
The Observational Power of Clocks
�

Rajeev Alury Costas Courcoubetisz Thomas A. Henzingerx

Abstract

We develop a theory of equivalences for timed systems. Two systems

are equivalent i� external observers cannot observe di�erences in their be-

havior. The notion of equivalence depends, therefore, on the distinguish-

ing power of the observers. The power of an observer to measure time

results in untimed, clock, and timed equivalences: an untimed observer

cannot measure the time di�erence between events; a clock observer uses

a clock to measure time di�erences with �nite precision; a timed observer

is able to measure time di�erences with arbitrary precision.

We show that the distinguishing power of clock observers grows

with the number of observers, and approaches, in the limit, the distin-

guishing power of a timed observer. More precisely, given any equiva-

lence for untimed systems, two timed systems are k-clock congruent, for

a nonnegative integer k, i� their compositions with every environment

that uses k clocks are untimed equivalent. Both k-clock bisimulation con-

gruence and k-clock trace congruence form strict decidable hierarchies

that converge towards the corresponding timed equivalences. Moreover,

k-clock bisimulation congruence and k-clock trace congruence provide an

adequate and abstract semantics for branching-time and linear-time logics

with k clocks.

Our results impact on the veri�cation of timed systems in two

ways. First, our decision procedure for k-clock bisimulation congruence

leads to a new, symbolic, decision procedure for timed bisimilarity. Sec-

ond, timed trace equivalence is known to be undecidable. If the number

of environment clocks is bounded, however, then our decision procedure

for k-clock trace congruence allows the veri�cation of timed systems in a

trace model.

�A preliminary version of this paper appeared in the Proceedings of the International

Conference on Concurrency Theory (CONCUR 94), Lecture Notes in Computer Science 836,
Springer-Verlag, 1994, pp. 162{177.

yAT&T Bell Laboratories, Murray Hill, NJ.
zDepartment of Computer Science, University of Crete, Greece. Supported in part by the

BRA ESPRIT project REACT.
xDepartment of Computer Science, Cornell University, Ithaca, NY. Supported in part by

the National Science Foundation under grant CCR-9200794 and by the United States Air
Force O�ce of Scienti�c Research under contract F49620-93-1-0056.

1

1 Introduction

At the center of every theory of concurrency lies a notion of equivalence between

systems: it indicates what aspects of a system behavior are considered to be

observable. In the case of untimed systems, a variety of equivalences have been

promoted|most notably, perhaps, bisimilarity and trace equivalence|and al-

though there may be no agreement as to which equivalence is most appropriate,

the relationship between di�erent equivalences is well understood (see, for ex-

ample, [13]). This is not the case for timed systems, where the introduction of

time as a continuous quantity makes the question of what is observable even

more subtle. This paper studies the relationship between several equivalences

on timed systems that are induced by di�erent capabilities of an observer to

measure time.

A timed system always proceeds in one of two ways|by performing an action

or by letting a certain amount of real time pass (see, for example, [4, 8, 12, 16]).

The observability of actions and time delays are orthogonal issues, and as we are

interested in the latter, we settle the former by studying the common untimed

equivalences of bisimilarity (Section 3) and trace equivalence (Section 4).

From time-abstract and timed equivalences There are two extreme ca-

pabilities of an observer to measure time: (1) it may not be able to measure the

duration of any delay, or (2) it may be able to measure the exact real-numbered

duration of every delay. The �rst assumption leads to time-abstract (or untimed)

equivalences; the second assumption, to timed equivalences. Both assumptions,

however, have drawbacks. Time-abstract equivalences, on one hand, are unreal-

istically weak, because they do not admit timed systems themselves as observers;

that is, time-abstract equivalences are not congruences under parallel composi-

tion. Timed equivalences, on the other hand, are unrealistically strong|what

system can observe a delay of duration �?|uncomfortably strong|timed trace

equivalence, for example, is undecidable|and, as we will demonstrate, unnec-

essarily strong.

To resource-bounded observational congruences We focus on the re-

sources that an observer needs to distinguish timed systems and de�ne a se-

quence of congruences that lie between time-abstract and timed equivalences.

A clock is a resource that measures the length of a time interval with �nite

(integer) precision. The assumption that the observer has k clocks to measure

time leads to k-clock congruences. We show that the k-clock congruences form,

in both the bisimulation and trace worlds, a strict in�nite hierarchy between the

corresponding time-abstract and timed equivalences; that is, the distinguishing

power of an observer increases with the number of clocks it uses. Alternatively,

if every process has one clock, then the distinguishing power of an environment

increases with the number of environment processes.

Decision procedures are known for time-abstract and timed bisimilarity and

for time-abstract trace equivalence [2, 4, 14, 15, 17]. We present algorithms for

2

deciding the k-clock congruences. In the bisimulation world, where the k-clock

hierarchy collapses at 2n + 1 clocks for a given pair of systems with n clocks,

we obtain a new algorithm for deciding timed bisimilarity; unlike the decision

procedure of [14], our algorithm can be executed symbolically. In the trace

world, where the timed equivalence is undecidable, we obtain an algorithm for

checking the correctness of substitutions in a hierarchical veri�cation process.

In both worlds, our results can be used to replace a timed system with a simpler

system, provided the number of environment clocks is bounded.

Via automata, games, and logics Clocks provide a clean and general

paradigm for specifying timed systems: clocks have been added to such di-

verse languages as temporal logic [5], !-automata [4], and process algebra [11].

