arXiv:1402.4995v2 [cs.SY] 24 Mar 2014

Minimizing Running Costs in Consumption Systems

Tomas Brazdil, David Klaska, Antonin Ku€era, andriédvotny

Faculty of Informatics, Masaryk University, Brno, CzechpRblic

Abstract. A standard approach to optimizing long-run running costdis€rete
systems is based on minimizing theean-payf; i.e., the long-run average amount
of resources (“energy”) consumed per transition. Howetres, approach inher-
ently assumes that the energy source has an unbounded tgapdnich is not
always realistic. For example, an autonomous robotic @dvés a battery of finite
capacity that has to be recharged periodically, and thédaotaunt of energy con-
sumed between two successive charging cycles is boundéxt loppacity. Hence,
a controller minimizing the mean-paffanust obey this restriction. In this paper
we study the controller synthesis problem fmmsumption systemsith a finite
battery capacity, where the task of the controller is to miné the mean-payb
while preserving the functionality of the system encodedalwyiven linear-time
property. We show that an optimal controller always exists] it may either need
only finite memory or require infinite memory (it is decidabdepolynomial time
which of the two cases holds). Further, we show how to computeffective
description of an optimal controller in polynomial timengily, we consider the
limit values achievable by larger and larger battery cagashow that these val-
ues are computable in polynomial time, and we also analyzednresponding
rate of convergence. To the best of our knowledge, theséariérst results about
optimizing the long-run running costs in systems with badhdnergy stores.

1 Introduction

A standard tool for modelling and analyzing the long-runrage running costs in dis-
crete systems imean-payf, i.e., the average amount of resources (or “energy”) con-
sumed per transition. More precisely, a system is modeledfamste directed graple,
where the set of states corresponds to configurations, and transitions model the di
crete computational steps. Each transition is labeled lmnamegative integer specifying
the amount of energy consumed by a given transition. Thesyeoy runo in C, one can
assign the associateasean-payg, which is the limit of average energy consumption per
transition computed for longer and longer prefixe 0A basic algorithmic task is to
find a suitablecontroller for a given system which minimizes the mean-p@yRecently,
the problem has been generalized by requiring that the aitertshould also achieve a
givenlinear time propertyp, i.e., the run produced by a controller should satisfyhile
minimizing the mean-payb(see, e.g., [14]). This is motivated by the fact that the sys-
tem is usually required to achieve some functionality, aodjust “run” with minimal
average costs.

Note that in the above approach, it is inherently assumedathransitions are al-
ways enabled, i.e., the amount of energy consumed by aticanis always available.
In this paper, we study the long-run average running costgstems where the energy

http://arxiv.org/abs/1402.4995v2

stores (“tanks” or “batteries”) have fanite capacitycap € N. As before, the energy
stored in the battery is consumed by performing transitibas if the amount of en-
ergy currently stored in the battery is smaller than the amotienergy required by a
given transition, then the transition is disabled. Frometita time, the battery must be
reloaded, which is possible only in certain situations.(eadnen visiting a petrol sta-
tion). These restrictions are directly reflected in our modbere some states @f are
declared aseload statesand the run produced by a controller mustdagp-bounded
i.e., the total amount of energy consumed between two ssiveegsits to reload states
does not exceechp

The main resultsof this paper can be summarized as follows. Céte a system (with a
given subset of reload states) amd linear-time property encoded as a non-deterministic
Buchi automaton.

(A) We show that for a given capacitap € N and a given stats of C, there exists
a controlleru optimalfor s which produces @ap-bounded run satisfying while
minimizing the mean payh Further, we prove that there is a dichotomy in the
structural complexity ofi, i.e., one of the following possibilities holds:

e The controlleru can be constructed so that it has finitely many memory ele-
ments and can be compactly represented asumting controllerx which is
computable in time polynomial in the size @fandcap (all integer constants
are encoded ibinary).

e The controlle: requiresinfinite memory (i.e., every optimal controller has in-
finite memory) and there exists an optinaalvancing controllerr which admits
a finite description computable in time polynomial in theesi# C andcap.

Further, we show that it is decidable in polynomial time vihid the two possibili-
ties holds.

(B) For every states of C, we consider itdimit value, which is theinf of all mean-
paydfs achievable by controllers for larger and larger battepaciy. We show
that the limit value is computable in polynomial time. Fumthwe show that the
problem whether the limit value is achievable by sdiredfinite battery capacity
is decidable in polynomial time. If it is the case, we give apliit upper bound
for cap and if not, we give an upper bound for théfdrence between the limit value
and the best mean-pafjachievable for a given capacitap

Technically, the most dlicult part is (A), where we need to analyze the structure of
optimal controllers and invent some tricks that allow fompact representation and
computation of optimal controllers. Note that all conssaate encoded in binary, and
hence we cannotford to construct any “unfoldings” of where the current battery
status (i.e., an integer between 0 arap) is explicitly represented, because such an
unfolding is exponentially larger than the problem instrithis is overcome by non-
trivial insights into the structure of optimal controllers

Previous and related work.A combination of mean-payband linear-time (parity) ob-
jectives has been first studied in [14] for 2-player gamdsa#t been shown that optimal
strategies exist in such games, but they may require infimémory. Further, the val-
ues can be computed in time which is pseudo-polynomial irsibe of the game and
exponential in the number of priorities. Another closeliated formalisms arenergy

gamesandone-counter gamesvhere each transition can both increase and decrease the
amount of energy, and the basic task of the controller is tadathe situation when the
battery is empty. Energy games with parity objectives haeniconsidered in [10]. In
these games, the controller also needs to satisfy a givéy pandition apart of avoiding
zero. Polynomial-time algorithms for certain subclassepore” energy games (with
zero avoidance objective only) have recently been designgi8]. Energy games with
capacity constraints were studied in [17]. Here it was shawat deciding whether a
given one-player energy game admits a run along which thenaglated reward stays
between 0 and a given positive capacity is already an NP-ardlem.One-counter
Markov decision processesdone-counter stochastic gameashere the counter may
change at most by one in each transition, have been studjédShfor the objective of
zero reachabilitywhich is dual to zero avoidance. It has been shown that feramunter
MDPs (both maximizing and minimizing), the existence of atcoller that reaches
zero with probability one is ifP. If such a controller exists, it is computable in polyno-
mial time. For one-counter stochastic games, it was showaftthie same problem is in
NP N co-NP. In [9], it was shown how to compute aroptimal controller minimizing
the expected number of transitions needed to visit zero @amunter MDPs. Another
related model with only one counter agaergy Markov decision procesqd4], where
the counter updates are arbitrary integers encoded inyhiaad the controller aims at
maximizing the probability of all runs that avoid visitingo and satisfy a given parity
condition. The main result of [11] says that the existenca obntroller such that the
probability of all runs satisfying the above condition isuafjto one for a sfficiently
large initial counter value is ilNP N co-NP. Yet another related model aselvency
gamed3], which can be seen as rather special one-counter Mar&oisidn processes
(with counter updates encoded in binary). The questiormiesiun [3] concern the struc-
ture of an optimal controller for maximizing the probabilitf all runs that avoid visiting
negative values, which is closely related to zero avoidance

There are also results about systems with more than onearauesource). Exam-
ples include games over vector addition systems with s{8lesnultiweighted energy
gameq17, 4], generalized energy gamgk?], consumption gamgg], etc. We refer to
[18] for a more detailed overview.

2 Preliminaries

The sets of all integers, positive integers, and non-negatiegers are denoted @y
N, andNy, respectively. Given a s&&, we use|A| to denote the cardinality oA. The
encoding size of a given objeBtis denoted by|B||. In particular, all integer numbers
are encoded ibinary, unless otherwise stated. Thth component of a vector (or tuple)
v is denoted by(i].

A labelled graphis a tupleG = (V, —, L, ¢) whereV is a non-empty finite set of
vertices —» C V x V is a set ofedgesL is a non-empty finite set dabels and¢ is a
function which to every edge assigns a labeLofWe writes 3t if s—t anda is the
label of (s t).

A finite pathin G of length ne Ny is a finite sequence = vy . .. v, of vertices such
thatv, - viy1 for all 0 < i < n. The length ofe is denoted byen(a), and the label of

Vi — Vi1 is denoted b;. An infinite path(or run) in G is an infinite sequence of vertices
o such that every finite prefix qf is a finite path inG. Finite paths and runs i@ are
also written as sequences of the forgr3 v; 3 v, % - ... Given a finite or infinite path
0 = VoVvi...andi € Ny, we useo(i) to denote the-th vertexv; of o, andop<; to denote
the prefixvg . . .v; of o of lengthi.

Afinite patha = vp... v, in Gis acycleif n > 1 andvp = vy, and asimple cyclef it
is a cycle andj; # v;forall 0 <i < j < n. Given a finite patlw = vq ... v, and a finite
or infinite patho = upu; ... such thaw, = up, we usex - o to denote theoncatenation
of @ andp, i.e., the paths...vauy Uz. .. Further, ifa is a cycle, we denote by® the
infinite patha - a - @ - -.

In our next definition, we introduce consumption systems lilaae been informally
described in Section 1. Recall that an optimal controlleafconsumption system should
minimize the mean-paybof a cap-bounded run and satisfy a given linear-time prop-
erty ¢ (encoded by a non-deterministic Buchi automag)nFor technical convenience,
we assume thaB has already been multiplied with the considered consumpatystem
(i.e., the synchronized product has already been constiycifechnically, we declare
some states in consumption systems as accepting and rélgatracap-bounded run
visits an accepting state infinitely often.

Definition 1. A consumption systeris a tupleC = (S, —,c,R F) where S is a finite
non-empty set oftates —» C S x S is atransition relationc is a function assigning a
non-negative integecostto every transition, RZ S is a set ofreload statesand FC S
a non-empty set oficcepting statedVe assume that> is total, i.e., for every se S
there is some & S such that s> t.

The encoding size af is denoted by|C|| (transition costs are encoded in binary). All
notions defined for labelled graphs naturally extend to sorgion systems.

Thetotal costof a given finite pathr = 553 53 --- B 5,,1 is defined ag(e) =
>, ci, and themean cosbf @ asMC(a) = c(@)/(n+1). Further, we define thend cost
of @ as the total cost of the longestBu s % --- 8 s,,1 of e such tha,1,...,Sy1 ¢ R
(intuitively, the end cost of is the total amount of resources consumed since the last
reload).

Let cap € N. We say that a finite or infinite path = 35353 --- is
cap-boundedf the end cost of every finite prefix qf is bounded bycap (intuitively,
this means that the total amount of resources consumed &etwe consecutive visits
to reload states ip is bounded bycap). Further, we say a rup in C is acceptingif
o(i) € F for infinitely manyi € N. For every rurp in C we define

limsup_,., MC(o<i) if oiscapbounded and accepting;

Vall?P(p) =
" (0) 00 otherwise.

Thecap-valueof a given states € S is defined by

cap, s cap
Valz™(s) _Qekrzlt(S)VaIC (o)

L 1t will become clear later thaB being non-deterministic is not an obstacle here, since wk wo
in a non-stochastic one-player setting.

© (s) O

Fig. 1: An optimal controller may require memory of exponaigize. HereR = {u} andF = S.

whereRur(s) is the set of all runs i initiated ins. Intuitively, Val;"(s) is the minimal
mean cost of @ap-bounded accepting run initiated &1 Thelimit value of sis defined
by Vale(s) = liMcap-e0 VaIT(s).

Definition 2. LetC = (S, —,¢, R F) be a consumption system.cAntrollerfor C is a
tupleu = (M, o, oy, Mp) Where M is a set omemory elementsr, : SxM — S isa
next functionsatisfying s- o(s, m) for every(sm) e Sx M, o, : SXxM — Mis an
update functiopand my is aninitial memory elementlf M is finite, we say that is a
finite-memorycontroller (FMC).

