
ar
X

iv
:1

40
2.

49
95

v2
 [

cs
.S

Y
]

24
 M

ar
 2

01
4

Minimizing Running Costs in Consumption Systems

Tomáš Brázdil, David Klaška, Antonı́n Kučera, and Petr Novotný

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. A standard approach to optimizing long-run running costs ofdiscrete
systems is based on minimizing themean-payoff, i.e., the long-run average amount
of resources (“energy”) consumed per transition. However,this approach inher-
ently assumes that the energy source has an unbounded capacity, which is not
always realistic. For example, an autonomous robotic device has a battery of finite
capacity that has to be recharged periodically, and the total amount of energy con-
sumed between two successive charging cycles is bounded by the capacity. Hence,
a controller minimizing the mean-payoff must obey this restriction. In this paper
we study the controller synthesis problem forconsumption systemswith a finite
battery capacity, where the task of the controller is to minimize the mean-payoff
while preserving the functionality of the system encoded bya given linear-time
property. We show that an optimal controller always exists,and it may either need
only finite memory or require infinite memory (it is decidablein polynomial time
which of the two cases holds). Further, we show how to computean effective
description of an optimal controller in polynomial time. Finally, we consider the
limit values achievable by larger and larger battery capacity, show that these val-
ues are computable in polynomial time, and we also analyze the corresponding
rate of convergence. To the best of our knowledge, these are the first results about
optimizing the long-run running costs in systems with bounded energy stores.

1 Introduction

A standard tool for modelling and analyzing the long-run average running costs in dis-
crete systems ismean-payoff, i.e., the average amount of resources (or “energy”) con-
sumed per transition. More precisely, a system is modeled asa finite directed graphC,
where the set of statesS corresponds to configurations, and transitions model the dis-
crete computational steps. Each transition is labeled by a non-negative integer specifying
the amount of energy consumed by a given transition. Then, toevery run̺ in C, one can
assign the associatedmean-payoff, which is the limit of average energy consumption per
transition computed for longer and longer prefixes of̺. A basic algorithmic task is to
find a suitablecontroller for a given system which minimizes the mean-payoff. Recently,
the problem has been generalized by requiring that the controller should also achieve a
givenlinear time propertyϕ, i.e., the run produced by a controller should satisfyϕ while
minimizing the mean-payoff (see, e.g., [14]). This is motivated by the fact that the sys-
tem is usually required to achieve some functionality, and not just “run” with minimal
average costs.

Note that in the above approach, it is inherently assumed that all transitions are al-
ways enabled, i.e., the amount of energy consumed by a transition is always available.
In this paper, we study the long-run average running costs insystems where the energy

http://arxiv.org/abs/1402.4995v2

stores (“tanks” or “batteries”) have afinite capacitycap ∈ N. As before, the energy
stored in the battery is consumed by performing transitions, but if the amount of en-
ergy currently stored in the battery is smaller than the amount of energy required by a
given transition, then the transition is disabled. From time to time, the battery must be
reloaded, which is possible only in certain situations (e.g., when visiting a petrol sta-
tion). These restrictions are directly reflected in our model, where some states ofC are
declared asreload states, and the run produced by a controller must becap-bounded,
i.e., the total amount of energy consumed between two successive visits to reload states
does not exceedcap.

The main resultsof this paper can be summarized as follows. LetC be a system (with a
given subset of reload states) andϕ a linear-time property encoded as a non-deterministic
Büchi automaton.

(A) We show that for a given capacitycap ∈ N and a given states of C, there exists
a controllerµ optimal for s which produces acap-bounded run satisfyingϕ while
minimizing the mean payoff. Further, we prove that there is a dichotomy in the
structural complexity ofµ, i.e., one of the following possibilities holds:
• The controllerµ can be constructed so that it has finitely many memory ele-

ments and can be compactly represented as acounting controllerκ which is
computable in time polynomial in the size ofC andcap (all integer constants
are encoded inbinary).
• The controllerµ requiresinfinite memory (i.e., every optimal controller has in-

finite memory) and there exists an optimaladvancing controllerπwhich admits
a finite description computable in time polynomial in the size ofC andcap.

Further, we show that it is decidable in polynomial time which of the two possibili-
ties holds.

(B) For every states of C, we consider itslimit value, which is theinf of all mean-
payoffs achievable by controllers for larger and larger battery capacity. We show
that the limit value is computable in polynomial time. Further, we show that the
problem whether the limit value is achievable by somefixedfinite battery capacity
is decidable in polynomial time. If it is the case, we give an explicit upper bound
for cap; and if not, we give an upper bound for the difference between the limit value
and the best mean-payoff achievable for a given capacitycap.

Technically, the most difficult part is (A), where we need to analyze the structure of
optimal controllers and invent some tricks that allow for compact representation and
computation of optimal controllers. Note that all constants are encoded in binary, and
hence we cannot afford to construct any “unfoldings” ofC where the current battery
status (i.e., an integer between 0 andcap) is explicitly represented, because such an
unfolding is exponentially larger than the problem instance. This is overcome by non-
trivial insights into the structure of optimal controllers.

Previous and related work.A combination of mean-payoff and linear-time (parity) ob-
jectives has been first studied in [14] for 2-player games. Ithas been shown that optimal
strategies exist in such games, but they may require infinitememory. Further, the val-
ues can be computed in time which is pseudo-polynomial in thesize of the game and
exponential in the number of priorities. Another closely related formalisms areenergy

2

gamesandone-counter games, where each transition can both increase and decrease the
amount of energy, and the basic task of the controller is to avoid the situation when the
battery is empty. Energy games with parity objectives have been considered in [10]. In
these games, the controller also needs to satisfy a given parity condition apart of avoiding
zero. Polynomial-time algorithms for certain subclasses of “pure” energy games (with
zero avoidance objective only) have recently been designedin [13]. Energy games with
capacity constraints were studied in [17]. Here it was shown, that deciding whether a
given one-player energy game admits a run along which the accumulated reward stays
between 0 and a given positive capacity is already an NP-hardproblem.One-counter
Markov decision processesandone-counter stochastic games, where the counter may
change at most by one in each transition, have been studied in[6, 5] for the objective of
zero reachability, which is dual to zero avoidance. It has been shown that for one-counter
MDPs (both maximizing and minimizing), the existence of a controller that reaches
zero with probability one is inP. If such a controller exists, it is computable in polyno-
mial time. For one-counter stochastic games, it was shown that the same problem is in
NP ∩ co-NP. In [9], it was shown how to compute anε-optimal controller minimizing
the expected number of transitions needed to visit zero in one-counter MDPs. Another
related model with only one counter areenergy Markov decision processes[11], where
the counter updates are arbitrary integers encoded in binary, and the controller aims at
maximizing the probability of all runs that avoid visiting zero and satisfy a given parity
condition. The main result of [11] says that the existence ofa controller such that the
probability of all runs satisfying the above condition is equal to one for a sufficiently
large initial counter value is inNP ∩ co-NP. Yet another related model aresolvency
games[3], which can be seen as rather special one-counter Markov decision processes
(with counter updates encoded in binary). The questions studied in [3] concern the struc-
ture of an optimal controller for maximizing the probability of all runs that avoid visiting
negative values, which is closely related to zero avoidance.

There are also results about systems with more than one counter (resource). Exam-
ples include games over vector addition systems with states[8], multiweighted energy
games[17, 4], generalized energy games[12], consumption games[7], etc. We refer to
[18] for a more detailed overview.

2 Preliminaries

The sets of all integers, positive integers, and non-negative integers are denoted byZ,
N, andN0, respectively. Given a setA, we use|A| to denote the cardinality ofA. The
encoding size of a given objectB is denoted by||B||. In particular, all integer numbers
are encoded inbinary, unless otherwise stated. Thei-th component of a vector (or tuple)
v is denoted byv[i].

A labelled graphis a tupleG = (V, → , L, ℓ) whereV is a non-empty finite set of
vertices, → ⊆ V × V is a set ofedges, L is a non-empty finite set oflabels, andℓ is a
function which to every edge assigns a label ofL. We write s a

→ t if s→ t anda is the
label of (s, t).

A finite pathin G of length n∈ N0 is a finite sequenceα ≡ v0 . . . vn of vertices such
that vi→ vi+1 for all 0 ≤ i < n. The length ofα is denoted bylen(α), and the label of

3

vi→ vi+1 is denoted byai . An infinite path(or run) in G is an infinite sequence of vertices
̺ such that every finite prefix of̺ is a finite path inG. Finite paths and runs inG are
also written as sequences of the formv0

a0→ v1
a1→ v2

a2→ · · · . Given a finite or infinite path
̺ ≡ v0 v1 . . . andi ∈ N0, we use̺ (i) to denote thei-th vertexvi of ̺, and̺≤i to denote
the prefixv0 . . .vi of ̺ of lengthi.

A finite pathα ≡ v0 . . . vn in G is acycleif n ≥ 1 andv0 = vn, and asimple cycleif it
is a cycle andvi , v j for all 0 ≤ i < j < n. Given a finite pathα ≡ v0 . . .vn and a finite
or infinite path̺ ≡ u0 u1 . . . such thatvn = u0, we useα · ̺ to denote theconcatenation
of α and̺, i.e., the pathv0 . . . vn u1 u2 . . . Further, ifα is a cycle, we denote byαω the
infinite pathα · α · α · · · .

In our next definition, we introduce consumption systems that have been informally
described in Section 1. Recall that an optimal controller for a consumption system should
minimize the mean-payoff of a cap-bounded run and satisfy a given linear-time prop-
ertyϕ (encoded by a non-deterministic Büchi automatonB). For technical convenience,
we assume thatB has already been multiplied with the considered consumption system
(i.e., the synchronized product has already been constructed1). Technically, we declare
some states in consumption systems as accepting and requirethat acap-bounded run
visits an accepting state infinitely often.

Definition 1. A consumption systemis a tupleC = (S, → , c,R, F) where S is a finite
non-empty set ofstates, → ⊆ S × S is atransition relation, c is a function assigning a
non-negative integercostto every transition, R⊆ S is a set ofreload states, and F⊆ S
a non-empty set ofaccepting states. We assume that→ is total, i.e., for every s∈ S
there is some t∈ S such that s→ t.

The encoding size ofC is denoted by||C|| (transition costs are encoded in binary). All
notions defined for labelled graphs naturally extend to consumption systems.

The total costof a given finite pathα ≡ s0
c0→ s1

c1→ · · ·
cn→ sn+1 is defined asc(α) =

∑n
i=0 ci , and themean costof α asMC(α) = c(α)/(n+1). Further, we define theend cost

of α as the total cost of the longest suffix si
ci→ · · ·

cn→ sn+1 of α such thatsi+1, . . . , sn+1 < R
(intuitively, the end cost ofα is the total amount of resources consumed since the last
reload).

Let cap ∈ N. We say that a finite or infinite path̺ ≡ s0
c0→ s1

c1→ s2
c2→ · · · is

cap-boundedif the end cost of every finite prefix of̺ is bounded bycap (intuitively,
this means that the total amount of resources consumed between two consecutive visits
to reload states in̺ is bounded bycap). Further, we say a run̺ in C is acceptingif
̺(i) ∈ F for infinitely manyi ∈ N. For every run̺ in C we define

Valcap
C

(̺) =

lim supi→∞MC(̺≤i) if ̺ is cap-bounded and accepting;

∞ otherwise.

Thecap-valueof a given states ∈ S is defined by

Valcap
C

(s) = inf
̺∈Run(s)

Valcap
C

(̺)

1 It will become clear later thatB being non-deterministic is not an obstacle here, since we work
in a non-stochastic one-player setting.

4

t s u
1 5

0 5

Fig. 1: An optimal controller may require memory of exponential size. HereR= {u} andF = S.

whereRun(s) is the set of all runs inC initiated ins. Intuitively, Valcap
C

(s) is the minimal
mean cost of acap-bounded accepting run initiated ins. The limit valueof s is defined
by ValC(s) = limcap→∞ Valcap

C
(s).

Definition 2. LetC = (S, → , c,R, F) be a consumption system. Acontrollerfor C is a
tupleµ = (M, σn, σu,m0) where M is a set ofmemory elements, σn : S × M → S is a
next functionsatisfying s→σn(s,m) for every(s,m) ∈ S × M, σu : S × M → M is an
update function, and m0 is an initial memory element. If M is finite, we say thatµ is a
finite-memorycontroller (FMC).

For every finite pathα = s0 . . . sn in C, we use ˆσu(α) to denote the unique mem-
ory element “entered” byµ after readingα. Formally,σ̂u(α) is defined inductively by
σ̂u(s0) = σu(s0,m0), andσ̂u(s0 . . . sn+1) = σu(sn+1, σ̂u(s0 . . . sn)). Observe that for every
s0 ∈ S, the controllerµ determines a unique runrun(µ, s0) defined as follows: the initial
state ofrun(µ, s0) is s0, and if s0 . . . sn is a prefix ofrun(µ, s0), then the next state is
σn(sn, σ̂u(s0 . . . sn)). The size of a given FMCµ is denoted by||µ|| (in particular, note
that ||µ|| ≥ |M|).

