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1 I n t r o d u c t i o n  

If a system is built from a large number of identical finite-state processes, it seems intu- 

itively obvious that,  with the help of "a little induction", the verification of such a system 

can be reduced to a finite-state problem. The difficulty is to find the right form of "a 

little induction". There have been several a t tempts  to address this problem in the con- 

text of model-checking [CGBS6], [CGS7], [GSS7]. In very general terms (see Section 6 for 

more details), the approach is to find ways of proving that if a process satisfies a fornmla, 

then the n-fold parallel composition of this process with itself still satisfies the same (or a 

related) formula. This approach makes some interesting verifications possible. However, 

it has its limits and usually requires the implementation of special purpose tools. 

In this paper, we propose an alternative approach. It is an a t tempt  to make the "little 

induction" explicit and simple. If one wants to prove that  some property holds for the 

composition of n processes P,  one ought to be able to proceed as follows. Prove that  one 

process satisfies the property or, as is often necessary when using induction, a stronger 

property I .  Then prove that the composition of any process satisfying I with one of the 

processes P still satisfies I.  Such a property I essentially represents the joint behavior of 

any number of processes P. Since adding one more process P to a network satisfying I 

does not change I ,  we call it a network invariant. All this is general and quite obvious. 

The problem is to find a framework in which it works. 

For this, we turn to process theory in the style of CCS and CSP [MilS0], [Hoa85]. 

We actually use a variant of TCSP, but this choice is not important  as long as some 

conditions made explicit in Section 2 are satisfied. The idea is that  the network invariant 

I is itself expressed as a process. The inductive step then essentially reduces to proving 

in the process theory that I I I  P is a process equal to or stronger than I.  Of course if the 

processes are finite-state, this can be done with an automatic verification toot. Hence, 

once the invariant I is found, our method is completely automatic.  
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Clearly, the crucial point is finding the invariant or more fundamentally determining 

if such aIl invariant indeed exists. We prove that invariants do not always exist and 

that determining if an invariant does exist is undecidabte. Nevertheless, we have been 
able to handle some very interesting examples. Among these, we can cite a version of 

the distributed mutual exclusion problem studied in [CGB86] and a buffer composed of 

identical elementary (size 1) buffers. Note that  for the buffer example, the invariant 

should essentially represent the behavior of a buffer of arbitrary size. This might appear 
to be impossible in the context of finite-state systems. However, this problem can be 
solved with the help of the concept of "data-independence" described in [Wo186]. There, 

it is shown that  if a process has a behavior independent of the value of the data it is 

manipulating, it is possible to specify within a finite-state framework that  it behaves like 

a buffer. 

One might argue that having to find the invariant is a drawback of our method since 

this step is not algorithmic. We can answer, that the invariant is often close to the 

specification to be proved and that there is no miracle. Proving interesting properties 

by induction sometimes requires a little imagination. This is true of inductive proofs 
in all contexts. Moreover, once the invariant has been found, our verification method 
reduces to a traditional finite-state verification problem which can be solved with existing 

tools. No specific implementation is thus necessary to use the method. Finally, let us 
note that our method can handle any type of property, safety or liveness. For the latter 

type of property though, it can be necessary to turn to an extension of process theory 

t.owards infinite behaviors as studied in [Par85] and [ALW89]. This is straightforward as 

our method is compatible with essentially any process theory. 

In the next section, we give a general description of our method. We then particularize 
it to a variant of CSP. Thereafter, we show how data-independence can be used to find 

suitable invariants. Next we deal with examples and finally we conclude and compare our 
work to existing results. 

