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Abstract. Linear-time properties and symbolic algorithms provide a
widely used framework for system specification and verification. In this
framework, the verification and control questions are phrased as boo-
lean questions: a system either satisfies (or can be made to satisfy) a
property, or it does not. These questions can be answered by symbolic
algorithms expressed in the µ-calculus. We illustrate how the µ-calculus
also provides the basis for two quantitative extensions of this approach:
a probabilistic extension, where the verification and control problems are
answered in terms of the probability with which the specification holds,
and a discounted extension, in which events in the near future are weigh-
ted more heavily than events in the far away future.

1 Introduction

Linear-time properties and symbolic algorithms provide a widely adopted fra-
mework for the specification and verification of systems. In this framework, a
property is a set of linear sequences of system states. Common choices for the
specification of system properties are temporal logic [MP91] and ω-regular auto-
mata [BL69,Tho90]. The verification question asks whether a system satisfies a
property, that is, whether all the sequences of states that can be produced during
the activity of the system belong to the property. Similarly, the control question
asks whether it is possible to choose (a subset of) the inputs to the system to
ensure that the system satisfies a property. These questions can be answered by
algorithms that operate on sets of states, and that correspond to the iterative
evaluation of µ-calculus fixpoint formulas [Koz83b,EL86,BC96]. This approach
is often called the symbolic approach to verification and control, since the al-
gorithms are often able to take advantage of compact representations for sets
of states, thus providing an efficient way to answer the verification and control
questions on systems with large (and, under some conditions [HM00,dAHM01b],
infinite) state spaces. The approach is completed by property-preserving equi-
valence relations, such as bisimulation [Mil90] (for verification) and alternating
bisimulation [AHKV98] (for control).

We refer to this approach as the boolean setting for verification and control.
Indeed, the verification question is answered in a boolean fashion (either a system
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satisfies a property, or it does not). Correspondingly, the symbolic verification
algorithms are boolean in nature: the subsets of states on which they operate can
be (and very often are [Bry86]) represented by their characteristic functions, that
are mappings from states to {0, 1}. Bisimulation itself can be seen as a binary
distance function, associating distance 0 to two states if they are bisimilar, and
distance 1 if they are not. In this paper, we illustrate how all the elements of
this approach, namely, linear properties, symbolic algorithms, and equivalence
relations, can be extended to a quantitative settings, where the control and veri-
fication questions are given quantitative answers, where the algorithms operate
on mappings from states to real numbers, and where the equivalence relations
correspond to real-valued distances [HK97,DGJP99,vBW01b,DEP02]. We consi-
der two such quantitative settings: a probabilistic setting, where the verification
and control questions are answered in terms of the probability that the system
exhibits the desired property, and a discounted setting, where events in the near
future are weighted more than those in the distant future. Our extensions rely
on quantitative versions of the µ-calculus for solving the verification and con-
trol problems and, in the discounted setting, even for expressing the linear-time
(discounted) specifications.

1.1 Games

We develop the theory for the case of two-player stochastic games [Sha53,Eve57,
FV97], also called concurrent probabilistic games [dAH00], and for control goals.
A stochastic game is played over a state space. At each state, player 1 selects
a move, and simultaneously and independently, player 2 selects a move; the
game then proceeds to a successor state according to a transition probability
determined by the current state and by the selected moves. An outcome of a
game, called trace, consists in the infinite sequence of states that are visited in
the course of the game. We say that a linear property holds for a trace if the trace
belongs to the property. A simple example of game is the game matchbit. The
game matchbit can be in one of two states, stry or sgoal . In state stry , player 1
chooses a bit b1 ∈ {0, 1}, and player 2 chooses a bit b2 ∈ {0, 1}. If b1 = b2, the
game proceeds to state sgoal ; otherwise, the game stays in state stry . The state
sgoal is absorbing: once entered it, the game never leaves it.

Games are a standard model for control problems: the moves of player 1
model the inputs from the controller, while the moves of player 2 model the re-
maining inputs along with the internal nondeterminism of the system. Stochastic
games generalize transition systems, Markov chains, Markov decision processes
[Ber95], and turn-based games.1 The verification setting can be recovered as a
special case of the control setting, corresponding to games where only one player
has a choice of moves.
1 For many of these special classes of systems, there are algorithms for solving ve-

rification and control problems that have better worst-case complexity than those
that can be obtained by specializing the algorithms for stochastic games. A review
of the most efficient known algorithms for these structures is beyond the scope of
this paper.
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1.2 Probabilistic Verification and Control

In systems with probabilistic transitions, such as Markov chains, it is possi-
ble that a linear property does not hold for all traces, but nevertheless holds
with positive probability. Likewise, even in games with deterministic transiti-
ons, player 1 may not be able to ensure that a property holds on all traces, but
may nevertheless be able to ensure that it holds with some positive probability
[dAHK98]. For example, consider again the game matchbit, together with the
property of reaching sgoal (consisting of all traces that contain sgoal). Starting
from stry , player 1 is not able to ensure that all traces reach sgoal : whatever
sequence of bits player 1 chooses, there is always the possibility that player 2
chooses the complementary sequence, confining the game to stry . Nevertheless,
if player 1 chooses each bit 0 and 1 with equal probability, in each round he will
proceed to sgoal with probability 1/2, so that sgoal is reached with probability 1.
Another example is provided by the game matchone, a variant of matchbit
where the bits can be chosen once only. The game matchone can be in one of
three states stry , sgoal , and sfail . At stry , players 1 and 2 choose bits b1 and b2;
if b1 = b2, the game proceeds to sgoal , otherwise it proceeds to sfail . Both sgoal
and sfail are absorbing states. In the game matchone, the maximal probability
with which player 1 can ensure reaching sgoal is 1/2.

Hence, it is often of interest to consider a probabilistic version of verification
and control problems, that ask the maximal probability with which a property
can be guaranteed to hold. We are thus led to the problem of computing the
maximal probability with which player 1 can ensure that an ω-regular property
holds in a stochastic game. This problem can be solved with quantitative µ-
calculus formulas that are directly derived from their boolean counterparts used
to solve boolean control problems.

Specifically, [EJ91] showed that for turn-based games with deterministic tran-
sitions, the set of states from which player 1 can ensure that an ω-regular specifi-
cation holds can be computed in a µ-calculus based on the set-theoretic operators
∪,∩ and on the controllable predecessor operator Cpre. For a set T of states, the
set Cpre(T ) consists of the states from which player 1 can ensure a transition to
T in one step. As an example, consider the reachability property �T , consisting
of all the traces that contain a state in T . The set of states from which player 1
can ensure that all traces are in �T can be computed by letting R0 = T , and
for k = 0, 1, 2, . . . , by letting Rk+1 = T ∪ Cpre(Rk). The set Rk consists of the
states from which player 1 can force the game to T in at most k steps; in a
finite game, the solution is thus given by limk→∞Rk. Computing the sequence
R0, R1, R2, . . . of states corresponds to evaluating by iteration the least fixpoint
of R = T ∪ Cpre(R), which is denoted in µ-calculus as µx.(T ∪ Cpre(R)): this
formula is thus a µ-calculus solution formula for reachability. Solution formu-
las are known for general parity conditions [EJ91], and this suffices for solving
games with respect to arbitrary ω-regular properties.

The solution formulas for the probabilistic setting can be obtained simply by
giving a quantitative interpretation to the solution formulas of [EJ91]. In this
quantitative interpretation, subsets of states are replaced by state valuations that
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associate with each state a real number in the interval [0, 1]; the set operators ∪,
∩ are replaced by the pointwise maximum and minimum operators �, � [Rei80,
FH82,Koz83a,Fel83]. The operator Cpre is replaced by an operator Qpre that,
given a state valuation f , gives the state valuation Qpre(f) associating with each
state the maximal expectation of f that player 1 can achieve in one step.

As an example, consider again the goal �T . Denote by χ(T ) the characteristic
function of T , that assigns value 1 to states in T and value 0 to states outside
T . We can compute the maximal probability of reaching T by letting f0 = χ(T )
and, for k = 0, 1, 2, . . . , by letting fk+1 = χ(T ) � Qpre(fk). It is not difficult
to see that fk(s) is the maximal probability with which player 1 can reach T
from state s. The limit of fk for k → ∞, which corresponds to the least fixpoint
µx.(χ(T ) � Qpre(x)), associates with each state the maximal probability with
which player 1 can ensure �T . As an example, in the game matchbit we have
f0(stry) = 0 and, for k ≥ 0, fk(stry) = 1 − 2−k; the limit limk→∞ 1 − 2−k = 1 is
indeed the probability with which player 1 can ensure reaching sgoal from stry .
We note that the case for reachability games is in fact well known from classical
game theory (see, e.g., [FV97]). However, this quantitative interpretation of the
µ-calculus yields solution formulas for the complete set of ω-regular properties
[dAM01]. Moreover, even for reachability games, the µ-calculus approach leads
to simpler correctness arguments for the solution formula, since it is possible to
exploit the complementation of µ-calculus and the connection between µ-calculus
formulas and winning strategies in the construction of the arguments [dAM01].

