
Parameterized Verification of
Asynchronous Shared-Memory Systems

Javier Esparza1, Pierre Ganty2?, and Rupak Majumdar3

1TU Munich 2IMDEA Software Institute 3MPI-SWS

Abstract. We characterize the complexity of the safety verification problem
for parameterized systems consisting of a leader process and arbitrarily many
anonymous and identical contributors. Processes communicate through a shared,
bounded-value register. While each operation on the register is atomic, there is
no synchronization primitive to execute a sequence of operations atomically.
We analyze the complexity of the safety verification problem when processes are
modeled by finite-state machines, pushdown machines, and Turing machines. The
problem is coNP-complete when all processes are finite-state machines, and is
PSPACE-complete when they are pushdown machines. The complexity remains
coNP-complete when each Turing machine is allowed boundedly many interac-
tions with the register. Our proofs use combinatorial characterizations of compu-
tations in the model, and in case of pushdown-systems, some language-theoretic
constructions of independent interest.

1 Introduction

We conduct a systematic study of the complexity of safety verification for parameter-
ized asynchronous shared-memory systems. These systems consist of a leader process
and arbitrarily many identical contributors, processes with no identity, running at arbi-
trarily relative speeds and subject to faults (a process can crash). The shared-memory
consists of a read/write register that all processes can access to perform either a read op-
eration or a write operation. The register is bounded: the set of values that can be stored
is finite. We do insist that read/write operations execute atomically but sequences of op-
erations do not: no process can conduct an atomic sequence of reads and writes while
excluding all other processes. The parameterized verification problem for these systems
asks to check if a safety property holds no matter how many contributors are present.
Our model subsumes the case in which all processes are identical by having the leader
process behave like yet another contributor. The presence of a distinguished leader adds
(strict) generality to the problem.

We analyze the complexity of the safety verification problem when leader and con-
tributors are modeled by finite state machines, pushdown machines, and even Turing
machines. Using combinatorial properties of the model that allow simulating arbitrarily
many contributors using finitely many ones, we show that if leader and contributors are
finite-state machines the problem is coNP-complete. The case in which leader and con-
tributors are pushdown machines was first considered by Hague [18], who gave a coNP

? Supported by the Spanish projects with references tin2010-20639 and tin2012-39391-C04.

ar
X

iv
:1

30
4.

11
85

v2
 [

cs
.L

O
]

 1
2

Ju
l 2

01
3

lower bound and a 2EXPTIME upper bound. We close the gap and prove that the prob-
lem is PSPACE-complete. Our upper bound requires several novel language-theoretic
constructions on bounded-index approximations of context-free languages. Finally, we
address the bounded safety problem, i.e., deciding if no error can be reached by com-
putations in which no contributor nor the leader execute more than a given number k of
steps (this does not bound the length of the computation, since the number of contribu-
tors is unbounded). We show that (if k is given in unary) the problem is coNP-complete
not only for pushdown machines, but also for arbitrary Turing machines. Thus, the
safety verification problem when the leader and contributors are poly-time Turing ma-
chines is also coNP-complete.

These results show that non-atomicity substantially reduces the complexity of ver-
ification. In the atomic case, contributors can ensure that they are the only ones that
receive a message: the first contributor that reads the message from the store can also
erase it within the same atomic action. This allows the leader to distribute identities
to contributors. As a consequence, the safety problem is at least PSPACE-hard for state
machines, and undecidable for pushdown machines (in the atomic case, the safety prob-
lem of two pushdown machines is already undecidable). A similar argument shows that
the bounded safety problem is PSPACE-hard. In contrast, we get several coNP upper
bounds, which opens the way to the application of SAT-solving or SMT-techniques.

Besides intellectual curiosity, our work on this model is motivated by practical dis-
tributed protocols implemented on wireless sensor networks. In these systems, a cen-
tral co-ordinator (the base station) communicates with an arbitrary number of mass-
produced tiny agents (or motes) that run concurrently and asynchronously. The motes
have limited computational power, and for some systems such as vehicular networks
anonymity is a requirement [21]. Further, they are susceptible to crash faults. Imple-
menting atomic communication primitives in this setting is expensive and can be prob-
lematic: for instance, a process might crash while holding a lock. Thus, protocols in
these systems work asynchronously and without synchronization primitives. Our algo-
rithms provide the foundations for safety verification of these systems.
Related Works. Parameterized verification problems have been extensively studied both
theoretically and practically. It is a computationally hard problem: the reachability prob-
lem is undecidable even if each process has a finite state space [2]. For this reason,
special cases have been extensively studied. They vary according to the main char-
acteristics of the systems to verify like the communication topology of the processes
(array, tree, unordered, etc); their communication primitives (shared memory, unreli-
able broadcasts, (lossy) queues, etc); or whether processes can distinguish from each
other (using ids, a distinguished process, etc). Prominent examples include broadcast
protocols [13,15,10,9], where finite-state processes communicate via broadcast mes-
sages, asynchronous programs [16,25], where finite-state processes communicate via
unordered channels, finite-state processes communicating via ordered channels [1], mi-
cro architectures [22], cache coherence protocols [11,7], communication protocols [12],
multithreaded shared-memory programs [5,8,20,24].

Besides the model of Hague [18], the closest model to ours that has been previously
studied [17] is that of distributed computing with identity-free, asynchronous proces-
sors and non-atomic registers. The emphasis there was the development of distributed

algorithm primitives such as time-stamping, snapshots, and consensus, using either un-
bounded registers or an unbounded number of bounded registers.

It was left open if these primitives can be implemented using a bounded number of
bounded registers. Our decidability results indicate that this is not possible: the safety
verification problem would be undecidable if such primitives could be implemented.

2 Formal Model: Non-Atomic Networks

We describe our formal model, called non-atomic networks. We take a language-
theoretic view, identifying a system with the language of its executions.

Preliminaries. A labeled transition system (LTS) is a quadrupleT = (Σ,Q, δ, q0), where
Σ is a finite set of action labels, Q is a (non necessarily finite) set of states, q0 ∈ Q
is the initial state, and δ ⊆ Q × Σ ∪ {ε} × Q is the transition relation, where ε is
the empty string. We write q

a
−→q′ for (q, a, q′) ∈ δ. For σ ∈ Σ∗, we write q

σ
−→q′ if

there exist q1, . . . , qn ∈ Q and a0, . . . , an ∈ Σ ∪ {ε}, q
a0
−→q1

a1
−→q2 · · · qn

an
−→q′ such that

a0 · · · an = σ. The sequence q · · · q′ is called a path and σ its label. A trace of T is a
sequence σ ∈ Σ∗ such that q0

σ
−→q for some q ∈ Q. Define L(T), the language of T ,

as the set of traces of T . Note that L(T) is prefix closed: L(T) = Pref (L(T)) where
Pref (L) = {s | ∃u : s u ∈ L}

To model concurrent executions of LTSs, we introduce two operations on languages:
the shuffle and the asynchronous product. The shuffle of two words x, y ∈ Σ∗ is the
language x� y = {x1y1 . . . xnyn ∈ Σ

∗ | each xi, yi ∈ Σ
∗and x = x1 · · · xn ∧ y = y1 · · · yn}.

The shuffle of two languages L1, L2 is the language L1 � L2 =
⋃

x∈L1,y∈L2
x� y. Shuffle

is associative, and so we can write L1 � · · ·� Ln or�n
i=1Li.

The asynchronous product of two languages L1 ⊆ Σ
∗
1 and L2 ⊆ Σ

∗
2 , denoted L1 ‖ L2,

is the language L over the alphabet Σ = Σ1 ∪ Σ2 such that w ∈ L iff the projections
of w to Σ1 and Σ2 belong to L1 and L2, respectively.1 If a language consists of a single
word, e.g. L1 = {w1}, we abuse notation and write w1 ‖ L2. Asynchronous product is
also associative, and so we write L1 ‖ · · · ‖ Ln or ‖ni=1 Li.

Let T1, . . . ,Tn be LTSs, where Ti = (Σi,Qi, δi, q0i). The interleaving �n
i=1Ti is

the LTS with actions
⋃n

i=1 Σi, set of states Q1 × · · · × Qn, initial state (q01, . . . , q0n),
and a transition (q1, . . . , qn)

a
−→(q′1, . . . , q

′
n) iff (qi, a, q′i) ∈ δi for some 1 ≤ i ≤ n and

q j = q′j for every j , i. Interleaving models parallel composition of LTSs that do not
communicate at all. The language L(T1 � · · ·� Tn) of the interleaving is�n

i=1L(Ti).
The asynchronous parallel composition ‖ni=1 Ti of T1, . . . ,Tn is the LTS having⋃n

i=1 Σi as set of actions, Q1 × · · · ×Qn as set of states, (q01, . . . , q0n) as initial state, and
a transition (q1, . . . , qn)

a
−→(q′1, . . . , q

′
n) if and only if

1. a , ε and for all 1 ≤ i ≤ n either a < Σi and qi = q′i or a ∈ Σi and (qi, a, q′i) ∈ δi, or;
2. a = ε, and there is 1 ≤ i ≤ n such that (qi, ε, q′i) ∈ δi and q j = q′j for every j , i.

Asynchronous parallel composition models the parallel composition of LTSs in which
an action a must be simultaneously executed by every LTSs having a in its alphabet.
L(T1 ‖ · · · ‖ Tn), the language of the asynchronous parallel composition, is ‖ni=1 L(Ti).

1 Observe that the L1 ‖ L2 depends on L1, L2 and also their underlying alphabet Σ1 and Σ2.

Non-atomic networks. We fix a finite non-empty set G of global values. A read-write
alphabet is any set of the form A × G, where A is a set of read and write actions, or
just reads and writes. We denote a letter (a, g) ∈ A × G by a(g), and write G(a1, . . . , an)
instead of {a1, . . . , an} × G.

In what follows, we consider LTSs over read-write alphabets. We fix two LTSs D
and C, called the leader and the contributor, with alphabets G(rd,wd) and G(rc,wc),
respectively, where rd, rc are called reads and wc,wd are called writes. We write w?

(respectively, r?) to stand for either wc or wd (respectively, rc or rd). We also assume
that for each value g ∈ G there is a transition in the leader or contributor which reads or
writes g (if not, the value is never used and is removed from G).

Additionally, we fix an LTS S called a store, whose states are the global values of G
and whose transitions, labeled with the read-write alphabet, represent possible changes
to the global values on reads and writes. No read is enabled initially. Formally, the store
is an LTS S = (Σ,G∪{g0}, δS, g0), where Σ = G(rd,wd, rc,wc), g0 is a designated initial
value not in G, and δS is the set of transitions g

r?(g)
−→g and g′

w?(g)
−→g for all g ∈ G and all

g′ ∈ G ∪ {g0} . Observe that fixingD and C also fixes S.

Definition 1. Given a pair (D,C) of a leader D and contributor C, and k ≥ 1, define
Nk to be the LTSD ‖ S ‖ �kC, where�kC is�k

i=1C. The (non-atomic) (D,C)-network
N is the set {Nk | k ≥ 1}, with language L(N) =

⋃∞
k=1 L(Nk). We omit the prefix (D,C)

when it is clear from the context.

Notice that L(Nk) = L(D) ‖ L(S) ‖ �kL(C) and L(N) = L(D) ‖ L(S) ‖ �∞L(C),
where�∞L(C) is given by

⋃∞
k=1�kL(C).

