
Augmenting Branching Temporal Logics with
Existential Quantification over Atomic

Propositions

Orna Kupferman (Bernholtz)

Department of Computer Science, The Technion, ttaifa 32000, Israel.
Email: ornab@cs ,technion. ac. il

Abst rac t . In temporal-logic model checking, we verify the correctness
of a program with respect to a desired behavior by checking whether a
structure that models the program satisfies a temporal logic formula that
specifies this behavior. One of the ways to overcome the expressiveness
limitation of temporal logics is to augment them with quantification over
atomic propositions. In this paper we consider the extension of branching
temporal logics with existential quantification over atomic propositions.
Once we add existential quantification to a branching temporal logic, it
becomes sensitive to unwinding. That is, unwinding a structure into an
infinite tree does not preserve the set of formulas it satisfies. Accordingly,
we distinguish between two semantics, two practices as specification lan-
guages, and two versions of the model-checking problem for such a logic.
One semantics refers to the structure that models the program, and the
second semantics refers to the infinite computation tree that the program
induces. We examine the complexity of the model-checking problem in
the two semantics for the logics CTL and CTL* augmented with exis-
tential quantification over atomic propositions. Following the cheerless
results that we get, we examine also the program complexity of model
checking; i.e., the complexity of this problem in terms of the program,
assuming the formula is fixed. We show that while fixing the formula
dramatically reduces model-checking complexity in the tree semantics,
its influence on the structure semantics is poor.

1 In t r o d u c t i on

Temporal logics, which are modal logics that enable the description of occur-
rence of events in time, serve as a classical tool for specifying behaviors of con-
current programs [Pnu81]. The appropriateness of temporal logics follows from
the fact that finite-state programs can be modeled by finite propositional Kripke
structures, whose properties can be specified using propositional temporal logic.
This yields fully-algorithmic methods for synthesis and for reasoning about the
correctness of programs. A powerful such method is model checking. In model
checking, we verify the correctness of a program with respect to a desired behav-
ior by checking whether the program, modeled as a Kripke structure, satisfies
(is a model of) the temporal logic formula that specifies this behavior. Recent

326

methods and heuristics such as BDDs [Bry86, BCM+92], modular model check-
ing [CLM89, GL91], partial order techniques, [WG93], on the fly model checking
[CVWY92, BVW94], and others, cope successfully with the known "state explo-
sion" problem and give rise to model checking not only as a lovely theoretical
issue, but also as a practical tool used for formal verifcation.

Model-checking methods consider two types of temporal logics: linear and
branching [Lam80]. In linear temporal logics, each moment in time has a unique
possible future. Accordingly, linear temporal logic formulas are interpreted over
a path in a Kripke structure and refer to a single computation of a program. In
branching temporal logics, each moment in time may split into several possible
futures. Accordingly, branching temporal logic formulas are interpreted over a
state in a Kripke structure and refer to all the computations that start at this
state. The syntax of the logic controls the way in which these computations can
be referred to and determines the expressive power of the logic. Naturally, there
is a trade-off between the expressive power of the logic and the complexity of its
model-checking problem: the more a logic is expressive, the more expensive its
model checking is.

Adding quantification over atomic propositions increases the expressive power
of temporal logics ISis83, SVW87, PR89]. In this paper, we consider the exten-
sion of branching temporal logics with existential quantification. Formally, if r is
a formula in some branching temporal logic ~:, then 2pl . . .pnr where Pz, . . . , Pn
are atomic propositions, is a formula in the logic EQs which augments Z: with
existential quantification. The formula 3pl . . .Pnr is satisfied in a Kripke struc-
ture K iff there exists a Kripke structure that satisfies r and differs from K in
at most the labeling of Pl , pn.

The model-checking problem for EQs stands somewhere between the model-
checking and the satisfiability problems for ~. On the one hand, as in model
checking, we are given both a Kripke structure and a formula and we are asked
whether the structure satisfies the formula. On the other hand, as in satisfia-
bility, we are asked about the existence of some Kripke structure that satisfies
the formula. Essentially, we can view the model-checking problem for EQI: as
a restricted (or perhaps extended) version of the satisfiability problem for s
in which the candidates to satisfy the formula are not all Kripke structures,
but only a limited subset of them. Here, naturally enough, comes the question
of complexity. The satisfiability problem for a branching temporal logic E is
usually harder than its model-checking problem. For example, the branching
temporal logics CTL and CTL* have, respectively, EXPTIME and 2EXPTIME
complete satisfiability bounds [FL79, VS85, ES84, E J88] and have, respectively,
linear-time and PSPACE-eomplete bounds for their model checking problems
[CES86, EL85]. Where does the complexity of the model-checking problem for
EQE stand? Is it necessarily between the complexities of the model-checking
problem and the satisfiability problem for 12? To which of them is it closer? Is it
worth paying the increase in model-checking complexity for the increase in the
expressive power?

