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Abst rac t .  In temporal-logic model checking, we verify the correctness 
of a program with respect to a desired behavior by checking whether a 
structure that models the program satisfies a temporal logic formula that 
specifies this behavior. One of the ways to overcome the expressiveness 
limitation of temporal logics is to augment them with quantification over 
atomic propositions. In this paper we consider the extension of branching 
temporal logics with existential quantification over atomic propositions. 
Once we add existential quantification to a branching temporal logic, it 
becomes sensitive to unwinding. That is, unwinding a structure into an 
infinite tree does not preserve the set of formulas it satisfies. Accordingly, 
we distinguish between two semantics, two practices as specification lan- 
guages, and two versions of the model-checking problem for such a logic. 
One semantics refers to the structure that models the program, and the 
second semantics refers to the infinite computation tree that the program 
induces. We examine the complexity of the model-checking problem in 
the two semantics for the logics CTL and CTL* augmented with exis- 
tential quantification over atomic propositions. Following the cheerless 
results that we get, we examine also the program complexity of model 
checking; i.e., the complexity of this problem in terms of the program, 
assuming the formula is fixed. We show that while fixing the formula 
dramatically reduces model-checking complexity in the tree semantics, 
its influence on the structure semantics is poor. 

1 In t r o d u c t i on  

Temporal logics, which are modal logics that enable the description of occur- 
rence of events in time, serve as a classical tool for specifying behaviors of con- 
current programs [Pnu81]. The appropriateness of temporal logics follows from 
the fact that  finite-state programs can be modeled by finite propositional Kripke 
structures, whose properties can be specified using propositional temporal logic. 
This yields fully-algorithmic methods for synthesis and for reasoning about the 
correctness of programs. A powerful such method is model checking. In model 
checking, we verify the correctness of a program with respect to a desired behav- 
ior by checking whether the program, modeled as a Kripke structure, satisfies 
(is a model of) the temporal logic formula that specifies this behavior. Recent 
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methods and heuristics such as BDDs [Bry86, BCM+92], modular model check- 
ing [CLM89, GL91], partial order techniques, [WG93], on the fly model checking 
[CVWY92, BVW94], and others, cope successfully with the known "state explo- 
sion" problem and give rise to model checking not only as a lovely theoretical 
issue, but also as a practical tool used for formal verifcation. 

Model-checking methods consider two types of temporal logics: linear and 
branching [Lam80]. In linear temporal logics, each moment in time has a unique 
possible future. Accordingly, linear temporal logic formulas are interpreted over 
a path in a Kripke structure and refer to a single computation of a program. In 
branching temporal logics, each moment in time may split into several possible 
futures. Accordingly, branching temporal logic formulas are interpreted over a 
state in a Kripke structure and refer to all the computations that start at this 
state. The syntax of the logic controls the way in which these computations can 
be referred to and determines the expressive power of the logic. Naturally, there 
is a trade-off between the expressive power of the logic and the complexity of its 
model-checking problem: the more a logic is expressive, the more expensive its 
model checking is. 

Adding quantification over atomic propositions increases the expressive power 
of temporal logics ISis83, SVW87, PR89]. In this paper, we consider the exten- 
sion of branching temporal logics with existential quantification. Formally, if r is 
a formula in some branching temporal logic ~:, then 2pl . . .pnr where Pz, . . . ,  Pn 
are atomic propositions, is a formula in the logic EQs which augments Z: with 
existential quantification. The formula 3pl . . .Pnr  is satisfied in a Kripke struc- 
ture K iff there exists a Kripke structure that satisfies r and differs from K in 
at most the labeling of Pl . . . .  , pn. 

