
A COMPENDIUM OF PROBLEMSCOMPLETE FOR SYMMETRICLOGARITHMIC SPACECarme �Alvarez and Raymond GreenlawAbstract. The paper's main contributions are a compendium of prob-lems that are complete for symmetric logarithmic space (SL), a collectionof material relating to SL, a list of open problems, and an extension tothe number of problems known to be SL-complete. Complete problemsare one method of studying SL, a class for which programming is non-intuitive. Our exposition helps make the class SL less mysterious andmore accessible to other researchers.Key words. Completeness, SL, space complexity, symmetric logarith-mic space.Subject classi�cations. 68Q17.1. IntroductionIn this paper we describe problems that are logarithmic space many-one com-plete for symmetric logarithmic space (SL). Our hope in collecting these prob-lems and extending this list is that more insight can be gained about the rela-tionships between the complexity classes deterministic logarithmic space (DL),SL, and nondeterministic logarithmic space (NL). The symmetric Turing ma-chine model introduced by Lewis & Papadimitriou (1982) is not an intuitivemodel to program due to the reversibility property of transitions, and studyingcomplete problems for SL is one approach to gain a better understanding of it.Lewis and Papadimitriou de�ned SL to capture the complexity of the undi-rected s-t connectivity problem (USTCON, see Problem 2.1). They provedthat DL � SL � NLand that USTCON is complete for SL. Many results that are relatively straight-forward to prove about Turing machines become muchmore involved when car-ried over to symmetric Turing machines (see Lewis & Papadimitriou (1982)).Unexpectedly, Nisan and Ta-Shma proved that SL is closed under complement.



2 Carme �Alvarez & Raymond GreenlawTheorem 1.1. (Nisan & Ta-Shma (1995))The complexity class symmetric logarithmic space is closed under complement.That is, SL equals co-SL.This result was achieved through a series of reductions and not by a tech-nique related to inductive counting (Immerman (1988) and Szelepcs�enyi (1988)).A proof that NL equals co-NL using techniques similar to Nisan and Ta-Shma'shas not been achieved although such a proof would be very interesting. Borodinet al. (1989) point out that the Immerman-Szelepcs�enyi proof technique doesnot seem to apply to yield a proof that SL equals co-SL due to the fact thatsymmetric Turing machines cannot \nondeterministically count" Borodin et al.(1989).We provide an overview of some of the important research done on �ndingsmall space algorithms for USTCON. There are many others who have alsomade contributions on this problem. Aleliunas et al. (1979) gave a probabilistic1-sided error logarithmic space algorithm for USTCON. This fact can be usedto conclude that DL/poly = SL/poly, see Razborov (1991). A probabilistic0-sided error logarithmic space algorithm for USTCON was given by Borodinet al. (1989). Until 1992, Savitch's algorithm's (log n)2 space bound was thebest known for USTCON. Barnes & Ruzzo (1991), Barnes & Ruzzo (1997)gave the �rst deterministic polynomial time and sublinear space algorithmsfor USTCON. Nisan (1992) also presented improved time-space tradeo�s forUSTCON. Nisan et al. (1992) improved on Savitch's algorithm by giving adeterministic algorithm that requires (log n)1:5 space. Recently, Armoni et al.(1997) showed that SL � DL4=3.Figure 1.1 depicts the relationships currently known among the classes inthe vicinity of SL. Many of the de�nitions involving these classes can be foundin the excellent survey by Johnson (1990) or the excellent paper by Borodin etal. (1989). Figure 7 of Johnson (1990) and Figure 1 of Borodin et al. (1989)were combined and modi�ed slightly to obtain our �gure.The remainder of this paper is organized as follows: x2 contains some back-ground material about SL; in x3 a list of problems that are logarithmic spacemany-one complete for SL is given; sections 4, 5, 6, and 7 describe the SL-complete problems of type machine simulation, connectivity, graph theory, andmiscellaneous, respectively; and x8 contains a number of open problems thatare candidates for being SL-complete.
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4 Carme �Alvarez & Raymond Greenlaw2. PreliminariesThe following notation will be useful for this paper. Let G = (V;E) be anundirected graph. #cc(G) denotes the number of connected components ofG. G denotes the complementary graph of G, that is G = (V; (V � V ) � E).We use the notation <lex to mean less than in lexicographic order or less thanusing the natural order speci�ed by a problem instance. For de�nitions of basiccomplexity classes and techniques used in computational complexity theory, thereader is referred to Johnson (1990) or Greenlaw et al. (1995).The complexity class symmetric logarithmic space is de�ned in terms ofthe symmetric Turing machine (STM) introduced by Lewis & Papadimitriou(1982). The exact de�nition of STMs is very detailed and we provide onlyan intuitive description of the model here. A symmetric Turing machine canbe thought of as a nondeterministic Turing machine which has the additionalrequirement that every move of the machine is \reversible." In order for thisto be achievable the machine is allowed to scan two symbols at a time on eachof its tapes.Our discussion brings up the important question of the distinction between\reversible" (reversibility) and \symmetric" (symmetry) computation. Theword reversible is customarily used to help explain the notion of symmetriccomputation but it also has a separate technical meaning. A deterministicTuring machine is reversible if and only if the in�nite graph of all con�gurationsis such that each node has indegree and outdegree one, that is, the machine isalso backwards deterministic (see Bennett (1989) and Lange et al. (1997)). Thisis in contrast to a STM where both the indegree and outdegree of nodes in thein�nite graph of all con�gurations can be greater than one. The requirementfor STMs is that each forward move can be undone via a backward move.Next we formally de�ne the notion of symmetric logarithmic space.Definition 2.1. Symmetric logarithmic space, SL, is the class of lan-guages accepted by logarithmic space bounded symmetric Turing machines.We are interested in describing problems that are complete for SL underlogarithmic space many-one reducibility.Definition 2.2. A language or problem L is SL-complete if L 2 SL and forall L0 2 SL, L0 is logarithmic space many-one reducible (denoted �mlog) to L.Problems L and L0 are logarithmic space equivalent if and only if L �mlog L0and L0 �mlog L.



