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Fault diagnosis of Discrete Event Systems has become an active research area in recent years. The
research activity in this area is driven by the needs of many different application domains such as man-
ufacturing, process control, control systems, transportation, communication networks, software engi-
neering, and others. The aim of this paper is to review the state-of the art of methods and techniques
for fault diagnosis of Discrete Event Systems based on models that include faulty behaviour. Theoretical
and practical issues related to model description tools, diagnosis processing structure, sensor selection,
fault representation and inference are discussed.
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1. Introduction

Dynamic systems can be classified into continuous-time sys-
tems and Discrete Event Systems (DES). The former capture ‘‘phys-
ical’’ system behaviour, typically using differential equation
models, while the latter capture the logical and sequential behav-
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iour of systems using discrete-state and event-driven models. This
paper is focused on DES (Cassandras & Lafortune, 2008) and their
diagnosis methods.

A fault causes a non-desired deviation of a system or of one of
its components from its normal or intended behaviour. The devia-
tion of system performance can either be tolerated or is considered
to be critical in the case of a failure or a breakdown. Generally, fault
diagnosis aims at achieving three complementary tasks: fault
detection, fault isolation, and fault identification. Fault detection
is a functionality that decides whether the system works in normal
conditions or whether a fault has occurred. If a fault has occurred,
fault isolation aims at localizing the system component(s) causing
the fault. Fault identification is concerned with identifying the spe-
cific nature of the fault (its size, criticality, importance, etc.). Fault
detection normally requires a model of the nominal behaviour of
the system, while fault isolation and identification also require a
model of faulty system behaviour under the considered faults.

In this paper, we lump the above three tasks under the generic
terminology of ‘‘fault diagnosis’’, where the objective is to do both
fault detection and isolation/identification. Fault diagnosis meth-
ods are generally based on the use of a model of the nominal (de-
sired) behaviour of the system and a model for faulty behaviour in
response to specified faults. Faults are usually considered as an
additional input for the purpose of system modelling, and they
are usually partitioned into failure modes, corresponding to types
of faults in a system component that have the same effect accord-
ing to either the configuration or the maintenance procedure. Fig. 1
represents a classical configuration for fault diagnosis.

In DES, faults can either be permanent, incipient (gradual or
drift-like), or intermittent such as in the case bad wire contact or
vibrations. Fig. 2 shows the time dependencies of these fault types.

Faults are typically classified with respect to the system compo-
nent where they originate:

– Sensors faults, such as sensor offset or sensor stuck-off/stuck-
on, which represent discrepancies between the measured and
real values of system variables.

– Actuators faults, such as actuator stuck-off/stuck-on, which rep-
resent discrepancies between input commands for actuators
and their real output.
– Plant faults, such as tank leakage or obstructed pipes, which
induce changes in system dynamics.

– Controller implementation and execution faults, due to hard-
ware or software problems.

The aim of the paper is to review the state-of-the art of fault
diagnosis methods for DES based on models that include both
nominal and faulty behaviour. It is an extended version of the in-
vited plenary talk that was presented by the first author at the
WODES 2012 IFAC Workshop on Discrete Event Systems (Zaytoon
& Sayed Mouchaweh, 2012). The paper starts by reviewing in Sec-
tion 2 the work of Sampath, Sengupta, Lafortune, Sinnamohidden,
and Teneketzis (1995), which provided a formal foundation of
diagnosability analysis and fault diagnosis of DES that was adopted
and further developed by many groups. Section 3 provides a clas-
sification of diagnosis methods with respect to a number of criteria
such as fault compilation, modelling tools, fault representation,
and decision structure and architecture. Some related issues are
presented in Section 4, including fault prediction, design problems,
sensor selection and reliability, robust diagnosis, active diagnosis,
and fault-tolerant control. Finally, Section 5 concludes the paper.

