
Decidability of Bisimulation Equivalences for
Parallel Timer Processes

K~rlis Cer~ns
Institute of Mathematics and Computer Science,

University of Latvia
Riga, Rainis blvd. 29, Latvia LV-1050

E-maih karlisT, cs. lu. riga. lvCus st. eu. net

Abst rac t . In this paper an abstract model of parallel timer processes
(PTPs), allowing specification of temporal quantitative constraints on
the behaviour of real time systems, is introduced. The parallel timer
processes are defined in a dense time domain and are able to model both
concurrent (with delay intervals overlapping on the time axis) and infinite
behaviour. Both the strong and weak (abstracted from internal actions)
bisimulation equivalence problems for PTPs are proved decidable. It is
proved also that, if one provides the PTP model additionally with mem-
ory cells for moving timer value information along the time axis, the
bisimulation equivalence (and even the vertex teachability) problems be-
come undecidable.

1 I n t r o d u c t i o n

The problem of specification of quantitative timed aspects of real time systems
has been widely studied over the last years. This research has resulted in a
number of timed specification formalisms covering various aspect s of real t ime
system specification process, for some impression of what has been done one can
see, for example, [MF76, GMMP89, CC88, AD90, ABBCK91, RR86, Wangl].
There are also a lot of interesting results devoted to the analysis of quantitative
timed behaviour of real time systems. One can recall here at first the enumerative
approach to the Time Petri net [MF76] analysis in [BM83] (actually showing the
decidability of the teachability problem for bounded Time Petri Nets). In [AD90]
it is showed that for Timed Biichi automata the language emptiness problem is
decidable whilst the language inclusion problem is not (it is easy to extend this
result also to show the undecidability of the language equivalence problem). A
model checking algorithm for branching time temporal logic formulae over Timed
Graphs is given in [ACD90].

In [ABBCK91, Cer92a] the analysis automation possibilities (decidability of
reachability, complete branch covering, finite and infinite path feasibility prob-
lems) are investigated for r.t.s, with dependencies on both quantitative timing
constraints and external (integer-valued) data.

All the abovementioned timed specification formalisms are based on the as-
sumption of the density of the used space of time moments (time domain) when
the action or transition firing is allowed. In this paper we also consider real t ime

303

systems over dense time domains; in particular the obtained results apply to
the domain of rational numbers (the discrete-time constraints can often be han-
dled by standard FSM analysis techniques due to the finiteness of the generated
"state space").

The abovementioned positive analysis results can be considered as dealing.
with some kind of "extended teachability" problems for the timed system speci-
fications. The intention of this paper is to find whether decidable can be showed
any nontrivial algorithmic problem concerning the equivalence properties of
r.t.s.. One can mention some already existing work on deciding bisimulation
equivalence for timed processes, however, the obtained results apply only to
rather simple cases (in [HLW91] the bisimulation equivalence has been shown
decidable for regular (in fact, one-timer) real timed processes and in [Che91] the
decidability is obtained for recursion-free processes).

The main point of this paper is to prove the decidability of both strong
and weak (abstracted from internal actions) bisimulation equivalence problems
for a class of timed processes with both possibly infinite behaviour and time
constraints naturally representing overlapping delays in process components (it
seems that these requirements altogether provide the minimum level of specifica-
tion power needed in more or less practical examples (the specification language
SDL [CC88], which is widely used in the practical specification of telecommunica-
tion systems, also contain means for quantitative time constraint specification of
exactly this kind)). We study the deciding of the bisimulation equivalences in the
formalism of Parallel Timer Processes (PTPs), see Section 2 for definitions. The
PTP formalism is similar to already considered model of Timed Graphs [ACD90]
(or, rather, Action Timed Graphs [NSY91]), however, it differs in some design
decisions (use of decreasing timers vs. increasing clocks, well-defined (time-stop
free) labelled transition system semantics for all the class of PTPs, explicit firing
enforcement of transitions along some edges) borrowed to some extent both from
the calculi Timed CCS [Wan90] and the specification language SDL.

We obtain also some undecidability results (see Section 4) for PTPs provided
additionaly with memory cells for moving the timer value information along the
time axis, so showing also the difficulties in analysis of processes in Timed CCS
with the expansion theorem [Wan91]. In the conclusions some brief points about
the compositionality and possible enrichments of PTPs are given.

This paper is a generalisatioa of a previous author's work [Cer91], where only
the strong bisimulation equivalence for an analogical (slightly weaker) specifica-
tion model was considered and proved decidable. For a more detailed treatment
of the problems addressed here the reader can see [Cer92b] (with the reported
decidability results slightly weaker) and [Cer92c].