The model-checking problem for EQs stands somewhere between the model- 
checking and the satisfiability problems for ~. On the one hand, as in model 
checking, we are given both a Kripke structure and a formula and we are asked 
whether the structure satisfies the formula. On the other hand, as in satisfia- 
bility, we are asked about the existence of some Kripke structure that satisfies 
the formula. Essentially, we can view the model-checking problem for EQI: as 
a restricted (or perhaps extended) version of the satisfiability problem for s 
in which the candidates to satisfy the formula are not all Kripke structures, 
but only a limited subset of them. Here, naturally enough, comes the question 
of complexity. The satisfiability problem for a branching temporal logic E is 
usually harder than its model-checking problem. For example, the branching 
temporal logics CTL and CTL* have, respectively, EXPTIME and 2EXPTIME 
complete satisfiability bounds [FL79, VS85, ES84, E J88] and have, respectively, 
linear-time and PSPACE-eomplete bounds for their model checking problems 
[CES86, EL85]. Where does the complexity of the model-checking problem for 
EQE stand? Is it necessarily between the complexities of the model-checking 
problem and the satisfiability problem for 12? To which of them is it closer? Is it 
worth paying the increase in model-checking complexity for the increase in the 
expressive power? 

A key observation that should be made before answering these questions is 
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that  once we add existential quantification to a branching temporal  logic 1:, 
it becomes sensitive to unwinding. That  is, unwinding of a Kripke structure 
into an infinite computation tree does not preserve the set of EQs formulas 
it satisfies. Consequently, we distinguish between two semantics for EQs The 
first is the structure semantics given above. The second, which we call EQ/~,, 
corresponds to a tree semantics. According to this semantics, a Kripke structure 
K satisfies a formula 3pl . . -Pnr  iff there exists a computation tree that  satisfies 
r and differs from the computation tree obtained by unwinding K in at most 
the labels of P l , .  �9 Pn- Intuitively, it is harder for K to satisfy a formula in the 
structure semantics: among the infinitely many computation trees that  we have 
as candidates for satisfaction in the tree semantics, only finitely many, these in 
which nodes that  correspond to the same state of K have the same labeling, are 
candidates in the structure semantics. The logics EQE and EQZ:t differ in their 
practices as specification languages, differ in their expressive power, and differ 
in their model-checking complexities. Nevertheless, we found in the literature 
unawareness to this sensitivity. 

We show that  existential quantification increases the expressive power of CTL 
and CTL*, in both semantics. In particular, existential quantification in the tree 
semantics is strong enough to replace satellites. A satellite, as introduced in 
[BBG+94], is a small finite state machine, linked to a design to be verified. It 
can read the design at any moment and it records particular events of interest, 
for possible use in the specification of the design. A concept similar to satellites 
is introduced in [Lon93] as observer processes. For example, we can define a 
satellite Raise(s) which detects cycles in which the signal s is raised. Satellites 
overcome the expressiveness limitations of CTL an d  are used successfully as a 
part of the formal-verification system in IBM I-Iaifa. The price of satellites is the 
increase in the state space, which now consists of the product of the state space 
of the design with the state space of the satellite. Existential quantification leaves 
the design clean and shifts this price to the specification. For example, instead 
checking a CTL formula r which uses and activates the satellite Raise(s), we 
can check the EQCTL, formula obtained from r by prefixing it with 3qAG(s 
AXq) A AG(-~s --+ AX-,q) and replacing each occurrence of Raise(s) by s A --q. 
Note that  the quantified proposition q labels a node iff s holds in its predecessor 
node. In fact, by [KP95], existential quantification is sufficient to express any 
occurrence of events in the past that  can be expressed by linear temporal  logic. 
In addition, we can use existential quantification to count y modulo z. The way 
we use formulas in the structure semantics is different. There, formulas describe 
a single computation which is a partially ordered set [PW84]. For example, the 
formula 3q(q A AG( q --+ A X  AXq) A AG( q ~ sendi ) specifies that  process i sends 
a massage in all its even positions. 

We analyze the complexity of the model-checking problem for the logics 
EQCTL,  EQCTLt,  EQCTL*, and EQCTL~. Lichtenstein and Pnueli argued 
that  when analyzing the complexity of model checking, a distinction should be 
made between complexity in the size of the input structure and complexity in 
the size of the input formula; it is the complexity in size of the structure that  
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is typically the computational bottleneck [LP85]. Following this approach, we 
consider also the program complezity [VW86] of model checking for these log- 
ics; i.e., the complexity of this problem in terms of the size of the input Kripke 
structure, assuming the formula is fixed. Our main results are summarized in 
the table below. 