1.3 Discounted Verification and Control

The probabilistic setting is quantitative with respect to states, but not with
respect to traces: while state valuations are quantitative, each trace is still eva-
luated in a boolean way: either it is in the property, or it is not. This boolean
evaluation of traces does not enable us to specify “how well” a specification is
met. For instance, a trace satisfies �T as long as the set T of target states is
reached, no matter how long it takes to reach it: no prize is placed on reaching
T sooner than later, and even if T is reached in a much longer time than the
reasonable life expectancy of the system, the property nevertheless holds. Furt-
hermore, if a property does not hold, the boolean evaluation of traces does not
provide a notion of property approximation. For example, the safety property
�T is violated if a state outside T is ever reached: no prize is placed on staying
in T as long as possible, and the property fails even if the system stays in T
for an expected time much larger than the system’s own expected life time. As
these examples illustrate, the boolean evaluation of traces is sensitive to changes
in behavior that occur arbitrarily late: in technical terms, ω-regular properties
are not continuous in the Cantor topology, which assigns distance 2−k to traces
that are identical up to position k − 1, and differ at k. Discounted control and
verification proposes to remedy this situation by weighting events that occur
in the near future more heavily than events that occur in the far-away future
[dAHM03].
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Discounting reachability and safety properties is easy. For reachability, we
assign the value αk to traces that reach the target set after k steps, for α ∈ [0, 1];
for safety, we assign the value 1−αk to traces that stay in the safe set of states for
k steps. For more complex temporal-logic properties, however, many discounting
schemes are possible. For example, a Büchi property ��B consists of all the
traces that visit a subset B of states infinitely many times [MP91]. We can
discount the property ��B in several ways: on the basis of the time required to
reach B, or on the basis of the number of visits to B, or on the basis of some more
complex criterion (for instance, the time required to visit B twice). On the other
hand, the predecessor operators of the µ-calculus provide a natural locus for
discounting the next-step future. Discounted µ-calculus replaces Qpre with two
discounted versions, αQpre and (1 − α) + αQpre, where α ∈ [0, 1] is a discount
factor. Using these operators, we can write the solution to discounted reachability
games as φα-reach = µx.(χ(T ) �αQpre(x), and the solution to discounted safety
games as φα-safety = νx.(χ(T ) � (1 − α) + αQpre(x)).

We propose to use discounted µ-calculus as the common basis for the speci-
fication, verification, and control of discounted properties. We define discounted
properties as the linear semantics of formulas of the discounted µ-calculus. The
resulting setting is continuous in the Cantor topology, and provides notions of
satisfaction quality and approximation for linear properties.

1.4 Linear and Branching Semantics for the µ-Calculus

Given a formula φ of the µ-calculus, we can associate a linear semantics to φ
by evaluating it on linear traces, and by taking the value on the first state.
This linear semantics is often, but not always, related to the evaluation of the
formula on the game, which we call the branching semantics. As an example,
if we evaluate the fixpoint φreach = µx.(T ∪ Cpre(R)) on a trace s0, s1, s2, . . . ,
we have that s0 ∈ φreach if there is k ∈ N such that sk ∈ T . Hence, the linear
semantics of φreach , denoted [φreach ]blin , coincides with �T , In this case, we
have that the formula φreach , evaluated on a game, returns exactly the states
from which player 1 can ensure [φreach ]blin . This connection does not hold for all
formulas. For example, consider the formula ψ = µx.(Cpre(x)∪νy.(T∩Cpre(y))).
If we evaluate this formula on a trace s0, s1, s2, . . . , we can show that sk ∈
νy.(T ∩Cpre(y)) iff we have sj ∈ T for all j ≥ k. Hence, we have s0 ∈ ψ iff there
is k ∈ N such that sj ∈ T for all j ≥ k: in other words, the linear semantics
[ψ]blin coincides with the co-Büchi property ��T [Tho90]. On the other hand,
the formula φ, evaluated on a game, does not correspond to the states from
which player 1 can ensure ��T (see Example 1 in Sect. 3).

In the boolean setting, the linear and branching semantics are related for
all strongly deterministic formulas [dAHM01a], a set of formulas that includes
the solution formulas for games with respect to ω-regular properties [EJ91]. We
show that this correspondence carries through to the probabilistic and discounted
settings. Indeed, in both the probabilistic and the discounted settings, we show
that the values computed by strongly deterministic formulas is equal to the
maximal expectation of their linear semantics that player 1 can ensure.
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In the discounted setting, the linear semantics of discounted µ-calculus pro-
vides the specification language, and the branching semantics provides the ve-
rification algorithms. For example, the value of the discounted formula φα-reach
on the first state of a trace s0, s1, s2, . . . is αk, where k = min{j ∈ N | sj ∈ T}.
Hence, the linear semantics [φα-reach ]blinα associates the value αk to traces that
reach T in k steps. The same formula φα-reach , evaluated on a game, yields
the maximum value of [φα-reach ]blinα that player 1 can achieve. Similarly, the
value of φα-safety on the first state of a trace s0, s1, s2, . . . is 1 − αk, where
k = min{j ∈ N | sj 	∈ T}. Hence, the linear semantics [φα-safety ]blinα associates
the value 1−αk to traces that stay in T for k steps. The same formula φα-safety ,
evaluated on a game, yields the maximum value of [φα-safety ]blinα that player 1
can achieve. Again, this correspondence holds for a set of formulas that includes
the solution formulas of games with parity conditions.

1.5 Quantitative Equivalence Relations

The frameworks for probabilistic and discounted verification are complemen-
ted by quantitative equivalence relations [HK97,DGJP99,vBW01b]. We show
that, just as CTL and CTL* characterize ordinary bisimulation [Mil90], so pro-
babilistic and discounted µ-calculus characterize probabilistic and discounted
bisimulation [dAHM03].

Credits. This paper is based on joint work with Thomas A. Henzinger and Rupak
Majumdar on the connection between games, µ-calculus, and linear properties
[dAHM01a,dAM01,dAHM03]. I would like to thank Marco Faella, Rupak Ma-
jumdar, Mariëlle Stoelinga, and an anonymous reviewer for reading a preliminary
version of this work and for providing many helpful comments and suggestions.

2 Preliminaries

2.1 The µ-Calculus

Syntax. Let P be a set of predicate symbols, V be a set of variables, and F
be a set of function symbols. The formulas of µ-calculus are generated by the
grammar

φ ::= p | x | ¬φ | φ ∨ φ | φ ∧ φ | f(φ) | µx.φ | νx.φ, (1)

for predicates p ∈ P, variables x, and functions f ∈ F . In the two quantifications
µx.φ and νx.φ, we require that all occurrences of x in φ have even polarity, that
is, they occur in the scope of an even number of negations (¬). We assume that for
each function f ∈ F there is dual function Dual(f) ∈ F , with Dual(Dual(f)) =
f . Given a closed formula φ of µ-calculus, the following transformations enable
us to push all negations to the predicates:

¬(φ1 ∨ φ2) � (¬φ1) ∧ (¬φ2) ¬(µx.φ) � νx.¬φ[¬x/x] (2)

¬(φ1 ∧ φ2) � (¬φ1) ∨ (¬φ2) ¬(νx.φ) � µx.¬φ[¬x/x] (3)

¬f(φ) � Dual(f)(¬φ), (4)
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where φ[¬x/x] denotes the formula in which all free occurrences of x are replaced
by ¬x. We will be particularly interested in the of formulas in EJ-form. These
formulas take their name from the authors of [EJ91], where it was shown that
they suffice for solving turn-based games; as we will see, these formulas can be
uniformly used for solving boolean, probabilistic, and discounted control pro-
blems with respect to parity conditions. For f ∈ F , a formula φ is in EJ-form if
it can be written as

φ ::= γnxn.γn−1xn−1 · · · γ0x0.

n∨

i=0

(χi ∧ f(xi)),

χ ::= p | ¬χ | χ ∨ χ | χ ∧ χ,
where for 0 ≤ i ≤ n, we have xi ∈ V, and where f ∈ F and p ∈ P. For
0 ≤ i ≤ n, the fixpoint quantifier γi is ν if i is even, and is µ if i is odd. A
fixpoint formula φ is in strongly deterministic form [dAHM01a] iff φ consists of
a string of fixpoint quantifiers followed by a quantifier-free part ψ generated by
the following grammar:

ψ ::= p | ¬p | ψ ∨ ψ | p ∧ ψ | ¬p ∧ ψ | f(χ),

χ ::= x | χ ∨ χ.

