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Abstract. The paper’s main contributions are a compendium of prob-
lems that are complete for symmetric logarithmic space (SL), a collection
of material relating to SL, a list of open problems, and an extension to
the number of problems known to be SL-complete. Complete problems
are one method of studying SL, a class for which programming is non-
intuitive. Our exposition helps make the class SL less mysterious and
more accessible to other researchers.
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1. Introduction

In this paper we describe problems that are logarithmic space many-one com-
plete for symmetric logarithmic space (SL). Our hope in collecting these prob-
lems and extending this list is that more insight can be gained about the rela-
tionships between the complexity classes deterministic logarithmic space (DL),
SL, and nondeterministic logarithmic space (NL). The symmetric Turing ma-
chine model introduced by Lewis & Papadimitriou (1982) is not an intuitive
model to program due to the reversibility property of transitions, and studying
complete problems for SL is one approach to gain a better understanding of it.

Lewis and Papadimitriou defined SL to capture the complexity of the undi-
rected s-t connectivity problem (USTCON, see Problem 2.1). They proved
that

DL C SL C NL

and that USTCON is complete for SL.. Many results that are relatively straight-
forward to prove about Turing machines become much more involved when car-
ried over to symmetric Turing machines (see Lewis & Papadimitriou (1982)).
Unexpectedly, Nisan and Ta-Shma proved that SL is closed under complement.
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THEOREM 1.1. (NIsaN & TA-SHMA (1995))
The complexity class symmetric logarithmic space is closed under complement.

That is, SL equals co-SL.

This result was achieved through a series of reductions and not by a tech-
nique related to inductive counting (Immerman (1988) and Szelepcsényi (1988)).
A proof that NL equals co-NL using techniques similar to Nisan and Ta-Shma’s
has not been achieved although such a proof would be very interesting. Borodin
et al. (1989) point out that the Immerman-Szelepcsényi proof technique does
not seem to apply to yield a proof that SL equals co-SL due to the fact that
symmetric Turing machines cannot “nondeterministically count” Borodin et al.
(1989).

We provide an overview of some of the important research done on finding
small space algorithms for USTCON. There are many others who have also
made contributions on this problem. Aleliunas et al. (1979) gave a probabilistic
1-sided error logarithmic space algorithm for USTCON. This fact can be used
to conclude that DL/poly = SL/poly, see Razborov (1991). A probabilistic
0-sided error logarithmic space algorithm for USTCON was given by Borodin
et al. (1989). Until 1992, Savitch’s algorithm’s (logn)? space bound was the
best known for USTCON. Barnes & Ruzzo (1991), Barnes & Ruzzo (1997)
gave the first deterministic polynomial time and sublinear space algorithms
for USTCON. Nisan (1992) also presented improved time-space tradeoffs for
USTCON. Nisan et al. (1992) improved on Savitch’s algorithm by giving a
deterministic algorithm that requires (logn)*® space. Recently, Armoni et al.
(1997) showed that SL C DLY/3.

Figure 1.1 depicts the relationships currently known among the classes in
the vicinity of SL. Many of the definitions involving these classes can be found
in the excellent survey by Johnson (1990) or the excellent paper by Borodin et
al. (1989). Figure 7 of Johnson (1990) and Figure 1 of Borodin et al. (1989)
were combined and modified slightly to obtain our figure.

The remainder of this paper is organized as follows: §2 contains some back-
ground material about SL; in §3 a list of problems that are logarithmic space
many-one complete for SL is given; sections 4, 5, 6, and 7 describe the SL-
complete problems of type machine simulation, connectivity, graph theory, and
miscellaneous, respectively; and §8 contains a number of open problems that
are candidates for being SL-complete.
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2. Preliminaries

The following notation will be useful for this paper. Let ¢ = (V| E) be an
undirected graph. #cc((G) denotes the number of connected components of
(. G denotes the complementary graph of G, that is G = (V,(V x V) — E).
We use the notation <jex to mean less than in lexicographic order or less than
using the natural order specified by a problem instance. For definitions of basic
complexity classes and techniques used in computational complexity theory, the
reader is referred to Johnson (1990) or Greenlaw et al. (1995).

The complexity class symmetric logarithmic space is defined in terms of
the symmetric Turing machine (STM) introduced by Lewis & Papadimitriou
(1982). The exact definition of STMs is very detailed and we provide only
an intuitive description of the model here. A symmetric Turing machine can
be thought of as a nondeterministic Turing machine which has the additional
requirement that every move of the machine is “reversible.” In order for this
to be achievable the machine is allowed to scan two symbols at a time on each
of its tapes.

Our discussion brings up the important question of the distinction between
“reversible” (reversibility) and “symmetric” (symmetry) computation. The
word reversible is customarily used to help explain the notion of symmetric
computation but it also has a separate technical meaning. A deterministic
Turing machine is reversible if and only if the infinite graph of all configurations
is such that each node has indegree and outdegree one, that is, the machine is
also backwards deterministic (see Bennett (1989) and Lange et al. (1997)). This
is in contrast to a STM where both the indegree and outdegree of nodes in the
infinite graph of all configurations can be greater than one. The requirement
for STMs is that each forward move can be undone via a backward move.

