
The Linear Time - Branching Time Spectrum
(extended abstract)

R.J. van G labbeek

Institut for Informatik der Technischen Universit&t
Arcisstra~e 21, D-8000 MiJnchen 2, Germany

In this paper eleven semantics in the linear time - branching time spectrum are presented in a uniform, model-
independenl way. Restricted to the domain of finitely branching, concrete, sequential processes, most seman-
tics found in the literature that can be defined uniformly in terms of action relalions coincide with one of these
eleven. Several testing scenarios, motivating these semantics, are presented, phrased in terms of 'button push-
ing experiments' on generative and reactive machines. Finally nine of these semantics are applied to a simple
language for finite, concrete, sequential, nondeterministic processes, and for each of them a complete axiomati-
zation is provided.

Notes: The research reported in this paper has been initiated at the Centre for Mathematics and Computer Sci-
ence (P.O. Box 4079, 1009 AB Amsterdam, The Netherlands), and finalized at the Technical University of Mun-
ich. It has been supported by Sonderforschungsbereich 342 of the TU M0nchen. Part of it was carried out in
the preparation o1 a course Comparative Concurrency Semantics, given at the University of Amsterdam, spring
1988.
This is an extended abstract of Chapter I of my Ph.D Thesis Comparative concurrency semantics and
refinement of actions, Free University, Amsterdam 1990. The full version also appeared as SFB-Bericht Nr.
342/../90 A, /nstitut for Informatik, Technische Universit~ MSnchen, 1990, and as Report CS-R9029, Centre
for Mathematics and Computer Science, Amsterdam 1990.

INTRODUCTION
Process theory. A process is the behaviour of a system. The system can be a machine, an elementary par-
tide, a communication protocol, a network of falling dominoes, a chess player, or any other system. Pro-
cess theory is the study of processes. Two main activities of process theory are modelling and verification.
Modelling is the activity of representing processes, mostly as dements of a mathematical domain or as
expressions in a system description language. Verification is the activity of proving statements about
processes, for instance that the actual behaviour of a system is equal to its intended behaviour. Of
course, this is only possible if a criterion has been defined, determining whether or not two processes are
equal, i.e. two systems behave similarly. Such a criterion constitutes the semantics of a process theory.
(To be precise, i t constitutes the semantics of the equality concept employed in a process theory.) Which
aspects of the behaviour of a system are of importance to a certain user depends on the environmeht in
which the system will be running, and on the interests of the particular user. Therefore it is not a task of
process theory to find the 'true' semantics of processes, but rather to determine which process semantics
is suitable for which applications.

Comparative concurrency semantics. This paper aims at the classification of process semantics, t The set of
possible process semantics can be partially ordered by the relation 'makes strictly more identifications on
processes than', thereby becoming a complete lattice 2. Now the classification of some useful process
semantics can be facilitated by drawing parts of this lattice and locating the positions of some interesting
process semantics, found in the literature. Furthermore the ideas involved in the construction of these
semantics can be unraveled and combined in new compositions, thereby creating an abundance of new
process semantics. These semantics will, by their intermediate positions in the semantic lattice, 'shed light
o n the differences and similarities of the established ones. Sometimes they also turn out to be interesting

1. This field of research is called comparative concurrency semantics, a terminology first used by MI~Y~R in [24].
2. The supremum of a set of process semantics is the semantics identifying two processes whenever they are identified by every
semantics in this set.

279

in their own right. Finally the semantic lattice serves as a map on which it can be indicated which
semantics satisfy certain desirable properties, and are suited for a particular class of applications.

Most semantic notions encountered in contemporary process theory can be classified along four
different lines, corresponding with four different kinds of identifications. First there is the dichotomy of
linear time versus branching time: to what extent should one identify processes differing only in the
branching structure of their execution paths? Secondly there is the dichotomy of interleaving semantics
versus partial order semantics: to what extent should one identify processes differing only in the causal
dependencies between their actions (while agreeing on the possible orders of execution)? Thirdly one
encounters different treatments of abstraction from internal actions in a process: to what extent should
one identify processes differing only in their internal or silent actions? And fourthly there are different
approaches to infinity: to what extent should one identify processes differing only in their infinite
behaviour? These considerations give rise to a four dimensional representation of the proposed semantic
lattice.

However, at least three more dimensions can be distinguished. In this paper, stochastic and real-time
aspects of processes are completely neglected. Furthermore it deals with uniform concurrency J only. This
means that processes are studied, performing actions 2 a,b,c,.., which are not subject to further investiga-
tions. So it remains unspecified if these actions are in fact assignments to variables or the falling of dom-
inoes or other actions. If also the options are considered of modelling (to a certain degree) the stochastic
and real-time aspects of processes and the operational behaviour of the elementary actions, three more
parameters in the classification emerge.

Process domains. In order to be able to reason about processes in a mathematical way, it is common
practice to represent processes as elements of a mathematical domain. Such a domain is called a process
domain. The relation between the domain and the world of real processes is mostly stated informally.
The semantics of a process theory can be modelled as an equivalence on a process domain, called a
semantic equivalence. In the literature one finds among others:
- graph domains, in which a process is represented as a process graph, or state transition diagram,
- net domains, in which a process is represented as a (labelled) Petri net,

event structure domains, in which a process is represented as a (labelled) event structure,
explicit domains, in which a process is represented as a mathematically coded set of its properties,
projective limit domains, which are obtained as projective limits of series of finite term domains,
and term domains, in which a process is represented as a term in a system description language.

Action relations. Writep .Z_> q if the processp can evolve into the process q, while performing the action

a. The binary predicates - -~ are called action relations. The semantic equivalences which are treated
in this paper will be defined entirely in terms of action relations. Hence these definitions apply to any
process domain on which action relations are defined. Such a domain is called a labelled transition sys-
tem. Furthermore they wiU be defined uniformly in terms of action relations, meaning that all actions are
treated in the same way. For reasons of convenience, even the usual distinction between internal and
external actions is dropped in this paper.

Finitely branchin,~ concrete, sequentialprocesses. Being a first step, this paper limits itself to a very simple
class of processes. First of all only sequential processes are investigated: processes capable of performing
at most one action at a time. Moreover attention is mainly restricted to finitely branching processes:
processes having in each state only finitely many possible ways to proceed. A generalization to infinitely
branching processes can be found in the full version of this paper. Finally, instead of dropping the usual
distinction between internal and external actions, one can equivalently maintain to study concrete
processes in which no internal actions occur (and also no internal choices as in CSP [21]). For this sim-
ple class of processes, when considering only semantic equivalences that can be defined uniformly in
terms of action relations, the announced semantic lattice collapses in six out of seven dimensions and
covers only the linear time - branching time spectrum.

I. The term uniform concurrency is employed by D• BAKKER ct al [5].
2. Strictly speaking processes do not perform actions, but systems do. However, for reasons of convenience, this paper some-
times uses the word process, when actually referring to a system of which the process is the bchaviour.