Compendium of SL-complete Problems 5In Lewis & Papadimitriou (1982), they show that SL is closed under log-arithmic space many-one reductions (Theorem 4, page 172). It is well-knownthat (deterministic) logarithmic space reductions are transitive, so in provingother problems complete for SL one can exploit this fact. To demonstrate com-pleteness for SL one must also show that the problem under consideration is inSL. This is not always easy since symmetric Turing machines are di�cult toreason about. The following lemma is helpful for showing problems are in SL.Lemma 2.3. (Nisan & Ta-Shma (1995), Corollary 3.1)The class of languages accepted by deterministic logarithmic space boundedTuring machines having an oracle for SL is exactly equal to SL. That is, DLSLequals SL.This lemma gives another characterization of SL: those languages that arelogarithmic space Turing reducible to a language in SL. This viewpoint isuseful for showing additional languages are in SL. Since SL is closed underlogarithmic space many-one reducibility as shown by Lewis & Papadimitriou(1982), another way of viewing SL is as those languages that are logarithmicspace many-one reducible to USTCON. Immerman (1987) provides a logicalcharacterization of SL as (FO + posSTC). SL is also equal to those languagesthat can be accepted by a (logarithmic space) uniform family of switchingnetworks, see Razborov (1991). Nisan and Ta-Shma give one further charac-terization of SL by showing that SL equals SLSL when the oracle queries areasked in a deterministic way as de�ned by Ruzzo et al. (1984), page 224. Herethe requirement is that once the �rst symbol of a query is written on the oracletape, the machine must behave deterministically until the query is asked andthe oracle tape is erased.3. SL-complete ProblemsIn this section we list the problems that are SL-complete. We welcome additionsto this list or to the open problems list given in x8. For comparison purposeswe note that Cook & McKenzie (1987) presented a list of problems that arecomplete for DL and Jones et al. (1976) gave a list of problems that are completefor NL.Since SL equals co-SL (see Theorem 1.1), the complement of each of theproblems listed is also SL-complete. In a couple of important cases we listboth the problem and its complement separately. For each problem we providea de�nition, reference, proof hint, and remarks. The proof hints vary widely



6 Carme �Alvarez & Raymond Greenlawin their level of utility. For problems that were previously known to be SL-complete, we typically provide just a brief hint; the reader should consult theoriginal reference for more details. In addition, we omit details arguing thatthe reductions speci�ed are in logarithmic space and occasionally the proofthat a given problem is in SL. Note that providing a direct proof for showinga problem is in SL is often di�cult.The naming conventions we use are largely historical and thus there aresome inconsistencies. It is di�cult to put the problems into a natural order thataddresses their historical importance, simplicity, proof order for reductions,and yet is convenient to search the list by. We split the problems up into fourcategories for organizational purposes: machine simulation, connectivity, graphtheory, and miscellaneous. We provide an index of the problems below.Machine Simulation1.1 Generic Machine Simulation Problem (GMSP)1.2 Symmetric Finite Automaton Nonemptiness (SFAN)Connectivity2.1 Undirected s-t Connectivity Problem (USTCON)2.2 Undirected Non-s-t Connectivity Problem (USTCON)2.3 k Vertex Disjoint Paths (k-PATHS)2.4 Membership in k-Connected Component (MemkCC)2.5 Connected Components Equal (CCE)2.6 Connected Components Even (CCEven)2.7 Spanning Forest Sizes Equal (SFSE)Graph Theory3.1 Nonbipartite Graph (NBG), 2-Colorability3.2 Comparability Graph (ComG)3.3 MinimumWeight Spanning Forest (MWSF)3.4 Clique Cover-2 (CC-2)3.5 Fixed Edge in Any Cycle (FEC)3.6 Valid Node Ranking (VNR)3.7 Valid Edge Ranking (VER)Miscellaneous4.1 Exclusive or 2-Unsatis�ability (�2UNSAT)4.2 Exact Cover-2 (EC-2)4.3 Hitting Set-2 (HS-2)4.4 Generalized Word Problem Countably-generated 2 (GWPC(2))