The fault diagnosis methods reviewed in this paper find their
background in partial observation and observability approaches
for DES that were developed in the 1980s and early 1990s (Caines,
Greiner, & Wang, 1991; Cieslak, Desclaux, Fawaz, & Varaiya, 1988;
Lin & Wonham, 1988; Ozveren & Willsky, 1990; Ramadge, 1986).
These approaches deal with state estimation – current or initial
state – and supervisory control. However, they are not directly
concerned with the partition of faults and the identification of fault
types based on faulty behaviour models. A state-based approach
for the diagnosability of DES was proposed by Lin (1994). This ap-
proach provides algorithms for computing a sequence of test com-
mands for diagnosing failures. Sensor optimization methods for
diagnosis were investigated around the same time by Bavishi and
Chong (1994). Several fault detection methods based on Petri net
(PN) models of DES were also developed in the 1980s and the
1990s (Velilla & Silva, 1988; Prock, 1991; Sreenivas & Jafari,
1993). This short historical background is related to the work pre-
sented in this paper and is not meant to be exhaustive.
2. Diagnosability and diagnosis of DES

The definitions and algorithms proposed in Sampath et al.
(1995, 1996) have provided the basic concepts and formal founda-
tions of fault diagnosis and diagnosability analysis of DES for a
large body of the literature on this topic. The proposed approach
is based on the use of a classical automaton model of the system,
denoted by G = (X,E,d,x0), where:

– X is the set of states of the system (including nominal and faulty
states);

– E = Eo [ Euo is the set of events, partitioned into observable
events, Eo, and unobservable events, Euo. Faults are usually rep-
resented using unobservable events, because their detection
and diagnosis would be trivial if they were observable. Fault
events are not the only unobservable ones; unobservable events
also arise when sensors are unavailable or costly to implement;

– d is the transition function, d: X � E ? X;
– x0 is the initial state.

The language generated by this automaton represents the set of
all possible executions or sequences of events of the system in
nominal and faulty operation (for the considered faults). Hence,
this methodology is appropriate for classes of sensor, actuator,
plant, or controller faults that can be modelled by unobservable
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events with associated subsequent event-driven behaviour. (Note
that no set of marked states needs to be specified for G since the
entire, prefix-closed, system behaviour is being considered.)

The diagnosis problem is basically concerned with determining
which faults (unobservable events), if any, explain a given ob-
served sequence of events, based on the model of the system. Fault
diagnosis is therefore closely related to the problem of state
observability, which consists in building a deterministic automa-
ton, called the observer, whose transitions are due to the observa-
ble events of the system and whose states are estimates of the true
system state.

For example, Fig. 3b represents an observer for the 6-state
automaton depicted in Fig. 3a in the case where a, b and c are ob-
servable events, and uo and the fault f are unobservable events. The
observer is initialized to state {1}, since 1 is the initial state of the
automaton. The occurrence of event c activates state 2, which is
indistinguishable to the observer from state 4 because of the unob-
servable fault event, f, associated with the transition between these
two states. Hence, the observer moves to the state labelled with
the state estimate {2,4}, which indicates that the automaton is
either in state 2 or in state 4, following the occurrence of event c
and prior to the occurrence of the next observable event. The only
observable event that may occur here is a, which leads the autom-
aton to state 3 if it was in state 2, or to state 5 if it was in state 4.
Moreover, unobservable event uo implies that state 6 is indistin-
guishable from state 5. Therefore, event a leads the observer to a
new state labelled with the state estimate {3,5,6}, where the next
observable events are either a or b. Event b will be observed if the
system was in state 3 or 5 and it causes a transition to state esti-
mate {2,4} in the observer. On the other hand, a second occurrence
of event a corresponds to one of the two self-looping transitions
and leads the observer to the new state estimate {5,6}. The obser-
vation of event b at this stage corresponds to the transition from
state 5 to state 4, and leads the observer to conclude with certainty
that the system is in state {4}.

In general, the construction the observer can lead to the prob-
lem of state explosion because the size of the observer is exponen-
tial in the size of the automaton, in the worst case. This is because
observer states are subsets of automaton states.

