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Abstract.  In this paper we solve the following problem: "given a digital 
circuit composed of gates whose real-valued delays are in an integer- 
bounded interval, is there a way to discretize time while preserving the 
qualitative behavior of the circuit?" This problem is described as open in 
[BS94]. When "preservation of qualitative behavior" is interpreted in a 
strict sense, as having all original sequences of events with their original 
ordering we obtain the following two results: 
1) For acyclic (combinatorial) circuits whose inputs change only once, 
the answer is positive: there is a constant 5, depending on the maximal 
number of possible events in the circuit, such that if we restrict all events 
to take place at multiples of 5, we still preserve qualitative behaviors. 
2) For cyclic circuits the answer is negative: a simple circuit with three 
gates can demonstrate a qualitative behavior which cannot be captured 
by any discretization. 
Nevertheless we show that  a weaker notion of preservation, similar to 
that  of [HMP92], allows in many cases to verify discretized circuits with 

--- 1 such that  the verification results are valid in dense time. 

1 I n t r o d u c t i o n  

The  analysis of digital circuits I whose components  exhibit  uncer ta in  delay pa- 
rameters  is a challenging task. A commonly-used  model  for specifying such sys- 
tems is the bi-bounded delay model  where the ou tpu t  of every gate  passes t h rough  
a delay element character ized by some interval [l, u]. Roughly  speaking, changes 
at  the  input  por t  of the  delay element are p ropaga ted  to  its ou tpu t  por t  after 
some t ime t taken f rom the  interval [/, u]. 

t The results were obtained while the author was a visiting professor at ENSIMAG, 
INPG, Grenoble 
The results were obtained while the author was a visiting professor at UJF,  Grenoble. 

1 In this paper, we treat digital circuits which we consider to be a well-behaving subset 
of timed automata. While many of the results can be extended to arbitrary timed 
automata, we prefer clarity of presentation over generality. 
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Adding quanti tat ive timing information to a discrete transit ion system .4 
amounts to connecting .4 to a special system called Time, which is viewed as 
a transit ion system with a special structure, namely, a linear order, such tha t  
all transitions go "to the right". The composition of .4 and Time consists of a 
system where transitions of .4 and t ime passage transitions are interleaved. 

Consider the example in figure 1: Initially we have a two-state au tomaton  
which can decide at any time to take a single transition labeled by a, and a t ime 
structure annota ted  with t transitions. Adding t iming constraints to .4 consists 
in: 1) annotat ing the a transit ion with a condition T E [2, 4] on the s tate  of Time 
and 2) adding "idling" transitions to both  in order to synchronize: each system 
takes its real transitions when the other is idling. The product  of the two is a 
system which makes a at some t ime in [2, 4]. 

T E [2,4 a 

a a a a a 

t 

Fig. 1. An initialized product of a two-state one-transition automaton with Time. 

R e m a r k :  This picture is intentionally over-simplified, mainly because we do 
not have two consecutive transitions and the reference t ime value is always 0. 
Otherwise we need to introduce an additional unbounded state variable of type 
Time, memorizing the t ime of the last transition since the beginning. If we had 
a product  of several systems, we would have needed such a variable for each. 

Note tha t  we were not very specific about  one important  proper ty  of Time, 
whether its order is dense or discrete. One can imagine (if not draw) an analogue 
of figure 1 where the states of Time are labeled by all the real numbers. The 
structure of the interaction between Time and .4 remains the same. In fact, 
there is a slight misconception concerning the significance of t imed models such 
as t imed automata .  Our view is tha t  one should distinguish two aspects of t imed 
models: one is the interaction with a special process such as Time, whose state- 
space admits  order and metric, and the other is the use of continuous dense 
Time. 2 The  latter is not necessarily implied by the former, and the goal of the 

2 We owe some of this insight to [RT97]. 
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paper  is to investigate what expressive power (in the sense of modeling) is lost 
if we refrain from using dense t ime models, and stay within the familiar (to 
computer  scientists, tha t  is) realm of discrete systems. 