The safety verification problem. A trace of a (D,C)-network N is unsafe if it ends
with an occurrence of wc(#), where # is a special value of G. Intuitively, an occurrence
of wc(#) models that the contributor raises a flag because some error has occurred. A
(D,C)-network N is safe iff its language contains no unsafe trace, namely L(N) ∩
Σ∗wc(#) = ∅. (We could also require the leader to write #, or to reach a certain state; all
these conditions are easily shown equivalent.)

Given a machine M having an LTS semantics over some read-write alphabet, we de-
note its LTS by JMK. Given machines MD and MC over read-write alphabets, The safety
verification problem for machines MD and MC consists of deciding if the (JMDK, JMCK)-
network is safe. Notice that the size of the input is the size of the machines, and not the
size of the LTSs thereof, which might even be infinite.

Our goal is to characterize the complexity of the safety verification problem consid-
ering various types of machines for the leader and the contributors. We first establish
some fundamental combinatorial properties of non-atomic networks.

3 Simulation and Monotonicity

We prove two fundamental combinatorial properties of non-atomic networks: the Simu-
lation and Monotonicity Lemmas. Informally, the Simulation Lemma states that a leader
cannot distinguish an unbounded number of contributors from the parallel composition
of at most |G| simulators—LTSs derivable from the contributors, one for each value

of G. The Monotonicity Lemma states that non-minimal traces (with respect to a cer-
tain subword order) can be removed from a simulator without the leader “noticing”,
and, symmetrically, non-maximal traces can be removed from the leader without the
simulators “noticing”.

3.1 Simulation

First writes and useless writes. Let σ be a trace. The first write of g in σ by a contributor
is the first occurrence of wc(g) in σ. A useless write of g by a contributor is any occur-
rence of wc(g) that is immediately overwritten by another write. For technical reasons,
we additionally assume that useless writes are not first writes.

Example 1. In a network trace wd(g1)1 wc(g2)2 wc(g3)3 rd(g3)4 wc(g2)5 wc(g1)6 where
we have numbered occurrences, wc(g2)2 is a first write of g2, and wc(g2)5 is a useless
write of g2 (even though wc(g2)2 is immediately overwritten).

We make first writes and useless writes explicit by adding two new actions fc and uc to
our LTSs, and adequately adapting the store.

Definition 2. The extension of an LTS T = (G(r,w),Q, δ, q0) is the LTS
T E = (G(r,w, f , u),Q, δE , q0), where f , u are the first write and useless write actions,
respectively, and

δE = δ ∪ {(q, f (g), q′), (q, u(g), q′) | (q,w(g), q′) ∈ δ} .

We define an extended store, whose states are triples (g,W, b), where g ∈ G,
W : G → {0, 1} is the write record, and b ∈ {0, 1} is the useless flag. Intuitively, W
records the values written by the contributors so far. If W(g) = 0, then a write to g must
be a first write, and otherwise a regular write or a useless write. The useless flag is set
to 1 by a useless write, and to 0 by other writes. When set to 1, the flag prevents the oc-
currence of a read. The flag only ensures that between a useless write and the following
write no read happens, i.e., that a write tagged as useless will indeed be semantically
useless. A regular or first write may be semantically useless or not.

Definition 3. The extended store is the LTS S E = (ΣE ,GE , δS E , c0) where
– ΣE = G(rd,wd, rc,wc, fc, uc);
– GE is the set of triples (g,W, b), where g ∈ G∪{g0}, W : G → {0, 1}, and b ∈ {0, 1};
– c0 is the triple (g0,W0, 0), where W0(g) = 0 for every g ∈ G;
– δS E has a transition (g,W, b)

a
−→(g′,W ′, b′) where g′ ∈ G iff one of the following

conditions hold:
• a = r?(g), g′ = g, W ′ = W, and b = b′ = 0;
• a = wd(g′), W ′ = W and b′ = 0;
• a = fc(g′), W(g′) = 0, W ′ = W[W(g′)/1], and b′ = 0;
• a = wc(g′), W(g′) = 1, W ′ = W, and b′ = 0;
• a = uc(g′), W(g′) = 1, W ′ = W, and b′ = 1.

The extension of Nk is NE
k = D ‖ S E ‖ �kC

E and the extension of N is the set
NE = {NE

k | k ≥ 1}. The languages L(NE
k) and L(NE) are defined as in Def. 1.

It follows immediately from this definition that if v ∈ L(NE) then the sequence v′

obtained of replacing every occurrence of fc(g), uc(g) in v by wc(g) belongs to L(N).
Conversely, every trace v′ of L(N) can be transformed into a trace v of L(NE) by ade-
quately replacing some occurrences of wc(g) by fc(g) or uc(g).

In the sequel, we use sequences of first writes to partition sets of traces. Define Υ to
be the (finite) set of sequences over G(fc) with no repetitions. By the very idea of “first
writes” no sequence of Υ writes the same value twice, hence no word in Υ is longer than
|G|. Also define Υ# to be those words of Υ which ends with fc(#). Given τ ∈ Υ, define
Pτ to be the language given by (ΣE \ G(fc))∗� τ. Pτ contains all the sequences over ΣE

in which the subsequence of first writes is exactly τ. For S ⊆ Υ, PS =
⋃
σ∈S Pσ.

The Copycat Lemma. Intuitively, a copycat contributor is one that follows another con-
tributor in all its actions: it reads or writes the same value immediately after the other
reads or writes. Informally, the copycat lemma states that any trace of a non-atomic
network can be extended with copycat contributors.

Consider first the non-extended case. Clearly, for every trace ofNk there is a trace of
Nk+1 in which the leader and the first k contributors behave as before, and the (k + 1)-th
contributor behaves as a copycat of one of the first k contributors, say the i-th: if the i-th
contributor executes a read rc(g), then the (k + 1)-th contributor executes the same read
immediately after, and the same for a write.

Example 2. Consider the trace rc(g0) wd(g1) rc(g1) wc(g2) of D ‖ S ‖ C. Then the se-
quence rc(g0)2 wd(g1) rc(g1)2 wc(g2)2 is a trace ofD ‖ S ‖ (C� C).

For the case of extended networks, a similar result holds, but the copycat copies
a first write by a regular write: if the i-th contributor executes an action other than
fc(g), the copycat contributor executes the same action immediately after, but if the i-th
contributor executes fc(g), then the copycat executes wc(g).

Definition 4. We say u ∈ G(rd,wd)∗ is compatible with a multiset M = {v1, . . . , vk}

of words over G(fc,wc, uc, rc) (possibly containing multiple copies of a word) iff
u ‖ L(S E) ‖ �k

i=1vi , ∅. Let τ ∈ Υ. We say u is compatible with M following τ iff
Pτ ∩ (u ‖ L(S E) ‖ �k

i=1vi) , ∅.

Lemma 1. Let u ∈ G(rd,wd)∗ and let M be a multiset of words over G(rc, fc,wc, uc). If u
is compatible with M, then u is compatible with every M′ obtained by erasing symbols
from G(rc) and G(uc) from the words of M.

Proof. Erasing reads and useless writes (that no one reads) by contributors does not
affect the sequence of values written to the store and read by someone, hence compati-
bility is preserved. ut

Lemma 2 (Copycat Lemma). Let u ∈ G(rd,wd)∗, let M be a multiset over L(CE) and
let v′ ∈ M. Given a prefix v of v′ we have that if u is compatible with M, then u is
compatible with M ⊕ v[fc(g)/wc(g)].2

2 Throughout the paper, we use {}, ⊕, 	, and ≥ for the multiset constructor, union, difference and
inclusion, respectively. The word w[a/b] results from w by replacing all occurrences of a by b.

Example 3. rd(g1) is compatible with fc(g1) fc(g2). By the Copycat Lemma rd(g1) is also
compatible with {fc(g1) fc(g2),wc(g1) wc(g2)}. Indeed, fc(g1) wc(g1) rd(g1) fc(g2) wc(g2) ∈
L(S E) is a trace (even though fc(g2) is useless).

The Simulation Lemma. The simulation lemma states that we can replace unboundedly
many contributors by a finite number of LTSs that “simulate” them. In particular the
network is safe iff its simulation is safe.

Let v ∈ L(CE). Let #v be the number of times that actions of G(fc,wc) occur in v,
minus one if the last action of v belongs to G(fc,wc). E.g., #v = 1 for v = fc(g1)rc(g1)
but #v = 0 for v = rc(g1)fc(g1). The next lemma is at the core of the simulation theorem.

Lemma 3. Let u ∈ L(D) and let M = {v1, . . . , vk} be a multiset over L(CE) compatible
with u. Then u is compatible with a multiset M̃ over L(CE) ∩ G(rc, uc)∗ G(fc,wc).

Proof. Since u is compatible with M, u ‖ L(S E) ‖ �k
i=1vi , ∅. Lemma 1 shows that we

can drop from M all the vi such that vi ∈ G(rc, uc)∗. Further, define #M =
∑k

i=1 #vi.
We proceed by induction on #M. If #M = 0, then all the words of M belong to
G(rc, uc)∗ G(fc,wc), and we are done. If #M > 0, then there is vi ∈ M such that
vi = αi σβi, where αi ∈ G(rc, uc)∗, σ ∈ G(fc,wc), and βi , ε. Let g be the value
written by σ, and let vk+1 = αiwc(g). By Lemma 2, u is compatible with {v1, . . . , vk+1},
and so there is v′ ∈ u ‖ L(S E) ‖ �k+1

i=1 vi in which the write σ of vi occurs in v′ imme-
diately before the write of vk+1. We now let the writes occur in the reverse order, which
amounts to replacing vi by v′i = αi uc(g) βi and vk+1 by v′k+1 = αi σ. This yields a new
multiset M′ = M 	 {vi} ⊕ {v′i , v

′
k+1} compatible with u. Since #M′ = #M − 1, we then

apply the induction hypothesis to M′, obtain M̃ and we are done. ut

Definition 5. For all g ∈ G, let Lg = L(CE)∩G(rc, uc)∗ fc(g). Define S g be an LTS over
G(rc, uc, fc,wc) such that L(S g) = Pref (Lg · wc(g)∗). Define the LTS NS = D ‖ S E ‖

�g∈GS g which we call the simulation of NE .

Lemma 4. Let u ∈ L(D) and let M = {v1, . . . , vk} be a multiset over L(CE) ∩
G(rc, uc)∗ G(fc,wc) compatible with u. Then u is compatible with a set S = {sg}g∈G

where sg ∈ L(S g).

Proof. Let us partition the multiset M as {Mg}g∈G such that Mg contains exactly the
traces of M ending with fc(g) or wc(g). Note that some Mg might be empty. Each non-
empty Mg is of the form Mg = {x1fc(g), x2wc(g), . . . , xnwc(g)} where n ≥ 1, and xi ∈

G(rc, uc)∗ for every 1 ≤ i ≤ n. Define M′g as empty if Mg is empty, and M′g as Mg

together with n − 1 copies of x1wc(g). The copycat lemma shows that u is compatible
with ⊕g∈GM′g. Let us now define the multiset M′′g to be empty if M′g is empty, and the
multiset of exactly n elements given by x1fc(g) and n − 1 copies of x1wc(g) if M′g is not
empty. Again we show that u is compatible with ⊕g∈GM′′g . The reason is that the number
n − 1 of actions wc(g) in each M′′g does not change (compared to Mg) and each wc(g)
action can happen as soon as fc(g) has occurred.