IINo Quantification 
CTL model linear time 

checking [CES86] 
program NLOGSPACE-complete 
complexity [BVW94] 

CTL* model PSPACE-complete 
checking [EL85] 
program NLOGSPACE-complete 
complexity [BVW94] 

Quantification withlQuantification with 
structure semantics[tree semantics 
NP-complete 
[Theorem 3] 
NP-complete 
[HK94, Theorem 9] 

EXPTIME-complete 
[Theorem 4] 
P-complete 
[Theorem 10] 

PSPACE-complete 2EXPTIME--complete 
[Theorem 3] [Theorem 4] 
NP-complete P-complete 
[Theorem 9] [Theorem 10] 

Examining our results, we conclude the following. First, in the structure se- 
mantics, existential quantification takes the model-checking problem for CTL 
from P to NP-complete. Thus, we can not expect an algorithm that does better 
than a naive check of all the possible labeling for the quantified propositions. The 
same penalty (moving from a deterministic complexity class to its nondetermin- 
istic variant) applies also for CTL*. There, however, as PSPACE = NPSPACE, 
it seems we do not really pay for it. Second, in the tree semantics, existential 
quantification makes model-checking as hard as satisfiability (this holds for ev- 
ery branching temporal logic that satisfies the small branching degree proper~y). 
We show that these results hold also for very limited fragments of EQCTL and 
EQCTL*; e.g., when the propositional assertions are in 2CNF or when only 
a single quantified proposition is allowed. In addition, we show that there are 
branching temporal logics/: for which the model-checking problem for EQs is 
harder than the satisfiability problem for/ : .  As for satisfiability, we show that 
for logics s that satisfy the finite model property, the satisfiability problems for 
EQs and EQs are as hard as the satisfiability problem for s Thus, as far as 
satisfiability is concerned, we can have existential quantification for free. 

Things become surprising when we turn to consider the program complexity. 
Mysteriously, while model checking in the tree semantics is harder than model 
checking in the structure semantics, we have that the program complexity of 
model checking is lower in the tree semantics. The elucidation of this mystery 
lies in the fact that the model-checking problem for EQ/:~ is closer to the sat- 
isfiability problem for s than the model-checking problem for EQs is. While 
this disfavors the tree semantics when we consider model-checking complexity, 
it advantages the tree semantics when we fix the formula. It follows from our 
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results that  in the structure semantics, fixing the formula still leaves us with 
the naive algorithm that checks all possible labeling for the quantified proposi- 
tions. In the tree semantics, we can apply automata-theoretic methods to obtain 
model-checking procedures which are polynomial in the size of the Kripke struc- 
ture. We can not, however, reach the space-efficient program complexity of model 
checking for CTL and CTL*. 

2 P r e l i m i n a r i e s  

The logic CTL* combines both branching-time and linear-time operators. A path 
quantifier, E ("for some path"),  can prefix an assertion composed of an arbitrary 
combination of the linear-time operators X ("next time" ), and U ("until").  There 
are two types of formulas in CTL*: state formulas, whose satisfaction is related 
to a specific state, and path formulas, whose satisfaction is related to a specific 
path. Formally, let A P  be a set of atomic proposition names. A CTL* state 
formula is either: 

- true,  false,  or p, for all p E AP.  
- -'~'1 or tol V tp2, where toa and to2 are CTL* state formulas. 
- Er where r is a CTL* path formula. 

A CTL* path formula is either: 

- A CTL* state formula. 
- "~r Cz V r Xr or r162 where r and r are CTL* path formulas. 

The logic CTL*. consists of the set of state formulas generated by the above rules. 
We use the usual abbreviations A ("and"), --~ ("implies"), A ("for all paths"),  
F ("eventually"), and G ("always"). 

The logic CTL is a restricted subset of CTL* in which the temporal operators 
must be immediately preceded by a path quantifier. Formally, it is the subset 
of CTL* obtained by restricting the path formulas to be X~Ol, ~lUto2, or their 
negations, where 91 and to2 are CTL state formulas. 

