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Routing Game on Parallel Networks:

the Convergence of Atomic to Nonatomic

Paulin Jacquot∗and Cheng Wan †

April 9, 2018

Abstract

We consider an instance of a nonatomic routing game. We assume that the network is
parallel, that is, constituted of only two nodes, an origin and a destination. We consider
infinitesimal players that have a symmetric network cost, but are heterogeneous through
their set of feasible strategies and their individual utilities. We show that if an atomic
routing game instance is correctly defined to approximate the nonatomic instance, then an
atomic Nash Equilibrium will approximate the nonatomic Wardrop Equilibrium. We give
explicit bounds on the distance between the equilibria according to the parameters of the
atomic instance. This approximation gives a method to compute the Wardrop equilibrium
at an arbitrary precision.

1 Introduction

Motivation. Network routing games were first considered by Rosenthal [18] in their “atomic
unsplittable” version, where a finite set of players share a network subject to congestion. Routing
games found later on many practical applications not only in transport [11, 20], but also in
communications [15], distributed computing [1] or energy [2]. The different models studied are
of three main categories: nonatomic games (where there is a continuum of infinitesimal players),
atomic unsplittable games (with a finite number of players, each one choosing a path to her
destination), and atomic splittable games (where there is a finite number of players, each one
choosing how to split her weight on the set of available paths).

The concept of equilibrium is central in game theory, for it corresponds to a “stable” situation,
where no player has interest to deviate. With a finite number of players—an atomic unsplittable
game—it is captured by the concept of Nash Equilibrium [13]. With an infinite number of
infinitesimal players—the nonatomic case—the problem is different: deviations from a finite
number of players have no impact, which led Wardrop to its definition of equilibria for nonatomic
games [20]. A typical illustration of the fundamental difference between the nonatomic and
atomic splittable routing games is the existence of an exact potential function in the former
case, as opposed to the latter [14]. However, when one considers the limit game of an atomic
splittable game where players become infinitely many, one obtains a nonatomic instance with
infinitesimal players, and expects a relationship between the atomic splittable Nash equilibria
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and the Wardrop equilibrium of the limit nonatomic game. This is the question we address in
this paper.

Main results. We propose a quantitative analysis of the link between a nonatomic routing
game and a family of related atomic splittable routing games, in which the number of players
grows. A novelty from the existing literature is that, for nonatomic instances, we consider a very
general setting where players in the continuum [0, 1] have specific convex strategy-sets, the profile
of which being given as a mapping from [0, 1] to RT . In addition to the conventional network
(congestion) cost, we consider individual utility function which is also heterogeneous among the
continuum of players. For a nonatomic game of this form, we formulate the notion of an atomic
splittable approximating sequence, composed of instances of atomic splittable games closer and
closer to the nonatomic instance. Our main results state the convergence of Nash equilibria
(NE) associated to an approximating sequence to the Wardrop equilibrium of the nonatomic
instance. In particular, Thm. 11 gives the convergence of aggregate NE flows to the aggregate
WE flow in RT in the case of convex and strictly increasing price (or congestion cost) functions
without individual utility; Thm. 14 states the convergence of NE to the Wardrop equilibrium in
((RT )[0,1], ‖.‖2) in the case of player-specific strongly concave utility functions. For each result
we provide an upper bound on the convergence rate, given from the atomic splittable instances
parameters. An implication of these new results concerns the computation of an equilibrium of
a nonatomic instance. Although computing an NE is a hard problem in general [10], there exists
several algorithms to compute an NE through its formulation with finite-dimensional variational
inequalities [6]. For a Wardrop Equilibrium, a similar formulation with infinite-dimensional
variational inequalities can be written, but finding a solution is much harder.

Related work. Some results have already been given to quantify the relation between Nash
and Wardrop equilibria. Haurie and Marcotte [8] show that in a sequence of atomic splittable
games where atomic splittable players replace themselves smaller and smaller equal-size play-
ers with constant total weight, the Nash equilibria converge to the Wardrop equilibrium of a
nonatomic game. Their proof is based on the convergence of variational inequalities correspond-
ing to the sequence of Nash equilibria, a technique similar to the one used in this paper. Wan [19]
generalizes this result to composite games where nonatomic players and atomic splittable players
coexist, by allowing the atomic players to replace themselves by players with heterogeneous sizes.

In [7], the authors consider an aggregative game with linear coupling constraints (generalized
Nash Equilibria) and show that the Nash Variational equilibrium can be approximated with the
Wardrop Variational equilibrium. However, they consider a Wardrop-type equilibrium for a finite
number of players: an atomic player considers that her action has no impact on the aggregated
profile. They do not study the relation between atomic and nonatomic equilibria, as done in
this paper. Finally, Milchtaich [12] studies atomic unsplittable and nonatomic crowding games,
where players are of equal weight and each player’s payoff depends on her own action and on the
number of players choosing the same action. He shows that, if each atomic unsplittable player
in an n-person finite game is replaced by m identical replicas with constant total weight, the
equilibria generically converge to the unique equilibrium of the corresponding nonatomic game as
m goes to infinity. Last, Marcotte and Zhu [11] consider nonatomic players with continuous types
(leading to a characterization of the Wardrop equilibrium as a infinite-dimensional variational
inequality) and studied the equilibrium in an aggregative game with an infinity of nonatomic
players, differentiated through a linear parameter in their cost function and their feasibility sets
assumed to be convex polyhedra.

Structure. The remaining of the paper is organized as follows: in Sec. 2, we give the
definitions of atomic splittable and nonatomic routing games. We recall the associated concepts
of Nash and Wardrop equilibria, their characterization via variational inequalities, and sufficient
conditions of existence. Then, in Sec. 3, we give the definition of an approximating sequence of
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a nonatomic game, and we give our two main theorems on the convergence of the sequence of
Nash equilibria to a Wardrop equilibrium of the nonatomic game. Last, in Sec. 4 we provide a
numerical example of an approximation of a particular nonatomic routing game.

Notation. We use a bold font to denote vectors (e.g. x) as opposed to scalars (e.g. x).

2 Splittable Routing: Atomic and Nonatomic

2.1 Atomic Splittable Routing Game

An atomic splittable routing game on parallel arcs is defined with a network constituted of a
finite number of parallel links (cf Fig. 1) on which players can load some weight. Each “link”
can be thought as a road, a communication channel or a time slot on which each user can put a
load or a task. Associated to each link is a cost or “latency” function that depends only of the
total load put on this link.

O D

t = 1, c1
t = 2, c2
· · ·

t = T, cT

Figure 1: A parallel network with T links.

Definition 1. Atomic Splittable Routing Game
An instance G of an atomic splittable routing game is defined by:

• a finite set of players I = {1, . . . , I},

• a finite set of arcs T = {1, . . . , T},

• for each i ∈ I, a feasibility set Xi ⊂ RT+,

• for each i ∈ I, a utility function ui : Xi → R,

• for each t ∈ T , a cost or latency function ct(.) : R→ R .