Definition 3. LetC be a consumption system,µ a controller forC, and cap∈ N. We say
thatµ is cap-optimalfor a given state s ofC if Valcap

C
(run(µ, s)) = Valcap

C
(s).

As we shall see, an optimal controller fors always exists, but it may require infinite
memory. Further, even if there is a FMC fors, it may require exponentially many mem-
ory elements. To see this, consider the simple consumption system of Fig. 1. An optimal
controller for s has to (repeatedly) performcap− 10 visits to t and then one visit to
the only reload stateu, which requirescap− 10 memory elements (recall thatcap is
encoded in binary). Further examples of a non-trivial optimal behaviour can be found in
Appendix A.

To overcome these difficulties, we introduce a special type of finite-memory con-
trollers calledcounting controllers, and a special type of infinite memory controllers
calledadvancing controllers.

Intuitively, memory elements of a counting controller are pairs of the form (r, d)
wherer ranges over a finite setMemandd is a non-negative integer of a bounded size.
The next and update functions depend only onr and the information whetherd is zero or
positive. The update function may change (r, d) to some (r ′, d′) whered′ is obtained from
d by performing acounter action, i.e., an instruction of the formdec(decrement),noc
(no change), orreset(n) wheren ∈ N (reset the value ton). Hence, counting controllers
admit a compact representation which utilizes the special structure of memory elements
and the mentioned restrictions.

Definition 4. Let C = (S, → , c,R, F) be a consumption system. Acounting controller
for C is a tupleκ = (Mem, σ+n , σ

0
n,Act, σ+u , σ

0
u, r0) where

5

– Mem is a finite set ofbasic memory elements,
– σ+n , σ

0
n : S ×Mem→ S arepositiveandzero next functionssatisfying s→σ+n (s, r)

and s→σ0
n(s, r) for every(s, r) ∈ S ×Mem, respectively,

– Act is a finite set ofcounter actions(note that Act may contain instructions of the
form reset(n) for different constants n);

– σ+u : S ×Mem→ Mem× Act is apositive update function,
– σ0

u : S ×Mem→ Mem× (Actr {dec}) is azero update function,
– r0 ∈ Mem is an initial basic memory element.

The encoding size of a counting controllerκ is denoted by||κ||, where all constants used
in counter actions are encoded in binary.

The functionality of a counting controllerκ = (Mem, σ+n , σ
0
n,Act, σ+u , σ

0
u, r0) is deter-

mined by its associated finite-memory controllerµκ = (M, σn, σu,m0) where

– M = Mem× {0, . . . , kmax} wherekmax is the largestn such thatreset(n) ∈ Act (or 0 if
no suchn exists);

– σn(s, (r, d)) = σ⊙n (s, r), where⊙ is either+ or 0 depending on whetherd > 0 or
d = 0, respectively;

– σu(s, (r, d)) = (r ′, d′), wherer ′ is the first component ofσ⊙u (s, r), andd′ is eitherd,
d − 1, or n, depending on whether the counter action in the second component of
σ⊙u (s, r) is noc, dec, or reset(n), respectively (again,⊙ is either+ or 0 depending on
whetherd > 0 ord = 0);

– m0 = (r0, 0).

Observe that||κ|| can be exponentially smaller than||µκ||. Slightly abusing our notation,
we writerun(κ, s0) instead ofrun(µκ, s0).

A counting controllerκ can be seen as a program for a computational device with
O(||Mem||) control states and log(kmax) bits of memory needed to represent the bounded
counter. This device “implements” the functionality ofµκ.

Definition 5. LetC = (S, → , c,R, F) be a consumption system and s∈ S . Anadvancing
controllerfor C and s is a controllerπ for C such that run(π, s) takes the formα · β · γ ·
β2 · γ · β4 · · · γ · β2i

· · · whereβ(0) , β(i) for all 0 < i < len(β).

The encoding size of an advancing controllerπ, denoted by||π||, is given by the total
encoding size ofα, β, andγ. Typically, α andγ will be of polynomial length, but the
length ofβ is sometimes exponential and in this case we use a counting controller to
representβ compactly. Formally, we say that||π|| is polynomialin ||C|| and ||cap|| if α
andγ are of polynomial length and there exists a counting controller κ[β] such that
run(κ[β], β(0)) = βω and||κ|| is polynomial in||C|| and||cap||.

An advancing controllerπ can be seen as a program for a computational device
equipped with two unbounded counters (the first counter maintains the currenti and the
other counter is used to count from 2i to zero; if the device cannot implement the ‘2x’
function directly, an auxiliary third counter may be needed). Also note that the device
can use the program ofκ[β] as a subroutine to produce the finite pathβ (and hence also
finite paths of the formβ2i

). Sinceβ(0) , β(i) for all 0 < i < len(β), the device simply
simulatesκ[β] until revisitingβ(0).

6

3 The Results

In this section, we present the main results of our paper. Ourfirst theorem concerns the
existence and computability of values and optimal controllers in consumption systems.

Theorem 6. LetC be a consumption system, cap∈ N, and s a state ofC. Then Valcap
C

(s)
is computable in polynomial time (i.e., in time polynomial in ||C|| and ||cap||, where cap
is encoded in binary). Further, there exists an optimal controller for s. The existence
of an optimalfinite memorycontroller for s is decidable in polynomial time. If there
exists an optimal FMC for s, then there also exists an optimalcountingcontroller for s
computable in polynomial time. Otherwise, there exists an optimaladvancingcontroller
for s computable in polynomial time.

Our second theorem concerns the limit values, achievability of limit values, and the rate
of convergence to limit values.

Theorem 7. LetC be a consumption system, cap∈ N, and s a state ofC. Then ValC(s)
can be computed in polynomial time (i.e., in time polynomialin ||C||).

Further, the problem whether ValC(s) = Valcap
C

(s) for some sufficiently large cap∈ N
is decidable in polynomial time. If the answer is positive, then ValC(s) = Valcap

C
(s)

for every cap ≥ 3 · |S| · cmax, where cmax is the maximal cost of a transition in
C. Otherwise, for every cap> 4 · |S| · cmax we have that Valcap

C
(s) − ValC(s) ≤

(3 · |S| · cmax)/(cap− 4 · |S| · cmax).

The next subsections are devoted to the proofs of Theorems 6 and 7. Due to space con-
strains, some proofs and algorithms have been shifted to Technical Appendix.

3.1 A Proof of Theorem 6

For the rest of this section, we fix a consumption systemC = (S,→, c,R, F), a capacity
cap∈ N, and an initial states ∈ S.

An admissibility witnessfor a stateq ∈ S is a cycleγ initiated in q such thatγ
contains an accepting state and there is acap-bounded run initiated ins of the form
α · γω. We say thatq ∈ S is admissibleif there is at least one admissibility witness forq.

Observe that ifγ is an admissibility witness for a reload stateq, thenγ can be freely
“inserted” into anycap-bounded run of the formξ · δ whereδ(0) = q so that the run
ξ · γ · δ is againcap-bounded. Such simple observations about admissibility witnesses
are frequently used in our proof of Theorem 6, which is obtained in several steps:

(1) We show how to compute all statest ∈ S such thatValcap
C

(t) = ∞. Note that if
Valcap
C

(t) = ∞, theneverycontroller is optimal int. Hence, ifValcap
C

(s) = ∞, we are
done. Otherwise, we remove all states with infinite value fromC together with their
adjacent transitions.

(2) We compute and remove all statest ∈ S that are not reachable froms via a
cap-bounded finite path. This “cleaning” procedure simplifies our considerations
and it can be performed in polynomial time.

(3) We show thatValcap
C

(s) = 0 iff C contains asimplecycle with zero total cost ini-
tiated in an admissible state (such a cycle is called azero-costcycle). Next, we
show that if there is a zero-cost cycleβ containing an accepting state, then there

7

is an optimal FMCµ for s of polynomialsize such thatrun(µ, s) = α · βω. Oth-
erwise,everyoptimal controller fors has infinite memory, and we show how to
compute finite pathsα, γ of polynomial length such that the (cap-bounded) run
̺ ≡ α · β · γ · β2 · γ · β4 · · · γ · β2i

· · · initiated in s satisfiesValcap
C

(̺) = 0. Thus, the
finite pathsα, β, andγ represent an optimal advancing controller of polynomial size.
The existence of a zero-cost cycle (and the existence of a zero-cost cycle that con-
tains an accepting state) is decidable in polynomial time. If a zero-cost cycle exists,
we are done. Otherwise, we proceed to the next step.

(4) Now we assume thatC does not contain a zero-cost cycle. We show that there exist
• acap-bounded cycleβ initiated in an admissible state such thatMC(β) ≤ MC(δ)

for everycap-bounded cycleδ initiated in an admissible state, andβ(0) , β(i)
for all 0 < i < len(β);
• a cap-bounded cyclêβ containing an accepting state such thatMC(β̂) ≤ MC(δ̂)

for everycap-bounded cyclêδ containing an accepting state.
We prove thatValcap

C
(s) = MC(β). Further, we show the following:

• If MC(β) = MC(β̂), then there exists an optimal FMCµ for s such that
run(µ, s) = α·β̂ω, whereα is a finite path of polynomial length. In general,len(β̂)
(and hence also||µ||) is exponentialin ||C|| and||cap||. We show how to compute a
countingcontrollerκ[β̂] of polynomialsize such thatrun(κ[β̂], β̂(0)) = β̂ω. Since
α is a finite path of polynomial length, we also obtain a counting controllerκ of
polynomial size such thatrun(κ, s) = run(µ, s).
• If MC(β) < MC(β̂), theneveryoptimal controller forshas infinite memory, and

we show how to efficiently compute finite pathsα, γ of polynomial length and
a counting controllerκ[β] of polynomial size such thatrun(κ[β], β(0))= βω and
the run̺ ≡ α·β·γ·β2·γ·β4 · · ·γ·β2i

· · · initiated inssatisfiesValcap
C

(̺) = Valcap
C

(s).
Thus, we obtain an optimal advancing controllerπ for sof polynomial size.

We start with step (1).

Lemma 8. Let t ∈ S . The problem whether Valcap
C

(t) = ∞ is decidable in polynomial
time.

The next lemma implements step (2).

Lemma 9. Let t ∈ S . The existence of a cap-bounded path from s to t is decidablein
polynomial time. Further, an example of a cap-bounded path from s to t (if it exists) is
computable in polynomial time.

We also need the following lemma which says that for every admissible state, there is an
efficiently computable admissibility witness.

Lemma 10. The problem whether a given q∈ S is admissible is decidable in poly-
nomial time. Further, if q is admissible, then there are finite pathsα, γ computable in
polynomial time such thatα · γω is a cap-bounded run initiated in s andγ is an admis-
sibility witness for q of length at most6 · |S|2.

As we already indicated in the description of step (2), from now on we assume that all
states ofC have a finite value and are reachable froms via a cap-bounded finite path.
Recall that azero-costcycle is a cycle inC initiated in an admissible state with zero total
cost. Now we proceed to step (3).

8

Lemma 11. We have that Valcap
C

(s) = 0 iff there exists a zero-cost cycle. Further, the
following holds:

1. If there is a zero-cost cycleβ containing an accepting state, then the run̺ ≡ α · βω,
whereα is a cap-bounded finite path from s toβ(0), satisfies Valcap

C
(̺) = Valcap

C
(s).

Hence, there is a FMCµ optimal for s where||µ|| is polynomial in||C|| and ||cap||.
2. If there is a zero-cost cycleβ but no zero-cost cycle contains an accepting state, then

every cap-optimal controller for s has infinite memory. Further, for a given zero-cost
cycleβ there exist finite pathsα andγ computable in polynomial time such that the
run ̺ ≡ α · β · γ · β2 · · · γ · β2i

· · · satisfies Valcap
C

(̺) = Valcap
C

(s). Hence, there exist an
advancing controllerπ optimal for s where||π|| is polynomial in||C|| and ||cap||.