Consider again figure 1 with a discrete t ime interpretation where every t 
indicates 1 t ime unit. Wha t  does it really mean to move to a coarser t ime scale 
of 2 t ime units? One interpretation is that  odd Time states are removed and tha t  
t represents 2 units. Alternatively, we can maintain the same intrinsic s tructure 
of Time but  erase all the a transitions from the odd t ime instants, restricting the 
product  system to take untimed transitions only at even times. In this example 
the possibility of taking a at T = 3 is lost. If  we restrict transitions to occur  at 
multiples of 5 we may miss the transit ion altogether. However, if the granulari ty 
of t ime is at least as fine as the scale of the timing constraints, we are sure not 
to miss any event in a single-clock (single variable) system. Suppose now tha t  
we have two such systems running in parallel, one can make a in [2, 3] and the 
other can make b at [3, 4] (figure 2). Here, the integer time-scale allows a and 
b to occur either simultaneously (at 3) or one after the other. By restricting 
transitions to occur either at odd or even t ime instants, only one of the above 
possibilities is allowed. 

t 

b 

t 

Fig. 2. Two one-transition timed automata in parallel. 

The passage from dense to discrete t ime can be viewed in a similar spirit. We 
can assume a generic dense model of Time, isomorphic to (llr <),  and regard 
every Time discretization as a restriction of the discrete transitions to occur at 
a certain discrete subset of Time instants. Most of this paper  is dedicated to the 
investigation of the effects of such restrictions on the semantics of au tomaton  
and circuit models. More concretely, if ,4 is the t imed au tomaton  associated 
with a circuit, LA is its corresponding set of behaviors (Boolean-valued signals) 
and [LA] is its set of qualitative behaviors (Boolean-valued sequences, obtained 
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from L.a by suppressing the quantitative timing information), we ask under what 
conditions there exists a discretized semantics L~4 such that  [L~4 ] = [LA]. Note 
that  the inclusion [L~] C_ [L.4] follows immediately from L~ _C LA. 

An important  related question is under what conditions we have [L~AL~v] = 
0 iff [L.a A L ~ ]  -- ~ where L ~  is the complement of the specification for a 
property we wish to establish for the automaton ,4. When this holds, verification 
results on the discrete and dense semantics coincide. This is very significant 
because discrete time models can benefit from many techniques developed for 
untimed verification. For example, in [ABK+97,BMPY97] we have presented 
an approach for discrete time verification based on viewing clocks as bounded 
integer variables, and representing sets of clock valuations using BDDs on the 
bits of these values. In IBM98] a claim of the form [L~ M L ~ ]  = 0 has been 
verified for a discretized system of up to 55 clocks. However, due to the strict 
inclusion between the semantics, it was not at all evident that  the verification 
results are valid for the dense time model. The results of the current paper show 
that  for the example treated in [BM98], this is indeed the case, i.e. [LAAL~] = 0. 
Similar investigations were carried out in [HMP92] using a different model and 
a different technique. 

The rest of the paper is organized as follows: In section 2 we describe the 
circuit and delay models that  we use. In section 3 we show how the realizability of 
a qualitative behavior is related to the emptiness of certain polyhedra (possibly 
infinite-dimensional). These results are used to show that ,  essentially, acyclic 
circuits (and automata) admit a discretization, while cyclic circuits (and timed 
automata  in general) do not. In section 4 we show that  untimed properties can 
essentially be verified using discrete time models. Some short contemplations on 
the potential implications of the results conclude the paper. 

2 Signals and Circuits 

Let T = R+, B = {0,1} and K = { 1 , . . . , k } .  

D e f i n i t i o n  1 ( B o o l e a n  Signals ) .  A Boolean signal is a le~t-eontinuous func- 
tion ~ : T --~ ~k admitting a countable 3 increasing sequence (which is either 
finite or diverging) J ( ~ )  = to, t l , . . ,  of transition points such that to = 0 and a 
is constant at every interval (tj, tj+l] and discontinuous at every t j .  