Semantics. The semantics of µ-calculus is defined in terms of lattices. A lattice
L = (E,) consists of a set E of elements and of a partial order  over E, such
that every pair of elements v1, v2 ∈ E has a unique greatest lower bound v1 � v2
and least upper bound v1�v2. A lattice is complete if every (not necessarily finite)
non-empty subset of E has a greatest lower bound and a least upper bound
in E. A value lattice is a complete lattice together with a negation operator
∼, satisfying ∼∼v = v for all v ∈ E, and ∼�E′ =

⊔{∼v | v ∈ E′} for all
E′ ⊆ E [Ros90, chapter 6]. A µ-calculus interpretation (L, [[·]]) consists of a
value lattice L = (E,) and of an interpretation [[·]] that maps every predicate
p ∈ P to a lattice element [[p]] ∈ E, and that maps every function f ∈ F to
a function [[f ]] ∈ (E �→ E). We require that for all f ∈ F and all v ∈ E, we
have ∼[[f ]](v) = [[Dual(f)]](∼v). A variable environment is a function e : V �→ E
that associates a lattice element e(x) ∈ E to each variable x ∈ V. For x ∈ V,
v ∈ E, and a variable environment e, we denote by e[x := v] the variable
environment defined by e[x := v](x) = v, and e[x := v](y) = e(y) for x 	= y.
Given an interpretation I = (L, [[·]]), and a variable environment e, every µ-
calculus formula φ specifies a lattice element [[φ]]Ie ∈ E, defined inductively as
follows, for p ∈ P, f ∈ F , and x ∈ V:

[[p]]Ie = [[p]] [[φ1 ∨ φ2]]Ie = [[φ1]]Ie � [[φ2]]Ie

[[¬p]]Ie = ∼[[p]]Ie [[φ1 ∧ φ2]]Ie = [[φ1]]Ie � [[φ2]]Ie

[[x]]Ie = e(x) [[µx.φ]]Ie = �{v ∈ E | v = [[φ]]Ie[x:=v]}
[[f(φ)]]Ie = [[f ]]([[φ]]Ie ) [[νx.φ]]Ie = �{v ∈ E | v = [[φ]]Ie[x:=v]}.
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All right-hand-side (semantic) operations are performed over the value lattice
L. It is easy to show that if φ � φ′ by (2)–(4), then [[φ]]Ie = [[φ′]]Ie . A µ-calculus
formula φ is closed if all its variables are bound by one of the µ or ν fixpoint
quantifiers. If φ is closed, then the value [[φ]]Ie does not depend on e, and we
write simply [[φ]]I .

2.2 Game Structures

We develop the theory for stochastic game structures. For a finite set A, we
denote by Distr(A) the set of probability distributions over A. A (two-player
stochastic) game structure G = 〈S,M, Γ1, Γ2, δ〉 consists of the following com-
ponents [AHK02,dAHK98]:

– A finite set S of states.
– A finite set M of moves.
– Two move assignments Γ1, Γ2: S �→ 2M \ ∅. For i ∈ {1, 2}, the assignment
Γi associates with each state s ∈ S the nonempty set Γi(s) ⊆ M of moves
available to player i at state s.

– A probabilistic transition function δ: S × M2 �→ Distr(S), that gives the
probability δ(s, a1, a2)(t) of a transition from s to t when player 1 plays
move a1 and player 2 plays move a2.

At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and
independently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the
successor state t ∈ S with probability δ(s, a1, a2)(t). We denote by τ(s, a1, a2) =
{t ∈ S | δ(s, a1, a2)(t) > 0} the set of destination states when actions a1, a2 are
chosen at s. In general, the players can randomize their choice of moves at a
state. We denote by Di(s) ⊆ Distr(M) the set of move distributions available to
player i ∈ {1, 2} at s ∈ S, defined by

Di(s) = {ζ ∈ Distr(M) | ζ(a) > 0 implies a ∈ Γi(s)}.

For s ∈ S and ζ1 ∈ D1(s), ζ2 ∈ D2(s), we denote by δ̂(s, ζ1, ζ2) the next-state
probability distribution, defined for all t ∈ S by

δ̂(s, ζ1, ζ2)(t) =
∑

a1∈Γ1(s)

∑

a2∈Γ2(s)

δ(s, a1, a2)(t) ζ1(a1) ζ2(a2).

A (randomized) strategy πi for player i ∈ {1, 2} is a mapping πi : S+ �→
Distr(M) that associates with every sequence of states s ∈ S+ the move distri-
bution πi(s) used by player i when the past history of the game is s; we require
that πi(ss) ∈ Di(s) for all s ∈ S∗ and s ∈ S. We indicate with Πi the set of all
strategies for player i ∈ {1, 2}.

Given an initial state s ∈ S and two strategies π1 ∈ Π1 and π2 ∈ Π2,
we define the set Outcomes(s, π1, π2) ⊆ Sω to consist of all the sequences of
states s0, s1, s2, . . . such that s0 = s and such that for all k ≥ 0 there are
moves ak

1 , a
k
2 ∈ M such that π1(s0, . . . , sk)(ak

1) > 0, π2(s0, . . . , sk)(ak
2) > 0, and
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sk+1 ∈ τ(sk, a
k
1 , a

k
2). Given a trace σ = s0, s1, s2, . . . ∈ Sω, we denote by σk its

k-th state sk.
An initial state s ∈ S and two strategies π1 ∈ Π1 and π2 ∈ Π2 uniquely

determine a stochastic process (Sω, Ω,Prπ1,π2
s ) where Ω ⊆ 2Sω

is the set of
measurable sets, and where Prπ1,π2

s : Ω �→ [0, 1] assigns a probability to each
measurable set [KSK66,FV97]. In particular, for a measurable set of traces A ∈
Ω, we denote by Prπ1,π2

s (A) the probability that the game follows a trace in
A, and given a measurable function f : Sω �→ IR, we denote by Eπ1,π2

s (f) the
expectation of f in (Sω, Ω,Prπ1,π2

s ).
We denote by SG , MG , ΓG

1 , ΓG
2 , and δG the individual components of a game

structure G.

Special Classes of Game Structures. Transition systems, turn-based games, and
Markov decision processes are special cases of deterministic game structures.
A game structure G is deterministic if for all states s, t ∈ SG and all moves
a1, a2 ∈ MG we have δG(s, a1, a2)(t) ∈ {0, 1}. The structure G is turn-based if
at every state at most one player can choose among multiple moves; that is,
if for all states s ∈ SG , there exists at most one i ∈ {1, 2} with |ΓG

i (s)| > 1.
The turn-based deterministic game structures coincide with the games of [BL69,
Con92,Tho95]. For i ∈ {1, 2}, the structure G is player-i if at every state only
player i can choose among multiple moves; that is, if |ΓG

3−i(s)| = 1 for all states
s ∈ S. Player-1 and player-2 structures (called collectively one-player structures)
coincide with Markov decision processes [Der70]. The player-i deterministic game
structures coincide with transition systems: in every state, each available move
of player i determines a unique successor state.

3 Boolean Verification and Control

Given a game structure G = 〈S,M, Γ1, Γ2, δ〉, a linear property of G is a subset
Φ ⊆ Sω of its state sequences. Given a linear property Φ ⊆ Sω, we let

〈1〉bGΦ = {s ∈ S | ∃π1 ∈ Π1.∀π2 ∈ Π2.Outcomes(s, π1, π2) ⊆ Φ} (5)

〈2〉bGΦ = {s ∈ S | ∃π2 ∈ Π2.∀π1 ∈ Π1.Outcomes(s, π1, π2) ⊆ Φ}. (6)

The set 〈1〉bGΦ is the set of states from which player 1 can ensure that the game
outcome is in Φ; the set 〈2〉bGΦ is the symmetrically defined set for player 2.
We consider the control problems of computing the sets (5) and (6). We note
that for player-1 deterministic game structures, computing (5) corresponds to
solving the existential verification problem “is there a trace in Φ?”, and for
player-2 game structures computing (5) corresponds to solving the universal ve-
rification problem “are all traces in Φ?”. We review the well-known solution of
these control problems for the case in which Φ is a reachability property, a safety
property, and a parity property. For a subset T ⊆ S of states, the safety property
�T = {s0, s1, s2, . . . ∈ Sω | ∀k.sk ∈ T} consists of all traces that stay always in
T , and the reachability property �T = {s0, s1, s2, . . . ∈ Sω | ∃k.sk ∈ T} consists
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of all traces that contain a state in T . Consider any tuple A = 〈T1, T2, . . . , Tm〉
such that T1, T2, . . . , Tm form a partition of S into m > 0 mutually disjoint sub-
sets. Given a trace σ = s0, s1, s2, . . . ∈ Sω, we denote by Index (σ,A) the largest
i ∈ {1, . . . ,m} such that sk ∈ Ti for infinitely many k ∈ N. Then, the parity
property Parity(A) is defined as Parity(A) = {σ ∈ Sω | Index (σ,A) is even}.
The relevance of parity properties is due to the fact that any ω-regular property
can be specified with a deterministic automaton with a parity accepting condi-
tion [Tho90]. Hence, we can transform any verification problem with respect to
an ω-regular condition into a verification problem with respect to a parity con-
dition by means of a simple automaton product construction (see for instance
[dAHM01a]).