2 P a r a l l e l T i m e r P r o c e s s e s

Let G = (V, E, L, lab) be a finite edge-labelled graph with the set of vertexes
V, the set of edges E, the set of labels L and the edge labelling function lab :
E ---, L. For every e E E let start(e) E V and end(e) E V denote the source and

304

target vertexes of e respectively. Let every edge e E E be coloured either red
(instantaneous) or black (possibly waiting).

Given such a graph G and a finite set of timers (time variables) 7", we define
a timer automaton by associating with every e E E:

- a set 7(e) C 7" of timers, called the edge condition (on what timers the
transitions along e depend) and

- a timer setting function r : 7- --. 7" U Q+0.

For �9 = (V, E, L, lab, T, 7, r being a timer automaton we define the set of its
states to be

S ~ = { (v , 6)] v ~ V , 6 : T - ~ Q + ~

The Parallel Timer Process (PTP, for short, called also t imed process) is defined
as a pair P = (~, s) for the timer automaton �9 and s E 8 # defined to be the P
initial state. We denote the set of all PTPs by P , let P, Q range over p and let
o" range over L.

The semantics of PTPs is given by labelled transition systems, based on the

relations ~ , and e(d! with d E Q+0 between processes (the label ~ is interpreted

as the action, performed by the process; the interpretation of P Ka) Q is, as in
[Wan90], that the process P can become Q just by letting time to pass for d
units).

For the timer automaton q~ : (V, E, L, lab, 7-, 7, r define (~, (v,/5)) a
(~, (v', 6')) iff there exists an edge e E E leading from v to v', labelled with
lab(e) = or, such that

- 6(ti) = 0 for every ti E 7(e) (a transition along an edge is enabled when all
timers this edge depends on have reached 0 values) and

- for every timer t E 7 its new value 6'(t) is computed via the setting r in
a way:

�9 if r = c E Q+0, then 6'(t) = c,
�9 if r = t' E q-, then 6'(t) =/5(t ').

For delay transitions, (O, (v, 6)) ~(~! (~, (v, 6')) iff

- for every red edge e with start(e) = v there exists ti e 7(e) with ~(ti) > d
(no red edge will be enabled during the waiting of d seconds) and

- for every t E 7- 6'(t) = 6(t) • d, where z e y a~! max{O, x - y} for every z, y
(all timer values are synchronously decreasing downto 0).

The Parallel Timer Processes obey the following useful semantical properties:

- t ime determinacy ([Wan90]) meaning that, if P Kd) p , and P e(d) p , , then
p ' = P ' ;

- time continuity ([Wan90]) meaning that P ~(~+~) P ' if and only if P e(d/

p , K~) pi for some P";

305

- time-stop freeness (this property is similar to the deadlock-freeness consid-
ered in [NSY91]) meaning that for every PTP P always either

p e(d) p(d)foralld.EQ+O, or P ~!d) p, a p , , f o r s o m e d E Q + 0 , ~ E L .

2.1 Example : Dial l ing T i m i n g Contro l

We describe as a PTP a toy version of a process controlling in telephone ex-
changes the timing aspects of phone number dialling by subscribers. We assume
that a phone number can be any nonempty sequence of digits, dialled by the
subscriber with some time intervals in between. The duty of the timing control
process is to interrupt the number dialling in any of the following three cases:

- the first digit of the number does not arrive in 30 seconds after the beginning
of the dialling (picking up the receiver);

- the current digit which is not the first does not arrive in 20 seconds after the
arrival of the previous digit; or

- the total time delay from the beginning of the number dialling reaches 60
seconds.

In the process the edge label "Call" denotes the beginning of the number dialling,
"Digit" denotes the receiption of the current digit, "Tim" stands for the dialling
interruption and "Connect" initiates the connection seeking process between two
subscribers, the process itself is depicted, as follows (we show the black edges of
the process as dashed):

'10 lTim
~Call [{D}

[T4--60;D*--30 ~ - r - ~ WD

' i$
I
j I Digit

{T} Tim
I)
10
~Digit
'

Connect

0

CONN)

2.2 Bis imula t ions

Let A de_.] L U {e(d)id E Q+0} be the set of all actions ranged over by u.
We define the strong timed bisimulation equivalence in the set P of timed

processes following [HLW91]:

Definition 2.1 Let F(R) be the set of all (P, Q) E "P x 7) satisfying

i) whenever P v p, then Q V) Q' with (P', Q') E R for some Q',
ii) wheneverQ u Q, then P u p, with (P',Q') E R for some P'.

306

Then R is a timed bisimulation, if R C F(R) . We define the timed bisimulation
equivalence, written ~, to be the greatest fizpoint o f F .