A signal c~ is ultimately-constant if J(c~) is finite. We denote the set of all 
Boolean signals by S k. A Boolean function is a function f : B k --+ B for some 
k > 0. For any such function we define its pointwise extension f : 8 k -+ S in 
the obvious way, namely fl = f((~) if[ for every t E T, fl[t] = f((~[t]). We call 
this an instantaneous signal function. At the level of modeling in which we are 
interested, a gate is usually viewed as a composition of an instantaneous function 
and a delay element which holds the output  of the function for some time before 
transmitt ing it outside. There are several realistic properties of delays which 
must be accounted for in the model: 

3 And of order type < w if you want to be pedantic. 
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1. Positive lower-bound: there is a minimal amount of time that  has to elapse 
between the change of the input and the change in the output. 4 

2. Uncertainty: the exact delay is usually unknown and can only be estimated 
to be within an interval. 

3. Inertia: small fluctuations in the input are ignored by the delay element, 
and only changes that  persist for a minimal duration are propagated to the 
output. 

These considerations are reflected in the following definition: 

De f in i t i on  2 ( N o n - D e t e r m i n i s t i c  I n e r t i a l  De lay) .  Let  I and u be two non- 
negative numbers such that I < u. The non-determinis t ic  inertial delay associated 
with l , u  is a funct ion A[t,u ] : 1~ x S --~ 2 8 defined as: fl E A[t,**](b,a) i f f  

1. fl[t] = b for  every t E [0, l) 
(Initialization). 

2. For every t > l, t E f f ( f l )  ~ 3t' E ,7(a)  M [t - u, t - l] such that fi[t] = a[t'] 
and (t', t) n = O. 
(Every change in fl must be preceded by a persistent change in a which 
happened at least l time units before). 

3. For every t E f l (a ) ,  (t, t + u] M fl(c~) ~ • V [t + l, t + u] M J ( f l )  ~ 0. 
(Every u-persistent change in a must be reflected in fl). 

Essentially this means that  changes in a that  persist less than l are ignored 
(filtered), those that  persist between l and u time can be either filtered or prop- 
agated to fl, and those that  persist for u or more time mus t  be propagated to ft. 
The distance between a change in a and its corresponding change in fl must be 
the interval [l, u]. These notions are illustrated in figure 3. 
R e m a r k :  This model is only one among possible alternative models for the 
delay phenomenon. One could assume, for example, that  changes should persist 
for at least 11 time units, but propagated after 12, 12 > 11 time. On the other 
hand, the requirement that  an input change persists until its propagation to 
the output may be relaxed. Incorporating such delay models can be done in the 
timed automaton framework by adding additional states to the basic automaton. 
The choice among models depends on the trade-off between model complexity 
and the faithfulness to the physical reality. Also, we use the closed interval [l, u] 
in the discussion, but the results in the following sections treat intervals which 
can be open at one or two ends. 

Non-deterministic delays pose problems for traditional simulation methods 
as the next "event" in the simulation can take place anywhere within an interval. 
In the sequel, in order not to drag with us too much notation, we will omit the 
reference to the initial value from the delay equations and use equations of the 
form fl = A[/,~] (a). 

De f in i t i on  3 (Ci rcu i t ) .  A k-variable digital circuit is a tuple JY" = (X ,  F, D)  
where  X = { = 1 , . - . ,  } is a set  of variables, F = { $ 1 , - . - ,  } is a set  of Boolean 

4 Some models relax this condition and allow unboundedly small (but positive) delays. 
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Fig.  3. The signal s2 is a result of filtering away changes m 8 1  which do not persist for 
2 t ime units, s3 is an ideal delay of Sl, shifted by 2, while s4 is the inertial [2, 2J-delay 
of sl. Finally {s4, ss, s6, sT} C_ A [ 2 , 3 ] ( 8 1 ) .  