We develop our results using the model of timed automata (Section 2). A timed

automaton operates with �nite control|a �nite set of control locations and a

�nite set of real-valued clocks. All clocks proceed at the same rate and measure

the amount of time that has elapsed since they were started (or reset). Each

automaton transition may compare some of the clock values with integer con-

stants and reset some of the clocks. This model of timed automata has been

widely and successfully used for the speci�cation and veri�cation of real-time

systems [1, 3, 4, 6, 7, 9, 11, 12].

Our results on bisimulation equivalences in Section 3 are obtained by study-

ing bisimulation games. We de�ne time-abstract (or untimed), k-clock, and

timed bisimulation games. Suppose that Player I attempts to distinguish two

systems, while Player II tries to show bisimilarity. In a timed game, Player II

must match a delay of Player I with a delay of the same duration; in a time-

abstract game, Player II can match a delay of Player I with a delay of arbitrary

duration; in a k-clock game, Player I may choose, in addition to a delay, any

constraints on the values of k clocks, and Player II can match the delay of

Player I with a delay of arbitrary duration as long as the clock constraints are

satis�ed.

We also provide logical characterizations of the k-clock congruences. For this

purpose, we add clock variables to modal logics and prove Hennessy-Milner-like

theorems. In the bisimulation world, two systems are k-clock congruent i� they

cannot be distinguished by branching-time formulas with k clocks; in the trace

world, i� they cannot be distinguished by linear-time formulas with k clocks.

The limit of all k-clock congruences provides, then, an adequate and abstract

semantics for clock logics. While in general this limit|untimed bisimulation

congruence and untimed trace congruence|is weaker than the corresponding

timed equivalence, it surprisingly coincides with the corresponding timed equiv-

alence on initial system states, in which all clock values are 0.

Related work The relationship between timed bisimilarity and untimed bisim-

ulation congruence is studied also in [10]. There, it is shown that timed bisim-

ilarity coincides with untimed bisimulation congruence provided that the ob-

server can compare clock values with arbitrary rational constants; indeed, in

3

this scenario a single observer clock su�ces. Furthermore, it is proved that if

the observer is required to compare clock values with multiples of 1=n, then

the observational power grows with n, yielding a strict hierarchy of equivalences

based on the time granularity of the observer. By contrast, we assume that the

observer clocks have the same granularity as the system clocks and show that

the power of the observer increases with the number of clocks it uses.

2 Timed Transition Systems

A labeled transition system consists of a set Q of states, a set L of labels, and

a family f
�
! � Q

2 j � 2 Lg of transition relations, one for each label in L.

The transition relation can be extended to �nite words over L: for a word

� = �0�1 � � ��n in L� and two states q and q0, de�ne q
�

! q
0 i� there exist states

q0; q1; : : : ; qn�1 such that q
�0! q0

�1! � � �
�n�1

! qn�1
�n! q

0.

Let the time domain R�0 be the set of nonnegative real numbers. A timed

transition system is a labeled transition system with R�0 � L; that is, the

label set includes all time increments, and the transition relation
�
! , for a

time increment �, represents a delay of duration �. We de�ne timed transition

systems by timed automata.

Timed automata A timed automaton A is a tuple (�;�; V; E), where � is

a �nite input alphabet, � is a �nite set of clocks, V is a �nite set of locations,

and E is a �nite set of edges. Each edge is a tuple (s; �; �; �; s0) that represents

a transition from location s 2 V to location s0 2 V on the input symbol � 2 �.

The edge constraint � is a boolean combination of atomic formulas of the form

x � c or c � x, for a clock x and a nonnegative integer c. The reset set � � �

speci�es the clocks that are reset,

A state of the timed automaton A is a pair (s; �) consisting of a location

s 2 V and a clock mapping � : � 7! R�0 that assigns a time value to each clock.

All clocks are initialized to zero: the state (s; �) is initial i� �(x) = 0 for each

clock x. We write QA for the state set of A, and Q0
A
for the set of initial states

of A. The timed automaton A proceeds from state to state in two ways.

� Time successor. For every time increment � 2 R�0 and every state (s; �),

let (s; �)
�
! (s; � + �), where � + � is the clock mapping that assigns the

value �(x) + � to each clock x.

� Transition successor. For every input symbol �, every state (s; �), and

every edge (s; �; �; �; s0) such that � satis�es the edge constraint �, let

(s; �)
�

! (s0; �[� := 0]), where �[� := 0] is the clock mapping that assigns

the value 0 to each clock x 2 �, and the value �(x) to each clock x 62 �.

We associate two labeled transition systems with the timed automaton A.

4

1. First, we observe both input symbols and time increments. The timed

transition system of A, denoted by St(A), consists of the state set QA, the

label set R�0[�, and the transition relations
�

! , for � 2 R�0[�.

2. Second, we observe input symbols and hide time increments. For every

input symbol � and every pair of states q; q0 2 QA, de�ne q
�

) q
0 i� q

���
0

�! q
0

for some time increments �; �0 2 R�0. The time-abstract (or untimed)

transition system of A, denoted by Su(A), consists of the state set QA,

the label set �, and the transition relations
�
) , for � 2 �.