For every finite pathh = %...s, in C, we useoy (@) to denote the unigue mem-
ory element “entered” by after readingr. Formally,& (@) is defined inductively by

ou(S0) = ou(S0, Mp), andoy(So - - - Sar1) = ou(Se1, G u(So - - - S))- Observe that for every
% € S, the controllep determines a unique ruan(u, S) defined as follows: the initial

state ofrun(u, &) is S, and if §... s, is a prefix ofrun(u,), then the next state is
on(Sh, u(So - . . Sn))- The size of a given FMQ is denoted by|u|| (in particular, note

that|lull > [M]).

Definition 3. LetC be a consumption systema controller forC, and cape N. We say
thaty is capoptimalfor a given state s af if Valg,(run(u, s)) = Vali™"(s).

As we shall see, an optimal controller feralways exists, but it may require infinite
memory. Further, even if there is a FMC fgrit may require exponentially many mem-
ory elements. To see this, consider the simple consumpggia® of Fig. 1. An optimal
controller for s has to (repeatedly) perforeap — 10 visits tot and then one visit to
the only reload state, which requirescap— 10 memory elements (recall theapis
encoded in binary). Further examples of a non-trivial optibbehaviour can be found in
Appendix A.

To overcome these flliculties, we introduce a special type of finite-memory con-
trollers calledcounting controllersand a special type of infinite memory controllers
calledadvancing controllers

Intuitively, memory elements of a counting controller awrp of the form (, d)
wherer ranges over a finite sédemandd is a non-negative integer of a bounded size.
The next and update functions depend only amd the information whethekis zero or
positive. The update function may changelj to some (', d’) whered’ is obtained from
d by performing acounter actioni.e., an instruction of the forrdec(decrement)noc
(no change), oresefn) wheren € N (reset the value ta). Hence, counting controllers
admit a compact representation which utilizes the spetriat&ire of memory elements
and the mentioned restrictions.

Definition 4. LetC = (S, —,c, R F) be a consumption system.cAunting controller
for Cis a tuplex = (Mem o, 0%, Act o), 0, ro) where

— Mem is a finite set obasic memory elements

- o;,0%: SxMem— S arepositiveand zero next functionsatisfying s- o (s r)
and s— o9(s, r) for every(s,r) € S x Mem, respectively,

— Act is a finite set ofcounter actiongnote that Act may contain instructions of the
form resefn) for different constants n);

— o 1 SxMem— Memx Act is apositive update functign

- 09 :SxMem— Memx (Act\ {deg) is azero update functign

— rp € Mem is an initial basic memory element.

The encoding size of a counting controlkeis denoted byi«||, where all constants used
in counter actions are encoded in binary.

The functionality of a counting controller= (Mem o, 0%, Act, o, 0, ro) is deter-
mined by its associated finite-memory controfier= (M, oy, oy, Mg) Where

— M =Memx {0,..., knaxt Whereknaxis the largesh such thatesetn) € Act(or O if
no suchn exists);

— on(s (r,d)) = o2(s), whereo is either+ or 0 depending on whethetr > 0 or
d = 0, respectively;

— ou(s (r,d)) = (r',d’), wherer’ is the first component af(s, r), andd’ is eitherd,
d — 1, orn, depending on whether the counter action in the second coempmf
oo(s r) is nog deg orresetn), respectively (agairg is either+ or 0 depending on
whetherd > 0 ord = 0);

— Mg = (ro,0).

Observe thal«|| can be exponentially smaller thdpn,||. Slightly abusing our notation,
we writerun(k,) instead ofrun(u,,).

A counting controllex can be seen as a program for a computational device with
O(/|[Men|) control states and lolggax) bits of memory needed to represent the bounded
counter. This device “implements” the functionality;qf

Definition 5. LetC = (S, —, ¢, R, F) be a consumption system and § . Anadvancing
controllerfor C and s is a controllerr for C such that rufr, s) takes the forna - 8-y -
B2-y-p*--y-B%--- wheres(0) # (i) for all 0 < i < len(B).

The encoding size of an advancing controlterdenoted by|x||, is given by the total
encoding size ofy, 3, andy. Typically, andy will be of polynomial length, but the
length of 3 is sometimes exponential and in this case we use a countimgoder to
represen compactly. Formally, we say th#t]| is polynomialin ||C]| and|cag] if «
andy are of polynomial length and there exists a counting coletre{3] such that
run([B], B(0)) = ¥ and||«|| is polynomial in||C|| and||caf|.

An advancing controllerr can be seen as a program for a computational device
equipped with two unbounded counters (the first counter taimis the currentand the
other counter is used to count frorhtd zero; if the device cannot implement the”*2
function directly, an auxiliary third counter may be needédso note that the device
can use the program @fg] as a subroutine to produce the finite pattand hence also
finite paths of the forng?). SinceB(0) # A(i) for all 0 < i < len(B), the device simply
simulates([3] until revisiting 3(0).

3 The Results

In this section, we present the main results of our paperfigaitheorem concerns the
existence and computability of values and optimal corgrslln consumption systems.

Theorem 6. LetC be a consumption system, cap, and s a state af. Then Val™(s)

is computable in polynomial time (i.e., in time polynomial|C|| and||cag|, where cap
is encoded in binary). Further, there exists an optimal caliegr for s. The existence
of an optimalfinite memorycontroller for s is decidable in polynomial time. If there
exists an optimal FMC for s, then there also exists an optitoahtingcontroller for s
computable in polynomial time. Otherwise, there exists @tintal advancingcontroller
for s computable in polynomial time.

Our second theorem concerns the limit values, achievabiliimit values, and the rate
of convergence to limit values.

Theorem 7. LetC be a consumption system, caf)N, and s a state of. Then Vat(s)
can be computed in polynomial time (i.e., in time polynonmmigC]|).

Further, the problem whether \gls) = Val"*(s) for some sfficiently large cape N
is decidable in polynomial time. If the answer is positiveert Vak(s) = Vali™*(s)
for every cap> 3 - |S| - Cmax Where gax is the maximal cost of a transition in
C. Otherwise, for every cap> 4 - S| - Cnax We have that Vif"(s) - Val(s) <
(3-1SI cmax)/(cap—4- S| - Cmay).-

The next subsections are devoted to the proofs of Theoremd 8.2Due to space con-
strains, some proofs and algorithms have been shifted toriiea Appendix.

3.1 A Proof of Theorem 6

For the rest of this section, we fix a consumption system (S, —, ¢, R, F), a capacity
cape N, and an initial stats € S.

An admissibility witnesdor a stateq € S is a cycley initiated in g such thaty
contains an accepting state and there mapbounded run initiated irs of the form
a-y*“. We say that] € S is admissibldf there is at least one admissibility witness tpr

Observe that ify is an admissibility witness for a reload stagetheny can be freely
“inserted” into anycap-bounded run of the forng - 6 whered(0) = g so that the run
& -y -6 is againcapbounded. Such simple observations about admissibilitpesses
are frequently used in our proof of Theorem 6, which is olediim several steps:

(1) We show how to compute all statess S such thatval(t) = . Note that if
Vali?(t) = oo, theneverycontroller is optimal irt. Hence, ifVali;(s) = o, we are
done. Otherwise, we remove all states with infinite valuefftdtogether with their
adjacent transitions.

(2) We compute and remove all statess S that are not reachable from via a
capbounded finite path. This “cleaning” procedure simplifies aonsiderations
and it can be performed in polynomial time.

(3) We show thaval;,™(s) = 0 iff C contains asimplecycle with zero total cost ini-
tiated in an admissible state (such a cycle is calletti®-costcycle). Next, we
show that if there is a zero-cost cy@econtaining an accepting state, then there

is an optimal FMCu for s of polynomialsize such thatun(u,s) = « - 8. Oth-
erwise,everyoptimal controller fors has infinite memory, and we show how to
compute finite paths,y of polynomial length such that thegpbounded) run
o=a-B-y-py-pt -y g% initiated in s satisfiesval; (o) = 0. Thus, the
finite pathsy, 3, andy represent an optimal advancing controller of polynomizg si
The existence of a zero-cost cycle (and the existence ofeaczest cycle that con-
tains an accepting state) is decidable in polynomial tifha Zero-cost cycle exists,
we are done. Otherwise, we proceed to the next step.

(4) Now we assume tha does not contain a zero-cost cycle. We show that there exist

e acap-bounded cyclg initiated in an admissible state such tM(E(8) < MC(6)
for everycap-bounded cyclé initiated in an admissible state, ag) # £(i)
forall 0 <i < len(B);

e acapbounded cyclg containing an accepting state such thig(3) < MC(6)
for everycap-bounded cyclé containing an accepting state.

We prove thav/al;™(s) = MC(g). Further, we show the following:

o If MC(B) = MC(ﬂ) then there exists an optimal FM for s such that
run(u, S) = a-3“, wherex is a finite path of polynomial length. In generain(3)
(and hence alsfu||) is exponent|aln |C|| and||cagd|. We show how to compute a
countingcontrollerx[] of polynomialsize such thatun(x[3], 5(0)) = 5. Since
a is a finite path of polynomial length, we also obtain a couptiontrollerx of
polynomial size such thatin(x, s) = run(y,).

e If MC(B) < MC(B), theneveryoptimal controller fors has infinite memory, and
we show how to fiiciently compute finite paths, y of polynomial length and
a counting controllex[] of polynomial size such thatin(x[s], 8(0)) = 8* and
the runo = a-B-y-p%y-p*---y-p% - - - initiated inssatisfiesval" (o) = Val;™(s).
Thus, we obtain an optimal advancing controltdor s of polynomial size.

We start with step (1).

Lemma 8. Lett € S. The problem whether @ﬁ’i(t) = oo is decidable in polynomial
time.

The next lemma implements step (2).

Lemma 9. Lett € S. The existence of a cap-bounded path from s to t is decidable
polynomial time. Further, an example of a cap-bounded patitm fs to t (if it exists) is
computable in polynomial time.

We also need the following lemma which says that for everyiasilie state, there is an
efficiently computable admissibility witness.

Lemma 10. The problem whether a given g S is admissible is decidable in poly-
nomial time. Further, if q is admissible, then there are &nitathsa, y computable in
polynomial time such that - y* is a cap-bounded run initiated in s andis an admis-
sibility witness for g of length at mosét: |S|.

As we already indicated in the description of step (2), framwron we assume that all
states ofC have a finite value and are reachable frewia a cap-bounded finite path.
Recall that &ero-costycle is a cycle irC initiated in an admissible state with zero total
cost. Now we proceed to step (3).

Lemma 11. We have that VEI"(s) = 0 iff there exists a zero-cost cycle. Further, the
following holds:

1. If there is a zero-cost cyclecontaining an accepting state, then the we o - 8¢,
wherea is a cap-bounded finite path from s0), satisfies Vaf*(o) = Vali™™(s).
Hence, there is a FM@ optimal for s wherdju|| is polynomial in||C|| and||cap].

2. Ifthere is a zero-cost cyciebut no zero-cost cycle contains an accepting state, then
every cap-optimal controller for s has infinite memory. et for a given zero-cost
cycleg there exist finite pathe andy computable in polynomial time such that the
rung=a-B-y-p*---y-p2 - satisfies Vgf"(o) = Val;"(s). Hence, there exist an
advancing controllerr optimal for s wheréir|| is polynomial in||C|| and||cag].