A more challenging problem than state estimation is how to ex-
ploit the observable events to detect the occurrence of unobserv-
able events. For example, the question for the automaton in
Fig. 3a is how to detect the occurrence of event f using symptoms
related to the observation of events a and b. It is easy in this case to
see that an observation sequence starting with c and involving two
consecutive occurrences of a is a symptom of f, because such a se-
quence can only be observed after the occurrence of f, and it im-
plies that the automaton is either in state 5 or in state 6. On the
other hand, a repetitive execution of the cycle given by the two
consecutive events a and b does not allow an observer to conclude
whether event f has occurred or not, because such an observation
cycle can either correspond to the two transitions between states
2 and 3, meaning that f has not yet occurred, or to the two transi-
tions between states 4 and 5, implying that f has occurred.

The above model-based reasoning led Sampath et al. (1995) to
introduce the following definition of diagnosability.

Definition 1. A fault is diagnosable if it can be detected with
certainty within a finite number of observable events after its
occurrence. This means that fault f is diagnosable if for every
execution trace s of events ending with f, there exists a sufficiently
long continuation trace t such that any other execution trace
indistinguishable from s � t – that is, that produces the same record
of observable events as s � t – also contains f.

Fig. 4 shows an example of a trace s � t of events with prefix s
ending with f and suffix t ending in state a. The resulting observa-
tion is given by P(s � t), where the projection function P(u) retains
the observable events and filters out the unobservable ones in
the trace u. The fault f is diagnosable if all traces of the system that
produce the observation P(s � t) also contain f.

The definition of diagnosability can be extended to n-diagnos-
ability as follows.

Definition 2. A fault is n-diagnosable if it can be detected with
certainty within a specified number, n, of observable events after
its occurrence.

This idea is conceptually sketched in Fig. 5 for a 6-diagnosable
fault, f. Fig. 5a shows trace s � t of events with prefix s ending with
f and suffix t containing 5 observable events. This figure indicates
that f is not diagnosable within 5 observable events after its occur-
rence because one of the 5 other trajectories that are indistinguish-
able from s � t – the one that ends in state b – does not contain f.
This means that the observation trace P(s � t) does not allow one
to conclude with certainty whether event f has occurred or not.
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Fig. 5b represents an extension of t with an observable event e and
shows that only four trajectories remain indistinguishable from
s � t � e. The occurrence of fault event f, the last event of trace s,
can be detected with certainty in this case because each of the 4
indistinguishable trajectories contains f. Fault f will be 6-diagnos-
able if each possible occurrence of f in the entire system language
can be detected with certainty, in the same way, after 6
observations.

Definition 3. A system is diagnosable if it is possible to detect
within a finite delay occurrences of faults of any type using the
record of observed events. Alternatively speaking, diagnosability
requires that every occurrence of every fault event leads to
observations distinct enough to enable unique identification of
the fault event within a finite delay.

Based on these definitions, the observer automaton can be re-
fined to build a diagnoser automaton by associating the labels F
and/or N to the states within the state estimate observer states. La-
bel F is used for states that can be reached by a trace containing
event f, whereas label N is used for states that can be reached by
a trace that does not contain event f. The resulting diagnoser is
an automaton that is based on off-line compilation of observed tra-
jectories. This automaton can be used either off-line to check diag-
nosability or online (on-the-fly) by connecting it to the system to
provide on-line diagnosis upon the occurrence of observable
events.

For example, Fig. 6b depicts the diagnoser for the automaton in
Fig. 3a. Compared with the observer of Fig. 3b, the states are la-
belled with F or N in Fig. 6b. The diagnoser states can either corre-
spond to:

– a normal state – such as {1N} – if all the corresponding states in
the estimate set are labelled with N;

– an f-uncertain state – such as {2N,4F} or {3N,5F,6F} – if some of
the corresponding states in the estimate state are labelled with
N and others are labelled with F. In such a state, the diagnoser
concludes that a fault event f may have occurred but it is not
possible to ascertain from the observed event sequence up to
that point whether the fault has indeed occurred.