Proof. If Valcap
C

(s) = 0, there is an accepting run̺initiated in s such thatValcap
C

(̺) <
1/|S|. Let̺′ be an infinite suffix of ̺ such that all states that appear in̺′ appear infinitely
often in̺′. This means that all states that appear in̺′ are admissible. Obviously, there is
k ∈ N such that the cost of every transition̺′(k+i)→ ̺′(k+i+1), where 0≤ i ≤ |S| − 1,
is zero (otherwise, we would haveValcap

C
(̺) = Valcap

C
(̺′) ≥ 1/|S|), and hence there exists

a zero-cost cycle.
Now assume thatC contains a zero-cost cycleβ containing an accepting state. Since

there is acap-bounded finite pathα form s to β(0) (see step (2) and Lemma 9), the run
̺ ≡ α · βω is cap-bounded and satisfiesValcap

C
(̺) = 0. Since the length ofα andβ is

polynomial in||C|| and||cap|| (see Lemma 9), we obtain Claim 1.
Finally, assume thatC contains a zero-cost cycleβ but no zero-cost cycle inC con-

tains an accepting state. Sinceβ(0) is admissible, there is acap-bounded runα · γω

initiated in s whereγ is an admissibility witness forβ(0). Note that the length ofα and
γ is polynomial in||C|| and||cap|| by Lemma 10, and the run̺≡ α · β · γ · β2 · · · γ · β2i

· · ·

is accepting andcap-bounded. Further, a simple computation shows thatValcap
C

(̺) = 0.
Hence, there exists an advancing controllerπ optimal for s such that||π|| is polynomial
in ||C|| and ||cap||. It remains to show that there is no optimal finite memory controller
for s. However, it suffices to realize that ifµ is a finite memory controller, thenrun(µ, s)
takes the form ˆα · β̂ω, whereβ̂ contains an accepting state. By our assumption,c(β̂) , 0,
which means thatValcap

C
(α̂ · β̂ω) , 0. ⊓⊔

In the next lemma we show how to decide the existence of a zero-cost cycle efficiently,
and how to construct an example of a zero-cost cycle if it exists. The same is achieved
for zero-cost cycles containing an accepting state. Thus, we finish step (3).

Lemma 12. The existence of a zero-cost cycle is decidable in polynomial time, and an
example of a zero-cost cycleβ (if it exists) is computable in polynomial time. The same
holds for zero-cost cycles containing an accepting state.

It remains to complete step (4), which is the most technical part of our proof. From now
on we assume thatC does not contain any zero-cost cycles.

We say that a cycleβ in C is reload-simple, if every reload state appears at most once
in β, i.e., for everyt ∈ R there is at most one 0≤ i < len(β) satisfyingβ(i) = t. Further,
we say that a cycleβ is T-visiting, whereT ⊆ S, if β is a cap-bounded reload-simple
cycle initiated in an admissible reload state such thatβ contains a state ofT. We say that
β is anoptimal T-visiting cycleif MC(β) ≤ MC(δ) for everyT-visiting cycleδ. Note that
every state of aT-visiting cycleβ is admissible.

9

Lemma 13. If C does not contain any zero-cost cycle, then it contains an optimal
F-visiting cycle and an optimal S -visiting cycle.

Proof. We give an explicit proof just forF-visiting cycles (the argument forS-visiting
cycles is very similar). First, we show that there is at leastoneF-visiting cycle, and then
we prove that everyF-visiting cycle has a bounded length. Thus, the set of allF-visiting
cycles is finite, which implies the existence of an optimal one.

SinceValcap
C

(s) < ∞, there is acap-bounded accepting run̺initiated ins. Note that
if ̺ contained only finitely many occurrences of reload states, it would have to contain
zero-cost cycle, which contradicts our assumption. Hence,̺ contains infinitely many
occurrences of a reload state and infinitely many occurrences of an accepting state. Let
̺′ be a suffix of ̺ such that every state that appears in̺′ appears infinitely often in̺ ′

(hence, all states that appear in̺′ are admissible). We say that a subpath̺′(i) . . . ̺′(j)
of ̺′ is uselessif ̺′(i) = ̺′(j) ∈ R and no accepting state is visited along this subpath.
Let ˆ̺ be a run obtained from̺′ by removing all useless subpaths (observe that ˆ̺ is still a
cap-bounded accepting run). Then, there must be a subpath ˆ̺(i) . . . ˆ̺(j) of ˆ̺ such that the
length of this subpath is positive, ˆ̺(i) = ˆ̺(j) ∈ R, the subpath visits an accepting state,
and no reload state is visited more than once along ˆ̺(i) . . . ˆ̺(j−1). Hence, this subpath
is anF-visiting cycle.

Now letβ be anF-visiting cycle. Then every state onβ is admissible, which means
that every simple cycleδ that is a subpath ofβ has positive cost, otherwiseδ would be
a zero-cost cycle. This implies that a maximal length of a subpath ofβ which does not
contain any reload state is (|S| + 1) · (cap+ 1) (becauseβ is cap-bounded). From the
reload-simplicity ofβ we get thatlen(β) ≤ |R| · (|S| + 1) · (cap+ 1). ⊓⊔

We useMCF andMCS to denote the mean cost of an optimalF-visiting cycle and the
mean cost of an optimalS-visiting cycle, respectively. Now we prove the following:

Lemma 14. Suppose thatC does not contain any zero-cost cycle. Then Valcap
C

(s) =
MCS≤ MCF. Moreover, the following holds:

1. If MCF = MCS, then for every optimal F-visiting cycleβ and every cap-bounded
pathα from s toβ(0) we have that the run̺ ≡ α · βω satisfies Valcap

C
(̺) = Valcap

C
(s).

Hence, there exists an optimal FMC for s.
2. If MCS< MCF, then every cap-optimal controller for s has infinite memory. Fur-

ther, for a given optimal S -visiting cycleβ there exist finite pathsα and γ com-
putable in polynomial time such that the run̺ ≡ α · β · γ · β2 · · · γ · β2i

· · · satisfies
Valcap
C

(̺) = Valcap
C

(s). Hence, there exists an optimal advancing controller for s.

Proof. Clearly, MCS ≤ MCF, because everyF-visiting cycle is alsoS-visiting. Now
we show that for every run̺ we have thatValcap

C
(̺) ≥ MCS. This clearly holds for all

non-accepting runs. Every accepting run̺must contain infinitely many occurrences of a
reload state, otherwise it would contain a zero-cost cycle as a subpath, which contradicts
our assumption. Let̺ ′ be a suffix of ̺ initiated in a reload state such that every state
which appears in̺ ′ appears infinitely often in̺′. Then̺′ takes the formβ0 · β1 · β2 · · · ,
where for everyi ≥ 0, the subpathβi is a cycle initiated in a reload state. Everyβi can be
decomposed into reload-simple cyclesβi,1, βi,2, . . . , βi,im that are initiated in reload states
(here the decomposition is meant in a graph-theoretical sense, i.e., a transition appears

10

b times onβi if and only if b = b1 + · · · + bm, whereb j is a number of occurrences of
this transition onβi, j). Each of these cycles is anS-visiting cycle (since every state on̺′

is admissible) and clearlyMC(̺) = MC(̺′) ≥ mini≥1 MC(βi) ≥ mini≥0,1≤ j≤im MC(βi, j) ≥
MCS.

The rest of the proof closely follows the proof of Lemma 11. First we consider the
case whenMCF = MCS, i.e., for every optimalF-visiting cycleβ we have thatMC(β) =
MCS. If α is a cap-bounded path froms to β(0), then we have that the run̺≡ α · βω

satisfiesValcap
C

(α · βω) = MCS= Valcap
C

(s), and hence there exists an optimal FMC fors.
If MCS < MCF, consider an optimalS-visiting cycleβ. Sinceβ(0) is admissible,

there is acap-bounded runα · γω initiated in s whereγ is an admissibility witness for
β(0) andα andγ are computable in polynomial time (see Lemma 10. Further, the run
̺ ≡ α · β · γ · β2 · · ·γ · β2i

· · · is accepting andcap-bounded, and one can easily show that
Valcap
C

(̺) = MCS= Valcap
C

(s). Hence, there exists an optimal advancing controller fors.
Since every finite memory controllerµ satisfiesrun(µ, s) ≡ α̂ · β̂ω and||cap||. It remains
to show that there is no optimal finite memory controller fors. For every FMCµwe have
thatrun(µ, s) ≡ α̂ · β̂ω, whereβ̂ is a cycle on a reload state containing an accepting state.
Further,Valcap

C
(µ) = MC(β̂). The cycleβ̂ can be decomposed into reload-simple cycles

on reloading states whose mean cost is at leastMCS. Since at least one of these cycles is
accepting andMCF > MCS, we obtainMC(β̂) > MCS. ⊓⊔

Note that Lemma 14 does not specify any bound on the length ofβ and in general,
this length can be exponential. Now we show that an optimalF-visiting cycle and an
optimal S-visiting cycle can be represented by a counting controllerconstructible in
polynomial time. This is the technical core of our construction which completes the
proof of Theorem 6.

Lemma 15. Suppose thatC does not contain any zero-cost cycle, and let T be either
S or R. Then there exist a counting controllerκ and a reload state r computable in
polynomial time such that run(κ, r) = βω whereβ is an optimal T-visiting cycle.

3.2 A Proof of Lemma 15

We start by refining the notion of an optimalT-visiting cycle and identifying those cycles
that can be represented by counting controllers of polynomial size.

A segmentof a pathβ is a finite subpathη of β such that the first and the last state
of η are reload states andη does not contain any other occurrence of a reload state. Note
that every reload-simple cycle is composed of at most|R| segments. Furthermore, we say
that a finite path iscompact, if it is a cap-bounded path of the formγ ·δk ·γ′, whereγ and
γ′ are finite paths satisfyinglen(γ) + len(γ′) ≤ 5|S|3, δ is either a cycle of length at most
|S| or a path of length 0 (i.e., a state), andk ≤ cap. A compact segmentis a compact path
that is also a segment.

Later we show that there is an optimalT-visiting cycleβ such that every segment
of β is a compact segment. Intuitively, such a cycle can be produced by a counting
controller of polynomial size which has at most|R| reset actions. However, this does not
yet imply that such a counting controller can be efficiently constructed, because there
are exponentially many possible compact segments. Hence, we need to show that we
can restrict our attention to some set of compact segments ofpolynomial size.

11

We say that a compact segmentγ · δk · γ′ has acharacteristic(r, q, t,m, n, b), where
r, t ∈ R, q ∈ S, m, n ∈ N are such that 0≤ m ≤ 5|S|3 and 0≤ n ≤ |S|, andb ∈ {0, 1}, if
the following holds:

– γ(0) = r, last(γ) = γ′(0) = q, last(γ′) = t, andlen(γ · γ′) = m;
– δ(0) = q, len(δ) = n;
– we either have thatn = 0 andk = 1, orn > 0 and thenc(δ) > 0 andk is the maximal

number such thatγ · δk · γ is acap-bounded path;
– if b = 1, thenγ · γ′ contains a state ofT;
– if δ contains a state ofT, thenγ · γ′ also contains a state ofT.

Note that for a given consumption system there are at most polynomially many distinct
characteristics of compact segments. Also note that not allcompact segments have a
characteristic (because of the third and the fifth conditionin the above definition), and
conversely, some compact segments may have multiple characteristics (e.g., if a compact
segment has a characteristic whereb = 1, then it also has one whereb = 0). Finally, note
that for any compact segmentγ · δk ·γ′ with a characteristic (r, q, t,m, n, b), the pathγ ·γ′

is a compact segment with the characteristic (r, q, t,m, 0, b).
A characteristicχ of a compact segmentγ · δk · γ′ imposes certain restrictions on the

form of γ · γ′ andδ. Such a compact segment isoptimal for χ if γ · γ′ andδ are paths
of minimal cost among those that meet this restriction. Formally, a compact segment
γ · δk · γ′ with a characteristicχ = (r, q, t,m, n, b) is optimal forχ if

– c(γ · γ′) is minimal among the costs of all segments with the characteristic
(r, q, t,m, 0, b), and

– c(δ) is minimal among the costs of all cycles of lengthn and positive cost, that are
initiated inq, and that do not contain any reload state with a possible exception ofq
(if n = 0, we consider this condition to be satisfied trivially).

Lemma 16. If there is at least one compact segment with a given characteristic χ, then
there is also an optimal compact segment forχ. Moreover, all compact segments optimal
for a given characteristic have the same total cost and length.

Hence, to each of the polynomially many characteristicsχ we can assign a segment
optimal forχ and thus form a polynomial-sized candidate set of compact segments. The
following lemma, which is perhaps the most intricate step inthe proof of Lemma 15,
shows that there is an optimalT-visiting cycleβ such that every segment ofβ belongs to
the aforementioned candidate set.

Lemma 17. There is an optimal T-visiting cycleβ whose every segment is a compact
segment optimal for some characteristic.

Given a characteristicχ, it is easy to compute a succinct representation of some compact
segment optimal forχ, as the next lemma shows.

Lemma 18. Given a characteristicχ, the problem whether the set of all compact seg-
ments with the characteristicχ is non-empty is decidable in polynomial time. Further, if
the set is non-empty, then a tuple(γ, γ′, δ, k) such thatγ · δk · γ′ is a compact segment
optimal forχ is computable in polynomial time.

12

For a given characteristicχ, we denote byCTuple(χ) the tuple (γ, γ′, δ, k) returned for
χ by the algorithm of Lemma 18 (if an optimal compact segment for χ does not exist,
we putCTuple(χ) = ⊥), and byCPath(χ) the corresponding compact segmentγ · δk ·
γ′ (CTuple(χ) = ⊥, we putCPath(χ) = ⊥). The next lemma is a simple corollary to
Lemma 16 and Lemma 17.

Lemma 19. There is an optimal T-visiting cycleβ such that every segment ofβ is of the
form CPath(χ) for some characteristicχ.