Proof. If Vali**(s) = 0, there is an accepting runinitiated in s such thatval*(o) <
1/|S|. Leto’ be an infinite sffix of o such that all states that appeapirappear infinitely
often ing’. This means that all states that appear iare admissible. Obviously, there is
k € N such that the cost of every transitipfik+i) — ¢’ (k+i+1), where 0< i < |S| -

is zero (otherwise, we would haval(o) = Vali™(¢’) > 1//S]), and hence there exists
a zero-cost cycle.

Now assume that contains a zero-cost cyghecontaining an accepting state. Since
there is acap-bounded finite pathr form sto (0) (see step (2) and Lemma 9), the run
o = a - B is capbounded and satisfiefal;™(0) = 0. Since the length of andg is
polynomial in||C]| and||cagd| (see Lemma 9), we obtain Claim 1.

Finally, assume thaf contains a zero-cost cygibut no zero-cost cycle i@ con-
tains an accepting state. Sing@) is admissible, there is eap-bounded runy - y*
initiated in s wherey is an admissibility witness fg8(0). Note that the length af and
y is polynomial in||C|| and||cad| by Lemma 10, and the run= -3y -2y -2 - --
is accepting andap-bounded. Further, a simple computation shows ngm(g) =0
Hence, there exists an advancing contrafi@ptimal for s such that|r|| is polynomial
in ||C|| and||cap]|. It remains to show that there is no optimal finite memory oalter
for s. However, it sifices to realize that jf is a finite memory controller, themin(x, s)
takes the fornw* 3¢, Where,B contains an accepting state. By our assumptis), # 0,
which means thaval™(a -) # 0. O

In the next lemma we show how to decide the existence of a@asbeycle ficiently,
and how to construct an example of a zero-cost cycle if ittexiBhe same is achieved
for zero-cost cycles containing an accepting state. Thadijnish step (3).

Lemma 12. The existence of a zero-cost cycle is decidable in polyridimia, and an
example of a zero-cost cyge(if it exists) is computable in polynomial time. The same
holds for zero-cost cycles containing an accepting state.

It remains to complete step (4), which is the most techniagt @f our proof. From now
on we assume that does not contain any zero-cost cycles.

We say that a cyclg in C is reload-simpleif every reload state appears at most once
in B, i.e., for everyt € Rthere is at most one 8 i < len(B) satisfyings(i) = t. Further,
we say that a cyclg is T-visiting whereT C S, if g is acap-bounded reload-simple
cycle initiated in an admissible reload state such ghaintains a state of. We say that
B is anoptimal T-visiting cycléf MC(8) < MC(6) for everyT-visiting cycles. Note that
every state of d-visiting cycleg is admissible.

Lemma 13. If C does not contain any zero-cost cycle, then it contains ammapbt
F-visiting cycle and an optimal S -visiting cycle.

Proof. We give an explicit proof just foF-visiting cycles (the argument f@-visiting
cycles is very similar). First, we show that there is at lemstF-visiting cycle, and then
we prove that everf-visiting cycle has a bounded length. Thus, the set dfalisiting
cycles is finite, which implies the existence of an optimat.on

SinceVal;(s) < o, there is acapbounded accepting runinitiated ins. Note that
if o contained only finitely many occurrences of reload statespuld have to contain
zero-cost cycle, which contradicts our assumption. Hepamntains infinitely many
occurrences of a reload state and infinitely many occurseatan accepting state. Let
o’ be a stffix of o such that every state that appeargirappears infinitely often ip’
(hence, all states that appeardnare admissible). We say that a subpatti) .. .o'(j)
of ¢’ is uselessf o'(i) = ¢’(j) € Rand no accepting state is visited along this subpath.
Leto be arun obtained frogr by removing all useless subpaths (observeghiastill a
cap-bounded accepting run). Then, there must be a sulg@idth ."o(j) of o such that the
length of this subpath is positive(i] = o(j) € R, the subpath visits an accepting state,
and no reload state is visited more than once alg(ig .". 6(j—1). Hence, this subpath
is anF-visiting cycle.

Now letB be anF-visiting cycle. Then every state ghis admissible, which means
that every simple cyclé that is a subpath g8 has positive cost, otherwigewould be
a zero-cost cycle. This implies that a maximal length of gpsitiv of 3 which does not
contain any reload state i$S(+ 1) - (cap+ 1) (becausg is cap-bounded). From the
reload-simplicity ofs we get thaten(8) < |IR| - (IS| + 1) - (cap+ 1). O

We useMCF andMCSto denote the mean cost of an optinkaVisiting cycle and the
mean cost of an optim&-visiting cycle, respectively. Now we prove the following:

Lemma 14. Suppose tha does not contain any zero-cost cycle. Theng"’\%i) =
MCS< MCF. Moreover, the following holds:

1. If MCF = MCS, then for every optimal F-visiting cygdeand every cap-bounded
patha from s toB(0) we have that the rup = o - B satisfies V4f*(o) = Val;™(s).
Hence, there exists an optimal FMC for s.

2. If MCS < MCF, then every cap-optimal controller for s has infinite noeyn Fur-
ther, for a given optimal S -visiting cycje there exist finite patha andy com-
putable in polynomial time such thatthe rgne - 8-y - g2---y - g2 - - - satisfies
Val?(0) = Vali™®(s). Hence, there exists an optimal advancing controller for s.

Proof. Clearly, MCS < MCF, because everf-visiting cycle is alsoS-visiting. Now
we show that for every run we have thaval;™(0) > MCS This clearly holds for all
non-accepting runs. Every accepting gumust contain infinitely many occurrences of a
reload state, otherwise it would contain a zero-cost cyske subpath, which contradicts
our assumption. Led’ be a stffix of ¢ initiated in a reload state such that every state
which appears i’ appears infinitely often ip’. Theny’ takes the forngy - 81 - B2 - -,
where for every > 0, the subpatf; is a cycle initiated in a reload state. Evgycan be
decomposed into reload-simple cychks. Bi 2, . . ., Bij,, that are initiated in reload states
(here the decomposition is meant in a graph-theoreticalesere., a transition appears

10

b times ong; if and only if b = by + - -- + by, whereb; is a number of occurrences of
this transition org; ;). Each of these cycles is &visiting cycle (since every state @h
is admissible) and clearC(p) = MC(¢’) > mini>1 MC(8;) > minizg1<j<i,, MC(8i ;) >
MCS

The rest of the proof closely follows the proof of Lemma 1XsFive consider the
case wheMCF = MCS i.e., for every optimaF-visiting cycleg we have thaMC(B) =
MCS If a is acapbounded path frons to g(0), then we have that the run= « - g*
satisfiesval*(@ - 8) = MCS= Val™(s), and hence there exists an optimal FMC $or

If MCS < MCF, consider an optimab-visiting cycles. Sincep(0) is admissible,
there is acapbounded runr - v* initiated in s wherey is an admissibility witness for
B(0) anda andy are computable in polynomial time (see Lemma 10. Furtherytim
o=a-B-y-p---y-p?--- is accepting andap-bounded, and one can easily show that
Vali?(0) = MCS = Val;(s). Hence, there exists an optimal advancing controllesfor
Since every finite memory controllgrsatisfiesun(y, s) = & - 3 and||cag]. It remains
to show that there is no optimal finite memory controllergdfor every FMCu we have
thatrun(u, s) = & - 3, where3 is a cycle on a reload state containing an accepting state.
Further,Val™(u) = MC(g). The cycles can be decomposed into reload-simple cycles
on reloading states whose mean cost is at lE3E Since at least one of these cycles is
accepting andICF > MCS we obtainMC(3) > MCS O

Note that Lemma 14 does not specify any bound on the lenggh afd in general,
this length can be exponential. Now we show that an optifmalsiting cycle and an
optimal S-visiting cycle can be represented by a counting contralterstructible in
polynomial time. This is the technical core of our constirttwhich completes the
proof of Theorem 6.

Lemma 15. Suppose tha€ does not contain any zero-cost cycle, and let T be either
S or R. Then there exist a counting controlleand a reload state r computable in
polynomial time such that rr, r) = B whereg is an optimal T-visiting cycle.

3.2 A Proofof Lemma 15

We start by refining the notion of an optimElvisiting cycle and identifying those cycles
that can be represented by counting controllers of polyabsiue.

A segmenbf a pathg is a finite subpathy of 8 such that the first and the last state
of are reload states amddoes not contain any other occurrence of a reload state. Note
that every reload-simple cycle is composed of at nigstegments. Furthermore, we say
that a finite path isompactif it is a cap-bounded path of the form: 6%-y’, wherey and
y’ are finite paths satisfyinign(y) + len(y’) < 5/S|3, ¢ is either a cycle of length at most
|S| or a path of length O (i.e., a state), dng cap A compact segmetg a compact path
that is also a segment.

Later we show that there is an optimBdvisiting cyclep such that every segment
of B is a compact segment. Intuitively, such a cycle can be predily a counting
controller of polynomial size which has at m¢Rtreset actions. However, this does not
yet imply that such a counting controller can tfeicently constructed, because there
are exponentially many possible compact segments. Hereeead to show that we
can restrict our attention to some set of compact segmemisighiomial size.

11

We say that a compact segments® -y’ has acharacteristic(r, g, t, m n, b), where
rrteR geS, mneN are such that @ m < 5/S]®and 0< n < |S|, andb € {0, 1}, if
the following holds:

- y(0) =r, lastly) = y'(0) = q, last(y’) = t, andlen(y - y') = m,

6(0)=q, len(s) = n;

we either have that = 0 andk = 1, orn > 0 and therc(s) > 0 andk is the maximal
number such that - 5¥ - y is acap-bounded path;

if b= 1, theny -y’ contains a state df;

if § contains a state df, theny - y” also contains a state of

Note that for a given consumption system there are at moghpuoiially many distinct
characteristics of compact segments. Also note that nataaipact segments have a
characteristic (because of the third and the fifth conditiothe above definition), and
conversely, some compact segments may have multiple dbesdics (e.g., if a compact
segment has a characteristic whiere 1, then it also has one whebe= 0). Finally, note
that for any compact segments® -y’ with a characteristicr(q, t, m, n, b), the pathy -y’

is a compact segment with the characteristiqg,t, m, 0, b).

A characteristigy of a compact segment 6 -y’ imposes certain restrictions on the
form of y - 9/ andé. Such a compact segmentdptimalfor y if y - ¢ and¢ are paths
of minimal cost among those that meet this restriction. Fdiyna compact segment
y - 8%y with a characteristig = (r, g, t, m, n, b) is optimal for y if

— ¢(y - ¥) is minimal among the costs of all segments with the charistie

(r,q,t,m 0,b), and

— ¢(6) is minimal among the costs of all cycles of lengtland positive cost, that are
initiated inq, and that do not contain any reload state with a possibleptixeeof g
(if n = 0, we consider this condition to be satisfied trivially).

Lemma 16. If there is at least one compact segment with a given chariatitey, then
there is also an optimal compact segmentfoMoreover, all compact segments optimal
for a given characteristic have the same total cost and lengt

Hence, to each of the polynomially many characteristiose can assign a segment
optimal fory and thus form a polynomial-sized candidate set of compacheats. The
following lemma, which is perhaps the most intricate stephim proof of Lemma 15,
shows that there is an optimBdvisiting cycleg such that every segmentg@belongs to
the aforementioned candidate set.

Lemma 17. There is an optimal T-visiting cycj@ whose every segment is a compact
segment optimal for some characteristic.

Given a characteristjg, it is easy to compute a succinct representation of some aomp
segment optimal foy, as the next lemma shows.

Lemma 18. Given a characteristig, the problem whether the set of all compact seg-
ments with the characteristjcis non-empty is decidable in polynomial time. Further, if
the set is non-empty, then a tuggle y’, 6, k) such thaty - 6% - v’ is a compact segment
optimal fory is computable in polynomial time.