Each atomic player i ∈ I chooses a profile (xi,t)t∈T in her feasible set Xi and minimizes her
cost function:

fi(xi,x−i) :=
∑
t∈T

xi,tct

(∑
j∈I

xj,t

)
− ui(xi). (1)

composed of the network cost and her utility, where x−i := (xj)j 6=i. The instance G can be
written as the tuple:

G = (I, T ,X , c, (ui)i) , (2)

where X := X1 × · · · × XI and c = (ct)t∈T .

In the remaining of this paper, the notation G will be used for an instance of an atomic game
(Def. 1).
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Owing to the network cost structure (1), the aggregated load plays a central role. We denote
it by Xt :=

∑
i∈I xi,t on each arc t, and denote the associated feasibility set by:

X̃ :=
{
X ∈ RT : ∃x ∈ X s.t.

∑
i∈I xi = X

}
. (3)

As seen in (1), atomic splittable routing games are particular cases of aggregative games:
each player’s cost function depends on the actions of the others only through the aggregated
profile X.

For technical simplification, we make the following assumptions:

Assumption 1. Convex costs Each cost function (ct) is differentiable, convex and increasing.

Assumption 2. Compact strategy sets For each i ∈ I, the set Xi is assumed to be nonempty,
convex and compact.

Assumption 3. Concave utilities Each utility function ui is differentiable and concave.

Note that under Asms. 1 and 3, each function fi is convex in xi.
An example that has drawn a particular attention is the class of atomic splittable routing

games considered in [15]. We add player-specific constraints on individual loads on each link, so
that the model becomes the following.

Example 1. Each player i has a weight Ei to split over T . In this case, Xi is given as the
simplex:

Xi = { xi ∈ RT+ :
∑
t xi,t = Ei and xi,t ≤ xi,t ≤ xi,t} .

Ei can be the mass of data to be sent over different canals, or an energy to be consumed over
a set of time periods [9]. In the energy applications, more complex models include for instance
“ramping” constraints ri,t ≤ xi,t+1 − xi,t ≤ ri,t.

Example 2. An important example of utility function is the distance to a preferred profile
yi = (yi,t)t∈T , that is:

ui(xi) = −ωi ‖xi − yi‖22 = −ωi
∑
t (xi,t − yi,t)2

, (4)

where ωi > 0 is the value of player i’s preference. Another type of utility function which has
found many applications is :

ui(xi) = −ωi log (1 +
∑
t xi,t) , (5)

which increases with the weight player i can load on T .

Below we recall the central notion of Nash Equilibrium in atomic non-cooperative games.

Definition 2. Nash Equilibrium (NE)
An NE of the atomic game G = (I,X , (fi)i) is a profile x̂ ∈ X such that for each player

i ∈ I:
fi(x̂i, x̂−i) ≤ fi(xi, x̂−i), ∀xi ∈ Xi .

Proposition 1. Variational Formulation of an NE
Under Asms. 1 to 3, x̂ ∈ X is an NE of G if and only if:

∀x ∈ X ,∀i ∈ I,
〈
∇ifi(x̂i, x̂−i),xi − x̂i

〉
≥ 0 , (6)

where ∇ifi(x̂i, x̂−i) = ∇fi(·, x̂−i)|·=x̂i =
(
ct(X̂t) + x̂i,tct

′(X̂t)
)
t∈T − ∇ui(x̂i). An equivalent

condition is:
∀x ∈ X ,

∑
i∈I
〈
∇ifi(x̂i, x̂−i),xi − x̂i

〉
≥ 0 .
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Proof. Since xi 7→ fi(xi,x−i) is convex, (6) is the necessary and sufficient first order condition
for x̂i to be a minimum of fi(., x̂−i).

Def. 1 defines a convex minimization game so that the existence of an NE is a corollary of
Rosen’s results [17]:

Theorem 2 (Cor. of Rosen, 1965). Existence of an NE
If G is an atomic routing congestion game (Def. 1) satisfying Asms. 1 to 3, then there exists an
NE of G.

Rosen [17] gave a uniqueness theorem applying to any convex compact strategy sets, relying
on a strong monotonicity condition of the operator (∇xifi)i. For atomic splittable routing games
[15], an NE is not unique in general [4]. To our knowledge, for atomic parallel routing games
(Def. 1) under Asms. 1 to 3, neither the uniqueness of NE nor a counter example of its uniqueness
has been found. However, there are some particular cases where uniqueness has been shown, e.g.
[9] for the case of Ex. 1.

However, as we will see in the convergence theorems of Sec. 3, uniqueness of NE is not neces-
sary to ensure the convergence of NE of a sequence of atomic unsplittable games, as any sequence
of NE will converge to the unique Wardrop Equilibrium of the nonatomic game considered.

2.2 Infinity of Players: the Nonatomic Framework

If there is an infinity of players, the structure of the game changes: the action of a single player has
a negligible impact on the aggregated load on each link. To measure the impact of infinitesimal
players, we equip real coordinate spaces Rk with the usual Lebesgue measure µ.

The set of players is now represented by a continuum Θ = [0, 1]. Each player is of Lebesgue
measure 0.

Definition 3. Nonatomic Routing Game
An instance G of a nonatomic routing game is defined by:

• a continuum of players Θ = [0, 1],

• a finite set of arcs T = {1, . . . , T},

• a point-to-set mapping of feasibility sets X. : Θ ⇒ RT+,

• for each θ ∈ Θ, a utility function uθ(.) : Xθ → R,

• for each t ∈ T , a cost or latency function ct(.) : R→ R.

Each nonatomic player θ chooses a profile xθ = (xθ,t)t∈T in her feasible set Xθ and minimizes
her cost function:

Fθ(xθ,X) :=
∑
t∈T

xθ,tct

(
Xt

)
− uθ(xθ), (7)

where Xt :=
∫

Θ
xθ,tdθ denotes the aggregated load. The nonatomic instance G can be written as

the tuple:
G = (Θ, T , (Xθ)θ∈Θ, c, (uθ)θ∈Θ) . (8)

For the nonatomic case, we need assumptions stronger than Asms. 2 and 3 for the mappings
X. and u., given below:
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Assumption 4. Nonatomic strategy sets There exists M > 0 such that, for any θ ∈ Θ, Xθ
is convex, compact and Xθ ⊂ B0(M), where B0(M) is the ball of radius M centered at the origin.
Moreover, the mapping θ 7→ Xθ has a measurable graph ΓX := {(θ,x) : θ ∈ Θ,x ∈ Xθ} ⊂ RT+1.

Assumption 5. Nonatomic utilities There exists Γ > 0 s.t. for each θ, uθ is differentiable,
concave and ‖∇uθ‖∞ < Γ. The function ΓX 3 (θ,xθ) 7→ uθ(xθ) is measurable.