T h e o r e m 2.2 There is an algorithm which, given two Parallel Timer Processes
A and B, decides whether A ~ B or not.

We consider also the possibility to abstract from internal actions when ob-
serving a system modelled by a PTP. For this purpose we assume that every pro-
cess can have a special (internal, invisible) action (label) r E L, let Vis = L \ {r}
be ranged over by a.

Let P :=~ Q if and only if P(r ,).Q. Define P =% Q as P ~ ~ , = ~ Q.

Following [Wan90], for delay transitions let P ~ Q whenever

for some d t , d : , . . . , d k with dl + d2 + . . ' dk = d.
Letting u to range over Vis U {e(d)ld E Q+0} we define the weak timed

bisimulation for PTPs (observe that P = ~ Q iff P ~ Q):

De f in i t i on 2.3 Let F(R) be the set of all (P, Q) E 7) • P satisfying

i) whenever P ~ P' then Q ~ Q' with (P', Q') E R for some Q',
ii) whenever Q ~ Q' then P ~ P' with (P', Q') E R for some P'.

Then R is a weak timed bisimulation, if R C F(R) . We define the weak timed
bisimulation equivalence, written .~, to be the greatest fizpoini of F.

T h e o r e m 2.4 There is an algorithm which, given two Parallel Timer Processes
A and B, decides whether A ~ B or not.

Theorem 2.2 follows from Theorem 2.4 in the case of no edges labelled with the
r action.

Let for arbitrary timed process P = (#, (v, 6)) d(P) be the set of processes
{~, {v', ~i')) with v' being a vertex in �9 graph and tf'(t) <_ c P for every P timer
t, where c P is defined to exceed both all timer values from/f and all constants
used in # edge timer settings. It is easy to see that every P derivative (i.e. every
process which can be reached during the execution of P) falls into the set d(P)
(the converse might not be true).

Without loosing generality in deciding whether A -,, B, A ~ B one can
consider ~ and ~ to be the maximal bisimulations in the set d(A) • d(B) C 7) x 7)
(observe that a process does not change its graph when executed).

In this paper we do not consider yet another interesting equivalence which is
based on the abstraction from the actual time interval length in the semantical
transition relation between the processes. In fact, the deciding procedure for this
"time-abstracted equivalence" appears to be even simpler than the algorithms for
the "time-sensitive" equivalences considered here, this procedure can be based
on a rather direct comparing of "region graphs" (see [ACD90]) of the processes
under the test.

307

3 Deciding of Bisimulations

Without the loss of generality we assume that all the explicit constants c E Q+0,
used in the edge timer settings r in the graphs of A and B, are integers (were
it not so one could change the scale of the number line to ensure it; easy to see
that the behaviour of the processes is not affected by the scale change).

In order to decide whether A -~ B, A ~ B we give an effective characteristic
(via a finite partitioning) of all bisimilar process pairs within d(A) x f i (B) (it
turns out to be too rough for the proof to consider partitionings of d(A) and
d(B) independently: the analogue of the proof cornerstone Lemma 3.7 does not
hold for any nontrivial partitioning of 0Y(A) • d(B) obtained as the product of
independent partitionings of d(A) and d(B)).

For T = {tl, t2 , . . . ,t,~} being a finite set of timers, let us represent every T
timer value assignment 5: 7- ~ Q+0 as the vector (5 (t l) , . . . , 5(tin)) E (Q+0),~.
Let ~ be an equivalence relation in the set AT of 7- timer value assignments s.t.
61 - 5 ~ iff

- L61(t)J = L62(t)J for every i = 1 , . . . , n and
- for every i , j {61(ti)} ~ {61(tj)} if and only if {62(ti)} > {62(tj)}, and

{61(ti)} = 0 if and only if {62(ti)} = 0

(here Ix] denotes the "integral part" of x, i.e. the largest integer, which is not
greater than x, and {x} stands for the fractional part of x (i.e. {x} = x - [xJ)).

Given 6 E AT-, let us denote the equivalence class C C_ A T w.r.t. = with
6 E C by C(5) and call it the time region of 7-, corresponding to 6. Given a
timer value assignment one can easily compute its corresponding time region
(one can use the time region representations, say, by linear inequality systems
in order to make all computations with them effective).

E x a m p l e 3.1 I f T = { t l , t 2 , . . . ,t7} and 6 = (0.7, 1, 1.23,4, 17.23, 17.75, 17.75),
then the time region C(6) can be described as the inequality system
C(6) = (O < tl < l = t2 < ta < 2 < 4 = t4 < 1 7 < ts < t6 = tz <18,
0 = = { t 4 } < { t 3 } = { t s } < { t l } < { t 6 } = { t T }) .