Next we formally define the notion of symmetric logarithmic space.

DEFINITION 2.1. Symmetric logarithmic space, SL, is the class of lan-
guages accepted by logarithmic space bounded symmetric Turing machines.

We are interested in describing problems that are complete for SL under
logarithmic space many-one reducibility.

DEFINITION 2.2. A language or problem L is SL-complete if L. € SL and for

all L' € SL, I is logarithmic space many-one reducible (denoted <[\,) to L.

Problems L and L' are logarithmic space equivalent if and only if L <, L'

—log
and L' <3, L.
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In Lewis & Papadimitriou (1982), they show that SL is closed under log-
arithmic space many-one reductions (Theorem 4, page 172). It is well-known
that (deterministic) logarithmic space reductions are transitive, so in proving
other problems complete for SL one can exploit this fact. To demonstrate com-
pleteness for SL one must also show that the problem under consideration is in
SL. This is not always easy since symmetric Turing machines are difficult to
reason about. The following lemma is helpful for showing problems are in SL.

LEMMA 2.3. (NisaN & TaA-SHMA (1995), COROLLARY 3.1)

The class of languages accepted by deterministic logarithmic space bounded
Turing machines having an oracle for SL is exactly equal to SL. That is, DL
equals SL.

This lemma gives another characterization of SL: those languages that are
logarithmic space Turing reducible to a language in SL. This viewpoint is
useful for showing additional languages are in SL. Since SL is closed under
logarithmic space many-one reducibility as shown by Lewis & Papadimitriou
(1982), another way of viewing SL is as those languages that are logarithmic
space many-one reducible to USTCON. Immerman (1987) provides a logical
characterization of SL as (FO 4 posSTC). SL is also equal to those languages
that can be accepted by a (logarithmic space) uniform family of switching
networks, see Razborov (1991). Nisan and Ta-Shma give one further charac-
terization of SL by showing that SL equals SL5" when the oracle queries are
asked in a deterministic way as defined by Ruzzo et al. (1984), page 224. Here
the requirement is that once the first symbol of a query is written on the oracle
tape, the machine must behave deterministically until the query is asked and
the oracle tape is erased.

3. SL-complete Problems

In this section we list the problems that are SL-complete. We welcome additions
to this list or to the open problems list given in §8. For comparison purposes
we note that Cook & McKenzie (1987) presented a list of problems that are
complete for DL and Jones et al. (1976) gave a list of problems that are complete
for NL.

Since SL equals co-SL (see Theorem 1.1), the complement of each of the
problems listed is also SL-complete. In a couple of important cases we list
both the problem and its complement separately. For each problem we provide
a definition, reference, proof hint, and remarks. The proof hints vary widely
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in their level of utility. For problems that were previously known to be SL-
complete, we typically provide just a brief hint; the reader should consult the
original reference for more details. In addition, we omit details arguing that
the reductions specified are in logarithmic space and occasionally the proof
that a given problem is in SL. Note that providing a direct proof for showing
a problem is in SL is often difficult.

The naming conventions we use are largely historical and thus there are
some inconsistencies. It is difficult to put the problems into a natural order that
addresses their historical importance, simplicity, proof order for reductions,
and yet is convenient to search the list by. We split the problems up into four
categories for organizational purposes: machine simulation, connectivity, graph
theory, and miscellaneous. We provide an index of the problems below.

Machine Simulation
1.1 Generic Machine Simulation Problem (GMSP)
1.2 Symmetric Finite Automaton Nonemptiness (SFAN)

Connectivity

2.1 Undirected s-t Connectivity Problem (USTCON)

2.2 Undirected Non-s-t Connectivity Problem (USTCON)
2.3 k Vertex Disjoint Paths (k-PATHS)

2.4 Membership in k-Connected Component (MemkCC)
2.5 Connected Components Equal (CCE)

2.6 Connected Components Even (CCEven)

2.7 Spanning Forest Sizes Equal (SFSE)

Graph Theory

3.1 Nonbipartite Graph (NBG), 2-Colorability
3.2 Comparability Graph (ComG)

3.3 Minimum Weight Spanning Forest (MWSF)
3.4 Clique Cover-2 (CC-2)

3.5 Fixed Edge in Any Cycle (FEC)

3.6 Valid Node Ranking (VNR)

3.7 Valid Edge Ranking (VER)

Miscellaneous

4.1 Exclusive OR 2-Unsatisfiability (2UNSAT)

4.2 Exact Cover-2 (EC-2)

4.3 Hitting Set-2 (HS-2)

4.4 Generalized Word Problem Countably-generated 2 (GWPC(2))
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Open Problems

5.1 Number of Connected Components (NCC)

5.2 Chordal Graph (ChordalG)

5.3 Interval Graph (IntervalG)

5.4 Split Graph (SplitG)

5.5 Permutation Graph (PermG)

5.6 Unary 0 — 1 Knapsack (UK)

5.7 Unary Knapsack with Signed Repetition (UKSR)
5.8 Bounded Degree Planarity (BDP)

The problem format is based on that employed by Garey & Johnson (1979)
and Greenlaw et al. (1995). If no reference is given, “this work” is implied.