Now we can easily prove the existence of a polynomial-sized counting controller
representing some optimalT-visiting cycle β. According to Lemma 19, there is a
sequenceχ0, χ1, . . . , χ j of at most |R| characteristics such thatβ = CPath(χ0) ·
CPath(χ1) · · ·CPath(χg) is an optimalT-visiting cycle. To iterate the cycleβ forever
(starting inβ(0)), a counting controller requires at most|R| · n basic memory elements,
wheren is the maximal number of basic memory elements needed to produce a compact
segmentCPath(χi), for 0 ≤ i ≤ g. So, consider a compact segmentCPath(χi) = γ ·δk ·γ′.
Note thatk ≤ cap sinceCPath(χi) has a characteristic and thusc(δ) > 0. To produce
CPath(χi), the controller requires at most 5|S|3 basic memory elements to produce the
prefix γ and the suffix γ′ of CPath(χi), and at most|S| basic memory elements to it-
erate the cycleδ (whose length is at most|S|) exactlyk times. The latter task also re-
quires counting down fromk ≤ cap to 0. Overall, the counting controller producingβω

needs a polynomial number of basic memory elements, and requires at most|R| reset
actions parameterized by numbers of encoding size at most log(cap). To compute such a
counting controller, it clearly suffices to compute the aforementioned sequence of tuples
CTuple(χ0), · · · ,CTuple(χg).

Now we can present the algorithm promised in Proposition 15.In the following, we
useX to denote the set of all possible characteristics of compactsegments inC, Xr,t to
denote the set of all characteristics of the form (r, q, t,m, n, b) for someq,m, n, b, andX1

r,t
to denote the set of all characteristics ofXr,t where the last component is equal to 1. The
algorithm first computes the setR′ ⊆ R of all admissible reload states (see Lemma 10).
Note thatR′ is non-empty because there exists at least oneT-visiting cycle. The idea
now is to compute, for every ˆq ∈ R′, a polynomial-sized labelled graphGq̂ such that
cycles in this graph correspond toT-visiting cycles inC that are initiated in ˆq and that
can be decomposed into segments of the formCPath(χ). An optimalT-visiting cycle is
then found via a suitable analysis of the constructed graphs.

Formally, for a given ˆq ∈ R′ we construct a labelled graphGq̂ = (V, 7→ , L, ℓ), where
L ⊂ N2

0, and where:

– V =W× {0, . . . , |S|}, whereW = R′ ∪ {CTuple(χ) | χ ∈ X}.
– For every 0 ≤ i < |S|, every pair of statesr, t ∈ R′ such thatr , q̂, and

every characteristicχ ∈ Xr,t there is an edge ((r, i), (CPath(χ), i)) labelled by
(c(CPath(χ)), len(CPath(χ))) and an edge ((CPath(χ), i), (t, i + 1)) labelled by (0, 0).

– For every statet ∈ R′ and every characteristicχ ∈ X1
q̂,t there is an

edge ((q̂, 0), (CPath(χ), 0)) labelled by (c(CPath(χ)), len(CPath(χ))) and an edge
((CPath(χ), 0), (t, 1)) labelled by (0, 0).

– For every 1≤ i ≤ |S| there is an edge ((ˆq, i), (q̂, 0)) labelled by (0, 0).
– There are no other edges.

13

The labelling function ofGq̂ can be computed in polynomial time, because given a
characteristicχ, we can computeCPath(χ) = (γ, γ′, δ, k) using Lemma 18. Then,
len(CPath(χ)) = len(γ)+ len(γ′)+ k · len(δ), and similarly forc(CPath(χ)). Note that ev-
ery cycle inGq̂ contains the vertex (ˆq, 0). Also note that some of the constructed graphs
Gq̂ may not have a cycle (the out-degree of (ˆq, 0) may be equal to 0), but later we show
that at least one of them does.

Theratio of a cycleβ̂ = v0
(c0,d0)
7→ v1

(c1,d1)
7→ v2 · · ·

(ch−1,dh−1)
7→ vh in Gq̂ is the valuerat(β̂) =

(c0 + c1 + · · · + ch−1)/(d0 + d1 + · · ·dh−1). For every ˆq ∈ R′, our algorithm finds a simple
cycle β̂q̂ of minimal ratio among all cycles inGq̂. This is done using a polynomial-
time algorithm for a well-studied problem ofminimum cycle ratio(see, e.g., [15, 16]).
The algorithm then picks ˆr ∈ R′ such that the ratio of̂βr̂ is minimal. Clearly,β̂r̂ has
an even length and every second vertex is a 4-tuple of the formCTuple(χ) for some
characteristicχ. Since all cycles in ˆr go through (ˆr , 0), we may assume thatβ̂r̂ is initi-
ated in this vertex. LetCTuple(χ̂0),CTuple(χ̂1), . . . ,CTuple(χ̂g) be the sequence of these
4-tuples, in the order they appear inβ̂r̂ . From the construction ofGr̂ it follows that
β = CPath(χ̂0) ·CPath(χ̂1) · · ·CPath(χ̂g) is a reload-simple cycle initiated in an admissi-
ble state ˆr containing a state ofT (sinceχ0 has the last component equal to 1), i.e.,β is a
T-visiting cycle. Moreover,MP(β) is clearly equal to the ratio of̂βr̂ . Using the computed
sequence of tuplesCTuple(χ̂0),CTuple(χ̂1), . . . ,CTuple(χ̂g), the algorithm constructs the
desired counting controllerκ such thatrun(κ, β(0)) = βω (see also the discussion after
Lemma 19). It is easy to check thatrat(β̂r̂) = MC(β̂r̂) is equal to the mean cost of an
optimalT-visiting cycle, i.e., the algorithm is correct.

3.3 Proof of Theorem 7

For the rest of this section we fix a consumption systemC = (S, → , c,R, F) and an
initial states ∈ S. Intuitively, the controller can approach the limit value by interleaving
a large number of iterations of some “cheap” cycle with visits to an accepting state. This
motivates the following definitions ofsafeandstrongly safecycles. Intuitively, a cycle
is safe if, assuming unbounded battery capacity, the controller can iterate the cycle for
an arbitrary number of times and interleave these iterations with visits to an accepting
state. A cycle is strongly safe if the same behaviour is achievable for some finite (though
possibly large) capacity.

Formally, we say that two statesq, t ∈ S areinter-reachableif there is a path fromq
to t and a path fromt to q (i.e.,q, t are in the same strongly connected component ofC).
We say that a cycleβ of length at most|S| whereβ(0) is reachable froms is safe, if one
of the following conditions holds:

– c(β) = 0 andβ contains an accepting state,
– β(0) is inter-reachable with a reload state and an accepting state,

A cycle β reachable froms with len(β) ≤ |S| is strongly safe, if one of the following
holds:

– c(β) = 0 andβ contains an accepting state,
– c(β) = 0 andβ(0) is inter-reachable with a reload state and an accepting state,
– β contains a reload state andβ(0) is inter-reachable with an accepting state.

14

The following lemma characterizes the limit value ofs.

Lemma 20. ValC(s) is finite iff there is a safe cycle, in which case ValC(s) =
min{MC(β) | β is a safe cycle}. Further, there is a finite cap∈ N0 such that Valcap

C
(s) =

ValC(s) iff either ValC(s) = ∞, or there is a strongly safe cyclêβ such that MC(β̂) =
ValC(s). In such a case Valcap

C
(s) = ValC(s) for every cap≥ 3 · |S| · cmax, where cmax is the

maximal cost of a transition inC.

So, in order to compute the limit value and to decide whether it can be achieved with
some finite capacity, we need to compute a safe and a strongly safe cycle of minimal
mean cost.

Lemma 21. The existence of a safe (or strongly safe) cycle is decidablein polynomial
time. Further, if a safe (or strongly safe) cycle exists, then there is a safe (or strongly
safe) cycleβ computable in polynomial time such that MC(β) ≤ MC(β′) for every safe
(or strongly safe) cycleβ′.

Now we can prove the computation-related statements of Theorem 7.
To compute the limit value ofs, we use the algorithm of Lemma 21 to compute a safe

cycleβ of minimal mean cost. If no such cycle exists, we haveValC(s) = ∞, otherwise
ValC(s) = MC(β). To decide whetherValC(s) can be achieved with some finite capacity,
we again use the algorithm of Lemma 21 to compute a strongly safe cycleβ̂ of minimal
mean cost. If such a cycle exists andMC(β̂) = MC(β), thenValC(s) can be achieved
with some finite capacity, otherwise not. The correctness ofthis approach follows from
Lemma 20.

It remains to bound the rate of convergence to the limit valuein case when no finite
capacity suffices to realize it. This is achieved in the following lemma.

Lemma 22. Let cmax be the maximal cost of a transition inC. For every cap> 4·|S|·cmax

we have that

Valcap
C

(s) − ValC(s) ≤
3 · |S| · cmax

cap− 4 · |S| · cmax
.

4 Future work

We have shown that an optimal controller for a given consumption system always exists
and can be efficiently computed. We have also exactly classified the structural complex-
ity of optimal controllers and analyzed the limit values achievable by larger and larger
battery capacity.

The concept ofcap-bounded mean-payoff is natural and generic, and we believe it
deserves a deeper study. Since mean-payoff has been widely studied (and applied) in the
context of Markov decision processes, a natural question iswhether our results can be
extended to MDPs. Some of our methods are surely applicable,but the question appears
challenging.

15

References

1. Proceedings of FST&TCS 2010, volume 8 ofLeibniz International Proceedings in Informat-
ics. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010.

2. Proceedings of ICALP 2010, Part II, volume 6199 ofLecture Notes in Computer Science.
Springer, 2010.

3. N. Berger, N. Kapur, L.J. Schulman, and V. Vazirani. Solvency Games. InProceedings of
FST&TCS 2008, volume 2 ofLeibniz International Proceedings in Informatics, pages 61–72.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2008.

4. P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, and J. Srba. Infinite Runs in Weighted
Timed Automata with Energy Constraints. InProceedings of FORMATS 2008, volume 5215
of Lecture Notes in Computer Science, pages 33–47. Springer, 2008.

5. T. Brázdil, V. Brožek, and K. Etessami. One-Counter Stochastic Games. InProceedings of
FST&TCS 2010[1], pages 108–119.

6. T. Brázdil, V. Brožek, K. Etessami, A. Kučera, and D. Wojtczak. One-Counter Markov Deci-
sion Processes. InProceedings of SODA 2010, pages 863–874. SIAM, 2010.

7. T. Brázdil, K. Chatterjee, A. Kučera, and P. Novotný. Efficient Controller Synthesis for Con-
sumption Games with Multiple Resource Types. InProceedings of CAV 2012, volume 7358
of Lecture Notes in Computer Science, pages 23–38. Springer, 2012.

8. T. Brázdil, P. Jančar, and A. Kučera. Reachability Games on Extended Vector Addition Sys-
tems with States. InProceedings of ICALP 2010, Part II[2], pages 478–489.

9. T. Brázdil, A. Kučera, P. Novotný, and D. Wojtczak. Minimizing Expected Termination Time
in One-Counter Markov Decision Processes. InProceedings of ICALP 2012, Part II, volume
7392 ofLecture Notes in Computer Science, pages 141–152. Springer, 2012.

10. K. Chatterjee and L. Doyen. Energy Parity Games. InProceedings of ICALP 2010, Part II
[2], pages 599–610.

11. K. Chatterjee and L. Doyen. Energy and Mean-Payoff Parity Markov Decision Processes.
In Proceedings of MFCS 2011, volume 6907 ofLecture Notes in Computer Science, pages
206–218. Springer, 2011.

12. K. Chatterjee, L. Doyen, T. Henzinger, and J.-F. Raskin.Generalized Mean-payoff and Energy
Games. InProceedings of FST&TCS 2010[1], pages 505–516.

13. K. Chatterjee, M. Henzinger, S. Krinninger, and D. Nanongkai. Polynomial-Time Algorithms
for Energy Games with Special Weight Structures. InProceedings of ESA 2012, volume 7501
of Lecture Notes in Computer Science, pages 301–312. Springer, 2012.

14. K. Chatterjee, T. Henzinger, and M. Jurdziński. Mean-Payoff Parity Games. InProceedings
of LICS 2005, pages 178–187. IEEE Computer Society Press, 2005.

15. B. Dantzig, W. Blattner, and M. R. Rao. Finding a cycle in agraph with minimum cost to
times ratio with applications to a ship routing problem. In P. Rosenstiehl, editor,Theory of
Graphs, pages 77–84. Gordon and Breach, 1967.

16. A. Dasdan, S.S. Irani, and R.K. Gupta. Efficient algorithms for optimum cycle mean and
optimum cost to time ratio problems. InDesign Automation Conference, 1999. Proceedings.
36th, pages 37–42, 1999.