Def. 3 and Asms. 4 and 5 give a very general framework. In many models of nonatomic
games that have been considered, players are considered homogeneous or with a finite number
of classes [14, Chapter 18]. Here, players can be heterogeneous through Xθ and uθ. Games with
heterogeneous players can find many applications, an example being the nonatomic equivalent
of Ex. 1:

Example 3. Let θ 7→ Eθ be a density function which designates the total demand Eθ for each
player θ ∈ Θ. Consider the nonatomic splittable routing game with feasibility sets

Xθ := {xθ ∈ RT+ :
∑
t

xθ,t = Eθ}.

As in Ex. 1, one can consider some upper bound xθ,t and lower bound xθ,t for each θ ∈ Θ and
each t ∈ T , and add the bounding constraints ∀t ∈ T , xθ,t ≤ xθ,t ≤ xθ,t in the definition of Xθ.

Heterogeneity of utility functions can also appear in many practical cases: if we consider the
case of preferred profiles given in Ex. 2, members of a population can attribute different values
to their cost and their preferences.

Since each player is infinitesimal, her action has a negligible impact on the other players’
costs. Wardrop [20] extended the notion of equilibrium to the nonatomic case.

Definition 4. Wardrop Equilibrium (WE)
x∗ ∈ (Xθ)θ is a Wardrop equilibrium of the game G if it is a measurable function from θ to X
and for almost all θ ∈ Θ,

Fθ(x
∗
θ,X

∗) ≤ Fθ(xθ,X∗), ∀xθ ∈ Xθ ,

where X∗ =
∫
θ∈Θ

x∗θdθ ∈ RT .

Proposition 3. Variational formulation of a WE
Under Asms. 1, 4 and 5, x∗ ∈ X is a WE of G iff for almost all θ ∈ Θ:

〈c(X∗)−∇uθ(x∗θ),xθ − x∗θ〉 ≥ 0, ∀xθ ∈ Xθ . (9)

Proof. Given X∗, (9) is the necessary and sufficient first order condition for x∗θ to be a minimum
point of the convex function Fθ(.,X

∗).

According to (9), the monotonicity of c is sufficient to have the VI characterization of the
equilibrium in the nonatomic case, as opposed to the atomic case in (6) where monotonicity and
convexity of c are needed.

Theorem 4 (Cor. of Rath, 1992 [16]). Existence of a WE
If G is a nonatomic routing congestion game (Def. 3) satisfying Asms. 1, 4 and 5, then G admits
a WE.

Proof. The conditions required in [16] are satisfied. Note that we only need (ct)t and (uθ)θ∈Θ to
be continuous functions.
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The variational formulation of a WE given in Thm. 3 can be written in the closed form:

Theorem 5. Under Asms. 1, 4 and 5, x∗ ∈ X is a WE of G iff:∫
θ∈Θ

〈c(X∗)−∇uθ(x∗θ),xθ − x∗θ〉dθ ≥ 0, ∀x ∈ X . (10)

Proof. This follows from Thm. 3. If x∗ ∈ X is a Wardrop equilibrium so that (9) holds for almost
all θ ∈ Θ, then (10) follows straightforwardly.

Conversely, suppose that x∗ ∈ X satisfies condition (10) but is not a WE of G. Then there
must be a subset S of Θ with strictly positive measure such that for each θ ∈ S, (9) does not
hold: for each θ ∈ S, there exists yθ ∈ Xθ such that

〈c(X∗)−∇uθ(x∗θ),yθ − x∗θ〉 < 0

For each θ ∈ Θ \ S, let yθ := x∗θ. Then y = (yθ)θ∈Θ ∈ X , and∫
θ∈Θ

〈c(X∗)−∇uθ(x∗θ),yθ − x∗θ〉dθ

=

∫
θ∈S
〈c(X∗)−∇uθ(x∗θ),yθ − x∗θ〉dθ < 0

contradicting (10).

Corrolary 6. In the case where uθ ≡ 0 for all θ ∈ Θ, under Asms. 1 and 4, x∗ ∈ X is a WE
of G iff:

〈c(X∗),X −X∗〉 ≥ 0, ∀X ∈ X̃ . (11)

From the characterization of the WE in Thm. 5 and Thm. 6, we derive Thms. 7 and 8 that
state simple conditions ensuring the uniqueness of WE in G.

Theorem 7. Under Asms. 1, 4 and 5, if uθ is strictly concave for each θ ∈ Θ, then G admits a
unique WE.

Proof. Suppose that x ∈ X and y ∈ X are both WE of the game. Let X =
∫
θ∈Θ

xθdθ and

Y =
∫
θ∈Θ

yθdθ. Then, according to Theorem 5,∫
θ∈Θ

〈c(X)−∇uθ(xθ),yθ − xθ〉dθ ≥ 0 (12)∫
θ∈Θ

〈c(Y )−∇uθ(yθ),xθ − yθ〉dθ ≥ 0 (13)

By adding (12) and (13), one has∫
θ∈Θ

〈c(X)− c(Y )−∇uθ(xθ) +∇uθ(yθ),yθ − xθ〉dθ ≥ 0

⇒ 〈c(X)− c(Y ),

∫
θ∈Θ

(yθ − xθ)dθ〉+

∫
θ∈Θ

〈−∇uθ(xθ) +∇uθ(yθ),yθ − xθ〉dθ ≥ 0

⇒ 〈c(X)− c(Y ), X − Y 〉+

∫
θ∈Θ

〈−∇uθ(xθ) +∇uθ(yθ),xθ − yθ〉dθ ≤ 0

Since for each θ, uθ is strictly concave, ∇uθ is thus strictly monotone. Therefore, for each
θ ∈ Θ, 〈−∇uθ(xθ) +∇uθ(yθ),xθ − yθ〉 ≥ 0 and equality holds if and only if xθ = yθ. Besides,
c is monotone, hence 〈c(X) − c(Y ), X − Y 〉 ≥ 0. Consequently, 〈c(X) − c(Y ), X − Y 〉 +∫
θ∈Θ
〈−∇uθ(xθ)+∇uθ(yθ),xθ−yθ〉dθ ≥ 0, and equality holds if and only if for almost all θ ∈ Θ,

xθ = yθ. (In this case, X = Y .)
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Theorem 8. In the case where uθ ≡ 0 for all θ ∈ Θ, under Asms. 1 and 4, if c = (ct)
T
t=1 :

[0,M ]T → RT is a strictly monotone operator, then all the WE of G have the same aggregate

profile X∗ ∈ X̃ .

Proof. Suppose that x ∈ X and y ∈ X are both WE of the game. Let X =
∫
θ∈Θ

xθdθ and

Y =
∫
θ∈Θ

yθdθ. Then, according to Corollary 6,

〈c(X),Y −X〉 ≥ 0 (14)

〈c(Y ),X − Y 〉 ≥ 0 (15)

By adding (14) and (15), one has

〈c(X)− c(Y ),Y −X〉 ≥ 0

Since c is strictly monotone, 〈c(X)− c(Y ),X − Y 〉 ≥ 0 and equality holds if and only X = Y .
Consequently, X = Y .

Remark 1. If for each t ∈ T , ct(.) is (strictly) increasing, then c is a (strictly) monotone
operator from [0,M ]T → RT .