4. Machine simulation

1.1 GENERIC MACHINE SIMULATION PROBLEM (GMSP)
GIVEN: A string z, a description M of a symmetric Turing machine M, and a
natural number s encoded in unary.
PROBLEM: Does M accept « within space [log s]?
REFERENCE: Lewis & Papadimitriou (1982), and this work.
HINT: The required symmetric universal Turing machine U, needed to show the
problem is in SL, can be constructed from the deterministic one (see Hopcroft
& Ullman (1979), for example) and by applying Lemma 1 of Lewis & Papadim-
itriou (1982), page 167. U copies the current state and symbol of M to one of
its worktapes for decoding instructions and uses = on its input tape as input
to M. The state requires space at most [log |[M|] since we may assume that
the number of states of M is less than |M|. Thus, to represent one state re-
quires at most [log |[M|] space. A similar analysis can be made for the space
required for the current symbol. The “input pointer” to x requires [log |z|]
space. Therefore, the total space used by U is

[log |1 +2 - [log [M[] + [log 5]

which is O(log(|z|+|M|+s)). A direct reduction from any language L in SL to
GMSP involves outputting the instance of L, a description of the corresponding
SL machine N for L, and the space bound for N in unary.
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1.2 SYMMETRIC FINITE AUTOMATON NONEMPTINESS (SFAN)
GIVEN: The description M of a symmetric finite automaton. A symmetric
finite automaton M = (Q, ¥, A, s, F') is a nondeterministic finite automaton
such that whenever (¢, 0,¢2) € A then so is (g2, 0,¢1). Note, here there is no
notion of “backing up” on the input tape.
PROBLEM: Is L(M) nonempty?
HINT: SFAN is in SL since we can reduce it to USTCON, Problem 2.1. Given
an instance M = (Q,X, A, s, F') of SFAN form the graph G = (V, F), where
V=QU{t}and

I ={{p,q} | thereisa o€ X with (p,o,q) € A}U{{p,t}|pe I}.

It is easy to see that L(M) is nonempty if and only if s is connected to ¢ in G.
To show SFAN is Sl-hard reduce USTCON to it. Given an instance
G = (V,F), s, and t of USTCON define N = (V,{o},A,s,{t}), where for
all u,v € V, (u,0,v) € A if and only if {u,v} € E. Then it is easy to see N
is symmetric and that s is connected to ¢ in (G if and only if there exists a k,
k <|V| -1, such that o* € L(N).
REMARKS: The problem where M is deterministic, SDFAN, is also com-
plete for SL. We can reduce an instance ¢ = (V| F), s, and t of UST-
CON to SDFAN as follows: form the symmetric deterministic finite automa-
ton N = (V,¥,A,s,{t}), where ¥ = {(u,v) | u,v € Vandu < v} and
for each edge {u,v} € F if u <jex v add the two transitions (u,o,v) and
(v,0,u) to A where 0 = (u,v) and if v <jx u add the two transitions as
above but instead taking ¢ = (v,u). Then s is connected to ¢t in G if and
only if L(N) is nonempty. Reversible finite automata have been studied in
a number of settings each time with a slightly different definition (for exam-
ple, see Angluin (1982) for applications in learning theory and Pin (1987),
Pin (1992) for applications in formal language theory).

5. Connectivity

2.1 UNDIRECTED s-t CONNECTIVITY PROBLEM (USTCON)
GIVEN: An undirected graph G = (V, ) and two designated vertices s and ¢.
PROBLEM: Are s and ¢ connected?
REFERENCE: Lewis & Papadimitriou (1982).
HINT: The reduction is from an arbitrary language L in SL. Let M be a
logarithmic space bounded symmetric Turing machine accepting L. Given an
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instance x of L form the configuration graph G' of M on input x. Let s (¢) be
the initial (respectively, unique final) configuration of M. Then M accepts x if
and only if there is a path from s to ¢ in G.

REMARKS: USTCON motivated Lewis and Papadimitriou to define the com-
plexity class SL. This problem is also called UGAP by many authors (see Jones
et al. (1976)). Frequently it is convenient to assume the vertices are numbered
1 through |V| and then take s as 1 and ¢ as |V/|. Given an undirected graph
G = (V, F), two designated vertices s and t, and a number k; the problem of
determining if the length of a shortest path from s to ¢ is k is NL-complete
(see Borodin et al. (1989), page 561).

2.2 UNDIRECTED NON-s-t CONNECTIVITY PROBLEM (USTCON)
GIVEN: An undirected graph G = (V, ) and two designated vertices s and ¢.
PROBLEM: Is it the case that s and ¢ are not connected?

REFERENCE: Nisan & Ta-Shma (1995).

HINT: Reduce USTCON to USTCON. This is the reduction used to show that
SL is closed under complement.

REMARKS: This problem is also called UGAP by many authors. See Prob-
lem 2.1 for additional comments.