Compendium of SL-complete Problems 7Open Problems5.1 Number of Connected Components (NCC)5.2 Chordal Graph (ChordalG)5.3 Interval Graph (IntervalG)5.4 Split Graph (SplitG)5.5 Permutation Graph (PermG)5.6 Unary 0� 1 Knapsack (UK)5.7 Unary Knapsack with Signed Repetition (UKSR)5.8 Bounded Degree Planarity (BDP)The problem format is based on that employed by Garey & Johnson (1979)and Greenlaw et al. (1995). If no reference is given, \this work" is implied.4. Machine simulation1.1 Generic Machine Simulation Problem (GMSP)Given: A string x, a descriptionM of a symmetric Turing machineM , and anatural number s encoded in unary.Problem: Does M accept x within space dlog se?Reference: Lewis & Papadimitriou (1982), and this work.Hint: The required symmetric universal Turing machineU , needed to show theproblem is in SL, can be constructed from the deterministic one (see Hopcroft& Ullman (1979), for example) and by applying Lemma 1 of Lewis & Papadim-itriou (1982), page 167. U copies the current state and symbol of M to one ofits worktapes for decoding instructions and uses x on its input tape as inputto M . The state requires space at most dlog jM je since we may assume thatthe number of states of M is less than jM j. Thus, to represent one state re-quires at most dlog jM je space. A similar analysis can be made for the spacerequired for the current symbol. The \input pointer" to x requires dlog jxjespace. Therefore, the total space used by U isdlog jxje+ 2 � dlog jM je+ dlog sewhich is O(log(jxj+ jM j+s)). A direct reduction from any language L in SL toGMSP involves outputting the instance of L, a description of the correspondingSL machine N for L, and the space bound for N in unary.



8 Carme �Alvarez & Raymond Greenlaw1.2 Symmetric Finite Automaton Nonemptiness (SFAN)Given: The description M of a symmetric �nite automaton. A symmetric�nite automaton M = (Q;�;�; s; F ) is a nondeterministic �nite automatonsuch that whenever (q1; �; q2) 2 � then so is (q2; �; q1). Note, here there is nonotion of \backing up" on the input tape.Problem: Is L(M) nonempty?Hint: SFAN is in SL since we can reduce it to USTCON, Problem 2.1. Givenan instance M = (Q;�;�; s; F ) of SFAN form the graph G = (V;E), whereV = Q [ ftg andE = ffp; qg j there is a � 2 � with (p; �; q) 2 �g [ ffp; tg j p 2 Fg:It is easy to see that L(M) is nonempty if and only if s is connected to t in G.To show SFAN is SL-hard reduce USTCON to it. Given an instanceG = (V;E), s, and t of USTCON de�ne N = (V; f�g;�; s; ftg), where forall u; v 2 V , (u; �; v) 2 � if and only if fu; vg 2 E. Then it is easy to see Nis symmetric and that s is connected to t in G if and only if there exists a k,k � jV j � 1, such that �k 2 L(N).Remarks: The problem where M is deterministic, SDFAN, is also com-plete for SL. We can reduce an instance G = (V;E), s, and t of UST-CON to SDFAN as follows: form the symmetric deterministic �nite automa-ton N = (V;�;�; s; ftg), where � = fhu; vi j u; v 2 V and u < vg andfor each edge fu; vg 2 E if u <lex v add the two transitions (u; �; v) and(v; �; u) to � where � = hu; vi and if v <lex u add the two transitions asabove but instead taking � = hv; ui. Then s is connected to t in G if andonly if L(N) is nonempty. Reversible �nite automata have been studied ina number of settings each time with a slightly di�erent de�nition (for exam-ple, see Angluin (1982) for applications in learning theory and Pin (1987),Pin (1992) for applications in formal language theory).5. Connectivity2.1 Undirected s-t Connectivity Problem (USTCON)Given: An undirected graph G = (V;E) and two designated vertices s and t.Problem: Are s and t connected?Reference: Lewis & Papadimitriou (1982).Hint: The reduction is from an arbitrary language L in SL. Let M be alogarithmic space bounded symmetric Turing machine accepting L. Given an