functions of the form fi : ~k ~ ~ and D = { ( l l , u l ) , . . . , ( l k , u k ) }  is a set o/ 
positive pairs o] integers such that li < ui. An observable  behavior  of the circuit 
is any Bk-valued signal x = ( x l , . . . , X k )  satisfying the system o] simultaneous 
inclusions: 

�9 . .  (1) 

xk e A [ I ~ , , ~ I ( A ( x I , . . . ,  x ~ ) )  

A circuit appears in figure 4-(a). The correspondence between a circuit and 
the system of inclusions (1) is straightforward and we will refer to the latter as 
the description of the circuit. Needless to say, the system of inclusions (1) need 
not have a unique solution. The set of solutions is called the semantics of the 
circuit and is denoted by LN. 

For certain purposes it is useful to introduce an auxiliary set of variables 
Y = { Y l , . . .  ,Yk} and consider the signal y = ( Y l , . . . , Y k )  such that  for every 
i E K ,  

Yi = f i ( x l , . . . ,  Xk). 

Every Yi represents the "hidden" value of xi,  that  is, the value that  xi is about 
to obtain given that  f i ( X l , . . . ,  Xk) remains stable for a sufficiently long period. 
The signal y is called the hidden behavior associated with x. 
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f !/ 
! y l  

X l  

y2 

X2 

(a) (b) 

Fig. 4. (a) A 3-variable circuit. (b) An acyclic circuit (delays omitted) with 3 primary 
inputs. 

In IMP95] it has been shown how to translate every equation of the form xi E 
A[tl,U d ( f i ( x l , . . . ,  x~)) into a timed automaton with two Boolean variables (four 
states) and one clock (see figure 5). The composition of these k automata  yields 
an automaton ..4 with 2 k states 5 and k clocks, whose semantics LA is exactly 
L•. This translation has been used for applying timed automata  verification 
techniques [D89,AD94,HNSY94,ACD93] and tools [DOTY96] to various circuits, 
e.g. [MY96,BMPY97,TB97,BM98]. 

The model captured by the system of inclusions (1) is very general in the sense 
that  it assumes that  all the Boolean functions are k-ary, and, in principle, every 
change in one variable can trigger a change in any other variable. In practice, 
gates have a limited fan-in and each fi refers only to a small subset of the 
variables. Moreover there is some order in which information flows which can be 
captured by the wiring topology of the circuit (or the syntactic structure of F) .  
For example, if the only equation in which xi appears on the left-hand side is 
of the form xi E A[d,oo]("~xi), x i is an input signal whose rising and falling are 
separated by at least d time units. Similarly xi is an unconstrained input signal 
if it does not appear in the left-hand side of any equation. 

In the analysis of synchronous circuits with a central clock, it is often assumed 
that  the circuit is acyclic, i.e. there is no cycle in the circuit layout. Such a circuit 
appears in figure 4-(b). The signals entering at the top are called the primary 
inputs of the circuit. A primary input which may change at most once at the 
beginning of the execution can be modeled by a timed automaton of the type 
appearing in figure 5-(b). We leave it to the reader to verify that  a product  of 
such input au tomata  with the automata  corresponding to the equations of an 
acyclic circuit is an acyclic automaton (no cycles in the transition graph), and 
hence the number of transitions in any run is finite and bounded. 

5 After composition, the values of the y-components are uniquely determined by the 
x-components and hence only 2 k out of the 4 k global states are possible. 
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Yi = l/Ci := 0 

' ~ 2  
Yl = 

fi =OACI < u ~  

Yl = o ^  / / 
I i < CiA / / /  
,o, ? / /  

/ / f , '  z ~?^ ,,=o^ I / /  ~'~o,^ 
I i < CIA Ci <_ ui 

iA  

f l  =IA 
I i ~ C i A 
C i <__ u i 

r ~r~le 

~ tr~e 

(a) (b) 

Fig. 5. (a) The automaton for the equation xi E A[q,~d(/i(Xl,... ,xk)). The states 
of the automaton correspond to the values of (xi, y,). (b) An acyclic automaton for a 
primary input. 