3.1 Boolean µ-Calculus

For all three classes of properties (safety, reachability, and parity), the solu-
tion of the boolean control problems (5)–(6) can be written in µ-calculus inter-
preted over the lattice of subsets of states. Precisely, given a set S of states,
the set BMCS of boolean µ-calculus formulas consists of all µ-calculus formu-
las defined over the set of predicates PS = 2S and the set of functions Fb =
{pre1, dpre1, pre2, dpre2}, where Dual(pre1) = dpre1 and Dual(pre2) = dpre2.
Given a game structure G = 〈S,M, Γ1, Γ2, δ〉, we interpret the formulas of BMCS

over the lattice L(2S ,⊆) of subsets of S, ordered according to set inclusion. Ne-
gation is set complementation: for all T ⊆ S, we let ∼T = S \T . The predicates
are interpreted as themselves: for all p ∈ P, we let [[p]]bG = p. The functions pre1,
dpre1, pre2, and dpre2 are called predecessor operators, and they are interpreted
as follows:

[[pre1]]
b
G(X) = {s ∈ S | ∃a1 ∈ Γ1(s).∀a2 ∈ Γ2(s).τ(s, a1, a2) ⊆ X} (7)

[[dpre1]]
b
G(X) = {s ∈ S | ∀a1 ∈ Γ1(s).∃a2 ∈ Γ2(s).τ(s, a1, a2) ∩X 	= ∅} (8)

[[pre2]]
b
G(X) = {s ∈ S | ∃a2 ∈ Γ2(s).∀a1 ∈ Γ1(s).τ(s, a1, a2) ⊆ X} (9)

[[dpre2]]
b
G(X) = {s ∈ S | ∀a2 ∈ Γ2(s).∃a1 ∈ Γ1(s).τ(s, a1, a2) ∩X 	= ∅}. (10)

Intuitively, [[pre1]]bG(X) is the set of states from which player 1 can force a transi-
tion to X in G, and [[dpre1]]bG(X) is the set of states from which player 1 is unable
to avoid a transition to X in G. The functions pre2 and dpre2 are interpreted
symmetrically. We denote by bin(G) = (L(2S ,⊆), [[·]]bG) the resulting interpreta-
tion for µ-calculus. For a closed formula φ ∈ BMCS , we write [[φ]]bG rather than
[[φ]]bin(G), and we omit G when clear from the context. For a game G, a subset
T ⊆ SG of states and player i ∈ {1, 2}, we have then

〈i〉bG�T = [[µx.(T ∨ prei(x))]]
b
G . (11)

This formula can be understood by considering its iterative computation: we
have that [[µx.(T ∨ prei(x))]]bG = limk→∞Xk, where X0 = ∅ and, for k ∈ N,
where Xk+1 = T ∪ [[prei]]bG(Xk): it is easy to show by induction that the set that
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Xk consists of the states of S from which player i can force the game to T in
at most k steps. The equation (11) then follows by taking the limit k → ∞.
Similarly, for safety properties we have, for i ∈ {1, 2}:

〈i〉bG�T = [[νx.(T ∧ prei(x))]]
b
G . (12)

Again, to understand this formula it helps to consider its iterative computation.
We have [[νx.(T ∧pre1(x))]]bG = limk→∞Xk, where X0 = S and, for k ∈ N, where
Xk+1 = T ∩ [[pre1]]bG(Xk); it is easy to see that Xk consists of the states of G from
which player 1 can guarantee that the game stays in T for at least k steps. The
equation (12) then follows by taking the limit k → ∞. The solution of control
and verification problems for parity properties is given by the following result.

Theorem 1. [EJ91] For all game structures G, all partitions 〈T1, T2, . . . , Tm〉
of SG, and all i ∈ {1, 2}, we have

〈i〉bGParity(〈T1, . . . , Tm〉) = [[γmxm · · · γ1x1.

m∨

j=1

(Tj ∧ prei(xj))]]bG (13)

Given an EJ-form µ-calculus formula φ = γmxm · · · γ1x1.
∨m

j=1(Tj ∧ pre1(xj)),
we define the parity property PtyOf (φ) corresponding to φ by PtyOf (φ) =
Parity(〈T1, . . . , Tm〉). With this notation, we can restate (13) as follows.

Corollary 1. For all game structures G, all i ∈ {1, 2} and all closed EJ-form
µ-calculus formulas φ ∈ BMCSG containing only the function symbol prei, we
have 〈i〉bGPtyOf (φ) = [[φ]]bG.

Lack of Determinacy. In boolean µ-calculus, the operators pre1 and pre2 are
not the dual one of the other. This implies that boolean control problems are
not determined: for Φ ⊆ Sω, the equality S \ 〈1〉bGΦ = 〈2〉bG(Sω \Φ) does not hold
for all game structures G and all properties Φ. Intuitively, the fact that player 1
is unable to ensure the control goal Φ does not entail that player 2 is able to
ensure the control goal ¬Φ. For example, there are game structures G where for
some T ⊆ SG we have

SG \ (〈1〉bG�T
)

= [[¬µx.(T ∨ pre1(x))]]
b
G = [[νx.(¬T ∧ dpre1(x))]]

b
G

	= [[νx.(¬T ∧ pre2(x))]]
b
G = 〈2〉bG�(¬T ).

An example is the game structure matchbit: as explained in the introduction
we have stry 	∈ 〈1〉b�{sgoal}; on the other hand, it can be easily seen that
stry 	∈ 〈2〉b�{stry}.

3.2 The Linear Semantics of Boolean µ-Calculus

Theorem 1 establishes a basic connection between linear parity properties and
verification algorithms expressed in µ-calculus. Here, we shall develop a connec-
tion between linear properties expressed in µ-calculus, and their verification al-
gorithms also expressed in µ-calculus. To this end, we provide a linear semantics
for µ-calculus, obtained by evaluating µ-calculus on linear traces.
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A trace σ ∈ Sω gives rise to an interpretation Ib
σ = (L(2N,⊆), [[·]]bσ) for µ-

calculus, where L(2N,⊆) is the lattice of subsets of natural numbers ordered
according to set inclusion, and where all predicates p ∈ 2S are interpreted as the
sets of indices of states in p, i.e., [[p]]bσ = {k ∈ N | σk ∈ p}. The definitions (7)–(10)
can be simplified, since every location of the trace has a single successor: for all
i ∈ {1, 2} and allX ⊆ N we let [[prei]]bσ(X) = [[dprei]]bσ(X) = {k ∈ N | k+1 ∈ X}.
We define the boolean linear semantics [φ]blinS over the set of states S of a closed
µ-calculus formula φ ∈ BMCS to consist of all traces whose first state is in the
semantics of φ: specifically, [φ]blinS = {σ ∈ Sω | σ0 ∈ [[φ]]I

b
σ}. In contrast, we

call the semantics [[φ]]bG defined over a game structure G the branching semantics
of the µ-calculus formula φ. The following lemma states that for formulas in
EJ-form, the parity property corresponding to the formula coincides with the
linear semantics of the formula.

Lemma 1. For all sets of states S, all i ∈ {1, 2} and all closed EJ-form µ-
calculus formulas φ ∈ BMCS containing only the function symbol prei, we have
PtyOf (φ) = [φ]blinS .

This leads easily to the following result, which relates the linear and branching
semantics of EJ-form formulas.

Corollary 2. For all game structures G, all i ∈ {1, 2} and all closed EJ-form
µ-calculus formulas φ ∈ BMCSG containing only the function symbol prei, we
have [[φ]]bG = 〈i〉bGPtyOf (φ) = 〈i〉bG [φ]blinSG .

In fact, the relationship between the linear and branching semantics holds for
all µ-calculus formulas in strongly deterministic form.

Theorem 2. [dAHM01a] For all game structures G, all closed µ-calculus for-
mulas φ ∈ BMCSG , and all players i ∈ {1, 2}, if φ is in strongly deterministic
form and contains only the function symbol prei, then [[φ]]bG = 〈i〉bG [φ]blinSG .