Compendium of SL-complete Problems 9instance x of L form the con�guration graph G of M on input x. Let s (t) bethe initial (respectively, unique �nal) con�guration of M . Then M accepts x ifand only if there is a path from s to t in G.Remarks: USTCON motivated Lewis and Papadimitriou to de�ne the com-plexity class SL. This problem is also called UGAP by many authors (see Joneset al. (1976)). Frequently it is convenient to assume the vertices are numbered1 through jV j and then take s as 1 and t as jV j. Given an undirected graphG = (V;E), two designated vertices s and t, and a number k; the problem ofdetermining if the length of a shortest path from s to t is k is NL-complete(see Borodin et al. (1989), page 561).2.2 Undirected Non-s-t Connectivity Problem (USTCON)Given: An undirected graph G = (V;E) and two designated vertices s and t.Problem: Is it the case that s and t are not connected?Reference: Nisan & Ta-Shma (1995).Hint: Reduce USTCON to USTCON. This is the reduction used to show thatSL is closed under complement.Remarks: This problem is also called UGAP by many authors. See Prob-lem 2.1 for additional comments.2.3 k Vertex Disjoint Paths (k-PATHS)Given: An undirected graph G = (V;E) and two designated vertices s and t.Problem: Are there k vertex disjoint paths from s to t?Reference: Reif (1984).Hint: Observe 1-PATH is USTCON, Problem 2.1, and clearly k-PATHS re-duces to k + 1-PATHS for every k. To show the problem is in SL, Reif notesthat for any graph G = (V;E) and vertices s; t 2 V , the k-PATHS instanceG, s, and t has a \yes" answer if and only if for all v1; : : : ; vk�1 2 V � fs; tg,the USTCON instances G0, s, and t have \yes" answers, where G0 is the graphobtained by deleting vertices v1; : : : ; vk�1 from G.2.4 Membership in k-Connected Component (MemkCC)Given: An undirected graph G = (V;E), a designated vertex v, and a set ofk vertices v1; : : : ; vk.Problem: Is v in the k-connected component determined by v1; : : : ; vk? (Note,the vertices v1; : : : ; vk belong to the component.) A k-connected component isa maximal k-connected subgraph. A graph H = (W;F ) is k-connected if for alldistinct vertices w1; w2 2 W , there exist k vertex-disjoint paths in H from w1to w2.Reference: Reif (1984).



10 Carme �Alvarez & Raymond GreenlawHint: MemkCC is in SL since instance G, v, and v1; : : : ; vk is \yes" if andonly if ^1�i�k k-PATHS G; v; and vi;and Lemma 2.3 applies. For hardness reduce USTCON, Problem 2.1, toMemkCC. Given an instance G, s, and t ask whether G, s, and t is an in-stance of Mem1CC.2.5 Connected Components Equal (CCE)Given: Two undirected graphs G1 = (V1; E1) and G2 = (V2; E2).Problem: Is #cc(G1) equal to #cc(G2)?Reference: Nisan & Ta-Shma (1995), and this work.Hint: First we show that CCE is in SL. By Lemma 2.3 it su�ces to show thatCCE is in DLSL. Let NCCi(G) equal 1 if #cc(G) equals i, and 0 otherwise.Consider the (monotone) formulaA = minfjV1j;jV2jg_i=1 (NCCi(G1) ^NCCi(G2)):Noting that NCCi can be computed in SL Nisan & Ta-Shma (1995) (see Prob-lem 5.1), it is easy to see that the value of A can be determined by a DLSLmachine. Since the value of A provides the answer to CCE, we have that CCEis in SL.Now we show that CCE is SL-hard. For this we logarithmic space many-one reduce USTCON, Problem 2.2, to CCE. Given an instance G = (V;E),s, and t of USTCON we form the corresponding instance of CCE as follows:G1 = G and G2 given by V2 = V [ fu j where u is a new vertex not in V g andE2 = E [ fs; tg. Dummy vertex u is used for the purpose of adding one moreconnected component to G2. It is easy to see that s is not connected to t in Gif and only if #cc(G1) equals #cc(G2).Remarks: Nisan and Ta-Shma show that a variant of CCE is reducible toUSTCON.2.6 Connected Components Even (CCEven)Given: An undirected graph G = (V;E).Problem: Is #cc(G) even?Reference: Birgit Jenner, personal communication, 1996.Hint: CCEven is in SL since CCE, Problem 2.5, is in SL and SL is closed underdisjunctive logarithmic space reducibility. For SL-hardness reduce USTCON,Problem 2.1, to CCEven. Let G = (V;E), s, and t be an instance of USTCON.



Compendium of SL-complete Problems 11Form the instance H of CCEven consisting of two copies of G and in one ofthe copies add an edge from s to t. If s is (is not) connected to t in G, then#cc(H) = 2�#cc(G) (respectively, #cc(H) = 2�#cc(G)�1). So, s is connectedto t in G if and only if #cc(H) is even.Remarks: This problem is \between" Problems 2.5 and 5.1.2.7 Spanning Forest Sizes Equal (SFSE)Given: Two undirected graphs G1 = (V1; E1) and G2 = (V2; E2).Problem: Is the number of edges in a spanning forest of G1 equal to thenumber of edges in a spanning forest of G2?Reference: Nisan & Ta-Shma (1995).Hint: Recall an undirected graph G with n nodes has k connected componentsif and only if a spanning forest of G contains n� k edges. Therefore, it is easyto see that this problem is logarithmic space equivalent to Problem 2.5.6. Graph theory3.1 Nonbipartite Graph (NBG)Given: An undirected graph G = (V;E).Problem: Is it the case that G is not bipartite?Reference: Jones et al. (1976).Hint: To show the problem is in SL, NBG is reduced to USTCON, Prob-lem 2.1. Let G = (V;E) be an instance of NBG. The idea is to construct anew graph by �rst forming two copies of each node, call them copy 0 and copy1. For any edge fu; vg 2 E connect the 0 copy of u to the 1 copy of v and viceversa. This new graph, G0, is not bipartite if and only if there is some node wsuch that the 0 copy of w is reachable from the 1 copy of w. To take care ofthe phrase \there is some node w" jV j duplicates of G0 are produced and newnodes s and t are introduced. s (t) is connected to the 0 (1) copy of the i-thnode in copy i.For hardness reduce USTCON to NBG. The idea is to make use of thefact that a graph is bipartite if and only if it has no cycle of odd length. LetG = (V;E), s, and t be an instance of USTCON. Let d be a dummy node suchthat d 62 V [ E. Form the instance G0 = (V 0; E 0) of NBG, whereV 0 = fu; u0 j u 2 V g [ fe; e0 j e 2 Eg [ fdg