280

Literature. In the literature on uniform concurrency 11 semantics can be found, which are uniformly
definable in terms of action relations and different on the domain of finitely branching, sequential
processes (see Figure 1).

bisimulation semantics

l 2-nested simulation semantics

possible-futureS~ ready tr/ceSemantics
ation semantics

possible-futureS~ ready s ~

readiness semantics failure trace semantics

~N~.~ ~ simulation semantics
\

f a i l u r e ~ [~ m a n t i c s ~

completed trac

trace semantics

FIGURE 1. The linear time - branching time spectrum

The coarsest one (i.e. the semantics making the most identifications) is trace semantics, as presented in
HOA~ [20]. In trace semantics only partial traces are employed. The finest one (making less
identifications than any of the others) is bisimulation semantics, as presented in MILNER [27]. Bisimula-
tion semantics is the standard semantics for the system description language CCS (MILr,rER [25]). The
notion of bisimulation was introduced in PARK [29]. Bisimulation equivalence is a refinement of observa-
tional equivalence, as introduced by HENNESSY & MILNER in [17]. On the domain of finitely branching,
concrete, sequential processes, both equivalences coincide. Also the semantics of DE BAKKER & ZUCKF.R,
presented in [6], coincides with bisimulation semantics on this domain. Then there are nine semantics in
between. First of a/l a variant of trace semantics can be obtained by using complete traces besides (or
instead of) partial ones. In this paper it is called completed trace semantics. Failure semantics is intro-
duced in BROO~S, HOARE & ROSCOE [9], and used in the construction of a model for the system descrip-
tion language CSP (HoARE [19, 21]). It is finer than completed trace semantics. The semantics based on
testing equivalences, as deve/oped in DE NICOLA & I-IEt~SY [12], coincides with failure semantics on the

281

domain of finitely branching, concrete, sequential processes, as do the semantics of KENNAWAY [22] and
DARONDEAU [10]. This has been established in DE NICOLA [11]. In OLDEROO & HOARE [28] readiness
semantics is presented, which is slightly finer than failure semantics. Between readiness and bisimulation
semantics one finds ready trace semantics, as introduced independently in PNUELI [31] (there called barbed
semantics), BAETEN, BERGSTRA & KLOI~ [4] and POMELLO [32] (under the name exhibited behaviour seman-
tics). The natural completion of the square, suggested by failure, readiness and ready trace semantics
yields failure trace semantics. For finitely branching processes this is the same as refusal semantics, intro-
duced in PHILLIPS [30]. Simulation equivalence, based on the classical notion of simulation (see e.g. PARK
[29]), is independent of the last five semantics. Ready simulation semantics was introduced in BLOOM,
ISTRAIL & MEYER [8] under the name GSOS trace congruence. It is finer than ready trace as well as
simulation equivalence. In LARSEN & SKOU [23] a more operational characterization of this equivalence
was given under the name 2/3-bisimulation equivalence. This characterization resembles the one used in
this paper. Finally 2-nested simulation equivalence, introduced in GROOTE & VAANDRAGER [15], is located
between ready simulation and bisimulation equivalence, and possible futures semantics, as proposed in
ROUNDS & BROOKES [33], can be positioned between 2-nested simulation and readiness semantics.
Among the semantics which are not definable in terms of action relations and thus fall outside the scope
of this chapter, one finds semantics that take stochastic properties of processes into account, as in VAN
GLABBEEK, SMOLKA, STEFFEN & TOFTS [14] and semantics that make almost no identifications and are
hardly used for system verification.

About the contents. The first section of this paper introduces labelled transition systems and process
graphs. A labelled transition system is any process domain that is equipped with action relations. The
domain of process graphs or state transition diagrams is one of the most popular labelled transition sys-
tems. In Section 2 all semantic equivalences mentioned above are defined on arbitrary/abe/led transition
systems. In particular these definitions apply to the domain of process graphs. Most of the equivalences
can be motivated by the observable behaviour of processes, according to some testing scenario. (Two
processes are equivalent if they allow the same set of possible observations, possibly in response on cer-
tain experiments.) I will try to capture these motivations in terms of button pushing experiments (cf.
MILNER [25], pp. 10-12). Furthermore the semantics will be partially ordered by the relation 'makes at
least as many identifications as'. This yields the linear time - branching time spectrum. Counterexam-
ples are provided, showing that on the graph domain this ordering cannot be further expanded. Finally,
in Section 3, nine of the semantics are applied to a simple language for finite, concrete, sequential, non-
deterministic processes, and for each of them a complete axiomatization is provided.

1. LABELLED TRANSITION SYSTEMS AND PROCESS GRAPHS

1.1. Labelled transition systems. In this paper processes will be investigated, that are capable of perform-
ing actions from a given set Act. By an action any activity is understood that is considered as a concep-
tual entity on a chosen level of abstraction. Actions may be instantaneous or durational and are not
required to terminate, but in a finite time only finitdy many actions can be carried out. Any activity of
an investigated process should be part of some action a EAct performed by the process. Different activi-
ties that are indistinguishable on the chosen level of abstraction are interpreted as occurrences of the
same action a ~Act.

A process is sequential if it can perform at most one action at the same time. In this paper only
sequential processes will be considered. A domain of sequential processes can often be conveniently
represented as a labelled transition system. This is a domain A on which infix written binary predicates

2.> are defined for each action a~Act. The elements of /~ represent processes, andp ..5..> q means that
p can start performing the action a and after completion of this action reach a state where q is its

remaining behaviour. In a labelled transition system it may happen that p - -~ q and p - -~ r for
different actions a and b or different processesp and q. This phenomena is called branching. It need not
be specified how the choice between the alternatives is made, or whether a probability distribution can be
attached to it.

NOTATION: For any alphabet Y, let Y" be the set of strings over Y. Write c for the empty string, at) for

282

the concatenation of o and pEZ' , and a for the string, consisting of the single symbol aeX.

DEFINITION: A labelled transition system is a pair (A , o) with A a class and ~ C_A ×Act × A, such that

f o r p E g and aEAct the class {q~A [p - -~ q} is a set.

Let for the remainder of this paper (/~,~) be a labelled transition system, ranged over byp , q,r, Write

p - -~ q for (p ,a ,q)E~. The binary predicates - ~ are called action relations.

DEFINITIONS (Remark that the following concepts are defined in terms of action relations only):

The generalized action relations - -~ for a ~Act* are defined inductively by:

1. p _.L> p, for any process p.

2. (p,a,q)E--~ w i thaEAc t imp l i e sp 2_> q w i t h a c A c t * .

3. p _.~ q _e_> r implies p 2e_> r.

In words: the generalized action relations ~ are the reflexive and transitive closure of the ordi-

nary action relations ~ . p -2-> q means that p can evolve into q, while performing the sequence

o of actions. Remark that the overloading of the notion p __5_> q is quite harmless.

The set of initial actions of a processp is defined by: I (p) = (a ~Act []q: p ~ q}.

A process p e a is finitely branching if for each q e A with p ~ q for some oeAct*, the set

((a,r)l q ~ r, aEAct, r~A} is finite.

1.2. Process graphs.

DEFINITION: A process graph over a given alphabet Act is a rooted, directed graph whose edges are
labelled by elements of Act. Formally, a process graph g is a triple (NODES(g),EDGES(g),ROOT(g)),
where

NODES (g) is a set, of which the elements are called the nodes or states of g,
ROOT (g) ~NODES (g) is a special node: the root or initial state of g,
and EDGES (g)CNODES (g)XAct×NODES (g) is a set of triples (s,a,t) with s,t ~NODES (g) and a eAct:
the edges or transitions of g.

If e =(s,a,t)~EDGES (g), one says that e goes from s to t. A (finite)path ~r in a process graph is an alter-
nating sequence of nodes and edges, starting and ending with a node, such that each edge goes from the
node before it to the node after it. If ~r=So(So,ahsl)sl(sl,a2,s2) • • " (s , -ba , , s ,) s~ , also denoted as

al
qr: S O " " ~ S 1 - ~ a. • • • ---~s,, one says that ¢r goes from So to s,; it starts in So and ends in end(rr)=s,.
Let PATI-IS (g) be the set of paths in g starting from the root. If s and t are nodes in a process graph then
t can be reached from s if there is a path going from s to t. A process graph is said to be connected ff all
its nodes can be reached from the root; it is a tree if each node can be reached from the root by exactly
one path. Let G be the domain of connected process graphs over a given alphabet Act.