A key observation that should be made before answering these questions is

327

that once we add existential quantification to a branching temporal logic 1:,
it becomes sensitive to unwinding. That is, unwinding of a Kripke structure
into an infinite computation tree does not preserve the set of EQs formulas
it satisfies. Consequently, we distinguish between two semantics for EQs The
first is the structure semantics given above. The second, which we call EQ/~,,
corresponds to a tree semantics. According to this semantics, a Kripke structure
K satisfies a formula 3pl . . -Pnr iff there exists a computation tree that satisfies
r and differs from the computation tree obtained by unwinding K in at most
the labels of P l , . �9 Pn- Intuitively, it is harder for K to satisfy a formula in the
structure semantics: among the infinitely many computation trees that we have
as candidates for satisfaction in the tree semantics, only finitely many, these in
which nodes that correspond to the same state of K have the same labeling, are
candidates in the structure semantics. The logics EQE and EQZ:t differ in their
practices as specification languages, differ in their expressive power, and differ
in their model-checking complexities. Nevertheless, we found in the literature
unawareness to this sensitivity.

We show that existential quantification increases the expressive power of CTL
and CTL*, in both semantics. In particular, existential quantification in the tree
semantics is strong enough to replace satellites. A satellite, as introduced in
[BBG+94], is a small finite state machine, linked to a design to be verified. It
can read the design at any moment and it records particular events of interest,
for possible use in the specification of the design. A concept similar to satellites
is introduced in [Lon93] as observer processes. For example, we can define a
satellite Raise(s) which detects cycles in which the signal s is raised. Satellites
overcome the expressiveness limitations of CTL an d are used successfully as a
part of the formal-verification system in IBM I-Iaifa. The price of satellites is the
increase in the state space, which now consists of the product of the state space
of the design with the state space of the satellite. Existential quantification leaves
the design clean and shifts this price to the specification. For example, instead
checking a CTL formula r which uses and activates the satellite Raise(s), we
can check the EQCTL, formula obtained from r by prefixing it with 3qAG(s
AXq) A AG(-~s --+ AX-,q) and replacing each occurrence of Raise(s) by s A --q.
Note that the quantified proposition q labels a node iff s holds in its predecessor
node. In fact, by [KP95], existential quantification is sufficient to express any
occurrence of events in the past that can be expressed by linear temporal logic.
In addition, we can use existential quantification to count y modulo z. The way
we use formulas in the structure semantics is different. There, formulas describe
a single computation which is a partially ordered set [PW84]. For example, the
formula 3q(q A AG(q --+ A X AXq) A AG(q ~ sendi) specifies that process i sends
a massage in all its even positions.

We analyze the complexity of the model-checking problem for the logics
EQCTL, EQCTLt, EQCTL*, and EQCTL~. Lichtenstein and Pnueli argued
that when analyzing the complexity of model checking, a distinction should be
made between complexity in the size of the input structure and complexity in
the size of the input formula; it is the complexity in size of the structure that

328

is typically the computational bottleneck [LP85]. Following this approach, we
consider also the program complezity [VW86] of model checking for these log-
ics; i.e., the complexity of this problem in terms of the size of the input Kripke
structure, assuming the formula is fixed. Our main results are summarized in
the table below.

IINo Quantification
CTL model linear time

checking [CES86]
program NLOGSPACE-complete
complexity [BVW94]

CTL* model PSPACE-complete
checking [EL85]
program NLOGSPACE-complete
complexity [BVW94]

Quantification withlQuantification with
structure semantics[tree semantics
NP-complete
[Theorem 3]
NP-complete
[HK94, Theorem 9]

EXPTIME-complete
[Theorem 4]
P-complete
[Theorem 10]

PSPACE-complete 2EXPTIME--complete
[Theorem 3] [Theorem 4]
NP-complete P-complete
[Theorem 9] [Theorem 10]

Examining our results, we conclude the following. First, in the structure se-
mantics, existential quantification takes the model-checking problem for CTL
from P to NP-complete. Thus, we can not expect an algorithm that does better
than a naive check of all the possible labeling for the quantified propositions. The
same penalty (moving from a deterministic complexity class to its nondetermin-
istic variant) applies also for CTL*. There, however, as PSPACE = NPSPACE,
it seems we do not really pay for it. Second, in the tree semantics, existential
quantification makes model-checking as hard as satisfiability (this holds for ev-
ery branching temporal logic that satisfies the small branching degree proper~y).
We show that these results hold also for very limited fragments of EQCTL and
EQCTL*; e.g., when the propositional assertions are in 2CNF or when only
a single quantified proposition is allowed. In addition, we show that there are
branching temporal logics/: for which the model-checking problem for EQs is
harder than the satisfiability problem for/ : . As for satisfiability, we show that
for logics s that satisfy the finite model property, the satisfiability problems for
EQs and EQs are as hard as the satisfiability problem for s Thus, as far as
satisfiability is concerned, we can have existential quantification for free.