– an f-certain state – such as {5F,6F} or {4F} – if all the corre-
sponding states in the estimate have label F. In such a state,
the diagnoser can conclude that fault event f has occurred with
certainty.

In general, the relationship between the observer and the diag-
noser is not as simple as going from Fig. 3b to Fig. 6b. For instance,
if an unobservable transition labelled uo were to be added between
states 3 and 5 in the automaton in Fig. 3a, then the diagnoser state
reached upon observable sequence ca would be {3N,5N,5F,6N,6F},
since states 5 and 6 could be reached with or without executing
event f. Moreover, in general, the diagnoser state space need not
be isomorphic to the observer state space; it could contain more
states. The reader is referred to Cassandras and Lafortune (2008)
for the description of two algorithms for building diagnosers. If
there are multiple fault types, one can build one diagnoser for each
fault type, as described above, or a single diagnoser for all fault
types, using different F labels for the different fault types.

We define an f-indeterminate cycle in a diagnoser to be a cycle
composed exclusively of f-uncertain states and corresponding to
the presence of two cycling traces in the system with the same ob-
servable projection, such that f occurs in the 1st trace but not in the
2nd. The result that follows recalls, in non-mathematical terms, the
main result of Sampath et al. (1995) regarding testing the property
of diagnosability using diagnoser automata.

Theorem 1. The system is diagnosable if and only if there are no f-
indeterminate cycles in the diagnoser for any fault type f.

Fig. 6b shows an f-indeterminate cycle between the diagnoser
states {2N,4F} and {3N,5F,6F}. This cycle corresponds to the pres-
ence of two cycling traces in the automaton starting in state 2 and
having the same observable projection, a � b, such that the fault
does not occur in the first trace, which is given by the cycle be-
tween states 2 and 3, but the fault occurs in the second trace,
which starts with f followed with the cycle between states 4 and 5.

It should be noted that the above definitions and results related
to diagnosability are based on the assumption that the system G
under investigation is live (i.e., there are no terminating traces)
and does not contain any cycle of unobservable events. The first
assumption can be relaxed with some technical changes to deal
with the diagnosis of terminating faulty traces; regarding the sec-
ond assumption, the presence of a cycle of unobservable events
after fault event f immediately implies a violation of diagnosability.

Diagnosing fault event f in the automaton of Fig. 3a is intuitively
straightforward. Definition 3 and Theorem 1 provide a formal
framework and algorithmic procedures for such model-based
inferencing that can be applied to any system modelled by an
automaton with corresponding sets of observable and unobserv-
able events. The diagnoser is an efficient structure because it
provides:

– a complete characterization of the diagnosis problem under the
considered model: every state of the diagnoser is a possible
diagnosis and every possible diagnosis is a state of the
diagnoser;

– an efficient diagnosis algorithm: updating the diagnosis after a
new observation only requires the firing of a single transition.

However, having an exact diagnoser is an ideal situation be-
cause its construction implies the availability of an exhaustive
and correct faulty model, which is unrealistic in real complex sys-
tems. Moreover, the construction of the entire diagnoser may be
unwieldy as in the worst case its size is exponential in the number
of states of G, as well as in the number of faults if a single diagnoser
is desired. The second limitation can be addressed by building sep-
arate diagnosers for each fault type. In this case, when building a
diagnoser for a given fault type, the events corresponding to the
other fault types are treated as other unobservable events; thus,
the total complexity is linear in the number of fault types. The first
limitation can be addressed in two ways: (i) development of a
computationally simpler test (in the worst case) than Theorem 1
for the property of diagnosability, as explained in the next para-
graph and (ii) on-the-fly construction of the diagnoser state, based
on G, at run-time, a topic discussed further in Section 3.1.