2 G e n e r a l  F r a m e w o r k  

Consider a set of processes P and a a relation < on this set such that P1 _< P2 ill" P1 

implements P2 (i.e, is less nondeterministic than P2). The set P could for instance be the 

set of all CSP processes and the relation < the one defined by the inclusion relation on 

the failure set semantics of these processes. Let us assume some operations are defined 
on the set of processes P,  for instance parallel composition, renaming and hiding. The 

exact set of operations is not important in this general context, what matters is that 

these operations are monotonic with respect to the relation _<. For instance if parallel 

composition (H) is among the set of operations considered, one requires that if 

&_<& 

then, for any P E P 

P lt P~ <_ P lI P2. 
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Consider now a network composed of a large number (n) of identical processes P E P 

and one special process P0. We assume these processes are linked by parallel composition 

or, more generally, by a combination of parallel composition and other operations such as 

renaming and hiding. One thus has 

N , ~ = P o O P ( ~ P e . . . e P  
r~ 

where Q represents the combination of operations linking the processes (often a combi- 

nation of parallel composition, renaming and hiding). The problem is to prove that,  for 

any n, N,~ satisfies some specification S which is also given as a process. In other words, 

one has to prove that  for all n, 

N,~<S. 

'['he idea. we propose is that  this can be (lone using a process I which we call a n e t w o r k  

i n v a r i a n t .  To be a network invariant, I should satisfy the following conditions: 

Po<_: (~) 
/ o P < _ :  (2) 

If the relations 1 and '2 are satisfied, it follows by induction and the fact that process 

composition is monotonic with respect to < that,  for all n, N~ < I.  Thus, if I is chosen 

such that  I _< 5, this gives us a way of proving that  for all n, Nn < S. If the relation < is 

checkable algorithmically (which is the case for most definitions of finite-state processes), 

this gives us an algorithmic verification method once the network invariant I is known. 

Before showing how this method can be used with a particular type of process, let us 

see how it can also be used for the verification of circular networks of processes. A circular 

network of processes is one in which all processes are similar and are linked in a ring. Our 

method assumes the processes to be identical and composed in an identical way. Thus,  

it can easily be used to reason about a chain of processes, but there is no way of closing 

the chain. The trick is to use a (slightly) different process to close the chain. Note that  

this is even often required by the problem specification given that  the ring cannot always 

be perfectly symmetrical. For instance in a token passing ring, some process initially has 

the token. Thus a circular network C,~ has the form 

Cn = Pe G.)e P (3 P O . . . ® P .  

n 

To prove that  such a process satisfies a specification S, we proceed as follows. We first 

use a network invariant I and show that  

by proving that  

P e P o . . . e P < _ l  
n 

P < x (a) 
I Q P  < i (4) 



We then simply check that  

which proves the desired property. 

7] 

Pe (ge I < S 

3 A P r o c e s s  T h e o r y  

In this section, we present the process theory on which our examples are based. It is 

a variant of TCSP [Hoa85]. It is however not the only possible choice. Any process 

semantics for which process composition operations are monotonic is adequate. 

We use a limited process description language. We consider finite au tomata  as basic 

processes and parallel composition, renaming and hiding as the only operations on pro- 

cesses. This is not really a restriction since finite state CCS or TCSP programs can be 

systematically transformed into transition systems [Mil80], [01d85]. 

Processes are defined over an alphabet of communication actions ~. In addition to 

transitions corresponding to actions, processes can take silent transitions that  will be 

labeled by the silent (internal) action r.  A basic process P is a a finite-state transition 

system, precisely a quadruple 

P = ( 2 , S , p ,  so) 

where 

• ~ is the alphabet of actions. 

• S is a finite set of states, 

• p : S × (~ U {r}) ~ 2 s is a transition relation that for each state and action gives 

the possible next states, 

• s0 E S is the initial state of the process. 

We consider three operations on processes: parallel composition, renaming and hiding. 

Parallel composition (denoted ll) corresponds to the concurrent execution of two processes 

with handshaking on events that are common to both processes. Renaming allows us to 

modify the alphabet of a process and hence to choose the events on which handshaking 

will take place in concurrent composition. We denote the process P in which a is renamed 

to b by P[b/a]. Hiding transforms external actions into the internal action. Tile process 

P in which all actions in the set A are hidden is denoted by P\A. 
It is straightforward to give operational semantics to our process theory in terms 

of automata .  We are however interested in a more abstract semantics. To choose our 

semantic domain, we first consider what properties of processes we want to observe on 

the global system. Three items seem natural: 

• The sequences of actions that can be performed; 

• The possibility of deadlock; 
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* The possibility of divergence (infinite sequence of internal actions). 