DEFINITION: Let g,h~G. A graph isomorphism between g and h is a bijective function
f :NODES (g)--~NODES (h) satisfying

f (ROOT (g))---- ROOT (g) and
(s,a,t)EEDGES(g) ¢e~ (f (s),a,f(t))EEDOES(h).

Graphs g and h are isomorphic, notation g~---h, ff there exists a graph isomorphism between them. In this
case g and h differ only in the identity of their nodes. Remark that graph isomorphism is an equivalence
on G.

Finitely branching connected process graphs can be pictured by using open dots (o) to denote nodes, and
labelled arrows to denote edges, as can be seen in Section 2. There is no need to mark the root of such a
process graph if it can be recognized as the unique node without incoming edges, as is the case in all my
examples. These pictures determine process graphs only up to graph isomorphism, but usually this
suffices since it is virtually never needed to distinguish between isomorphic graphs.

283

DEFINITION: For g ~ G and S ENODES (g), let g~ be the process graph defined by
NODES (gs) = (t ~NODES (g) I there is a path going from s to t},
~ooT (g,)=~ ~r~ODES (g,),
and (t,a,u)~EDGES (gs) iff t,u ~NODES (gs) and (t,a,u)~EDGES (g).

Of course g ,~G. Remark that g ,oor~)=g. Now on G action relations ~ for aEAct are defined by

g - -~ h iff (ROOT (g),a,s)~ED~ES (g) and h =g, . This makes G into a labelled transition system.

2. SEMANTIC EQUIVALENCES

2.1. Trace semantics, aEAct* is a trace of a processp, if there is a process q, such thatp ..L> q. Let T(p)
denote the set of traces ofp. Two processesp and q are trace equivalent if T(p)=T(q). In trace seman-
tics (T) two processes are identified iff they are trace equivalent.

Trace semantics is based on the idea that two processes are to be identified if they allow the same set
of observations, where an observation simply consists of a sequence of actions performed by the process
in succession.

2.2. Completed trace semantics, oEAct* is a complete trace of a process p, if there is a process q, such that

p - -~ q and I (q) = ~ . Let CT(p) denote the set of complete traces o fp . Two processes p and q are
completed trace equivalent if T(p)= T(q) and CT(p)= CT(q). In completed trace semantics (CT) two
processes are identified iff they are completed trace equivalent.

Completed trace semantics can be explained with the following (rather trivial) completed trace machine.

FIGURE 2. The completed trace machine

The process is modelled as a black box that contains as its interface to the outside world a display on
which the name of the action is shown that is currently carried out by the process. The process auto-
nomously choses an execution path that is consistent with its position in the labelled transition system
(A,~) . During this execution always an action name is visible on the display. As soon as no further
action can be carried out, the process reaches a state of deadlock and the display becomes empty. Now
the existence of an observer is assumed that watches the display and records the sequence of actions
displayed during a run of the process, possibly followed by deadlock. It is assumed that an observation
takes only a finite amount of time and may be terminated before the process stagnates. Two processes
are identified if they allow the same set of observations in this sense.

The trace machine can be regarded as a simpler version of the completed trace machine, were the last
action name remains visible in the display if deadlock occurs (unless deadlock occurs in the be#nning
already). On this machine traces can be recorded, but stagnation can not be detected, since in case of
deadlock the observer may think that the last action is still continuing.

Write $ < ~- if semantics $ makes at least as much identifications as semantics 9". This is the case if the
equivalence corresponding with $ is equal to or coarser than the one corresponding with ~'. Trivially
T ~ CT (as in Figure 1). The following counterexample shows that the reverse does not hold.

284

:t
- - T

=/=cr
b

- - S

ab + a ab

COUNTEREXAMPLE 1

2.3. Failure semantics. The failure machine contains as its interface to the outside world not only the
display of the completed trace machine, but also a switch for each action a EAct (as in Figure 3).

F--5-7
"e "o . -" "e I (.l [

I I
a b z

FIGURE 3. The failure trace machine

By means of these switches the observer may determine which actions are free and which are blocked.
This situation may be changed any time during a run of the process. As before, the process auto-
nomously choses an execution path that fits with its position in (A,~) , but this time the process may
only start the execution of free actions. If the process reaches a state where all initial actions of its
remaining behaviour are blocked, it can not proceed and the machine stagnates, which can be recognized
from the empty display. In this case the observer may record that after a certain sequence of actions o,
the set X of free actions is refused by the process. X is therefore called a refusal set and < a , X > a

failure pair. The set of all failure pairs of a process is called its failure set, and constitutes its observable
behaviour.

DEFINITION: <tr, X > eAct* ×q(Act) is a failure pair of a process p, if there is a process q, such that

p - ~ q and I (q) N X = ; J . Let F(p) denote the set of failure pairs o fp . Two processesp and q are
failure equivalent ff F(p)=F(q) . In failure semantics (F) two processes are identified iff they are failure
equivalent.

PROPOSITION 1 : C T ~(17.
PROOF: For "CT ~ F" it suffices to show that CT(p) can be expressed in terms of F(p):

CT(p) = { ~ A c t * I <o, Ac t> ~F(p)}.

"CT~-F" follows from Counterexarnple 2. []

This version of failure semantics is taken from HOARE [21]. In BROOKES, HOARE & ROSCOE [9], where
failure semantics was introduced, the refusal sets are required to be finite. It is not difficult to see that
for finitely branching processes the two versions yield the same failure equivalence. In fact this follows
immediately from the following proposition, that says that, for finitely branching processes, the failure
pairs with infinite refusal set are completely determined by the ones with finite refusal set.

285

ab + a(b + c)

- - C T

COUNTEREXAMPLE 2

a(b +c)

PROPOSITION 2: Le tp c A and o cT(p). Put Cont(o)= (a ~Act [o a cT(p)}.
i. Then, for XCAct , < o , X > E F (p) ¢~ <o, XNCont (o)>EF(p) .
ii. I fp is finitely branching then Cont(o) is finite.
PROOF: Straightforward. []

In DE NICOLA [11] several equivalences, that were proposed in KENNAWAY [22], DARONDEAU [10] and
DE NICOLA & HENNESY [12], are shown to coincide with failure semantics on the domain of finitely
branching transition systems without internal moves. For this purpose he uses the following alternative
characterization of failure equivalence.

DEFINITION: Write/) after o MUST X if for each q cgL wi thp ~ q there is an r cA and a c X such that

q -£-> r. P u t p ~ q i f f o r a l l o c A c t * andXCAct : 1) after o M U S T X ¢~, q after o M U S T X .

PROPOSITION 3: Letp, qEA. Then p ~ q ¢=> F(p)=F(q) .
PROOF: p after o M U S T X ¢~ (o,X) ~F(p) [11]. []

In HENNESSY [16], a model for nondeterministic behaviours is proposed in which a process is represented
as an acceptance tree. An acceptance tree of a finitely branching process p without internal moves or
internal nondeterminism can be represented as the set of all pairs < o , X > eAct* ×P(Act) for which

there is a process q, such tha tp --%> q and X CI (q) . It foUows that for such processes acceptance tree
equivalence coincides with failure equivalence.

2. 4. Failure trace semantics. The failure trace machine has the same layout as the failure machine, but is
does not stagnate permanently if the process cannot proceed due to the circumstance that all actions it is
prepared to continue with are blocked by the observer. Instead it idles - recognizable from the empty
display - until the observer changes its mind and allows one of the actions the process is ready to per-
form. What can be observed are traces with idle periods in between, and for each such period the set of
actions that are not blocked by the observer. Such observations can be coded as sequences of members
and subsets {)fAct.