Things become surprising when we turn to consider the program complexity.
Mysteriously, while model checking in the tree semantics is harder than model
checking in the structure semantics, we have that the program complexity of
model checking is lower in the tree semantics. The elucidation of this mystery
lies in the fact that the model-checking problem for EQ/:~ is closer to the sat-
isfiability problem for s than the model-checking problem for EQs is. While
this disfavors the tree semantics when we consider model-checking complexity,
it advantages the tree semantics when we fix the formula. It follows from our

329

results that in the structure semantics, fixing the formula still leaves us with
the naive algorithm that checks all possible labeling for the quantified proposi-
tions. In the tree semantics, we can apply automata-theoretic methods to obtain
model-checking procedures which are polynomial in the size of the Kripke struc-
ture. We can not, however, reach the space-efficient program complexity of model
checking for CTL and CTL*.

2 P r e l i m i n a r i e s

The logic CTL* combines both branching-time and linear-time operators. A path
quantifier, E ("for some path"), can prefix an assertion composed of an arbitrary
combination of the linear-time operators X ("next time"), and U ("until"). There
are two types of formulas in CTL*: state formulas, whose satisfaction is related
to a specific state, and path formulas, whose satisfaction is related to a specific
path. Formally, let A P be a set of atomic proposition names. A CTL* state
formula is either:

- true, false, or p, for all p E AP.
- -'~'1 or tol V tp2, where toa and to2 are CTL* state formulas.
- Er where r is a CTL* path formula.

A CTL* path formula is either:

- A CTL* state formula.
- "~r Cz V r Xr or r162 where r and r are CTL* path formulas.

The logic CTL*. consists of the set of state formulas generated by the above rules.
We use the usual abbreviations A ("and"), --~ ("implies"), A ("for all paths"),
F ("eventually"), and G ("always").

The logic CTL is a restricted subset of CTL* in which the temporal operators
must be immediately preceded by a path quantifier. Formally, it is the subset
of CTL* obtained by restricting the path formulas to be X~Ol, ~lUto2, or their
negations, where 91 and to2 are CTL state formulas.

The semantics of CTL* is defined with respect to a Kripke structure K =
(AP, W, R, w ~ L), where A P is the set of atomic propositions, W is a set of
states, R C W • W is a transition relation that must be total (i.e., for every
w E W there exists w ~ E W such that (w, w t) E R), w ~ is an initial state, and
L : W --* 2 AP maps each state to a set of atomic propositions true in this state.
The notation K ~ ~ indicates that the formula ta holds at state w ~ of the Kripke
structure K. A formal definition of the relation ~ can be found in [Eme90].

The logic EQCTL* is obtained by adding existential quantification to CTL*.
Precisely, if r is a CTL* formula and P l . . . p n are atomic propositions, then
3pi . . .p,~r is an EQCTL* formula. The semantics of 3pl . . .Pn r is given by K
3pl . . . P n r iff there exists a Kripke structure K I, such that K I ~ r and K t differs
from K in at most the labels of the pi's. Note that EQCTL* is not closed under

330

negation. Thus, formulas of the form Vpl . . . p , r are not EQCTL* formulas. The
logic EQCTL is defined similarly, by adding existential quantification to CTL.

Given a formula 3pl . . .Pn r we call the atomic propositions Pl ...P~ quan-
tified propositions and we call all the other propositions in r free propositions.
Note that satisfaction of an EQCTL* formula with no free propositions in a
Kripke structure K is independent of AP and L. A frame is a Kripke struc-
ture with no AP and L. A frame K = (W, R, w ~ satisfies an EQCTL* formula
3pl . . . p ~ r iff there exists a Kripke structure K ~ = (AP, W, R, w ~ L) such that
K ' ~ r

A tree is a set T _C IN* such that if x . c E T where x E IN* and c E IN, then
also x E T, and for all 0 < c' < c, we have that x �9 d E T. The elements of T
are called nodes, and the empty word e is the root of T. Given an alphabet ~U, a
E-labeled tree is a pair (T, V) where T is a tree and V : T ---* ~U maps each node
of T to a letter in ,U. A computation tree is a Z-labeled tree with ,U = 2 AP for
some set AP of atomic propositions.