2.3 k VERTEX DIsjoINT PATHS (k-PATHS)
GIVEN: An undirected graph G = (V, ) and two designated vertices s and ¢.
PROBLEM: Are there k vertex disjoint paths from s to 7
REFERENCE: Reif (1984).
HINT: Observe 1-PATH is USTCON, Problem 2.1, and clearly k-PATHS re-
duces to k£ 4+ 1-PATHS for every k. To show the problem is in SL, Reif notes
that for any graph GG = (V, E) and vertices s,t € V', the k-PATHS instance
G, s, and t has a “yes” answer if and only if for all vy, ..., 051 € V — {s,t},
the USTCON instances G', s, and t have “yes” answers, where GG’ is the graph
obtained by deleting vertices vy,...,vz_1 from G.

2.4 MEMBERSHIP IN k-CONNECTED COMPONENT (MEMACC)
GIVEN: An undirected graph G = (V| E), a designated vertex v, and a set of
k vertices vy,...,vp.
PROBLEM: Is v in the k-connected component determined by vy, ..., v;? (Note,
the vertices vq,..., v belong to the component.) A k-connected component is
a maximal k-connected subgraph. A graph H = (W, F') is k-connected if for all
distinct vertices wy,wy € W, there exist k vertex-disjoint paths in H from w;
to wsy.
REFERENCE: Reif (1984).
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HINT: MemkCC is in SL since instance G, v, and vy,...,v; is “yes” if and
only if
/\ k-PATHS G, v, and v,
1<i<k
and Lemma 2.3 applies. For hardness reduce USTCON, Problem 2.1, to
MemkCC. Given an instance G, s, and ¢ ask whether GG, s, and ¢ is an in-
stance of Mem1CC.

2.5 COoNNECTED COMPONENTS EQuAL (CCE)
GIVEN: Two undirected graphs Gy = (V4, Eq) and Gy = (Va, F»).
PROBLEM: Is #cc((G1) equal to #cc(Gq)?
REFERENCE: Nisan & Ta-Shma (1995), and this work.
HINT: First we show that CCE is in SL. By Lemma 2.3 it suffices to show that
CCE is in DL Let NCCi(G) equal 1 if #cc(G) equals 4, and 0 otherwise.

Consider the (monotone) formula

min{ |V |,[V2[}
A= \/  (NCCi(Gy) ANCC(Gy)).
i=1
Noting that NCC; can be computed in SL Nisan & Ta-Shma (1995) (see Prob-
lem 5.1), it is easy to see that the value of A can be determined by a DL
machine. Since the value of A provides the answer to CCE, we have that CCE
is in SL.

Now we show that CCE is SL-hard. For this we logarithmic space many-
one reduce USTCON, Problem 2.2, to CCE. Given an instance G = (V| F),
s, and t of USTCON we form the corresponding instance of CCE as follows:
G4 = G and G4 given by Vo = V U {u | where u is a new vertex not in V'} and
FEy = E U{s,t}. Dummy vertex u is used for the purpose of adding one more
connected component to GG3. It is easy to see that s is not connected to ¢ in G
if and only if #cc(Gh) equals #cc(Gy).

REMARKS: Nisan and Ta-Shma show that a variant of CCE is reducible to
USTCON.

2.6 CONNECTED COMPONENTS EVEN (CCEVEN)
GIVEN: An undirected graph G = (V, E).
PROBLEM: Is #cc(() even?
REFERENCE: Birgit Jenner, personal communication, 1996.
HiNT: CCEven is in SL since CCE, Problem 2.5, is in SL and SL is closed under
disjunctive logarithmic space reducibility. For SL-hardness reduce USTCON,
Problem 2.1, to CCEven. Let G = (V, E), s, and ¢ be an instance of USTCON.
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Form the instance H of CCEven consisting of two copies of G and in one of
the copies add an edge from s to t. If s is (is not) connected to ¢t in G, then
#ce(H) = 2-#ce(G) (respectively, #cc(H) = 2-Fcc(G)—1). So, s is connected
to t in G if and only if #cc(H) is even.

REMARKS: This problem is “between” Problems 2.5 and 5.1.

2.7 SPANNING FOREST Si1zES EQUAL (SFSE)
GIVEN: Two undirected graphs Gy = (V4, Eq) and Gy = (Va, F»).
PRrROBLEM: Is the number of edges in a spanning forest of ¢y equal to the
number of edges in a spanning forest of G537
REFERENCE: Nisan & Ta-Shma (1995).
HINT: Recall an undirected graph G with n nodes has k connected components
if and only if a spanning forest of (¢ contains n — k edges. Therefore, it is easy
to see that this problem is logarithmic space equivalent to Problem 2.5.

6. Graph theory

3.1 NONBIPARTITE GRAPH (NBG)
GIVEN: An undirected graph G = (V, E).
PROBLEM: Is it the case that GG is not bipartite?
REFERENCE: Jones et al. (1976).
HINT: To show the problem is in SL, NBG is reduced to USTCON, Prob-
lem 2.1. Let G = (V| F) be an instance of NBG. The idea is to construct a
new graph by first forming two copies of each node, call them copy 0 and copy
1. For any edge {u,v} € F connect the 0 copy of u to the 1 copy of v and vice
versa. This new graph, G’; is not bipartite if and only if there is some node w
such that the 0 copy of w is reachable from the 1 copy of w. To take care of
the phrase “there is some node w” |V| duplicates of G are produced and new
nodes s and ¢ are introduced. s (¢) is connected to the 0 (1) copy of the i-th
node in copy 1.