So, our semantics for processes should give us information about these items. Moreover, 

we want our semantics to be fully abstract with respect to the operations we have defined. 

That  is, we want to be able to determine the semantics of a composed process from its 

parts and we want our semantics to be the weakest one compatible with this requirement 

and the elements we want to observe. 

In [Mai86], [Hen87], it is shown that  if we are not very discriminating about  diver- 

gence, the process semantics that  satisfy our requirement are essentially failure semanti~:s 

[Hoa85]. The failures of a process are the pairs (s, X)  where s is a sequence of external 

actions of the process and X is a set of actions the process can refuse after executing s. 

We do not want a t reatment  of divergence as radical as the one in [BHR84] [Mai86], so 

we add explicit divergence points to our semantics [Old85]. A divergence point is a pair 

(~, T) where s is a sequence of external actions and T is a special symbol indicating that 

the process can diverge after executing the sequence s. So, for a process defined on the 

alphabet ~ the semantic domain will be 

2FAILURES~ >< 2DIVERGENCES~. 

In other words, the semantics of a process is a set of failures and a set of divergence points. 

The semantics of a given process can be determined in a standard way [BHR84], [Itoa85], 

[Old85]. 
Finally, we need an order on our semantic domain that represents the implementation 

relation mentioned in our general framework. Let P1 and P2 be two processes whose 

semantics are respectively (F1, D1) and (F2, D2). Then we will have that  

P~<_P2 

(/)1 implements P2) iff 

/'1 C F2 and D1 C D21. 

It is easy to check that the three operations we use on processes (parallel composition, 

renaming and hiding) are monotonic with respect to the relation < on our semantic 

domain. 

Note that  checking if two finite-state processes are related by the relation < can be 

done algorithmicatly [KS83]. It is however a PSPACE complete problem. This complexity 

is due to the particular semantics we have used which was chosen to be theoretically 

sound. In practice, one could often use a stronger semantics (bisimulation or observational 

equivalence [MilS0], [vG86]) which can be checked more efficiently [KS831. 

As a last remark, let us note that it is also possible to add to a process a restriction 

on its infinite behaviors (for instance a fairness condition stating that  some events must 

1Most orders tha t  h~ve been defined on semantic domains similar to ours are in the opposite direction 
which is more natural  when dealing with semantic issues. We choose the direction that  corresponds to 
implementation (less nondeterminism). 
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appear infinitely often). This could be done as described in [Par85] or [ALW89] by adding 
to the process a language of infinite words (described by an w-regular expression or by a 
Biichi automaton) specifying this requirement. In this case, the semantic domain should 

be extended to incorporate the infinite sequences that  can be produced by the processes. 

4 Finding  Ne twork  Invariants 

A natural question to ask is whether invariants always exist. Unfortunately the answer is 

negative. Let us call the verification problem the problem of determining in the framework 

outlined above if for finite-state processes P0, P and S we have that  for all n, 

N , ~ = P o ® P Q P e . . . ( D P < _ S  
n 

It is rather straigtforward to adapt the proof given in [AK86] to show the following 

theorem. 

T h e o r e m  4.1 The verification problem is complete in co-RE. 

One then has: 

C o r o l l a r y  4.2 There are positive instances of the verification problem for which finite- 
state invariants do not exist. 

Indeed, if positive instances of the verification problem always had finite-state invariants, 
the verification problem would be in RE which contradicts Theorem 4.1. A weaker 

related question is to determine if there exists an invariant for a verification. It might be 
interesting to know that there is no invariant even though the property might be true. 

This question is also undecidable. 

T h e o r e m  4.3 Determining if an instance of the verification problem admits an invariant 
is complete in RE. 

All the preceding results are bad news. However, they are general results and do not 

imply that invariants cannot be found in a tot of interesting cases. In the next section we 
will give invariants for a token passing mutual exclusion protocol and for a buffer. 