17. U. Fahrenberg, L. Juhl, K. Larsen, and J. Srba. Energy Games in Multiweighted Automata.
In Proceedings of the 8th International Colloquium on Theoretical Aspects of Computing
(ICTAC’11), volume 6916 ofLecture Notes in Computer Science, pages 95–115. Springer,
2011.

18. A. Kučera. Playing Games with Counter Automata. InReachability Problems, volume 7550
of Lecture Notes in Computer Science, pages 29–41. Springer, 2012.

16

Technical Appendix

A Non-trivial Behaviour of Optimal Controllers

Consider the consumption systemC on Figure 2, whereR= {s} andF = S.

q1

q3

q5 s

u r

q2

q4

t

3490

1

0

0

0

0

0

50 50

60

0

22

Fig. 2: A consumption system with a non-trivial behaviour ofan optimal controller.

Denote byδ1 the cycleuq1q2q3q4q5u, and byδ2 the cycleuru. Let s be the initial
state and letcap= 450. Clearly, a controller that visitst cannot be optimal, because of
the enormous mean cost of the cycleutu. Moreover it does not make sense to iterate
the cyclesus, since its mean cost is much larger than the mean cost of bothδ1 andδ2.
Thus, an optimal controller goes froms to u, then iteratesδ1 for A ∈ {0, 1, . . . , 5} times,
then possibly iteratesδ2 for B ∈ {0, 1, . . . , 15} times, and then returns tos. An easy
computation shows that the optimal behaviour is achieved for A = 5 andB = 2, and the
resulting mean cost is equal to 37/3. This shows that the optimal controller generally has
to iterate more than one simple cycle between two visits of a reload state (the controller
from example on Figure 1 iterated only 1 simple cycle before returning to the reload
state). Also, note that the cyclett, which has the minimal mean cost among all simple
cycles inC, is not traversed by the optimal controller at all.

Now let us again consider the example on Figure 1. Note that for any capacitycap≥
10 we haveValcap

C
(s) = cap

2+2·(cap−10) =
1
2 ·

cap
cap−9. It is then clear thatValC(s) = 1/2 and that

this limit value cannot be achieved for any finite capacity.
Finally, consider the consumption systemC on Figure 3. For every capacitycapwe

haveValcap
C

(s) = ∞, since everycap-bounded pathC must have an infinite suffix uω and
thus it cannot be accepting. Thus, the limit valueValC(s) is also infinite. However, if
we treat the system as a one-player mean-payoff Büchi game (see, e.g., [14]), then the
optimal value ins is 1/2.

17

t s u
1

0

0

0

Fig. 3: Limit value is not equal to the Büchi mean-payoff value. HereR= {u} andF = {t}.

B Proofs for Auxiliary Algorithms in Section 3.1

In this section we provide the proofs for auxiliary algorithms from Section 3.1, i.e.,
the proof of Lemmas 8,9,10 and 12. The problems solved by these algorithms (cap-
reachability, existence of an acceptance witness, etc.) are variants of standard graph-
theoretic problems. Our choice of algorithms is motivated by our intention to achieve as
straightforward correctness proofs and proofs of polynomial running time as possible. It
is not hard to see that the complexity of these algorithms (which does not dominate the
overall complexity of the algorithm from Theorem 6) can be improved.

Note that the lemmas are not proved in the order in which they appear in the main
text. We first prove Lemma 9, then Lemma 10, then Lemma 8 and finally Lemma 12.
This is because some algorithms use as a sub-procedure an algorithm which, in the main
text, appears, later than the algorithm in which this sub-procedure is used. We chose to
mention the algorithms in the main text in a different order to make the flow of ideas in
the main text more natural.

B.1 A Proof of Lemma 9

We denote byec(α) the end cost of a finite pathα. First we prove the following lemma.

Lemma 23. If a state t is cap-reachable from s, then there is a cap-bounded pathα of
length at most|S|2 such that ec(α) = min{ec(α′) | α′ is a cap-bounded path from s to t}.

Proof. Let t becap-reachable froms. Since the end costs are natural numbers, the value
min-ec = min{ec(α′) | α′ is acap-bounded path froms to t} exists. Letα be a cap-
bounded path of minimal length among thecap-bounded paths froms to t that have
ec(α) = min-ec. Assume, for the sake of contradiction, thatlen(α) > |S|2. Two cases
may arise: either at most|R| reload states appear onα and thenα = γ · δ ·γ′, where either
δ is a cycle not containing a reload state, orδ(0) = last(δ) ∈ R. In both cases clearly,
γ · γ′ is acap-bounded path froms to t with ec(γ · γ′) = ec(α), a contradiction with the
choice ofα. The second case is that there are more than|R| occurrences of a reload state
onα. Thenα = γ · δ · γ′, whereδ(0) = last(δ) ∈ R. As above, we get a contradiction with
the choice ofα. ⊓⊔

We now prove a slightly more general variant of Lemma 9.

Lemma 24. There is a polynomial-time algorithm, which for a given state s, given ca-
pacity cap and every state t∈ S decides, whether t is cap-reachable from s. Moreover,
for every t that is cap-reachable from s the algorithm computes a cap-bounded pathα of
length at most|S|2 such that ec(α) = min{ec(α′) | α′ is a cap-bounded path from s to t}.

18

Proof. Denotemin-ec= min{ec(α′) | α′ is acap-bounded path froms to t}. Moreover,
for anyt ∈ S and anyi ∈ N0 we denote

min-eci(t) = min{ec(α) | α is acap-bounded path froms to t of lengthi}.

From Lemma 23 it follows thatmin-ec(t) = min0≤i≤|S|2 min-eci(t).
Now consider an operation⊕cap onN0 ∪ {∞} such that for anya ⊕cap b = a + b if

a+ b ≤ capand∞ otherwise (we use a standard convention that∞ + x = x +∞ = ∞
for anyx ∈ N0∪ {∞}). Clearlymin-ec0(t) is equal to 0 ift = sand equal to∞ otherwise.
For i > 0 a straightforward induction reveals that

min-eci(t) =

min
q

a
→t

(min-eci−1(q) ⊕cap a) if t < R

0 if t ∈ Rand min
q

a
→t

(min-eci−1(q) ⊕cap a) < ∞

∞ otherwise.

Using these equations we can iteratively compute
min-ec0(q),min-ec1(q), . . . ,min-ec|S|

2
(q) for all states q in polynomial time. Now

by Lemma 23 we have for any statet thatmin-ec(t) = min0≤i≤|S|2 min-eci(t), and clearly
t is cap-reachable froms iff min-ec(t) < ∞. Moreover, let jt ≤ |S|2 be such that
min-ecjt (t) = min-ec(t) < ∞. Then from the knowledge ofmin-ec0,min-ec1, . . . ,min-ecj

we can construct a finitecap-bounded pathα = q0q1 . . .q jt with from s to t by putting
q jt = t and for every j < jt defining q j the state that caused themin-ecj+1(q j+1)
to be set to its final value. I.e., ifq j+1 < R, then q j is such thatq j

a
→ q j+1 and

min-ecj(q j) ⊕cap a = min-ecj+1(q j+1), otherwise q j is such thatq j
a
→ q j+1 and

min-ecj(q j) ⊕cap a < ∞. The correctness of this approach is immediate. ⊓⊔

B.2 A Proof of Lemma 10

Before we prove Lemma 10, we prove the following simple lemma.

Lemma 25. For a given state s it is decidable in polynomial time whetherthere is a
cycleδ of zero cost containing s, and if such aδ exists, we can compute in polynomial
time a simple cycle with this property. Moreover, for a givenset of states T⊆ S it is
decidable in polynomial time, whether there is a cycle of zero cost containing s and a
state from T, and if such a cycle exists, we can compute such a cycle of length at most
2|S| in polynomial time.

Proof. Clearly if there is a cycle of zero cost ons, there is also a simple cycle of zero
cost ons. Such a cycle can be find using a simple modification of e.g., the breadth-first
search algorithm – for everyt such thats 0

→ t we try to find a path fromt to s while
ignoring the transitions of positive cost. Similarly, if there is a cycle of zero cost ons
that contains a state fromT, then the shortest such cycle has length at most 2|S| (we need
to get froms to a statet ∈ T and back via transitions of zero cost, each of these two parts
requiring at most|S| transitions). Again, such a cycle can be find using a suitablesearch
algorithm: first, we compute a setT′ ⊆ T of states that are reachable via transitions of

19

zero cost from a stateq s.t. s 0
→ q , and then, for everyt ∈ T′ we try to find (possibly

empty) path fromt to s. Clearly, both tasks can be implemented using a simple graph
search algorithm. ⊓⊔

The following lemma will be also useful.

Lemma 26. Let r ∈ R be a reload state and T⊆ S a set of states. It is decidable in
polynomial time whether there is a cap-bounded cycleδ that is initiated in r and that
contains a state from T. If the answer is yes, one can compute (in polynomial time) such
a cycleδ of length at most3|S|2.

Proof. Recall that we denote byec(α) the end cost of a finite pathα. Denote by
min-ecr (t) the value min{ec(α) | α is acap-bounded path fromr to t }. We claim that a
cap-boundedδ initiated inr and containing a state fromT exists if and only if there is a
t ∈ T andq ∈ R (possiblyq = r) such that:

– There is acap-bounded pathγ1 from r to t, and
– there is a (cap−min-ecr (t))-bounded pathγ2 from t to q, and
– there is acap-bounded pathγ3 from q to r.

The “if” direction can be proved as follows: if there are the aforementioned paths, then
there is in particular acap-bounded pathγ1 from r to t such thatec(γ1) = min-ecr (t) (see
Lemma 24). Thenδ = γ1 · γ2 · γ3 is the requiredcap-bounded cycle containing a state
from T.

Now consider the “only if” direction in the equivalence. Leti ∈ N0 be the smallest
number such thatδ(i) ∈ T and j > i be the smallest number such thatδ(j) ∈ R (suchi, j
must exist, sinceδ is a cycle). Putγ1 = δ≤i, γ2 = δ(i) . . . δ(j) andγ3 = δ(j) . . . δ(len(δ)).
Clearlyγ3 andγ1 arecap-bounded andc(γ2) ≤ cap−ec(γ1) ≤ cap−min-ecr (δ(i)), which
proves the “only if” direction.

So in order to decide whether a desired cycleδ exists (and compute it if it does)
it suffices to make three calls of the algorithm from Lemma 24 for every pair of states
t ∈ T, q ∈ R. For every such pair we first use that algorithm to compute acapbounded
pathγ1 from r to t of minimal end cost (and thus also computemin-ecr (t)). Then we use
the algorithm to find a (cap−min-ecr (t))-bounded pathγ2 from t to q, and acap-bounded
pathγ3 from q to r. If we find all these paths, we returnγ1 · γ2 · γ3 as the desired cycleδ
(from Lemma 24 it follows thatlen(δ) ≤ 3|S|2). If some of these paths does not exist, we
move on to the next pair. If the algorithm fails for all pairs,the desired cycleδ does not
exist. The correctness of the algorithm and its polynomial complexity are immediate.

⊓⊔

Lemma 10.The problem whether a given q∈ S is admissible is decidable in polynomial
time. Further, if q is admissible, then there are finite pathsα, γ computable in polynomial
time such thatα ·γω is a cap-bounded run initiated in s andγ is an admissibility witness
for q of length at most6|S|2.

Proof. First we prove that a stateq ∈ S is admissible if and only ifq is cap-reachable
from the initial statesand one of the following conditions holds.

20

1. There is a cycleδ of zero cost that is initiated inq and that contains an accepting
state. In this case,δ is an admissibility witness forq.

2. There is a reload stater ∈ R andcap-bounded cyclesθ, δ, both initiated inr, such
that δ contains an accepting state andθ = θ1 · θ2, whereθ1(0) = last(θ2) = r and
last(θ1) = θ2(0) = q. In such a caseθ2 · δ · θ1 is an admissibility witness forq.

The “if” direction is immediate, so let us consider the “onlyif” direction. Suppose that
q is admissible, then by definition there is acap-bounded run initiated ins of the form
α · βω, whereβ is a cycle initiated inq which contains an accepting state. In particularq
is capreachable froms. Now if c(β) = 0, then the case 1. above holds. So suppose that
c(β) , 0. Thenβ must contain not only an accepting state, but also a reload state. Let
i ∈ N0 be such thatβ(i) ∈ R, respectively. Then the pathsθ1 = β(i)β(i + 1) . . . β(len(β)),
θ2 = β≤i , andδ = β(i)β(i + 1) . . . β(len(β)) · β≤i have the properties stated in case 2.