Clearly, if for every t E 7- and every timer value assignment 6 E A C_ A T
always 6(t) E [0, c] C_ Q+0, then the set of the corresponding time regions {C(5) I
6 E A} is finite.

The presented time region construction is actually the same, as used in
[ACD90] for demonstrating the effectivity of the model checking procedure over
Timed Graphs. One may see also [ABBCK91] for a survey, how similar ideas of
variable value space partitioning have worked in deciding reachability for various
classes of data-dependent programs.

D e f i n i t i o n 3.2 Let Pi = (OA, (v P', 6P')) E d(A), Qi = (OB, <v Q', 5Q')) E d(B)
for i = 1, 2, we say that (P1, Q1) ~- (P2, Q2) iff

- v P1 = v e2 and v ql = v q2 (i.e. the vertexes of corresponding processes coin-
cide) and

308

- 6 PI :: 6 ql ~ 6 P2 :: 6 Q2, where :: denotes the concatenation of two vectors
O.e. the "concatenated" vectors belong to the same "time region").

It is important to notice that for (P1, Q1) -~ (P2, Q~) it is not enough that
v P1 = v P2 , v Q1 =v Q2 and 3PI ~- 6 P2 , 6 Q1 ~ 6 Q2, also the timer values in Pi have
to be ordered w.r.t, the timer values in Qx the same way as the timer values
in P2 are ordered w.r.t, those in Q2. In order to show the relations between

~ ~ between the processes (see and the defined transition relations ~. ,, :::r ,
Proposition 3.6 and Lemma 3.7) we use an "invariant relation" technique, char-
acterizing first every ~-equivalence class via the following notion of a uniform
mapping:

D e f i n i t i o n 3.3 We call a strongly monotone mapping p : Q+O ~ Q+O uniform
if p(O) = 0 and p(~) + c = p(~: + c) for every natural c.

We extend any mapping p : Q+0 _~ Q+0 in a polymorphic manner to any
structures containing nonnegative rationals as elements in a way by applying p
to every component a E Q+0 and not changing any component of other type,
e.g.

=

as well as for P E d(a), Q ~ d(B) p(P, Q) = (P', Q'), where P ' and Q' have
the same vertices as P and Q respectively, but the corresponding timer value
vector 6P' :: tfq' = p(~P :: ~Q), etc. The proofs of the following two facts easily
follow from definitions:

Fac t 3.4 (PI, 01) ~- (P~, ON) i f and only if there exists a uniform mapping p,
such that (/91, Q1) = p((P2, Q2)).

Fact 3.5 Whenever p : Q+O ..., Q+O is a uniform mapping, then for every
d E Q+o the mapping pa, defined pd(X) = p(x + d) - p(d) for every z, is also
nniform.

Proposition 3.6 Whenever P2 = p(P1) for the processes t"1, P2 E d(A) U d(B)
and some uniform mapping p, we have,

if P1 = ~ P~, then P2 ---% P(P~), and, if P1 ' (~ P~, then ['2 ,(o(~) Pd(P~).

Proof : Consider first the untimed transitions. Since P1 and P~ have the same
vertex, and the same timers with 0 values and, so, the transitions along the
same edges enabled, the result follows by observing that for every possible newly
appearing timer value e E N p(c) = c, use induction along the (--~,)* derivation

for the transition ~ .
As to the timed transitions, consider first the case Pi ~(a) p~. Let P1 have a

state (v, 6), then the state of P2 is (v, p(6)). By the definition of ,(a! for every
red edge e, outgoing from v, there exists ti E T(e), such that g(ti) > d. By t h e

monotonicity o fp for every such ti e(6(t~)) > e(d), so P2 '("(f) P~ for some P~.

309

In order to prove that P~ = Pd(P[) it remains to consult the definitions of the

transition relation ~(d! and the mapping Pd (consider 2 cases whether 6(ti) < d
or 6(ti) > d).

As to the general case of P1 ~ P~', it remains to notice that

(Pd)d' (X) = pd(x+d') -- pd(d t) = p(x +d+d') -p(d) - (p(d+d') -p(d)) = Pd+d' (x)

and to use the induction along the elementary transition chain in the derivation

Lemma 3.7 Let Pt, P2 E d(A), Q1, Q2 E if(B), such that <P1, Q1) ~ (P2, Q2).
Then P1 ~ Q1 if and only if P2 ~ Q2.

Proof : Define the relation ~,'C d(A) • d(B) in a way P ~ ' Q iff P1 ~ Q1
for some (P1, Q1) ~ (P, Q). We obtain the proof by showing that ~ ' is a weak
bisimulation.