The buffer example wilt however require some special ingenuity since it is known 
[SCFG82] that  buffers cannot be characterized in a finite-state framework. The solution 
is provided in [Wo186] where it is shown how the problem can be solved if one can assume 

that the processes are data-independent. A process is data-independent if its behavior 

does not rely on the value of the data objects it manipulates. More precisely, a process 

is data-independent with respect to the data. read at one of its input ports if, when the 

value of this data is modified, the possible behaviors of the process are unchanged except 

for a corresponding change in the values of the data at its input and output  ports. 

Given this property, one can specify a buffer in a finite-state framework as follow. 

The property one requires of a buffer is that if it is fed an infinite sequence of distinct 
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messages, then it wilt output  the same sequence of messages. Under the hypothesis 

of data-independence, one can consider a variant of the buffer that  only distinguishes 

between three different message values m0, ml and rn> It is then sufficient to show that 

if the buffer is fed a sequence of the form 

mo~ m l ;  m o, m2~ mo~ 

where * represents finite repetition and co represents infinite repetition, it output sequence 

is of the same form. We wilt use this specification of a buffer in the next section. 

5 Examples  

In this section, we present two examples of the use of our method. The first is an arbi- 

trary size buffer composed of elementary buffers. The second is a token passing mutual 

exclusion protocol, In the full paper, we will also consider an arbitrary size stack built 

from elementary stack cells. 

5 . 1  A B u f f e r  

Let P be the elementary buffer represented in Figure 1. To enable us to use the theory 

of data-independence described in Section 4, we have chosen a version of the elementary 

buffer that  can distinguish between three different types of messages: too, ml and m2. 

m l  m 2 

outrn 1 ~ outm2 
rr~o ou~mo 

Figure 1: The elementary buffer P 

Now, an n place buffer P,~ can be obtained by connecting together n instances of P. 

This is done by running the elementary buffers in parallel and connecting the outputs of 
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each buffer to the inputs of the next one. Precisely, we have that 

9, 
Y 

n 

where (i = 0, 1,2) 

P 0 P = (P[lk,/outrn,l It(,kd P[lk , /rn, l ) \{ lk ,}  

Note that only the first and last processes P communicate with the external environment. 
To prove that P,~ behaves like an n places buffer, me must show that if its input is 

the process Po of Figure 2, then its output behavior is also of the form described by Po- 

Formally, we should prove that 

Po (~ P~ <_ Po. (5) 

7" o~ttrrt 1 
8C 

r I ) outrno r 

$5 

T outrn2 

(5 outrao outruo 

Figure 2: The specification P0 of the buffer behavior 

To prove (5), we use the network invariant I = P0- We must thus check that 

and that 

I Q P < I .  

The first condition is immedia.te and the second one can easily be checked by computing 

the process Po Q P. Note that to check the liveness property of the buffer (if it is fed an 

infinite sequence of messages, then it outputs a.n infinite set of messages) it is sufficient 

to consider the process P0 where only the behaviors going infinitely often through state 
s4 are admissible. One then checks that this property is preserved by composition with 
the process P. 
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5.2 A Token Pass ing  M ut ua l  Exclus ion Protoco l  

Consider a ring obtained by linking n copies of the process described in Figure 3 and one 

copy of the same process with initial state sl. It is easy to see that such a combination 

of processes implements a token passing mutual exclusion algorithm. The process with 

initial state sl has the token initially and it can either go through its critical section 

once or pass the token to the next process. The other processes behave in a similar way, 

except that  initially they don' t  have the token. The unicity of the token ensures mutual  

exclusion. 

T 

C C S  

Figure 3: A participant P in the token passing mutual  exclusion algorithm 

Formally, the network will be composed of n identical processes P and one process Pl 

identical to P except for its initial state which is sl. We thus have 

where 

and 

c,, = P ,®,!P ® e ® . . . ®  P ! 
n 

P Q P = [P[l~:/outt] ll{tk) P [ l k / i n t ] ] \ { l k }  

P< m< P = [ Pdint to~,tt, o,,~t l i,,t] I1~,,,,,o~,,) P]\  { int, o~tt }. 