The semantics of CTL* is defined with respect to a Kripke structure K = 
(AP, W, R, w ~ L), where A P  is the set of atomic propositions, W is a set of 
states, R C W • W is a transition relation that  must be total (i.e., for every 
w E W there exists w ~ E W such that  (w, w t) E R), w ~ is an initial state, and 
L : W --* 2 AP maps each state to a set of atomic propositions true in this state. 
The notation K ~ ~ indicates that the formula ta holds at state w ~ of the Kripke 
structure K.  A formal definition of the relation ~ can be found in [Eme90]. 

The logic EQCTL* is obtained by adding existential quantification to CTL*. 
Precisely, if r is a CTL* formula and P l . . . p n  are atomic propositions, then 
3pi . . .p,~r is an EQCTL* formula. The semantics of 3pl . . .Pn r  is given by K 
3pl . . . P n r  iff there exists a Kripke structure K I, such that  K I ~ r and K t differs 
from K in at most the labels of the pi's. Note that EQCTL* is not closed under 
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negation. Thus, formulas of the form Vpl . . . p , r  are not EQCTL* formulas. The  
logic EQCTL is defined similarly, by adding existential quantification to CTL.  

Given a formula 3pl . . .Pn r  we call the atomic propositions Pl ...P~ quan- 
tified propositions and we call all the other propositions in r free propositions. 
Note that  satisfaction of an EQCTL* formula with no free propositions in a 
Kripke structure K is independent of AP and L. A frame is a Kripke struc- 
ture with no AP and L. A frame K = (W, R, w ~ satisfies an EQCTL* formula 
3pl . . . p ~ r  iff there exists a Kripke structure K ~ = (AP, W, R, w ~ L) such that  
K ' ~ r  

A tree is a set T _C IN* such that  if x .  c E T where x E IN* and c E IN, then 
also x E T, and for all 0 < c' < c, we have that  x �9 d E T. The elements of T 
are called nodes, and the empty  word e is the root of T. Given an alphabet  ~U, a 
E-labeled tree is a pair (T, V) where T is a tree and V : T ---* ~U maps  each node 
of T to a letter in ,U. A computation tree is a Z-labeled tree with ,U = 2 AP for 
some set AP of atomic propositions. 

3 E x p r e s s i v e  P o w e r  

A Kripke structure K can be unwound into an infinite computat ion tree in a 
straightforward way. We denote by (TK, VK) the computat ion tree obtained f rom 
unwinding K.  Each state in K may correspond to several nodes in (TK, VK). 
Since all these nodes have the same future (i.e., they root the same subtree) and 
since CTL can refer only to the future, CTL is insensitive to unwinding. Tha t  
is, for every CTL formula 9 and for every Kripke structure K ,  we have tha t  
K ~ 9 iff (TK, VK) ~ 9. Insensitivity to unwinding is an impor tan t  property 
for a branching temporal  logic. Logics which are insensitive to unwinding, we 
can model check their formulas with respect to a finite Kripke structure, and 
adopt the result for its infinite computat ion tree. Symmetrically,  we can model 
check an infinite computat ion tree using, say, automata- theoret ic  methods,  and 
adopt the result for all Kripke structures that  can be unwound into this tree. 
Augmenting CTL with past- t ime modalities, it becomes sensitive to unwinding. 
Since past - t ime modalities can be expressed by existential quantification [KP95], 
we have the following: 

Theorem I. EQCTL is sensitive to unwinding. 

Proof. Consider the EQCTL formula 9 = 3qAG(p ~ AXq) and consider the 
Kripke s t ruc tu re  

K = ((p}, {wo, wl}, {(wo, {p)), 0)}). 

It is easy to see that  while K ~ 9, we have that  (TK, VK) ~ 9. 

So, it makes sense to define two different semantics for EQCTL.  The first 
corresponds to the original structure semantics and the second, which we call 
EQCTLt ,  corresponds to a tree semantics. Precisely, a n  EQCTLt  formula ~o = 
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3p~ . . . p , r  is satisfied in a Kripke structure K, denoted K ~t  ~, iff there exists 
a computation tree (TK, V~) such that (TK, V/~) ~ r and Vk differs from VK 
in at most the labeling of Pl, �9 �9 Pn. Note that K ~ ~ implies that K ~t  ~. It 
is the other direction which makes EQCTL sensitive to unwinding. 