We will see that the linear and branching semantics of strongly deterministic
(and in particular, EJ-form) formulas are related in all the settings considered
in this paper, namely, in the boolean, probabilistic, and discounted settings.
The linear and branching semantics of formulas are not always related, as the
following example demonstrates.

Example 1. [dAHM01a] Consider the formula φ = µx.(pre1(x) ∨ νy.(B ∧
pre1(y))), where B ⊆ S is a set of states. The linear semantics [φ]blinS consists of
all the traces σ = s0, s1, s2, . . . for which there is a k ∈ N such that si ∈ B for all
i ≥ k, that is, of all the traces that eventually enter B, and never leave it again;
using temporal-logic notation, we indicate this set of traces by [��B]S . In fact,
we have sk ∈ [[νy.(B ∧ pre1(y))]]I

b
σ only if si ∈ B for all i ≥ k, and we have that

s0 ∈ [[φ]]I
b
σ iff there is k ∈ N such that sk ∈ [[νy.(B ∧ pre1(y))]]I

b
σ . However, con-

sider a deterministic player-2 structure G = 〈S,M, Γ1, Γ2, δ〉 with S = {s, t, u},
M = {a, b, •}, and Γ2(s) = {a, b}, Γ2(t) = Γ2(u) = {a}, and transition relation
given by τ(s, •, a) = {s}, τ(s, •, b) = {t}, τ(t, •, a) = {u}, τ(u, •, a) = {u}, where
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• is the single move available to player 1. For B = {s, u} it is easy to see that
〈1〉bG [φ]blinS = 〈1〉bG [��B]blinS = {s, t, u}, while [[φ]]bG = {t, u}.

In [dAHM01a], it is shown that in general the linear and branching semantics of
µ-calculus formulas are related on all game structures iff they are related on all
player-1 and all player-2 game structures.

4 Probabilistic Verification and Control

The boolean control problem asks whether a player can guarantee that all ou-
tcomes are in a desired linear property. The probabilistic control problem asks
what is the maximal probability with which a player can guarantee that the out-
come of the game belongs to the desired linear property. Given a game structure
G = 〈S,M, Γ1, Γ2, δ〉 and a property Φ ⊆ Sω, we consider the two probabilistic
control problems consisting in computing the functions 〈1〉pGΦ, 〈2〉pGΦ : S �→ [0, 1]
defined by:

〈1〉pGΦ = λs ∈ S. sup
π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (Φ) (14)

〈2〉pGΦ = λs ∈ S. sup
π2∈Π2

inf
π1∈Π1

Prπ1,π2
s (Φ). (15)

where λs ∈ S.f(s) is the usual λ-calculus notation for a function that maps each
s ∈ S into f(s).

4.1 Probabilistic µ-Calculus

For the case in which Φ is a reachability, safety, or parity property, we can com-
pute the functions (14), (15) using a probabilistic interpretation of µ-calculus
[dAM01]. Precisely, given a set S of states, the set PMCS of probabilistic
µ-calculus formulas consists of all µ-calculus formulas defined over the set
of predicates PS = 2S and the set of functions Fq = {pre1, pre2}, where
Dual(pre1) = pre2. Given a game structure G = 〈S,M, Γ1, Γ2, δ〉, we interpret
these formulas over the lattice L(S �→ [0, 1],≤) of functions S �→ [0, 1], ordered
pointwise: for f, g : S �→ [0, 1] and s ∈ S, we have (f � g)(s) = max{f(s), g(s)}
and (f � g)(s) = min{f(s), g(s)}. Negation is defined by ∼f = λs ∈ S.1 − f(s).
The predicates are interpreted as characteristic functions: for all p ∈ PS , we
let [[p]]pG = χ(p), where χ(p) is defined for all s ∈ S by χ(p)(s) = 1 if s ∈ p,
and χ(p)(s) = 0 otherwise. The interpretations of pre1 and pre2 are defined as
follows, for X : S �→ [0, 1]:

[[pre1]]
p
G(X) = λs ∈ S. sup

ζ1∈D1(s)
inf

ζ2∈D2(s)
E◦(X | s, ζ1, ζ2) (16)

[[pre2]]
p
G(X) = λs ∈ S. sup

ζ2∈D2(s)
inf

ζ1∈D1(s)
E◦(X | s, ζ1, ζ2) (17)
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where E◦(X | s, ζ1, ζ2) =
∑

t∈S δ̂(s, ζ1, ζ2)(t)X(t) is the next-step expectation of
X, given that player 1 and player 2 choose their moves according to distributions
ζ1 and ζ2, respectively. Intuitively, [[pre1]]

p
G(X) is the function that associates

with each s ∈ X the maximal expectation of X that player 1 can achieve in one
step. In particular, for T ⊆ S, [[prei]]

p
G(χ(T )) is the maximal probability with

which player i can force a transition to T in one step. We note that, unlike in the
boolean case, in probabilistic µ-calculus the operators pre1 and pre2 are dual, so
that the calculus requires only two predecessor operators, rather than four. The
duality follows directly from the minimax theorem [vN28]: for all X : S �→ [0, 1]
and all s ∈ S, we have

1 − [[pre1]]
p
G(X)(s) = 1 − supζ1∈D1(s) infζ2∈D2(s) E◦(X | s, ζ1, ζ2)

= infζ1∈D1(s) supζ2∈D2(s) 1 − E◦(X | s, ζ1, ζ2)
= supζ2∈D2(s) infζ1∈D1(s) E◦(∼X | s, ζ1, ζ2)
= [[pre2]]

p
G(∼X)(s).

We denote by prb(G) = (L(S �→ [0, 1],≤), [[·]]pG) the resulting interpretation for
µ-calculus. For a closed formula φ ∈ BMCS , we write [[φ]]pG rather than [[φ]]prb(G),
and we omit G when clear from the context. The solutions to probabilistic control
problems with respect to reachability, safety, and parity properties can then be
written in µ-calculus as stated by the following theorem.

Theorem 3. [dAM01] For all game structures G, all i ∈ {1, 2}, all T ⊆ SG
and all partitions A = 〈T1, T2, . . . , Tm〉 of SG, we have:

〈i〉pG�T = [[µx.(T ∨ prei(x))]]
p
G (18)

〈i〉pG�T = [[νx.(T ∧ prei(x))]]
p
G (19)

〈i〉pGParity(〈T1, . . . , Tm〉) = [[γmxm · · · γ1x1.

m∨

i=1

(Ti ∧ prei(xi))]]
p
G . (20)

The above solution formulas are the analogous to (11), (12), and (13), even
though the proof of their correctness requires different arguments. The argument
for reachability games is as follows. The fixpoint (18) can be computed iteratively
by [[µx.(T ∨ prei(x))]]

p
G = limk→∞Xk, where X0 = λs.0 and, for k ∈ N, where

Xk+1 = χ(T ) � [[prei]]
p
G(Xk). It is then easy to show by induction that Xk(s)

is the maximal probability with which player i can reach T from s ∈ S in at
most k steps. In fact, (18) is simply a restatement in µ-calculus of the well-
known fixpoint characterization of the solution of positive stochastic games (see,
e.g., [FV97]). The solution (19) can also be understood in terms of the iterative
evaluation of the fixpoint. We have [[νx.(T ∧ prei(x))]]

p
G = limk→∞Xk, where

X0 = λs.1, and for x ∈ N, where Xk+1 = χ(T ) � [[prei]]
p
G(Xk). It can be shown

by induction that Xk(s) is equal to the maximal probability of staying in T for
at least k steps that player i can achieve from s ∈ S. The detailed arguments
can be found in [dAM01].
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We note that on deterministic turn-based structures (and their special cases,
such as transition systems), the boolean and probabilistic control problems are
equivalent, as are the boolean and probabilistic µ-calculi. Indeed, for all deter-
ministic turn-based game structures G with set of states S, and for all properties
Φ ⊆ Sω, all i ∈ {1, 2}, and all closed µ-calculus formulas φ containing only
functions pre1 and pre2, we have that χ(〈i〉bGΦ) = 〈i〉pGΦ and χ([[φ]]bG) = [[φ]]pG .

Determinacy. As a consequence of the duality between the pre1 and pre2 opera-
tors, probabilistic control problems are determined, unlike their boolean coun-
terparts: in particular, [Mar98] proves that for all games G, all sets Φ ⊆ Sω

G in
the Borel hierarchy, and all s ∈ SG , we have 1 − 〈1〉pGΦ(s) = 〈2〉pG(Sω \ Φ)(s).
While the proof of this result requires advanced arguments, the case in which
Φ is a parity property follows elementarily from our µ-calculus solution for-
mula (20), and from the duality of pre1 and pre2. In fact, consider a partition
A = 〈T1, T2, . . . , Tm〉 of S. Letting U1 = ∅ and Ui+1 = Ti for 1 ≤ i ≤ m, we
have:

1 − 〈1〉pGParity(〈T1, . . . , Tm〉) = 1 − [[γmxm · · · γ1x1.
∨m

j=1(Tj ∧ pre1(xj))]]
p
G

= [[γm+1xm · · · γ2x1.
∨m

j=1(Tj ∧ pre2(xj))]]
p
G

= 〈2〉pGParity(〈U1, . . . , Um+1〉)
= 〈2〉pG(Sω \ Parity(〈T1, . . . , Tm〉)).