EXAMPLE: The sequence {a,b)cdb{b,c){b,c,d)a(Act) is the account of the following observation: At
the beginning of the execution of the process p, only the actions a and b were allowed by the observer.
Apparently, these actions were not on the menu of p, for p started with an idle period. Suddenly the
observer canceled its veto on c, and this resulted in the execution of c, followed by d and b. Then again
an idle period occurred, this time when b and c were the actions not being blocked by the observer.
After a while the observer decided to allow d as well, but the process ignored this gesture and remained
idle. Only when the observer gave the green light for the action a, it happened immediately. Finally, the
process became idle once more, but this time not even one action was blocked. This made the observer
realize that a state of eternal stagnation had been reached, and disappointed he terminated the observa-
tion.

A set XC_Act, occurring in such a sequence, can be regarded as an offer from the environment, that is
refused by the process. Therefore such a set is called a refusal set. The occurrence of a refusal set may
be interpreted as a 'failure' of the environment to create a situation in which the process can proceed
without being disturbed. Hence a sequence over Act tJ ~(Act), resulting from an observation of a process

286

p may be called a failure trace of p. The observable behaviour of a process, according to this testing
scenario, is given by the set of its failure traces, its failure trace set. The semantics in which processes are
identified iff their failure trace sets coincide, is called failure trace semantics (FT).

D E F I N I T I O N S :

The refusal relations --~ for X C_Act are defined by: p ~ q iff p =q and I (p)fq X = ~ .

p -if--> q means that p can evolve into q, while being idle during a period in which X is the set of
actions allowed by the environment.

- The failure trace relations 2.> for o~(ActU@(Act))* are defined as the reflexive and transitive clo-
sure of both the action and the refusal relations. Again the overloading of notation is harmless.

- o E(Act U P(Act))* is a failure trace of a process p, if there is a process q, such that p _Z.> q. Let
FT(p) denote the set of failure traces of p. Two processes p and q are failure trace equivalent ff
FT(p) =FT(q).

PROPOSITION 4: F -< FT.
PROOF: For "F < FT" it suffices to show that F(p) can be expressed in terms of FT(p):

<o ,X>EF(p) ¢=~ oXEFT(p).

" F ~ FT" follows from the following counterexample. []

a(b + cd)+ aO c +ce)

h
- - F

v~rr

- - R

:~RT

COUNTEREXAMPLE 3

a(b +ce)+a(f +cd)

2.5. Beady trace semantics. The Beady trace machine is a variant of the failure trace machine that is
equipped with a lamp for each action a EAct.

- O - - O - - 0 C .

% "o - - - "o

a b z

FI6ul~ 4. The ready trace machine

Each time the process idles, the lamps of all actions the process is ready to engage in are lit. Of course
all these actions are blocked by the observer, otherwise the process wouldn't idle. Now the observer can

287

see which actions could be released in order to let the process proceed. During the execution of an
action no lamps are lit. An observation now consists of a sequence of members and subsets of Act, the
actions representing information obtained from the display, and the sets of actions representing informa-
tion obtained from the lights. Such a sequence is called a ready trace of the process, and the subsets
occurring in a ready trace are referred to as menus. The information about the free and blocked actions
is now redundant. The set of all ready traces of a process is called its ready trace set, and constitutes its
observable behaviour.

DEFINITIONS:

The ready trace relations ~ for eE(Act UP(Act))* are defined inductively by:

1. p ~ p, for any process p.

2. p .Z.) q impliesp - ~ q.

3. p ~ q w i t h X C _ A c t w h e n e v e r p = q a n d I (p) = X .

4. p ~ q ~ r i m p l i e s F ~ r.

The special arrow ~ had to be used, since further overloading of -2-) would cause confusion
with the fai/ure trace relations.

- aE(ActU~(Act))* is a ready trace of a process p, if there is a process q, such t h a t p ~ q. Let
R T f p) denote the set of ready traces of p. Two processes p and q are ready trace equivalent i f
R T (p) = R T (q) . In ready trace semantics (RT) two processes are identified iff they are ready trace
equivalent.

Ill BAETEN, BERGSTRA &; KLOP [4], PNUELI [31] and POMELLO [32] ready trace semantics was defined
slightly differently. By the proposition below, their definition yields the same equivalence as mine.

DEFINITION: X o a l X 1 a 2 • • • a .X . ~ (A c t) × (A c t ×~(Act))* is a normal ready trace of a processp, if there
a I ..~ an

are processes p 1, " " " ,Pn such that p ---~p I • • - ----~p, and l(pi) = Xi for i --], • . • ,n. Let RTN(p)
denote the set of normal ready traces ofp . Two processesp and q are ready trace equivalent in the sense
of [4, 31, 32] if RT)v(p) =RTN(q).

PROPOSITION5: Letp, qEA. Then RTN(p)=RTN(q) ¢e, R T (p) = R T (q) .
PROOF: The normal ready traces of a process are just the ready traces which are an alternating sequence
of sets and actions, and vice versa the set of all ready traces can be constructed form the set of normal
ready traces by means of doubling and leaving out menus. []

PROPOSITION 6: F T "< RT.
PROOF: For "FT < RT" it suffices to show that FT(p) can be expressed in terms of RT(p):

o=olo2 - - - o~ ~FT(p) (oi~Aet U P(Act)) *:> 3p= plp2 " " - Pn ERT(p) (Pi~Act Uq?(Act)) such that for
i ---- l,..., n either o i = Pi @Act or oi, Pi CAct and oi N Pi = ~"

" F T ~ - R T " follows from Cotmterexample 4. []

2.6. Readiness semantics. The readiness machine has the same layout as the ready trace machine, but, like
the failure machine, can not recover from an idle period. By means of the lights the menu of initial
actions of the remaining behaviour of an idle process can be recorded, but this happens at most once
during an observation of a process, namely at the end. An observation either results in a trace of the
process, or in a pair of a trace and a menu of actions by which the observation could have been extended
if the observer wouldn' t have blocked them. Such a pair is called a readypair of the process, and the set
of all ready pairs of a process is its ready set.

288

- -F
#R

b c = r r b c

=/=RT

ab +ac ab +a(b +c)+ac

COUNTEREXAMPLE 4

DEFINITION: <a,X>~Act*X~(Act) is a ready pair of a process p, if there is a process q, such that

p - ~ q and I(q)=X. Let R(p) denote the set of ready pairs o fp . Two processes p and q are ready
equivalent if R(p)=R(q). In readiness semantics (R) two processes are identified fit they are ready
equivalent.

PROPOSITION 7: F -< R -< RT, but R and FT are independent.
PROOF: For "F ~< R" it suffices to show that F(p) can be expressed in terms of R (p):

< a , X > ~ F (p) ¢~, 3YC_Act: < o , Y > ~ R (p) & X N Y = ~ .

For "R < RT" it suffices to show that R (p) can be expressed in terms of RT(p):

<tr, X > ~ R (p) <=~ eXeRT(p) .

"R ~ FT" (and hence "R ~ RT") follows from Counterexample 3, and "R ~, FT" (and hence "R ~ F") fol-
lows from Counterexample 4. []

Two preliminary versions of readiness semantics were proposed in ROUNDS & BROOKES [33]. In possible-
futures semantics (PF) the menu consists of the entire trace set of remaining behaviour of an idle process,
instead of only the set of its initial actions; in acceptance-refusal semantics a menu may be any finite sub-
set of initial actions, while also the finite refusal sets of Subsection 2.3 are observable.