Now define S consisting of one trace sg for each g ∈ G such that sg = ε if M′′g = ∅;
and sg = x1 fc(g) wc(g)n−1 if M′′g consists of x1fc(g) and n − 1 copies of x1wc(g).

We have that u is compatible with S because the number of fc(g) and wc(g) actions
in M′′g and sg does not change and each wc(g) action can happen as soon as fc(g) has

occurred. Note that it need not be the case that sg ∈ L(CE). However each sg ∈ L(S g)
(recall that each L(S g) is prefix closed). ut

Corollary 1. Let u ∈ L(D) and let M = {v1, . . . , vk} be a multiset over L(CE) compati-
ble with u. Then u is compatible with a set S = {sg}g∈G where sg ∈ L(S g).

In Lemmas 1,2,3 and 4 and Corollary 1 compatibility is preserved. We can further
show that it is preserved following a given sequence of first writes. For example, in
Lem. 3 if u is compatible with M following τ then u is compatible with M̃ following τ.

Lemma 5 (Simulation Lemma). Let τ ∈ Υ:
L(NE) ∩ Pτ , ∅ iff L(NS) ∩ Pτ , ∅ .

Proof. (⇒): The hypothesis and the definition ofNE shows that there is k ≥ 1 such that
Pτ ∩ (L(D) ‖ L(S E) ‖ �kL(CE)) , ∅.

Therefore we conclude that there exists u ∈ L(D) and M = {v1, . . . , vk} over L(CE)
such that u is compatible with M following τ. Corollary 1 shows that u is compatible
following τ with a set S = {sg}g∈G where sg ∈ L(S g). Therefore we have Pτ ∩ (u ‖
L(S E) ‖ �g∈GL(S g)) , ∅, hence that Pτ ∩ (L(D) ‖ L(S E) ‖ �g∈GL(S g)) , ∅ and finally
that Pτ ∩ L(NS) , ∅.

(⇐): The hypothesis and the definition of NS shows that Pτ ∩ (L(D) ‖ L(S E) ‖
�g∈GL(S g)) , ∅. Hence we find that there exists u ∈ L(D) and a set {xg}g∈G where xg ∈

L(S g) such that Pτ ∩ (u ‖ L(S E) ‖ �g∈Gxg) , ∅. The prefix closure of L(S g) shows that
either xg does not have a first write or xg = vgfc(g)wc(g)ng for some vgfc(g) ∈ Lg and ng ∈

N. In the former case, that is xg ∈ G(rc, uc)∗, Lemma 1 shows that discarding the trace
does not affect compatibility. Then define the multiset M containing for each remaining
trace xg = vgfc(g)wc(g)ng the trace vgfc(g) and ng traces vgwc(g). M contains no other
element. Using a copycat-like argument, it is easy to show M is compatible with u and
further that compatibility follows τ. Finally, because vg fc(g) ∈ L(CE) ∩ G(rc, uc)∗ G(fc)
and because CE is the extension of C we find that every trace of M is also a trace of CE ,
hence that there exists k ≥ 1 such that Pτ ∩ (L(D) ‖ L(S E) ‖ �kL(CE)) , ∅, and finally
that L(NE) ∩ Pτ , ∅. ut

Let us now prove an equivalent safety condition.

Proposition 1. A (D,C)-network N is safe iff L(NS) ∩ PΥ# = ∅.

Proof. From the semantics of non-atomic networks, N is unsafe if and only if L(N) ∩
(Σ∗wc(#)) , ∅, equivalently, L(NE)∩(Σ∗E fc(#)) , ∅ (by definition of extension), which in
turn is equivalent to L(NE)∩PΥ# , ∅ (by definition of PΥ#), if and only if L(NS)∩PΥ# ,
∅ (by the simulation lemma). ut

3.2 Monotonicity

Before stating the monotonicity lemma, we need some language-theoretic definitions.
For an alphabet Σ, define the subword ordering � ⊆ Σ∗ × Σ∗ on words as u � v iff u
results from v by deleting some occurrences of symbols. Let L ⊆ Σ∗, define S ⊆ L to be

– cover of L if for every u ∈ L there is v ∈ S such that u � v;

– support of L if for every u ∈ L there is v ∈ S such that v � u.
Observe that for every u, v ∈ S such that u ≺ v: if S is a cover then so is S \ {u}, and if
S is a support then so is S \ {v}.

Recall that NS = D ‖ S E ‖ �g∈GS g. It is convenient to introduce a fourth, redun-
dant component that does not change L(NS), but exhibits important properties of it.
Recall that the leader cannot observe the reads of the contributors, and does not read
the values introduced by useless writes. We introduce a local copy S E

D
of the store with

alphabet G(rd,wd, fc,wc) that behaves like S E for writes and first writes of the contrib-
utors, but has neither contributor reads nor useless writes in its alphabet. Formally:

Definition 6. The leader store S E
D

is the LTS (ΣE
D,G

D
E , δ

E
D, c0),

– ΣE
D = G(rd,wd, fc,wc);

– GDE is the set of pairs (g,W), where g ∈ G ∪ {g0} and W : G → {0, 1};
– c0 is the pair (g0,W0), where W0(g) = 0 for every g ∈ G;
– δE

D has a transition (g,W)
a
−→(g′,W ′) where g′ ∈ G iff one of the following condi-

tions hold: a) a=wd(g′) and W′ = W; b) a=rd(g), g′ = g, and W ′ = W; c) a=fc(g′),
W(g′) = 0, and W ′ = W[W(g′)/1]; d) a=wc(g′), W(g′) = 1, and W ′ = W.

It follows easily from this definition that L(S E
D

) is the projection of L(S E) onto ΣE
D,

and so L(S E) = L(S E
D

) ‖ L(S E) holds. Now, defineDS = D ‖ S E
D

, we find that:
L(NS) = L(D ‖ S E ‖ �g∈GS g) def. 5

= L(D) ‖ L(S E
D) ‖ L(S E) ‖ �g∈GL(S g)

= L(D ‖ S E
D) ‖ L(S E) ‖ �g∈GL(S g)

= L(DS ‖ S E ‖ �g∈GS g) (1)

Lemma 6 (Monotonicity Lemma). Let τ ∈ Υ and let L̂τ be a cover of L(DS) ∩ Pτ.
For every g ∈ G, let Lg be a support of Lg, and let S g be an LTS such that L(S g) =

Pref (Lg · w
∗
c(g)):

(L(DS) ∩ Pτ) ‖ L(S E) ‖ �g∈GL(S g) , ∅ iff L̂τ ‖ L(S E) ‖ �g∈GL(S g) , ∅ .

The proof of the monotonicity lemma breaks down into monotonicity for the con-
tributors (Lemma 7) and for the leader (Lemma 9).

Lemma 7 (Contributor Monotonicity Lemma). For every g ∈ G, let Lg be a support
of Lg, and let S g be an LTS such that L(S g) = Pref (Lgw∗c(g)). Let u ∈ G(rd,wd)∗ and
τ ∈ Υ:

(u ‖ L(S E) ‖ �g∈GL(S g)) ∩ Pτ , ∅ iff (u ‖ L(S E) ‖ �g∈GL(S g)) ∩ Pτ , ∅ .

Proof. (⇐): It suffices to observe that since Lg ⊆ Lg we have L(S g) ⊆ L(S g) and
we are done. (⇒): Since Lg ⊆ G(rc, uc)∗fc(g) and Lg ⊆ Lg we find that for every word
w′ ∈ Lg\Lg there exists a word w ∈ Lg resulting from w′ by erasing symbols inG(uc, rc).
Hence, Lemma 1 shows that erasing symbols in G(uc, rc) does not affect compatibility.
The proof concludes by observing that compatibility is further preserved for τ, and we
are done. ut

The leader monotonicity lemma requires the following technical observation.

Lemma 8. Let τ ∈ Υ and L ⊆ G(rc, fc,wc, uc)∗ satisfying the following condition: if
α fc(g) β1β2 ∈ L, then α fc(g) β1 wc(g) β2 ∈ L. For every v, v′ ∈ Pτ ∩ L(S E

D
):

if v ‖ L(S E) ‖ L , ∅ and v′ � v, then v′ ‖ L(S E) ‖ L , ∅ .

Because v, v′ ∈ Pτ∩L(S E
D

) over alphabet ΣE
D = G(rd,wd, fc,wc) and v′ � v we find that v

can be obtained from v′ by erasing factors that are necessarily of the form w?(g) rd(g)∗

or rd(g). In particular v, v′ ∈ Pτ shows that ProjG(fc)(v) = ProjG(fc)(v
′) = τ.3 The proof of

Lem. 8 is by induction on the number of those factors.

Lemma 9 (Leader Monotonicity Lemma). Let τ ∈ Υ and L ⊆ G(rc, fc,wc, uc)∗ satis-
fying: if α fc(g) β1β2 ∈ L, then α fc(g) β1 wc(g)β2 ∈ L. For every cover L̂τ of Pτ∩L(DS):

(Pτ ∩ L(DS)) ‖ L(S E) ‖ L , ∅ iff L̂τ ‖ L(S E) ‖ L , ∅ .

Proof. (⇐): It follows from L̂τ ⊆ (Pτ∩L(DS)). (⇒): We conclude from the hypothesis
that there exists w ∈ Pτ ∩ L(DS) such that w ‖ L(S E) ‖ L , ∅. Since L̂τ is a cover
Pτ ∩ L(DS), we find that there exists w′ ∈ L̂τ such that w′ � w ans w′ ∈ Pτ ∩ L(DS).
Finally, DS = D ‖ S E

D
shows that w,w′ ∈ Pτ ∩ L(S E

D
), hence that w′ ‖ L(S E) ‖ L , ∅

following Lem. 8, and finally that L̂τ ‖ L(S E) ‖ L , ∅ because w′ ∈ L̂τ. ut

4 Complexity of safety verification of non-atomic networks

Recall that the safety verification problem for machines MD and MC consists in deciding
if the (JMDK, JMCK)-network is safe. Notice that the size of the input is the size of the
machines, and not the size of its LTSs, which might even be infinite. We study the
complexity of safety verification for different machine classes.