Take some P ~ ' Q, let P1 ~ Qt and (P1,QI) ~ (P,Q), then (P1,Q1) =
p((P, Q)) for some uniform p (Fact 3.4). By Proposition 3.6 whenever P =:~ P '
then P1 ~ p(P'). Since P1 ~ Q1, then also Q1 =gr Q~ for some Q~ with
P(P') ~ Q'I. Since the inverse of a uniform mapping is also uniform, Proposi-
tion 3.6 gives Q = ~ p-l(Q'l) , easy to see that (P', p-l(Q'l)) ~- (p(P'), Q~) and,
so, P ' ~ ' p - l (Qi) , as requested.

All the other cases (including the timed ones) are very similar to the consid-
ered one, their detailed analysis is omitted.l:3

Consider a partitioning PeA,B of the set d(A) • o~(B), generated by -~, easy to
see that it is finite (for every P e d(A)Ud(B) any its timer value does not exceed
max{c A, cB}). For arbitrary P E d(A), Q e d(B) let us denote by X(P, Q) the
element in this partitioning to which the pair (P, Q) belongs to and call it a
region process, corresponding to (P, Q).

3.1 Dec id ing Strong Equivalence

We consider first the decidability of the strong (i.e. non-abstracted) bisimulation
equivalence. We begin with some results, characterizing the "waiting behaviour"
of the processes.

Let for P E 7 ~ P(d) be the process which is obtained from the process P

by letting time to pass for d units (P ,(d) P(d)) provided P can perform such
a waiting. We let p(P) for P E P to denote the minimal nonzero P timer
value fractional part (if all timer values in P are integers, let #(P) = 1), let

#(P, Q) = min{#(P), #(Q)}. We call a process P is stable, written P w r , if and

only if there exists d > 0, such that P c(d! P(d).

Fact 3.8 For P e 7 ~, if P WT, then for all d < p(P) P Kd! P(d).
For P E d(A) and Q E d(B), if P WT and Q WT, then for all d, d' E]0, p(P, Q)[
always P(d), Q(d), P(d'), Q(d') exist and X (P(d), Q(d)) = X (P(dt), Q(d')).

310

Defini t ion 3.9 Let for X = X (P , Q) E XA,B such that P wT and Q WT,
nexto(X) = X(P(#/2) ,Q(p/2)) and next l(X) = X(P(I~),Q(p)), where # =
p(P,Q).

Clearly, the operations nexti for region processes are well-defined and effective.
Let forX, X 'EXA,B X ~ (P,V) E X a n d (P ' , Q ') E X '

such that P ~ , P ' a n d Q ~ ,Q ' .

Def ini t ion 3.10 The set X E XA,B is a strong symbolic bisimulation if and
only if for all X = X(P, Q) E X

- wheneverP ~ , P ' t henX ~
- wheneverQ a , Q , t henX ~ , X (P ' , Q ') E X f o r s o m e P ' ;

- whenever P W__~T, or Q WT, then both nexto(X) E X and next l (X) E X.

Due to the finiteness of 2(A,B and according to Lemma 3.7 the following two
results complete the proof of Theorem 2.2 (see [Cer92c] for the proof details
omitted here).

L e m m a 3.11 The set Rx = {<P, Q) IX(P, Q) E X} is a strong timed bisimu-
lation if and only if the set X is a strong symbolic bisimulation.

Proof." See Lemma 3.15.O

L e m m a 3.12 It is decidable whether given set X C_ XA,B is a strong symbolic
bisimulation.

Proof : Follows from the definitions of o ~, nexto and next1. Proposition 3.6
and Fact 3.8 guarantee the independence on the choice of the representants.H

3.2 Deciding Weak Equivalence

In the general case of the deciding weak bisimulation we follow the same lines,
as in the case of the strong bisimulation. Let for P E d(A), Q E d(B) and
= #(P, Q):

whenever P ~ then AfA(P, Q) = {X(P(d), Qd) IQ ~(~ Qa ~z 0 < d < #} and

A/'A(P,Q) = {X(P(#) ,Q') I Q ~(~ Q'} (the sets AfoB(p,Q) and A/'B(P,Q) are
defined in a similar way).

Fact 3.13 For every X E Afoa(P, Q) and for every d E]0, p(P, Q)[there exists

Qd with both Q ~ Qa and (P(d), Qd} E X.