12 Carme �Alvarez & Raymond Greenlawand E0 = ffu; eg; fe; vg; fu0; e0g; fe0; v0g j e = fu; vg 2 Eg [ffs; s0g; ft; dg; ft0; dgg:Then G0 contains an odd length cycle if and only if s is connected to t in G.Remarks: As noted in Jones et al. (1976), this is equivalent to asking ifG is not 2-colorable; the problem is a special case of Chromatic Number(see Garey & Johnson (1979), page 191, for example). Since SL equals co-SL, the problems of asking whether G is bipartite or 2-colorable are also SL-complete. Before it was known that SL equals co-SL, Reif (1984), Theorem 5.11,observed bipartite graph recognition was complete for his class �1csymlog =co-SL. NBG and Problems 3.4, 4.1, 4.2, and 4.3 were shown to be logarithmicspace equivalent to USTCON in Jones et al. (1976). This was prior to SL beingde�ned by Lewis & Papadimitriou (1982). Lewis and Papadimitriou observed(Corollary to Theorem 6, pages 178{9) that the results contained in Jones et al.(1976) implied these problems were complete for SL when combined with thefacts that USTCON is SL-complete and SL is closed under logarithmic spacemany-one reducibility.3.2 Comparability Graph (ComG)Given: An undirected graph G = (V;E).Problem: Is G a comparability graph? A graph G is a comparability graph ifthere exists a partial order P on V , say <p, such that fu; vg 2 E if and only ifeither u <p v or v <p u. That is, the edges in E correspond to pairs of elementsin V that may be compared.Hint: Reif (1984) originally showed the problem was in �1csymlog = co-SL.By Theorem 1.1 this implies ComG is in SL.For SL-hardness we use the same reduction as given in Problem 3.1 buthere we reduce USTCON, Problem 2.2, to ComG. The claim is that s is notconnected to t in G if and only if G0 (see Problem 3.1) is a comparabilitygraph. In order to prove the claim we rely on the following characterizationof comparability graphs given by Gilmore & Ho�man (1964): An undirectedgraph G = (V;E) is a comparability graph if and only if for every cycle C ofG, if fu; vg 62 E for every pair of vertices u and v at distance two in C, then Chas an even number of edges.First, notice in the graph G0 excluding the \last" three edges in E 0 thateach cycle (if any) has an even length. Also observe that both fu; u0 j u 2 V gand fe; e0 j e 2 Eg are independent sets so there are no vertices of distance twoapart in any cycle that are adjacent in G0. Finally, in adding the last three



Compendium of SL-complete Problems 13edges we create only odd cycles (if any) and none of these cycles have nodes atdistance two apart in them adjacent in G0. As in Problem 3.1 s is connectedto t in G if and only if there is an odd cycle in G0 if and only if G0 is nota comparability graph by arguing as above. From this the claim follows andComG is SL-complete.3.3 Minimum Weight Spanning Forest (MWSF)Given: An undirected graph G = (V;E), a designated edge e, and a weightfunction w : E 7! f1; 2; 3; : : :g assigning a distinct weight to each edge.Problem: Is e in the minimum weight spanning forest of G? (Recall, theminimum weight spanning forest is unique for a weight function that assignsdistinct positive integer weights.)Reference: Stephen Cook; Reif (1984).Hint: Membership in SL follows by a reduction to USTCON, Problem 2.1.The idea is to use the greedy minimum weight spanning forest algorithm. Anedge e = fu; vg is in the minimum weight spanning forest if and only if u isnot connected to v in the graph made up of all edges having lower weight thane (see Nisan & Ta-Shma (1995)).Reduce USTCON, Problem 2.2, to MWSF for completeness. Let G =(V;E), s, and t be an instance of USTCON. If fs; tg 2 G output the in-stanceH = (fs; t; ug; ffs; tg; fs; ug; ft; ugg), fs; tg, and w, where w(fs; tg) = 3,w(fs; ug) = 1, and w(ft; ug) = 2; otherwise form the instance G0 = (V;E [ffs; tgg), fs; tg, and w of MWSF, where all edges e 6= fs; tg 2 E are givenunique positive weights from 1; : : : ; jEj � 1 and w(fs; tg) = jEj. Then s is notconnected to t in G if and only if fs; tg is in the minimum weight spanningforest of G0.Remarks: The problem was shown complete for �1csymlog in Reif (1984).This class equals co-SL. At the time it was not known that SL is closed undercomplementation. The problem where we consider the lexicographically �rstminimum spanning forest without a weight function is also SL-complete sincethe ordering of the edges can be considered as unique distinct positive integerweights Nisan & Ta-Shma (1995).3.4 Clique Cover-2 (CC-2)Given: An undirected graph G = (V;E).Problem: Is it the case that V cannot be covered by two cliques?Reference: Jones et al. (1976).Hint: The reduction given by Karp (1972) to reduce Chromatic Numberto Clique Cover can be used here to show NBG is reducible to CC-2.