Given two classes of machines D, C (like finite-state machines or push-
down machines, see below), we define the class of (D,C)-networks as the set{
(JDK, JCK)-network | D ∈ D,C ∈ C

}
and denote by Safety(D, C) the restriction of the

safety verification problem to pairs of machines MD ∈ D and MC ∈ C. We study
the complexity of the problem when leader and contributors are finite-state machines
(FSM) and pushdown machines (PDM).4 In this paper a FSM is just another name for
a finite-state LTS, and the LTS JAK of a FSM A is A, i.e. JAK = A. We define the
size |A| of a FSM A as the size of its transition relation. A (read/write) pushdown ma-
chine is a tuple P = (Q,G(r,w), Γ, ∆, γ0, q0), where Q is a finite set of states including
the initial state q0, Γ is a stack alphabet that contains the initial stack symbol γ0, and
∆ ⊆ (Q × Γ) × (G(r,w) ∪ {ε}) × (Q × Γ∗) is a set of rules. A configuration of a PDM P
is a pair (q, y) ∈ Q × Γ∗. The LTS JPK over G(r,w) associated to P has Q × Γ∗ as states,
(q0, γ0) as initial state, and a transition (q, γy)

a
−→(q′, y′y) iff (q, γ, a, q′, y′) ∈ ∆. Define

the size of a rule (q, γ, a, q′, y′) ∈ ∆ as |y′| + 5 and the size |P| of a PDM as the sum of
the size of rules in ∆.
Determinism. We show that lower bounds (hardness) for the safety verification prob-
lems can be achieved already for deterministic machines. An LTS T over a read-write

3 ProjΣ′ (w) returns the projection of w onto alphabet Σ′.
4 We also define FSA and PDA as the automaton (i.e. language acceptor) counterpart of FSM

and PDM, respectively. As expected, definitions are identical except for an additional accepting
component given by a subset of states in which the automaton accepts.

alphabet is deterministic if for every state s and every pair of transitions s
a1
−→s1 and

s
a2
−→s2, if s1 , s2 then a1 and a2 are reads, and they read different values. Intuitively,

for any state of a store S, a deterministic LTS T can take at most one transition in
S ‖ T . A (D,C)-network is deterministic if D and C are deterministic LTSs. Given
a class X of machines, we denote by dX the subclass of machines M of X such that
JMK is a deterministic LTS over the read-write alphabet. Notice that this notion does
not coincide with the usual definition of a deterministic automaton.

The observation is that a network with non-deterministic processes can be simulated
by deterministic ones while preserving safety; intuitively, the inherent non-determinism
of interleaving can simulate non-deterministic choice in the machines.

Lemma 10 (Determinization Lemma). There is a polynomial-time procedure that
takes a pair (D,C) of LTSs and outputs a pair (D′,C′) of deterministic LTSs such that
the (D,C)-network is safe iff the (D′,C′)-network is safe.

We prove the lemma by eliminating non-determinism as follows. Suppose D is
non-deterministic by having transitions (q, rd(g), q′) and (q, rd(g), q′′). To resolve this
non-determinism, we define D′ and C′ by modifying D and C as follows: we add new
states q1, q2, q3, q4 toD and replace the two transitions (q, rd(g), q′) and (q, rd(g), q′′) by
the transitions (q, rd(g), q1), (q1,wd(nd), q2), (q2, rd(0), q3), (q3,wd(g), q′), (q2, rd(1), q4)
and (q4,wd(g), q′′). Let q0 be the initial state of C. We add two new states q̂ and q̃ to C
and the transitions (q0, rc(nd), q̂)(q̂,wc(0), q̃)(q̃,wc(1), q0). Finally, we extend the store
to accommodate the new values {0, 1,nd}. It follows that D′ has one fewer pair of
non-deterministic transitions than D. Similar transformations can eliminate other non-
deterministic transitions (e.g., two writes from a state) or non-determinism in C.

4.1 Complexity of Safety Verification for FSMs and PDMs

We characterize the complexity of the safety verification problem of non-atomic
networks depending on the nature of the leader and the contributors. We show:
Safety(dFSM, dFSM), Safety(PDM,FSM), Safety(FSM,PDM) coNP-complete
Safety(dPDM, dPDM), Safety(PDM,PDM) PSPACE-complete

Theorem 1. Safety(dFSM, dFSM) is coNP-hard.

We show hardness by a reduction from 3SAT to the complement of the safety veri-
fication problem. Given a 3SAT formula, we design a non-atomic network in which
the leader and contributors first execute a protocol that determines an assignment to all
variables, and uses subsets of contributors to store this assignment. For a variable x,
the leader writes x to the store, inviting proposals for values. On reading x, contributors
non-deterministically write either “x is 0” or “x is 1” on the store, possibly over-writing
each other. At a future point, the leader reads the store, reading the proposal that was
last written, say “x is 0.” The leader then writes “commit x is 0” on the store. Every
contributor that reads this commitment moves to a state where it returns 0 every time
the value of x is asked for. Contributors that do not read this message are stuck and do
not participate further. The commitment to 1 is similar. This protocol ensures that each
variable gets assigned a consistent value.

Then, the leader checks that each clause is satisfied by querying the contributors for
the values of variables (recall that contributors return consistent values) and checking
each clause locally. If all clauses are satisfied, the leader writes a special symbol #. The
safety verification problem checks that # is never written, which happens iff the formula
is unsatisfiable. Finally, Lemma 10 ensures all processes are deterministic.

Theorem 2. Safety(PDM,FSM) is in coNP.

Proof. Fix a (D,C)-network N , where PD is a PDM generating D = JPDK, and C is a
FSM. Hence L(D) is a context-free language and L(C) is regular. Prop. 1 and Def. 5 (of
NS) show that the (D,C)-network N is accepting iff L(D ‖ S E ‖ �g∈GS g) ∩ PΥ# , ∅.
Since C is given by a FSM, so is CE . Further, Lg = L(CE)∩G(rd, uc)∗fc(g) has a support
captured by those paths in CE starting from the initial state and whose label ends by
fc(g) and in which no state is entered more than once. Therefore if CE has k states then
the set of paths starting from the initial state, of length at most k + 1 and whose label
ends with fc(g) is a support, call it Lg, of Lg. Next, Lem. 7 shows that deciding L(D ‖
S E ‖ �g∈GS g)∩ PΥ# , ∅ is equivalent to L(D ‖ S E ‖ �g∈GPref (Lg ·wc(g)∗))∩ PΥ# , ∅.

Note that this last check does not directly provide a NP algorithm for non-safety
because, due to the write records, S E is exponentially larger than |G|. So, we proceed by
pushing down sequences of first writes and obtain the following equivalent statement:
L(D) ‖ (L(S E) ∩ PΥ#) ‖ (�g∈GL(Pref (Lg · wc(g)∗)) ∩ PΥ#) , ∅.

Now, we get an NP algorithm as follows: (a) guess τ ∈ Υ# (this can be done in time
polynomial in |G|); (b) construct in polynomial time a FSA A1 for L(S E)∩Pτ (A1 results
from S E by keeping the |τ| write records corresponding to τ); (c) for each g ∈ τ, guess
zg ∈ Lg (the guess can be done in polynomial time); (d) guess z ∈ (�g∈Gzg) ∩ Pτ (this
fixes a sequence of reads, useless writes and first writes of the contributors according
to τ); (e) construct in polynomial time a FSA A2 such that L(A2) is the least language
containing z and if αfc(g)β1β2 ∈ L(A2) then αfc(g)β1wc(g)β2 ∈ L(A2) (intuitively we
add selfloops with write actions of G(wc) to the FSA accepting z such that wc(g) oc-
curs provided fc(g) has previously occurred); (f) construct in time polynomial in |PD| a
context-free grammar (CFG) GD such that L(GD) = L(PD); (g) construct in polynomial
time a CFG G such that L(G) = L(GD) ‖ L(A1) ‖ L(A2) (this can be done in time poly-
nomial in |GD| + |A1| + |A2| as stated in Prop. 2, Sect. E); (h) check in polynomial time
whether L(G) , ∅. ut

We continue with the following results showing that even if all processes but the
leader are given a stack then the safety verification problem remains in coNP. A detailed
proof is given in Appendix C.

Theorem 3. Safety(FSM,PDM) is in coNP.

The complexity of the problem becomes higher when all the processes are PDMs.

Theorem 4. Safety(dPDM, dPDM) is PSPACE-hard.

PSPACE-hardness is shown by reduction from the acceptance problem of a polynomial-
space deterministic Turing machine. The proof is technical. The leader and contributors
simulate steps of the Turing machine in rounds. The stack is used to store configurations

of the Turing machine. In each round, the leader sends the current configuration of
the Turing machine to contributors by writing the configuration one element at a time
on to the store and waiting for an acknowledgement from some contributor that the
element was received. The contributors receive the current configuration and store the
next configuration on their stacks. In the second part of the round, the contributors send
back the configuration to the leader. The leader and contributors use their finite state to
make sure all elements of the configuration are sent and received.

Additionally, the leader and the contributors use the stack to count to 2n steps. If
both the leader and some contributor count to 2n in a computation, the construction
ensures that the Turing machine has been correctly simulated for 2n steps, and the sim-
ulation is successful. The counting eliminates bad computation sequences in which con-
tributors conflate the configurations from different steps due to asynchronous reads and
writes.

Next we sketch the upper PSPACE bound that uses constructions on approximations
of context-free languages. The details of the proof are available in Appendix E.

Theorem 5. Safety(PDM,PDM) is in PSPACE.

Proof. Let PD and PC be PDMs respectively generating D = JPDK and C = JPCK,
hence L(D) and L(C) are context-free languages. Proposition 1 shows that the (D,C)-
network N is accepting iff L(NS) ∩ PΥ# , ∅ iff L(DS ‖ S E ‖ �g∈GS g) ∩ PΥ# , ∅
(by (1)). From the construction of the Simulation Lemma, for each g ∈ G the language
Lg = L(CE) ∩ G(rd, uc)∗fc(g) is context-free, and so is L(S g). Given PC we compute in
polynomial time a PDA Pg such that L(Pg) = Lg. Next,

L(DS ‖ S E ‖ �g∈GS g) ∩ PΥ# , ∅

iff (L(DS) ∩ PΥ#) ‖ L(S E) ‖ �g∈GL(S g) , ∅

iff (L(DS) ∩ PΥ#) ‖ L(S E) ‖ �g∈GPref (L(Pg) · wc(g)∗) , ∅ (2)

iff (
⋃
τ∈Υ#

L̂τ) ‖ L(S E) ‖ �g∈GPref (L(Pg) · wc(g)∗) , ∅ (3)
(2) follows from definition of S g and Lg = L(Pg); (3) follows from Lem. 6 and by

letting L̂τ and L(Pg) be a cover and support of L(DS) ∩ Pτ and L(Pg), respectively.
Next, for all g ∈ G we compute a FSA Ag such that L(Ag) is a support of L(Pg). Our

first language-theoretic construction shows that the FSA Ag can be computed in time
exponential but space polynomial in |Pg|. Then, because L(S E) is a regular language,
we compute in space polynomial in |PD| + |PC | a FSA AC such that L(AC) = L(S E) ‖
�g∈GPref (L(Ag) · wc(g)∗). Hence, by (3) and because of Υ# (guessing and checking
τ ∈ Υ# is done in time polynomial in |G|) we find that it suffices to prove L̂τ ‖ L(AC) , ∅
is decidable in space polynomial in |PD| + |PC |.

To compute a cover L̂τ of L(DS) ∩ Pτ, we need results about the k-index approx-
imations of a context-free language [4]. Given a CFG G in CNF and k ≥ 1, we define
the k-index approximation of L(G), denoted by L(k)(G), consisting of the words of L(G)
having a derivation in which every intermediate word contains at most k occurrences of
variables. We further introduce an operator ./ which, given G and FSA A, computes in
polynomial time a context-free grammar G ./ A such that L(G ./ A) = L(G) ‖ L(A). We
prove the following properties:

1. L(3m)(G) is a cover of L(G), where m is the number of variables of G;

2. for every FSA A and k ≥ 1, L(k)(G ./ A) = L(k)(G) ‖ L(A);
3. L(k)(G) , ∅ on input G, k can be decided in NSPACE(k log(|G|)).