12

For a given characteristjg, we denote byCTupldy) the tuple §,v’, 6, k) returned for
x by the algorithm of Lemma 18 (if an optimal compact segmenjffdoes not exist,
we putCTupldy) = 1), and byCPath(y) the corresponding compact segments* -

v (CTupldy) = L, we putCPath(y) = L1). The next lemma is a simple corollary to
Lemma 16 and Lemma 17.

Lemma 19. There is an optimal T-visiting cycfesuch that every segmentpfs of the
form CPatlfy) for some characteristig.

Now we can easily prove the existence of a polynomial-sizednting controller
representing some optimdl-visiting cycle 8. According to Lemma 19, there is a
sequenceyo, x1,---.xj Of at most|R| characteristics such th@& = CPath(yo) -
CPath(y,) - - - CPath(yg) is an optimalT-visiting cycle. To iterate the cyclg@ forever
(starting inB(0)), a counting controller requires at m¢Bt- n basic memory elements,
wheren is the maximal number of basic memory elements needed tapeca compact
segmenCPath(y;), for 0 < i < g. So, consider a compact segm&math(y;) = y-6%-y'.
Note thatk < capsinceCPathyi) has a characteristic and tho®) > 0. To produce
CPath(y;), the controller requires at most3°® basic memory elements to produce the
prefix y and the sffix y’ of CPatH;), and at mostS| basic memory elements to it-
erate the cyclé (whose length is at mo$B|) exactlyk times. The latter task also re-
quires counting down frork < capto 0. Overall, the counting controller producifg
needs a polynomial number of basic memory elements, andrescat mosiR| reset
actions parameterized by numbers of encoding size at mg(sdp. To compute such a
counting controller, it clearly dfices to compute the aforementioned sequence of tuples
CTupléyxo), - - - , CTupléyy).

Now we can present the algorithm promised in Propositioririthe following, we
useX to denote the set of all possible characteristics of comgegtents irC, X to
denote the set of all characteristics of the forng(t, m, n, b) for someg, m, n, b, and)(,lyt
to denote the set of all characteristico@f where the last componentis equal to 1. The
algorithm first computes the sBt C R of all admissible reload states (see Lemma 10).
Note thatR' is non-empty because there exists at least Divesiting cycle. The idea
now is to compute, for everyy € R, a polynomial-sized labelled gragdy such that
cycles in this graph correspond Tevisiting cycles inC that are initiated irgand that
can be decomposed into segments of the f@ath(y). An optimalT-visiting cycle is
then found via a suitable analysis of the constructed graphs

Formally, for a giverge R we construct a labelled graiy = (V, —, L, {), where
L c N3, and where:

- V=Wx/{0,...,|S|}, whereW = R U {CTupley) | x € X}.

— For every 0 < i < |S|, every pair of states,t € R such thatr # §, and
every characteristigx € X:; there is an edge (i), (CPatH),i)) labelled by
(c(CPathy)), len(CPath(y))) and an edge (Path(y), i), (t,i + 1)) labelled by (00).

— For every statet € R and every characteristiy € X}t there is an
edge (¢;0), (CPath(y), 0)) labelled by ¢(CPath(y)), len(CPatH(y))) and an edge
((CPath(y), 0), (t, 1)) labelled by (00).

— Forevery 1< i < |S| there is an edged{(1), (§, 0)) labelled by (00).

— There are no other edges.

13

The labelling function ofG4 can be computed in polynomial time, because given a
characteristicy, we can computeCPath(y) = (y,vy’,6,K) using Lemma 18. Then,
len(CPath(y)) = len(y) + len(y") + k- len(s), and similarly forc(CPath(y)). Note that ev-
ery cycle inGg contains the vertexg(0). Also note that some of the constructed graphs
G4 may not have a cycle (the out-degree @fQ) may be equal to 0), but later we show
that at least one of them does.

Theratio of a cyclep = vo @ vy @ v, ... @8y in Gy is the valuerat(3) =
(Co+Cp+---+cCh1)/(do+dy+---dny). Foreveryg'e R, our algorithm finds a simple
cycle,éq of minimal ratio among all cycles iG4. This is done using a polynomial-
time algorithm for a well-studied problem afinimum cycle ratidsee, e.g., [15, 16]).
The algorithm then picks € R’ such that the ratio of; is minimal. Clearly,3; has
an even length and every second vertex is a 4-tuple of the @foplgy) for some
characteristige. Since all cycles im go through (;0), we may assume that is initi-
ated in this vertex. LeETupléyo), CTuply,), . .., CTuple(ig) be the sequence of these
4-tuples, in the order they appear . From the construction o6 it follows that
B = CPath(yo) - CPath(y1) - - - CPath(¥g) is a reload-simple cycle initiated in an admissi-
ble state tontaining a state of (sinceyo has the last component equal to 1), iHs a
T-visiting cycle. MoreoveMP(B) is clearly equal to the ratio g. Using the computed
sequence of tupleSTuplgyo), CTupldy1), . .., CTupl€yy), the algorithm constructs the
desired counting controller such thatrun(x, 8(0)) = 8“ (see also the discussion after
Lemma 19). It is easy to check thatt(3;) = MC(3;) is equal to the mean cost of an
optimal T-visiting cycle, i.e., the algorithm is correct.

3.3 Proof of Theorem 7

For the rest of this section we fix a consumption system (S, —»,c¢,R F) and an
initial states € S. Intuitively, the controller can approach the limit valugibterleaving
a large number of iterations of some “cheap” cycle with gititan accepting state. This
motivates the following definitions afafeandstrongly safecycles. Intuitively, a cycle
is safe if, assuming unbounded battery capacity, the clbeitrman iterate the cycle for
an arbitrary number of times and interleave these iteratigith visits to an accepting
state. A cycle is strongly safe if the same behaviour is aelike for some finite (though
possibly large) capacity.

Formally, we say that two statest € S areinter-reachabldf there is a path frong
tot and a path fromito g (i.e., g, t are in the same strongly connected componegf)of
We say that a cyclg of length at mos}S| whereg(0) is reachable frons is safe if one
of the following conditions holds:

— ¢(B) = 0 andB contains an accepting state,
— B(0) is inter-reachable with a reload state and an acceptatg,s

A cycle g reachable frons with len(8) < |S| is strongly safeif one of the following
holds:

— ¢(B) = 0 andB contains an accepting state,
— ¢(B) = 0 andB(0) is inter-reachable with a reload state and an acceptatg,s
— B contains a reload state af(D) is inter-reachable with an accepting state.

14

The following lemma characterizes the limit valuesof

Lemma 20. Val(s) is finite jf there is a safe cycle, in which case Ma&) =
min{MC(gB) | B is a safe cycle Further, there is a finite cag Np such that Va@ap(s) =
Vale(9) iff either Vak(s) = o, or there is a strongly safe cycfe such that M@B) =
Vale(s). In such a case \@p(s) = Valc(s) for every cap> 3 |S| - Cmax, Where gax is the
maximal cost of a transition ig.

So, in order to compute the limit value and to decide whetheam be achieved with
some finite capacity, we need to compute a safe and a stroafgycgcle of minimal
mean cost.

Lemma 21. The existence of a safe (or strongly safe) cycle is decidalpelynomial
time. Further, if a safe (or strongly safe) cycle existsntiieere is a safe (or strongly
safe) cyclgd computable in polynomial time such that KB < MC(B’) for every safe
(or strongly safe) cyclg’.

Now we can prove the computation-related statements of (Ene@.

To compute the limit value of, we use the algorithm of Lemma 21 to compute a safe
cyclep of minimal mean cost. If no such cycle exists, we h&fag:(s) = o, otherwise
Valc(s) = MC(B). To decide whetheval:(s) can be achieved with some finite capacity,
we again use the algorithm of Lemma 21 to compute a strondgycsale of minimal
mean cost. If such a cycle exists ahC(3) = MC(8), thenVal:(s) can be achieved
with some finite capacity, otherwise not. The correctneghisfapproach follows from
Lemma 20.

It remains to bound the rate of convergence to the limit vadumse when no finite
capacity sfiices to realize it. This is achieved in the following lemma.

Lemma 22. Let Gnax be the maximal cost of a transitiondh For every cap> 4-|S|-Cmax
we have that
3 : |S| : Cmax

cap S —=
VaIC () — Val(s) < cap—4-1|S|- Cmax

4 Future work

We have shown that an optimal controller for a given consionggystem always exists
and can beféiciently computed. We have also exactly classified the strattomplex-
ity of optimal controllers and analyzed the limit values i@eble by larger and larger
battery capacity.

The concept otap-bounded mean-paytois natural and generic, and we believe it
deserves a deeper study. Since mean-fidnas been widely studied (and applied) in the
context of Markov decision processes, a natural questiarhither our results can be
extended to MDPs. Some of our methods are surely applidaii¢he question appears
challenging.

15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Proceedings of FSFTCS 2010volume 8 ofLeibniz International Proceedings in Informat-

ics. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2010

. Proceedings of ICALP 2010, Part,IVolume 6199 ofLecture Notes in Computer Science

Springer, 2010.

. N. Berger, N. Kapur, L.J. Schulman, and V. Vazirani. SobyeGames. IrProceedings of

FST&TCS 2008volume 2 ofleibniz International Proceedings in Informatjggages 61-72.
Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2008.

. P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, and J..Sibéinite Runs in Weighted

Timed Automata with Energy Constraints. Pnoceedings of FORMATS 200&lume 5215
of Lecture Notes in Computer Scienpages 33-47. Springer, 2008.

. T. Brazdil, V. Brozek, and K. Etessami. One-Counterc8&stic Games. IRroceedings of

FST&TCS 201q1], pages 108-119.

. T. Brazdil, V. Brozek, K. Etessami, A. KuCera, and D. @ak. One-Counter Markov Deci-

sion Processes. Broceedings of SODA 201pages 863—-874. SIAM, 2010.

. T. Brazdil, K. Chatterjee, A. Kutera, and P. Novotnyti&tent Controller Synthesis for Con-

sumption Games with Multiple Resource Types.Pioceedings of CAV 2012olume 7358
of Lecture Notes in Computer Scienpages 23-38. Springer, 2012.

. T. Brazdil, P. Jan€ar, and A. Ku€era. Reachability @amn Extended Vector Addition Sys-

tems with States. IRroceedings of ICALP 2010, Part [2], pages 478-489.

. T. Brazdil, A. Ku€era, P. Novotny, and D. Wojtczak. Mitizing Expected Termination Time

in One-Counter Markov Decision ProcessesPtoceedings of ICALP 2012, Part, Nolume
7392 ofLecture Notes in Computer Scienpages 141-152. Springer, 2012.

K. Chatterjee and L. Doyen. Energy Parity GamesProceedings of ICALP 2010, Part Il
[2], pages 599-610.

K. Chatterjee and L. Doyen. Energy and Mean-BaRarity Markov Decision Processes.
In Proceedings of MFCS 201¥olume 6907 of_ecture Notes in Computer Sciengages
206-218. Springer, 2011.

K. Chatterjee, L. Doyen, T. Henzinger, and J.-F. Raskeneralized Mean-pagtoand Energy
Games. IrProceedings of FSFTCS 201(1], pages 505-516.

K. Chatterjee, M. Henzinger, S. Krinninger, and D. Nagi@i. Polynomial-Time Algorithms
for Energy Games with Special Weight StructuresPtaceedings of ESA 2012olume 7501
of Lecture Notes in Computer Scienpages 301-312. Springer, 2012.

K. Chatterjee, T. Henzinger, and M. Jurdzihski. Meayef Parity Games. IiProceedings
of LICS 2005 pages 178-187. IEEE Computer Society Press, 2005.