So to test whetherq is admissible, we have to test whetherq is cap-reachable from
s and whether 1. or 2. holds. To test thecap-reachability we use the polynomial algo-
rithm of Lemma 24, which also finds the requiredcap-bounded path froms to q. To test
whether 1. holds, we use the polynomial algorithm from Lemma25. If this algorithm
finds a cycle of zero cost initiated inq and containing an accepting state (by Lemma 25,
the cycle returned by the algorithm has length at most 2|S|), we can immediately out-
put it as an admissibility witness forq. To test whether 2. holds, we use|R| times the
polynomial algorithm of Lemma 26: For every stater ∈ R we test whether there are
cap-bounded cyclesθ, δ initiated in r such thatθ containsq andδ contains a state from
F. If the algorithm finds such cycles for somer ∈ R (by Lemma 26 each of them will
have length at most 3|S|2), we can use them to easily construct an admissibility witness
for q of length at most 6|S|2 as indicated in 2. The correctness of the algorithm and its
polynomial complexity are immediate. ⊓⊔

B.3 A Proof of Lemma 8

Lemma 8. Let t ∈ S . The problem whether Valcap
C

(t) = ∞ is decidable in polynomial
time.

Proof. Let t ∈ S be an arbitrary. In the following we treatt as the initial state of the
system. In particular, the notion of admissibility is adapted to this choice of initial state:
a stateq is admissible if there is acap-bounded path of the formα · γω with α(0) = t,
γ(0) = last(α) = q, andγ containing an accepting state.

First note thatValcap
C

(t) < ∞ if and only if there is at least one admissible stateq
The “if” direction is immediate, so let us consider the “onlyif” direction. If Valcap

C
(t) <

∞, then there is acap-bounded accepting run̺ initiated in t. We consider two cases.
Either there are only finitely many transitions of a positivecost on̺. Then there is a
simple cycleδ of zero cost containing an accepting state (since some accepting state has
infinitely many occurrences on̺) initiated in some stateδ(0) that iscap-reachable from
t. Clearlyα · δω, whereα is acap-bounded path fromt to q, is acap-bounded accepting
run, soδ(0) is admissible. The second case is that there are infinitely many transitions of
positive cost on̺ , in which case̺ contains infinitely many occurrences of both a reload
state and of an accepting state. Letr be a reload state appearing infinitely often on̺.

21

Then there is acap-bounded cycleδ initiated inr and containing an accepting state. For
anycap-bounded pathα from t to r (at least one exists due to the existence of̺) the run
α · δω is acap-bounded accepting run, showing thatr is admissible.

So to decide whetherValcap
C

(t) = ∞, it suffices to use the polynomial-time algorithm
of Lemma 24 to compute the set of states that arecap-reachable fromt, and for every
such state decide, whether it is admissible, using the polynomial-time algorithm from
Lemma 10. The correctness and the polynomial running time ofthis procedure are im-
mediate. ⊓⊔

B.4 A Proof of Lemma 12

Lemma 12.The existence of a zero-cost cycle is decidable in polynomial time, and an
example of a zero-cost cycleβ (if it exists) is computable in polynomial time. The same
holds for zero-cost cycles containing an accepting state.

Proof. Note that a zero-cost cycle, or zero-cost cycle containing an accepting state, is
simply a simple cycle of zero cost initiated in an admissiblestate, or a simple cycle of
zero cost containing an accepting state that is initiated inan admissible state, respec-
tively.

So to decide whether there is a zero-cost cycle, it suffices to compute the setA ⊆ S
of all admissible states using the polynomial-time algorithm of Lemma 10, and then for
everyq ∈ A try to find a simple cycle of zero cost initiated inq using the polynomial-
time algorithm from Lemma 25. If we find such a cycle we can output it asβ, otherwise
we conclude that there is no such cycle.

To decide whether there is a zero-cost cycle containing an accepting state, it suffices,
for everyq ∈ A, to use the polynomial-time algorithm of Lemma 25 to find a cycle of
zero cost initiated inq containing an accepting state. Note that if the algorithm finds
such a cycleδ for someq ∈ A, this cycle does not have to be simple. However, if it is not
simple, then there is a simple cycleθ of zero cost such thatδ = γ · θ · γ′ for some finite
pathsγ, γ′ andθ contains an accepting state. Moreover,δ(0) is an admissible state, since
δ · γ′ · γ is an admissibility witness forδ(0). Soθ is a zero-cost cycle and we can return
it as the desired cycleβ (note thatθ can be easily computed onceδ is computed). If the
algorithm of Lemma 25 fails to find a cycle of zero cost with an accepting state for every
q ∈ A, we conclude that there is no such cycle. ⊓⊔

C Auxiliary Results

This section contains some auxiliary algorithms that are not mentioned in the main text
and that will be useful in later proofs.

Lemma 27. Let C = (S, → , c,R, F) be a consumption system. There is an algorithm
MinPath(s1, s2,m,Avoid) which for a given pair of states s1, s2 ∈ S , given number m∈
N0 and a given set Avoid⊆ S decides, whether there is a pathα satisfying the following
conditions:

– α(0) = s1, last(α) = s2, len(α) = m, and

22

– for all 0 < i < len(α) it holdsα(i) < Avoid.

If there is such a path, the algorithm computes a pathα of minimal cost among all paths
satisfying the above conditions. The algorithm runs in timepolynomial in||C|| and m.

Proof. The algorithm constructs a labelled graphG = (V, 7→ , L, ℓ), whereL ⊂ N0, is
defined as follows:

– V = (S \ Avoid) × {1, 2, . . . ,m− 1} ∪ {(s1, 0), (s2,m)}.
– There is an edge ((s, i), (s′, j)) in G if and only if j = i + 1 ands a

→ s′ is a transition
in C. In such a caseℓ((s, i), (s′, j)) = a.

Then the algorithm finds a path of minimal cost from (s1, 0) to (s2,m) (or decides that
such a path does not exist) using, e.g., the algorithm for computing shortest paths in di-
rected acyclic graphs. The procedure then returns the corresponding path inC (it suffices
to discard the second components from the computed path inG). The correctness of the
procedure and its complexity analysis are straightforward.

Lemma 28. Let C = (S, → , c,R, F) be a consumption system. There is an algorithm
MinPathReach(s1, s2,m,Avoid,Reach) which for a given pair of states s1, s2 ∈ S , given
number m∈ N0 and given sets Reach,Avoid ⊆ S decides, whether there is a pathα
satisfying the following conditions:

– α(0) = s1, last(α) = s2, len(α) = m, and
– for all 0 < i < len(α) it holdsα(i) < Avoid, and
– there is0 ≤ j ≤ len(α) such thatα(j) ∈ Reach.

If there is such a path, the algorithm computes a pathα of minimal cost among all paths
satisfying the above conditions. The algorithm runs in timepolynomial in||C|| and m.

Proof. If s1 ∈ Reach or s2 ∈ Reach, then we just call the algorithm
MinPath(s1, s2,m,Avoid) from Lemma 27.

Otherwise for everyq ∈ Reachand every 0< i < m the algorithm constructs a
labelled graphGq,i = (V, 7→ , L, ℓ), whereL ⊂ N0, is defined as follows:

– V = (S \ Avoid) × {1, 2, . . . i − 1, i + 1, . . . ,m− 1} ∪ {(s1, 0), (s2,m), (q, i)}.
– There is an edge ((s, i), (s′, j)) in G if and only if j = i + 1 ands a

→ s′ is a transition
in C. In such a caseℓ((s, i), (s′, j)) = a.

Then, for everyq ∈ Reachand every 0< i < m the algorithm finds a pathαq,i of minimal
cost from (s1, 0) to (s2,m) in Gq,i (or decides that such a path does not exist) using, again
the algorithm for computing shortest paths in directed acyclic graphs. Ifαq,i exists for
at least for one pairq, i, the algorithm returnsαq,i of minimal cost (the minimum is
taken among allq ∈ Reach, 0 < i < m), otherwise the path satisfying the required
conditions does not exist. Again, the correctness of the algorithm and its complexity
are straightforward, since every pathα satisfying the required conditions induces, in a
natural way, a corresponding pathα′ of the same cost inGq, j , whereq, j are such that
q = α(j) ∈ Reach. Conversely, everyα′ in someGq,i induces a pathα of the same cost
in C that satisfies the required conditions. ⊓⊔

23

D Proofs of Section 3.2

D.1 A Proof of Lemma 16

Lemma 16.If there is at least one compact segment with a given characteristic χ, then
there is also an optimal compact segment forχ. Moreover, all compact segments optimal
for a given characteristic have the same total cost and length.

Proof. Fix a characteristicχ = (r, q, t,m, n, b). If there is at least one compact segment
η = ξ · θ j · ξ′ having characteristicχ, there is also at least one segment of a characteristic
(r, q, t,m, 0, b) (namelyξ · ξ′); and (provided thatn > 0) at least one cycle of length
n initiated inq which is either a segment or does not contain any reload state(namely
θ). So there also is a segmentγ · γ′ and (provided thatn > 0) a cycleδ satisfying the
above conditions whose costs are minimal among all segmentsand cycles that satisfy
these conditions, respectively. Letk be either 1 (ifn = 0) or the maximal number such
that γ · δk · γ′ is a cap-bounded path (ifn > 0 – then such ak must exist, because
c(γ · δ · γ′) ≤ c(η)). Clearlyγ · δk · γ′ is a compact segment optimal forχ.

For the second part, letη = ξ · θ j · ξ′ andη′ = γ · δk · γ′ be two segments optimal for
the same characteristicχ = (r, q, t,m, n, b). If n = 0, then clearlylen(η) = len(η′) = m
and from the optimality of both segments we get the equality of their costs. Otherwise,
by definition of optimal segments we havec(γ · γ′) = c(ξ · ξ′) andc(θ) = c(δ). To prove
the lemma it suffices to show thatj = k. Suppose that, e.g.,j < k, the other case is
symmetrical. Thenξ · θ j+1 · ξ′ is acap-bounded path (since its cost is at most the cost of
η′), a contradiction with the fact thatη has a characteristic. ⊓⊔

D.2 A Proof of Lemma 17

Lemma 17.There is an optimal T-visiting cycleβ whose every segment is a compact
segment optimal for some characteristic.

Proof. We say that a segment isbad if it is not a compact segment optimal for some
characteristicχ. Given an optimalT-visiting cycleβ containingg > 0 bad segments,
we show how to construct an optimalT-visiting cycleβ′ containingg− 1 bad segments.
Combined with the existence of at least one optimalT-visiting cycle (which follows
from Lemma 13), this proves the lemma.

So letβ be an optimalT-visiting cycle andη its bad segment (i.e.,β = ξ · η · ξ′

for some finite pathsξ, ξ′). We denotet = η(0) andr = last(η). In the following we
call every segment initiated int and ending inr an r-t-segment. We also say that two
paths areT-equivalent, if both of them contain a state fromT or none of them does.
We will construct anr-t-segmentη′ such thatη′ is not bad,η′ is T-equivalent otη and
MC(β) = MC(β′), whereβ′ = ξ · η′ · ξ′. Then clearlyβ′ is an optimalT-visiting cycle
having at mostg− 1 bad segments.

The construction proceeds in two steps. First we construct acompactr-t-segment
η̂ of cost and length equal toc(η) and len(η), respectively. Then we construct anr-t-
segmentη′ with MC(ξ ·η′ ·ξ′) = MC(ξ · η̂ ·ξ′) = MC(β) such thatη′ is a compact segment

24

with a characteristic, and we show thatη′ must be optimal for all of its characteristics.
During the construction we ensure that ˆη andη′ areT-equivalent toη.

Note that from the optimality ofβ it follows that everyr-t-segment of length equal
to η which isT-equivalent toη must have a cost greater or equal toc(η). We will often
use this fact in the proof.

Constructing η̂ from η: We employ a technique similar to the technique
of decomposition into simple cycles. Anη-decomposition is a sequencedc =
α0, δ0, k0, α1, δ1, k1, . . . , αh−1, δh−1, kh−1, αh such that

– For everyi theαi is a finite path,δi is a simple cycle, andki is a positive integer, and
– α0δ

k0

0 α1δ
k1
1 · · ·αh−1δ

kh−1
h−1αh is anr-t-segment that isT-equivalent toη and whose cost

and length are equal toc(η) andlen(η), respectively.

A rank of such anη-decomposition is the vector of natural numbers

rank(dc) =

(

h
∑

i=0

len(αi), h, |{i | ki > |S|}|
)

.

Now letdc= α0, δ0, k0, α1, δ1, k1, . . . , αh−1, δh−1, kh−1, αh be anη-decomposition with
rank minimal w.r.t. the lexicographic ordering (such anη-decomposition exists, since
ranks are vectors of natural numbers), and let ˆη = α0δ

k0

0 α1δ
k1
1 · · ·αh−1δ

kh−1
h−1αh be the cor-

respondingr-t-segmentT-equivalent toη, whose length and cost are equal tolen(η) and
c(η), respectively. We claim that the following holds: for every 0 ≤ i ≤ h we have
len(αi) < |S|, h ≤ 2 · |S| and |{i | ki > |S|}| ≤ 1. From this it immediately follows
that η̂ = γ · δk · γ′, whereδ is a cycle of length at most|S|, andγ, γ′ are such that
len(γ · γ′) ≤ 4|S|3. In particular, ˆη is a compact segment (the fact that the pathsγ, γ′ are
shorter than required for the compactness will be used in thesecond part of the proof).