Given two timed automata A = (�;�; V; E) and A
0 = (�;�0; V 0

; E
0) over

the same input alphabet � and disjoint sets � and �0 of clocks, the parallel

composition A
 A
0 is the timed automaton (�;� [�0; V � V

0
; E

00) such that

((s1; s
0
1); �; �^�

0
; �[�0; (s2; s02)) 2 E

00 i� (s1; �; �; �; s2) 2 E and (s01; �; �
0
; �

0
; s

0
2)

2 E0. The timed transition system of A
A0 , then, represents the product of the

timed transition systems of A and A0: for all states q1; q2 2 QA, q
0
1; q

0
2 2 QA0 ,

and all labels � 2 R�0[�, we have (q1; q01)
�
! (q2; q

0
2) for St(A
A

0) i� q1
�
! q2

for St(A) and q01
�

! q
0
2 for St(A

0).

Equivalences and congruences on timed automata We de�ne equivalence

relations on systems as equivalence relations on system states: two systems

are equivalent i� the initial states of the disjoint union of both systems are

equivalent. Consider two equivalence relations �1 and �2 on the states of timed

automata.

� We write �1��2, and call �2 weaker than �1 (on all states), i� for every

timed automaton A and every pair of states q; q0 2 QA, if q �1 q
0 then

q �2 q
0.

� We write �1�init �2, and call �2 weaker than �1 on initial states, i� for

every timed automaton A and every pair of initial states q; q0 2 Q
0
A
, if

q �1 q
0 then q �2 q

0.

Notice that it may happen that �2 is weaker than �1, but �1 and �2 coincide

on initial states. We say that �2 is strictly weaker than �1, written �1��2,

i� �2 is weaker than �1 on all states and �2 6�init �1; that is, �1 distinguishes

two �2-equivalent initial states.

The congruence induced by an equivalence relation on systems depends on

the choice of operators used to build complex systems from simple systems.

We study the parallel composition operator
 on timed automata. For a given

alphabet �, let TA� denote the set of timed automata over �, and for k � 0,

let TAk

� denote the set of timed automata over � with at most k clocks. An

equivalence relation � is a congruence i� whenever q � q
0 for two states q and

q
0 of a timed automaton A 2 TA�, then for all timed automata B 2 TA� and

all initial states q0 2 Q
0
B
, the equivalence (q; q0) � (q0; q0) holds for the product

automaton A
B. The congruence induced by the equivalence relation � is the

weakest congruence relation that is stronger than �.

5

If an equivalence relation � is not a congruence, then there are two �-
equivalent states q and q0 of a timed automaton A|the observed automaton|

and there is an initial state q0 of a timed automaton B|the observer automa-

ton|such that (q; q0) 6� (q0; q0) for the product automatonA
B. The observer
automaton B, then, distinguishes the two states q and q

0 of the observed au-

tomaton A. Notice that our de�nition requires the observer automaton to be in

the class TA� of the observed automaton. Furthermore, the clock constraints

of B compare clock values to integer constants; that is, the observer automaton

has the same granularity for counting time as the observed automaton.

Region equivalence Emptiness checking and model checking algorithms for

timed automata are based on an equivalence relation that partitions the states

of a timed automaton A into so-called regions [1, 4]. Two clock mappings � and

�
0 for A are region equivalent, written � �r �

0, i�

1. Corresponding clock values agree on the integer parts: for every clock x,

either b�(x)c = b� 0(x)c, or both �(x) and �0(x) exceed the largest constant
that is compared with x by the edge constraints of A;

2. Corresponding clock values agree on the ordering of the fractional parts:

(i) for every clock x, h�(x)i = 0 i� h�0(x)i = 0, where h�i = � � b�c; and
(ii) for every pair x and y of clocks, h�(x)i � h�(y)i i� h�0(x)i � h�0(y)i.

Two states (s; �) and (s0; �0) of A are region equivalent i� s = s
0 and � �r �

0;

two states that belong to di�erent timed automata are not region equivalent.

An equivalence class of QA induced by �r is called a region.

Two observations about region equivalence are in order. First, there are only

�nitely many regions (linear in the number of locations and edges, and singly

exponential in the number of clocks and the length of edge constraints). Second,

region equivalence is a congruence.

3 Bisimulation Equivalences

Consider a labeled transition system S with state set Q and label set L. An

equivalence relation �� Q
2 is a bisimulation for S i� q1 � q2 implies for every

label � 2 L that

� If q1
�

! q
0
1, then there exists a state q02 such that q01 � q

0
2 and q2

�

! q
0
2;

� If q2
�

! q
0
2, then there exists a state q01 such that q01 � q

0
2 and q1

�

! q
0
1.

Two states q and q0 are bisimilar with respect to S i� there exists a bisimulation

� for S such that q � q
0; that is, bisimilarity with respect to S is the weakest

bisimulation for S.
Bisimulation can be viewed as a game between two players. Let q1 and q2

be two states of S.

6

� Move of Player I. Player I chooses a side i 2 f1; 2g, a label � 2 L, and a

state q0
i
such that qi

�

! q
0
i
.

� Move of Player II. Let j 2 f1; 2g such that i 6= j. Player II chooses a

state q0
j
such that qj

�

! q
0
j
. If no such state exists, Player I wins the game.

Otherwise, the game continues on the two states q01 and q
0
2.

Thus, at every step Player I chooses a move, and Player II responds with a

matching move. The goal of Player I is to distinguish the two starting states q

and q0 by enforcing a situation in which Player II cannot �nd a matching move.