3 E x p r e s s i v e P o w e r

A Kripke structure K can be unwound into an infinite computat ion tree in a
straightforward way. We denote by (TK, VK) the computat ion tree obtained f rom
unwinding K. Each state in K may correspond to several nodes in (TK, VK).
Since all these nodes have the same future (i.e., they root the same subtree) and
since CTL can refer only to the future, CTL is insensitive to unwinding. Tha t
is, for every CTL formula 9 and for every Kripke structure K , we have tha t
K ~ 9 iff (TK, VK) ~ 9. Insensitivity to unwinding is an impor tan t property
for a branching temporal logic. Logics which are insensitive to unwinding, we
can model check their formulas with respect to a finite Kripke structure, and
adopt the result for its infinite computat ion tree. Symmetrically, we can model
check an infinite computat ion tree using, say, automata- theoret ic methods, and
adopt the result for all Kripke structures that can be unwound into this tree.
Augmenting CTL with past- t ime modalities, it becomes sensitive to unwinding.
Since past - t ime modalities can be expressed by existential quantification [KP95],
we have the following:

Theorem I. EQCTL is sensitive to unwinding.

Proof. Consider the EQCTL formula 9 = 3qAG(p ~ AXq) and consider the
Kripke s t ruc tu re

K = ((p}, {wo, wl}, {(wo, {p)), 0)}).

It is easy to see that while K ~ 9, we have that (TK, VK) ~ 9.

So, it makes sense to define two different semantics for EQCTL. The first
corresponds to the original structure semantics and the second, which we call
EQCTLt , corresponds to a tree semantics. Precisely, a n EQCTLt formula ~o =

33 ~,

3p~ . . . p , r is satisfied in a Kripke structure K, denoted K ~t ~, iff there exists
a computation tree (TK, V~) such that (TK, V/~) ~ r and Vk differs from VK
in at most the labeling of Pl, �9 �9 Pn. Note that K ~ ~ implies that K ~t ~. It
is the other direction which makes EQCTL sensitive to unwinding.

An interesting example for the sensitivity of EQCTL to unwinding is the
formula to = 3q(q A (AX-,q) A AG(q ~ AXAXq) A AG(q ~ p)). The formula is
suggested in the literature for specifying the property G2(p) ="p holds in all even
places". When interpreted over computation trees, ~0 indeed specifies G2(p). Yet,
for a Kripke structure with a state that can be reached from the initial state by
both an even number and an odd number of transitions (e.g., a Kripke structure
that consists of a single state with a self loop), any labeling of q fails, even if this
Kripke structure does satisfy G2(p). Hence, ~0 is appropriate only for the tree
semantics. On the other hand, the formula Bq(q A AG(q ~ AXAXq) A AG(q --*
p)) specifies G2(p) faithfully with respect to both semantics. As CTL can not
specify G2(p) [WolSa], we have the following:

Theorem ~. EQCTL and EQCTLt are both strictly more expressive than CTL.

Theorems 1 and 2 clearly hold also with respect to EQCTL*.
Insensitivity to the sensitivity of EQCTL and EQCTL* to unwinding hides

also when comparing these logics with tree automata [ES84]. Indeed, EQCTL~ is
as expressive as symmetric pair automata on infinite binary trees. Nevertheless,
the translation of EQCTL~ into 2S2, which is the base of this equivalence, does
not hold for EQCTL*. Similarly, it is EQCTLt, only, which is as expressive as
symmetric Bfichi automata on infinite binary trees.

4 M o d e l - C h e c k i n g C o m p l e x i t y

The model-checking problem for a variety of branching temporal logics can be
stated as follows: given a branching temporal logic formula ~ and a finite Kripke
structure K = (AP, W, R, w ~ L), determine whether K satisfies ~. When some
of the logics are sensitive to unwinding, there are two possible interpretations of
this problem. The first interpretation, which is the one appropriate for EQCTL
and EQCTL*, asks whether K ~ ~. In the second interpretation, which is the
one appropriate for EQCTLt and EQCTL~, we are given T and K and are
asked to determine whether K ~t ~. In this section we consider model-checking
complexity for the two interpretations.

Theorem 3.

(1) The model-checking problem for EQCTL is NP-complete.
(2) The model-checking problem for EQCTL* is PSPACE-complete.