First let us assume, for the sake of contradiction, that for some 0 ≤ i ≤ h
it holds len(αi) ≥ |S|. Then αi = α′δ′α′′ for some simple cycleδ′ of pos-
itive length and some (possibly empty) finite pathsα′, α′′. Then the sequence
dc′ = α0, δ0, k0, . . . , δi−1, ki−1, α

′, δ′, 1, α′′, δi , ki , . . . αh is anη-decomposition such that
rank(dc′)[1] = rank(dc)[1] − len(δ′) < rank(dc)[1], a contradiction with the choice of
dc.

Now let us assume thath > 2 · |S|. Then there are 0≤ i < j < h such that
len(δi) = len(δ j) andδi is T-equivalent toδ j. It must be the case thatc(δi) = c(δ j),

otherwise, if e.g.c(δi) < c(δ j), thenα0δ
k0
0 · · · δ

ki−1
i−1αiαi+1 · · ·α jδ

k j+ki

j α j+1 · · ·αh would
be an r-t-segmentT-equivalent toθ whose length equalslen(η) and whose cost is
smaller thanc(η), a contradiction with the optimality ofβ. So the sequencedc′ =
α0, . . . , δi−1, ki−1, (αi · αi+1), δi+1, . . . , α j , δ j, k j + ki , α j+1, . . . , αh is an η-decomposition
with rank(dc′)[1] = rank(dc)[1] and rank(dc′)[2] = rank(dc)[2] − 1, a contradiction
with the choice ofdc.

Finally, let us assume that there are 0≤ i < j < h such thatki > |S| andk j > |S|. We
distinguish three cases:MC(δi) > MC(δ j), MC(δi) < MC(δ j) andMC(δi) = MC(δ j).

First assume thatMC(δi) > MC(δ j) and leta be the greatest natural number such
that |S| ≥ ki − a · len(δ j) ≥ 1 (clearlya ≥ 1). We have

MC(δi) −MC(δ j) =
c(δi) · len(δ j) − c(δ j) · len(δi)

len(δi) · len(δ j)
> 0,

25

from which it follows thatc(δi) · len(δ j) − c(δ j) · len(δi) > 0. Now consider the pathπ =

α0δ
k0
0 · · ·αiδ

ki−a·len(δ j)
i αi+1 · · ·α jδ

k j+a·len(δi)
j α j+1 · · ·αh. Clearly len(π) = len(η̂) = len(η)

andπ is anr-t-segmentT-equivalent toη. Moreover,

c(π) = c(η̂) − a · (c(δi) · len(δ j) − c(δ j) · len(δi)) < c(η̂) = c(η),

a contradiction with the optimality ofβ.

The caseMC(δi) < MC(δ j) is handled symmetrically, so it remains to consider the
caseMC(δi) = MC(δ j). In this case we clearly havec(δi) · len(δ j) − c(δ j) · len(δi) = 0
and thus the aforementioned pathπ is an r-t-segmentT-equivalent toη such that not
only len(π) = len(η), but alsoc(π) = c(η). It follows that the corresponding sequence
dc′ = α0, δ0, k0, · · ·αi , δi , ki − a · len(δ j), αi+1, · · · , α j , δ j, k j + a · len(δi), α j+1, · · · , αh is
an η-decomposition such thatrank(dc′)[1] = rank(dc)[1], rank(dc′)[2] = rank(dc)[2]
andrank(dc′)[3] < rank(dc)[3], a contradiction with the choice ofdc.

Constructing η′ from η̂: We now have anr-t-segment ˆη such that ˆη is T-equivalent
to η, len(η̂) = len(η) andc(η̂) = c(η) (and thus alsoMC(η̂) = MC(η)), and moreover
η̂ = γ · δk · γ′ for some finite pathsγ, γ′ of combined length at most 4|S|3 andδ either
a single vertex or a simple cycle. The compact segment ˆη may not have a characteristic
for three reasons:

– c(δ) = 0;

– δ contains a state fromT andγ · γ′ not;

– δ is a cycle andγ · δk+1 · γ′ is also acap-bounded path.

The first two cases actually cannot happen. Indeed, ifc(δ) = 0, thenδ is a zero-cost cycle
(recall that every state on aT-visiting cycle is admissible, andδ(0) lies on aT-visiting
cycle ξ · η̂ · ξ′), a contradiction with the assumptions of Proposition 15. In the second
case clearlyk ≥ 1 and η̂ = γ · δ · δk−1 · γ′ is a compact segment of a characteristic
(r, δ(0), t,m, len(δ), 1), wherem= len(γ ·δ ·γ′) ≤ 4|S|3+ |S| ≤ 5|S|3, a contradiction with
η′ not having a characteristic.

Now suppose that the first two cases do not occur and the third does. Then we have
k ≥ 2, since otherwise we would havelen(η̂) ≤ 4|S|3 + |S| ≤ 5|S|3 and η̂ would have
a characteristic (r, r, t, len(η̂), 0, 0). Now let z ≥ 1 be the maximal number such that
η′ = γ · δz · γ′ is acap-bounded path. Clearly,η′ is a compactr-t-segmentT-equivalent
to η̂ with a characteristic. We need to show thatMC(ξ · η′ · ξ′) = MC(ξ · η̂ · ξ′). From the
optimality ofβ it follows that it suffices to showMC(ξ · η′ · ξ′) ≤ MC(ξ · η̂ · ξ′).

Assume, for the sake of contradiction, thatMC(ξ · η′ · ξ′) > MC(ξ · η̂ · ξ′). Denote
C = c(ξ · γ · γ′ · ξ′) andD = len(ξ · γ · γ′ · ξ′). Clearly

MC(ξ · η′ · ξ′) =
C + z · c(δ)

D + z · len(δ)
>

C + k · c(δ)
D + k · len(δ)

= MC(ξ · η̂ · ξ′). (1)

26

Denotez′ ≥ 1 the number such thatz= k+ z′. From (1) we gradually get

k ·C · len(δ) + z · D · c(δ) > k · D · c(δ) + z ·C · len(δ)

z′ · D · c(δ) > z′ ·C · len(δ)

D · c(δ) > C · len(δ)

(k− 1) · D · c(δ) > (k− 1) ·C · len(δ) (sincek ≥ 2)

C · len(δ) + k · D · c(δ) > k ·C · len(δ) + D · c(δ)

C + k · c(δ)
D + k · len(δ)

>
C + c(δ)

D + len(δ)
.

But then (ξ · γ · δ · γ′ · ξ′) is aT-visiting cycle withMC(ξ · γ · δ · γ′ · ξ′) = (C+ c(δ))/(D+
len(δ)) < MC(ξ · η̂ · ξ′) = MC(β), a contradiction with the optimality ofβ.

Now let χ = (r, q, t,m, n, b) be any characteristic ofη′. We show thatη′ is optimal
for this characteristic. Assume, for the sake of contradiction, that it is not optimal forχ.
Two cases may happen:

– There is anr-t-segmentα0 ·α1 of a characteristic (r, q, t,m, 0, b) such thatc(α0 ·α1) <
c(γ · γ′). Thenξ · α0 · δ

z · α1 · ξ
′ is aT-visiting cycle withMC(ξ · α0 · δ

z · α1 · ξ
′) <

MC(ξ · η′ · ξ′) = MC(β), a contradiction with the optimality ofβ.
– There is a cycleθ of lengthn initiated inq such thatθ is either a segment or does not

contain any reload state andc(θ) < c(δ). Thenξ · γ · θz · γ′ · ξ is again aT-visiting
cycle whose mean cost is smaller thanMC(β), a contradiction.

⊓⊔

D.3 A Proof of Lemma 18

Lemma 18.There is an algorithm which decides, for a given characteristic χ, whether
the set of all compact segments that have a characteristicχ is non-empty, and if the
answer isyes, it computes a tuple(γ, γ′, δ, k) such thatγ · δk · γ′ is a compact segment
optimal forχ. The algorithm runs in polynomial time.

Proof. Let χ = (r, q, t,m, n, b) be the input characteristic. From the definition of an opti-
mal compact segment forχ it follows that we have to compute the following:

– If n > 0 we have to compute a cycleδ∗ of minimal cost among all cyclesδ satisfying
the following: len(δ) = n, δ(0) = q, andδ is either a segment (ifq ∈ R), or δ does
not contain any reload state (ifq < R). In both cases we can use the algorithm of
Lemma 27, namely return the result ofMinPath(q, q, n,R) as the desired cycleδ∗. If
MinPath(q, q, n,R) answers that the required path does not exist, we can immediately
say that no compact segment hasχ as its characteristic, i.e., we return “no”.

– If b = 0, we have to compute a compact segmentα∗ of minimal cost among all
compact segments that have a characteristic (r, q, t,m, 0, 0). Pathα∗ can be com-
puted using the algorithmMinPathReachof Lemma 28, namely by making a call
MinPathReach(r, t,m,R, {q}). If the result of this call is a non-existence of the re-
quired path, we again immediately return “no”.

27

– If b = 1, we have to compute a compact segmentα∗ of minimal cost among all
compact segments that have a characteristic (r, q, t,m, 0, 1). If r, q or t ∈ T, we can
proceed as in the previous case. Otherwise the pathα∗ can be computed as follows.
For every 0≤ m′ ≤ m we compute these paths:
• αm′ ,1 by callingMinPathReach(r, q,m′,R,T),
• αm−m′ ,1 by callingMinPath(q, t,m−m′,R),
• αm′ ,2 by callingMinPath(r, q,m′,R),
• αm−m′ ,2 by callingMinPathReach(q, t,m−m′,R,T).

If for all suchm′ and all i ∈ {1, 2} one of the pathsαm′ ,i , αm−m′,i does not exist, we
immediately return “no”.Then we select 0≤ m′ ≤ m andi ∈ {1, 2} that minimizes
c(αm′,i · αm−m′,i) and we returnα∗ := αm′ ,i · αm−m′ ,i . The correctness of this is clear,
since every compact segmentγ · γ′ of a characteristic (r, q, t,m, 0, 1) and of minimal
cost has the property thatγ or γ′ satisfies the conditions stated in Lemma 28 (and
it is of minimal cost among all paths satisfying these conditions), and bothγ andγ′

satisfy the conditions stated in Lemma 27, with one of them having minimal cost
among all paths satisfying this condition.

Now having the pathsα∗ (andδ∗ if n > 0) we writeα∗ = γ · γ′, wherelast(γ) = q, and
check whetherc(α∗) ≤ capor c(γ · δ ∗ ·γ′) ≤ cap, depending on whethern = 0 or not. If
this check fails, we return “no.” Otherwise, ifn = 0 we setδ∗ = q andk = 1, else we set
k = ⌊(cap− c(α∗))/c(δ∗)⌋ (this number exists sincec(δ∗) > 0 – otherwise there would
be a zero-cost cycle on an admissible stateq, a contradiction with the assumptions of
Proposition 15). Clearlyγ · (δ∗)kγ′ is a compact segment optimal forχ, so we return the
tuple (γ, γ′, δ∗, k) as the desired result. ⊓⊔

D.4 A Proof of Lemma 19

Lemma 19.There is an optimal T-visiting cycleβ such that every segment ofβ is of the
form CPath(χ) for some characteristicχ.

Proof. First note that if a compact segmentη contains a state fromT and at the same time
it is optimal for some characteristicχ = (r, q, t,m, n, 0), thenη also has a characteristic
χ′ = (r, q, t,m, n, 1) (recall the last condition from the definition of a characteristic).
Since every compact segment with a characteristicχ′ also has a characteristicχ, η is
optimal also forχ′.

Now among all optimalT-visiting cycles whose all segments are compact and opti-
mal for some characteristic (at least one exists due to Lemma17) letβ be the one mini-
mizing the number of segments that are not of the formCPath(χ) for someχ. Suppose
thatβ contains such a segmentη and denoteχ a characteristic ofη for which η is opti-
mal. As mentioned above, ifη contains a state fromT, then we may assume that the last
component ofχ is 1. Writeβ = ξ · η · ξ′. By Lemma 16 we havelen(η) = len(CPath(χ))
andc(η) = c(CPath(χ)) and thusMC(β) = MC(β′) whereβ′ = ξ · CPath(χ) · ξ′. Note
that if η contains a state fromT then, by our assumption, the last component ofχ is 1, so
CPath(χ) also contains a state fromT. Thus,β′ is an optimalT-visiting cycle containing
smaller number of undesirable segments thanβ, a contradiction with the choice ofβ. ⊓⊔

28

E Proofs of Section 3.3

E.1 A Proof of Lemma 20

Lemma 20.ValC(s) is finite iff there is a safe cycle, in which case ValC(s) = min{MC(β) |
β is a safe cycle}. Further, there is a finite cap∈ N0 such that Valcap

C
(s) = ValC(s) iff

either ValC(s) = ∞, or there is a strongly safe cyclêβ such that MC(β̂) = ValC(s). In
such a case Valcap

C
(s) = ValC(s) for every cap≥ 3 · |S| · cmax, where cmax is the maximal

cost of a transition inC.