4.2 The Linear Semantics of Probabilistic µ-Calculus

The solution (20) of parity control problems can be restated as follows. For player
i ∈ {1, 2}, all game structures G, and all EJ-form formulas φ containing only the
function symbol prei, we have [[φ]]pG = 〈i〉pGPtyOf (φ). Using Lemma 1, we can
therefore relate the linear and branching semantics of φ as follows.

Theorem 4. For all game structures G, all i ∈ {1, 2}, and all closed µ-calculus
formulas φ ∈ PMCSG in EJ-form containing only the function symbol prei, we
have that [[φ]]pG = 〈i〉pG [φ]blinSG .

This theorem relates the branching semantics [[φ]]pG of probabilistic µ-calculus
with the linear semantics [φ]blinSG of boolean µ-calculus. In order to relate bran-
ching and linear semantics of probabilistic µ-calculus, we define a probabilistic
linear semantics [·]plinS of probabilistic µ-calculus.

A trace σ ∈ Sω gives rise to an interpretation Ip
σ = (L(N �→ [0, 1],≤), [[·]]pσ)

for µ-calculus, where (L(N �→ [0, 1],≤) is the lattice of functions N �→ {0, 1}
ordered pointwise, where a predicate p ∈ 2S is interpreted as its characteristic
function, i.e., for all k ≥ 0 we have [[p]]pσ(k) = 1 if σk ∈ p, and [[p]]pσ(k) = 0 if
σk 	∈ p. Similarly to the boolean case, the definitions (16)–(17) can be simplified,
since every state of the trace has a single successor. For all X : N �→ [0, 1] and
i ∈ {1, 2} we let [[prei]]pσ(X) = λk.X(k + 1). Given a closed µ-calculus formula
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φ ∈ PMCS , we define the probabilistic linear semantics [φ]plinS : Sω �→ [0, 1]
of φ over the set of states S by taking the value of φ over the first state of the
trace: specifically, we let [φ]plinS (σ) = [[φ]]I

p
σ (0).

In the definitions (14), (15) of the probabilistic control and verification pro-
blems, the property Φ is a set of traces. To complete our connection with the
probabilistic linear semantics [·]plinS , we need to define a probabilistic version
of these problems. Let h : Sω �→ [0, 1] be a function that is measurable in the
probability space (Sω, Ω,Prπ1,π2

s ), for all π1 ∈ Π1 and π2 ∈ Π2. We define:

〈1〉qGh = λs ∈ S . sup
π1∈Π1

inf
π2∈Π2

Eπ1,π2
s (h)

〈2〉qGh = λs ∈ S . sup
π2∈Π2

inf
π1∈Π1

Eπ1,π2
s (h).

The relationship between the probabilistic linear and branching semantics is then
expressed by the following theorem.

Theorem 5. For all game structure G, all i ∈ {1, 2}, and all closed µ-calculus
formulas φ ∈ PMCS in strongly deterministic form and containing only the
function symbol prei, we have that [[φ]]pG = 〈i〉qG [φ]plinSG .

For player 1, the above theorem states that for all s ∈ SG ,

[[φ]]pG(s) = sup
π1∈Π1

inf
π2∈Π2

Eπ1,π2
s ([φ]plinSG ). (21)

This equation can be read as follows: the value of a control µ-calculus formula
[[φ]]pG is equal to the maximal expectation that player 1 can guarantee for the same
formula, evaluated on linear traces. The theorem relates not only the branching
and the linear probabilistic semantics, but also a global optimization problem to
a local one. In (21) the right-hand side represents a global optimization problem:
player 1 is trying to maximize the value of the function [φ]plinS over traces, and
player 2 is trying to oppose this. On the left-hand side, on the other hand, the
optimization is local, being performed through the evaluation of the operator
[[pre1]]

p
G at all states of G.

5 Discounted Verification and Control

In the boolean and probabilistic settings, properties are specified as ω-regular
languages, and algorithms are encoded as fixpoint expressions in the µ-calculus.
The main theorems, such as Theorem 1 and Theorem 3, express the relationship
between the properties and the µ-calculus fixpoints that solve the verification
and control problems. The correspondence between the branching and linear
semantics serves mainly to clarify the relationship between the local optimiza-
tion that takes place in the branching semantics, and the global optimization
that takes place in the linear semantics. In the discounted setting, on the other
hand, we choose not have an independent notion of discounted property: rather,
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discounted properties are specified by the linear semantics of formulas of the
discounted µ-calculus. The main results for the discounted setting concern thus
the relationship between the linear semantics (used to express properties) and
the branching semantics (which represents algorithms) of discounted µ-calculus,
as well as the relationship between the discounted setting and the undiscounted
one. As both properties and algorithms are defined in terms of the µ-calculus,
we begin by introducing discounted µ-calculus.

5.1 Discounted µ-Calculus

Given a set S of states and a set Υ of discount factors, the set DMCS,Υ of
discounted µ-calculus formulas consists of all the formulas defined over the set
of predicates PS = 2S and the set of functions

FΥ = { αprei, (1 − α) + αprei | i ∈ {1, 2}, α ∈ Υ},

where Dual(αpre1) = (1 − α) + αpre2 and Dual(αpre2) = (1 − α) + αpre1.
As in the probabilistic case, given a game structure G = 〈S,M, Γ1, Γ2, δ〉, we
interpret these formulas over the lattice L(S �→ [0, 1],≤) of functions S �→ [0, 1],
ordered pointwise. Again, we define negation by ∼f = λs ∈ S.1 − f(s). The
interpretation of predicates and functions is parameterized by a discount factor
interpretation η : Υ �→ [0, 1], that assigns to each discount factor α ∈ Υ its value
η(α) ∈ [0, 1]. As in the probabilistic semantics, we interpret the predicates p ∈ P
as their characteristic function, i.e., [[p]]dG,η = χ(p). For all η ∈ (Υ �→ [0, 1]) and
all i ∈ {1, 2}, we let:

[[αprei]]
d
G,η(X) = λs ∈ S.η(α)[[prei]]

p
G(X)(s) (22)

[[(1 − α) + αprei]]
d
G,η(X) = λs ∈ S.(1 − η(α)) + η(α)[[prei]]

p
G(X)(s). (23)

Thus, the discounted interpretation of αprei is equal to the probabilistic in-
terpretation of prei, discounted by a factor α; the discounted interpretation of
(1−α)+αprei is equal to the probabilistic interpretation of prei, discounted by
a factor of α, and with 1 − α added to it. We denote by disc(G, η) = (L(S �→
[0, 1],≤), [[·]]dG,η) the resulting semantics for the µ-calculus, and we write [[·]]dG,η

for [[·]]disc(G,η), omitting G when clear from the context.
While (22) is the expected definition, (23) requires some justification. Con-

sider a game structure G = 〈S,M, Γ1, Γ2, δ〉. First, notice that this definition
ensures that pre1 and (1 − α) + αpre2 are dual: in fact, for s ∈ S we have

1 − [[αpre1]]
d
η(X)(s) = 1 − η(α)[[pre1]]

p(X)(s)

= 1 − η(α) + η(α) − η(α)[[pre1]]
p(X)(s)

= (1 − η(α)) + η(α)
[
1 − [[pre1]]

p(X)(s)
]

= (1 − η(α)) + η(α)[[pre2]]
p(∼X)(s)

= [[(1 − α) + αpre2]]
d
η(∼X)(s).



120 L. de Alfaro

The definitions (22) and (23) can also be justified by showing how the resulting
predecessor operators can be used to solve discounted reachability and safety
games in a way analogous to (18) and (19). Let T ⊆ S be a set of target states,
and fix a player i ∈ {1, 2}. Consider a discounted reachability game, in which
player i gets the payoff η(α)k when the target T is reached after k steps, and the
payoff 0 if T is not reached. The maximum payoff that player i can guarantee is
given by

[[µx.(T ∨ αprei(x))]]
d
η. (24)

As an example, consider again the game matchbit, along with the formula
[[µx.({sgoal} ∨ αprei(x))]]dη, and let r = η(α). Let X0 = λs.0 and, for k ∈ N, let
Xk+1 = χ({sgoal}) � [[αpre1]]dη(Xk). We can verify that X0(stry) = 0, X1(stry) =
r( 1

2 · 0 + 1
2 · 1) = r

2 , X2(stry) = r( 1
2 · r

2 + 1
2 · 1) = r

2 + r2

4 , and limk→∞Xk(stry) =
r/(2 − r) = [[µx.({sgoal} ∨ αprei(x))]]dη(stry).