For hardness reduce USTCON to NBG. The idea is to make use of the
fact that a graph is bipartite if and only if it has no cycle of odd length. Let
G = (V,F), s, and t be an instance of USTCON. Let d be a dummy node such
that d ¢ V U E. Form the instance ' = (V', E’) of NBG, where

Vi={u,u' |[ueViU{e e |eec E}U{d}



12 Carme Alvarez & Raymond Greenlaw

and

E' = {{u, e}, {e,v}, {u, '}, {0} | e = {u,v} € E} U
s, s'b At d} Y, d} )

Then G’ contains an odd length cycle if and only if s is connected to ¢ in G.
REMARKS: As noted in Jones et al. (1976), this is equivalent to asking if
(G is not 2-colorable; the problem is a special case of CHROMATIC NUMBER
(see Garey & Johnson (1979), page 191, for example). Since SL equals co-
SL, the problems of asking whether G is bipartite or 2-colorable are also SIL-
complete. Before it was known that SL equals co-SL, Reif (1984), Theorem 5.11,
observed bipartite graph recognition was complete for his class [[;CSYMLOG =
co-SL. NBG and Problems 3.4, 4.1, 4.2, and 4.3 were shown to be logarithmic
space equivalent to USTCON in Jones et al. (1976). This was prior to SL being
defined by Lewis & Papadimitriou (1982). Lewis and Papadimitriou observed
(Corollary to Theorem 6, pages 178-9) that the results contained in Jones et al.
(1976) implied these problems were complete for SL when combined with the
facts that USTCON is SL-complete and SL is closed under logarithmic space
many-one reducibility.

3.2 COMPARABILITY GRAPH (CoMG)
GIVEN: An undirected graph G = (V, E).
PrOBLEM: Is GG a comparability graph? A graph G is a comparability graph if
there exists a partial order P on V| say <,, such that {u,v} € F if and only if
either u <, v or v <, u. That is, the edges in E correspond to pairs of elements
in V' that may be compared.
HINT: Reif (1984) originally showed the problem was in II;CSYMLOG = co-SL.
By Theorem 1.1 this implies ComG is in SL.

For SL-hardness we use the same reduction as given in Problem 3.1 but
here we reduce USTCON, Problem 2.2, to ComG. The claim is that s is not
connected to ¢ in G if and only if G’ (see Problem 3.1) is a comparability
graph. In order to prove the claim we rely on the following characterization
of comparability graphs given by Gilmore & Hoffman (1964): An undirected
graph GG = (V, F) is a comparability graph if and only if for every cycle C of
G, if {u,v} € E for every pair of vertices u and v at distance two in C', then C
has an even number of edges.

First, notice in the graph G’ excluding the “last” three edges in F’ that
each cycle (if any) has an even length. Also observe that both {u,u’ | u € V'}
and {e, ¢’ | e € E} are independent sets so there are no vertices of distance two
apart in any cycle that are adjacent in G’. Finally, in adding the last three
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edges we create only odd cycles (if any) and none of these cycles have nodes at
distance two apart in them adjacent in G’. As in Problem 3.1 s is connected
to t in G if and only if there is an odd cycle in G’ if and only if G’ is not
a comparability graph by arguing as above. From this the claim follows and
ComG is SL-complete.

3.3 MINIMUM WEIGHT SPANNING FOREST (MWSF)

GIVEN: An undirected graph G = (V, E), a designated edge e, and a weight
function w : £ — {1,2,3,...} assigning a distinct weight to each edge.
PROBLEM: Is e in the minimum weight spanning forest of G7 (Recall, the
minimum weight spanning forest is unique for a weight function that assigns
distinct positive integer weights.)

REFERENCE: Stephen Cook; Reif (1984).

HINT: Membership in SL follows by a reduction to USTCON, Problem 2.1.
The idea is to use the greedy minimum weight spanning forest algorithm. An
edge e = {u,v} is in the minimum weight spanning forest if and only if u is
not connected to v in the graph made up of all edges having lower weight than
¢ (see Nisan & Ta-Shma (1995)).

Reduce USTCON, Problem 2.2, to MWSF for completeness. Let G =
(V,E), s, and t be an instance of USTCON. If {s,t} € G output the in-
stance H = ({s,t,u},{{s,t},{s,u},{t,u}}), {s,t}, and w, where w({s,t}) = 3,
w({s,u}) =1, and w({t,u}) = 2; otherwise form the instance G' = (V, K U
{{s,t}}), {s,t}, and w of MWSF, where all edges e # {s,t} € E are given
unique positive weights from 1,...,|F| — 1 and w({s,t}) = |E|. Then s is not
connected to ¢ in G if and only if {s,¢} is in the minimum weight spanning
forest of .