14 Carme �Alvarez & Raymond Greenlaw3.5 Fixed Edge in Any Cycle (FEC)Given: An undirected graph G = (V;E) and a designated edge e = fu; vg inE.Problem: Is there a cycle in G that contains e?Hint: FEC is in SL since we can reduce it to USTCON, Problem 2.1. Givenan instance G and e = fu; vg of FEC form the graph G0 from G by deletingedge e and ask if there is a path from u to v in G0. To show FEC is SL-hardreduce USTCON to FEC. Given an instance G = (V;E), s, and t of USTCONif edge fs; tg 2 E then form the instance G0 = (V [ fug; E [ ffu; sg; fu; tgg)and fs; tg of FEC. Otherwise, just add edge fs; tg to G and ask if edge fs; tgis in a cycle in this new graph. It is in a cycle if and only if s is connected to tin G.Remarks: A related problem is to ask whether a designated vertex is inany cycle. This problem is easily seen to be in SL via a DLFEC machine.Furthermore, the problem is SL-complete since FEC can be reduced to it. Theidea is to consider the dual graph. The Cycle Free Problem (CFP) is givenan undirected graph to ask whether it is acyclic. Cook & McKenzie (1987)proved CFP is DL-complete. They show the problem remains DL-complete ifthe input graph contains at most one cycle. Recall that a graph is bipartiteif and only if it contains no cycle of odd length. It is interesting to comparethe results here with those of Problem 3.1. The complement of FEC is alsointeresting and related to Problem 3.3: there is no cycle in G containing e ifand only if every spanning forest of G includes e.Another related problem called SameCycle, which asks if two nodes arein the same cycle, is formally de�ned as follows:Given: An undirected graph G = (V;E) and two designated vertices u andw. Problem: Is there a simple cycle C that contains both u and w? A simplecycle v1; : : : ; vk in a graph G = (V;E) is such that k � 3, fvi; vi+1g 2 E for1 � i � k � 1, fvk; v1g 2 E, and vi 6= vj for 1 � i 6= j � k.This problem is known to be NP-complete.3.6 Valid Node Ranking (VNR)Given: An undirected graph G = (V;E) and a node ranking � of G. A noderanking of G is a mapping from V to the positive integers. A node rankingis valid if on every simple path between two distinct nodes u and w with�(u) = �(w) there is a node v such that �(v) > �(u).Problem: Is � a valid node ranking of G?Reference: Raymond Greenlaw and Birgit Jenner, personal communication,



Compendium of SL-complete Problems 151996.Hint: To prove the problem is in SL, it su�ces to show the complementaryproblem is. The idea is to guess two distinct vertices u and w, and a path P (onevertex at a time) \between" them that has no higher label on it. The highestlabel encountered thus far on P is recorded. If w is reached, one veri�es that�(u) = �(w) and that the highest value recorded on the guessed path betweenu and w is less than or equal to �(u). The nondeterminism in the algorithmsketched above occurs in guessing the initial u and w, and in guessing a seriesof next nodes on the path. The remainder of the computation is deterministicand techniques from Lewis & Papadimitriou (1982) may be employed to convertsuch an algorithm into a symmetric Turing machine program. If the ranking isnot (is) valid, then there is some (respectively, is no) sequence of guesses thatleads the program to accept.To prove VNR is SL-hard, we reduce USTCON, Problem 2.2, to it. Given aninstance G = (V;E), s, and t of USTCON construct an instance of VNR usingthe same graph and de�ning � as follows: �(s) = �(t) = jV j�1, and �(u) = i ifu 6= s; t and u is the i-th vertex in \lexicographic order" of (V � fs; tg) in thegiven encoding of G. That is, � assigns distinct labels less than jV j � 1 to allnodes except for s and t to which it assigns the same label jV j � 1. It is easyto see that s is not connected to t in G if and only if � is a valid node rankingof G.Remarks: See, for example, de la Torre et al. (1992) for a discussion of theNode Ranking Problem, its sequential and parallel time complexities, and itsapplications. When restricted to trees, VNR is complete for DL (RaymondGreenlaw and Birgit Jenner, personal communication, 1996). The problem canbe seen to be in DL using Euler tour techniques and may be shown DL-hard viaa reduction from Undirected Forest Accessibility. Cook & McKenzie(1987), page 388 showed the latter problem was DL-complete.3.7 Valid Edge Ranking (VER)Given: An undirected graph G = (V;E) and an edge ranking � of G. Anedge ranking of G is a mapping from E to the positive integers. An edge rank-ing is valid if on every simple path between two distinct edges e1 and e2 with�(e1) = �(e2) there is an edge e such that �(e) > �(e1).Problem: Is � a valid edge ranking of G?Reference: Raymond Greenlaw and Birgit Jenner, personal communication,1996.Hint: A similar proof to that given for Problem 3.6 yields the result.Remarks: See, for example, de la Torre et al. (1995) for a discussion of the