To overcome the potential state explosion problem for off-line
testing of diagnosability using diagnosers, the so-called ‘‘twin ma-
chine’’ technique (Jiang, Huang, Chandra, & Kumar, 2001; Yoo &
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Lafortune, 2002a) was introduced to provide a worst-case polyno-
mial test in the number of states of the system for diagnosability,
without constructing diagnosers. The idea here is that a fault f is
diagnosable if and only if there is no pair of arbitrarily long traces
having the same observable projection, such that f occurs in the
first trace but not in the second.

For the sake of illustration, an example presented by (Jiang et
al., 2001) is recalled. Consider the system G given in Fig. 7a, with
observable events e1, e2 and e3, unobservable event euo, and faults
f1 and f2, assumed to be of different types. The first step in this ap-
proach is to generate the nondeterministic observer in Fig. 7b, de-
noted by G0, whose states can be reached by taking the observable
transitions. In this automaton, a label fi in a state indicates that
fault fi occurs along a certain path from the initial state to this
state; otherwise, the state label is ‘‘N’’. If multiple faults occur
along a path, the label becomes a set. The next step is to compute
the parallel composition of G0 with itself. The resulting automaton,
denoted by Gd, is depicted in Fig. 7c. Its states are now pairs of
states with associated labels. The system is not diagnosable if Gd

contains a cycle where the left labels and the right labels differ
by fault type fi in every state along the cycle (they may differ in
other ways as well). Specifically, such as cycle means that fault
type fi is not diagnosable in G. For example, in Fig. 7c, there is a
self-loop at the state ((3,{f2}), (3,{f1, f2})) or at the state
((3,{f1, f2}), (3, {f2})). In each case, the cycle indicates that fault f1

is not diagnosable in G, as the presence of each cycle implies the
existence of two arbitrarily long traces with the same projection,
where f1is contained in one trace but not in the other.

Next, suppose it is not necessary to distinguish the fault type f1

from the type f2. Then by letting f2 = f1 in Fig. 7 and deleting the
redundant states, the modified Gd is obtained (not shown here).
In the modified Gd there does not exist any cycle as stated above,
so the system is diagnosable if there is a single fault type.
3. Classification of diagnosis methods

The early contributions presented in the previous section estab-
lished the basic definitions and the formal and algorithmic founda-
tions of fault diagnosis and diagnosability analysis of DES.
Subsequent contributions from many research teams have been
concerned with the development of new models, new properties,
new algorithms, and efficient solutions for fault diagnosis of DES.
This line of work is still on-going today and has produced signifi-
cant results and publications. For example, Fig. 8 presents some
statistics from the WODES (Workshop on Discrete Event Systems)
and DCDS (Workshop on Dependable Control of Discrete Systems)
series of international conferences dedicated to DES. These statis-
tics shows that about 12% of WODES papers and 22% of DCDS pa-
pers are related to fault diagnosis problems. One to three papers on
fault diagnosis of DES have also been published every year since
1998 in the Journal of Discrete Event Dynamic Systems. This repre-
sents about 12% of the papers of this international journal of the
DES community. Other contributions to fault diagnosis of DES have
also been published in control journals with broad scope, such as
Automatica, IEEE Transactions on Automatic Control, Control Engi-
neering Practice, and others. These figures show that the research
domain of fault diagnosis of DES is vibrant, producing interesting
results and well-known diagnosis methods that are well recog-
nized by the community.

These contributions have been accompanied with various diag-
nosability notions and ad hoc algorithms to construct diagnosers
and verify diagnosability, and this makes it sometimes difficult to
choose a suitable diagnoser/diagnosability approach for a given
application. An important effort is therefore still needed to apply
these results to real applications. In this view, many application
examples have been considered to provide proof of the established
concepts in many areas, including: manufacturing (Philippot,
Sayed-Mouchaweh, & Carré-Ménétrier, 2009; Viswanadham &
Johnson, 1998); heating, ventilation, and air conditioning systems
(Sampath et al., 1996); transportation (S�ims�ek, Sengupta, Yovine,
& Eskafi, 1999); document processing systems (Sampath, Goda-
mbe, Jackson, & Mallow, 2000); telecommunication networks (Fab-
re & Benveniste, 2007; Rozé & Cordier, 2002); mixing batch
processes (Garcia, Correcher, Morant, Quiles, & Blasco, 2005); and
computer security (Genc, 2008).