One expects that, when the number of players grows very large in an atomic splittable game,
the game gets close to a nonatomic game in some sense. We confirm this intuition by showing
that, considering a sequence of equilibria of approximating atomic games of a nonatomic instance,
the sequence will converge to an equilibrium of the nonatomic instance.

3 Approximating Nonatomic Games

To approximate the nonatomic game G, the idea consists in finding a sequence of atomic games
(G(ν)) with an increasing number of players, each player representing a “class” of nonatomic
players, similar in their parameters.

As the players θ ∈ Θ are differentiated through Xθ and uθ, we need to formulate the conver-
gence of feasibility sets and utilities of atomic instances to the nonatomic parameters.

3.1 Approximating the nonatomic instance

Definition 5. Atomic Approximating Sequence (AAS)

A sequence of atomic games G(ν) =
(
I(ν), T ,X (ν), c, (u

(ν)
i )i

)
is an approximating sequence (AAS)

for the nonatomic instance G =
(
Θ, T , (Xθ)θ, c, (uθ)θ

)
if for each ν ∈ N, there exists a partition

of cardinal I(ν) of set Θ, denoted by (Θ
(ν)
i )i∈I(ν) , such that:

• I(ν) −→ +∞,

• µ(ν) := maxi∈I(ν) µ
(ν)
i −→ 0 where µ

(ν)
i := µ(Θ

(ν)
i ) is the Lebesgue measure of subset Θ

(ν)
i ,

• δ
(ν)

:= maxi∈I(ν) δ
(ν)
i −→ 0 where δi is the Hausdorff distance (denoted by dH) between

nonatomic feasibility sets and the scaled atomic feasibility set:

δ
(ν)
i := max

θ∈Θi
dH

(
Xθ, 1

µ
(ν)
i

X (ν)
i

)
, (16)
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• d
(ν)

:= maxi∈I(ν) d
(ν)
i −→ 0 where di is the L∞-distance (in B0(M)→ R) between the gradient

of nonatomic utility functions and the scaled atomic utility functions:

d
(ν)
i = max

θ∈Θi
max

x∈B0(M)

∥∥∥∇u(ν)
i

(
µ

(ν)
i x

)
−∇uθ(x)

∥∥∥
2
. (17)

From Def. 5 it is not trivial to build an AAS of a given nonatomic game G, one can even
be unsure that such a sequence exists. However, we will give practical examples in Secs. 3.4.1
and 3.4.2.

A direct result from the assumptions in Def. 5 is that the players become infinitesimal, as
stated in Thm. 9.

Lemma 9. If (G(ν))ν is an AAS of a nonatomic instance G, then considering the maximal
diameter M of Xθ, we have:

∀i ∈ I(ν),∀xi ∈ X (ν)
i , ‖xi‖2 ≤ µ

(ν)
i (M + δ

(ν)
i ) . (18)

Proof. Let xi ∈ X (ν)
i . Let θ ∈ Θ

(ν)
i and denote by PXθ the projection on Xθ. By definition of

δ
(ν)
i , we get: ∥∥∥∥∥ xi

µ
(ν)
i

− PXθ
( xi

µ
(ν)
i

)∥∥∥∥∥
2

≤ δ(ν)
i (19)

⇐⇒ ‖xi‖2 ≤ µ
(ν)
i

(
δ

(ν)
i +

∥∥∥∥∥PXθ( xi

µ
(ν)
i

)∥∥∥∥∥
2

)
≤ µ(ν)

i (δ
(ν)
i +M) . (20)

Lemma 10. If (G(ν))ν is an AAS of a nonatomic instance G, then the Hausdorff distance

between the aggregated sets X̃ =
∫

Θ
X. and X̃ (ν) =

∑
i∈I(ν) X

(ν)
i is bounded by:

dH

(
X̃ (ν), X̃

)
≤ δ(ν)

. (21)

Proof. Let (xθ)θ ∈ X be a nonatomic profile. Let Pi denote the Euclidean projection on X (ν)
i

for i ∈ I(ν) and consider yi := Pi

(∫
Θ

(ν)
i

xθdθ
)
∈ X (ν)

i . From (16) we have:∥∥∥∥∥∥
∫

Θ

xθdθ −
∑
i∈I(ν)

yi

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
i∈I(ν)

(∫
Θ

(ν)
i

xθdθ − yi

)∥∥∥∥∥∥
2

(22)

=

∥∥∥∥∥∥
∑
i∈I(ν)

∫
Θ

(ν)
i

(
xθ −

1

µ
(ν)
i

yi

)
dθ

∥∥∥∥∥∥
2

(23)

≤
∑
i∈I(ν)

∫
Θ

(ν)
i

∥∥∥∥∥xθ − 1

µ
(ν)
i

yi

∥∥∥∥∥
2

dθ (24)

≤
∑
i∈I(ν)

∫
Θ

(ν)
i

δ
(ν)
i dθ =

∑
i∈I(ν)

µ
(ν)
i δ

(ν)
i ≤ δ(ν)

, (25)
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which shows that d
(
X, X̃ (ν)

)
≤ δ

(ν)
for all X ∈ X̃ . On the other hand, if

∑
i∈I(ν) xi ∈ X̃ (ν),

then let us denote by Πθ the Euclidean projection on Xθ for θ ∈ Θ, and yθ = Πθ

(
1

µ
(ν)
i

xi

)
∈ Xθ

for θ ∈ Θ
(ν)
i . Then we have for all θ ∈ Θ

(ν)
i ,

∥∥∥∥ 1

µ
(ν)
i

xi − yθ

∥∥∥∥
2

≤ δ(ν)
i and we get:∥∥∥∥∥∥

∑
i∈I(ν)

xi −
∫

Θ

yθdθ

∥∥∥∥∥∥
2

≤
∑
i∈I(ν)

∥∥∥∥∥
∫

Θ
(ν)
i

1

µ
(ν)
i

xi − yθdθ

∥∥∥∥∥
2

(26)

≤
∑
i∈I(ν)

∫
Θ

(ν)
i

∥∥∥∥∥ 1

µ
(ν)
i

xi − yθ

∥∥∥∥∥
2

dθ (27)

≤
∑
i∈I(ν)

µ
(ν)
i δ

(ν)
i ≤ δ(ν)

, (28)

which shows that d
(
X, X̃

)
≤ δ(ν)

for all X ∈ X̃ (ν) and concludes the proof.

To ensure the convergence of an AAS, we make the following additional assumptions on costs
functions (ct)t:

Assumption 6. Lipschitz continuous costs For each t ∈ T , ct is a Lipschitz continuous
function on [0,M ]. There exists C > 0 such that for each t ∈ T , |ct′(·)| ≤ C.

Assumption 7. Strong monotonicity There exists c0 > 0 such that, for each t ∈ {1, . . . , T},
ct
′(·) ≥ c0 on [0,M ]

In the following sections, we differentiate the cases with and without utilities, because we
found different convergence results in the two cases.