B. Dantzig, W. Blattner, and M. R. Rao. Finding a cycle igraph with minimum cost to
times ratio with applications to a ship routing problem. IrRBsenstiehl, editoTheory of
Graphs pages 77-84. Gordon and Breach, 1967.

A. Dasdan, S.S. Irani, and R.K. Guptaffifient algorithms for optimum cycle mean and
optimum cost to time ratio problems. Design Automation Conference, 1999. Proceedings.
36th pages 37-42, 1999.

U. Fahrenberg, L. Juhl, K. Larsen, and J. Srba. EnergyegSamMultiweighted Automata.
In Proceedings of the 8th International Colloquium on TheiostAspects of Computing
(ICTAC'11), volume 6916 ofLecture Notes in Computer Sciengages 95-115. Springer,
2011.

A. Kucera. Playing Games with Counter AutomataReachability Problems/olume 7550
of Lecture Notes in Computer Scienpages 29-41. Springer, 2012.

16

Technical Appendix

A Non-trivial Behaviour of Optimal Controllers

Consider the consumption systéhon Figure 2, wher® = {s} andF = S.

Fig. 2: A consumption system with a non-trivial behaviouaafoptimal controller.

Denote bys; the cycleugigzgs040su, and byé, the cycleuru. Let s be the initial
state and letap = 450. Clearly, a controller that visitscannot be optimal, because of
the enormous mean cost of the cyale. Moreover it does not make sense to iterate
the cyclesus since its mean cost is much larger than the mean cost oftaahdé..
Thus, an optimal controller goes frosto u, then iterateg; for A € {0,1,...,5} times,
then possibly iterates, for B € {0, 1,...,15} times, and then returns & An easy
computation shows that the optimal behaviour is achieveédfe 5 andB = 2, and the
resulting mean cost is equal to/37 This shows that the optimal controller generally has
to iterate more than one simple cycle between two visits el@ad state (the controller
from example on Figure 1 iterated only 1 simple cycle befatenning to the reload
state). Also, note that the cyde which has the minimal mean cost among all simple
cycles inC, is not traversed by the optimal controller at all.

Now let us again consider the example on Figure 1. Note thmarfp capacitycap >
10 we haveval;™(s) = TEeaT0) = i s Itis then clear tha¥ale(s) = 1/2 and that
this limit value cannot be achieved for any finite capacity.

Finally, consider the consumption systéhon Figure 3. For every capacicapwe
haveVaIZap(s) = o0, since evergap-bounded pati® must have an infinite $tix u“ and
thus it cannot be accepting. Thus, the limit vaWed:(s) is also infinite. However, if
we treat the system as a one-player mean-fiiachi game (see, e.g., [14]), then the
optimal value insis 1/2.

17

O O——])o

0

Fig. 3: Limit value is not equal to the Biichi mean-pfijalue. HereR = {u} andF = {t}.

B Proofs for Auxiliary Algorithms in Section 3.1

In this section we provide the proofs for auxiliary algonits from Section 3.1, i.e.,
the proof of Lemmas 8,9,10 and 12. The problems solved byeth#&gorithms ¢ap
reachability, existence of an acceptance witness, ete.yarants of standard graph-
theoretic problems. Our choice of algorithms is motivatgabr intention to achieve as
straightforward correctness proofs and proofs of polyranuinning time as possible. It
is not hard to see that the complexity of these algorithmsdwtoes not dominate the
overall complexity of the algorithm from Theorem 6) can b@roved.

Note that the lemmas are not proved in the order in which tippear in the main
text. We first prove Lemma 9, then Lemma 10, then Lemma 8 andyfibamma 12.
This is because some algorithms use as a sub-proceduremithatgwhich, in the main
text, appears, later than the algorithm in which this sulepdure is used. We chose to
mention the algorithms in the main text in dfdrent order to make the flow of ideas in
the main text more natural.

B.1 A Proof of Lemma 9
We denote byde) the end cost of a finite path First we prove the following lemma.

Lemma 23. If a state t is cap-reachable from s, then there is a cap-bedmuhtha of
length at mos|S|? such that e@r) = min{eda’) | o’ is a cap-bounded path from s tp t

Proof. Lett becapreachable frons. Since the end costs are natural numbers, the value
min-ec = min{edca’) | « is acap-bounded path fronstot} exists. Leta be acap
bounded path of minimal length among tbap-bounded paths frons to t that have
eda) = min-ec Assume, for the sake of contradiction, tiem(e) > |S|2. Two cases
may arise: either at mofR| reload states appear erand thenr = y-§-y’, where either

¢ is a cycle not containing a reload state,600) = last(é) € R. In both cases clearly,

v -y’ is acap-bounded path frons to t with ey - v') = ed), a contradiction with the
choice ofa. The second case is that there are more fRaoccurrences of a reload state
ona. Thena = y-6-vy/, wheres(0) = last(6) € R. As above, we get a contradiction with
the choice ofr. O

We now prove a slightly more general variant of Lemma 9.

Lemma 24. There is a polynomial-time algorithm, which for a given stat given ca-
pacity cap and every statee S decides, whether t is cap-reachable from s. Moreover,
for every t that is cap-reachable from s the algorithm corepa cap-bounded pathof
length at mos|S|? such that e@r) = min{edqe’) | o’ is a cap-bounded path from s tp t

18

Proof. Denotemin-ec= min{edc«’) | «’ is acap-bounded path fronstot}. Moreover,
for anyt € S and anyi € Ny we denote

min-e¢(t) = minfede) | « is acap-bounded path fronsto t of lengthi}.

From Lemma 23 it follows thamnin-eqt) = ming.isp min-ed(t).

Now consider an operatioBea, 0n Ng U {eo} such that for anya @capb = a + b if
a+ b < capandw otherwise (we use a standard convention that X = X + o0 = oo
for anyx € Ny U {0}). Clearlymin-ed(t) is equal to 0 itt = sand equal teo otherwise.
Fori > 0 a straightforward induction reveals that

min (min-e¢(q) ®capa) if t¢ R

gt
min-eé(t) = {0 if t € Rand min(min-e¢™(q) @capa) < oo
gt
o0 otherwise
Using these equations we can iteratively compute

min-e®(q), min-ed(q), . .., min-e°(q) for all statesq in polynomial time. Now
by Lemma 23 we have for any statethatmin-ect) = ming.;sp min-ec(t), and clearly
t is capreachable froms iff min-et) < c. Moreover, letj; < |S]?> be such that
min-ed:(t) = min-edt) < o. Then from the knowledge afin-e€, min-ed, ..., min-ed
we can construct a finiteap-bounded patly = goQz . .. q;, with from sto t by putting
g;, = tand for everyj < j; definingq; the state that caused trnain-ed”(qj+1)
to be set to its final value. l.e., .1 ¢ R, thenq; is such thatqj—a>qj+1 and
min-eé(q;) ®cap & = min-ed*(qj.1), otherwiseq; is such thatq; >qj,1 and
min—ed(qj) ®cap & < 00. The correctness of this approach is immediate. O

B.2 A Proof of Lemma 10
Before we prove Lemma 10, we prove the following simple lemma

Lemma 25. For a given state s it is decidable in polynomial time whetthare is a
cycleé of zero cost containing s, and if suchyaxists, we can compute in polynomial
time a simple cycle with this property. Moreover, for a giwat of states TC S it is
decidable in polynomial time, whether there is a cycle ob zmyst containing s and a
state from T, and if such a cycle exists, we can compute sughla af length at most
2|S| in polynomial time.

Proof. Clearly if there is a cycle of zero cost anthere is also a simple cycle of zero
cost ons. Such a cycle can be find using a simple modification of e.g.ptieadth-first
search algorithm — for everysuch thats >t we try to find a path front to s while
ignoring the transitions of positive cost. Similarly, ifette is a cycle of zero cost an

that contains a state from then the shortest such cycle has length at m@{(®&e need

to get fromsto a state € T and back via transitions of zero cost, each of these two parts
requiring at mos|S| transitions). Again, such a cycle can be find using a suitsdsech
algorithm: first, we compute a s&t C T of states that are reachable via transitions of

19

zero cost from a state s.t. sgq , and then, for every € T’ we try to find (possibly
empty) path front to s. Clearly, both tasks can be implemented using a simple graph
search algorithm. O

The following lemma will be also useful.

Lemma 26. Let r € R be a reload state and £ S a set of states. It is decidable in
polynomial time whether there is a cap-bounded cyctbat is initiated in r and that
contains a state from T. If the answer is yes, one can compupelynomial time) such
a cycles of length at mos8|S|2.

Proof. Recall that we denote bgda) the end cost of a finite path. Denote by
min-e¢(t) the value mifeqa) | « is acapbounded path fromtot }. We claim that a
cap-boundeds initiated inr and containing a state frof exists if and only if there is a
t e T andq € R (possiblyq = r) such that:

— There is acap-bounded path; fromr to t, and
— there is a¢ap— min-eg(t))-bounded path, fromtto g, and
— there is acap-bounded paths fromqtor.

The “if” direction can be proved as follows: if there are tHeramentioned paths, then
there is in particular aap-bounded patly; fromr tot such thakqy:1) = min-eg(t) (see
Lemma 24). Thewd = y1 - y2 - y3 is the requireccap-bounded cycle containing a state
fromT.

Now consider the “only if” direction in the equivalence. liet Ny be the smallest
number such thaf(i) € T andj > i be the smallest number such tldé}) € R (suchi, |
must exist, sincé is a cycle). Putyy = d<j, y2 = 6(i)...8()) andys = 6(j) ... 5(len(s)).
Clearlyys andy; arecap-bounded and(y,) < cap—edy;) < cap—min-e¢(5(i)), which
proves the “only if” direction.

So in order to decide whether a desired cyElexists (and compute it if it does)
it suffices to make three calls of the algorithm from Lemma 24 foryepeair of states
t € T, g € R For every such pair we first use that algorithm to compute@bounded
pathy; fromr to t of minimal end cost (and thus also compuoim-eg(t)). Then we use
the algorithm to find adap—min-eg(t))-bounded pathr; fromt to g, and acap-bounded
pathy; fromqtor. If we find all these paths, we retusn - v, - y3 as the desired cycle
(from Lemma 24 it follows thalen(s) < 3|S|?). If some of these paths does not exist, we
move on to the next pair. If the algorithm fails for all paitise desired cyclé does not
exist. The correctness of the algorithm and its polynonmaahplexity are immediate.

O

Lemma 10.The problem whether a givenegS is admissible is decidable in polynomial
time. Further, if g is admissible, then there are finite pathg computable in polynomial
time such thatr - y* is a cap-bounded run initiated in s ands an admissibility witness
for g of length at mosB|S|.

Proof. First we prove that a statpe S is admissible if and only ifj is capreachable
from the initial states and one of the following conditions holds.

20

1. There is a cyclé of zero cost that is initiated ig and that contains an accepting
state. In this case,is an admissibility witness fag.

2. There is a reload statee R andcap-bounded cycles, 6, both initiated inr, such
thaté contains an accepting state ahd 61 - 62, wheref;(0) = last(6,) = r and
last(61) = 62(0) = g. In such a casé, - § - 61 is an admissibility witness fag.

The “if” direction is immediate, so let us consider the “oiffiydirection. Suppose that
g is admissible, then by definition there isap-bounded run initiated irs of the form
a - B¥, whereg is a cycle initiated irg which contains an accepting state. In particagjar
is capreachable frons. Now if c(B) = 0, then the case 1. above holds. So suppose that
c(B) # 0. ThenB must contain not only an accepting state, but also a relced.dtet
i € Ng be such thaB(i) € R, respectively. Then the pathis = B(i)8(i + 1)...8(len(B)),
62 = B<i, ands = B(i)B(3i + 1)...B(len(B)) - B<, have the properties stated in case 2.