3 Qualitative Behaviors and their Realizability 

In this section we introduce the notion of a qualitative behavior, a result of 
stripping away the quantitative properties of a signal and considering only the 
ordering relation among events. 

Let x be an observable behavior of a given circuit and let y be the corre- 
sponding hidden behavior. We define three function s  Ey and B : f l (x)  --~ 2 g 
as follows: 

Bx(j)  = {i : x~[tj] # x~[t~_~]} 
By(j) = {i:  y,[tj] # y~[tj-l]} 
B(j) = Bx(j) UBy(j) 

In other words, Bx (j) is the set of all indices of the x-variables that  change at 
time tj.  If i E Bx(j) (resp. i E By(j)) we say that  tj is an x/-event (resp. a 
yi-event). If i E s  we say that  tj is an / -event .  Note that  By(j) ?~ 0 only if 
Bx(j) # 0. 

Two behaviors x and x' are equivalent, denoted by x ,~ x ~, i f  their correspond- 
ing functions Bx and B~ are identical. A qualitative behavior is an equivalence 
class of ,,% denoted by [x], and it can be viewed as a string (without repetition) 
taken from (Bk) * U (Bk) ~, which records the values of x at i f (x) .  We extend 
this notion to sets of signals, i.e. [L] -- {[x] : x E L}. The number of events in a 
signal x is defined as: 

Z(x)= ~ IBx(J)l. 
jeJ(~) 
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Let Af = (X, F, D) be a circuit. A signal can be generated by Af if it satisfies 
two types of constraints. The first type is logical and does not depend on the 
delay parameters: 

1. For every i, Yi = f i ( x l , . . . ,  xk), where f~ E F.  
2. Every yi-event is followed by an/-event .  This means that  every triggering of 

a variable is either aborted or concluded successfully. 
3. Every xi-event is preceded by a yi event (without any xi-event between 

them): observable changes must be triggered first. 

On the basis of these conditions we can rule out qualitative behaviors which 
are not realizable regardless of quantitative timing. For the rest of signals we 
define a partial function ~" : K • i f (x)  --+ i f (x) ,  which associates with every 
i E {1 , . . . ,  k} and j ,  such that  tj is a yi-event, a number m > j such that  trn is 
the time of the next/-event. Formally: 

:F(i,j) = m iff i E Ey(j)  A i E s  A 
V m ' e [ j + l , m - 1 ]  i ~ ( m ' ) .  

Note that  ~ is a qualitative characteristics of a signal and is identical for every 
x ~ E [x]. Moreover, the size of 5 r (viewed as a relation) is at most Z(x) .  The tem- 
poral distance between t m and tj must satisfy the timing constraints associated 
with xi. 

C l a i m  1 ( C h a r a c t e r i s t i c  I n e q u a l i t i e s ) .  A signal x can be generated by a 
circuit Af = (X, F, D) iff it satisfies the logical constraints as well as the following 
set of inequalities over i f (x )  (where (li, ui) E D): 

- Ordering Cons tra in ts :  
.for e,,e,'y j < IJ(x)l  

0 < t j + l  -- t j  (2) 

- T i m i n g  Cons tra in ts :  
for every m = ~ ( i , j )  such that i r Ex(m)  (abortion) 

t m -  t~ < u~ (3) 

for every m = U(i, j )  such that i E Cx (m) (completion) 

li <_ tra - tj < ui (4) 

We denote the set of solutions of the system of inequalities (2), (3), and (4) 
associated with [x] by PN([x]). We use the term t-polyhedra to denote subsets 
of T '~ = ~ which can be written as intersections of half-spaces of the form 
tm - tj ~ c where c is an integer and -< is either < or <. By definition, t- 
polyhedra are convex. 