This section provides a classification of diagnosis methods with
respect to a number of criteria such as fault compilation, modelling
tools, fault representation, and decision structure and architecture.
The usage of the term ‘‘diagnoser’’ hereafter will be generic and in-
cludes the diagnoser reviewed in Section 2 as well as more general
notions of diagnosers for fault detection, isolation and identifica-
tion in DES.
3.1. Classification of diagnosis methods with respect to fault
compilation

Fault diagnosis can either be achieved using an off-line com-
piled diagnoser or computed on-line.

In the off-line case, the system to be diagnosed is considered to
be in a test-bed, i.e., not in normal functioning condition. The de-
sired diagnoser is compiled based on testing a set of inputs (com-
mands sequences) and observing the resulting outputs. Off-line
compilation of a diagnoser provides a complete off-line character-
ization of the diagnosis problem and an efficient on-line solution in
terms of diagnosis response time. This is because every state of the
diagnoser provides a possible diagnosis of the system and updating
this diagnosis only requires the firing of a transition of the diagno-
ser as a consequence of the observed system events. However, as
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mentioned in the previous section, off-line compilation of a diag-
noser requires the availability of an exhaustive and correct faulty
model – which is unrealistic in real complex systems – and is com-
putationally challenging.

Another approach consists in on-line detection and isolation/
identification of the set of faults that may have occurred after each
new observation acquired from the system during its operation.
Complex computations may therefore be required to achieve the
on-line diagnosis. Such an approach is more computationally
demanding in terms of diagnosis response time, but results in a
substantial gain in memory space because there is no need to store
the complete diagnoser.

3.2. Classification of diagnosis methods with respect to the modelling
formalism

Many modelling formalisms have been used to build diagno-
sers, including:

(i) Automata (Sampath et al., 1995) and their timed and proba-
bilistic extensions.

(ii) Petri nets (Basile, Chiacchio, & De Tommasi, 2008, 2009;
Cabasino, Giua, & Seatzu, 2010; Dotoli, Fanti, & Mangini,
2009; Fanti, Mangini, & Walter, 2011; Genc & Lafortune,
2007; Lefebvre & Delherm, 2007; Ramirez-Trevino, Ruiz-Bel-
tran, Rivera-Rangel, & Lopez-Mellado, 2007).

(iii) Statecharts and hierarchical state machines (Idghamishi &
Zad, 2004; Paoli & Lafortune, 2008).

The use of some of these modelling formalisms for diagnosis is
discussed next.

3.2.1. Diagnosis of timed and probabilistic automata
Diagnosis methods for Timed Systems based on timed automata

have been proposed by Bouyer, Chevalier, and D’Souza, 2005; Cas-
sez, 2009; Chen and Provan, 1997; Jiang and Kumar, 2006; Tripakis,
2002; Zad, Kwong, and Wonham, 2005, among others. These con-
tributions are mainly based on the definition of time diagnosabili-
ty, which requires the diagnosability condition to hold after a
bounded time interval, instead of a bounded number of events.
The issues arising in this context are concerned with the choice
of time semantics – tick event or dense time –, the definition of
diagnosability, the construction of diagnosers, the characterization
and reduction of complexity, and the relations with untimed
systems.

Diagnosis methods have also been extended to probabilistic
systems leading to probabilistic diagnosers (Athanasopoulou &
Hadjicostis, 2005; Fabre & Jezequel, 2010; Lunze & Schroder,
2001; Thorsley & Teneketzis, 2005; Thorsley, Yoo, & Garcia, 2008;
Wang, Chattopadhyay, & Ray, 2004). The aim of these methods is to
build a deterministic state machine that gives the probability dis-
tribution on states and diagnosis values, given any observed event
sequence. Diagnosability notions and definitions for stochastic and
probabilistic automata have also been proposed.