3.2 Players without Utility Functions: Convergence of the Aggregated
Equilibrium Profiles

In this section, we assume that uθ ≡ 0 for each θ ∈ Θ.
We give a first result on the approximation of WE by a sequence of NE in Thm. 11.

Theorem 11. Let (G(ν))ν be an AAS of a nonatomic instance G, satisfying Asms. 1, 2, 4, 6
and 7. Let (x̂(ν)) a sequence of NE associated to (G(ν)), and (x∗θ)θ a WE of G. Then:∥∥∥X̂(ν) −X∗

∥∥∥2

2
≤ 2

c0
×
(
Bc × δ

(ν)
+ C(M + 1)2 × µ(ν)

)
,

where Bc := maxx∈B0(M) ‖c(x)‖2.

Proof. Let Pi denote the Euclidean projection onto X (ν)
i and Π the projection onto X̃ . We omit

the index ν for simplicity. From (11), we get:〈
c(X∗),Π(X̂)−X∗

〉
≥ 0 . (29)

On the other hand, with x∗i :=
∫

Θi
xθdθ, we get from (1):

0 ≤
∑
i∈I

〈(
ct(X̂t) + x̂i,tct

′(X̂t)
)
t∈T , Pi(x

∗
i )− x̂i

〉
(30)

=
〈
c(X̂),

∑
i Pi(x

∗
i )− X̂

〉
+R(x̂,x∗) (31)

10



with R(x̂,x∗) =
∑
i

〈(
x̂i,tct

′(X̂t)
)
t
, Pi(x

∗
i ) − x̂i

〉
. From the Cauchy-Schwartz inequality and

Thm. 9, we get:

|R(x̂,x∗)| ≤
∑
i∈I(ν)

∥∥∥(x̂i,tct′(X̂t)
)
t

∥∥∥
2
× ‖Pi(x∗i )− x̂i‖2 (32)

≤
∑
i∈I(ν)

(µ
(ν)
i (M + δ

(ν)
i )C × 2(µ

(ν)
i (M + δ

(ν)
i )) (33)

≤ 2C(M + 1)2 max
i
µ

(ν)
i . (34)

Besides, with the strong monotonicity of c and from (29) and (30):

c0

∥∥∥X̂ −X∗
∥∥∥2

≤
〈
c(X̂)− c(X∗), X̂ −X∗

〉
=
〈
c(X̂), X̂ −X∗

〉
+
〈
c(X∗),X∗ − X̂

〉
≤
〈
c(X̂), X̂ −

∑
i

Pi(x
∗
i )
〉

+
〈
c(X∗),X∗ −Π(X̂)

〉
+
〈
c(X̂),

∑
i

Pi(x
∗
i )−X∗

〉
+
〈
c(X∗),Π(X̂)− X̂

〉
≤ |R(x̂,x∗)|+ 0 + 2Bc ×max

i
δi ,

which concludes the proof.

3.3 Players with Utility Functions: Convergence of the Individual
Equilibrium Profiles

In order to establish a convergence theorem in the presence of utility functions, we make an
additional assumption of strong monotonicity on the utility functions stated in Asm. 8. Note
that this assumption holds for the utility functions given in Ex. 2.

Assumption 8. Strongly concave utilities For all θ ∈ Θ, uθ is strongly concave on B0(M),
uniformly in θ: there exists α > 0 such that for all x,y ∈ B0(M)2 and any τ ∈]0, 1[ :

uθ((1− τ)x + τy) ≥ (1− τ)uθ(x) + τu(y) + α
2 τ(1− τ)‖x− y‖2.

Remark 2. If uθ(xθ) is αθ-strongly concave, then the negative of its gradient is a strongly
monotone operator:

−〈∇uθ(xθ)−∇uθ(yθ),xθ − yθ〉 ≥ αθ‖xθ − yθ‖2 . (35)

We start by showing that, under the additional Asm. 8 on the utility functions, the WE

profiles of two nonatomic users within the same subset Θ
(ν)
i are roughly the same.

Proposition 12. Let (G(ν))ν be an AAS of a nonatomic instance G and (x∗θ)θ the WE of G

satisfying Asms. 1, 4, 5 and 8. Then, if θ, ξ ∈ Θ
(ν)
i , we have:∥∥x∗θ − x∗ξ

∥∥2

2
≤ 2

α

(
Md

(ν)
i + (Bc + Γ)δ

(ν)
i

)
.

11



Proof. Let yθ = PXξ(x
∗
θ) and conversely yξ = PXθ (x

∗
ξ). Then from Thm. 3 we get:

〈c(X∗)−∇uθ(x∗θ),yξ + (x∗ξ − x∗ξ)− x∗θ〉 ≥ 0 (36)

〈c(X∗)−∇uξ(x∗ξ),yθ + (x∗θ − x∗θ)− x∗ξ〉 ≥ 0. (37)

Denote by vθ = ∇uθ and vξ = ∇uξ. Then, using the strong concavity Asm. 8 of uθ, we get:

α
∥∥x∗θ − x∗ξ

∥∥2 ≤ 〈vθ(x∗θ)− vθ(x∗ξ),x∗ξ − x∗θ〉 (38)

≤ 〈vθ(x∗θ) + vξ(x
∗
ξ)− vξ(x∗ξ)− vθ(x∗ξ),x∗ξ − x∗θ〉 (39)

≤ d(ν)
i

∥∥x∗ξ − x∗θ
∥∥+ 〈vθ(x∗θ)− vξ(x∗ξ),x∗ξ − x∗θ〉 . (40)

Then, (36) and (37) yield:

〈vθ(x∗θ)− vξ(x∗ξ),x∗ξ − x∗θ〉
= 〈vθ(x∗θ)− c(X),x∗ξ − x∗θ〉+ 〈vξ(x∗ξ)− c(X),x∗θ − x∗ξ〉
= 〈vθ(x∗θ)− c(X),x∗ξ − yξ〉+ 〈vξ(x∗ξ)− c(X),x∗θ − yθ〉

≤ δ(ν)
i ‖vθ(x

∗
θ)− c(X)‖+ δ

(ν)
i

∥∥vξ(x∗ξ)− c(X)
∥∥ ,

which gives the desired result when combined with (40).

This result reveals the role of the strong concavity of utility functions: when α goes to 0, the
right hand side of the inequality diverges. This is coherent with the fact that, without utilities,
only the aggregated profile matters, so that we cannot have a result such as Thm. 12.

According to Thm. 12, we can obtain a continuity property of the Wardrop equilibrium if we
introduce the notion of continuity for the nonatomic game G, relatively to its parameters:

Definition 6. Continuity of a nonatomic game
The nonatomic instance G =

(
Θ, T , (Xθ)θ, c, (uθ)θ

)
is said to be continuous at θ ∈ Θ if, for all

ε > 0, there exists η > 0 such that:

∀θ′ ∈ Θ, ‖θ − θ′‖ ≤ η ⇒
{
dH(Xθ,Xθ′) ≤ ε
maxx∈Xθ∪Xθ′ ‖∇uθ(x)−∇uθ′(x)‖2 ≤ ε

. (41)

Then the proof of Thm. 12 shows the following intuitive property:

Proposition 13. Let G =
(
Θ, T , (Xθ)θ, c, (uθ)θ

)
be a nonatomic instance. If G is continuous

at θ0 ∈ Θ and (x∗θ)θ is a WE of G, then θ 7→ x∗θ is continuous at θ0.