So to test whetheq is admissible, we have to test whetligis capreachable from
s and whether 1. or 2. holds. To test tbapreachability we use the polynomial algo-
rithm of Lemma 24, which also finds the requireap-bounded path frorsto g. To test
whether 1. holds, we use the polynomial algorithm from Lenf#8alf this algorithm
finds a cycle of zero cost initiated @and containing an accepting state (by Lemma 25,
the cycle returned by the algorithm has length at m¢Sf) 2we can immediately out-
put it as an admissibility witness fay. To test whether 2. holds, we uf# times the
polynomial algorithm of Lemma 26: For every states R we test whether there are
cap-bounded cycles, § initiated inr such that containsg andé contains a state from
F. If the algorithm finds such cycles for somes R (by Lemma 26 each of them will
have length at most|S|?), we can use them to easily construct an admissibility vegne
for g of length at most B|? as indicated in 2. The correctness of the algorithm and its
polynomial complexity are immediate. O

B.3 A Proof of Lemma 8

Lemma 8.Lett € S. The problem whether @‘T(t) = oo is decidable in polynomial
time.

Proof. Lett € S be an arbitrary. In the following we treatas the initial state of the
system. In particular, the notion of admissibility is adapto this choice of initial state:
a stateq is admissible if there is aap-bounded path of the form - y* with «(0) = t,
v(0) = last(e) = q, andy containing an accepting state.

First note thatval;™(t) < oo if and only if there is at least one admissible stqte
The “if” direction is immediate, so let us consider the “oiffydirection. If Val;™"(t) <
oo, then there is @apbounded accepting rup initiated int. We consider two cases.
Either there are only finitely many transitions of a positbast ono. Then there is a
simple cycles of zero cost containing an accepting state (since some tiegegpate has
infinitely many occurrences @) initiated in some stat&(0) that iscap-reachable from
t. Clearlya - 6*, wherea is acap-bounded path fromto g, is acap-bounded accepting
run, sod(0) is admissible. The second case is that there are infinitahy transitions of
positive cost o, in which case contains infinitely many occurrences of both a reload
state and of an accepting state. kdie a reload state appearing infinitely often@n

21

Then there is @ap-bounded cyclé initiated inr and containing an accepting state. For
anycap-bounded patlr fromt tor (at least one exists due to the existencg)dhe run
a - 6“ is acapbounded accepting run, showing thas admissible.

So to decide Whetheralgap(t) = oo, it suffices to use the polynomial-time algorithm
of Lemma 24 to compute the set of states thatcaereachable front, and for every
such state decide, whether it is admissible, using the potyal-time algorithm from
Lemma 10. The correctness and the polynomial running tinthisfprocedure are im-
mediate. O

B.4 A Proof of Lemma 12

Lemma 12.The existence of a zero-cost cycle is decidable in polyridinia, and an
example of a zero-cost cyghe(if it exists) is computable in polynomial time. The same
holds for zero-cost cycles containing an accepting state.

Proof. Note that a zero-cost cycle, or zero-cost cycle containing@epting state, is
simply a simple cycle of zero cost initiated in an admiss#ikge, or a simple cycle of
zero cost containing an accepting state that is initiategniradmissible state, respec-
tively.

So to decide whether there is a zero-cost cycle, flices to compute the sétC S
of all admissible states using the polynomial-time aldoritof Lemma 10, and then for
everyq € Atry to find a simple cycle of zero cost initiated gnusing the polynomial-
time algorithm from Lemma 25. If we find such a cycle we can atitpasg, otherwise
we conclude that there is no such cycle.

To decide whether there is a zero-cost cycle containing eeying state, it dices,
for everyq € A, to use the polynomial-time algorithm of Lemma 25 to find aleyaf
zero cost initiated irg containing an accepting state. Note that if the algorithrddfin
such a cycle for someq € A, this cycle does not have to be simple. However, if it is not
simple, then there is a simple cydef zero cost such thadt= vy - 6 - y’ for some finite
pathsy, y’ andf contains an accepting state. Moreow®) is an admissible state, since
¢ -y -y is an admissibility witness faf(0). Soé is a zero-cost cycle and we can return
it as the desired cyclé (note thaty can be easily computed onéés computed). If the
algorithm of Lemma 25 fails to find a cycle of zero cost with anepting state for every
g € A, we conclude that there is no such cycle. O

C Auxiliary Results

This section contains some auxiliary algorithms that atenmentioned in the main text
and that will be useful in later proofs.

Lemma 27. LetC = (S, —,c, R F) be a consumption system. There is an algorithm
MinPath(s;, s;, m, Avoid) which for a given pair of states ss, € S, given number ma

No and a given set Avoid S decides, whether there is a patisatisfying the following
conditions:

— a(0) = g, last(@) = s, len(e) = m, and

22

— forall 0 <i < len(e) it holds«(i) ¢ Avoid.

If there is such a path, the algorithm computes a patf minimal cost among all paths
satisfying the above conditions. The algorithm runs in tpul/nomial in||C|| and m.

Proof. The algorithm constructs a labelled graBh= (V, —,L, ¢), whereL c Ny, is
defined as follows:

=V =(S\Avoid x {1,2,...,m- 1} U {(s1, 0), (s2, m)}.
— There is an edge (i), (s, j)) inGifand only if j = i + 1 ands- ¢ is a transition
in C. In such a casé((s,i), (s, j)) = a

Then the algorithm finds a path of minimal cost from, Q) to (s;, m) (or decides that
such a path does not exist) using, e.g., the algorithm forpetimg shortest paths in di-
rected acyclic graphs. The procedure then returns thesmngling path i@ (it suffices
to discard the second components from the computed p&h ifihe correctness of the
procedure and its complexity analysis are straightforward

Lemma 28. LetC = (S, —,c, R F) be a consumption system. There is an algorithm
MinPathReacts;, s;, m, Avoid Reach which for a given pair of states ss, € S, given
number me Ny and given sets Reachvoid C S decides, whether there is a path
satisfying the following conditions:

— a(0) = g, last(@) = %, len(e) = m, and
— forall 0 <i < len(e) it holds«a(i) ¢ Avoid, and
— there isO < j < len(a) such thatx(j) € Reach.

If there is such a path, the algorithm computes a patf minimal cost among all paths
satisfying the above conditions. The algorithm runs in tpu/nomial in||C|| and m.

Proof. If s € Reachor s, € Reach then we just call the algorithm
MinPath(s;, s;, m, Avoid) from Lemma 27.

Otherwise for everygy € Reachand every 0< i < m the algorithm constructs a
labelled graplGgy; = (V, —, L,), whereL c Ny, is defined as follows:

—V=(S\Avoid x{1,2,...i—-1,i+1,...,m=1} U{(s,0), (s, M), (q,i)}.
— There is an edge (i), (s, j)) inGifand only if j = i + 1 ands ¢ is a transition
in C. In such a casé((s,i), (s, j)) = a

Then, for everyy € Reachand every O< i < mthe algorithm finds a pata,; of minimal

cost from €&, 0) to (s;, m) in Gg; (or decides that such a path does not exist) using, again
the algorithm for computing shortest paths in directed beypaphs. Ifaq; exists for

at least for one paig, i, the algorithm returnsg; of minimal cost (the minimum is
taken among alfj € Reach 0 < i < m), otherwise the path satisfying the required
conditions does not exist. Again, the correctness of therdlgn and its complexity
are straightforward, since every pattsatisfying the required conditions induces, in a
natural way, a corresponding path of the same cost i j, whereq, j are such that

g = «(j) € Reach Conversely, every’ in someGy; induces a patk of the same cost

in C that satisfies the required conditions. O

23

D Proofs of Section 3.2

D.1 A Proof of Lemma 16

Lemma 16.If there is at least one compact segment with a given chariatitey, then
there is also an optimal compact segmentfoMoreover, all compact segments optimal
for a given characteristic have the same total cost and lengt

Proof. Fix a characteristig = (r, g,t,m n, b). If there is at least one compact segment
n = &-6) - & having characteristig, there is also at least one segment of a characteristic
(r,g,t,m 0,b) (namelyé - ¢); and (provided thah > 0) at least one cycle of length
n initiated ing which is either a segment or does not contain any reload Giataely
). So there also is a segment y’ and (provided thah > 0) a cycles satisfying the
above conditions whose costs are minimal among all segnaamatsycles that satisfy
these conditions, respectively. Lkebe either 1 (ifn = 0) or the maximal number such
thaty - 6¥ - o/ is a capbounded path (ih > 0 — then such & must exist, because
c(y - 6-y’) < c(n)). Clearlyy - 6 -y is a compact segment optimal fpr

For the second part, lgt= ¢ -6/ - & andyy = y- 8-y’ be two segments optimal for
the same characteristic= (r,g,t,m,n,b). If n = 0, then clearlyen() = len(’) = m
and from the optimality of both segments we get the equafitheir costs. Otherwise,
by definition of optimal segments we hasg - y') = c(¢ - ¢') andc(6) = ¢(5). To prove
the lemma it sffices to show thaj = k. Suppose that, e.gj, < k, the other case is
symmetrical. Theg - 61+ - ¢ is acap-bounded path (since its cost is at most the cost of
n’), a contradiction with the fact thathas a characteristic. O

D.2 A Proof of Lemma 17

Lemma 17.There is an optimal T-visiting cycje@ whose every segment is a compact
segment optimal for some characteristic.

Proof. We say that a segment lmd if it is not a compact segment optimal for some
characteristige. Given an optimall-visiting cycleg containingg > 0 bad segments,
we show how to construct an optiniBlvisiting cycles’ containingg — 1 bad segments.
Combined with the existence of at least one optiffalisiting cycle (which follows
from Lemma 13), this proves the lemma.

So lets be an optimalT-visiting cycle andp its bad segment (i.eg = £€-n- &
for some finite pathg,¢’). We denote = n(0) andr = last(y). In the following we
call every segment initiated inand ending irr anr-t-segment. We also say that two
paths areT-equivalent, if both of them contain a state frdmor none of them does.
We will construct arr-t-segmenty’ such thaty is not bady;” is T-equivalent ot; and
MC(B) = MC(B"), wherep’ = £-1 - &. Then clearlyd’ is an optimalT-visiting cycle
having at mosg — 1 bad segments.

The construction proceeds in two steps. First we constrednapactr-t-segment
n of cost and length equal to(n) andlen(n), respectively. Then we construct ai-
segmenty’ with MC(¢-1'-€') = MC(£-17-¢") = MC(B) such thaty is a compact segment

24

with a characteristic, and we show thatmust be optimal for all of its characteristics.
During the construction we ensure thearid;y’ areT-equivalent ta;.

Note that from the optimality g8 it follows that everyr-t-segment of length equal
to n which is T-equivalent ta; must have a cost greater or equat(g). We will often
use this fact in the proof.

Constructing 77 from 7: We employ a technique similar to the technique
of decomposition into simple cycles. Ap-decomposition is a sequencealc =
@, 00, ko, a1, 01, k]_, veus @h-1,0n_1, kh,]_, 07 such that

- For ever%/i theq; is a finite pathg; is a simple cycle, ank is a positive integer, and
- aoég"aléf ‘e ah,léhk";iah is anr-t-segment that i¥-equivalent ta; and whose cost
and length are equal tfr7) andlen(n), respectively.