3.2.2. Fault diagnosis of Petri nets
The aim of PN based diagnosis methods is to use the structure,

the analytical capabilities, and the intrinsically distributed nature
of PN models – where the notions of state and action are local –
to reduce the computational complexity of diagnosis problems
by avoiding the exhaustive enumeration of the system’s state
space, as well as to deal with some classes of infinite state systems
(non-regular languages). Results on the property of diagnosability
within the framework of PNs have also been proposed recently.

Some PN based diagnosis methods consider that the marking of
certain places is observable (Chung, 2005; Ghazel, Bigand, &
Toguyéni, 2005; Hernandez-Flores, Lopez-Mellado, & Ramirez-
Trevino, 2011; Lefebvre & Delherm, 2007; Miyagi & Riascos,
2010; Ramirez-Trevino et al., 2007; Ushio, Onishi, & Okuda,
1998; Wen, Li, & Jeng, 2005; Wu & Hadjicostis, 2005), while others
are based on unobservable net markings but observable sets of
transitions (Basile, Chiacchio, & De Tommasi, 2009; Benveniste,
Fabre, Haar, & Jard, 2003; Cabasino, Giua, Possi, & Seatzu, 2011;
Dotoli et al., 2009; Fabre, Benveniste, Haar, & Jard, 2005; Fanti
et al., 2011; Genc & Lafortune, 2007; Jiroveanu & Boel, 2008; Jirov-
eanu & Boel, 2010). Diagnosis methods based on stochastic Petri
nets have also been proposed (Aghasaryan, Fabre, Benveniste, Bou-
bour, & Jard, 1998).

As an illustrative example, the approach proposed by Cabasino
et al. (2010), Cabasino et al. (2011) for the diagnosis of labelled PNs
is described. Given a sequence of observable events, w, the aim of
this approach is to characterize the minimal sequences of unob-
servable events that are interleaved with w – whose firings explain
w – and to determine the resulting reachable marking subset
(called basis markings) using linear algebraic constraints. An on-
line diagnosis procedure is proposed to associate a diagnosis state
to each observation w and to each fault class. This procedure is
based on matrix multiplications and the manipulation of integer
constraint sets. In the case of bounded net systems, the basis
reachability graph can be calculated off-line to provide fast on-line
diagnosis. However, a very large memory size may be required for
this graph. An extension of this approach to systems modelled
using fluid PNs is proposed in Mahulea, Seatzu, Cabasino, and Silva
(2012) to exploit the convexity property of these nets and improve
computational cost of the diagnosis in some cases.

3.3. Classification of diagnosis methods with respect to fault
representation

We discuss further fault diagnosis based on nominal and faulty
system behaviour.

3.3.1. Diagnosis using models including faulty behaviour
As discussed earlier in this paper, fault diagnosis (including

both detection and isolation/identification) requires the knowl-
edge of the faulty behaviour of the system. This approach can pro-
vide good diagnosis results in the case of predictable faults.
However, it is not always realistic to exhaustively foresee all the
faults and, therefore, only those faults that are explicitly consid-
ered in the system model can be detected and identified.

Faulty models are based on different types of fault representa-
tions, such as the execution of an event (event-based diagnosis),
reaching a faulty state (state-based diagnosis), the execution of a
supervision pattern, or the verification of partial temporal
constraints.

Event-based diagnosis – such as the approach of Sampath et al.
(1995) reviewed in Section 2 – decides if a fault has occurred and
its type based only on the observation of event sequences. Event-
based diagnosis methods can be used to diagnose intermittent
faults since they consider a fault as the occurrence of an unobserv-
able event (Contant, Lafortune, & Teneketzis, 2004). These ap-
proaches require the initialization of both the diagnoser and the
model at the same time because the diagnoser makes its decision
on the basis of the observed sequences of events. This initialization
is not always easy to achieve in real systems, which may necessi-
tate the introduction of additional unobservable events at the
modelling stage.