We introduce for tz E VisU{e} in the set 2dA,B of region processes the relations
X : :~ X' iff there exist (P, Q) E X and (P', Q') E X' such that P :=~ P' and

V Q I Q - - +

311

Def in i t i on 3.14 Let for any X C XA,B F*(X) be the set of all X(P, Q) satis-
fying

- i f P ~ P', then X(P,Q) ~ X(PI, Q ~) E X forsome Q~;
- i fQ ~ Q~, then X(P,Q) ~ X(P' ,Q') E X for some P';

- if P WT then both X ~ E AfoA(P, Q) D X and X" E Aft(P, Q) D X for some
X I, X ' ; and

- i fQ WT then both X ~ E A f ~ (P , Q) n X and X" E A f B (P , Q) n X forsome
X I, X ' .

Then X is a weak symbolic bisimulation, if X C_ F*(X).

The proof of Theorem 2.4 is obtained by showing the following two lemmas:

L e m m a 3 . 1 5 For 2(E XA,, and Rx = {(P,Q) I X(P ,Q) E XA,B} X is a
weak symbolic bisimulation if and only if Rx is a weak (timed) bis~mulalion.

L e m m a 3.16 It is decidable, whether a given set X C XA,B is a weak symbolic
bisimulation.

P r o o f of L e m m a 3.15 (ou t l ine) : Let X be a weak symbolic bisimulation. In
order to prove that Rx is a weak (timed) bisimulation, take (P, Q) E Rx. All
a- and e- moves of P can be matched by corresponding moves of Q (and vice
versa) due to Proposition 3.6.

Consider the timed cases. Given that for every X(P, Q) E X whenever P WT
then also A/'0 A D X and Af A D X are nonempty, we prove first that for every

(P,Q) e Rx and every d > 0, if P e(d! P(d), then also Q ~(~ Qd for some
Va with (P(d), Qd) E Rx . For this purpose we, given (P, Q) E Rx, consider a
sequence of process pairs (Pi, Qi) such that

- P o = P a n d Q o = Q ,

- Pi+l = Pi(#i) and Qi ~(~ Qi+l (we abbreviate #i = #(Pi, Qi)), and
- (Pi,Qi) E Rx (we can require this due to the definition of AliA).

One can show that #0 + #1 + �9 �9 �9 + #k _> d for some k, the result follows.

In the case of P ~(~ P', the matching Q' with (P ' ,Q ') E Rx is found
inductively along the derivation of P ' from P.

The proof that for every weak timed bisimulation Rx the corresponding set
,~' is a weak symbolic bisimulation can be obtained from the definitions and
Fact 3.8.o

P r o o f o f L e m m a 3.16: Since for every pair of timed processes (P, Q> E d(A) x
d(B) the set of process pairs (P', Q') with P ==~ P ' and Q ==~ Q' for any
v E Vis U {e} is finite and effectively computable from (P, Q) (the set of all
==~ derivations can be infinite due to the repeating r-loops; all newly appearing
timer values in the processes in these derivations are integers from a bounded

312

interval), Proposition 3.6 guarantees the decidability of untimed match existence
for all processes X(P, Q) with either P ==%, or Q =~,.

Let us demonstrate the effectivity of the check, whether for given X E X

with P w.r for some (P, Q) E X both the sets A;0 A (P, Q) N X and A/'~ (P, Q) N X
are not empty. For this purpose we show the algorithms, generating the sets
AfoA(p,Q) and AfA(P,Q) from the given processes P E (i(A) and Q e d(B).
For the sake of simplicity assume that there exist a timer in P with the value
fractional part being ~t(P, Q) (the general case is dealt with in [Cer92c] by a
slight refinement of the region processes).

We define for region processes X E X the transitions X *, nexto(X),
X **, nextl(X) and X(P',Q') ~* X(P' ,Q") whenever Q' ~, Q".

0 be the set of region processes which are reachable from X(P, Q) Let Rp, Q
using the transitions _2_+ and ~ ~. Let Rp, Q C R~ be the set of processes

with a derivation containing at least one *, transition. Let R},,Q be the set of

region processes, reachable from those in R~ by one - ~ transition, followed

by a number of r , transitions
Observing the effectivity of the set Rp, Q and R'p,Q computation, the follow-

ing result completes the proof of Lemma 3.16, so completing also the proof of
Theorem 2.4:

P r o p o s i t i o n 3.17 N~ Q) = n p , q and A/'I(P, Q) = R'p,Q.

Proof : Rather technical, see [Cer92c].Do

Note: The weak bisimulation deciding algorithm can be simplified in the case,
if both the processes A and B satisfy the maximal progress assumption, stat-
ing that r-labels in the processes can be ascribed only to red (instantaneous)

edges. For instance, we could have N ~ (P, Q) = {X(P(d), Qa) I Q =:~ Q' ,(a)
Qa & 0 < d </ t} , what clearly simplifies the bisimulation deciding procedure in
Lemma 3.16.