DEFINITION: < o , X > ~Act* ×P(Act*) is apossiblefuture of a processp, if there is a process q, such that

p .2-> q and T(q)=X. Let PF(p) denote the set of possible futures o fp . Two processes p and q are
possible futures equivalent if P F (p) = PF (q).

DEFINITION: <o,X, Y > ~Act* X~(Act)X~(Act) is a acceptance-refusal triple of a process p, if X and Y

are finite and there is a process q, such tha tp _2_> q, XCI (q) and Y N I (q) = ~ . Let AR(p) denote the
set of acceptance-refusal triples of p. Two processes p and q are acceptance-refusal equivalent if
AR (p) = A R (q).

It is not difficult to see that for finitely branching processes acceptance-refusal equivalence coincides with
readiness equivalence: <tr, X > is a ready pair of a process p fiT p has an acceptance-refusal triple
< o, X, Y > with X U Y = Cont (o) (as defined in the proof of Proposition 2).

2.7. Infinite observations. All testing scenarios up till now assumed that an observation takes only a finite
amount of time. However, they can be easily adapted in order to take infinite behaviours into account.

DEFINITION:
For any alphabet X, let X ~ be the set of infinite sequences over Z.
aia2 • "" ~Act ~ is an infinite trace of a process p ~A, if there are processes p l ,g2 , - • - such that

al
p - ' ~ p I " ~ " " " - Let T~(p) denote the set of infinite traces ofp.
Two processesp and q are infinitary trace equivalent ff T(p)= T(q) and T°(p) = T°(q).
p and q are infinitary completed trace equivalent if CT(p)=CT(q) and T~(p)= T°(q). Note that in

289

this case also T(p) = T(q).
p and q are infinitaryfailure equivalent if F (p) = F(q) and T'~(p) = T~(q).
/7 and q are infinitary ready equivalent if R (p)=R (q) and T'°(p) = T~(q).
Infinitary failure traces and infinitary ready traces o~(ActUtY(Act)) ~ and the corresponding sets
FTO(p) and RT~(p) are defined in the obvious way. Two processes t 7 and q are infinitaryfailure
trace equivalent if FT~(p)=FT~(q), and likewise for infinitary ready trace equivalence.

With Ktnigs lemma one easily proves that for finitely branching processes all infinitary equivalences
coincide with the corresponding finitary ones.

2.8. Simulation semantics. The testing scenario for fmitary simulation semantics resembles that for trace
semantics, but in addition the observer is, at any time during a run of the investigated process, capable
of making arbitrary (but finitely) many copies of the process in its present state and observe them
independently. Thus an observation yields a tree rather than a sequence of actions. Such a tree can be
coded as an expression in a simple modal language.

DEFINITIONS:
- The set ~s of simulation formulas over Act is defined inductively by:

1. T~e-s.
2. Ifq~,~bE~s thenq/kq/~Es.
3. I fq~E~ anda~Ac t thenaq~Es .

- The satisfaction relation ~ CA × ~s is defined inductively by:
1. / 7 v T f o r a l l p E A .
2. /7~q~/k~if/7~d~and/7~.

3. / 7 ~ a ¢ i f f o r s o m e q ~ A : / 7 --~ q a n d q ~ ¢ .
- Let S(p) denote the set of all simulation formula that are satisfied by the process/7:

S (p)= (0E~s I/7 vq~}. Two processes/7 and q are finitary simulation equivalent if S (p)=S(q).

The following concept of simulation, occurs frequently in the literature (see e.g. PARK [29]). The derived
notion of simulation equivalence coincides with finitary simulation equivalence for finitely branching
processes.

DEFINITION: A simulation is a binary relation R on processes, satisfying, for a eAct:

if /TRq and/7 .2.>/7', then 3q': q 2-> q' and /7'Rq'.
Process/7 can be simulated by q, notation s ~ t , if there is a simulation R with/TR q.
/7 and q are similar, notation/7 ~----->q, ift, %q and q ~/7.

PROPOSITION 8: Similarity is an equivalence on the domain of /Trocesses.
PROOF: It has to be checked that t7 %/7, and p ~ q & q ~ r ~ /7 %q-

The identity relation is a simulation with/TR p.
If R is a simulation with pRq and S is a simulation with qSr, then the relation RoS, defined by
x (R oS)z iff 3y : xRy & ySz, is a simulation with/7 (R oS)r. []

Hence the relation will be called simulation equivalence.

PROPOSITION 9: Let/7,qeA be finitely branching processes. Then /7<-----~q <=> S(p)=S(q) .
PROOF: See HENNESSY & MILNER [18]. []

The testing scenario for simulation semantics differs from that for finitary simulation semantics, in that
both the duration of observations and the amount of copies that can be made each time are not required
to be finite.

PROPOSITION 10: Simulation semantics (S) is finer than trace semantics (T -< S), but independent of the
other semantics presented so far.
PROOF: For "T < S" it suffices to show that T(p) can be expressed in terms of S(p):

acT(p) ~ oTeS(p)

290

" S ~ CT" (and hence " S ~ R T " etc.) follows from Counterexample 1, and "S~,RT" (and hence "S~g T"
etc.) follows from Counterexample 5 below. []

b b

c d

- - R T

~s

b b

c d

abc + abd a (bc + bd)

COUNTEREXAMPLE 5

2.9. Ready simulation semantics. Of course one can also combine the copying facility with any of the
other testing scenarios. The observer can then plan experiments on one of the machines from the Sub-
sections 2.2 to 2.6 together with a duplicator, an ingenious device by which one can duplicate the machine
whenever and as often as one wants. In order to represent observations, the modal language from the
previous subsection needs to be slightly extended.

DEFINITIONS:
The completed simulation formulas and the corresponding satisfaction relation are defined by means
of the extra clauses:
4. 0 E ~ s .
4. p ~0 if I (p) = ~ .
For the failure simulation formulas one needs:
4. If X CAct then XECFS.
4. p ~ X i f I (p) n X = ~ .
For the ready simulation formulas:
4. If XC_Act then XECRS.
4. p~Xi f I (p)=-X.
For the failure trace simulation formulas:
4. If ~et~rTS and XCAct then X~eErTs.
4. p ~ X q ~ i f I (p) N X = ~ andp~qJ.
And for the ready trace simulation formulas:
4. If ~ E ~ r s and XC_Act then X q ~ T S .
4. p~Xq~ifI(p)=Xandp~q~.

Note that traces, complete traces, failure pairs, etc. can be obtained as the corresponding kind of simula-
tion formulas without the operator A.

By means of the formulas defined above one can define the finitary versions of completed simulation
equivalence, ready simulation equivalence, etc. It is obvious that failure trace simulation equivalence coin-
cides with failure simulation equivalence and ready trace simulation equivalence with ready simulation
equivalence (p ~ Xq~ ¢ , p ~ XAq~). Also it is not difficult to see that failure simulation equivalence and
ready simulation equivalence coincide. For finitely branching processes the fmitary versions of these two
equivalences coincide with the following infinitary versions.

DEFINITION: A ready simulation is a binary relation R on processes, satisfying, for a eAct:

if pRq andp 2-> p', then 3q': q 2-> q' andp 'Rq ' ;
if pRq then I fp)= I (q).

Two processes p and q are ready simulation equivalent if there exists a ready simulation R with pRq and a

291

ready simulation S with qSp.

PROPOSITION 11: R T - < R S and S "<RS.
PROOF: For "RT < RS" it suffices to show that RT(p) can be expressed in terms of RS(p):

oeRT(p) ,~ oTeRS(p) .