C o r o l l a r y  1. A qualitative behavior Ix] is realizable by a circuit Af iff its asso- 
ciated t-polyhedron P~c([x]) is non-empty. 
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Let T~ denote the set {mS : m E 51}. An n-dimensionai non-empty polyhe- 
dron 7 ~ is 5-discretizable if it has a non-empty intersection with the 5-grid T~. 
The problem of behavior-preserving discretization is reduced to a linear-algebraic 
problem: 

C o r o l l a r y  2. A qualitative behavior Ix] realizable by a circuit Af is preserved by 
a 5-discretization o] Time iff 79~'([x]) is 5-discretizable. 

We distinguish three types of t-polyhedra: open (all inequalities are strict), 
closed (all inequalities are non-strict), and mixed. Note that  a non-empty open 
t-polyhedron is full-dimensional while a closed or mixed one might have degen- 
eracies. 

L e m m a  1. Every non-empty t-polyhedron 79 C_ l ~  contains: 

1. a point of N n, when 79 is closed; 
2. a point ( t l , . . . ,  tn) with all fractional parts of coordinates (ti) different from 

O, when 79 is open; 
3. a point, when 79 is mixed. 

P r o o f :  

1. First notice that  if l < x - 9 ~ u then l < LxJ - [9J ~- u when l ,u  E N. 
Suppose ( t l , . . . ,  tn) E 79. It is immediate that  ( [ t l J , . . . ,  [tnJ) e 79 n i ~ .  

2. An open t-polyhedron 7 9 is full-dimensional and convex. If we remove from 
P all the hyper-planes ti = c for i = 1 , . . . , n  and c E N, the resulting set 
is still an open non-empty set. Let ( t l , . . . ,  t,~) be a point in this set. By 
construction it satisfies the statement of the lemma. 

3. By definition of non-emptiness. [:] 

Now we define an equivalence relation on l ~ ,  which is commonly-used in the 
theory of timed automata [D89,AD94]. Two points ( t l , . . . ,  tn) and ( 8 1 , . . .  , Sn) 
are equivalent if and only if the integer parts of their coordinates coincide (i.e. 
[tiJ = [s~J) and the order between the fractional parts of their coordinates is 
the same (i.e. (ti) < (tj) iff (si) < (sj)). The main property of this relation is 
that  equivalent points satisfy exactly the same set of inequalities, and hence, a 
t-polyhedron containing a point should contain all its equivalence class. 

L e m m a  2. In ~_ 

1. Any point with all fractional parts of coordinates (tj) different from 0 has an 
equivalent point on any 6-grid with (f < 1/n. 

2. Any point has an equivalent point on any r with r = 1 /M < l /n ,  
M E N .  

Proof :  Let ( t l , . . . ,  t,~) be a point and let 

bj = max(m~ : m~ <_ [tjJ }. 



480 

Without loss of generality suppose that  (h) <_ " -  _< (t,~). Let 

pj = I{(ti): 0 < (ti) <_ (ti)}[, 

that  is, for each j E {1 , . . . ,  n}, pj counts the number of different (t/)'s such that  
0 < (ti) < (tj). Note, in particular, that  pl = 0 if tl = 0 and pl = 1 otherwise. 
Also observe that  the ordering among the pj's is the same as among the (tj) 's 
and that  every pj is smaller than n. Then, by letting 

sj = bj + pj5 

we obtain (S l , . . . ,  su) which is a point on the &grid equivalent to ( t l , . . . ,  t,0. 
D 

R e m a r k :  The proof is similar to that  of [GPV94] where the authors prove that  
every timed automaton is discretizable. Their sense of discretization, however, 
distorts the passage of time. 

C o r o l l a r y  3 (D i se r e t i z a t i on  of  F i n i t e - d i m e n s i o n a l  t - P o l y h e d r a ) .  Every 
t-polyhedron 7 9 C_ R n is 5-discretizable where 

1. ~ is of the form 1 /M where M E N (when 79 is closed). In particular 79 is 
1-discretizable. 

2. 5 < 1In (when 7 9 is open). 
3. (i < 1/n and is of the form 1/M,  M E N (when 79 is mixed). 

These estimates are exact. 