16 Carme �Alvarez & Raymond GreenlawEdge Ranking Problem, its sequential and parallel time complexities, andits applications. When restricted to trees, VER is complete for DL (RaymondGreenlaw and Birgit Jenner, personal communication, 1996), see remarks forProblem 3.6. Note, in general the complexities of node and edge ranking prob-lems do not seem to be the same (for example, see de la Torre et al. (1992),de la Torre et al. (1995)). 7. Miscellaneous4.1 Exclusive or 2-Unsatisfiability (�2UNSAT)Given: A formula F that is the conjunction of a set of clauses C1; : : : ; Cm,where each Ci consists of either one literal or is the exclusive or of twoliterals.Problem: Is it the case that F is not satis�able?Reference: Jones et al. (1976).Hint: Reduce NBG to �2UNSAT and vice versa to show that �2UNSAT isSL-hard and in SL, respectively (edges and clauses directly correspond).Reference: 2UNSAT, where each clause contains two literals, is completefor NL (see Papadimitriou (1994), Theorem 9.1 on page 184, and its corollaryon page 185, for example).4.2 Exact Cover-2 (EC-2)Given: A \universe" set U and a family of n sets Si � U with the propertythat every element in U appears at most twice in the list S1; : : : ; Sn.Problem: Is it the case that there is no subfamily S 01; : : : ; S 0m with m � n,such that S 0i \ S0j = ; for 1 � i 6= j � m and S 01 [ � � � [ S 0m = U?Reference: Jones et al. (1976).Hint: The reduction given by Karp (1972) to reduce Chromatic Numberto Exact Cover can be used here to show NBG is reducible to EC-2.4.3 Hitting Set-2 (HS-2)Given: A \universe" set U and a family of n sets Si � U with the propertythat jSij � 2 for 1 � i � n.Problem: Is it the case that there is no subset H of U such that jH \Sij = 1for all i?Reference: Jones et al. (1976).



Compendium of SL-complete Problems 17Hint: The reduction given by Karp (1972) to reduce Exact Cover to Hit-ting Set can be used here to show EC-2 is reducible to HS-2.4.4 Generalized Word Problem Countably-generated 2(GWPC(2))Given: A set W = fw1; : : : ; wtg of distinct, reduced words over �n = fs0; s1;: : : ; sn�1g of length 2 and a designated word w over �n of length 2. Let � beany �nite set of symbols and ��1 = fs�1 j s 2 �g. A word over � is a stringof symbols from � [ ��1; the length of the word is the length of the string. Aword w over � is reduced if there are no consecutive occurrences in w of thesymbols s and s�1, or s�1 and s, for any s 2 �. See Stewart (1991) for furtherdetails.Problem: Is w 2 hW i? For a �nite set of reduced words W = fw1; : : : ; wtgover �, hW i denotes the group generated by w1; : : : ; wt.Reference: Stewart (1991).Hint: The logical characterization of SL by Immerman (1987) as (FO + pos-STC) is used to show GWPC(2) is in SL. For the completeness proof see Stew-art (1991), (Corollary on page 267).Remarks: GWPC(2) is called the \Generalized Word Problem for �nitely-generated subgroups of Countably-generated free groups with generators oflength 2" in Stewart (1991). For general k certain variants of the problem areP-complete Stewart (1992). See Stewart (1991), Stewart (1992) for additionaldetails and de�nitions. 8. Open problemsIn this section we list a number of open problems. For each problem we providea de�nition, remarks, and a reference.1 The goal in each case is to show thatthe problem is SL-hard under �mlog reducibility. In some cases the problem isknown to be in SL and in other cases it is not. The problems are not alwaysstated as decision problems.It is worth noting that all of the problems we have listed that are completefor SL under logarithmic space many-one reductions are also hard under AC0many-one reductions (and even projections). It is the case that some of the open1When, to the best our knowledge, we were the �rst to ask whether a given problem isSL-hard, no reference is provided and \this work" is understood.