"S ~ R S " is even simpler: oES(p) ¢* oeRS(p).
" R T ~ R S " follows from Counterexample 5, using "S ~ RS';
"S:~RS" follows from Counterexample 1, using "CT ~ RS". []

An alternative and maybe more natural testing scenario for fmitary ready simulation semantics (or simu-
lation semantics) can be obtained by exchanging the duplicator for an undo-button on the (ready) trace
machine (Figure 5).

"0 % " - . %

a b z

@

undo

FIGURE 5. The ready simulation machine

It is assumed that all intermediate states that axe past through during a run of a process axe stored in a
memory inside the black box. Now pressing the undo-button causes the machine to shift one state back-
wards. In case the button is pressed during the execution of an action, this execution will be interrupted
and the process assumes the state just before this action began. In the initial state pressing the button
has no effect. An observation now consists of a (ready) trace, enriched with undo-actions. Such observa-
tions can easily be translated in (ready) simulation formulas.

2.10. Refusal (simulation) semantics. In the testing scenarios presented so fax, a process is considered to
perform actions and make choices autonomously. The investigated behaviours can therefore be classified
as generative processes. The observer merely restricts the spontaneous behaviour of the generative
machine by cutting off some possible courses of action. An alternative view of the investigated processes
can be obtained by considering them to react on stimuli from the environment and be passive otherwise.
Reactive machines can be obtained out of the generative machines presented so fax by replacing the
switches by buttons and the display by a green fight. Initially the process waits patiently until the
observer tries to press one of the buttons. If the observer tries to press an a-button, the machine can
react in two different ways: if the process can not start with an a-action the button will not go down and
the observer may try another one; ff the process can start with an a-action it will do so and the button
goes down. Furthermore the green light switches on. During the execution of a no buttons can be
pressed. As soon as the execution of a is completed the light switches off, so that the observer knows
that the process is ready for a new trial. Reactive machines as described above originate from MtLNEg
[25,261.

Next I will discuss the equivalences that originate from the various reactive machines. First consider
the reactive machine that resembles the failure trace machine, thus without menu-lights and undo-button.
An observation on such a machine consists of a sequence of accepted and refused actions. Such a
sequence can be modelled as a failure trace where all refusal sets are singletons. For finitely branching
processes the resulting equivalence is exactly the equivalence that originates from PHILLIPS notion of
refusal testing [30]. There it is called refusal equivalence. The following proposition shows that for finitely
branching processes refusal equivalence coincides with failure equivalence.

292

- o - - o - -" "

® ® - . . ®

a b z

"b'-
, ' I X

®

undo

FIGURE 6. The reactive ready simulation machine

PROPOSITION 12: Let p EA and o eFT(p). Put Cont (o)= { a eAct[oa eFT(p)}.
i. Then, for XCAct, aXpeFT(p) ¢~ o(XnCont(o))pEFT(p).
ii. I fp is finitely branching then Cont(o) is finite.
i~. o(XU Y)peFT(p) ~=> aXYp~FT(P).
PROOF: Straightforward. []

If the menu-fights are added to the reactive failure trace machine considered above one can observe
ready trace sets, and the green light is redundant. If the green light (as well as the menu-lights) are
removed one can only test trace equivalence, since any refusal may be caused by the last action not being
ready yet. Reactive machines seem to be unsuited for testing completed trace and failure equivalence. If
the menu-lights and the undo-button are added to the reactive failure trace machine one gets ready simu-
lation again and if only the undo-button is added one obtains an equivalence that may be called refusal
simulation equivalence and coincides with ready simulation equivalence on the domain of finitely branch-
hag processes. The following refusal simulation formulas originate from BLOOM, ISTRAIL & MEYER [8].

DEFINITION: The refusal simulation formulas and the corresponding satisfaction relation are defined by
adding to the definitions of Subsection 2.8 the following extra clauses:
4. If a eAct then -~a e£cs.
4. p~-~ai fa~I(p) .

An alternative family of testing scenarios with reactive machines can be obtained by allowing the
observer to try to depress more than one button at a time. In order to influence a particular choice, the
observer could already start exercising pressure on buttons during the execution of the preseeding action
(when no button can go down). When this preseeding action is finished, at most one of the buttons will
go down. These testing scenarios are equipotent with the generative ones: putting pressure on a button is
equivalent to setting the corresponding switch on 'free'.

2.11. 2-nested simulation semantics. 2-nested simulation equivalence popped up naturally in GROOTE &
VAANDRAGER [15] as the coarsest congruence with respect to a large and general class of operators that is
finer than completed trace equivalence. In order to obtain a testing scenario for this equivalence one has
to introduce the rather unnatural notion of a lookahead [15]: The 2-nested simulation machine is a variant
of the ready trace machine with duplicator, where in an idle state the machine not only tells which
actions are on the menu, but even which simulation formulas are satisfied in the current state.

DEFINITION: A 2-nested simulation is a simulation contained in simulation equivalence (~---~). p and. q are
2-nested simulation equivalent if there exists a 2-nested simulation R withpRq and a 2-nested simulation S
with qSp.

2.12. Bisimulation semantics. The testing scenario for bisimulafion semantics, as presented in MILNER
[25] is the oldest and most powerful testing scenario, from which most others have been derived by omit-
ring some of its features. It was based on a reactive failure trace machine with duplicator, but

293

additionally the observer is equipped with the capacity of global testing. Global testing is described in
ABRAMSI~Y [1] as: "the ability to enumerate all (of finitely many) possible 'operating environments' at
each stage of the test, so as to guarantee that all nondeterministic branches will be pursued by various
copies of the subject process". M~LNER [25] implemented global testing by assuming that
(i) It is the weather which determines in each state which a-move will occur in response of pressing the

a-button (if the process under investigation is capable of doing an a-move at all);
(ii) The weather has only finitely many states - at least as far as choice-resolution is concerned;
('fii) We can control the weather.
Now it can be ensured that all possible moves a process can perform in reaction on an a-experiment will
be investigated by simply performing the experiment in all possible weather conditions. Unfortunately,
as remarked in MILNEg [26], the second assumption implies that the amount of different a-moves an
investigated process can perform is bounded by the number of possible weather conditions; so for gen-
eral application this condition has to be relaxed.

A different implementation of global testing is given in LAP.SEN & SKOU [23]. They assumed that every
transition in a transition system has a certain probability of being taken. Therefore an observer can with
an arbitrary high degree of confidence assume that all transitions have been examined, simply by repeat-
ing an experiment many times.

As argued among others in BLOOM, ISTRAIL & MEYER [8], global testing in the above sense is a rather
unrealistic testing ability. Once you assume that the observer is really as powerful as in the described
scenarios, in fact more can be tested then only bisimuIation equivalence: in the testing scenario of Milner
also the correlation between weather conditions and transitions being taken by the investigated process
can be recovered, and in that of Larsen & Skou one can determine the relative probabilities of the vari-
ous transitions.

An observation in the global testing scenario can be represented as a formula in Hennessy-Milner logic
[17] (HML). An HML formula is a simulation formula in which it is possible to indicate that certain
branches are not present.

DEFINITION: The HMLfonnulas and the corresponding satisfaction relation are defined by adding to the
definitions in Subsection 2.8 the following extra clauses:
4. If q e ~ t h e n ~ e ~ .
4. p ~-~q) if p ~ ep.
Let HML(p) denote the set of all HML-formula that are satisfied by the process p:
HML(p)= (~eElp ~) . Two processesp and q are HML-equivalent if HML(p)=HML(q).

For finitely branching processes I-IENNESSY & MILNER [17] provided the following characterization of this
equivalence.

DEFINITION: Letp, q ~A be finitely branching processes. Then:
P ~0 q is always true.
P ~ + 1 q if for all a tact:

p -£-> p ' implies 3q': q _.5_> q, and p ' ~ n q';

q - -~ q' implies 3p': p .2-> p , a n d p ' N q'.
p and q are observational equivalent, notation p ~ q, i f p ~ q for every n E ~ .