An interesting example for the sensitivity of EQCTL to unwinding is the 
formula to = 3q(q A (AX-,q) A AG(q ~ AXAXq) A AG(q ~ p)). The formula is 
suggested in the literature for specifying the property G2(p) ="p holds in all even 
places". When interpreted over computation trees, ~0 indeed specifies G2(p). Yet, 
for a Kripke structure with a state that can be reached from the initial state by 
both an even number and an odd number of transitions (e.g., a Kripke structure 
that consists of a single state with a self loop), any labeling of q fails, even if this 
Kripke structure does satisfy G2(p). Hence, ~0 is appropriate only for the tree 
semantics. On the other hand, the formula Bq(q A AG(q ~ AXAXq)  A AG(q --* 
p)) specifies G2(p) faithfully with respect to both semantics. As CTL can not 
specify G2(p) [WolSa], we have the following: 

Theorem ~. EQCTL and EQCTLt are both strictly more expressive than CTL. 

Theorems 1 and 2 clearly hold also with respect to EQCTL*. 
Insensitivity to the sensitivity of EQCTL and EQCTL* to unwinding hides 

also when comparing these logics with tree automata [ES84]. Indeed, EQCTL~ is 
as expressive as symmetric pair automata on infinite binary trees. Nevertheless, 
the translation of EQCTL~ into 2S2, which is the base of this equivalence, does 
not hold for EQCTL*. Similarly, it is EQCTLt, only, which is as expressive as 
symmetric Bfichi automata on infinite binary trees. 

4 M o d e l - C h e c k i n g  C o m p l e x i t y  

The model-checking problem for a variety of branching temporal logics can be 
stated as follows: given a branching temporal logic formula ~ and a finite Kripke 
structure K = (AP, W, R, w ~ L), determine whether K satisfies ~. When some 
of the logics are sensitive to unwinding, there are two possible interpretations of 
this problem. The first interpretation, which is the one appropriate for EQCTL 
and EQCTL*, asks whether K ~ ~. In the second interpretation, which is the 
one appropriate for EQCTLt and EQCTL~, we are given T and K and are 
asked to determine whether K ~t  ~. In this section we consider model-checking 
complexity for the two interpretations. 

Theorem 3. 

(1) The model-checking problem for EQCTL is NP-complete. 
(2) The model-checking problem for EQCTL* is PSPACE-complete. 

Proof. (1) We first prove membership in NP. In order to check whether a Kripke 
structure K satisfies an EQCTL formula 3pl ...Pnr we guess a Kripke structure 
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K' that differs from K in at most the labeling of Pl...P,~, and then check, in 
linear time [CES86], whether K'  satisfies the CTL formula r To prove hardness 
in NP, we do a reduction from SAT. Clearly, a propositional formula ~ over the 
propositions Pl .-. Pn is satisfiable if and only if the EQCTL formula 3 p l . . . p , ~  
is satisfied in a one-state frame. 

(2) Both membership and hardness in PSPACE follow from being CTL* 
model checking PSPACE-complete [EL85]. While hardness is immediate, Sav- 
itch'es Theorem [Sav70] is required for the membership. 

Fig. 1. The frames K4, K 5, and K~. 

Theorem ,~. 

(1) The model-checking problem for EQCTLt is EXPTIME-complete. 
(2) The model-checking problem for EQCTL~ is 2EXPTIME-complete. 

Proof. (1) We first prove membership in EXPTIME. Given a set • C lN and 
an EQCTLt formula ~ = 3pl.. .pnr let A~,r be a Biichi tree automaton 
that accepts exactly all the tree models of r with branching degrees in T~. 
By [VW86], such A~,r of size O(11)1.2 Ir exists. Given a Kripke structure 
K = (AP, W, R, w ~ L) and a set S of atomic propositions, let AK,s be a Buchi 
tree automaton that accepts exactly all the (2APuS)-labeled trees (TK, V~) for 
which Vk differs from VK in at most the labels of the propositions in S. It is 
easy to see that such AK,s of size O(IK I * 2 lsl) exists. Taking D as the set 
o f  branching degrees in TK and taking S = {pl . . .pn},  we get that K ~ t  
iff s I:(A9,r r 0. By [VW86], the later can be checked in time 
poly ( Ig l  , 21~1). 