A rank of such am-decomposition is the vector of natural numbers

h
rank(dc) = (Zlen(ai), h, i Ik > [SI}).
i=0

Now letdc = ao, do, ko, @1, 61, K1, . . ., @n-1, Oh-1, Kn-1, @n be anp-decomposition with
rank minimal w.r.t. the lexicographic ordering (suchgdecomposition exists, since
ranks are vectors of natural numbers), andjlet Go6{°a16 - - - an-161"2an be the cor-
responding-t-segment -equivalent ta;, whose length and cost are equaldn(n) and
c(n), respectively. We claim that the following holds: for eydr < i < h we have
len(a;) < |S|, h < 2-|S|and|{i | k > |S|}| < 1. From this it immediately follows
that;7 = y - 6% - 7/, whereé is a cycle of length at mog8|, andy,y’ are such that
len(y - y") < 4|S]°. In particular,;is a compact segment (the fact that the paths are
shorter than required for the compactness will be used is¢hend part of the proof).

First let us assume, for the sake of contradiction, that fimes 0 < i < h
it holds len(ai) > |S|. Thenai = a'§a” for some simple cycles” of pos-
itive length and some (possibly empty) finite path§a’”. Then the sequence
dcd = ao,b0,ko,...,0-1,k1,a,8,1,a",6,ki,...an is anp-decomposition such that
rank(dc)[1] = rank(dg)[1] - len(¢’) < rank(dc)[1], a contradiction with the choice of
dc.

Now let us assume thdt > 2 - |S|. Then there are X i < j < h such that
len(éi) = len(s;) and¢; is T-equivalent tod;. It must be the case thatsi) = c(d;),
otherwise, if e.g.c(s) < c(dj), thenaoég"~--5:ﬁ*11aiai+1--~a,—6'j(‘+'“aj+1-~-ah would
be anr-t-segmentT-equivalent tod whose length equalen(n) and whose cost is
smaller thanc(n), a contradiction with the optimality 8. So the sequenced =
o, . ..,0i-1, K1, (@i - @is1), 0is1, ..., @}, 6}, K] + Ki, @ji1, ..., an is ann-decomposition
with rank(dc)[1] = rank(dc)[1] and rank(dc)[2] = rank(dc)[2] — 1, a contradiction
with the choice oflc.

Finally, let us assume that there ar&® < j < h such thak > |S| andk; > [S|. We
distinguish three caseBIC(6;) > MC(6;), MC(8i) < MC(d;) andMC(s;) = MC(d;).

First assume tha¥1C(s;) > MC(s;) and leta be the greatest natural number such
that|S| > k; — a- len(d;) > 1 (clearlya > 1). We have

c(5;) - len(s;) — c(5;) - len(s;)
len(s;) - len(s;)

MC(si) — MC(¢)) = >0,

25

from which it follows thatc(s;) - len(s;) — ¢(d;) - len(s;) > 0. Now consider the patih=
a0l s T Wy - @jo e, - an. Clearly len(r) = len(i) = len(y)

andr is anr-t-segment -equivalent ta;. Moreover,

() = o) - a- (c(6) - len(s) - c(67) - len(s1)) < (A) = o{n).

a contradiction with the optimality ¢f.

The caseMC(si) < MC(¢;) is handled symmetrically, so it remains to consider the
caseMC(d;) = MC(6;). In this case we clearly haw&d;) - len(d;) — c(6;) - len(s;) = O
and thus the aforementioned pathis anr-t-segmentT-equivalent top such that not
only len(r) = len(n), but alsoc(r) = c(n). It follows that the corresponding sequence
dcd = ag, g, Ko, -+ @i, 5i, ki —a- Ien(6j),ai+1, s, 0, kj +a- Ien(6i),aj+1, <o-,ap IS
an p-decomposition such thaank(dc')[1] = rank(dd)[1], rank(dc)[2] = rank(dd)[2]
andrank(dc)[3] < rank(dg)[3], a contradiction with the choice ait.

Constructing n” from 7: We now have am-t-segment; such that;’is T-equivalent
to n, len(n) = len(n) andc(i) = c(y) (and thus alstMC(7) = MC(n)), and moreover
7 = v- 6.y for some finite pathy,y’ of combined length at mosig® andé either
a single vertex or a simple cycle. The compact segmenay not have a characteristic
for three reasons:

- ¢(6) =0;
— ¢ contains a state frof andy -y’ not;
— disacycle and - 61 .y’ is also acap-bounded path.

The first two cases actually cannot happen. Indeady)f= 0, thens is a zero-cost cycle
(recall that every state onBvisiting cycle is admissible, ang{0) lies on aT-visiting
cycleé - 7 - &), a contradiction with the assumptions of Proposition H5thie second
case clearlk > 1 ands;f = y -6 -6 .y is a compact segment of a characteristic
(r,6(0),t, m len(), 1), wherem = len(y-§-y’) < 4S]3+|S| < 5/S[3, a contradiction with

n’ not having a characteristic.

Now suppose that the first two cases do not occur and the thad.dhen we have
k > 2, since otherwise we would halen(;) < 4/S|°® +|S| < 5/|S|® andsf would have
a characteristicr(r,t, len(), 0,0). Now letz > 1 be the maximal number such that
n’ =vy-6*-y is acapbounded path. Clearly/ is a compact-t-segment -equivalent
to 7 with a characteristic. We need to show tME(¢ - 77 -) = MC(¢ - 77 - €). From the

optimality of 8 it follows that it sufices to showC(& - i’ - &) < MC(£ - 77 - &).
Assume, for the sake of contradiction, th€(¢ - 7 - &) > MC(¢ - 77 - ¢). Denote
C=c(¢-y-y-&andD=len&-y-y -&). Clearly
, C+z-c(s C+k-c(s .
MC(E - -£) = ©) O _mce-q-e)

Dz len(d) D +k-lend)

26

DenoteZ > 1 the number such that= k + Z. From (1) we gradually get

k-C-len(¢)+z-D-c(6) >k-D-c(6) +z-C-len(s)
Z-D-c(6) >Z-C-len(s)
D - c(6) > C - len(o)
(k=1)-D-c(6) > (k—1)-C-len(s) (sincek=>2)
C-len(6) +k-D-c(6) > k-C-len(s) + D - c(5)
C+k-c(5) C +c(5)
D+k-len(d) D+len)’

Butthen€-y-6-y - &) is aT-visiting cycle withMC(£-y -6 -y - &) = (C+¢(6))/(D +
len(s)) < MC(£ - 17 - €) = MC(B), a contradiction with the optimality ¢f.

Now lety = (r,q,t,m,n,b) be any characteristic of . We show that;’ is optimal
for this characteristic. Assume, for the sake of contraalicthat it is not optimal foy.
Two cases may happen:

— There is am-t-segmentyy - @; of a characteristiar(q, t, m, 0, b) such that(ag-a1) <
Cly-y'). Thené - ag - 6%- a1 - & is aT-visiting cycle withMC(¢ - ap - 6% - a1 - &) <
MC(¢ -1 - €) = MC(B), a contradiction with the optimality ¢.

— There is a cycl® of lengthn initiated inq such that is either a segment or does not
contain any reload state aof) < c(6). Thené -y - 6% -y - £ is again ar-visiting
cycle whose mean cost is smaller tHd€(B), a contradiction.

O

D.3 A Proof of Lemma 18

Lemma 18.There is an algorithm which decides, for a given characterig, whether
the set of all compact segments that have a characterjsig non-empty, and if the
answer isyes it computes a tupléy, y’, 6, k) such thaty - 6¥ -y’ is a compact segment
optimal fory. The algorithm runs in polynomial time.

Proof. Lety = (r,g,t, m, n, b) be the input characteristic. From the definition of an opti-
mal compact segment fgrit follows that we have to compute the following:

— If n> 0 we have to compute a cyafé of minimal cost among all cyclessatisfying
the following:len(s) = n, §(0) = g, and¢ is either a segment (i € R), or § does
not contain any reload state (if¢ R). In both cases we can use the algorithm of
Lemma 27, namely return the resultidfnPath(g, g, n, R) as the desired cycl&. If
MinPath(g, g, n, R) answers that the required path does not exist, we can inatebyli
say that no compact segment haas its characteristic, i.e., we return “no”.

— If b = 0, we have to compute a compact segmenbf minimal cost among all
compact segments that have a characteristig, {, m, 0, 0). Patha* can be com-
puted using the algorithrivlinPathReactof Lemma 28, namely by making a call
MinPathReacfr,t,m R, {q}). If the result of this call is a non-existence of the re-
quired path, we again immediately return “no”.

27

— If b = 1, we have to compute a compact segmenbf minimal cost among all
compact segments that have a characteristogg{, m, 0,1). If r,qort € T, we can
proceed as in the previous case. Otherwise the @gattan be computed as follows.
For every O< m’ < mwe compute these paths:

e any 1 by callingMinPathReacfr,g,m',R, T),

e am-ny.1 by callingMinPath(g, t, m— n7, R),

o any 2 by callingMinPath(r, g, n7, R),

e am-nr2 by callingMinPathReacfy,t, m— m',R, T).
If for all suchm and alli € {1,2} one of the path&y;, am-nvi does not exist, we
immediately return “no”.Then we selectm < mandi € {1, 2} that minimizes
Clanri - @m-mv,) @nd we returny* = anyj - @m-nvj. The correctness of this is clear,
since every compact segmenty’ of a characteristicr(g, t, m, 0, 1) and of minimal
cost has the property thator o’ satisfies the conditions stated in Lemma 28 (and
it is of minimal cost among all paths satisfying these candg), and both andy’
satisfy the conditions stated in Lemma 27, with one of therirfgaminimal cost
among all paths satisfying this condition.

Now having the paths* (and¢é* if n > 0) we writea* = vy - y’, wherelast(y) = q, and
check whethec(a*) < caporc(y - § = y") < cap depending on whether= 0 or not. If
this check fails, we return “no.” Otherwise,rif= 0 we sets* = g andk = 1, else we set
k = |(cap- c(a*))/c(6")] (this number exists sinags+) > 0 — otherwise there would
be a zero-cost cycle on an admissible stgta contradiction with the assumptions of
Proposition 15). Clearly - (6*)%y’ is a compact segment optimal fprso we return the
tuple ¢,y’, 6% K) as the desired result. O

D.4 A Proof of Lemma 19

Lemma 19.There is an optimal T-visiting cycf@such that every segment®fs of the
form CPatlfy) for some characteristig.

Proof. First note that if a compact segmeytontains a state frorfi and at the same time
it is optimal for some characteristic= (r, g, t, m, n, 0), theny also has a characteristic
x = (r,g,t,mn,1) (recall the last condition from the definition of a chaeaistic).
Since every compact segment with a characterjgtialso has a characteristi; 7 is
optimal also fory’.

Now among all optimaT-visiting cycles whose all segments are compact and opti-
mal for some characteristic (at least one exists due to Lefrifhéets be the one mini-
mizing the number of segments that are not of the f@Rath(y) for somey. Suppose
thatg contains such a segmepand denotg a characteristic of for which 7 is opti-
mal. As mentioned above, ifcontains a state from, then we may assume that the last
component of is 1. Writeg = £ - - €. By Lemma 16 we havien(n) = len(CPath(y))
andc(n) = c(CPath(y)) and thusMC(8) = MC(8’) whereg’ = ¢ - CPath(y) - £. Note
that if 5 contains a state frof then, by our assumption, the last component & 1, so
CPath(y) also contains a state froim Thus,s’ is an optimalT-visiting cycle containing
smaller number of undesirable segments {hiancontradiction with the choice gf O

28

E Proofs of Section 3.3

E.1 A Proof of Lemma 20

Lemma 20.Valc(9) is finite jff there is a safe cycle, in which case M@ = min{MC(3) |

Bis a safe cycle Further, there is a finite cagE Np such that Veﬁap(s) = Vale(9) iff
either Vak(s) = o, or there is a strongly safe cycfesuch that MGB) = Vale(s). In

such a case VE(s) = Valg(s) for every cap> 3 |S| - Cmax, Where ayis the maximal
cost of a transition irC.