Consider now a discounted safety game, in which player i gets the payoff
1 − η(α)k if the game stays in T for k consecutive steps, and the payoff 1 if T is
never left. The maximum payoff that player i can guarantee is given by

[[νx.(T ∧ (1 − α) + αprei(x))]]
d
η. (25)

Indeed, one can verify that for all s ∈ S, we have

1 − [[µx.(T ∨ αpre1(x))]]
d
η(s) = [[νx.(¬T ∧ (1 − α) + αpre2(x))]]

d
η(s) (26)

indicating that the payoff player 1 can guarantee in a discounted T -reachability
game is equal to 1 minus the payoff that player 2 can guarantee for the discounted
¬T -safety game.

Above, we have informally introduced discounted reachability and safety ga-
mes in terms of payoffs associated with the traces. How are these payoffs defined,
for more general goals? And what is the precise definition of the games that (24)
and (25) solve? To answer these questions, we introduce the linear semantics
of discounted µ-calculus, and we once more relate the linear semantics to the
branching one.

5.2 The Linear Semantics of Discounted µ-Calculus

A discounted property is the interpretation of a discounted µ-calculus formula
over linear traces. Similarly to the probabilistic case, the linear semantics of
discounted µ-calculus associates with each trace a number in the interval [0, 1]
obtained by evaluating the µ-calculus formula over the trace, and taking the
value at the initial state of the trace.

Consider a set Υ of discount factors, along with a discount factor interpreta-
tion η : Υ �→ [0, 1]. A trace σ ∈ Sω gives rise to an interpretation Iη

σ = (L(N �→
[0, 1],≤), [[·]]dσ,η) for the discounted µ-calculus formulas in DMCS,Υ . As in the
probabilistic case, all predicates p ∈ 2S are interpreted as their characteristic
function, i.e., for all k ≥ 0 we have [[p]]pσ(k) = 1 if σk ∈ p, and [[p]]pσ(k) = 0 if
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σk 	∈ p. The definitions (22) and (23) can be simplified, since in a trace, every
location has a single successor. For all X : N �→ [0, 1] and i ∈ {1, 2} we let

[[αprei]]
d
σ,η(X) = λk.

[
η(α)X(k + 1)

]

[[(1 − α) + αprei]]
d
σ,η(X) = λk.

[
(1 − η(α)) + η(α)X(k + 1)

]
.

Given a closed µ-calculus formula φ ∈ DMCS,Υ , we then define its discounted
linear semantics [φ]dlinS,η : Sω �→ [0, 1] by [φ]dlinS,η (σ) = [[φ]]I

η
σ (0). A discounted

property is the mapping Sω �→ [0, 1] defined by the linear semantics [φ]dlinS,η of
a closed discounted µ-calculus formula φ ∈ DMCS,Υ .

As an example, consider again a subset T ⊆ S of target states, and a player
i ∈ {1, 2}. The payoff of the discounted reachability game considered informally
in Sect. 5.1 can be defined by [µx.(T ∨ αprei(x))]dlinS,η : indeed,

[µx.(T ∨ αprei(x))]
dlinS,η (σ) = η(α)k,

where k = min{j ∈ N | σj ∈ T}. The fact that (24) represents the maximum
payoff that player 1 can achieve in a game structure G can be formalized as

〈1〉qG [µx.(T ∨ αprei(x))]
dlinS,η = [[µx.(T ∨ αprei(x))]]

d
G,η. (27)

Similarly, the payoff of the discounted safety game considered informally in
Sect. 5.1 can be defined by [νx.(T ∧ (1 − α) + αprei(x))]dlinS,η : indeed,

[νx.(T ∧ (1 − α) + αprei(x))]
dlinS,η (σ) = 1 − η(α)k,

where k = min{j ∈ N | σj 	∈ T}. Also in this case, for all game structures G we
have:

〈1〉qG [νx.(T ∧ (1 − α) + αprei(x))]
dlinS,η = [[νx.(T ∧ (1 − α) + αprei(x))]]

d
G,η.

(28)

The relations (27) and (28) are just two special cases of the general relation
between the linear and branching semantics of discounted µ-calculus, expressed
by the following theorem.

Theorem 6. For all game structures G, all players i ∈ {1, 2}, all sets Υ of
discount factors, all discount factor evaluations η ∈ (Υ �→ [0, 1]), and all closed
µ-calculus formulas φ ∈ DMCS,Υ in strongly deterministic form that contain
only the function symbols αprei and (1 − α) + αprei for α ∈ Υ , we have that
[[φ]]dG,η = 〈i〉qG [φ]dlinS,η .

This theorem is the main result about the verification of discounted properties,
as it relates a discounted property [φ]dlinS,η to the valuation [[φ]]dG,η computed by
the verification algorithm φ over the game structure G.
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Determinacy. Since discounted properties are defines as the linear semantics of
discounted µ-calculus formulas, the duality of discounted control problems can
be stated as follows.

Theorem 7. For all game structures G, all sets Υ of discount factors, all
discount factor evaluations η ∈ (Υ �→ [0, 1]), and all closed µ-calculus formulas
φ ∈ DMCSG ,Υ in strongly deterministic form that contain only the function
symbols αpre1 and (1 − α) + αpre1 for α ∈ Υ , we have that

1 − 〈1〉qG [φ]dlinSG ,η = 〈2〉G
q [¬φ]dlinSG ,η .

5.3 Relation between Discounted and Probabilistic µ-Calculus

Given r ∈ [0, 1], denote by E r(Υ ) : Υ �→ [0, r] the set of all discount factor
interpretations bound by r. If η ∈ E r(Υ ) for r < 1, we say that η is contractive.
A fixpoint quantifier µx or νx occurs guarded in a formula φ if a function symbol
pre occurs on every syntactic path from the quantifier to a quantified occurrence
of the variable x. For example, in the formula µx.(T ∨ αprei(x)) the fixpoint
quantifier occurs guarded; in the formula (1−α)+αprei(µx.(T ∨x)) it does not.
Under a contractive discount factor interpretation, every guarded occurrence
of a fixpoint quantifier defines a contractive operator on the values of the free
variables that are in the scope of the quantifier. Hence, by the Banach fixpoint
theorem, the fixpoint is unique. In such cases, we need not distinguish between
µ and ν quantifiers, and we denote both by κ.

If η(α) = 1, then both [[αprei]]dG,η and [[(1 − α) + αprei]]dG,η reduce to the
undiscounted function [[prei]]

p
G , for i ∈ {1, 2}. The following theorem extends

this observation to the complete µ-calculus, showing how the semantics of the
discounted µ-calculus converges to the semantics of the undiscounted µ-calculus
as the discount factors approach 1. To state the result, we extend the seman-
tics of discounted µ-calculus to interpret also the functions pre1, pre2, letting
[[prei]]dG,η = [[prei]]

p
G for all i ∈ {1, 2}, game structures G, and all discount inter-

pretations η. We also let η[α := a] be the discount factor interpretation defined
by η[α := a](α) = a and η[α := a](α′) = η(α′) for α 	= α′.

Theorem 8. [dAHM03] For all game structures G, Let φ(x) ∈ DMCSG ,Υ be
a µ-calculus formula with free variable x, and discount factor α. The following
assertions hold:

1. If x and α always and only occur in the context αprei(x), for i ∈ {1, 2}, then

lim
a→1

[[λx.φ(αprei(x))]]
d
G,η[α:=a],e = [[µx.φ(prei(x))]]

d
G,η,e.

2. If x and α always and only occur in the context (1 − α) + αprei(x), then

lim
a→1

[[λx.φ((1 − α) + αprei(x))]]
d
G,η[α:=a],e = [[νx.φ(prei(x))]]

d
G,η,e.
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The remarkable fact is that the order of quantifiers in probabilistic µ-calculus cor-
responds to the order in which the limits are taken in discounted µ-calculus. For
instance, for a game structure G and T ⊆ SG , let φ = λy.λx.((¬T ∧ αprei(x)) ∨
(T ∧ (1 − β) + βprei(y))). We have that

lim
a→1

lim
b→1

[[φ]]dG,η[α:=a,β:=b] = [[µx.νy.((¬T ∧ prei(x)) ∨ (T ∧ prei(y)))]]
p
G (29)

lim
b→1

lim
a→1

[[φ]]dG,η[α:=a,β:=b] = [[νy.µx.((¬T ∧ prei(x)) ∨ (T ∧ prei(y)))]]
p
G . (30)

Formula (29) is the solution of probabilistic co-Büchi games with goal ��T ,
while (30) is the solution of probabilistic Büchi games with goal ��T .