Equipped with these results, the proof proceeds as follows. Let GD be a context-free
grammar such that L(GD) = L(PD). It is well-known that GD can be computed in time
polynomial in |PD|. Next, given τ, we compute a grammar Gτ

D recognizing Pτ ∩ L(DS)
as follows. The definition of DS shows that Pτ ∩ L(DS) = L(D) ‖ (L(S E

D
) ∩ Pτ).

We then compute a FSA S τ
D

such that L(S τ
D

) = L(S E
D

) ∩ Pτ. It can be done in time
polynomial in |PD|+ |PC | because it is a restriction of S E where write records are totally
ordered according to τ and there are exactly |τ| of them. Therefore we obtain, Pτ ∩

L(DS) = L(GD) ‖ L(S τ
D

) because L(GD) = L(D). Define Gτ
D as the CFG GD ./ S τ

D

which can be computed in polynomial time in GD and S τ
D

, hence in |PD|+ |PC |. Clearly
L(Gτ

D) = Pτ∩L(DS). Further, L(k)(Gτ
D) is a cover of L(Gτ

D) for some k ≤ p(|PD|), where
p is a suitable polynomial.

By item 2, L(k)(Gτ
D) ‖ L(AC) = L(k)(Gτ

D ./ AC), where the grammar Gτ
D ./ AC

can be constructed in exponential time and space polynomial in |PD| + |PC |. Now we
apply a generic result of complexity (see e.g. Lemma 4.17, [3]), slightly adapted: given
functions f1, f2 : Σ∗ → Σ∗ and g : Σ∗ × Σ∗ → Σ∗ if fi can be computed by a s fi -space-
bounded Turing machine, and g can be computed by a sg1 (|x1|) · sg2 (|x2|)-space-bounded
Turing machine, then g(f1(x), f2(x)) can be computed in log(| f1(x)|+ | f2(x)|) + s f1 (|x|) +

s f2 (|x|) + sg1 (| f1(x)|) · sg2 (| f2(x)|)) space. We have
– f1 is the function that computes Gτ

D ./ AC on input (PD, PC), and f2 is the function
that on input PD computes 3m, where m is the number of variables of Gτ

D. So the
output size of f1 is exponential in the input size, while it is polynomial for f2.
Moreover, s fi for i = 1, 2 is polynomial.

– g is the function that on input (Gτ
D ./ AC , 3m) yields 1 if L(3m)(Gτ

D ./ AC) , ∅, and
0 otherwise, where m is the number of variables of Gτ

D. By (3) sg1 is logarithmic,
and sg2 is linear.

Finally, the generic complexity result shows that g ◦ f can be computed in space poly-
nomial in |PD| + |PC |, and we are done. ut

We note that our three language-theoretic constructions (the construction of au-
tomaton Ag that is a cover of L(Pg) of size at most exponential in |Pg|, and results 1,
2, and 3 in the proof above) improve upon previous constructions, and are all required
for the optimal upper bound. Hague [18] shows an alternate doubly exponential con-
struction using a result of Ehrenfeucht and Rozenberg in place of Theorem 7. This gave
a 2EXPTIME algorithm. Even after using our exponential time construction for Ag,
we can only get an EXPTIME algorithm, since the non-emptiness problem for (gen-
eral) context-free languages is P-complete [19]. Our bounded-index approximation for
the cover and the space-efficient emptiness algorithm for bounded-index languages are
crucial to the PSPACE upper bound.

4.2 The bounded safety problem

Given k > 0, we say that a (D,C)-network is k-safe if all traces in which the leader and
each contributor make at most k steps are safe; i.e., we put a bound of k steps on the

runtime of each contributor, and consider only safety within this bound. Here, a step
consists of a read or a write of the shared register. The bound does not limit the total
length of traces, because the number of contributors is unbounded. The bounded safety
problem asks, givenD, C, and k written in unary, if the (D,C)-network is k-safe.

Given a class of (D,C)-networks, we define BoundedSafety(D, C) as the restriction
of the k-safety problem to pairs of machines MD ∈ D and MC ∈ C, where we write k in
unary. A closer look to Theorem 1 shows that its proof reduces the satisfiability problem
for a formula φ to the bounded safety problem for a (D,C)-network and a number k, all
of which have polynomial size |φ|. This proves that BoundedSafety(dFSM, dFSM)
is coNP-hard. We show that, surprisingly, bounded safety remains coNP-complete for
pushdown systems, and, even further, for arbitrary Turing machines. Notice that the
problem is already coNP-complete for one single Turing machine.

We sketch the definition of the Turing machine model (TM), which differs slightly
from the usual one. Our Turing machines have two kind of transitions: the usual transi-
tions that read and modify the contents of the work tape, and additional transitions with
labels in G(r,w) for communication with the store. The machines are input-free, i.e.,
the input tape is always initially empty.

Theorem 6. BoundedSafety(TM,TM) is coNP-complete.

Proof. Co-NP-hardness follows from Theorem 1. To prove BoundedSafety(TM,TM)
is in NP we use the simulation lemma. Let MD,MC , k be an instance of the problem,
where MD,MC are Turing machines of sizes nD, nC with LTSs D = JMDK and C =

JMCK, and let nD + nC = n. In particular, we can assume |G| ≤ n, because we only need
to consider actions that appear in MD and MC . If the (D,C)-network is not k-safe, then
by definition there exist u ∈ L(D) and a multiset M = {v1, . . . , vk} over L(CE) such that u
is compatible with M following some τ ∈ Υ#; moreover, all of u, v1, . . . , vm have length
at most k. By Cor. 1 and Lem. 1 (showing we can drop traces without a first or regular
write), there exists a set S = {sg1 , . . . , sgm } with m ≤ |G| ≤ n, where sgi ∈ Lgi · wc(gi)∗,
and numbers i1, . . . , im such that u is compatible with {sg1 wc(g1)i1 , . . . , sgm wc(gm)im }

following τ. Since each of the sgi is obtained by suitably renaming the actions of a
trace, we have |sgi | ≤ k. Moreover, since the wc(g j)i j parts provide the writes necessary
to execute the reads of the sg sequences, and there are at most k · (m + 1) ≤ k · (n + 1)
of them, the numbers can be chosen so that i1, . . . , im ≤ O(n · k) holds.

We present a nondeterministic polynomial algorithm that decides if the (D,C)-
network is k-unsafe. The algorithm guesses τ ∈ Υ# and traces u, sg1 , . . . , sgm of length
at most k. Since there are at most n + 1 of those traces, this can be done in polynomial
time. Then, the algorithm guesses numbers i1, . . . , im. Since the numbers can be cho-
sen so that i1, . . . , im ≤ O(n · k), this can also be done in polynomial time. Finally, the
algorithm guesses an interleaving of u, sg1 wc(g1)i1 , . . . , sgm wc(gm)im and checks com-
patibility following τ. This can be done in O(n2·k) time. If the algorithm succeeds, then
there is a witness that (L(D) ‖ L(S E) ‖ �g∈GL(S g)) ∩ Pτ , ∅ holds, which shows, by
Prop. 1 and Def. 5 (of NS) that the (D,C)-network is unsafe. ut

A TM is poly-time if it takes at most p(n) steps for some polynomial p, where n is
the size of (the description of) the machine in some encoding. As a corollary, we get
that the safety verification problem when leaders and contributors are poly-time Turing

machines is coNP-complete. Note that the coNP upper bound holds even though the
LTS corresponding to a poly-time TM is exponentially larger than its encoding.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: LICS ’96. pp. 313–321. IEEE Computer Society (1996)

2. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters 22(6), 307 – 309 (1986)

3. Arora, S., Barak, B.: Computational Complexity–A Modern Approach. CUP (2009)
4. Brainerd, B.: An analog of a theorem about context-free languages. Information and Control

11(56), 561 – 567 (1967)
5. Clarke, E.M., Talupur, M., Veith, H.: Proving Ptolemy right: The environment abstraction

framework for model checking concurrent systems. In: TACAS ’08. LNCS, vol. 4963, pp.
33–47. Springer (2008)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press and
McGraw-Hill (1990)

7. Delzanno, G.: Constraint-based verification of parameterized cache coherence protocols.
Formal Methods in System Design 23(3), 257–301 (2003)

8. Delzanno, G., Raskin, J.F., Van Begin, L.: Towards the automated verification of multi-
threaded java programs. In: TACAS ’02. LNCS, vol. 2280, pp. 173–187. Springer (2002)

9. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc networks. In:
CONCUR ’10. LNCS, vol. 6269, pp. 313–327. Springer (2010)

10. Dimitrova, R., Podelski, A.: Is lazy abstraction a decision procedure for broadcast protocols?
In: VMCAI ’08. LNCS, vol. 4905, pp. 98–111. Springer (2008)

11. Emerson, E.A., Kahlon, V.: Exact and efficient verification of parameterized cache coherence
protocols. In: CHARME ’03. pp. 247–262. LNCS, Springer (2003)

12. Emerson, E.A., Namjoshi, K.S.: Verification of parameterized bus arbitration protocol. In:
CAV ’98. LNCS, vol. 1427, pp. 452–463. Springer (1998)

13. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS ’99.
pp. 352–359. IEEE Computer Society (1999)

14. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: A simple and direct
automaton construction. Information Processing Letters 111, 614–619 (2011)

15. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to broadcast
protocols. In: FSTTCS ’02. LNCS, vol. 2556, pp. 145–156. Springer (2002)

16. Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. ACM Trans.
Program. Lang. Syst. 34(1), 6:1–6:48 (2012)

17. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computing. Dis-
tributed Computing 20(3), 165–177 (2007)

18. Hague, M.: Parameterised pushdown systems with non-atomic writes. In: Proc. of
FSTTCS ’11. LIPIcs, vol. 13, pp. 457–468. Schloss Dagstuhl (2011)

19. Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time. In: Proc.
of STOC ’74. pp. 40–46. ACM (1974)

20. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized concurrent
programs. In: CAV ’10. LNCS, vol. 6174. Springer (2010)

21. Laurendeau, C., Barbeau, M.: Secure anonymous broadcasting in vehicular networks. In:
LCN ’07. pp. 661–668. IEEE Computer Society (2007)

22. McMillan, K.L.: Verification of an implementation of tomasulo’s algorithm by compositional
model checking. In: CAV ’98. LNCS, vol. 1427, pp. 110–121. Springer (1998)

23. Sipser, M.: Introduction to the Theory of Computation. Int’l Thomson Publishing (1996)
24. La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concurrent pro-

grams using linear interfaces. In: CAV ’10. LNCS, vol. 6174, pp. 629–644. Springer (2010)
25. Viswanathan, M., Chadha, R.: Deciding branching time properties for asynchronous pro-

grams. Theoretical Computer Science 410(42), 4169–4179 (2009)

A Combinatorics

Proof (of Lem 8). Because v, v′ ∈ Pτ ∩ L(S E
D

) over alphabet ΣE
D = G(rd,wd, fc,wc) and

v′ � v we find that v can be obtained from v′ by erasing factors that are necessarily
of the form w?(g) rd(g)∗ or rd(g). In particular v, v′ ∈ Pτ shows that ProjG(fc)(v) =

ProjG(fc)(v
′) = τ.5

The proof is by induction on the number m of those factors. If m = 0 then v′ = v
and we are done. Now, let m > 0 and let v† be the trace which results from erasing one
factor σ ∈ (G(wd,wc)G(rd)∗)∪ (G(rd)) from v′. That is v′ = v1

†
σv2
†

where v1
†
v2
†

= v† � v.
Without loss of generality we can assume that if σ < G(rd) then the first symbol of v2

†
is

a write action (it belongs to G(fc,wc,wd)). Also observe that by S E
D

, if σ ∈ G(rd) then
the last write in v1

†
writes the value needed by σ.