The starting states are bisimilar i� Player I cannot distinguish them; that is, i�

Player I does not have a winning strategy.

The weakest bisimulation for S can be computed by an iterative approxi-

mation procedure that repeatedly re�nes a partition of the state set Q until a

bisimulation is obtained. The initial partition �0 contains a single equivalence

class. Now consider the partition �i after the i-th re�nement. For two subsets

�; �
0 � Q, and a label � 2 L, let pre

�
(�; �0) be the set of states q 2 � such that

q
�
! q

0 for some q0 2 �
0. If there are two equivalence classes �; �0 2 �i and a

label � 2 L such that both pre
�
(�; �0) and � � pre

�
(�; �0) are nonempty, then

we obtain the new partition �i+1 by splitting � into the two equivalence classes

pre
�
(�; �0) and ��pre

�
(�; �0). If no such splitting is possible, then the current

partition is the weakest bisimulation for S.
The iterative approximation procedure is a semidecision procedure for bisim-

ilarity i� each partition is computable; that is, the label set is �nite and the

equivalence classes can be represented in an e�ective manner that supports the

operations pre and set di�erence. The iterative approximation procedure is a

decision procedure for bisimilarity i� it is a semidecision procedure that ter-

minates. In the case of timed transition systems, the state set is in�nite and,

therefore, termination is not necessarily guaranteed.

3.1 Timed bisimilarity

Two states q and q0 of a timed automatonA are timed bisimilar, written q �tb q
0,

i� q and q0 are bisimilar with respect to the timed transition system St(A). If
timed bisimulation is viewed as a game, whenever Player I takes a transition

step, Player II must match it with a transition on the same input symbol; and

whenever Player I lets time � elapse, Player II must let time � elapse, too.

Example 1 Consider a timed automaton with the single location s, the single

clock x, and the single edge from s to itself labeled with the input symbol � and

the edge constraint x = 1. A state of the automaton is fully speci�ed by the

value � 2 R�0 of the clock x. Two states � and �
0 are timed bisimilar i� either

� = �
0 or both �; �0 > 1.

A few observations about timed bisimilarity are in order. First, Example 1

shows that, unlike in the case of region equivalence, the number of equivalence

7

s

y := 0
0 < x < 1

x � 2 _ y � 1

v

y
0 := 0

x
0
< 2 ^ y

0
> 1

u

0 < x < 1

Observer BAutomaton A

Figure 1: Example 2

classes of timed bisimilarity can be in�nite. Indeed, the relations �tb and �r

are incomparable; none is weaker than the other. Second, timed bisimilarity

is a congruence. Third, timed bisimilarity is decidable: there is an EXPTIME

algorithm to decide if two given states of a timed automaton are timed bisimi-

lar [14].

3.2 Untimed bisimilarity

Two states q and q0 of a timed automatonA are untimed bisimilar, written q �ub

q
0, i� q and q0 are bisimilar with respect to the untimed transition system Su(A).
If untimed bisimulation is viewed as a game, Player II must match a transition

step of Player I with a transition on the same input symbol, but whenever

Player I lets time � elapse, Player II may let any amount of time elapse.

Two states � and �
0 of Example 1 are untimed bisimilar i� either both

�; �
0 � 1 or both �; �

0
> 1. Indeed, untimed bisimilarity always has �nitely

many equivalence classes, and each equivalence class is a union of regions [2,

10]. It follows that region equivalence is an untimed bisimulation (�r ��ub).

Moreover, every timed bisimulation is an untimed bisimulation (�tb��ub).

The iterative approximation procedure decides, in EXPTIME, if two given

states of a timed automaton are untimed bisimilar: (1) every equivalence class

that is computed by repeated re�nement of the initial partition is a union of

regions and, therefore, can be represented by a formula involving linear inequal-

ities over the clock variables; (2) termination is guaranteed, because �ub has

�nitely many equivalence classes.

The following example shows that untimed bisimilarity is not a congruence.

Example 2 Figure 1 shows a timed automatonA with two clocks x and y. The

input alphabet is the singleton set f�g. The two initial states (s; 0) and (u; 0)

are untimed bisimilar. Now consider the product of A with the observer B with

the two clocks x0 and y0. The two states ((s; 0); (v; 0)) and ((u; 0); (v; 0)) of the

8

product automaton A
B are not untimed bisimilar.

3.3 Untimed bisimulation congruence

We now study the congruence induced by the untimed bisimulation �ub. The

number of clocks of an observer increases its power to distinguish states. Con-

sider, for instance, Example 2 again. The two states (s; 0) and (u; 0) can be

distinguished using two clocks, but they cannot be distinguished by an observer

with a single clock: for all timed automata B with one clock and all initial

states q of B, the two states ((s; 0); q) and ((u; 0); q) of the product automaton

are untimed bisimilar.

This observation prompts us to de�ne a sequence of congruences. Let k be

a nonnegative integer and let A be a timed automaton in TA�. Two states q

and q0 of A are k-clock congruent, written q �k

ub
q
0, i� for all timed automata

B 2 TAk

� and all initial states q00 of B, the equivalence (q; q00) �ub (q
0
; q

00) holds

for the product automaton A
 B. Untimed bisimulation congruence is the

intersection of all k-clock congruences: two states q and q
0 of A are untimed

bisimulation congruent, written q �ub q
0, i� q �k

ub
q
0 for all k � 0.