It is a straightforward exercise to demonstrate t-polyhedra which are not 5- 
discretizable for 5 not satisfying the above conditions. 

C l a i m  2 (D i se re t i za t i on  o f  I n f i n i t e - d i m e n s i o n a l  t - P o l y h e d r a ) .  
For infinite-dimensional t-polyhedra the following holds: 

1. There exist open and mixed t-polyhedra which are not J-discretizable for any 
r 

2. A closed t-polyhedron is 6-discretizable if ci is of the ]orm 1/ M , where M E N. 
In particular it is 1-discretizable. 

Proof: 
1. (We give the proof for mixed polyhedra). Consider the infinite-dimensional 

t-polyhedron 79 defined by the following system of equations: 

1_< tl -<2 
2-<_ sl -<3 
2 <  rl -<3 
1 <_ ti+ 1 - -  t i _< 2 (5) 
2 < 8j+ 1 -- 8j  -< 3 
2 <_ ri+ 1 - rj <_3 

and 
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t2j-I  ~ S2j--I < r 2 j - i  ~ t2j < r2 j  < s2j ~ t 2 j + l  

for j E N. This polyhedron is non-empty and it contains, for example, the 
point 

t~ = 2 j  

sj -- 2j + 2 -  2 - j  + ( -5)  - j  

rj  = 2 j + 2 - 2  - j - ( - 5 )  - j .  

However it is not (Ldiscretizable for any 6. Suppose the contrary. It follows 
from the inequalities (5) that  the distance between tj and sj (or rj) never 
decreases: 

Sj+l - t j+l > sj - t~-; r j+l  - tj+~ > rj - tj 

An induction proves that  in any &realization this distance, in fact, increases 
linearly: 

s2j-1 - -  t2j-1 >_ (2j - 1)6 

r 2 j - 1  --  t2j-1 ~_ 2j~ 

r2 j  --  t2j  ~_ 2j5 

s2j - t2j _> (2j + 1)6 

which contradicts the ordering inequality s2j < t2j+t _< t2j + 2 when j is 
large enough (namely when (2j + 1)6 _> 2). 

2. Similarly to the finite-dimensional case. Suppose ( t l , . . . ,  t j , . . . )  E 7 ~. It is 
immediate that  ( [ t l J , . . . ,  LtjJ , . . . )  E p N N ~ . Hence 7 ~ is 1-discretizable and 
consequently 1/M-discretizable. [] 

The results concerning closed t-polyhedra might tempt one to think that  by 
"closing" all timing constraints it is possible to 1-discretize all circuits (i.e. that  
for these circuits the dense-time and discrete-time semantics coincide). Unfor- 
tunately this is not the case: the characteristic t-polyhedron of a qualitative 
behavior is defined by two sets of inequalities. While the timing constraints can 
be made closed by an (infinitesimal) modification of the circuit model, the or- 
dering constraints to < tl < t2 , . . ,  are open by nature, the resulting polyhedron 
is mixed and a discretization of ~ = 1 /M < 1In is necessary for the acyclic case. 
For cyclic circuits, the negative result of claim 2 applies. 

By relaxing the ordering constraints into to _< tl _< t2 . . .  we obtain a weaker 
notion of behavior preservation. For every qualitative behavior Ix], realizable 
by a dense time circuit, there is a qualitative behavior [x~], realizable in dis- 
crete time, such that  some events that  occur at different time instants in x, take 
place at the same time instant in x ~. This is the notion of preservation used in 
[HMP92] who employ a "timed trace" model where (a, tl)(b, t2) .~ (a, tl)(b, tl) 
but (a, tt)(b, tl) ~ (b, t t ) , (a,  tl). To demonstrate the weak preservation phe- 
nomenon consider the circuit described by 

X 1 E Atl,2](-~X0) X 2 E A[1,2](-'~X0) X 3 E A[1,2]("~X0 ) 
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The qualitative behavior 

(!) (i) (!) (!) 
can be realized by tl ,  t2 and t3 satisfying 

l _ < t l  < t~ < ta <- 2. 