The next theorem is one of the main results of this paper. It shows that a WE can be
approximated by the NE of an atomic approximating sequence.

Theorem 14. Let (G(ν))ν be an AAS of a nonatomic instance G. Let (x̂(ν)) a sequence of NE
associated to (G(ν)), and (x∗θ)θ the WE of G. Under Asms. 1 to 6 and 8, the approximating

solution defined by x̂
(ν)
θ := 1

µ
(ν)
i

x̂
(ν)
i for θ ∈ Θ

(ν)
i satisfies:∫

θ∈Θ

∥∥∥x̂(ν)
θ − x∗θ

∥∥∥2

2
dθ ≤ 2

α

(
Bc + Γ)δ

(ν)
+ C(M + 1)2µ(ν) +Md

(ν)
)
.
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Proof. Let (x̂i)i be an NE of G(ν), and x∗ ∈ X the WE of G. For the remaining of the proof we
ommit the index (ν) for simplicity.

Let us consider the nonatomic profile defined by x̂θ := 1
µi
x̂i for θ ∈ Θi, and its projection

on the feasibility set ŷθ := PXθ (x̂θ). Similarly, let us consider the atomic profile given by
x∗i :=

∫
Θi

x∗θdθ for i ∈ I(ν), and its projection y∗i := PXi(x
∗
i ).

For notation simplicity, we denote ∇uθ by vθ. From the strong concavity of vθ and the strong
monotonicity of c, we have:

α

∫
θ∈Θ

∥∥∥x̂(ν)
θ − x∗θ

∥∥∥2

2
+ c0

∥∥∥X̂(ν) −X∗
∥∥∥2

2
(42)

≤
∫

Θ

〈
c(X̂)− vθ(x̂θ)− (c(X∗)− vθ(x∗θ)) , x̂θ − x∗θ

〉
dθ (43)

=

∫
Θ

〈
c(X̂)− vθ(x̂θ), x̂θ − x∗θ

〉
dθ +

∫
Θ

〈c(X∗)− vθ(x∗θ), x∗θ − x̂θ〉dθ . (44)

To bound the second term, we use the characterization of a WE given in Thm. 3, with ŷθ ∈ Xθ :∫
Θ

〈c(X∗)− vθ(x∗θ), x∗θ − x̂θ〉dθ (45)

=

∫
Θ

〈c(X∗)− vθ(x∗θ), x∗θ − ŷθ〉dθ +

∫
Θ

〈c(X∗)− vθ(x∗θ), ŷθ − x̂θ〉dθ (46)

≤ 0 +
∑
i∈I(ν)

∫
Θi

‖c(X∗)− vθ(x∗θ)‖2 × ‖ŷθ − x̂θ‖2 dθ (47)

≤
∑
i∈I(ν)

∫
Θi

(Bc + Γ)× δi ≤ (Bc + Γ)× δ . (48)

To bound the first term of (44), we divide it into two integral terms:∫
Θ

〈
c(X̂)− vθ(x̂θ), x̂θ − x∗θ

〉
dθ (49)

=
∑
i∈I(ν)

[∫
Θi

〈
c(X̂)− vi(x̂i), x̂θ − x∗θ

〉
dθ +

∫
Θi

〈vi(x̂i)− vθ(x̂θ), x̂θ − x∗θ〉dθ
]
. (50)

The first integral term is bounded using the characterization of a NE given in Thm. 1:∑
i∈I(ν)

∫
Θi

〈
c(X̂)− vi(x̂i), x̂θ − x∗θ

〉
dθ (51)

=
∑
i∈I(ν)

〈
c(X̂)− vi(x̂i), x̂i − x∗i

〉
(52)

≤
∑
i∈I(ν)

〈
c(X̂)− vi(x̂i), x̂i − y∗i

〉
+
∑
i∈I(ν)

〈
c(X̂)− vi(x̂i), y∗i − x∗i

〉
(53)

≤ −R(x̂,x∗) +
∑
i∈I(ν)

∥∥∥c(X̂)− vi(x̂i)
∥∥∥

2
× ‖y∗i − x∗i ‖2 (54)

≤ 2C(M + 1)2µ+ (Bc + Γ)× 2Mδ
∑
i∈I(ν)

µi (55)

= 2C(M + 1)2µ+ (Bc + Γ)× 2Mδ . (56)
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For the second integral term, we use the distance between utilities (17):∑
i∈I(ν)

∫
Θi

〈vi(x̂i)− vθ(x̂θ), x̂θ − x∗θ〉dθ (57)

≤
∑
i∈I(ν)

µi ‖vi(x̂i)− vθ(x̂θ)‖2 × ‖x̂θ − x∗θ‖2 (58)

≤
∑
i∈I(ν)

µidi × 2M ≤ d2M . (59)

We conclude the proof by combining (48),(56) and (59).

As in Thm. 12, the uniform strong concavity of the utility functions plays a key role in the

convergence of disaggregated profiles (x̂
(ν)
θ )ν to the nonatomic WE profile x∗.

3.4 Construction of an Approximating Sequence

In this section, we give examples of the construction of an AAS for a nonatomic game G, under
two particular cases: the case of piecewise continuous functions and, next, the case of finite-
dimensional parameters.

3.4.1 Piecewise continuous parameters, uniform splitting

In this case, we assume that the parameters of the nonatomic game are piecewise continuous
functions of θ ∈ Θ: there exists a finite set of K discontinuity points 0 ≤ σ1 < σ2 < · · · < σK ≤ 1,
and the game is uniformly continuous (Def. 6) on (σk, σk+1), for each k ∈ {0, . . . ,K + 1} with
the convention σ0 = 0 and σK = 1.

For ν ∈ N∗, consider the ordered set of Iν cutting points (υ
(ν)
i )Iνi=0 :=

{
k
ν

}
0≤k≤ν ∪{σk}1≤k≤K

and define the partition (Θ
(ν)
i )i∈I(ν) of Θ by:

∀i ∈ {1, . . . , Iν} ,Θ(ν)
i = [υ

(ν)
i−1, υ

(ν)
i ). (60)

Proposition 15. For ν ∈ N∗, consider the atomic game G(ν) defined with I(ν) := {1 . . . Iν}, and
for each i ∈ I(ν):

X (ν)
i := µ

(ν)
i Xῡ(ν)

i
and u

(ν)
i := x 7→ µ

(ν)
i u

ῡ
(ν)
i

(
1

µ
(ν)
i

x
)
,

with ῡ
(ν)
i =

υ
(ν)
i−1+υ

(ν)
i

2 . Then
(
G(ν)

)
ν

=
(
I(ν), T ,X (ν), c, u(ν)

)
ν

is an AAS of the nonatomic game
G = (Θ, T ,X., c, (uθ)θ).