The k-clock congruences �k

ub
can also be characterized using games. We

modify the untimed game by introducing a set of environment clocks. If there

are k environment clocks, then the state of the environment is represented by

a k-tuple of real numbers. The game is played, instead of on states of a timed

automaton, on pairs of the form (q; �), where q is an automaton state and �

is a k-tuple of reals that provides time values for the environment clocks. We

call such a pair an augmented state. With each time move, Player I chooses, in

addition to a time increment, a constraint on the environment clocks. Player II

may then choose any time increment provided it satis�es the clock constraint

chosen by Player I.

Formally, a k-clock move � is a triple (�; �; �), where � is an input symbol,

� is a constraint on the environment clocks, and � � f1; : : : ; kg is a reset set.

Given a timed automatonA, we thus obtain the k-clock transition system Sk
u
(A).

The states of Sk
u
(A) are the augmented states QA�R

k

�0; the labels of S
k

u
(A) are

the k-clock moves; and for each k-clock move, let (q; �)
�
! (q0; �0) i� there is a

time increment � such that q
��

! q
0, and �+� satis�es �, and �0 = (�+�)[� := 0].

The following lemma characterizes all k-clock congruences as bisimulations

for k-clock transition systems.

Lemma 1 Two states q and q0 of a timed automaton A are k-clock congruent

i� the augmented states (q; 0) and (q0; 0) are bisimilar with respect to the k-clock

transition system Sk
u
(A).

We can show that each equivalence class of �ub (and, hence, of �
k

ub
for each k) is

a union of regions. It follows that the number of equivalence classes of untimed

bisimulation congruence is �nite and, thus, untimed bisimulation congruence

9

s u

s
0

0 < x < 1

y � 2 _ z � 2

0 < x < 1

0 < x; y < 1

x � 2 _ z � 1

0 < x; y < 1
z := 0

y := 0 y := 0

Figure 2: Example 3

di�ers from timed bisimilarity. Later, we will see that the two relations �ub and

�tb coincide on all initial states.

Theorem 1 Untimed bisimulation congruence is strictly weaker than region

equivalence (�r ��ub), and is weaker than timed bisimilarity (�tb��ub).

An in�nite hierarchy of congruences Example 2 shows that 1-clock con-

gruence is strictly weaker than the 2-clock congruence. By generalizing this

example, we obtain a strict hierarchy of congruences; that is, each additional

clock gives additional distinguishing power to an observer.

Example 3 Consider the timed automaton shown in Figure 2. It uses the

three clocks x, y, and z. Consider the initial states (s; 0) and (u; 0). Using three

environment clocks x0, y0, and z
0, we now show that Player I can distinguish

these two states. Player I always moves on the right hand side. It resets y0 in

its �rst move, and resets z0 in the second move. In the third move, it requires

the environment clocks to satisfy the constraint x0 < 2 ^ z
0
> 1. This forces

Player II to choose the left branch from location s0. In the fourth move, Player I

uses the constraint y0 > 2 ^ z
0
< 2 to move to the �nal location on right hand

side, and Player II cannot match this move.

On the other hand, it is not di�cult to check that with only two environment

clocks, Player I cannot distinguish (s; 0) and (u; 0).

Theorem 2 The equivalence relations �k

ub
, for k � 0, form a strict hierarchy

(�ub=�0
ub
��1

ub
��2

ub
� � � � ��ub).

10

The hierarchy of k-clock congruences collapses if we choose the natural numbers

as time domain. In this case, a single observer clock su�ces to distinguish any

two noncongruent states (�ub��1
ub
=�ub).

Deciding k-clock congruence We now outline an algorithm for deciding k-

clock congruence. The iterative approximation procedure on the k-clock tran-

sition system Sk
u
(A) is not e�ective, as the number of possible k-clock moves is

in�nite. This is because the integer constants in a constraint on the environment

clocks may be arbitrarily large.

We therefore modify the k-clock game in three ways. First, since the objec-

tive of Player I is to limit the possible choices of Player II, we require Player I to

choose the tightest possible constraints on the environment clocks. Second, we

require Player I to reset every environment clock when it reaches the value 1.

Third, we allow Player I to employ �-moves to reset a clock without choosing

an input symbol. Formally, a bounded k-clock �-move is of the form (�; �; �),

where � 2 �[f�g, the clock constraint � is a conjunction of atomic constraints,

one for each environment clock x, of the form x < 1 or x = 1, and the reset

set � contains the clock x i� � contains the conjunct x = 1. We obtain the

bounded k-clock transition system Ŝk
u
(A) with the state set QA � [0; 1]k and

with the bounded k-clock �-moves as labels. The following lemma shows that

this modi�cation of the k-clock transition system for A does not change the

induced bisimulation.

Lemma 2 For all k � 0, all states q and q0 of a timed automaton A, and all

k-tuples �; � 0 2 [0; 1]k such that � and �0 are region equivalent, the augmented

states (q; �) and (q0; �0) are bisimilar with respect to the bounded k-clock tran-

sition system Ŝk
u
(A) i� they are bisimilar with respect to the k-clock transition

system Sk
u
(A).

The k-clock congruence �k

ub
can be computed, then, by iterative approximation

on the bounded k-clock transition system Ŝk
u
(A). The procedure is e�ective,

because the number of bounded k-clock �-moves is �nite (exponential in k)

and each equivalence class that is computed is a union of extended regions

(i.e., regions that contain both system and environment clocks); termination is

guaranteed, because the number of extended regions is �nite. The complexity

of the algorithm is quadratic in the number of extended regions, and therefore

exponential in both k and in the description of the timed automaton A.

