 shows that
there exists a bounded language W0 ⊆ ∆∗ such that S0 ⊆ preN(A)(B0,W0), hence the same
holds for A. Symmetrically, there exists a Presburger inductive set of configurations S1 such
that I1 ⊆ S1 and a bounded language W1 ⊆ ∆∗ such that S1 ⊆ preA(B1,W1). Since W0
and W1 are bounded languages, it follows that W = W0 ∪W1 is also a bounded language.



J. Esparza, P. Ganty, J. Leroux, and R. Majumdar 479

Hence, there exists a sequence of words w1, . . . , wk in ∆∗ such that W ⊆ w∗1 . . . , w
∗
k. We

have proved that (S0, S1, B0, B1, w1, . . . , wk) is a witness of well-specification. J

That well-specified population protocols can compute Presburger predicates was shown
by Angluin et al. [2] using a direct construction. Showing that well-specified population
protocols can not compute anything else than Presburger predicates was harder, and first
proved by Angluin, Aspnes and Eisenstat [4]. Our constructions provide an alternate proof.

I Corollary 13. The well-specification problem and the correctness problem are decidable.
Moreover, well-specified population protocols compute Presburger predicates, and we can
effectively compute formulas in Presburger arithmetic denoting the predicates computed by
well-specified population protocols.

Proof. Notice that if a population protocol is ill-specified there exists a witness of this
property given by an initial input population X in Pop(Σ) and a configuration C satisfying
I(X,C) such that not all the bottom configurations reachable from C are b-populations for
some b ∈ {0, 1}.

In particular, enumerating the finite graphs (Pop(Q)i,→i), and checking, for each, whether
it contains a witness of ill-specification shows that the problem of deciding if a population
protocol is ill-specified is recursively enumerable.

By Theorem 12, when a population protocol is well-specified, the algorithm that enumer-
ates all the tuples (S0, S1, B0, B1) of predicates in Presburger arithmetic, and all the finite
sequences w1, . . . , wk of words in ∆∗ and checks using Lemma 5 that we have a witness of
well-specification, will eventually terminate with such a witness. It follows that the well-
specification problem is recursively enumerable. Moreover, in that case, from the computed
witness, we derive a predicate in Presburger arithmetic denoting the computed predicate
Π using Lemma 6. Together with the recursive enumerability of ill-specification above, it
follows that the problem is decidable. J

Clement et al. [6] proved the decidability of the well-specification problem when the
number of agents is fixed. Corollary 13 shows decidability of the same problem but for an
arbitrary number of agents.

6 Lower Bounds

Finally, we show hardness for the well-specification problem by showing a polynomial-time
reduction from Petri net reachability to its complement.

I Theorem 14. The reachability problem for Petri nets is polynomially reducible to the
complement of the well-specification problem and the complement of the correctness problem
for population protocols (even with simple output mappings).

Proof. We proceed by means of a sequence of polynomial time reductions so as to reduce the
reachability problem for Petri nets to the problem of reaching, in a Petri Net N = (P, T, F )
with initial marking M0, a marking M with no tokens in z ∈ P , i.e. M(z) = 0. Furthermore,
the reduction is such that:
(a) M0(z) > 0,
(b) N is deadlock-free, and
(c) every transition of N has at least one output place, and at most two input and two

output places.
(d) N contains no two transitions with the same set of input and output places

CONCUR’15



480 Verification of Population Protocols

The details of the reductions are standard and omitted.
Then we construct a population protocol (A, I, O) with semi-linear initial mapping. We

first describe the protocol scheme A = (Q,∆). The set Q of states of the protocol contains
a state qp for every place p ∈ P ;
a state qt for every transition t ∈ T ; and
two states Source and Sink.

Following (d), we write t = (P1, P2) to denote that transition t has P1 as set of input
places and P2 as set of output places. The set ∆ of transitions contains
(1) for every Petri net transition t = ({p1, p2}, {p3, p4}), two protocol transitions (qp1 , qp2) 7→

(qt,Sink) and (qt,Source) 7→ (qp3 , qp4);
(2) for every Petri net transition t = ({p1, p2}, {p3}), two protocol transitions (qp1 , qp2) 7→

(qt,Sink) and (qt,Source) 7→ (qp3 ,Sink);
(3) for every Petri net transition t = ({p1}, {p2, p3}), one protocol transition (qp1 ,Source) 7→

(qp2 , qp3); and
(4) for every Petri net transition t = ({p1}, {p2}), one protocol transition (qp1 ,Source) 7→

(qp2 ,Sink);
(5) a transition (qp, qz) 7→ (Sink, qz) for each place p 6= z.
This completes the description of A.

The output mapping O, which is simple, is given by the partition Q0, Q1 of Q such
that Q0 = {z,Sink}. The initial mapping I : Pop(Σ)→ Pop(Q) is defined as follows. The
set Σ is a singleton {σ}, and I assigns to the number n – a population of Pop({σ}) – the
configuration that puts

n agents in Source;
M0(p) agents in qp for every place p; and
0 agents elsewhere.