Proof. We have I(ν) > ν −→ ∞ and for each i ∈ I(ν), µ(Θ
(ν)
i ) ≤ 1

ν −→ 0. The conditions on
the feasibility sets and the utility functions are obtained with the piecewise uniform continuity
conditions. If we consider a common modulus of uniform continuity η associated to an arbitrary

ε > 0, then, for ν large enough, we have, for each i ∈< I(ν), µ
(ν)
i < η. Thus, for all θ ∈ Θ

(ν)
i ,

|ῡ(ν)
i − θ| < η, so that from the continuity conditions, we have:

dH

(
Xθ, 1

µ
(ν)
i

X (ν)
i

)
= dH(Xθ,Xῡ(ν)

i
) < ε (61)

and max
x∈B0(M)

∥∥∥∇u(ν)
i

(
µ

(ν)
i x

)
−∇uθ(x)

∥∥∥
2

=

∥∥∥∥µ(ν)
i

µ
(ν)
i

∇u
ῡ
(ν)
i

(
1

µ
(ν)
i

µ
(ν)
i x

)
−∇uθ(x)

∥∥∥∥
2

< ε , (62)

which concludes the proof.
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3.4.2 Finite dimension, meshgrid approximation

Consider a nonatomic routing game G = (Θ,X , F ) (Def. 3) satisfying the following two hypoth-
esis:

• The feasibility sets are K-dimensional polytopes: there exist A ∈ MK,T (R) and b : Θ →
RK bounded, such that for any θ, Xθ := {x ∈ RT ; Ax ≤ bθ}, with Xθ nonempty and bounded
(as a polytope, Xθ is closed and convex).

• There exist a bounded function s : Θ→ Rq and a function u : Rq ×B0(M)→ R such that
for any θ ∈ Θ, uθ = u(sθ, .). Furthermore, u is Lipschitz-continuous in s.

Let us define bk := minθ bθ,k and bk := maxθ bθ,k for k ∈ {1 . . .K} and define similarly sk, sk
for k ∈ {1 . . . q}.

For ν ∈ N∗, we consider the uniform meshgrid of νK+q classes of
∏K
k=1[bk, bk]×

∏q
k=1[sk, sk]

which will give us a set of I(ν) = νK+q subsets. More explicitly, if we define:

Γ(ν) = {n = (nk)K+q
k=1 ∈ NK+q |nk ∈ {1, . . . , ν}}

the set of indices for the meshgrid, and with the cutting points bk,nk := bk + nk
ν (bk − bk) and

sk,nk := sk + nk
ν (sk − sk) for nk ∈ {0, . . . , ν}, we can define the subset Θ

(ν)
n of Θ as:

Θ(ν)
n :=

{
θ ∈ Θ |∀1 ≤ k ≤ K, bθ,k ∈ [bk,nk−1, bk,nk [ ,∀1 ≤ k ≤ q, sθ,k ∈ [sk,nk−1, sk,nk [

}
.

Since some of the subsets Θ
(ν)
n can be of Lebesgue measure 0, we define the set of players

I(ν) as the elements n of Γ(ν) for which µ(Θ
(ν)
n ) > 0.

Remark 3. If there is a set of players of positive measure that have equal parameters b and s,
then the condition maxi∈I(ν) µi → 0 will not be satisfied. In that case, adding another dimension
in the meshgrid by cutting Θ = [0, 1] in ν uniform segments solves the problem.

Proposition 16. For ν ∈ N∗, consider the atomic game G(ν) defined by:

I(ν) := {n ∈ Γ(ν)|µ(Θ(ν)
n ) > 0} ,

and for each n ∈ I(ν), X (ν)
n := {x ∈ RT |Ax ≤

∫
Θ

(ν)
n

bθ dθ} ,

and u(ν)
n := x 7→ µ(ν)

n u
(

1

µ
(ν)
n

∫
Θ

(ν)
n

sθdθ, 1

µ
(ν)
n

x
)
,

then the sequence of games (G(ν))ν =
(
I(ν), T , (X (ν)

n )n, c, (u
(ν)
n )n

)
ν

is an AAS of the nonatomic
game G = (Θ, T , (Xθ)θ, c, (uθ)θ).

Before giving the proof of Thm. 16, we show the following nontrivial Thm. 17, from which
the convergence of the feasibility sets is easily derived.

Lemma 17. Given A ∈MK,T (R), define the parameterized polyhedra Λb := {x ∈ RT ; Ax ≤ b}
for b in a bounded set B. Assume that Λb is nonempty for each b ∈ B. Then the Hausdorff
distance between polyhedra Λb, b ∈ B, is linearly bounded: there exists a constant C0 > 0 such
that:

∀b, b′ ∈ B, dH(Λb,Λb′) ≤ C0‖b− b′‖ . (63)
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Proof. The proof follows [3] in several parts, but we extend the result on the compact set B, and
drop the irredundancy assumption made in [3].

For each b, we denote by V (b) the set of vertex of the polyhedron Λb. Under Assumption 4,
V (b) is nonempty for any b ∈ B.

First, as Λb is a polyhedra, we have Λb = conv(V (b)) where conv(X) is the convex hull of a
set X. As the function x 7→ d(x,Λb′) defined over Λb is continuous and convex, by the maximum
principle, its maximum over the polyhedron Λb is achieved on V (b). Thus, we have:

dH(Λb,Λb′) = max[ max
x∈Λb

d(x,Λb′) , max
x∈Λb′

d(Λb,x)] (64)

= max[ max
x∈V (b)

d(x,Λb′) , max
x∈V (b′)

d(Λb,x)] (65)

≤ max[ max
x∈V (b)

d(x, V (b′)) , max
x∈V (b′)

d(V (b),x)] (66)

=dH (V (b), V (b′)) . (67)

Let’s denote by Hi(b) the hyperplane {x : Aix = bi} and by H−i (b) = {x : Aix ≤ bi} and
H+
i (b) = {x : Aix ≥ bi} the associated half-spaces. Then Λb =

⋂
i∈[1,m]H

−
i (b).

Now fix b0 ∈ B and consider v ∈ V (b0). By definition, v is the intersection of hyperplanes⋂
i∈K Hi(b0) where K ⊂ {1, . . . ,m} is maximal (note that k := card(K) ≥ n otherwise v can

not be a vertex).
For J ∈ {1, . . . ,m}, let AJ denote the submatrix of A obtained by considering the rows Aj

for j ∈ J . Let us introduce the sets of derived points (points of the arangement) of the set K,
for each b ∈ B:

VK(b) := {x ∈ Rn ;∃J ⊂ K ; AJ is invertible and x = A−1
J b} .

By definition, VK(b0) = {v} and, for each b ∈ B, VK(b) is a set of at most
(
k
n

)
elements.