Theorem 3 Given two states q and q0 of a timed automaton A and a nonneg-

ative integer k, it can be decided in EXPTIME if q �k

ub
q
0.

Deciding untimed bisimulation congruence Suppose that two states q

and q
0 of a timed automaton A with n clocks are not untimed bisimulation

congruent. In the full paper, we show that Player I needs at most 2n + 1

environment clocks to distinguish q and q0. Roughly speaking, this is because

11

with 2n+ 1 clocks, Player I can always keep an environment clock identical to

each system clock on both sides of the game.

Lemma 3 Let A be a timed automaton with n clocks. Two states of A are

untimed bisimulation congruent i� they are (2n+ 1)-clock congruent.

It follows that for any given timed automaton, the hierarchy of k-clock congru-

ences collapses. This property, in conjunction with our decision procedure for

k-clock congruence, allows us to decide untimed bisimulation congruence.

Theorem 4 Given two initial states q and q0 of a timed automaton A, it can

be decided in EXPTIME if q �ub q
0.

Deciding timed bisimilarity We have already seen that the relations �tb

and �ub are di�erent: two states can be untimed bisimulation congruent but

not timed bisimilar. Surprisingly, both relations coincide on initial states.

To see this, we introduce environment clocks in the timed game. We thus

obtain a k-clock game on augmented states in which Player II must always

choose the same time increment as Player I. In this game, the values of the

environment clocks are identical on both sides; consequently, the state of the

game is given by two augmented states of the form (q; �) and (q0; �). If the

game is started on initial states, then initially an environment clock is identical

to each system clock, and provided there are enough environment clocks, this

invariant can be maintained throughout the game. An augmented state (q; �)

in which each system clock equals some environment clock can be represented

by a triple (s; ; �), where s is the location of q and is a mapping from system

clocks to environment clocks. The following lemma is proved by induction on

the number of moves in a game.

Lemma 4 If Player I wins the timed game with environment clocks starting

from the augmented states (s; ; �) and (s0; 0; �), then for all environment clock

mappings �0, Player I wins the untimed game with environment clocks starting

from (s; ; �) and (s0; 0; �0).

In other words, for augmented states in which all system clocks equal environ-

ment clocks, the timed game is equivalent to the untimed game. On initial

states, untimed bisimulation congruence coincides therefore with timed bisimi-

larity.

Theorem 5 Consider a timed automaton A with n clocks and two initial states

q and q0. The following statements are equivalent:

1. The states q and q0 are (2n+ 1)-clock congruent (q �2n+1
ub

q
0).

2. The states q and q0 are untimed bisimulation congruent (q �ub q
0).

12

3. The states q and q0 are timed bisimilar (q �tb q
0).

This result gives us an EXPTIME iterative approximation algorithm for de-

ciding timed bisimilarity of initial states (i.e., timed bisimilarity of initialized

systems). Since the iterative approximation algorithm can be executed symbol-

ically, by representing equivalence classes as formulas, we expect it to be more

practical and exible than the algorithm of [14].

3.4 Branching-time logics with clocks

The bisimilarity of states of a labeled transition system can be characterized by

a modal next-state logic called Hennessy-Milner logic or, equivalently, by the

branching-time temporal logic CTL: two states are bisimilar i� they satisfy the

same CTL formulas.

In this section, we give a logical characterization of both k-clock congruence

and untimed bisimulation congruence. For this purpose, we extend CTL with

clock variables, thus obtaining the real-time logic TCTL [1]. The clock variables

are bound by reset quanti�ers, and they can be compared with nonnegative

integer constants (the original de�nition of TCTL uses a freeze quanti�er, which

is equivalent to the reset quanti�er). We use the modal operators 9 �: (\at

the possible next input symbol �") and 93 (\eventually along some word");

since we consider only �nite words in this paper, the operator 92 is not useful.

Formally, the formulas of TCTL� are de�ned inductively as

� ::= x � c j c � x j :� j �1 ^ �2 j 9 �: � j 93�: � j (x := 0): �

for clocks x, nonnegative integers c, and input symbols �. Given a timed tran-

sition system with the state set Q and the label set R�0 [�, every formula of

TCTL� de�nes a subset of Q. Let q be a state and let � be a clock mapping.

Then q j= � i� q j=; � for the empty clock mapping ;, and

� q j=� 9 �: � i� there exist a state q0 and a time increment � such that

q
��

! q
0 and q0 j=�+� �;

� q j=� (x := 0): � i� q j=�[x:=0] �.

The logic TCTL� is the fragment of TCTL� without the eventuality opera-

tor 93 .

Example 4 Recall the timed automaton A of Figure 1. Let � be the TCTL�-

formula

(x := 0): 9 �: (y := 0): 9 �: (x < 2 ^ y > 1):

Then (s; 0) 6j= � and (u; 0) j= �. Thus the formula � distinguishes the locations

s and u. On the other hand, let be the formula

((x := 0): 9 �: 9 �: x < 2) ^ (9 �: (x := 0): 9 �: x > 1):

13

Both states (s; 0) and (u; 0) satisfy . Indeed, no TCTL�-formula that uses only

one clock variable can distinguish the states (s; 0) and (u; 0).