Mutual exclusion is guaranteed if the operations s c s  and ecs strictly alternate. Thus,  

the specification of the correct behaviors of C,~ can be represented by the graph of Figure 

4. 

To verify that  C~ is a realization of S, we lnust find a network invariant I such that  

the three following conditions are satisfied. 

P < I (6) 
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T 

Figure 4: The specification S 

I @ P < I (7) 
Pt Ot I _< s (8) 

Such an invariant is given in Figure 5. The invariant essentially represents the joint 
behavior of any number of elementary processes P. The only difficulty in finding the 
invariant was that when the network is not closed by the process P~, nothing guarantees 
the unicity of the token and hence the mutual exclusion. This problem was solved by 
chosing the invariant such that all behaviors are possible (essentially nothing is specified) 
if more than one token is in the network. Given that when the process Pc is composed 
with the invariant only one token is introduced, this is sufficient to prove the mutual 
exclusion property. It is indeed easy to check that the invariant I satisfies the required 

properties given above. 

EUT 

outt int 

int  int  

Figure 5: The invariant i 
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6 C o n c l u s i o n  and C o m p a r i s o n  wi th  Other  W o r k  

We have presented an alternative method for reducing the verification of a network com- 

posed of an unbounded set of identical processes to a finite-state problem. The main 
evidence we can give for the usefulness of our method are the examples we handle. For 

instance, we know of no other similar verification of a buffer composed of a arbitrary num- 

ber of elementary buffers. The fact that we were able to handle the token ring example 

shows the flexibility of the method. 
Another advantage of our method is that it can piggy back on a verification system 

for finite-state processes. No specific implementation is necessary. We have presented 

the method in a particular framework suitable for our examples. Other framework are 

certainly possible. One could also imagine using the same method with processes described 

by logical formulas, for instance temporal logic formulas [PnuS1], [EH86], [Wo183], [GS86]. 
Having to find an invariant can be seen as a drawback of our method. It is also an 

advantage. The invariant captures the reason for which the network behaves as expected. 

In this sense it helps to understand the algorithm being used. We believe it is unlikely 

that fully automatic methods can solve interesting cases of reasoning about networks built 

from large numbers of identical processes. The undecidability results we give in Section 

4 definitely support this point of view. 
Other work on the verification of networks of large numbers of processes includes 

[CGB86], [CG87], [GS87] and [KM89]. Also, in [AE89] a method for synthesizing net- 
works of identical processes from temporal logic is presented. The results in [KM89] were 

developed independently of (and simultaneously with) ours and turn out to be quite sim- 

ilar. This paper also presents an induction theorem as a method for proving properties of 

large sets of processes. However the form of the theorem, the process theory with which 

it is used and the examples are different from the ones considered here. 
In [CGB86], the method presented has its origin in model checking [CES86] and is 

based on a result that proves that for a given logic, if a formula is true of a structure, 

then it is also true of all structures that can be put in some correspondence with that 
structure. The crucial point is to prove that there is such a correspondence between the 

structure corresponding to n processes and the one corresponding to a small fixed number 

k of processes. This step is however manual. 

The approach presented in [CG87] is closer to ours but has several weaknesses. First, 

it only deals with concurrent composition of CCS processes. The fact that renaming 
and hiding a.re not considered limits the type of examples that can be solved. Second, 

the equivMence relation between processes that is used is not a congruence with respect 

to process composition. This substantially complicates the method. Third, it requires 

the discovery of a "process closure". Actually this process closure is very much like our 
network invariants and needs the help of the user to be discovered. We believe that the 
verification method a~ we have presented it simplifies and extends the applicability of the 

one described in [CG87] 
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In [GS87], the method presented is fully algorithmic. It has several drawbacks. First, 
the complexity of the algorithms being used is very high (double exponential time). Sec- 
ond, the networks of processes that can be checked are the parallel composition of identical 
CCS processes. Renaming and hiding as we use them are unavailable and thus it is for 
instance impossible to restrict a process to only communicate with its neighbors. An 
extension of the method to handle this type of communication is discussed, but it is no 
longer a decision procedure and often will not work. 
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