Proof. DenoteMS = min{MC(B) | g is a safe cyclp We say that a simple cyclgis a
simple sub-cyclef g if 8 = &£ -6 - & for some¢, &'. We say that a set of simple cycles
D is adecomposition g8 (into simple cycles) if for every two distinét ¢’ € D it holds
thatd’ is a simple sub-cycle &f- &, wheres = £- 5 - £. Note that for any decomposition
D of B it holdsMC(B) > minsep MC(6).

Suppose thaVal:(s) < «. We show that a safe cycle exists and moreover, for any
capacitycap we haveValy™(s) > MS, from which it follows thatVale(s) > MS. If
Vali?(s) = oo, the inequality is trivial. Otherwise the inequality falis from the first
part of the following claim (its second part will be used ftatethe proof):

Claim. If Val™(s) < o, then there is a safe cyalesuch thavval™*(s) > MC(6). More-
over, if Val?(s) = Vale(s), thens is strongly safe.

Indeed, from Lemma 11 and 14 it follows that there is a patand cycless,y
such thaty contains an accepting state and eitb@) = 0 or8(0) € R, and for a run
o=a-B-y-p2-y-p* - itholdsMC(B) = Vali™(o) = Valz™(s). Note thats andy
must be in the same strongly connected compo@eritC. In particular, all states gf
are inter-reachable with an accepting state.

Now we consider two cases. Eith&pB - y) = 0, in which case - y has a sub-pathi
which is a simple cycle of zero cost containing an acceptiatgs-i.e.¢ is a strongly
safe cycle an¥al?™(s) = 0 = MC(5) = MS.

If c(B-vy) # 0, we distinguish two sub-cases. Eitle§g) = 0. Thenc(y) # 0 and
it follows thatg - y contains a reload state. Then every simple sub-cyole3 hass(0)
inter-reachable not only with an accepting state (as shdare), but also with a reload
state and hence it is a strongly safe cycle (of zero cost)e lgainval;™(s) = 0 =
MC(6) = MS.

The second sub-cased§3) # 0. ThenB(0) € R and thus all states g are inter-
reachable with a reload state. LBtbe a decomposition g into simple cycles and
¢ € D be the simple cycle of minimal mean cost. Clea¥lig a safe cycle anMC(5) >
MC(6), which finishes the proof of the first part of the claim. Nowlpsuch a simple
¢ € D which contains a reload state containegirClearly this¢ is strongly safe. We
claim that eitheMC(6) < Val;™(s) or Vali™™(s) < Valc(s), which finishes the proof of
the second part of the claim. So suppose M@x(s) > Vali*(s) = MC(B) and write
B=E&-6-&. ClearlyMC(£ - &) < MC(6) and thus forthe cyclg = &-& -&-6-& it
holdsMC(8’) < MC(B). Moreover, the rug’ = -8 -y-B2-y-B*--- is accepting and
cap-bounded forcag = maxcap c(8’ - y)}. Also note thavali™® (o) = MC(g') (this

29

can be established via a straightforward computation idairtb the one from the proof
of Proposition 14). Thu/ali™(s) = MC(8) > MC(8") > Vali (s) > Vale(s).

Conversely, suppose that there is a safe cycle amgibetthe one of minimal mean
cost. We show that for everys ¢ > 0 and every capacityap > [(6/S|°c2,,)/¢] there is
a rung, such thaval*(o,) < MC(g) + £. From this it immediately follows thatalc(s)
is finite, and in combination with the previous paragraph &B&l:(s) = MS

Let a be a shortest (w.r.t. the number of transitions) path foim 3(0). Note that
c(@) < IS| - cmax- If ¢(B) = 0 andB contains an accepting state, then we can take-
a-B“, since for evergap > |S|cmaxthis is acap-bounded accepting run wital;™(o,) =
MC(B). Otherwise lety; be a shortest path frof(0) to some accepting stafe y, a
shortest path fronf to some reload state andy; a shortest path fromto 8o, and put
v = v1-y2 - y3. Note thatc(y) < 3|S|Cmax Setk = [(3|S|cmax)/£]. It easily follows that
0. = a-(y-B¥)“ is acap-bounded accepting path for acgp > [(6/S|°c2,.,)/], since the
consumption between two visits of the reload stav@y is bounded by(y) + k- ¢(8) <
3IS|Cmax + 3ISI?C2 ./ &. Let us computdC(o,). We have

cy) +k-cB) _ _ck)
len(y) + k-len(B) = k- len(B)

Now c(y)/(k - len(B8)) < c(y)/k < 3|S| - Cmax/K < € as required.

Now suppose that there is a finite capacigpsuch thaval?(s) = Vale(s) (= MS,
as shown above). From the above claim it immediately folltved there is a strongly
safe cycles such thaMC(6) = MS,

Conversely, suppose thatis a strongly safe cycle witMC(3) = Val(s). Leta be
again a shortest path frosto 8(0). If ¢(3) = 0 andg contains an accepting state, then
we again take = « - 5 — this is clearly an|§| - cmax)-bounded run an¥fal (o) = 0 =
Valg(s) for anycap > |S| - Cmax. Now suppose that(3) = 0 andB(0) is inter-reachable
with accepting staté and with an accepting stateThen there exists a cycjeinitiated
in 3(0) that contains bott andr. Theno :=a - B-y-B2-y-B*is a(3S|cmay-bounded
accepting run with/a® = MC(3) = 0 = Valc(9).

Finally, suppose theﬁ contains a reload state ap¢0) is inter-reachable with an
accepting state. Let be the cycle of minimal length among those initiategf) that
contain an accepting state. Then= a-3-y -2 -y - *is again a (BSIcmax)-bounded
accepting run, where the boundedness now comes from thehéagtcontains a reload
state and thus the end cosl;&ﬁfis at most the end cost ﬁt which is at mostS| - Cmax.
Clearly, Vall>m= (o) = MC(g) = Valo(9).

MC(e.) = MC(y - B*) = MC(@).

O

E.2 A Proof of Lemma 21

Lemma 21.The existence of a safe (or strongly safe) cycle is decidalp@lynomial
time. Further, if a safe (or strongly safe) cycle existsntiigere is a safe (or strongly
safe) cyclgd computable in polynomial time such that KB < MC(B8’) for every safe
(or strongly safe) cyclg’.

30

Proof. To find a safe cyclgg of minimal mean cost (or to decide that no such cycle
exists), we proceed as follows. First we compute theAset all states reachable from
s. Then for every staté € F n A we use the polynomial-time algorithm of Lemma 25
to find a cycle of zero cost initiated ifv If we find such a cyclé for somef € F N A,
then clearlys is a safe cycle of minimal (i.e., zero) mean cost. If we do nud Such
a cycle, we decompose into its strongly connected components (SCCs), using, e.g.
the Tarjan’s algorithm. For every SCC that is reachable froms we check, whether
C contains both a reload state and an accepting state. If focmponent exists, we
conclude that there is no safe cycle. Otherwise, for everg€ 8Chat contains both
a reload state and an accepting state we compute a yaé length at mostS| of
minimal mean cost il€, using standard polynomial time-algorithm for finding aleyc
of the minimal mean cost (see, e.g., [15, 16])Then clearly the cycléc. such that
MC(6c:) = min{MC(6c) | Cis a SCC containing a reload and an accepting siata
safe cycle of minimal cost among all safe cyclegin

For strongly safe cycles we proceed in a similar way. Firstiveck whether there
is a cycle of zero cost containing a reachable accepting stihg the same approach
as in the previous paragraph. If we find such a cycle, thanat ssrongly safe cycle
of minimal mean cost. Otherwise, we again decompdgeo SCCs and identify those
SCCs reachable from that contain both a reload state and an accepting stateX Let
be the set of all such SCCs. X = 0, we immediately get that no strongly safe cycles
exist. Otherwise for every SCC € X we check, whether there is a cycle of zero cost
in C, using again the algorithm from Lemma 25 (we can also use ftirermentioned
algorithms for finding a cycle of minimal mean cost). If suckyale exists for some
C € X, itis clearly a strongly safe cycle of minimal mean cost. @&thise, we have to
find a cycles of length at mostS| in someC € X such that contains a reload state
(and we of course need to find a cycle of minimal mean cost arabhisgch cycles). To
this end, for everfC € X and every reload states C N Rwe construct a labelled graph
Gr = (V, —, L, 0, whereL c Ny defined as follows:

- V=Cx{0,...,IS|},

— there is an edgey(i) > (¢, j) in Gy, here 0< i, j < |S|, wheneveii = j + 1 and
q-3 g is a transition irC,

— forevery 1< i < |S| there is an edge (i) 2 (r,0),

— there are no other edges.

Note thatG, does not have to contain a cycledfdoes not contain a cycle, which may
happen ifC contains a single state without a self-loop. If this is theector allC € X,

we get that there are no strongly safe cycles. Otherwisethatesvery cycle in some
G contains the stater,(0). Moreover, there is a natural many-to-one corresporglenc
between the simple cycles @ and cycles of length at mof8| that are initiated i in

C, and this correspondence preserves the mean cost of thesc$d in order to compute

a cycles of minimal mean cost among all cycles that are initiated ielaad state of
someC € X, it suffices to compute, for evely € X and every € C n Ra simple cycle

6 of minimal mean cost i3, using the standard algorithms mentioned above. If we

2 Note that given any cycle of minimal mean cost, we can easily extract fréra simple cycle
¢ such thaMC(s) = MC().

31

then select* such thaMC(5;-) = min{MC(5;) | C € X, r € CN R}, then froms,- we can
easily compute the corresponding cyélein C that is a strongly safe cycle of minimal
mean cost among all strongly safe cycles.

The correctness of the algorithm and its polynomial runtiimg are immediate. O

E.3 A Proof of Lemma 22

Lemma 22.Let Gnhax be the maximal cost of a transitiondh For every cap> 4-|S|- Cmax
we have that
3 : |S| : Cmax

cap)y _ RN T
Vali?(s) - Valo(s) < cap—4- S| Cmax

Proof. The proof employs techniques very similar to those used & ghoof of
Lemma 20. IfValg(s) = o0, then the lemma is immediate. Otherwise by Lemma 20 there
is a safe cycl@ such thaMC(B) = Val(s). Leta be the path frons to 3(0) of minimal
length. Ifc(8) = 0 andB contains an accepting state, then for eveap > |S| - Cmax
we haveValz™(s) = Vali™(e -) = MC(8) = 0, and the lemma holds. It remains to
consider the case whet0) is inter-reachable with both a reload state and an airgept
state. Then ley; be a shortest (w.r.t. the number of transitions) path fg§f) to some
accepting statd, y, a shortest path fronfi to some reload state andys a shortest path
fromr to By, and puty = y1 - y2 - v3. Finally, putk = [(cap— 3 - |S| - Cmax)/(c(B))].
Note thatk > 1 sincecap> 4|S|Cmax Theno := a - (y - 84)¢ is acap-bounded accepting
run, since the consumption between two visits of the reldats ony is bounded by
3IS|Cmax + K- ¢(8) < 3|S|Cmax + cap— 3|S|Cmax = cap Moreover,

cy) +k-cB) _)

Val™e) = MClr) = (i o) = K-Ten®)

+ MC(B).

Now

() < c(y) < 3|S|Cmax < 3|S|Cmax
k-len(y) ~ (%(ﬁs)\cmax - 1).(;(5) ~ cap—3IS|Cmax— ¢(B) ~ cap— 4IS|Cmax

as required. O

32