Proof. DenoteMS = min{MC(β) | β is a safe cycle}. We say that a simple cycleδ is a
simple sub-cycleof β if β = ξ · δ · ξ′ for someξ, ξ′. We say that a set of simple cycles
D is adecomposition ofβ (into simple cycles) if for every two distinctδ, δ′ ∈ D it holds
thatδ′ is a simple sub-cycle ofξ · ξ′, whereβ = ξ · δ · ξ′. Note that for any decomposition
D of β it holdsMC(β) ≥ minδ∈D MC(δ).

Suppose thatValC(s) < ∞. We show that a safe cycle exists and moreover, for any
capacitycap we haveValcap

C
(s) ≥ MS, from which it follows thatValC(s) ≥ MS. If

Valcap
C

(s) = ∞, the inequality is trivial. Otherwise the inequality follows from the first
part of the following claim (its second part will be used later in the proof):

Claim. If Valcap
C

(s) < ∞, then there is a safe cycleδ such thatValcap
C

(s) ≥ MC(δ). More-
over, if Valcap

C
(s) = ValC(s), thenδ is strongly safe.

Indeed, from Lemma 11 and 14 it follows that there is a pathα and cyclesβ, γ
such thatγ contains an accepting state and eitherc(β) = 0 or β(0) ∈ R, and for a run
̺ = α · β · γ · β2 · γ · β4 · · · it holdsMC(β) = Valcap

C
(̺) = Valcap

C
(s). Note thatδ andγ

must be in the same strongly connected componentC of C. In particular, all states ofβ
are inter-reachable with an accepting state.

Now we consider two cases. Eitherc(β · γ) = 0, in which caseβ · γ has a sub-pathδ
which is a simple cycle of zero cost containing an accepting state – i.e.,δ is a strongly
safe cycle andValcap

C
(s) = 0 = MC(δ) = MS.

If c(β · γ) , 0, we distinguish two sub-cases. Eitherc(β) = 0. Thenc(γ) , 0 and
it follows thatβ · γ contains a reload state. Then every simple sub-cycleδ of β hasδ(0)
inter-reachable not only with an accepting state (as shown above), but also with a reload
state and hence it is a strongly safe cycle (of zero cost). Here againValcap

C
(s) = 0 =

MC(δ) = MS.
The second sub-case isc(β) , 0. Thenβ(0) ∈ R and thus all states onβ are inter-

reachable with a reload state. LetD be a decomposition ofβ into simple cycles and
δ ∈ D be the simple cycle of minimal mean cost. Clearlyδ is a safe cycle andMC(β) ≥
MC(δ), which finishes the proof of the first part of the claim. Now pick such a simple
δ ∈ D which contains a reload state contained inβ. Clearly thisδ is strongly safe. We
claim that eitherMC(δ) ≤ Valcap

C
(s) or Valcap

C
(s) < ValC(s), which finishes the proof of

the second part of the claim. So suppose thatMC(δ) > Valcap
C

(s) = MC(β) and write
β = ξ · δ · ξ′. ClearlyMC(ξ · ξ′) < MC(δ) and thus for the cycleβ′ = ξ · ξ′ · ξ · δ · ξ′ it
holdsMC(β′) < MC(β). Moreover, the run̺ ′ = α · β′ · γ · β′2 · γ · β′4 · · · is accepting and
cap′-bounded forcap′ = max{cap, c(β′ · γ)}. Also note thatValcap′

C
(̺) = MC(β′) (this

29

can be established via a straightforward computation identical to the one from the proof
of Proposition 14). Thus,Valcap

C
(s) = MC(β) > MC(β′) ≥ Valcap′

C
(s) ≥ ValC(s).

Conversely, suppose that there is a safe cycle and letβ be the one of minimal mean
cost. We show that for every 1≥ ε > 0 and every capacitycap≥ ⌈(6|S|2c2

max)/ε⌉ there is
a run̺ε such thatValcap

C
(̺ε) ≤ MC(β) + ε. From this it immediately follows thatValC(s)

is finite, and in combination with the previous paragraph we getValC(s) = MS.
Let α be a shortest (w.r.t. the number of transitions) path froms to β(0). Note that

c(α) ≤ |S| · cmax. If c(β) = 0 andβ contains an accepting state, then we can take̺ε :=
α·βω, since for everycap≥ |S|cmax this is acap-bounded accepting run withValcap

C
(̺ε) =

MC(β). Otherwise letγ1 be a shortest path fromβ(0) to some accepting statef , γ2 a
shortest path fromf to some reload stater, andγ3 a shortest path fromr to β0, and put
γ = γ1 · γ2 · γ3. Note thatc(γ) ≤ 3|S|cmax. Setk = ⌈(3|S|cmax)/ε⌉. It easily follows that
̺ε := α·(γ ·βk)ω is acap-bounded accepting path for anycap≥ ⌈(6|S|2c2

max)/ε⌉, since the
consumption between two visits of the reload stater onγ is bounded byc(γ)+ k · c(β) ≤
3|S|cmax+ 3|S|2c2

max/ε. Let us computeMC(̺ε). We have

MC(̺ε) = MC(γ · βk) =
c(γ) + k · c(β)

len(γ) + k · len(β)
≤

c(γ)
k · len(β)

+MC(β).

Now c(γ)/(k · len(β)) ≤ c(γ)/k ≤ 3|S| · cmax/k ≤ ε as required.
Now suppose that there is a finite capacitycapsuch thatValcap

C
(s) = ValC(s) (= MS,

as shown above). From the above claim it immediately followsthat there is a strongly
safe cycleδ such thatMC(δ) = MS.

Conversely, suppose thatβ̂ is a strongly safe cycle withMC(β̂) = ValC(s). Let α be
again a shortest path froms to β(0). If c(β̂) = 0 andβ̂ contains an accepting state, then
we again take̺ = α · β̂ω – this is clearly an (|S| · cmax)-bounded run andValcap

C
(̺) = 0 =

ValC(s) for anycap≥ |S| · cmax. Now suppose thatc(β̂) = 0 andβ̂(0) is inter-reachable
with accepting statef and with an accepting stater. Then there exists a cycleγ initiated
in β̂(0) that contains bothf andr. Then̺ := α · β̂ · γ · β̂2 · γ · β̂4 is a (3|S|cmax)-bounded
accepting run withVal3|S|cmax

C
= MC(β̂) = 0 = ValC(s).

Finally, suppose that̂β contains a reload state andβ̂(0) is inter-reachable with an
accepting state. Letγ be the cycle of minimal length among those initiated inβ̂(0) that
contain an accepting state. Then̺ := α · β̂ · γ · β̂2 · γ · β̂4 is again a (3|S|cmax)-bounded
accepting run, where the boundedness now comes from the factthat β̂ contains a reload
state and thus the end cost ofβ̂k is at most the end cost ofβ̂, which is at most|S| · cmax.
Clearly,Val3|S|cmax

C
(̺) = MC(β) = ValC(s).

⊓⊔

E.2 A Proof of Lemma 21

Lemma 21.The existence of a safe (or strongly safe) cycle is decidablein polynomial
time. Further, if a safe (or strongly safe) cycle exists, then there is a safe (or strongly
safe) cycleβ computable in polynomial time such that MC(β) ≤ MC(β′) for every safe
(or strongly safe) cycleβ′.

30

Proof. To find a safe cycleβ of minimal mean cost (or to decide that no such cycle
exists), we proceed as follows. First we compute the setA of all states reachable from
s. Then for every statef ∈ F ∩ A we use the polynomial-time algorithm of Lemma 25
to find a cycle of zero cost initiated inf . If we find such a cycleδ for somef ∈ F ∩ A,
then clearlyδ is a safe cycle of minimal (i.e., zero) mean cost. If we do not find such
a cycle, we decomposeC into its strongly connected components (SCCs), using, e.g.,
the Tarjan’s algorithm. For every SCCC that is reachable froms we check, whether
C contains both a reload state and an accepting state. If no such component exists, we
conclude that there is no safe cycle. Otherwise, for every SCC C that contains both
a reload state and an accepting state we compute a cycleδC of length at most|S| of
minimal mean cost inC, using standard polynomial time-algorithm for finding a cycle
of the minimal mean cost (see, e.g., [15, 16]).2 Then clearly the cycleδC∗ such that
MC(δC∗) = min{MC(δC) | C is a SCC containing a reload and an accepting state} is a
safe cycle of minimal cost among all safe cycles inC.

For strongly safe cycles we proceed in a similar way. First wecheck whether there
is a cycle of zero cost containing a reachable accepting state using the same approach
as in the previous paragraph. If we find such a cycle, than it isa strongly safe cycle
of minimal mean cost. Otherwise, we again decomposeC into SCCs and identify those
SCCs reachable froms that contain both a reload state and an accepting state. LetX
be the set of all such SCCs. IfX = ∅, we immediately get that no strongly safe cycles
exist. Otherwise for every SCCC ∈ X we check, whether there is a cycle of zero cost
in C, using again the algorithm from Lemma 25 (we can also use the aforementioned
algorithms for finding a cycle of minimal mean cost). If such acycle exists for some
C ∈ X, it is clearly a strongly safe cycle of minimal mean cost. Otherwise, we have to
find a cycleδ of length at most|S| in someC ∈ X such thatδ contains a reload state
(and we of course need to find a cycle of minimal mean cost amongall such cycles). To
this end, for everyC ∈ X and every reload stater ∈ C ∩R we construct a labelled graph
Gr = (V, 7→ , L, ℓ), whereL ⊂ N0 defined as follows:

– V = C × {0, . . . , |S|},
– there is an edge (q, i) a

7→ (q′, j) in Gr , here 0≤ i, j ≤ |S|, wheneveri = j + 1 and
q a
→q′ is a transition inC,

– for every 1≤ i ≤ |S| there is an edge (r, i) 0
7→ (r, 0),

– there are no other edges.

Note thatGr does not have to contain a cycle ifC does not contain a cycle, which may
happen ifC contains a single state without a self-loop. If this is the case for allC ∈ X,
we get that there are no strongly safe cycles. Otherwise notethat every cycle in some
Gr contains the state (r, 0). Moreover, there is a natural many-to-one correspondence
between the simple cycles inGr and cycles of length at most|S| that are initiated inr in
C, and this correspondence preserves the mean cost of the cycles. So in order to compute
a cycleδ of minimal mean cost among all cycles that are initiated in a reload state of
someC ∈ X, it suffices to compute, for everyC ∈ X and everyr ∈ C ∩ R a simple cycle
δr of minimal mean cost inGr , using the standard algorithms mentioned above. If we

2 Note that given any cycleθ of minimal mean cost, we can easily extract fromθ a simple cycle
δ such thatMC(δ) = MC(θ).

31

then selectr∗ such thatMC(δr∗) = min{MC(δr) | C ∈ X, r ∈ C∩R}, then fromδr∗ we can
easily compute the corresponding cycleδ′r∗ in C that is a strongly safe cycle of minimal
mean cost among all strongly safe cycles.

The correctness of the algorithm and its polynomial runningtime are immediate. ⊓⊔

E.3 A Proof of Lemma 22

Lemma 22.Let cmax be the maximal cost of a transition inC. For every cap> 4· |S| ·cmax

we have that

Valcap
C

(s) − ValC(s) ≤
3 · |S| · cmax

cap− 4 · |S| · cmax
.

Proof. The proof employs techniques very similar to those used in the proof of
Lemma 20. IfValC(s) = ∞, then the lemma is immediate. Otherwise by Lemma 20 there
is a safe cycleβ such thatMC(β) = ValC(s). Letα be the path froms to β(0) of minimal
length. If c(β) = 0 andβ contains an accepting state, then for everycap ≥ |S| · cmax

we haveValcap
C

(s) = Valcap
C

(α · βω) = MC(β) = 0, and the lemma holds. It remains to
consider the case whenβ(0) is inter-reachable with both a reload state and an accepting
state. Then letγ1 be a shortest (w.r.t. the number of transitions) path fromβ(0) to some
accepting statef , γ2 a shortest path fromf to some reload stater, andγ3 a shortest path
from r to β0, and putγ = γ1 · γ2 · γ3. Finally, putk = ⌊(cap− 3 · |S| · cmax)/(c(β))⌋.
Note thatk ≥ 1 sincecap≥ 4|S|cmax. Then̺ := α · (γ · βk)ω is acap-bounded accepting
run, since the consumption between two visits of the reload stater on γ is bounded by
3|S|cmax+ k · c(β) ≤ 3|S|cmax+ cap− 3|S|cmax = cap. Moreover,

Valcap
C

(̺) = MC(γ · βω) =
c(γ) + k · c(β)

len(γ) + k · len(β)
≤

c(γ)
k · len(β)

+MC(β).

Now

c(γ)
k · len(γ)

≤
c(γ)

(

cap−3|S|cmax

c(β) − 1
)

· c(β)
≤

3|S|cmax

cap− 3|S|cmax− c(β)
≤

3|S|cmax

cap− 4|S|cmax

as required. ⊓⊔

32