First, note that for each b ∈ B and v′ := A−1
J b ∈ VK(b), one has:

‖v − v′‖ = ‖A−1
J b0 −A−1

J b‖ ≤ ‖A−1
J ‖ × ‖b0 − b‖ ≤ α‖b0 − b‖ (68)

where α := max
AJ invertible

‖A−1
J ‖.

Then, consider η := minj∈{1...m}\K d
(
v, H+

j (b)
)
. By the maximality of K, η > 0. As

x 7→ d(x, H+
j ) is continuous for each j, and from (68) , there exists δ > 0 such that: ‖b0 − b‖ ≤

δ =⇒ ∀v′ ∈ VK(b),minj∈{1...m}\K d
(
v′, H+

j (b)
)
> 0.

Next, we show that, for b such that ‖b0−b‖ ≤ δ, there exists v′ ∈ VK(b)∩V (b). We proceed
by induction on k − n.

If k = n, then v = A−1
K b0 and for any b in the ball Sδ(b0), VK(b) = {A−1

K b}. Thus v′ := A−1
K b

verifies AKv′ = bK , and Ajv
′ < bj for all j /∈ K, thus v′ belongs to V (b).

If k = n + t with t ≥ 1, there exists j0 ∈ K such that with K ′ = K \ {j0}, VK′(b0) = {v}.
Consider the polyhedron P =

⋂
i∈K′ H

−
i (b0). By induction, there exists J ⊂ K ′ such that A−1

J b
is a vertex of P . If it satisfies also Aj0x ≤ bj0 then it is an element of V (b). Else, consider a
vertex v′ of the polyhedron P ∩H−j0(b) on the facet associated with Hj0(b). Then, v′ ∈ VK(b)
and, as b ∈ Sδ(b0), it verifies Ajv

′ < bj for all j /∈ K, thus v′ ∈ V (b).
Thus, in any case and for b ∈ Sδ(b0), d(v, V (b)) ≤ ‖v − v′‖ ≤ α‖b0 − b‖ and finally

d (V (b0), V (b)) ≤ α‖b0 − b‖. The collection
{
Sδb(b)

}
b∈B is an open covering of the compact set

B, thus there exists a finite subcollection of cardinal r that also covers B, from which we deduce
that there exists D ≤ max(rα) such that:

∀b, b′ ∈ B, dH (V (b′), V (b)) ≤ D‖b′ − b‖ .
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Proof of Thm. 16. First, to show the divergence of the number of players and their infinitesimal
weight, we have to follow Remark 3 where we consider an additional splitting of the segment
Θ = [0, 1]. In that case, we will have I(ν) ≥ ν hence goes to positive infinity and for each

n ∈ I(ν), µ(Θ
(ν)
n ) ≤ 1

ν hence goes to 0.

Then, the convergence of the strategy sets follows from the fact that, for each n ∈ I(ν):

1

µ
(ν)
n

X (ν)
n =

{
x ∈ RT |Ax ≤ 1

µ
(ν)
n

∫
Θ

(ν)
n

bθ dθ
}
, (69)

and from Thm. 17 which implies that, for each θ′ ∈ Θ
(ν)
n :

dH

(
Xθ′ , 1

µ
(ν)
n

X (ν)
n

)
≤ C0

∥∥∥∥∥bθ′ − 1

µ
(ν)
n

∫
Θ

(ν)
n

bθ dθ

∥∥∥∥∥ ≤ C0

ν

∥∥b− b
∥∥

2
. (70)

Finally, the convergence of utility functions comes from the Lipschitz continuity in s. For

each n ∈ I(ν) and each θ′ ∈ Θ
(ν)
n , we have:

max
x∈B0(M)

∥∥∥∇u(ν)
n

(
µ

(ν)
n x

)
−∇uθ′(x)

∥∥∥
2

(71)

= max
x∈B0(M)

∥∥∥∇xu
(

1

µ
(ν)
n

∫
Θ

(ν)
n

sθdθ,
1

µ
(ν)
n

x
)
−∇xu(sθ′ ,x)

∥∥∥
2

(72)

≤ L1

∥∥∥∥∥ 1

µ
(ν)
n

∫
Θ

(ν)
n

sθdθ − sθ′

∥∥∥∥∥
2

(73)

≤ L1

ν
‖s− s‖2 , (74)

which terminates the proof.

Remark 4. Instead of using the average value on Θ
(ν)
n in Thm. 16, one could consider any value

within the set Θ
(ν)
n .

Of course, the number of players considered in Thm. 16 is exponential in the dimensions of
the parameters K + q, which can be large in practice. As a result, the number of players in the
approximating atomic games considered can be very large, which will make the NE computation
really long. Taking advantage of the continuity of the parametering functions and following
the approach of Thm. 15 gives a smaller (in terms of number of players) approximating atomic
instance.

4 Numerical Application

We consider a population of consumers Θ = [0, 1] with an energy demand distribution θ 7→ Eθ.
Each consumer θ splits her demand over T := {O,P}, so that her feasibility set is Xθ :=
{(xθ,O, xθ,P ) ∈ R2

+

∣∣xθ,O + xθ,P = Eθ}. The index O stands for offpeak-hours with a lower price
cO(X) = X and P are peak-hours with a higher price cP (X) = 1 + 2X. The energy demand and
the utility function in the nonatomic game are chosen as the piecewise continuous functions:

Eθ :=

{
sin(πθ) if θ < 0.7
0.3 if θ ≥ 0.7

, uθ(xθ) := ωθ × ‖yθ − xθ‖22 ,

17



with yθ = (0, Eθ) the preference of user θ for period P and ωθ := θ the preference weight of
player θ.

We consider approximating atomic games by splitting Θ uniformly (Sec. 3.4.1) in 5, 20, 40
and 100 segments (players). We compute the NE for each atomic game using the best-response
dynamics (each best-response is computed as a QP using algorithm [5], see [9] for convergence
properties) and until the KKT optimality conditions for each player are satisfied up to an absolute
error of 10−3. Fig. 2 shows, for each NE associated to the atomic games with 5, 20, 40 and 100
players, the linear interpolation of the load on the peak period xθ,P (red filled area), while the
load on the offpeak period can be observed as xθ,O = Eθ − xθ,P . We observe the convergence

Figure 2: Convergence of the Nash Equilibrium profiles to a Wardrop Equilibrium profile

to the limit WE of the nonatomic game as stated in Thm. 14. We also observe that the only
discontinuity point of θ 7→ x∗θ,P comes from the discontinuity of θ 7→ Eθ at θ = 0.7, as stated in
Thm. 13.

Conclusion

This paper gives quantitative results on the convergence of Nash equilibria, associated to atomic
games approximating a nonatomic routing game, to the Wardrop equilibrium of this nonatomic
game. These results are obtained under different differentiability and monotonicity assumptions.
Several directions can be explored to continue this work: first, we could analyze how the given
theorems could be modified to apply in case of nonmonotone and nondifferentiable functions.
Another natural extension would be to consider routing games on nonparallel networks or even
general aggregative games: in that case, the separable costs structure is lost and the extension
is therefore not trivial.
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