REMARKS: The problem was shown complete for II;cCSYMLOG in Reif (1984).
This class equals co-SL. At the time it was not known that SL is closed under
complementation. The problem where we consider the lexicographically first
minimum spanning forest without a weight function is also SL-complete since
the ordering of the edges can be considered as unique distinct positive integer

weights Nisan & Ta-Shma (1995).

3.4 CLIQUE COVER-2 (CC-2)
GIVEN: An undirected graph G = (V, E).
PROBLEM: Is it the case that V' cannot be covered by two cliques?
REFERENCE: Jones et al. (1976).
HINT: The reduction given by Karp (1972) to reduce CHROMATIC NUMBER
to CLIQUE COVER can be used here to show NBG is reducible to CC-2.



14 Carme Alvarez & Raymond Greenlaw

3.5 FIXED EDGE IN ANY CycLE (FEC)
GIVEN: An undirected graph G = (V| F) and a designated edge e = {u,v} in
E.
PROBLEM: Is there a cycle in G that contains e?
HiNT: FEC is in SL since we can reduce it to USTCON, Problem 2.1. Given
an instance GG and e = {u,v} of FEC form the graph G’ from G by deleting
edge e and ask if there is a path from u to v in . To show FEC is SL-hard
reduce USTCON to FEC. Given an instance G = (V, F), s, and t of USTCON
if edge {s,t} € E then form the instance ' = (V U{u}, B U {{u,s},{u,t}})
and {s,t} of FEC. Otherwise, just add edge {s,t} to G and ask if edge {s,t}
is in a cycle in this new graph. It is in a cycle if and only if s is connected to ¢
in G.
REMARKS: A related problem is to ask whether a designated vertex is in
any cycle. This problem is easily seen to be in SL via a DLFEY machine.
Furthermore, the problem is SL-complete since FEC can be reduced to it. The
idea is to consider the dual graph. The CycLE FREE PROBLEM (CFP) is given
an undirected graph to ask whether it is acyclic. Cook & McKenzie (1987)
proved CFP is DL-complete. They show the problem remains DL-complete if
the input graph contains at most one cycle. Recall that a graph is bipartite
if and only if it contains no cycle of odd length. It is interesting to compare
the results here with those of Problem 3.1. The complement of FEC is also
interesting and related to Problem 3.3: there is no cycle in G containing e if
and only if every spanning forest of (G includes e.

Another related problem called SAMECYCLE, which asks if two nodes are
in the same cycle, is formally defined as follows:

Given: An undirected graph GG = (V, F) and two designated vertices u and
w.

Problem: Is there a simple cycle C that contains both u and w? A simple

cycle vy, ..., v in a graph G = (V| F) is such that k > 3, {v;,v;41} € E for
1 <i<k—1,{vg,0n} € E,and v; £ v, for 1 <i#£ 5 <k

This problem is known to be NP-complete.

3.6 VALID NODE RANKING (VNR)
GIVEN: An undirected graph GG = (V| F) and a node ranking p of G. A node
ranking of G is a mapping from V to the positive integers. A node ranking
is wvalid if on every simple path between two distinct nodes v and w with
p(u) = p(w) there is a node v such that p(v) > p(u).
PROBLEM: Is p a valid node ranking of G7
REFERENCE: Raymond Greenlaw and Birgit Jenner, personal communication,
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1996.

HINT: To prove the problem is in SL, it suffices to show the complementary
problem is. The idea is to guess two distinct vertices v and w, and a path P (one
vertex at a time) “between” them that has no higher label on it. The highest
label encountered thus far on P is recorded. If w is reached, one verifies that
p(u) = p(w) and that the highest value recorded on the guessed path between
u and w is less than or equal to p(u). The nondeterminism in the algorithm
sketched above occurs in guessing the initial u and w, and in guessing a series
of next nodes on the path. The remainder of the computation is deterministic
and techniques from Lewis & Papadimitriou (1982) may be employed to convert
such an algorithm into a symmetric Turing machine program. If the ranking is
not (is) valid, then there is some (respectively, is no) sequence of guesses that
leads the program to accept.

To prove VNR is SL-hard, we reduce USTCON, Problem 2.2, to it. Given an

instance GG = (V| F), s, and t of USTCON construct an instance of VNR using
the same graph and defining p as follows: p(s) = p(¢) = |V|—1, and p(u) = ¢ if
u # s,t and w is the i-th vertex in “lexicographic order” of (V — {s,t}) in the
given encoding of GG. That is, p assigns distinct labels less than |V| —1 to all
nodes except for s and ¢ to which it assigns the same label |V| — 1. It is easy
to see that s is not connected to ¢ in GG if and only if p is a valid node ranking
of G.
REMARKS: See, for example, de la Torre et al. (1992) for a discussion of the
Node Ranking Problem, its sequential and parallel time complexities, and its
applications. When restricted to trees, VNR is complete for DL (Raymond
Greenlaw and Birgit Jenner, personal communication, 1996). The problem can
be seen to be in DL using Euler tour techniques and may be shown DL-hard via
a reduction from UNDIRECTED FOREST ACCESSIBILITY. Cook & McKenzie
(1987), page 388 showed the latter problem was DL-complete.