6 Equivalence Metrics

To complete the extension of the classical boolean framework for specification,
verification, and control to the quantitative case, we show how the classical
notion of bisimulation can be extended to the quantitative setting, and how our
quantitative µ-calculi characterize quantitative bisimulation, just as the boolean
µ-calculus, like CTL, characterizes bisimulation.

6.1 Alternating Bisimulation

In the boolean setting, and for deterministic game structures, the notion of bisi-
mulation for games is called alternating simulation [AHKV98]. Fix a determini-
stic game structure G = 〈S,M, Γ1, Γ2, δ〉, along with a set P ⊆ 2S of predicates.
A relation R ⊆ S × S is a player-1 alternating bisimulation if, for all s, t ∈ S,
(s, t) ∈ R implies that s ∈ p ↔ t ∈ p for all p ∈ P, and if (s, t) ∈ R, then

∀a1 ∈ Γ1(s).∃b1 ∈ Γ1(t).∀b2 ∈ Γ2(t).∃a2 ∈ Γ2(s).R̂(τ(s, a1, a2), τ(s, b1, b2)),

∀b1 ∈ Γ1(t).∃a1 ∈ Γ1(s).∀a2 ∈ Γ2(s).∃b2 ∈ Γ2(t).R̂(τ(s, a1, a2), τ(s, b1, b2)),

where R̂({t1}, {t2}) iff (t1, t2) ∈ R, for all t1, t2 ∈ S. The definition of a player-2
alternating bisimulation is obtained by exchanging in the above definition the
roles of players 1 and 2. A relation R is an alternating bisimulation if it is both
a player-1 and a player-2 alternating bisimulation.

To obtain the coarsest player 1 alternating bisimulation, i.e., the largest re-
lation that is a player-1 alternating bisimulation, we can use a symbolic fixpoint
approach [Mil90], which in view of our extension to the quantitative case, we
state as follows. A binary distance function is a function d : S × S �→ {0, 1}
that maps each pair of states s, t ∈ S to their distance d(s, t) ∈ {0, 1}, and such
that for all s, t, u ∈ S, we have d(s, t) = d(t, s) and d(s, t) ≤ d(s, u) + d(u, t). For
distance functions d, d′ we let d ≤ d′ iff d(s, t) ≤ d′(s, t) for all s, t ∈ S. We define
the functor F1 mapping binary distance functions to binary distance functions:
for all binary distance functions d and all s, t ∈ S, we let F1(d)(s, t) = 1 if there
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is p ∈ P such that s ∈ p 	↔ t ∈ p, and we let

F1(d)(s, t) = max






max
a1∈Γ1(s)

min
b1∈Γ1(t)

max
b2∈Γ2(t)

min
a2∈Γ2(s)

d̂(τ(s, a1, a2), τ(s, b1, b2)),

max
b1∈Γ1(t)

min
a1∈Γ1(s)

max
a2∈Γ2(s)

min
b2∈Γ2(t)

d̂(τ(s, a1, a2), τ(s, b1, b2))






otherwise, where d̂({t1}, {t2}) = d(t1, t2) for all t1, t2 ∈ S. A player-1 alternating
bisimulation R is simply a relation whose characteristic function is a fixpoint of
F1, i.e., it is a subset R ⊆ S×S such that χ(R) = F1(χ(R)), where χ(R)(s, t) is 0
if (s, t) ∈ R, and is 1 otherwise. In particular, the coarsest player-1 bisimulation
Bbin

1 is given by d∗
1 = χ(Bbin

1 ), where d∗
1 is least fixpoint of the functor F1, i.e.,

the least distance function that satisfies d∗
1 = F1(d∗

1). We define the coarsest
player-2 alternating bisimulation Bbin

2 in an analogous fashion, with respect to a
functor F2 obtained by swapping the roles of players 1 and 2 in the definition of
F1. Finally, the coarsest alternating bisimulation Bbin is given by χ(Bbin) = d∗,
where d∗ is the least distance function that satisfies both d∗ = F1(d∗) and
d∗ = F2(d∗). When we wish to make explicit the dependence of the bisimulation
relations on the game and on P, we write Bbin

G,P , Bbin
1,G,P , and Bbin

2,G,P for Bbin, Bbin
1 ,

and Bbin
2 . The following theorem, derived from [AHKV98], relates alternating

bisimulation and boolean µ-calculus.

Theorem 9. For a deterministic game structure G, the following assertions
hold:

1. For all i ∈ {1, 2}, we have that (s, t) 	∈ Bbin
i,G,P iff there is a closed µ-

calculus formula φ ∈ BMCSG containing only predicates in P and functions
in {prei, dprei} such that s ∈ [[φ]]bG and t 	∈ [[φ]]bG.

2. (s, t) 	∈ Bbin
G,P iff there is a closed µ-calculus formula φ ∈ BMCSG containing

only predicates in P such that s ∈ [[φ]]bG and t 	∈ [[φ]]bG.

6.2 Game Bisimulation Distance

To obtain a quantitative version of alternating bisimulation, we adapt the defini-
tion of Fi to the case of probabilistic game structures and quantitative distance
functions [dAHM03]. Fix a game structure G = 〈S,M, Γ1, Γ2, δ〉, along with a
set P ⊆ 2S of predicates. A distance function is a mapping d : S × S �→ [0, 1]
such that for all s, t, u ∈ S we have d(s, t) = d(t, s) and d(s, t) ≤ d(s, u)+d(u, t).
We define discounted game bisimulation [dAHM03] with respect to a discount
factor r ∈ [0, 1]; the undiscounted case corresponds to r = 1. Given r ∈ [0, 1],
we define the functor Gr mapping distance functions to distance functions: for
every distance function d and all states s, t ∈ S, we define Gr(d)(s, t) = 1 if
there is p ∈ P such that s ∈ p 	↔ t ∈ p, and

Gr(d)(s, t) =

r · max






sup
ζ1∈D1(s)

inf
ξ1∈D1(t)

sup
ξ2∈D2(t)

inf
ζ2∈D2(s)

D(d)(δ̂(s, ζ1, ζ2), δ̂(t, ξ1, ξ2)),

sup
ξ1∈D1(t)

inf
ζ1∈D1(s)

sup
ζ2∈D2(s)

inf
ξ2∈D2(t)

D(d)(δ̂(s, ζ1, ζ2), δ̂(t, ξ1, ξ2))
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otherwise. For a distance function d and distributions ζ1 and ζ2, we let
D(d)(ζ1, ζ2) be the extension of the function d from states to distributions
[vBW01a] given by the solution to the linear program max

∑
s∈Q(ζ1(s)−ζ2(s))ks

where the variables {ks}s∈Q are subject to ks − kt ≤ d(s, t) for all s, t ∈ Q. The
least distance function that is a fixpoint of Gr is called r-discounted game bisi-
milarity, and denoted Bdisc

r . On MDPs (one-player game structures), for r < 1,
discounted game bisimulation coincides with the discounted distance metrics
of [vBW01a]. Again, we write Bdisc

r,G,P when we wish to make explicit the depen-
dency of Bdisc

r from the game G and from the subset of predicates P.
By the minimax theorem [vN28], we can exchange the two middle sup and

inf operators in the definition of Gr; as a consequence, it is easy to see that
the definition is symmetrical with respect to players 1 and 2. Thus, there is
only one version of (un)discounted game bisimulation, in contrast to the two
distinct player-1 and player-2 alternating bisimulations. Indeed, comparing the
definition of Fi and Gr, we see that alternating bisimulation is defined with
respect to deterministic move distributions, and the minimax theorem does not
hold if the players are forced to use deterministic distributions. The following
theorem relates game bisimilarity with quantitative and discounted µ-calculus.

Theorem 10. [dAHM03] The following assertions hold for all game structures
G.

1. Let PMCSG ,P be the set of closed µ-calculus formulas in PMCSG that contain
only predicates in P. For all s, t ∈ SG we have

Bdisc
1,G,P(s, t) = sup

φ∈PMCSG ,P

∣∣[[φ]]pG(s) − [[φ]]pG(t)
∣∣.

2. Let DMCSG ,Υ,P be the set of closed µ-calculus formulas in DMCSG ,Υ that
contain only predicates in P. For all s, t ∈ SG and all r ∈ [0, 1], we have

Bdisc
r,G,P(s, t) = sup

φ∈DMCSG ,P
sup

η∈Er(Υ )

∣∣[[φ]]dG,η(s) − [[φ]]dG,η(t)
∣∣.

It is possible to extend the connection between discounted µ-calculus and equi-
valence relations further, including results about the stability of bisimulation
and discounted µ-calculus with respect to perturbations in the game structure
[DGJP02,dAHM03].
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