The logics TCTL� and TCTL� induce equivalence relations on the states of a

timed automaton: two states q and q
0 are TCTL�-equivalent i� they satisfy

the same TCTL�-formulas. We prove that TCTL�-equivalence and TCTL�-

equivalence coincide with each other and with untimed bisimulation congruence.

First we observe that the equivalence induced by TCTL� is weaker than

region equivalence [1]: if two augmented states (q; �) and (q0; � 0) are region

equivalent, then for all TCTL�-formulas �, q j=� � i� q
0 j=�0 �. By induction on

the number of moves that an observer needs to distinguish two augmented states

in the k-clock game, we can show that if two augmented states are not bisimilar

with respect to a k-clock transition system, then they can be distinguished by

a TCTL�-formula with at most k clock variables. On the other hand, if two

augmented states are bisimilar with respect to a k-clock transition system, then

we can prove, by induction on the structure of formulas, that they satisfy the

same k-clock formulas of TCTL�. This leads to a logical characterization of

k-clock congruence.

Theorem 6 Consider a timed automaton A and two states q and q
0. The

following statements are equivalent:

1. The states q and q0 are k-clock congruent (q �k

ub
q
0).

2. For all TCTL�-formulas � with at most k clock variables, q j= � i� q0 j= �.

3. For all TCTL�-formulas � with at most k clock variables, q j= � i� q0 j= �.

It follows that untimed bisimulation congruence is an adequate and abstract

semantics for both TCTL� and TCTL�.

4 Trace Equivalences

In the full paper, we develop the theory of trace equivalences for timed systems

as carefully as the theory of bisimulation equivalences. Here we present only a

few highlights.

Given a labeled transition system S with state set Q and label set L, and

a state q 2 Q, de�ne the language L(S; q) as the set f� 2 L
� j 9q0: q

�
! q

0g of

�nite words over L that are generated by S starting from q. Two states q and

q
0 are trace equivalent with respect to S i� L(S; q) = L(S; q0). It is well-known
that trace equivalence is strictly weaker than bisimilarity.

Timed trace equivalence Two states q and q0 of a timed automaton A are

timed trace equivalent, written q �tt q
0, i� q and q

0 are trace equivalent with

respect to the timed transition system St(A). That is, two states are timed

14

trace equivalent i� they generate the same timed words|i.e., sequences of input

symbols and time increments.

As expected, timed trace equivalence is strictly weaker than timed bisim-

ilarity, but incomparable to region equivalence and incomparable to untimed

bisimilarity. While timed trace equivalence is a congruence, it is computation-

ally intractable. The undecidability proof for �tt follows the proof that the

language inclusion problem for timed automata over in�nite words is undecid-

able [4].

Theorem 7 The problem of deciding if two initial states of a timed automaton

are timed trace equivalent is undecidable.

Untimed trace equivalence Two states q and q0 of a timed automaton A are

untimed trace equivalent, written q �ut q
0, i� q and q0 are trace equivalent with

respect to the untimed transition system Su(A). That is, two states are untimed

trace equivalent i� they generate the same untimed words|i.e., sequences of

input symbols (all time increments are hidden).

Untimed trace equivalence is strictly weaker than region equivalence. Indeed,

for all states q, the untimed language L(Su(A); q) can be characterized as a

regular set over regions [4]. The problem of deciding untimed trace equivalence

can then be reduced to the problem of deciding the language equivalence of two

�nite automata over regions.

Theorem 8 There is an EXPSPACE algorithm that decides if two states of a

timed automaton are untimed trace equivalent.

Untimed trace equivalence is not a congruence. Hence we study the congruence

induced by the equivalence relation �ut.

k-clock trace congruences As before, we consider a sequence of congruences.

Let k � 0 and let A be a timed automaton in TA�. Two states q and q
0 of A are

k-clock trace congruent, written q �k

ut
q
0, i� for all timed automata B 2 TAk

�

and all initial states q00 of B, the equivalence (q; q00) �ut (q
0
; q

00) holds for the

product automaton A
B. That is, two states are k-clock trace congruent i� in

all environments with at most k clocks, they generate the same untimed words.

Lemma 5 Two states q and q0 of a timed automaton are k-clock trace congruent

i� the augmented states (q; 0) and (q0; 0) are trace equivalent with respect to the

k-clock transition system Sk
u
(A).

As in the case of bisimulation, each additional clock increases the distinguishing

power of an observer. Recall, for instance, Example 2. The initial states (s; 0)

and (u; 0) generate di�erent untimed words in the presence of an observer with

two clocks and, therefore, are not 2-clock trace congruent. Both states, however,

are bisimilar with respect to the 1-clock transition system S1
u
(A) and, hence,

also 1-clock trace congruent.

15

Theorem 9 The equivalence relations �k

ut
, for k � 0, form a strict hierarchy

(�ut=�0
ut
��1

ut
��2

ut
� � � �).

The k-clock trace congruences can be decided by a technique similar to the

decision procedure for the k-clock bisimulation congruences. First, we show

that q �k

ut
q
0 i� the augmented states (q; 0) and (q0; 0) are trace equivalent

with respect to the bounded k-clock transition system Ŝk
u
(A). Then we decide

trace equivalence with respect to Ŝk
u
(A) by constructing an equivalent �nite

automaton over extended regions.

Theorem 10 Given two states q and q0 of a timed automaton A and a non-

negative integer k, it can be decided in EXPSPACE if q �k

ut
q
0.