3.7 VALID EDGE RANKING (VER)
GIVEN: An undirected graph G = (V| F) and an edge ranking p of G. An
edge ranking of G is a mapping from F to the positive integers. An edge rank-
ing is valid if on every simple path between two distinct edges e; and ey with
p(e1) = p(ez) there is an edge e such that p(e) > p(eq).
PROBLEM: Is p a valid edge ranking of G7
REFERENCE: Raymond Greenlaw and Birgit Jenner, personal communication,
1996.
HINT: A similar proof to that given for Problem 3.6 yields the result.
REMARKS: See, for example, de la Torre et al. (1995) for a discussion of the
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EDGE RANKING PROBLEM, its sequential and parallel time complexities, and
its applications. When restricted to trees, VER is complete for DI, (Raymond
Greenlaw and Birgit Jenner, personal communication, 1996), see remarks for
Problem 3.6. Note, in general the complexities of node and edge ranking prob-
lems do not seem to be the same (for example, see de la Torre et al. (1992),

de la Torre et al. (1995)).

7. Miscellaneous

4.1 EXCLUSIVE OR 2-UNSATISFIABILITY (2UNSAT)

GIVEN: A formula F' that is the conjunction of a set of clauses Cy,...,C,,,
where each C; consists of either one literal or is the EXCLUSIVE OR of two
literals.

PROBLEM: Is it the case that F'is not satisfiable?

REFERENCE: Jones et al. (1976).

HINT: Reduce NBG to $2UNSAT and vice versa to show that @2UNSAT is
SL-hard and in SL, respectively (edges and clauses directly correspond).
REFERENCE: 2UNSAT, where each clause contains two literals, is complete
for NL (see Papadimitriou (1994), Theorem 9.1 on page 184, and its corollary
on page 185, for example).

4.2 Exact CovER-2 (EC-2)
GIVEN: A “universe” set U and a family of n sets S; C U with the property
that every element in U appears at most twice in the list Sy,...,.9,.
PROBLEM: Is it the case that there is no subfamily S7,...,5/ with m < n,
such that S;OS;:@forlgi#jgmandS{U---US;n:U?
REFERENCE: Jones et al. (1976).
HINT: The reduction given by Karp (1972) to reduce CHROMATIC NUMBER
to EXACT COVER can be used here to show NBG is reducible to EC-2.

4.3 HiTTING SET-2 (HS-2)
GIVEN: A “universe” set U and a family of n sets S; C U with the property
that |9;] < 2 for 1 <i < n.
PROBLEM: Is it the case that there is no subset H of U such that |[HNS;| =1
for all 7
REFERENCE: Jones et al. (1976).
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HINT: The reduction given by Karp (1972) to reduce EXaAcT COVER to HIT-
TING SET can be used here to show EC-2 is reducible to HS-2.

4.4 GENERALIZED WORD PROBLEM COUNTABLY-GENERATED 2
(GWPC(2))
GIVEN: A set W = {wy,...,w;} of distinct, reduced words over ¥, = {sq, s,
ey 8p_1} of length 2 and a designated word w over ¥, of length 2. Let X be
any finite set of symbols and X' = {s7' | s € ¥}. A word over ¥ is a string
of symbols from ¥ U ¥7!; the length of the word is the length of the string. A
word w over ¥ is reduced if there are no consecutive occurrences in w of the
symbols s and s, or 57! and s, for any s € X. See Stewart (1991) for further
details.
PROBLEM: Is w € (W)? For a finite set of reduced words W = {wy, ..., w:}
over ¥, (W) denotes the group generated by wy, ..., w;.
REFERENCE: Stewart (1991).
HINT: The logical characterization of SL by Immerman (1987) as (FO + pos-
STC) is used to show GWPC(2) is in SL. For the completeness proof see Stew-
art (1991), (Corollary on page 267).
REMARKS: GWPC(2) is called the “Generalized Word Problem for finitely-
generated subgroups of Countably-generated free groups with generators of
length 27 in Stewart (1991). For general k certain variants of the problem are
P-complete Stewart (1992). See Stewart (1991), Stewart (1992) for additional
details and definitions.

8. Open problems

In this section we list a number of open problems. For each problem we provide
a definition, remarks, and a reference.! The goal in each case is to show that
the problem is SL-hard under <7, reducibility. In some cases the problem is
known to be in SL and in other cases it is not. The problems are not always
stated as decision problems.

It is worth noting that all of the problems we have listed that are complete
for SL under logarithmic space many-one reductions are also hard under AC°
many-one reductions (and even projections). It is the case that some of the open

"When, to the best our knowledge, we were the first to ask whether a given problem is
SL-hard, no reference is provided and “this work” is understood.
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problems given below are known to be hard for DL (or can easily be shown hard
for DL). For example, it is clear that Problem 5.2 is hard for DL under these
more-restrictive reducibilities. Thus, these problems are “sandwiched between”
DL and SL (which is a small region since DL/poly = SL/poly). However, for
some of the other open problems, we do not know hardness for DL or even

NCL

5.1 NUMBER OF CONNECTED COMPONENTS (NCC)
GIVEN: An undirected graph GG = (V, E') and a natural number k.
PROBLEM: Is #cc(() equal to k?
REFERENCE: Folklore.
REMARKS: NCC is in SL by Nisan & Ta-Shma (1995). Nisan and Ta-Shma
show NCC is logarithmic space many-one reducible to USTCON. Note, NCC
is logarithmic space many-one reducible to CCE by a straightforward reduc-
tion. If G and k£ comprise an instance of NCC, then take G; = G and
Gy = ({1,...,k}0). It is easy to see NCC is complete for SL under loga-
rithmic space Turing reducibility by a reduction from CCE, Problem 2.5.