For proving hardness in EXPTIME, we reduce satisfiability of CTL, proved 
to b e  EXPTIME-hard in [FL79], to EQCTLt model checking. For m >_ 1, let 
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K,~ denote the frame <{1,..., m}, {1, . . . ,  m} x {1, . . . ,  m}, 1>. The frame K4 is 
presented in Figure 1. Since a CTL formula r is satisfiable iff it is satisfied 
in a tree of branching degree ]Oh and since unwinding Klr j results in such a 
tree, satisfiability of r can be reduced to model checking of Klr I with respect 
to the EQCTL, formula 3 p l . . . p , r  where P l . . . P ,  are exactly all the atomic 
propositions in r 

(2) The model-checking procedure for EQCTL~ is similar to the one for 
EQCTL,. Here, following [ES84], we have that Av,r  is a Rabin tree automa- 

ton with 22t*l states and 21r pairs. By [EJ88], checking the nonemptiness of 

~.(AK,s) f'l s162 can then be done in time poly(IK I * 221~). To prove hard- 
ness of EQCTL* model checking in 2EXPTIME, we reduce satisfiability of CTL*, 
proved to be 2EXPTIME-hard in [VS85], to EQCTL~ model checking. Since a 
CTL* formula r is satisfiable iff it is satisfied in a tree of branching degree 1r 
the same reduction that works for EQCTLt works also here. 

As CTL subsumes propositional logic, being EQCTL model checking NP- 
hard is far from being surprising. What, however, if we restrict CTL to subsume 
only a subset of propositional logic for which satisfiability is in P? Let 2CNF- 
EQCTL denote the subset of EQCTL in which the propositional assertions are 
in 2CNF. 

T h e o r e m  5. The model checking problem for 2CNF-EQCTL is NP-hard. 

Proof. For every n > 1, let r = h j# i  Aa((-~pi) v (-~pj)) where i and j range 
over 1 . . . n .  For every Kripke structure K, we have that K ~ r iff at most 
one Pi holds in each state of K. Note that all the propositional assertions in r 
are in 2CNF. Given a graph with n nodes, we can use r to specify properties 
whose decidability is NP-hard. For example, given an undirected graph G = 
(V, E) with IVl = n, let Ka = (V, E, v} for some v, and let 

ta = 3 p l . . . p n [ r  A pl A EX(p2  A EX(p3  A . . . A E X ( p n - 1  A E X p n )  " " "))]. 

It is easy to see that both KG and to are of size polynomial in the size of G and 
that Ka  ~ ~ iff there exists an Hamiltonian path in G. 

Theorem 5 implies that it is the modality of CTL, by itself, that makes 
EQCTL model checking NP-hard. Still, proving the lower bounds in the theorems 
above, we reduce hard problems to model checking of formulas in which the 
number of quantified propositions is linear in the size of the reduced problem. 
Thus, there is still a hope that if we restrict EQCTL and EQCTLt to have a 
fixed number of quantified proposition, we get easier logics. The theorems below 
refute this hope. For i > 0 and j > 0, let (i,j)-EQCTL denote the restricted 
subset of EQCTL in which only i quantified propositions and j free propositions 
are allowed, and similarly for EQCTLt. 

T h e o r e m  6. The model-checking problem for (1, O)-EQCTL is NP.hard. 
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Proof. We reduce SAT to (1,0)-EQCTL model checking. Intuitively, we do some- 
thing similar to what we did for proving that EQCTL model checking is NP- 
hard. Since, however, a propositional formula ~ may talk about more than one 
proposition, we translate a formula ~(P0, . . .  ,pn-1) into a CTL formula that  in- 
stead talking about the value of pi in the initial state, talks about the value 
of a single atomic proposition q in a state located i positions from the initial 
state. Formally, for n > 1, let K"  be the frame ({ 0 , . . . ,  n -  1}, R, 0) where 
R = {(0, 1 ) , (1 ,2 ) , . . . ,  ( n - 2 ,  n - 1 ) ,  ( n - 1 , 0 ) } .  The frame g 5 is presented in 
Figure i. Giving a propositional formula ~ over Po,...  ,Pn-1, let r be the CTL 
formula obtained from replacing each occurrence of Pi in ~ by (EX)iq. For ex- 
ample, if ~ = (P0 V Pl) A (-~Pl V P2), then r = (q V EXq) A (~EXq V E X E X q ) .  
It is easy to see that ~ is satisfiable iff K n ~ 3qr 