Untimed trace congruence Untimed trace congruence is the intersection of

all k-clock trace congruences: two states q and q0 of a timed automaton A are

untimed trace congruent, written q �ut q
0, i� q �k

ut
q
0 for all k � 0.

Theorem 11 Untimed trace congruence is strictly weaker than region equiva-

lence, is the same as timed trace equivalence on initial states, and is weaker

than timed trace equivalence on all states.

However, unlike in the case of bisimulation, timed trace congruence is still un-

decidable.

Theorem 12 The problem of deciding if two initial states of a timed automaton

are timed trace congruent is undecidable.

It follows that the veri�cation of timed systems in a trace model is computa-

tionally intractable. The decision procedures for k-clock trace congruences are

therefore all the more important: they can be used for the compositional veri�-

cation of timed systems in the trace model, provided the number of environment

clocks is bounded.

Linear-time logics with clocks If we extend linear temporal logic with clock

variables, we obtain the real-time logic TPTL [5]. Since we consider only �nite

words, we omit the temporal operator 2. The formulas of TPTL� are de�ned

inductively as

� ::= x � c j c � x j :� j �1 ^ �2 j �: � j (x := 0): �

for clocks x, nonnegative integers c, and input symbols �. Every formula � of

TPTL� de�nes a set of timed words. We write q j= � i� � de�nes a superset of

the timed language L(St(A); q).
As in the branching-time case, two states of a timed automaton can be

distinguished by a TPTL�-formula i� they are not untimed trace congruent.

However, unlike in the branching-time case, if two states can be distinguished by

a TPTL�-formula, then they can be distinguished already by a TPTL�-formula

that uses a single clock variable.

16

Theorem 13 Consider two states q and q0 of a timed automaton A. The fol-

lowing statements are equivalent:

1. The states q and q0 are untimed trace congruent (q �ut q
0).

2. For all TPTL�-formulas �, q j= � i� q
0 j= �.

3. For all TPTL�-formulas � with at most 1 clock variable, q j= � i� q0 j= �.

Further Work

(1) We studied timed and untimed equivalences and k-clock congruences in

the bisimulation and trace cases. Corresponding relations can, of course, be

de�ned for any equivalence relation on labeled transition systems, say, failures

equivalence.

(2) We restricted ourselves to �nite behaviors of systems, thus omitting

liveness constraints. In the context of trace equivalences in particular, one

typically considers automata on in�nite words with acceptance conditions [4],

and the full temporal logic TPTL [5]. We expect our results to generalize in a

straightforward way.

(3) Our subject was the distinguishing power of clocks as observers. A com-

plementary topic is the expressive power of clocks as speci�ers. For example, it

not di�cult to show that if we measure the expressive power of timed automata

by their ability to de�ne languages of timed words, then the class of automata

with k + 1 clocks is more expressive than the class of automata with at most k

clocks. Similarly, the expressive power of TPTL-formulas strictly increases with

the number of clock variables.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real time.

Information and Computation, 104:2{34, 1993.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Mini-

mization of timed transition systems. In 3rd CONCUR, 340{354. Springer

LNCS 630, 1992.

[3] R. Alur, C. Courcoubetis, and T. Henzinger. Computing accumulated

delays in real-time systems. In 5th CAV, 181{193. Springer LNCS 697,

1993.

[4] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183{235, 1994.

[5] R. Alur and T. Henzinger. A really temporal logic. J. ACM, 41:181{204,

1994.

17

[6] R. Alur, T. Henzinger, and M. Vardi. Parametric real-time reasoning. In

25th ACM STOC, 592{601, 1993.

[7] C. Courcoubetis and M. Yannakakis. Minimum and maximumdelay prob-

lems in real-time systems. In 3rd CAV, 399{409. Springer LNCS 575, 1991.

[8] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for

real-time systems. In 18th ACM POPL, 353{366, 1991.

[9] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model check-

ing for real-time systems. In 7th IEEE LICS, 394{406, 1992.

[10] K. Laren and Y. Wang. Time-abstracting bisimulation: implicit speci-

�cations and decidability. In Mathematical Foundations of Programming

Semantics, 1993.

[11] N. Lynch and F. Vaandrager. Action transducers and timed automata. In

3rd CONCUR, 436{455. Springer LNCS 630, 1992.

[12] X. Nicollin, J. Sifakis, and S. Yovine. FromATP to timed graphs and hybrid

systems. In Real Time: Theory in Practice, 549{572. Springer LNCS 600,

1991.

[13] R. van Glabbeek. Comparative Concurrency Semantics and Re�nement of

Actions. PhD thesis, Vrije Universiteit te Amsterdam, 1990.

[14] K. �Cer�ans. Decidability of bisimulation equivalence for parallel timer pro-

cesses. In 4th CAV, 302{315. Springer LNCS 663, 1992.

[15] K. �Cer�ans, J. Godskesen, and K. Larsen. Timed modal speci�cation: theory

and tools. In 5th CAV, 253{267. Springer LNCS 697, 1993.

[16] Y. Wang. Real-time behavior of asynchronous agents. In 1st CONCUR,

502{520. Springer LNCS 458, 1990.

[17] M. Yannakakis and D. Lee. An e�cient algorithm for minimizing real-time

transition systems. In 5th CAV, 210{224. Springer LNCS 697, 1993.

18