Proof. (1) We first prove membership in NP. In order to check whether a Kripke
structure K satisfies an EQCTL formula 3pl ...Pnr we guess a Kripke structure

332

K' that differs from K in at most the labeling of Pl...P,~, and then check, in
linear time [CES86], whether K' satisfies the CTL formula r To prove hardness
in NP, we do a reduction from SAT. Clearly, a propositional formula ~ over the
propositions Pl .-. Pn is satisfiable if and only if the EQCTL formula 3 p l . . . p , ~
is satisfied in a one-state frame.

(2) Both membership and hardness in PSPACE follow from being CTL*
model checking PSPACE-complete [EL85]. While hardness is immediate, Sav-
itch'es Theorem [Sav70] is required for the membership.

Fig. 1. The frames K4, K 5, and K~.

Theorem ,~.

(1) The model-checking problem for EQCTLt is EXPTIME-complete.
(2) The model-checking problem for EQCTL~ is 2EXPTIME-complete.

Proof. (1) We first prove membership in EXPTIME. Given a set • C lN and
an EQCTLt formula ~ = 3pl.. .pnr let A~,r be a Biichi tree automaton
that accepts exactly all the tree models of r with branching degrees in T~.
By [VW86], such A~,r of size O(11)1.2 Ir exists. Given a Kripke structure
K = (AP, W, R, w ~ L) and a set S of atomic propositions, let AK,s be a Buchi
tree automaton that accepts exactly all the (2APuS)-labeled trees (TK, V~) for
which Vk differs from VK in at most the labels of the propositions in S. It is
easy to see that such AK,s of size O(IK I * 2 lsl) exists. Taking D as the set
o f branching degrees in TK and taking S = {pl . . .pn}, we get that K ~ t
iff s I:(A9,r r 0. By [VW86], the later can be checked in time
poly (Ig l , 21~1).

For proving hardness in EXPTIME, we reduce satisfiability of CTL, proved
to b e EXPTIME-hard in [FL79], to EQCTLt model checking. For m >_ 1, let

333

K,~ denote the frame <{1,..., m}, {1, . . . , m} x {1, . . . , m}, 1>. The frame K4 is
presented in Figure 1. Since a CTL formula r is satisfiable iff it is satisfied
in a tree of branching degree]Oh and since unwinding Klr j results in such a
tree, satisfiability of r can be reduced to model checking of Klr I with respect
to the EQCTL, formula 3 p l . . . p , r where P l . . . P , are exactly all the atomic
propositions in r

(2) The model-checking procedure for EQCTL~ is similar to the one for
EQCTL,. Here, following [ES84], we have that Av,r is a Rabin tree automa-

ton with 22t*l states and 21r pairs. By [EJ88], checking the nonemptiness of

~.(AK,s) f'l s162 can then be done in time poly(IK I * 221~). To prove hard-
ness of EQCTL* model checking in 2EXPTIME, we reduce satisfiability of CTL*,
proved to be 2EXPTIME-hard in [VS85], to EQCTL~ model checking. Since a
CTL* formula r is satisfiable iff it is satisfied in a tree of branching degree 1r
the same reduction that works for EQCTLt works also here.

As CTL subsumes propositional logic, being EQCTL model checking NP-
hard is far from being surprising. What, however, if we restrict CTL to subsume
only a subset of propositional logic for which satisfiability is in P? Let 2CNF-
EQCTL denote the subset of EQCTL in which the propositional assertions are
in 2CNF.

T h e o r e m 5. The model checking problem for 2CNF-EQCTL is NP-hard.

Proof. For every n > 1, let r = h j# i Aa((-~pi) v (-~pj)) where i and j range
over 1 . . . n . For every Kripke structure K, we have that K ~ r iff at most
one Pi holds in each state of K. Note that all the propositional assertions in r
are in 2CNF. Given a graph with n nodes, we can use r to specify properties
whose decidability is NP-hard. For example, given an undirected graph G =
(V, E) with IVl = n, let Ka = (V, E, v} for some v, and let

ta = 3 p l . . . p n [r A pl A EX(p2 A EX(p3 A . . . A E X (p n - 1 A E X p n) " " "))].

It is easy to see that both KG and to are of size polynomial in the size of G and
that Ka ~ ~ iff there exists an Hamiltonian path in G.

Theorem 5 implies that it is the modality of CTL, by itself, that makes
EQCTL model checking NP-hard. Still, proving the lower bounds in the theorems
above, we reduce hard problems to model checking of formulas in which the
number of quantified propositions is linear in the size of the reduced problem.
Thus, there is still a hope that if we restrict EQCTL and EQCTLt to have a
fixed number of quantified proposition, we get easier logics. The theorems below
refute this hope. For i > 0 and j > 0, let (i,j)-EQCTL denote the restricted
subset of EQCTL in which only i quantified propositions and j free propositions
are allowed, and similarly for EQCTLt.