Note that  constructing r above, we need only a fragment of (1, 0)-EQCTL 
for which the satisfiability problem is in linear time. Thus, there are branching 
temporal logics with existential quantification for which model checking is harder 
than satisfiability. 

Theorem 7. The model-checking problem for (1, 1)-EQCTs is EXPTIME-hard. 

Proof. We reduce satisfiability of CTL to (1, 1)-EQCTLt model checking. Typi-  
cally, we do something similar to what we did for proving that  EQCTLt model 
checking is EXPTIME-hard.  Yet, as here we have only a single quantified propo- 
sition, we have to encode the states of K,~, as we did for the initial state in the 
proof of Theorem 6. Given m >_ 1 and n > 1, let K~n = ({start}, W, R, w ~ L) be 
the Kripke structure defined as follows: 

- W =  { 1 , . . . m }  • { 0 , . . . , n -  1}. 
- R =  { ( ( i , m - 1 ) , ( k , 0 ) ) , ( ( i , j ) , ( i , j + l ) )  : l  _< i ,k  < m ,  0 < _ j < m - 2 } .  
- w ~ = ( 1 , 0 ) .  

- For all 1 < i < m, we have L((i, 0)) = {start} and L((i, j ) )  = 0 for all j ~ 0. 

The frame of K s is presented in Figure 1. Now we have to translate a CTL 
formula r  Pn-1) into a formula that  instead of talking about the value of 
pj at a state i of Kin, talks about the value of q at the state located j positions 
after the state (i, 0) in K~ .  For example, the formula EF(pj AAGp~) is translated 
to the formula 

E F( start A ( E X )J q A A G( start --* ( E X)i q) ). 

Such a translation may increase the formula r by at most a factor of ]r (because  
of the extra EX's). Formally, we present a function f such that  r of length 
m over P0 . . .Pn -1  is satisfiable iff Bqf(r  is satisfied in K~ .  We define f by 
induction on the structure of r as follows (Q stands for either E or A): 

= (EX) q. 

- f ( - ~ r 1 6 2  
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- f ( ( : l  V (:2) = f ( r  V f ( ( :2 ) -  
- f (QX(: l )  = (QX)mf((:l) .  
- f(Q(:l u(:2) = Q(strat --+ f (r  A f((:2)). 

Note that the definition of K~ guarantees that path quantification in f((:) plays 
a role only when interpreted in states {1, . . . ,  m} • {n - 1}. 

In fact, a more sophisticated construction can avoid the free proposition start 
(e.g., by encoding the beginning of a sequence which encodes the assignment 
to the atomic propositions by a sequence that does not appear elsewhere), thus 
showing that the EXPTIME lower bound holds even for (1, 0)-EQCTLt. 

We have seen that the  model-checking problem for EQCTLt and EQCTL~ 
is as hard as the satisfiability problem for CTL and CTL*, respectively. We now 
show that existential quantification does not harm satisfiability complexity, for 
both semantics. 

Theorem 8. 

(1) The satisfiability problem for EQCTL and EQCTLt is EXPTIME-complete. 
(2) The satisfiability problem for EQCTL* and EQCTL~ is 2EXPTIME-complete. 

Proof. (1) Hardness in EXPTIME follows from hardness of the satisfiability 
problem for CTL. To prove membership in EXPTIME, we reduce satisfiability 
of a formula ~ = 3pl �9 (: to the satisfiability of the CTL formula (:. This is 
straightforward for ~ in EQCTL, but requires some attention for ta in EQCTLt. 
Then, while satisfaction of (: is checked with respect to Kripke structures, satis- 
faction of T is checked with respect to computation trees. It is easy to see that 
if (: is satisfiable then ~ is satisfiable too. For the second direction, we need the 
finite model property of CTL. The proof of (2) is similar, using the 2EXPTIME 
bounds for CTL* [VS85, ES84, EJ88]. 