PROPOSITION 13: Letp, q ~A be finitely branching processes. Then p ~ q ¢* HMLfp)=HML(q).
PROOF: In HENNESSY & MILNER [18]. []

As observed by PARK [29], for finitely branching processes observation equivalence can be reformulated
as bisimuiation equivalence.

DEFINITION: A bisimulation is a binary relation R on processes, satisfying, for a tAct:

if pRq and p .2_> p,, then 3q': q --~ q' and p'Rq';

if pRq and q .2.> q,, then 3p': p - ~ p' and p'Rq'.
Two processesp and q are bisimilar, notafionp ~ q, if there exists a bisimulation R withpRq.

294

The relation ~ is again a bisimulation. As for similarity, one easily checks that bisimilarity is an
equivalence on A. Hence the relation will be called bisimulation equivalence. Finally note that the con-

cept of bisimulation does not change if in the definition above the action relations 2_> were replaced

by generalized action relations .2..> .

PROPOSITION 14: Le tp , q ~ A be finitely branching processes. Then p ~_ q ¢* p ~ q.
PROOF: " ~ " : Straightforward with induction. " ~ " follows from Theorem 5.6 in I~,[ILNER [25]. []

For infinitely branching processes ~ is coarser then _~ and will be called finitary bisimulation equivalence.
Another characterization of bisimulation semantics can be given by means of ACZEL'S universe 'Y of

non-well-founded sets [3]. This universe is an extension of the Von Neumann universe of well-founded
sets, where the axiom of foundation (every chain x o ~ x l ~ . . . terminates) is replaced by an anti-

foundation axiom.

DEFINITION: Let B denote the unique function ~ : A ~ ¢ satisfying ~ (p) = (< a , ~ (q)> IP ~ q) for all
p cA. Two processesp and q are branching equivalent i f B (p)=B(q) .

It follows from Aczel's anti-foundation axiom that such a solution exists. In fact the axiom amounts to
saying that systems of equations like the one above have unique solutions. In [3] there is also a section
on communicating systems. There two processes are identified iff they are branching equivalent.

A similar idea underlies the semantics of DE BAKKER & ZUCKER [6], but there the domain of processes
is a complete metric space and the definition of B above only works for finitely branching processes, and
only if = is interpreted as isometry, rather then equality, in order to stay in well-founded set theory. For
finitely branching processes the semantics of De Bakker and Zucker coincides with the one of Aczel and
also with bisimulation semantics. This is observed in VAN GLABBEEK & RUTTEN [13], where also a proof
can be found of the next proposition, saying that bisimulation equivalence coincides with branching
equivalence.

PROPOSITION 15" Letp, qEA. Then p ~ _ q ¢ , B(p)=B(q) .

PROPOSITION 16: R S < B.
PROOF: For "RS ~< B" it suffices to show that each bisimulation is a ready simulation. This follows since
p ~_ q ~ I (p)=I (q) . " R S : ~ B " follows from the following counterexample. []

b b

c d

abc + a(bc + bd)

- - R S

--~2s

COUNTEREXAMPLE 6

b b

c d

a (be + bd)

2.13. THEOREM 1: For all semantics $ and ~r on G defined so far, the formula $ ~ ~r holds iff there is a path
$---~ • • " ---> ~ in Figure 1.

PROOF: Most of the implications and counterexamples have been given already. The positions of possi-
ble future semantics and 2-nested simulation semantics in the spectrum are treated in the flail version of
this paper. There it is also shown that the counterexamples are counterexamples indeed. []

295

3. COMPLETE AXIOMATIZATIONS

3.1. A language for finite, concrete, sequential processes. Consider the following basic CCS- and CSP-like
language BCCSP for finite, concrete, sequential processes over a finite alphabet Act:

inaction : 0 (called nil or stop) is a constant, representing a process that refuses to do any action.
action: a is a unary operator for any action a ~Act. The expression ap represents a process, starting

with an a-action and proceeding withp.
choice: + is a binary operator, p + q represents a process, first being involved in a choice between its

summandsp and q, and then proceeding as the chosen process.

The set P of (closed)process expressions or terms over this language is defined as usual:
0~P ,
ap EP for any aEAct andp ~P,
p + q ~ P for anyp, qEP.

Subterms a 0 may be abbreviated by a.

On P action relations 2_> for a ~Act are defined as the predicates on P generated by the action rules of
Table 1. Here a ranges overAct andp and q over P.

p _ ~ p, q.2.> q,
ap .--~ p

p + q - - ~ p ' p + q - - ~ q '

TABLE 1

Now all semantic equivalences of Section 2 are well-defined on P, and for each of the semantics it is
determined when two process expressions denote the same process.

3.2. Axioms. In Table 2 complete axiomatizations for nine from the eleven semantics of this paper that
differ on BSSCP can be found. Axioms for 2-nested simulation and possible-futures semantics are more
cumbersome, and the corresponding testing notions are less plausible. Therefore they have been omitted.
In order to formulate the axioms, variables have to be added to the language as usual. In the axioms
they are supposed to be universally quantified. Most of the axioms are axiom schemes, in the sense that
there is one axiom for each substitution of actions from Act for the parameters a,b,c. Some of the
axioms are conditional equations, using an auxiliary operator L Thus provability is defined according to
the standards of either first-order logic with equality or conditional equational logic. I is a unary opera-
tor that calculates the set of initial actions of a process expression, coded as a process expression again.

THEOREM 2: For each of the semantics O~{T, S, CT, F, R, FT, RT, RS, B} two process expressions
p,q ~P are O-equivalent iff they can be proved equal from the axioms marked with "+' in the column for 0
in Table 2. The axioms marked with 'v' are valid in O-semantics but not needed for the proof

PROOF: For /7, R and B the proof is given in BERGSTRA, KLOP • OLDEROG [7] by means of graph
transformations. A similar proof for RT can be found in BAETEN, BERGSTRA & KLOP [4]. For the remain-
ing semantics a proof can be given along the same lines. []

CONCLUDING REMARKS
In this paper various semantic equivalences for concrete sequential processes are defined, motivated, com-
pared and axiomatized. Of course many more equivalences can be given then the ones presented here.
The reason for selecting just these, is that they can be motivated rather nicely and/or play a role in the
literature on semantic equivalences. In ABRA~SKY & VICKERS [2] the observations which underly many

296

I x + y = y + x
(x + y) + z = x +0' +z)

ix + x = x
Ix+O ~ x

l (x) = I (y) ~ a(x +y) = ax + a (x +y)
: I (x) = I (y) ~ ax +ay = a(x +y)
iax +ay = ax + a y + a (x +y)
a(bx +u)+a(by +v) = a(bx +by + u) + a (b x +by +v)
ax +a(y +z) = ax + a (x + y) + a f y +z)
a(bx +u)+a(cy +v) = a(bx +cy +u +v)
a(x +y) = ax + a (x +y)
ax +ay = a (x +y)

B RS R T FT R F CT S T
+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +

+ v v v v v v v
+ + v v v v

+ v v v
+ + v v

+ v v
+ v

+ v
+

I (0) = 0 + + + + + + + + +
I (ax) = aO + + + + + + + + +
I (x +y) = l (x) + I f y) + + + + + + + + +

TABLE 2

of the semantics in this paper are placed in a uniform algebraic framework, and some general complete-
ness criteria are stated and proved.