T h e o r e m 6. The model-checking problem for (1, O)-EQCTL is NP.hard.

334

Proof. We reduce SAT to (1,0)-EQCTL model checking. Intuitively, we do some-
thing similar to what we did for proving that EQCTL model checking is NP-
hard. Since, however, a propositional formula ~ may talk about more than one
proposition, we translate a formula ~(P0, . . . ,pn-1) into a CTL formula that in-
stead talking about the value of pi in the initial state, talks about the value
of a single atomic proposition q in a state located i positions from the initial
state. Formally, for n > 1, let K" be the frame ({ 0 , . . . , n - 1}, R, 0) where
R = {(0, 1) , (1 ,2) , . . . , (n - 2 , n - 1) , (n - 1 , 0) } . The frame g 5 is presented in
Figure i. Giving a propositional formula ~ over Po,... ,Pn-1, let r be the CTL
formula obtained from replacing each occurrence of Pi in ~ by (EX)iq. For ex-
ample, if ~ = (P0 V Pl) A (-~Pl V P2), then r = (q V EXq) A (~EXq V E X E X q) .
It is easy to see that ~ is satisfiable iff K n ~ 3qr

Note that constructing r above, we need only a fragment of (1, 0)-EQCTL
for which the satisfiability problem is in linear time. Thus, there are branching
temporal logics with existential quantification for which model checking is harder
than satisfiability.

Theorem 7. The model-checking problem for (1, 1)-EQCTs is EXPTIME-hard.

Proof. We reduce satisfiability of CTL to (1, 1)-EQCTLt model checking. Typi-
cally, we do something similar to what we did for proving that EQCTLt model
checking is EXPTIME-hard. Yet, as here we have only a single quantified propo-
sition, we have to encode the states of K,~, as we did for the initial state in the
proof of Theorem 6. Given m >_ 1 and n > 1, let K~n = ({start}, W, R, w ~ L) be
the Kripke structure defined as follows:

- W = { 1 , . . . m } • { 0 , . . . , n - 1}.
- R = { ((i , m - 1) , (k , 0)) , ((i , j) , (i , j + l)) : l _< i ,k < m , 0 < _ j < m - 2 } .
- w ~ = (1 , 0) .

- For all 1 < i < m, we have L((i, 0)) = {start} and L((i, j)) = 0 for all j ~ 0.

The frame of K s is presented in Figure 1. Now we have to translate a CTL
formula r Pn-1) into a formula that instead of talking about the value of
pj at a state i of Kin, talks about the value of q at the state located j positions
after the state (i, 0) in K~ . For example, the formula EF(pj AAGp~) is translated
to the formula

E F(start A (E X)J q A A G(start --* (E X)i q)).

Such a translation may increase the formula r by at most a factor of]r (because
of the extra EX's). Formally, we present a function f such that r of length
m over P0 . . .Pn -1 is satisfiable iff Bqf(r is satisfied in K~ . We define f by
induction on the structure of r as follows (Q stands for either E or A):

= (EX) q.

- f (- ~ r 1 6 2

335

- f ((: l V (:2) = f (r V f ((:2) -
- f (QX(: l) = (QX)mf((:l) .
- f(Q(:l u(:2) = Q(strat --+ f (r A f((:2)).

Note that the definition of K~ guarantees that path quantification in f((:) plays
a role only when interpreted in states {1, . . . , m} • {n - 1}.

In fact, a more sophisticated construction can avoid the free proposition start
(e.g., by encoding the beginning of a sequence which encodes the assignment
to the atomic propositions by a sequence that does not appear elsewhere), thus
showing that the EXPTIME lower bound holds even for (1, 0)-EQCTLt.

We have seen that the model-checking problem for EQCTLt and EQCTL~
is as hard as the satisfiability problem for CTL and CTL*, respectively. We now
show that existential quantification does not harm satisfiability complexity, for
both semantics.

Theorem 8.

(1) The satisfiability problem for EQCTL and EQCTLt is EXPTIME-complete.
(2) The satisfiability problem for EQCTL* and EQCTL~ is 2EXPTIME-complete.