5.2 CHORDAL GRAPH (CHORDALG)
GIVEN: An undirected graph G = (V, E).
PrOBLEM: Is GG a chordal graph? A graph (' is a chordal graph if every cycle
C' of length greater than three has a chord. A chord is an edge connecting two
nonconsecutive vertices in C.
REMARKS: Reif (1984) originally showed the problem was in I[;CSYMLOG =
co-SL. By Theorem 1.1 this implies ChordalG is in SL.

5.3 INTERVAL GRAPH (INTERVALG)
GIVEN: An undirected graph G = (V, E).
ProBLEM: Is G an interval graph? A graph G is an interval graph if its
vertices can be put into a one-to-one correspondence with a set of intervals of
the real line such that two vertices are adjacent if and only if their corresponding
intervals overlap.
REMARKS: Reif (1984) originally showed the problem was in I[;CSYMLOG =
co-SL. It is known that a graph ' is an interval graph if and only if GG is a
chordal graph and (7 is a comparability graph. The result that IntervalG is
in SL follows from the fact that ComG and ChordalG, Problems 3.2 and 5.2

respectively, are in SL.
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5.4 SPLIT GRAPH (SPLITG)
GIVEN: An undirected graph G = (V, E).
PROBLEM: Is G a split graph? A graph G = (V, FE) is a split graph if the
vertices can be partitioned so that V' = V; UV, and the graphs induced by
the vertices in V; and V, using the edges from F are an independent set and a
complete graph, respectively.
REMARKS: Reif (1984) originally showed the problem was in I[;CSYMLOG =
co-SL. It 1s known that a graph (' is a split graph if and only if both G and
(i are chordal graphs. The result that SplitG is in SL follows from the fact
that ChordalG, Problem 5.2, is in SL. We may ask two questions, one about G
and the other about (7, written deterministically to the oracle tape and apply
Lemma 2.3.

5.5 PERMUTATION GRAPH (PERMG)
GIVEN: An undirected graph G = (V, E).
PROBLEM: Is GG a permutation graph? A graph G = ({vy,...,v,}, E) is a
permutation graph if there is a permutation 7 of {1,...,n} such that {v;,v;} €
E if and only if (i — j) (7~ !(:) — 771(4)) < 0.
REMARKS: Reif (1984) originally showed the problem was in I[;CSYMLOG =
co-SL. It is known that a graph (' is a permutation graph if and only if both
and G are comparability graphs. PermG can thus be logarithmic space many-
one reduced to ComG. The reduction takes a graph G and outputs a new graph
H consisting of a copy of i and a copy of (¢ with the nodes relabeled. Note,
H is a comparability graph if and only if both G and G are. The result that
Perm@G is in SL then follows from the fact that ComG, Problem 3.2, is in SL.

5.6 UNARY 0 — 1 KNAPSAcK (UK)
GIVEN: A positive integer 0¥ and a sequence 09", ... 0Y of positive integers
represented in unary.
PROBLEM: Is there a sequence of 0 — 1 valued variables z1,..., 2, such that

y=> x;xy;’
i=1

REFERENCE: Monien & Sudborough (1980) and Cook (1985).

REMARKS: Monien & Sudborough (1980) showed this problem is in NL. Cook
(1985), page 9, cites a personal communication with Martin Tompa that UK
is unlikely to be NL-complete. Cho & Huynh (1988) give further evidence that
this problem is unlikely to be NL-complete. It is not known if this problem is
in SL. See Problem 5.7 for related problems.
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5.7 UNARY KNAPSACK WITH SIGNED REPETITION (UKSR)
GIVEN: A positive integer 0¥ and a sequence 09", ... 0Y of positive integers
represented in unary.
PROBLEM: Is there a sequence of integers zy,...,z, such that

y =Y x; xy;?
=1

REFERENCE: Jenner (1995).

REMARKS: Jenner shows the problem is in SL by reducing it to USTCON.
Also see Jenner (1995) for several other interesting variants of the Knapsack
Problem that are complete for NL and for several that may be complete for

SL.

5.8 BOUNDED DEGREE PLANARITY (BDP)
GIVEN: An undirected graph G whose vertices have bounded degree.
ProBLEM: Is G planar?
REMARKS: Reif (1984) originally showed the problem was in II3CSYMLOG.
Since the symmetric complementation hierarchy collapses using the results
of Nisan & Ta-Shma (1995), this places the problem in SL. Ja'Ja’ & Simon
(1982) showed the planarity problem without a degree bound is in NC.
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