5 P r o g r a m  C o m p l e x i t y  o f  M o d e l  C h e c k i n g  

In the previous section, we presented some cheerless results concerning the 
model-checking complexity of branching temporal logics augmented with ex- 
istential quantification over atomic propositions. In this section we consider the 
program complexity of model checking for these logics. 

Theorem 9. 

(1) [HA'94] The program complexity of EQCTL model checking is NP-complete. 
(2) The program complexity of EQCTL* model checking is NP-complete. 

Proof. (1) Membership in NP is immediate. In [HK94], Halpern and Kapron 
reduce satisfiability of CNF formulas to model checking of a fxed formula ~o in 
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S t (3xMDL). Whatever the logic L:I(3xMDL) is 1, the formula ~ is equivalent 
to an EQCTL formula. This establishes hardness in NP. 

(2) Hardness in NP follows from the hardness for EQCTL. We prove mem- 
bership in NP. In order to check whether a Kripke structure K satisfies an 
EQCTL* formula 3pl �9 �9 .pu t ,  we guess a Kripke structure K ~ that  differs from 
K in at most the labeling of pl . . . p , .  As the program complexity of CTL* model 
checking is in P, the result follows. 

Thus, as long as we are interesting in the structure semantics, fixing the 
formula brings no good news. Moreover, the fact that  the program complexity 
of EQCTL* model checking is NP-hard implies that  the PSPACE complexity 
we have for EQCTL* model checking is practicaly worse than the PSPACE 
complexity for CTL* model checking. Indeed, while the time complexity of the 
first is exponential in the Kripke structure, we have that  the time complexity of 
the latter is exponential in the formula. Fortunately, the tree semantics (rather 
than the structure semantics) corresponds to the natural  way branching temporal  
logics have been used to represent computations. There, as follows from the 
theorem below, the time complexity is polynomial in the Kripke structure. 

Theorem 10. The program complexity of both EQCTLt and EQCTL~ is P- 
complete. 

Proof. Since the algorithms given in the proof of Theorem 4 are polynomial in 
the size of K, membership in P is immediate. We prove hardness in P by re- 
ducing the Alternating Graph Accessibility problem, proved to be P-complete in 
[Imm81, CKS81], to model checking of a fixed EQCTLt formula. In the Alter- 
nating Graph Accessibility problem, we are given a directed graph G = (V, E) ,  a 
partit ion ELJ//of V, and two designated vertices s and t. The problem is whether 
alternating_path(s, t) is true, where alternating_path(x, y) holds if and only if: 

1. x = y ,  or 
2. x �9 g and there exists z such that (z, z) �9 E and alternating_path(z, y), or 
3. z �9 H and for all z such that (z, z) �9 E,  we have alternating_path(z, y). 

Given G, S, U, s, and t, we define K c  = ({t, exist, univ}, V, E,  s, L), where for all 
w �9 S \{ t} ,  we have L(w) = {exists}, for all w �9 H\{ t} ,  we have i (w)  = {univ}, 
and L(t) = {t}. Consider the fixed formula 

= 3q[q A Ae(q -+ (t V (exist A EXq) V (univA AXq))) A AF-~q]. 

The two leftmost conjunctions in ~ label with q nodes of (TKG, VKG) that  cor- 
respond to states z �9 V for which alternating_path(z, t) should still be verified 
in order to guarantee that alternating_path(s, t) holds. Since tP also requires that  

1 The logic .U~ (3xMDL) consists of formulas of the form 3PSxr where r is a first order 
formula that arises as the translation of a modal formula with unary predicates in 
P and binary predicate R. 



337 

eventually no such z is left, we have that  alternating_path(s, t) holds i f fKa  ~ t  ~. 
Note that ,  as with G2(p), the formula ~ is not appropriate for the structure se- 
mantics.  
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