Proof. (1) Hardness in EXPTIME follows from hardness of the satisfiability
problem for CTL. To prove membership in EXPTIME, we reduce satisfiability
of a formula ~ = 3pl �9 (: to the satisfiability of the CTL formula (:. This is
straightforward for ~ in EQCTL, but requires some attention for ta in EQCTLt.
Then, while satisfaction of (: is checked with respect to Kripke structures, satis-
faction of T is checked with respect to computation trees. It is easy to see that
if (: is satisfiable then ~ is satisfiable too. For the second direction, we need the
finite model property of CTL. The proof of (2) is similar, using the 2EXPTIME
bounds for CTL* [VS85, ES84, EJ88].

5 P r o g r a m C o m p l e x i t y o f M o d e l C h e c k i n g

In the previous section, we presented some cheerless results concerning the
model-checking complexity of branching temporal logics augmented with ex-
istential quantification over atomic propositions. In this section we consider the
program complexity of model checking for these logics.

Theorem 9.

(1) [HA'94] The program complexity of EQCTL model checking is NP-complete.
(2) The program complexity of EQCTL* model checking is NP-complete.

Proof. (1) Membership in NP is immediate. In [HK94], Halpern and Kapron
reduce satisfiability of CNF formulas to model checking of a fxed formula ~o in

336

S t (3xMDL). Whatever the logic L:I(3xMDL) is 1, the formula ~ is equivalent
to an EQCTL formula. This establishes hardness in NP.

(2) Hardness in NP follows from the hardness for EQCTL. We prove mem-
bership in NP. In order to check whether a Kripke structure K satisfies an
EQCTL* formula 3pl �9 �9 .pu t , we guess a Kripke structure K ~ that differs from
K in at most the labeling of pl . . . p , . As the program complexity of CTL* model
checking is in P, the result follows.

Thus, as long as we are interesting in the structure semantics, fixing the
formula brings no good news. Moreover, the fact that the program complexity
of EQCTL* model checking is NP-hard implies that the PSPACE complexity
we have for EQCTL* model checking is practicaly worse than the PSPACE
complexity for CTL* model checking. Indeed, while the time complexity of the
first is exponential in the Kripke structure, we have that the time complexity of
the latter is exponential in the formula. Fortunately, the tree semantics (rather
than the structure semantics) corresponds to the natural way branching temporal
logics have been used to represent computations. There, as follows from the
theorem below, the time complexity is polynomial in the Kripke structure.

Theorem 10. The program complexity of both EQCTLt and EQCTL~ is P-
complete.

Proof. Since the algorithms given in the proof of Theorem 4 are polynomial in
the size of K, membership in P is immediate. We prove hardness in P by re-
ducing the Alternating Graph Accessibility problem, proved to be P-complete in
[Imm81, CKS81], to model checking of a fixed EQCTLt formula. In the Alter-
nating Graph Accessibility problem, we are given a directed graph G = (V, E) , a
partit ion ELJ//of V, and two designated vertices s and t. The problem is whether
alternating_path(s, t) is true, where alternating_path(x, y) holds if and only if:

1. x = y , or
2. x �9 g and there exists z such that (z, z) �9 E and alternating_path(z, y), or
3. z �9 H and for all z such that (z, z) �9 E, we have alternating_path(z, y).

Given G, S, U, s, and t, we define K c = ({t, exist, univ}, V, E, s, L), where for all
w �9 S \{ t} , we have L(w) = {exists}, for all w �9 H\{ t} , we have i (w) = {univ},
and L(t) = {t}. Consider the fixed formula

= 3q[q A Ae(q -+ (t V (exist A EXq) V (univA AXq))) A AF-~q].

The two leftmost conjunctions in ~ label with q nodes of (TKG, VKG) that cor-
respond to states z �9 V for which alternating_path(z, t) should still be verified
in order to guarantee that alternating_path(s, t) holds. Since tP also requires that

1 The logic .U~ (3xMDL) consists of formulas of the form 3PSxr where r is a first order
formula that arises as the translation of a modal formula with unary predicates in
P and binary predicate R.

337

eventually no such z is left, we have that alternating_path(s, t) holds i f fKa ~ t ~.
Note that , as with G2(p), the formula ~ is not appropriate for the structure se-
mantics.

A c k n o w l e d g m e n t : I thank Rajeev Alur and Moshe Vardi for helpful com-
ments.