Since v′ ∈ Pτ ∩ L(S E
D

), it is routine to check that v† ∈ Pτ ∩ L(S E
D

). Therefore we
conclude from the induction hypothesis and v† � v that there exists a trace w† ∈ L(S E) ‖
L such that v† ‖ w† , ∅, equivalently that ProjΣE

D
(w†) = v† since ΣE

D ⊆ ΣE . Observe that
w† can be divided into w1

†
w2
†

such that ProjΣE
D
(wi
†
) = vi

†
for i = 1, 2. Let w1

‡
be the

(possibly empty) suffix of w1
†

starting at the last occurrence of an action of ΣE
D and let

w2
‡

be the prefix of w2
†

which ends at the first occurrence of an action of ΣE
D. Then L(S E)

shows that w1
‡
w2
‡

belongs to G(rc)∗G(uc)∗.
Let us now consider the added factor σ. First, let us notice that ProjΣE

D
(w1
†
σw2
†
) =

v1
†
σv2
†

= v′. Thus it suffices to show that w1
†
σw2
†
∈ L(S E) ‖ L.

Now, if σ ∈ G(rd), we can choose w1
†

and w2
†

such that w1
‡

= ε. Notice that as for
v1
†

and v2
†
, then the last write that occurs in w1

†
writes the value needed by σ and so

w1
†
σw2
†
∈ L(S E). Hence we find that w1

†
σw2
†
∈ L(S E) ‖ L because the alphabet of L is

disjoint from G(rd).
On the other hand if σ < G(rd) we can choose w1

†
and w2

†
such that w2

‡
= ε. Then

σ = w?(g)rd(g)i for some i ∈ N. Also w1
†
σw2
†
∈ L(S E) because, as assumed above, the

first symbol of w2
†

is a write action.
Finally, if σ = wd(g)rd(g)i we find that w1

†
σw2
†
∈ L(S E) ‖ L because the alphabet

of L is disjoint from G(wd, rd). Else if σ = wc(g)rd(g)i we find, by S E , that fc(g) must
occur in w1

†
, hence that wc(g) can be matched in L following the hypothesis on L. ut

B coNP lower bound

Proof (of Theorem 1). We give a reduction from 3SAT to the complement of the safety
verification problem. Given a 3SAT formula with n variables and m clauses, we con-

5 ProjΣ′ (w) returns the projection of w onto alphabet Σ′.

struct a deterministic leader D and a deterministic contributor C such that the (D,C)-
network writes a special symbol # iff the formula is satisfiable. The leader uses the
contributors to guess and store an assignment, and then checks if each clause is satis-
fied.
Gadget to guess and retrieve a bit. The reduction uses the following protocol between
the leader and the contributors to guess a bit and maintain the guess consistently. To
assign a value to bit, the leader writes bit to the global store. The contributors who
read bit from the store then write consecutively propose-bit-is-i, i = 0, 1, on the
store. The leader reads the store at some (non-deterministic) point, and reads the last
write by one of the contributors proposing either 0 or 1. If it reads propose-bit-is-0
(the 1 case is identical), it writes back that it commits to setting the bit to 0 (writing
commit-bit-is-0). Contributors who read commit-bit-is-0 move on to the next
phase, where they deliver bit-is-0 each time they are asked the value of bit. That is,
they wait to read a get-value-of-bit message, and reply with bit-is-0.

Similarly, if the leader commits to a 1, contributors who read the message come to
the consensus that the bit is 1. Contributors who miss the commit message are stuck.
This protocol ensures that the leader and contributors can reach consensus on the value
of a bit, and even though they are deterministic, the value of the bit is chosen non-
deterministically, based on when the leader reads a value (propose-bit-is-i, i = 0, 1)
from the store. Notice that an arbitrary number of contributors can participate and po-
tentially overwrite each other, but the bit is fixed to a chosen value. Reduction from

3SAT. The leader uses the above protocol to “assign” non-deterministically chosen con-
sensus values to each variable x1, . . . , xn. Then, it checks sequentially that each clause
is satisfied by this assignment. To do this, it gets the literals from the contributors and
checks if the clause is satisfied. To get the assigned value to a variable x, the leader
writes get-value-of-x on the store. The contributors that are storing an assignment
to x (i.e., those who completed the consensus protocol for x) and who read this message,
write the consensus value (using values x-is-0 or x-is-1). Even if several contributors
write, they write the same value.

Suppose the formula is satisfiable. Then, there is an execution of the protocol where
the contributors reach a consensus for each bit corresponding to a satisfying assignment,
and the leader succeeds in checking all clauses. Then, the value # gets written to the
store and the (D,C)-network is accepting. On the other hand, if the formula is not
satisfiable, then the leader never succeeds checking all clauses and # never gets written.
Note that the size ofD and C is O(m + n) and that they are deterministic. ut

C coNP upper bound

We first recall some basic structural property of FSAs. Define the reachability relation of
a FSA as follows: state s1 is reachable from s2 iff there is a (possibly empty) path from
s2 to s1. We define a strongly connected component (scc) of a FSA as an equivalence
class for the mutual reachability relation.

Lemma 11. For every FSA A = (Σ,Q, δ, q0, F) there exists a finite collection A1, . . . , Ad

such that each Ai satisfies the following properties:

1. each Ai results from removing states and transitions from A; and
2.

⋃d
i=1 L(Ai) = L(A); and

3. for each v1, v2 ∈ L(Ai) there exists v ∈ L(Ai) such that v � v1 and v � v2.

Proof. A path in a FSA is said to be accepting if its first and last state are initial and
final respectively. Let π be an accepting path in A such that no state repeats in π. Define
Aπ to be the FSA that consists exactly of (1) the states and transitions of π; and (2) the
states and transitions of the sccs visited by π.

Clearly, Aπ results from removing states and transitions from A. Define the set
{A1, . . . , Ad} such that each accepting path π with no repeating state induces exactly
one automaton Aπ ∈ {A1, . . . , Ad}. This set is finite since there are only finitely many
states and transitions in A. Furthermore, it is easily checked that

⋃d
i=1 L(Ai) = L(A).

We turn to point 3. Because no state is repeated, π fixes a total order on the sccs it
visits (and are also included in Aπ). So any two accepting paths in Aπ must visit the sccs
in that order. Therefore, it suffices to show that given a scc, any two traces drawn upon
that scc are covered by a third one. This is easily seen from the definition of subword
ordering and the fact that in a scc all states are mutually reachable. ut

Next, let g ∈ G and define LLg = Lg · wc(g)∗. Observe that LLg ⊆

G(rc, uc)∗ fc(g) wc(g)∗. Hence, the alphabet of LLg is given by G(rc, uc) ∪ {fc(g),wc(g)}.

Lemma 12. Let v ∈ G(rd,wd, fc,wc)∗, g ∈ G, G1 ⊆ G such that g < G1. We have: if v ‖
L(S E) ‖ (�g′∈G1 LLg′) , ∅ and v ‖ L(S E) ‖ LLg , ∅ then v ‖ L(S E) ‖ (�g∈G1∪{g}LLg) ,
∅.

Proof. Let x ∈ �g′∈G1 LLg′ and y ∈ LLg. We prove: if v ‖ L(S E) ‖ x , ∅ and v ‖ L(S E) ‖
y , ∅ then v ‖ L(S E) ‖ (x� y) , ∅.

Let v = v0 . . . vn−1, where vi ∈ G(rd,wd, fc,wc) for each i, 0 ≤ i < n, and consider
the asynchronous product v ‖ L(S E). We define the LTS Q over alphabet ΣE as follows.
The states of Q are the set

{
(Vi, g) | 0 ≤ i ≤ n, g ∈ G ∪

{
$
}}

. The initial state is (V0, $).
There is a transition (Vi, g)

a
−→(V j, g′) between two states of Q iff one of the following

condition holds:
– a = rd(g) = vi, j = i + 1, g′ = g;
– a = rc(g), j = i, g′ = g;
– a = wd(g′) = vi, j = i + 1;
– a = fc(g′) = vi, j = i + 1;
– a = wc(g′) = vi, j = i + 1;
– a = uc, j = i, g′ = $.

It is easy to see that L(Q) is the prefix closure of the language v ‖ L(S E).
Since v ‖ L(S E) ‖ x , ∅ and v ‖ L(S E) ‖ y , ∅ by hypothesis, there exist two words

σx and σy of Q such that σx ‖ x , ∅ and σy ‖ y , ∅. Let σ′x be the word resulting
from erasing all symbols in G(uc, rc) from σx, and define σ′y similarly. It can be easily
checked that σ′x = σ′y = v. Therefore, there exist αi, βi ∈ G(uc, rc)∗ for every i, 0 ≤ i ≤ n
such that

σx = α0v0α1v1 . . . αn−1vn−1αn

σy = β0v0β1v1 . . . βn−1vn−1βn

The definition of Q further shows that if vi−1 is a read or write to g then αi = rc(g)i1 ui2
c

for some positive integer i1, i2 and similarly βi = rc(g) j1 u j2
c for some positive integer

j1, j2. Moreover, if i2 + j2 > 0 then vi must be a write. Define for each 0 ≤ i ≤ n the
word γi = rc(g)i1+ j1 ui2+ j2

c , and let σsh = γ0v0 . . . γn−1vn−1γn. It is routine to check that
σsh ∈ L(Q) holds, and so L(Q) ‖ σsh , ∅. Let σ′sh be the result of erasing from σsh all
symbols ofG(rd,wd) (which necessarily correspond to symbols of v). Again we find that
L(Q) ‖ σ′sh , ∅. Finally, by the definition of γi and since g < G1 we get σ′sh ∈ (x� y),
and so L(Q) ‖ (x� y) , ∅. By the definition of Q this implies v ‖ L(S E) ‖ (x� y) , ∅,
and we are done. ut

Proof (of Thm. 3).
1. guess τ = g1 . . . gd ∈ Υ#, in particular gd = #;
2. compute a FSA Qτ such that L(Qτ) = Pτ ∩ L(DS);
3. compute the sccs of Qτ;
4. guess an accepting path πτ of Qτ where no state repeats;
5. compute the FSA qτ consisting exactly of the states and transitions of Qτ visited by

πτ and the states and transitions of the sccs of Qτ visited by πτ;
6. check whether L(qτ) ‖ L(S E) ‖ LLgi , ∅ for each i, 1 ≤ i ≤ d.