Clearly, this t-polyhedron does not contain an integer point. Only by relaxing 
the ordering relation between the events into 

l _ < t l  <_ t2<_ t3<2  

we can 1-discretize and obtain a behavior such as . 

Theorem 1 (Main Result). 

1. Every acyclic circuit can be 5-discretized with 5 = 1 / M  < l / n ,  where n is the 
maximum of Z(x)  over all qualitative behaviors which are logically realizable 
by the circuit. 

2. There are cyclic circuits which are not discretizable at all. 
3. All circuits with closed delay intervals can be 1-discretized with weak preser- 

vation of behaviors. 

Proof :  
1. An immediate consequence of corollary 3. 
2. Consider the circuit described by 

Xl E A[1,2]('~Xl) X2 E A[2,3]('~X2 ) x3 E A[2,3](~X3 ) 

and the qualitative behavior 

((i) (i)(i)(i)(Y)(i); 
The characteristic polyhedron of this behavior is exactly the one defined 

by the inequalities (5), if we take tj ,  rj and sj to denote the jth transition 
times of Xl, x2 and x3 respectively. The result follows from claim 2-1. 

3. This is essentially the result of [HMP92] and it follows from claim 2-2. [] 

4 P r e s e r v a t i o n  o f  P r o p e r t i e s  

In this section we use rather informally the term closed for speaking of circuits 
or timed automata whose timing conditions are closed, and for the languages of 
signals generated by such automata. For a non-closed automaton .4 we use .A to 
denote its closure, i.e. the automaton obtained by replacing all open inequalities 
by closed ones. Similarly we denote the closure of a sets of signals L by L with 
the obvious property L C_ L. From claim 2 we can conclude: 
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Corol lary  4 (Empt iness  of  Closed Circui ts  and A u t o m a t a ) .  Let A be 
a closed automaton, and let .4 ~ be the 1-discretization of A.  Then L' A = 0 iff 
LX = 0. 

This positive result is perhaps more significant from a practical point of view 
of verification than the negative result of theorem 1. Suppose that a desired 
property of an automaton A is specified by a formula q0 denoting a language Lv 
whose negation is L ~ .  If both LA and L ~  are closed, one can do verification 
on their 1-discretization-s L~ and L ~  because L~4 N L ~  = 0 iff L~t N L ~  = 0. 
In the case that LA and L=v are not closed, one can discretize their closures f,A 
and Y_,~ into L~ and L ~  o -~ and perform verification on those. The results are 
valid since L~ - '  n L~v = ~ implies Lx N L~ = 0. 

Note that we have not treated the question of transforming Lv into L~v due 
to the problematics of complementation for timed automata. However, in the 
special case where Lv is untimed (for every Ix], either [x] C_ L~ or [x] fq L~ = 0), 
L~v is untimed as well and the characteristic polyhedron of every qualitative 
behavior is either empty or universal and can be 1-discretized. 

Corol lary  5 (Un t imed  Proper t i e s  of  A u t o m a t a ) .  Untimed properties of 
closed circuits/automata can be verified using the discrete time semantics. Un- 
timed properties of non-closed automata can be verified using the discrete se- 
mantics with the risk of creating false negatives. 

In IBM98] a low-level asynchronous realization of a FIFO buffer was verified 
using a discrete time model. Since the specification of the desired behavior is the 
untimed language of compatible reads and wri tes  from the buffer, the verifica- 
tion results carry over to dense time. We axe currently investigating which other 
classes of properties can be verified safely using discrete time. Some suggestions 
appeared already in [HMP92]. 

5 Discuss ion 

The main contribution of this paper is in shedding some more light on the 
relation between discrete and dense time models, and in solving an open problem 
concerning the discretization of circuits. We believe that the circuit model and 
the geometric analysis techniques introduced in this paper will be useful both for 
hardware timing verification and for advancing the theory of timed automata. 
In particular it currently seems that for most reasonable practical purposes, 
discrete time verification will do the job. 
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