R e f e r e n c e s

[BBG+94]

[BCM+92]

[Bry86]

[BVW941

[CES86]

[CKS81]

[CLM89]

[cvwY921

[EJ88]

[EL85]

[Eme90]

[ES84]

I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodol-
ogy and system for practical formal verification of reactive hardware. In
Proc. 6th Workshop on Computer Aided Verification, volume 818 of Lecture
Notes in Computer Science, pages 182-193, Stanford, June 1994.
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. ttwang. Sym-
boric model checking: 1020 states and beyond. Information and Computa-
tion, 98(2):142-170, June 1992.
R.E. Bryant. Graph-based algorithms for boolean-function manipulation.
IEEE Trans. on Computers, C-35(8), 1986.
O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. In Computer Aided Verification, Proc.
6th Int. Workshop, Stanford, California, June 1994. Lecture Notes in Com-
puter Science, Springer-Verlag. full version available from authors.
E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programmin9 Languages and Systems, 8(2):244-263, Jan-
uary 1986.
A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of
the Association for Computing Machinery, 28(1):114-133, January 1981.
E.M. Clarke, D.E. Long, and K.L. McMiUan. Compositional model check-
ing. In Proc. 4th 1EEE Symposium on Logic in Computer Science, pages
353-362, 1989.
C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory ef-

ficient algorithms for the verification of temporal properties. Formal Meth-
ods in System Design, 1:275-288, 1992.
E.A. Emerson and C. Jutla. The complexity of tree automata and logics
of programs. In Proceedings of the 29th IEEE Symposium on Foundations
of Computer Science, White Plains, October 1988.
E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching
time logic strikes back. In Proceedings of the Twelfth A CM Symposium on
Principles of Programming Languages, pages 84-96, New Orleans, January
1985.
E.A. Emerson. Temporal and modal logic. Handbook of theoretical com-
puter science, pages 997-1072, 1990.
E.A. Emerson and A. P. Sistla. Deciding branching time logic. In Proceed-
ings of the 16th ACM Symposium on Theory of Computing, Washington,
April 1984.

338

[FL79]

[GL91]

[ttK94]

[Imm81]

[r~P95]

[LareS0]

[Lon93]

[LP85]

[Pnu81]

[PR893

[PW841

[Sav70]

[Si883]

[svw87]

[vs85]

[vw86]

[WG93]

[Wo183]

M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular pro-
grams. J. of Computer and Systems Sciences, 18:194-211, 1979.
O. Grumberg and D.E. Long. Model checking and modular verification.
In Proc. 2nd Con]erance on Concurrency Theory, volume 527 of Lecture
Notes in Computer Science, pages 250-265. Springer-Verlag, 1991.
J.Y. Halpern and B. Kapron. Zero-one laws for modal logic. Annals o]
Pure and Applied Logic, 69:157-193, 1994.
N. Immerman. Number of quantifiers is better than number of tape cells.
Journal of Computer and System Sciences, 22(3):384-406, 1981.
O. Kupferman and A. Pnueli. Once and for all. In Proc. lOth IEEE Sym-
posium on Logic in Computer Science, San Diego, June 1995. To appear.
L. Lamport. Sometimes is sometimes "not never" - on the temporal logic
of programs. In Proceedings o] the 7th ACM Symposium on Principles of
Programming Languages, pages 174-185, January 1980.
D.E. Long. Model checking, abstraction and compositional verification.
PhD thesis, Carnegie-Mellon University, Pittsburgh, 1993.
O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. In Proceedings of the Twelfth ACM
Symposium on Principles o] Programming Languages, pages 97-107, New
Orleans, January 1985.
A. Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13:45-60, 1981.
A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Pro-
ceedings o] the Sixteenth ACM Symposium on Principles o I Programming
Languages, Austin, Januery 1989.
S. Pinter and P. Wolper. A temporal logic for reasoning about partially
ordered computations. In Proc. 3rd ACM Symposium on Principles o]
Distributed Computing, pages 28-37, Vancouver, August 1984.
W.J. Savitch. Relationship between nondeterministic and deterministic
tape complexities. J. on Computer and System Sciences, 4:177-192, 1970.
A.P. Sistla. Theoretical issues in the design o] distributed and concurrent
systems. PhD thesis, Iiarward University, Cambridge, MA, 1983.
A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for
B/iehi automata with applications to temporal logic. Theoretical Computer
Science, 49:217-237, 1987.
M.Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for
modal logics of programs. In Proc 17th A CM Syrup. on Theory o] Com-
puting, pages 240-251, 1985.
M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. Journal o] Computer and System Science, 32(2):182-21, April
1986.
P. Wolper and P. Godefroid. Partial-order methods for temporal verifi-
cation. In Proc. 4th Con]erance on Concurrency Theory, volume 715 of
Lecture Notes in Computer Science, pages 233-246, Itildesheim, August
1993. Springer-Verlag.
P. Wolper. Temporal logic can be more expressive, ln]ormation and Con-
trol, 56(1-2):72-99, 1983.