18 Carme �Alvarez & Raymond Greenlawproblems given below are known to be hard for DL (or can easily be shown hardfor DL). For example, it is clear that Problem 5.2 is hard for DL under thesemore-restrictive reducibilities. Thus, these problems are \sandwiched between"DL and SL (which is a small region since DL/poly = SL/poly). However, forsome of the other open problems, we do not know hardness for DL or evenNC1.5.1 Number of Connected Components (NCC)Given: An undirected graph G = (V;E) and a natural number k.Problem: Is #cc(G) equal to k?Reference: Folklore.Remarks: NCC is in SL by Nisan & Ta-Shma (1995). Nisan and Ta-Shmashow NCC is logarithmic space many-one reducible to USTCON. Note, NCCis logarithmic space many-one reducible to CCE by a straightforward reduc-tion. If G and k comprise an instance of NCC, then take G1 = G andG2 = (f1; : : : ; kg; ;). It is easy to see NCC is complete for SL under loga-rithmic space Turing reducibility by a reduction from CCE, Problem 2.5.5.2 Chordal Graph (ChordalG)Given: An undirected graph G = (V;E).Problem: Is G a chordal graph? A graph G is a chordal graph if every cycleC of length greater than three has a chord. A chord is an edge connecting twononconsecutive vertices in C.Remarks: Reif (1984) originally showed the problem was in �1csymlog =co-SL. By Theorem 1.1 this implies ChordalG is in SL.5.3 Interval Graph (IntervalG)Given: An undirected graph G = (V;E).Problem: Is G an interval graph? A graph G is an interval graph if itsvertices can be put into a one-to-one correspondence with a set of intervals ofthe real line such that two vertices are adjacent if and only if their correspondingintervals overlap.Remarks: Reif (1984) originally showed the problem was in �1csymlog =co-SL. It is known that a graph G is an interval graph if and only if G is achordal graph and G is a comparability graph. The result that IntervalG isin SL follows from the fact that ComG and ChordalG, Problems 3.2 and 5.2respectively, are in SL.



Compendium of SL-complete Problems 195.4 Split Graph (SplitG)Given: An undirected graph G = (V;E).Problem: Is G a split graph? A graph G = (V;E) is a split graph if thevertices can be partitioned so that V = V1 [ V2 and the graphs induced bythe vertices in V1 and V2 using the edges from E are an independent set and acomplete graph, respectively.Remarks: Reif (1984) originally showed the problem was in �1csymlog =co-SL. It is known that a graph G is a split graph if and only if both G andG are chordal graphs. The result that SplitG is in SL follows from the factthat ChordalG, Problem 5.2, is in SL. We may ask two questions, one about Gand the other about G, written deterministically to the oracle tape and applyLemma 2.3.5.5 Permutation Graph (PermG)Given: An undirected graph G = (V;E).Problem: Is G a permutation graph? A graph G = (fv1; : : : ; vng; E) is apermutation graph if there is a permutation � of f1; : : : ; ng such that fvi; vjg 2E if and only if (i� j)(��1(i)� ��1(j)) < 0.Remarks: Reif (1984) originally showed the problem was in �1csymlog =co-SL. It is known that a graph G is a permutation graph if and only if both Gand G are comparability graphs. PermG can thus be logarithmic space many-one reduced to ComG. The reduction takes a graph G and outputs a new graphH consisting of a copy of G and a copy of G with the nodes relabeled. Note,H is a comparability graph if and only if both G and G are. The result thatPermG is in SL then follows from the fact that ComG, Problem 3.2, is in SL.5.6 Unary 0 � 1 Knapsack (UK)Given: A positive integer 0y and a sequence 0y1 ; : : : ; 0yn of positive integersrepresented in unary.Problem: Is there a sequence of 0 � 1 valued variables x1; : : : ; xn such thaty = nXj=1 xj � yj?Reference: Monien & Sudborough (1980) and Cook (1985).Remarks: Monien & Sudborough (1980) showed this problem is in NL. Cook(1985), page 9, cites a personal communication with Martin Tompa that UKis unlikely to be NL-complete. Cho & Huynh (1988) give further evidence thatthis problem is unlikely to be NL-complete. It is not known if this problem isin SL. See Problem 5.7 for related problems.



20 Carme �Alvarez & Raymond Greenlaw5.7 Unary Knapsack with Signed Repetition (UKSR)Given: A positive integer 0y and a sequence 0y1 ; : : : ; 0yn of positive integersrepresented in unary.Problem: Is there a sequence of integers x1; : : : ; xn such thaty = nXj=1 xj � yj?Reference: Jenner (1995).Remarks: Jenner shows the problem is in SL by reducing it to USTCON.Also see Jenner (1995) for several other interesting variants of the KnapsackProblem that are complete for NL and for several that may be complete forSL.5.8 Bounded Degree Planarity (BDP)Given: An undirected graph G whose vertices have bounded degree.Problem: Is G planar?Remarks: Reif (1984) originally showed the problem was in �3csymlog.Since the symmetric complementation hierarchy collapses using the resultsof Nisan & Ta-Shma (1995), this places the problem in SL. Ja'Ja' & Simon(1982) showed the planarity problem without a degree bound is in NC.AcknowledgementsWe thank Birgit Jenner and Luca Trevisan for helpful discussions about prob-lems in SL, and Ricard Gavald�a and Jos�e Balc�azar for a number of usefulcomments on a draft of this paper. A special thanks to Eric Allender andKlaus-J�orn Lange for several corrections. Thanks to the reviewers for a num-ber of very useful suggestions. Ray thanks the Department of Computer Scienceat the Universitat Polit�ecnica de Catalunya in Barcelona; their hospitality isgreatly appreciated. Carme's work was partially supported by ESPRIT LTRProject no. 20244-ALCOM-IT. Ray's research partially supported by Na-tional Science Foundation grant CCR-9209184, a Fulbright Scholarship SeniorResearch Award 1995, and a Spanish Fellowship for Scienti�c and TechnicalInvestigations 1996.
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