Non-deterministic polynomial time. The two guesses are of polynomial size, the first
in the size of G, the second in the size of the FSA Qτ which can be computed in time
polynomial in the size of G and D. Computing the sccs is done in time linear in the
size of Qτ using Tarjan’s algorithm [6]. Each of the d checks can be made in polynomial
time. To see this, we first notice that we can safely replace L(S E) by L(S E) ∩ Pτ for
which an FSM can be computed in polynomial time. Therefore it is clear that each
check can be made in polynomial time.
Correctness. We want to show that

L(qτ) ‖ L(S E) ‖ (�g∈GL(S g)) , ∅ iff L(qτ) ‖ L(S E) ‖ LLgi , ∅ for each i, 1 ≤ i ≤ d .

For the only if direction it suffices to notice that by Lem. 1 and definition of Pτ we can
restrict the shuffle to those values occurring in τ only. Hence, the definition of L(S g)
and the shuffle operator show the rest.

For the if direction, let v1, . . . , vd be the d words from L(qτ) such that vi ‖ L(S E) ‖
LLgi , ∅ for each i, 1 ≤ i ≤ d. By repeatedly applying Lemma 11 point 3 we find
there exists v ∈ L(qτ) such that v � vi for every i. Furthermore, Lemma 8 shows that
v ‖ L(S E) ‖ LLgi , ∅ for each i.

Finally, we conclude from repeated applications of Lemma 12 that v ‖ L(S E) ‖
(�d

i=1LLgi) , ∅, hence that L(qτ) ‖ L(S E) ‖ (�g∈GL(S g)) , ∅ by definition of L(S g) =

Pref (LLg) and we are done. ut

D PSPACE lower bound

Proof (of Theorem 4). We give a reduction from the acceptance problem of a linear
space-bounded deterministic Turing machine to the complement of the safety verifica-
tion problem. Fix a deterministic TM M that on input of size n uses at most n tape cells
and accepts in exactly 2n steps. We are given an input x and want to check if M accepts

x. An accepting run is a sequence of TM configurations c0 → c1 → . . . → c2n , where
c0 is the initial configuration (the input x is written on the tape, the head points to the
leftmost cell, and the TM is in its initial state), there is a transition of the TM from ci

to ci+1 for i = 0, . . . , 2n − 1, and c2n is accepting. Following the above assumptions,
configurations of M can be encoded by words of fixed length.

We define a (D,C)-network that simulates M and such thatD = JPDK and C = JPCK
where PD and PC are dPDMs. The leader and the contributors co-operatively simulate
computations of M using their stack, and also use the stack to count up to 2n steps. We
start by describing the basic gadgets used in the simulation.

Counting to 2n using n stack symbols. We show how a contributor can use its stack
to count down from 2n. Consider a stack alphabet of with n + 2 symbols {I0, . . . , In} ∪{
$
}
, where $ is a special bottom-of-stack marker. Given a stack over this alphabet, the

contributor PDM, provided the top of the stack is Ii for some 0 ≤ i ≤ n, performs a
decrement operation defined as follows:
1. While the top of the stack is Ii for some i > 0, do pop(Ii) ; push(Ii−1) ; push(Ii−1);
2. pop(I0) and return;

Suppose initially the stack contains In$ (the bottom of the stack is to the right). Then, we
reach a stack with $ on the top exactly after popping I0 2n times, that is after performing
2n times the decrement operation.

Computing one step of the TM. In the construction, we simulate one step of the M by
sending a configuration from the leader to contributors, and then sending back the next
configuration from contributors to the leader.

Assume the reverse of a configuration of the Turing machine is stored as a word w
of length n in the stack of the leader and the stack of the contributors is empty. We want
to ensure that at the end of the protocol, the stack of the leader contains the reversal of
a successor configuration of M, and the stack of the contributor is again empty.

We use the following protocol. The leader and contributors use their finite set of
control states to count till n. The leader pops one symbol of w at a time from its stack,
writes it on to the global store, and waits for an acknowledgment from some contributor
that the symbol has been received. Conversely, the contributors read the letters of w one
symbol at a time from the global store. Moreover, using its finite state, the contributors
compute the successor configuration of the configuration that is received from the leader
and store it on to their stacks. Additionally, a contributor sends an acknowledgment for
the receipt of each symbol read from the leader.

After n steps of the leader and contributors, the stack of the leader is empty and the
stack of the contributor contains w′ where w′ can be reached from wR by executing one
step in M.

Notice that at the end of this part of the protocol, in spite of asynchronous reads and
writes, the leader is certain that all n symbols were received in order, but not necessarily
by the same contributor.

The second part of the protocol sends this configuration back from a contributor
to the leader. Again, the leader and the contributor use their finite state to count till n.
The contributor sends n symbols one at a time to the leader, and waits for an acknowl-
edgement to check that the leader read the same symbol it transferred. After n steps,
the leader’s stack contains the reverse of w′ and the contributor’s stack is again empty.

Moreover, the contributor is certain that the entire configuration has been correctly re-
ceived by the leader.

Notice that even in the presence of non-atomic reads and writes, if the leader and
some contributor successfully reach the end of the protocol, then the leader and that
particular contributor has faithfully simulated one step of the machine. However, we
cannot ensure that the same contributor participated in one whole round of the protocol,
always reading and writing the latest values and faithfully simulating one step of the
Turing machine. For example, it is possible that several contributors, that have simu-
lated the Turing machine for different number of steps, participate in the protocol. The
simulation catches these discrepancies by counting, as described below.
The reduction. Initially, all contributors push In$ onto their stacks. The leader pushes In$
onto the stack, and additionally, the reverse of the starting configuration of the Turing
machine.

Then, the leader and contributors execute the protocol described above. At the end
of the first part of a round, the leader perform a decrement. At the end of the second
part of a round, the contributor perform a decrement.

The network accepts the computation (e.g., by outputting a special symbol #) if (1)
both the leader and some contributor count up to 2n, and (2) at that point, the Turing
machine is in an accepting configuration.

Notice that if the leader interacts with the same contributor for 2n rounds, then both
of them will simultaneously reduce the counter on the stack to $ at the same time, and
thus, would have correctly simulated the Turing machine for 2n steps. So, if the stack
encodes an accepting configuration, the Turing machine accepts.

Conversely, if the leader interacts with multiple contributors in different rounds,
then there will not be any contributor whose count reaches 2n simultaneously with the
leader. All such computations are not faithful simulations of the Turing machine and
none of them therefore lead to accepting the computation.

Finally, we note that in the above reduction, all processes are deterministic ma-
chines. ut

E Language Theoretic Constructions

We now complete the proof of Theorem 5 by providing the language-theoretic construc-
tions. We assume familiarity with basic formal language theory [23].

A context-free grammar (CFG) is a tuple G = (X, Σ,P, X0) where X is a finite set
of variables containing the axiom X0, Σ is an alphabet, P ⊆ X × (Σ ∪ X)∗ is a finite
set of productions (the production (X,w) may also be noted X → w). The size of a
production X → w is |w| + 2. The size |G| of a CFG G is the sum of all the sizes of
productions in P. A CFG G = (X, Σ,P, X0) is in Chomsky normal form (CNF) iff
P ⊆

(
X × (Σ ∪ X2)

)
∪ {(X0, ε)}. A CFG can be converted to CNF in time polynomial in

its size.
Given two strings u, v ∈ (Σ ∪ X)∗ we define a step relation u ⇒ v if there exists a

production (X,w) ∈ P and some words y, z ∈ (Σ ∪ X)∗ such that u = yXz and v = ywz.
A step is further said to be leftmost if y ∈ Σ∗, that is the production is applied on the
leftmost variable of u. We use ⇒∗ to denote the reflexive transitive closure of ⇒. The

language of G is L(G) = {w ∈ Σ∗ | X0 ⇒
∗ w} and we call any sequence of steps from

X0 to w ∈ Σ∗ a derivation. A derivation is leftmost if it is a sequence of leftmost steps.
Given a CFG with relation ⇒ between strings, for every k ≥ 1 we define the sub-

relation
(k)
=⇒ of ⇒ as follows: u

(k)
=⇒ v iff u ⇒ v and both u and v contain at most k

occurrences of variables. We denote by
(k)
=⇒∗ the reflexive transitive closure of

(k)
=⇒. The

k-index language of G is L(k)(G) = {w ∈ Σ∗ | X0
(k)
=⇒∗w} and we call the sequence of

steps from X0 to w ∈ Σ∗ a k-index derivation.

The following properties holds:
(k)
=⇒⊆

(k+1)
===⇒ for all k ≥ 1; if B

(k−1)
===⇒∗w then BC

(k)
=⇒

∗wC; moreover, if BC
(k)
=⇒∗w, then there exist w1,w2 such that w = w1w2 and either (i)

B
(k−1)
===⇒∗w1, C

(k)
=⇒∗w2, or (ii) C

(k−1)
===⇒∗w2 and B

(k)
=⇒∗w1.

Asynchronous product of CFGs and FSAs. Given a CFG G and a FSA A, we now define
a CFG G ./ A such that L(G ./ A) = L(G) ‖ L(A). Without loss of generality, we assume
the set of accepting states of A is a singleton. We further show that the k-index language
of G ./ A is the asynchronous product of the k-index language of G and the language of
A.

Definition 7. Given a CFG G = (X, Σg,P, X0) in CNF and a FSA A =

(Σa,Q, δ, q0,
{
q f

}
), we define G ./ A as the CFG G./ = (X./, Σ./,P./, X./

0). First replace
in G every production of the form X → σ(∈ Σg ∪ {ε}) by two productions X → σ⊥ and
⊥ → ε where ⊥ is a variable not in X. This modified grammar is again referred to as
G = (X, Σg,P, X0).

Then define G./ = (X./, Σ./,P./, X./
0) as follows:

– X./ = Q × X × Q; Σ./ = Σg ∪ Σa; X./
0 =

〈
q0, X0, q f

〉
;

– P./ contains no more than the following transitions:
• if X → σ⊥ ∈ P and σ < Σa then 〈q, X, q′〉 → σ〈q,⊥, q′〉 ∈ P./

• if σ < Σg and (q, σ, q′) ∈ δ then 〈q, X, q′′〉 → σ〈q′, X, q′′〉 ∈ P./

• if X → σ⊥ ∈ P, (q, σ, q′) ∈ δ and σ , ε then 〈q, X, q′′〉 → σ〈q′,⊥, q′′〉 ∈ P./

• if X → YZ ∈ P then 〈q1, X, q2〉 → 〈q1,Y, q′〉〈q′,Z, q2〉 ∈ P
./

• if q ∈ Q then 〈q,⊥, q〉 → ε ∈ P./

Proposition 2. Let G, A and G./ as in def. 7. We have L(k)(G ./ A) = L(k)(G) ‖ L(A)
for every k ≥ 1, hence L(G ./ A) = L(G) ‖ L(A). Moreover, G./ is computable in time
polynomial in |G| + |A|.

Proof. It suffices to show that for each q, q′ ∈ Q, X ∈ X and k ≥ 1: 〈q, X, q′〉
(k)
=⇒
∗

w

iff w ∈ wa ‖ wg and X
(k)
=⇒
∗

wg in G and q
wa

−→q′ in A.From Def. 7 it is clear that G./ is
computable in time polynomial in |G| and |A|. ut

Computing a FSA supporting L(G). We first show that, given a CFG G, one can con-
struct a FSA accepting a support of L(G) and whose size is at most exponentially larger
than the size of G.

Theorem 7. Given a CFG G = (X, Σ,P, X0) in CNF with n variables, we can compute
a FSA A with O(2n log(n)) states such that L(A) is a support of L(G).