It is left for a future occasion to give (and apply) criteria for selecting between these equivalences for
particular applications (such as the complexity of deciding if two finite-state processes are equivalent, or
the range of useful operators for which they are congruences). The work in this direction reported so far,
includes [8] and [15].

Also the generalization of this work to a setting with silent moves and/or with parallelism is left for
the future. In this case the number of equivalences that are worth classifying is much larger. However,
in many papers parts of a classification can be found already (see for instance [32]).

A generalization to preorders, instead of equivalences, can be obtained by replacing conditions like
O(p)=O(q) by O(p)CO(q) . Since preorders are often useful for verification purposes, it seems to be
worthwhile to have to classify them as well.

Furthermore it would be interesting to give explicit representations of the equivalences, by representing
processes as sets of observations instead of equivalence classes of process graphs, and defining operators
like action prefixing and choice directly on these representations, as has been done for failure semantics
in [9] and for readiness semantics in [28].

REFERENCES
[1] S. ABRAMSKY (1987): Observation equivalence as a testing equivalence. TCS 53, pp. 225-241.
[2] S. ABRAMSKY & S. VICKERS (1990): Quantales, observational logic, and process semantics, unpub-

fished manuscript.
[3] P. ACZEL (1988): Non-wellfoundedsets, CSLI Lecture Notes No.14, Stanford University.
[4] J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLOP (1987): Ready-trace semantics for concrete process alge-

bra with theprtority operator. The Computer Journal 30(6), pp. 498-506.
[5] J.W. DE BAKKER, J.~l. KOK, J.-J.CH. ~MEYER~ E.-R. OLDEROG d~ J.I. ZUCKER (1986): Contrasting

themes in the semantics of imperative concurrency. In: Current trends in concurrency (J.W. de
Bakker, W.-P. de Roever & G. Rozenberg, eds.), LNCS 224, Springer-Verlag pp. 51-121.

[6] J.W. DE BAKKER & J.I. ZUCKER (1982): Processes and the denotational semantics of concurrency. I&C
54(1/2), pp. 70-120.

[7] J.A. BERGSTRA, J.W. KLOP & E.-R. OLDEROG (1988): Readies and failures in the algebra of communi-
catingprocesses. SIAM Journal on Computing 17(6), pp. 1134-1177.

[8] B. BLOOM, S. ISTRAIL & A.R. MEYER (1988): Bisimulation can't be traced: preliminary report. In:
Conference Record of the 15 th ACM Symposium on Principles of Programming Languages (POPL),
San Diego, California, pp. 229-239.

297

[9] S.D. BROOKES, C.A.R. HoAm~ & A.W. Roscoe (1984): A theory of communicating sequential
processes. JACM 31(3), pp. 560-599.

[10] PH. DARONDEAU (1982): An enlarged definition and complete axiomatisation of observational
congruence of finite processes. In: Proceedings international symposium on programming: 5th collo-
quium, Aarhus (M. Dezani-Ciancaglini & U. Montana_d, eds.), LNCS 137, Springer-Verlag, pp. 47-
62.

[11] R. DE NICOLA (1987): Extensional equivalences for transition systems. Acta Informatica 24, pp. 211-
237.

[12] R. DE NICOLA & M. HENNESSY (1984): Testing equivalences for processes. TCS 34, pp. 83-133.
[13] R.J. VAN OLABBEEK & J.J.M.M. RUTTEN (1989): The processes of De Bakker and Zucker represent

bisimulation equivalence classes. In: J.W. de Bakker, 25 jaar semantiek, liber amicorum, pp. 243-246.
[14] R.J. VAN GLABBF2.K, S.A. SMOLKA, B. STEFFEN & C.M.N. TOF:rS (1990): Reactive, generative, and

stratified models ofprobabilistic processes, to appear in: Proceedings 5 th Annual Symposium on Logic
in Computer Science (LICS 90), Philadelphia, USA, IEEE Computer Society Press, Washington.

[15] J.F. GROOTE & F.W. VAANDRAGER (1988): Structured operational semantics and bisimulation as a
congruence. Report CS-R8845, Centrum voor Wiskunde en Informatica, Amsterdam, under revi-
sion for I&C. An extended abstract appeared in: Proceedings ICALP 89, Stresa (G. Ausiello, M.
Dezani-Ciancaglini & S. Ronchi Della Rocca, eds.), LNCS 372, Spfiuger-Verlag, pp. 423-438.

[16] M. HENNFSSY (1985): Acceptance trees. JACM 32(4), pp. 896-928.
[17] M. I~NNESSY & R. MILNER (1980): On observing nondeterminism and concurrency. In: Proceedings

ICALP 80 (J. de Bakker & J. van Lceuwen, eds.), LNCS 85, Spfinger-Verlag, pp. 29%309, a prelim-
inary version of:.

[18] M. HENNESSY & R. MILNER (1985): Algebraic laws for nondeterminism and concurrency. JACM 32(1),
pp. 137-161.

[19] C.A.R. HOA~ (1978): Communicating sequentialprocesses. Communications of the ACM 21(8), pp.
666-677.

[20] C.A.R. HOAI~ (1980): Communicating sequential processes. In: On the construction of programs -
an advanced course (R.M. McKeag & A.M. Macnaghten, eds.), Cambridge University Press, pp.
229-254.

[21] C.A.R. HOARE (1985): Communicating sequentialprocesses, Prentice-Hall International.
[22] J.K. KENNAWAV (1981): Formal semantics of nondetermism and parallelism. Ph.D. Thesis, Univer-

sity of Oxford.
[23] K.G. LARSEN & A. SKOU (1988): Bisimulation through probabilistic testing. R 88-29, Institut for

Elektroniske Systemer, Afdeling for Matematik og Datalogi, Aalborg Universitetscenter, a prelim-
th inary report appeared in: Conference Record of the 16 Annual ACM Symposium on Principles of

Programming Languages (POPL), Austin, Texas, ACM Press, New York 1989.
[24] A.R. MEYER (1985): Report on the 5 th international workshop on the semantics of programming

languages in Bad Honnef. Bulletin of the EATCS 27, pp. 83-84.
[25] R. MILleR (1980): A calculus of communicating systems, LNCS 92, Springer-Veflag.
[26] R. MILNER (1981): A modal characterisation of observable machine-behaviour. In: Proceedings CAAP

81 (G. Astesiano & C. Bthm, eds.), LNCS 112, Springer-Verlag, pp. 25-34.
[27] R. MILNEg (1983): Calculi for synchrony and asynchrony. TCS 25, pp. 267-310.
[28] E.-R. OLD~ROG & C.A.R. HoAa.e (1986): Specification-oriented semantics for communicating

processes. Acta Informatica 23, pp. 9-66.
[29] D.M.R. PARK (1981): Concurrency and automata on infinite sequences. In: Proceedings 5 th GI

Conference (P. Deussen, ed.), LNCS 104, Spr/nger-Verlag, pp. 167-183.
[30] I.C.C. PHILLIPS (1987): Refusal testing. TCS 50, pp. 241-284.
[31] A. PNUELI (1985): Linear and branching structures in the semantics and logics of reactive systems. In:

Proceedings ICALP 85, Nafplion (W. Brauer, ed.), LNCS 194, Springer-Verla~ pp. 15-32.
[32] L. PO~ed~LLO (1986): Some equivalence notions for concurrent systems. An overview. In: Advances in

Petri Nets t985 (G. Rozenberg, ed.), LNCS 222, Springer-Verlag, pp. 381-400.
[33] W.C. ROUNDS & S.D. BgOOKES (1981): Possible futures, acceptances, refusals and communicating

processes. In: Proceedings 22 "a Annual Symposium on Foundations of Computer Science, Nashville,
USA 1981, IEEE, New York, pp. 140-149.