4 Timed Processes with Memory

We consider an enrichment of PTPs with memory for moving timer value infor-
mation along the time axis (storing timer value at one moment and retrieving it
afterwards).

A parallel timer process with memory (PTPM) is obtained by adding to
a given PTP A = ((V, E, L, lab, T, 7, r (v, 6)) a finite set M of memory ceils
and extending every edge timer setting r for e E E with some "remember"
operations ml 4-- tj and some "retrieve" operations tj ~ mi for tj E 7", mi E ./t4
(formally, r (7- U .M) ~ (T U .s U Q+0).

The semantics (labelled transition system) of PTPMs is easily obtained as a
generalization of that of PTPs: every state for a PTPM A consists of its graph's
vertex and a value assignment both for timers and memory ceils. Every time a

313

transition along an edge e fires, the timer and memory cell setting r defines
the new values 6'(u) for u E 7-U .44 from the old ones, ~(u), as for PTFs:

df'(u) = di(r (here di(c) de/ Q+0) = c for c E
The main difference of the memory cells from the timers is that the values of

the memory cells do not decrease during the passage of time as the timer values

do (whenever (q~, (v, di)/ e(a! (4i, (v, di')), then df'(m) = 6(m) for every m e .A4).
Let for any PTPM A d(A) denote the set of derivatives of A (the least set

containing A and closed under the transition relation). We call a vertex v in
a given PTPM A = (~, so) reachable if (q~, (v, ~)1 �9 d(A) for some timer and
memory cell value assignment ~.

T h e o r e m 4.1 The vertex reachability problem for parallel limer processes with
5 timers and 1 memory cell is undecidable.

C o r o l l a r y 4.2 The bisimulation equivalence problem for parallel timer processes
with 5 timers and 1 memory cell is undecidable.

For a proof of Theorem 4.1 the reader may consult [Cer92b]. We just point out
here that it is based on the modelling of two 2-way counter machine. One timer
in the modelling is used to generate regular "ticks", the values of counters are
modeled as ratious ~(t2)/~(tl) and 6(t3)/~(tl) of timer tl,t2 and t3 values at
the appropriate "tick" moments. One can easily implement in a PTPM both
the timer addition/subtraction and timer halving, all what is needed to model
the counter machine's instructions simultaneously not letting the timers to grow
bigger than the largest constant used in the timer settings.

It can be pointed out that the undecidability results of Theorem 4.1 and
Corollary 4.2 still retain in force also, if one forbids the assignment operations
between the timers, as well as replaces the assignments between timers and mem-
ory cells by simply holding and releasing operations over the timers (see [Cer92b]
or [Cer92c] for some details).

Both the decidability results, obtained in the previous sections of the paper
(see Theorem 2.2 and Theorem 2.4), and the undecidability results, expressed
by Theorem 4.1 and Corollary 4.2 have noteworthy implications regarding the
possibilities to decide the bisimulation equivalences for various classes of Timed
CCS processes (see [Wan90, Wan91]). First, we can model a class of TCCS pro-
cesses, reasonably called "TCCS-nets", into the PTP formalism, so showing the
decidability of the bisimulation equivalence for these net processes (see [Cer91]
and [Cer92c] for two different possible modelling strategies). On the other hand,
if one considers the version of Timed CCS with the expansion theorem, as pre-
sented in [Wan91], it becomes easy to encode every PTPM as a term in these
generalised calculi (in fact, rather simple subcalculi of interleaving TCCS are
sufficient to have this encoding possibility), so showing that all nontrivial inter-
esting algorithmic problems for this kind of processes are undecidable. It can
be an interesting question, whether one can come up with another timed spec-
ification formalism which would combine both the interleaving nature of the
specifications and the decidability of the bisimulation equivalence problems.

314

5 Conclusions

This paper does not contain any discussion on the compositional properties of
Parallel Timer processes because its main aim is to discuss the decidability issues.
However, the definition of parallel composition (and other static process algebra
combinators) for PTPs can be done in a quite straightforward way (in [Cer92c]
one can find the rules for combining PTPs in parallel both according to CCS
and CSP kinds of inter-process communication).

Despite some design differences of PTPs from Action Timed Graphs [NSY91],
the presented algorithms for the bisimulation deciding for PTPs with slight mod-
ifications can be applied also for ATGs with "linear" predicates over the clock
values, see [Cer92c] for details.

The complexity issues of the obtained bisimulation deciding algorithms are
not explicitely discussed here, however, as these algorithms are in fact presented
as computing some simple symbolic greatest fixpoint relations, the techniques
from [Lar92] are hopefully to be applicable to obtain efficient computations of
these relations.