Observe that I is a semi-linear mapping.
The transitions of (1)–(4) simulate the firing of t (in the case of (1) and (2), firing t is

simulated by the occurrence, one after the other, of two protocol transitions). In all cases,
simulating the firing of t requires one agent to leave the Source state. On the other hand,
no agents ever enter Source. Hence each execution of (A, I, O) contains only finitely many
occurrences of transitions of (1)–(4). Further, since every transition of (5) moves an agent
to Sink, and no agents ever leave Sink, the transitions of (5) also occur only finitely often.
Therefore all executions of (A, I, O) are finite.

Assume that some reachable markingM of N satisfiesM(z) = 0. Let τ ∈ T ∗ be such that
M0 [τ〉M , and let k be the length of τ . Since M0(z) > 0, we have k > 0. We claim that A
has a fair (finite) execution from I(kσ) that does not stabilize. Consider the execution that
starts by simulating τ through transitions (1)–(4). At the end of this simulation the protocol
reaches a configuration C such that C(Source) = C(qz) = 0 and C(Sink) > 0. Observe that
C cannot be extended because C(Source) = 0 disables all transitions (1)–(4) and C(qz) = 0
disables all transitions (5). Further, since every transition has at least one output place, the
configuration satisfies C(qp) > 0 for some p 6= z. Since Sink ∈ Q0 and {qp | p ∈ P} ⊆ Q1, we
have that O(C) = ⊥, hence that (A, I, O) is ill-specified.

Assume now that every reachable marking M of N satisfies M(z) > 0. Let C0C1 . . . be
an arbitrary fair execution of (A, I, O). As shown above, there is a configuration Cj such that
from that moment on Cj disable all transitions (1)–(4). In particular since N is deadlock-free,
we necessarily have Cj(Source) = 0. Because some transitions of (5) might be enabled at
Cj , we extend the execution by firing them as many times as possible. This can occur only
finitely many times and yield a configuration C` which cannot be extended further – all



J. Esparza, P. Ganty, J. Leroux, and R. Majumdar 481

transitions of (1)–(5) are disabled – and in which all agents are in state qz or Sink. We thus
find that Sup(C`) ⊆ Q0, hence that O(C`) = 0 and finally that C0 . . . C` is a fair execution
that converges to 0. Since we picked an arbitrary fair execution we conclude that every fair
execution stabilizes to 0, and therefore (A, I, O) is well-specified.

The same reduction shows hardness for the complement of the correctness problem for
the predicate false. J

7 Home Spaces

As a byproduct of our main result, we present a new theorem on home spaces of Petri nets.
Let N be a Petri net, and let I,H be two sets of markings of N . We say that H is a home
space of N with respect to I if post∗N (I) ⊆ pre∗N (H), that is, if H can be reached from any
marking reachable from I. The home space problem for a given triple (N, I,H) asks whether
H is a home space of N with respect to I.

De Frutos and Johnen [8] have proved that the home space problem is decidable when I
is a singleton and H is a linear set, that is, a set of the form {M0 + n1M1 + · · ·+ nkMk |
n1, . . . , nk ∈ N} for a given root marking M0 and a given finite set {M1, . . . ,Mk} of periods.
They also extend the result to finite unions of linear sets having the same periods. While
every such set is a Presburger set, the converse does not hold, and De Frutos and Johnen [8]
explicitly leave the case of arbitrary Presburger sets H open.

We prove decidability of the home space problem for triples (N, I,H) where I and H are
arbitrary Presburger sets, and the net N satisfies the following condition: for every marking
M0 ∈ I, the set post∗N ({M0}) is finite. Observe that this condition is met by Petri nets
modelling parameterized systems, as in the many-process systems of German and Sistla [9, 1].
Indeed, in these systems each token of M0 ∈ I models a finite-state process, and, since the
systems have no dynamic process creation, the number of tokens does not change while the
net evolves. So, while our result does not close the open problem left by De Frutos and
Johnen, it provides a partial answer, and the first new result in the area since 1989.

If post∗N ({M0}) is finite for every M0 ∈ I, then each reachable marking can reach a
bottom SCC. This is the fact we exploit. Notice that this fact no longer holds for arbitrary
Petri nets. For instance, it is easy to exhibit a Petri net whose reachability graph is an
infinite line, and so has no bottom SCC.

I Lemma 15. Let N be a net, and let B be the set of bottom markings of N , i.e., the set
of markings M that are reachable from any marking reachable from M . Let I be a set of
markings of N such that post∗N ({M0}) is finite for every M0 ∈ I. A set H is a home space
of N with respect to I iff B \ post∗N (B ∩H) is not reachable from I.

Proof. (⇒): Assume that some marking M ∈ B \ post∗N (B ∩ H) is reachable from some
marking of I. We claim that post∗N ({M}) ∩ H = ∅, which implies that H is not a home
space. Let M ′ ∈ post∗N ({M}). By the definition of B, the markings M and M ′ are mutually
reachable, and soM ∈ post∗N ({M ′}). IfM ′ ∈ H, thenM ′ ∈ B∩H, and soM ∈ post∗N (B∩H),
contradicting the hypothesis. So M ′ /∈ H, and we are done.