The proof of Theorem 7 requires the following technical lemma.

Lemma 13. Let G = (X, Σ,P, Xı) be in CNF and D : X0 ⇒
∗ v ∈ Σ∗ a leftmost

derivation for some X0 ∈ X. There exists v′ � v and a leftmost n-index derivation

D′ : X0
(n)
=⇒∗v′, where n is the number of distinct variables appearing in D.

Proof. By induction on the number m of sequences of steps of the form X ⇒∗ wXα⇒∗

ww′α with w , ε occurring in D.
Basis. m = 0. The proof for this case is by induction on the number n of distinct

variables appearing in D.
Basis. n = 1. Because G is in CNF and the assumption m = 0, D necessarily is such

that X0 ⇒ v ∈ Σ. Hence setting v′ = v we find that X0
(n)
=⇒∗v′ which concludes the case.

Step. n > 1. Because G is in CNF and the assumption m = 0, it must be the case
that D has the following form X0 ⇒ BC ⇒∗ w1C ⇒∗ w1w2 = v. Moreover m = 0
shows that X0 does not appear in the subsequence of steps D1 : B⇒∗ w1 and D2 : C ⇒∗

w2. The number of distinct variables appearing in D1 and D2 being at most n − 1 we
conclude, by induction hypothesis, that there exists leftmost (n − 1)-index derivations

D′1 : B
(n−1)
===⇒∗w′1 and D′2 : C

(n−1)
===⇒∗w′2 with w′1w′2 � w1w2 = v, hence that there exists a

derivation D′ : X0
(n)
=⇒∗BC

(n)
=⇒∗w′1C

(n)
=⇒∗w′1w′2 = v′ such that v′ � v and we are done.

Step. m > 0. Therefore in D there exists some variable X such that X ⇒∗ wXα ⇒∗

ww′α and w , ε. Define the derivation D′ given by D where the above subsequence
of steps is replaced by X ⇒∗ w′. Clearly we have that the word v′ produced by D′

is a subword of v, the word produced by D. Moreover the above transformation on
D allows to use the induction hypothesis on D′, hence we find that there exists there

exists a leftmost n-index derivation D′′ : X0
(n)
=⇒∗v′′ and v′′ � v′ and we are done since

v′′ � v′ � v. ut

Proof (of Theorem 7). From Lem. 13 it is easy to see that the words given by
the leftmost n-index derivations is a support of L(G). Recall that G is in CNF.
Next we define a FSA A = (Σ,Q, δ, q0, F) such that i) Q =

{
w ∈ X j | 0 ≤ j ≤ n

}
;

ii) δ = {(αw, γ, βw) | (α, γβ) ∈ P ∧ γ ∈ Σ ∪ {ε}}; iii) q0 = X0; iv) F = {ε}. It is easy
to see that A simulates all the leftmost sequence of steps of index at most n and accepts
only when those corresponds to n-index leftmost derivations, hence that L(A) is a sup-
port of L(G). Also since n = |X|, Q has O(nn) states, or equivalently O(2n log(n)). ut

From the construction, it is clear that there is a polynomial-space bounded algorithm
(in |G|) that can implement the transition relation of A, that is, given an encoding of a
state of A, produce iteratively the successors of the state.
Covering Context-free Languages by Bounded-Index Languages. Our second construc-
tion shows that, given a CFG G, we can construct an O(|G|)-index language that is a
cover of L(G).

Given a CFG G = (X, Σ,P, X0) and X,Y ∈ X, we say that Y depends on X if G has
a production X → αYβ for some α, β ∈ (X ∪ Σ)∗, or if there is a variable Z such that Y
depends on Z and Z depends on X. A strongly connected component (SCCs) of G if a
maximal subset of mutually dependent variables.

Theorem 8. Let G = (X, Σ,P, X0) be a CFG in CNF with n variables and k SCCs.
Then L(n+2k)(G) is a cover of L(G).

The proof of Theorem 8 uses the following technical lemma which follows from the
fact that the commutative images of L(G) and L(n+1)(G) coincide [14].

Lemma 14. Let G = (X, Σ,P, X0) be a CFG in CNF with n variables. For every a ∈ Σ,

if X0 ⇒
∗ w a v for some w, v ∈ Σ∗, then X0

(n+1)
===⇒

∗

w′ a v′ for some w′, v′ ∈ Σ∗.

Proof (of Theorem 8). Let w ∈ L(G). If w = ε, then since G is in CNF, we have X0 ⇒ ε.
So, w is also in L(n+2k)(G). Hence, assume w , ε. We prove by induction on k that w is
a subword of some w′ ∈ L(n+2k)(G).

Basis. k = 1. We proceed by induction on |w|. Let w = a for some a ∈ Σ. We

conclude from a ∈ L(G) and G is in CNF that X0 ⇒ a, hence that X0
(1)
=⇒∗a and finally

that a ∈ L(n+2k)(G) and we are done. If w = av for some v , ε then X0 ⇒ X1X2 ⇒
∗ a v

for some X1, X2 ∈ X. By Lemma 14, X1
(n+1)
===⇒∗v1 for some v1 � a, and by induction

hypothesis X2
(n+2)
===⇒∗v2 for some v2 � v. So we get X0

(2)
=⇒ X1X2

(n+2)
===⇒∗v1X2

(n+2)
===⇒∗v1v2

and taking w′ = v1v2 we have X0
(n+2)
===⇒∗w′ � w.

Step. k > 1. Let Y ⊂ X be the set of variables of a bottom strongly connected
component of G, and letPY ⊂ P be the productions of G with a variable ofY on the left
side. For every Y ∈ Y, let GY = (Y, Σ,PY,Y); further, let G′ = (X\Y, Σ∪Y,P\PY, X0).
Since w ∈ L(G), there exist derivations X0 ⇒

∗ w1Y1w2 . . .wrYrwr+1 in L(G′) and Yi ⇒
∗

vi in L(GYi) for every i = 1, . . . , r such that w1v1 . . .wrvrwr+1 = w. Since G′ has (k − 1)

SCCs, by induction hypothesis there is X0
(i1)
==⇒ ∗w′1Y ′1w′2 . . .w

′
tY
′
t w′t+1 in L(G′), where

i1 = n − |Y| + 2(k − 1) and such that w′1Y ′1w′2 . . .w
′
tY
′
t w′t+1 � w1Y1w2 . . .wrYrwr+1. In

particular we have Y ′1 . . . Y
′
t � Y1 . . . Yr which implies that there exists a monotonic

injection h : {1, . . . , r} → {1, . . . , t} such that Y ′h(i) = Yi for all i ∈ {1, . . . , r}. Since every
GY has one strongly connected component, for every j = 1, . . . , r there is v′j � v j such

that Y ′h(j) = Y j
(i2)
==⇒

∗

v′j, where i2 = |Y| + 2. On the other hand, for every ` not in the

image of h there also is some word v′` such that Y ′`
(i2)
==⇒

∗

v′`, where i2 = |Y| + 2.
So we have

X0
(i1)
==⇒∗ w′1Y ′1w′2Y ′2 . . .w

′
tY
′
t w′t+1

(i1+i2)
====⇒∗ w′1v′1w′2Y2 . . .w′tYtw′t+1
(i1+i2)
====⇒∗ w′1v′1w′2v′2 . . .w

′
tYtw′t+1

· · ·
(i1+i2)
====⇒∗ w′1v′1w′2v′2 . . .w

′
tv
′
tw
′
t+1

Let w′ = w′1v′1 . . .w
′
tv
′
tw
′
t+1. Since i1 + i2 = n + 2k, we get X0

(n+2k)
====⇒∗w′ � w, and we are

done. ut

Checking Emptiness of k-index languages. Finally, we show that L(k)(G) , ∅ is de-
cidable in NSPACE(k log(|G|)). In contrast, non-emptiness checking for context-free
languages is P-complete as shown by Jones [19].

Theorem 9. Given a CFG G in CNF and k ≥ 1, it is in NSPACE(k log(|G|)) to decide
whether L(k)(G) , ∅.

Proof. We give a non-deterministic space algorithm. The algorithm, called query, takes
two parameters, a variable X ∈ X and a number ` ≥ 1, and guesses an `-index derivation
of some word starting from X. To do so, the algorithm guesses a production (X,w) ∈ P
with head X. If X → σ is chosen, for σ ∈ Σ ∪ {ε}, it returns true. If X → BC is chosen,
the algorithm non-deterministically looks (using a recursive call) (i) for an (`−1)-index
derivation from B and an `-index derivation from C, or (ii) for an (`−1)-index derivation
from C and an `-index derivation from B. When ` = 0 or a recursive call returns false,
then query returns false.

We show the following invariant: query(`, X) has an execution returning true iff

X
(`)
=⇒∗w for some w ∈ Σ∗. It follows that query(k, X0) returns true iff L(k)(G) , ∅. The

right-to-left direction is proved on the number m of steps in a bounded-index derivation.

If m = 1 then we have X
(`)
=⇒ w with ` = 1 and query(`, X) returns true by picking

(X,w) ∈ P. If m > 1 then the sequence of steps is as follows X
(`)
=⇒ BC

(`)
=⇒∗w where

` ≥ 2. From there either B
(`−1)
===⇒ ∗w1, C

(`)
=⇒ ∗w2, or C

(`−1)
===⇒ ∗w2 and B

(`)
=⇒ ∗w1 where

w = w1w2 holds. Let us assume the latter holds (the other case is treated similarly).

Then we have C
(`−1)
===⇒∗w2 and B

(`)
=⇒∗w1 and both sequence have no more than m − 1

steps. Therefore the induction hypothesis shows that query(` − 1,C) and query(`, B)
return true, and so does query(`, X) by picking (X, BC) ∈ P.

The left-to-right direction is proved by induction on the number m of times produc-
tions are picked in an execution of query that returns true. If m = 1 then ` ≥ 1 and a
production (X, σ) ∈ P where σ ∈ Σ ∪ {ε} must have been picked, hence the deriva-

tion X
(`)
=⇒ σ. If m > 1, query recursively called itself after picking (X, BC) ∈ P. Let

us assume case (i) was executed ((ii) is treated similarly). Following the assumption
both calls query(` − 1, B) and query(`,C) return true (hence ` ≥ 2) and are such that
productions are picked at most m − 1 times. Next, the induction hypothesis shows that

B
(`−1)
===⇒∗w1 and C

(`)
=⇒ w2 for some w1 and w2. Finally, X → BC of P and ` ≥ 2 shows

that X
(`)
=⇒ BC

(`)
=⇒∗w1C

(`)
=⇒∗w1w2 and we are done.

It remains to show that query(k, X0) runs in NSPACE(k log(|G|)). Observe that for
each non-deterministic choice (i) or (ii), there is one recursive call query(B, ` − 1) or
query(C, ` − 1). The other call (e.g., to query(C, `) in case (i)) is tail-recursive and can
be replaced by a loop. Since the index that is passed to that recursive call decreases
by 1 and query returns false when the index is 0, we find that along every execution
at most k stack frames are needed and each frame keeps track of a grammar variable
which can be encoded with log(|G|) bits. Hence we find that L(k)(G) , ∅ can be decided
in NSPACE(k log(|G|)). ut

	Parameterized Verification of Asynchronous Shared-Memory Systems