It is possible to consider also various more or less principal enrichments of the
PTP model which, unlike the PTPMs, have decidable at least the vertex reach-
ability problem, and in some cases also the bisimulation equivalence problem.
One such class is so-called PTPs with Nondeterministic timer settings (PTPNs)
which are obtained from PTPs be redefining the timer setting functions in a way
r : 7- ~ 7- U I(Q+~ where I(Q +~ denotes the set of all intervals over Q+0
and defining the early choice semantics of the nondeterminism in the timer value
settings. One can show that for PTPNs the vertex reachability problem is decid-
able; the decidability of the strong and weak bisimulation equivalence problems
for PTPNs can be shown provided all the intervals in process edge timer setting
functions are finite, see [Cer92c] for details. In [Cer92c] also some enrichments
of PTPs with external data (both integer- and rational-valued, simple tests on
being less or greater for the values of data variables are allowed) are considered,
the decidability of the bisimulation equivalences for PTPs with dependencies on
rational-valued data is showed.

6 Acknowledgements

I want to thank K.V.S Prasad, Alan Jeffrey, Wang Yi and Uno Holmer in
Ghteborg as well as Kim G. Larsen and Jens Chr. Godskesen in Aalborg for
a lot of very interesting and constructive discussions on process algebras, real
time and decidability.

My thanks are also to the anonymous referees of this paper for providing a
number of useful comments on an earlier version of it.

The final version of this paper was processed using I~TEX macro package
with LLNCS style and printed at Chalmers University of Technology, Ghteborg,
Sweden.

315

R e f e r e n c e s

[AD90] R. Alur and D.Dill, Automata for Modelling Real-Time Systems, LNCS
No. 443, 1990.

[ACD90] R. Alur, C.Courcoubetis and D.Dill, Model-Checking for Real-Time
Systems, Proceedings from LICS'90 pp. 414-425, 1990.

[ABBCK91] A. Auzir/[, J. Bgrzdillg, J. Bi~evskis, K. 0er~ns and A. Kalnirt~, Au-
tomatic Construction of Test Sets: Theoretical Approach, Baltic Com-
puter Science, LNCS, No. 502, 1991.

[BM83] B. Berthomieu and M.Menasche, An Enumerative Approach for An-
alyzing Time Petri Nets, Proc. IFIP Congress, 1983, North-Holland,
1983.

[CC88] CCITT Specification and Descr ip t ion Language (SDL), Re-
comendations Z.100, 1988.

[Cer91] K. 0er~ns, Decidability of Bisimulation Equivalence for Parallel Timed
Processes, in Proc. of Chalmers Workshop on Concurrency, GSteborg,
Report PMG-R63, Chalmers University of Technology, 1992.

[Cer92a] K. Cer~ns, Feasibility of Finite and Infinite Paths in Data Dependent
Programs, in Proc. for LFCS'92, Russia, Tver, LNCS No. 620, 1992.

[Cer92b] K. 0er~ns, Decidabil i ty of Bis imulat ion Equivalences for Pro-
cesses with Parallel Timers, Technical report, Institute of Mathe-
matics and Computer Science, University of Latvia, Riga, 1992.

[Cer92c] K. Cerhns, Algor i thmic Prob lems in Analysis of Real T ime Sys-
t em Specifications, Dr.Sc.comp theses, University of Latvia, Riga,
1992.

[Che91] L. Chen, Decidability and Completeness in Real Time Processes, LFCS,
Edinburgh University, 1991.

[GMMP89] C.Ghezzi, D.Mandrioli, S.Morasca and M.Pezze A Genera/Way To
Put Time in Petri Nets, ACM SIGSOFT Eng. Notes, Vol. 14, No. 3,
1989.

[HLW91] U. Holmer, K.Larsen and Yi Wang, Deciding Properties for Regular
ReM Timed Processes, CAV'91, 1991.

[Lar92] K.G.Larsen, Efficient Local Correctness Checking, this Workshop, 1992.
[MF76] P. Merlin and D.J. Farber, Recoverability of Communication Protocols,

IEEE Trans. on Communication Protocols, Vol. COM-24, No. 9, 1976.
[NSY91] X.Nicollin, J.Sifakis and S.Yovine, From ATP to Timed Graphs and

Hybrid Systems, in Proc. of REX Workshop "Real-Time: Theory in
Practice", 1991.

[RR86] G.M. Reed and A.W. Roscoe, A Timed Model for Communicating Se-
quential Processes, LNCS No. 226, 1986.

[Wan90] Yi Wang, Real Time Behaviour of Asynchronous Agents, LNCS No.
458, 1990.

[Wan91] Yi Wang, CCS + Time = an Interleaving Model for Real Time Systems,
ICALP'91, Madrid, 1991.