(⇐): Assume H is not a home space. Then there exists a marking M ∈ post∗N (I) such
that post∗N ({M}) ∩ H = ∅. Let M0 ∈ I be a marking such that M ∈ post∗N ({M0}). By
hypothesis post∗N ({M0}) is finite, and so, since M is reachable from M0, some marking
M ′ ∈ post∗N (I) ∩ B is reachable from M . We prove that M ′ ∈ B \ post∗N (B ∩ H). Since
M ′ ∈ B, it suffices to prove M ′ /∈ post∗N (B ∩ H). Assume M ′ is reachable from some
M ′′ ∈ B∩H, henceM ′′ 6= M ′. By the definition of B, the markingsM ′ andM ′′ are mutually
reachable, and so M ′′ is also reachable from M . But, since M ′′ ∈ H, then some marking of
H is reachable from M , contradicting the definition of M . J

CONCUR’15



482 Verification of Population Protocols

I Theorem 16. The home space problem is decidable for triples (N, I,H) where
1. I and H are arbitrary Presburger sets of markings, and
2. post∗N ({M0}) is finite for every M0 ∈ I.

Proof. By Lemma 15, it suffices to decide whether B \post∗N (B∩H) is reachable from I. We
show that B \ post∗N (B ∩H) is an effectively Presburger set, and then apply the decidability
of the reachability problem for Presburger sets of markings (i.e., given two Presburger sets
P1,P2, decide if some marking of P2 is reachable from some marking of P1.)

By Theorem 9 and Proposition 11, the set B of bottom markings of N is effectively
Presburger. So, since Presburger sets are effectively closed under boolean operations, it
suffices to show that post∗N (B ∩ H) is effectively Presburger. Observe first that, since H
is effectively Presburger, so is B ∩ H. By the definition of B, if M ′ ∈ post∗N (M) for some
M ∈ B ∩H, then M ∈ post∗N (M ′). So M ∈ post∗N (B ∩H) iff there is a marking M ′ ∈ B ∩H
such that M and M ′ are mutually reachable. Since the mutual reachability relation of N is
effectively Presburger, post∗N (B ∩H) is effectively Presburger. J

References
1 Benjamin Aminof, Tomer Kotek, Sasha Rubin, Francesco Spegni, and Helmut Veith. Pa-

rameterized model checking of rendezvous systems. In CONCUR’14, volume 8704 of LNCS,
pages 109–124. Springer, 2014.

2 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. In PODC’04, pages 290–299.
ACM, 2004.

3 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population pro-
tocols with a leader. In DISC’06, volume 4167 of LNCS, pages 61–75. Springer, 2006.

4 Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are
semilinear. In PODC’06, pages 292–299. ACM, 2006.

5 Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic verification of finite-state
concurrent systems. Information Processing Letters, 22(6):307–309, 1986.

6 J. Clement, C. Delporte-Gallet, H. Fauconnier, and M. Sighireanu. Guidelines for the
verification of population protocols. In ICDCS’11, pages 215–224, 2011.

7 Z. Diamadi and Michael J. Fischer. A simple game for the study of trust in distributed
systems. Wuhan University Journal of Natural Sciences, 6(1–2):72–82, 2001.

8 David Frutos-Escrig and C. Johnen. Decidability of home space property. Technical Report
503, LRI, Université de Paris-Sud. Centre d’Orsay., 1989.

9 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes.
Journal of ACM, 39(3):675–735, 1992.

10 Seymour Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill,
Inc., New York, NY, USA, 1966.

11 Jérôme Leroux. The general vector addition system reachability problem by presburger
inductive invariants. In LICS’09, pages 4–13. IEEE Computer Society, 2009.

12 Jérôme Leroux. Vector addition system reversible reachability problem. In CONCUR’11,
volume 6901 of LNCS, pages 327–341. Springer, 2011.

13 Jérôme Leroux. Vector addition systems reachability problem (a simpler solution). In
Turing-100: The Alan Turing Centenary Conference, volume 10 of EPiC Series, pages
214–228. EasyChair, 2012.

14 Jérôme Leroux. Presburger vector addition systems. In LICS’13, pages 23–32. IEEE
Computer Society, 2013.

15 Saket Navlakha and Ziv Bar-Joseph. Distributed information processing in biological and
computational systems. Commun. ACM, 58(1):94–102, December 2014.


	Introduction
	Population Protocols
	Protocol Scheme
	Computation by Population Protocols

	A Decidable Criterion for Well-Specification
	The Criterion is Sound
	Example

	Petri Net Theory for the Population Protocols Aficionados
	From Population Protocols To Petri Nets
	Acceleration Technique
	Separators For Reachability Problems
	Mutual Reachability Relations
	Decomposable sets

	The Criterion is Complete
	Characterization of Bottom Strongly Connected Components
	The final piece

	Lower Bounds
	Home Spaces