State-based diagnosis is based on partitioning the state space of
the system according to the failure status. The approaches pro-
posed by Zad, Kwong, and Wonham (2003) and Lin (1994) are
related to systems with binary inputs and outputs. Each state is la-
belled with the binary vector of its associated outputs and the



f2

f1

Start 

f2E -{f1, f2} E

f1

E - {f2}

E - { f1}

Fig. 9. A supervision pattern representing the occurrence of two faults f1 and f2.
Fault detection 
and isolation

Diagnosis

Input/output 
vectors

Fault-free system model

Closed loop DES

Plant

Controller

Identification

0 
0 
0 
1 

1 
0 
0 
1 

0 
1 
0 
1 

0 
0 
1 
1 

0 
0 
0 
1 

1 
0 
0 
1 

0 
1 
0 
1 

0 
0 
1 
0 

0 
0 
0 
1 

1 
0 
0 
1 

0 
1 
0 
1 

0 
0 
1 
1 

Input/output 
vectors

Update

Fig. 10. Fault-free modelling for diagnosis (Roth et al., 2011).

314 J. Zaytoon, S. Lafortune / Annual Reviews in Control 37 (2013) 308–320
diagnoser uses the sequence of binary output vectors associated
with the system states to detect and isolate failures. The state-
based diagnosis methods are well adapted to diagnose permanent
faults since they consider the fault as the fact of reaching at a faulty
state. However, these methods are generally not well suited to
diagnose intermittent faults. Since a state-based diagnoser can
determine the occurrence of a failure mode based on the generated
state output, no information about the state or the failure status of
the system is required before the initialization of the diagnoser.
Therefore, the advantage of state-based diagnosis is that there is
no need to initialize the system and the diagnoser simultaneously,
and the diagnoser may be initialized at any time while the system
is in operation.

An approach combining the advantages of state and event based
diagnosis is proposed in Sayed-Mouchaweh, Philippot, and Carré-
Ménétrier (2008).

A fault can also be represented as an execution of a given super-
vision pattern, which is a temporal property related to the occur-
rence of a set of trajectories/events that must be diagnosed
(Jéron, Marchand, Pinchinat, & Cordier, 2006). The notion of super-
vision patterns is general enough to cover an important class of
diagnosis objectives, including detection of permanent faults, but
also transient faults, multiple faults, repeated faults, as well as
quite complex sequences of events. For example, the supervision
pattern given in Fig. 9 represents the occurrence of two faults f1

and f2. This supervision pattern behaves as an acceptor that accepts
all the events of the system in any state: a fault advances the pat-
tern to a new state while any other event is accepted through the
self-looping transition which maintains the pattern in its current
state.

Supervision patterns are very useful to generalize the properties
to diagnose and clarify the separation between the diagnosis objec-
tives and the system specifications. The diagnosis results can
therefore be easily reused for new but similar diagnosis problems,
due to their generic nature. This is a major advantage over other
fault representation approaches whose result are rather difficult
to reuse because they are usually associated with many different
notions of diagnosability and they employ specific algorithms for
the construction of the diagnoser and for the verification of
diagnosability.

3.3.2. Diagnosis using fault-free models
Diagnosis with fault-free models is based on comparing the sys-

tem’s output with the model’s nominal output. A fault is detected if
an observed behaviour of the system cannot be reproduced by its
model. However, fault isolation and identification may not be pos-
sible in this case because the model does not include the faulty
behaviour and, therefore, the diagnosability of a given fault is not
guaranteed.

The fault-free modelling approach proposed by Pandalai and
Holloway (2000) uses condition templates to determine if the sys-
tem generates events in the right order or within the given time
delays. A fault is detected when there are missing or wrong reac-
tions in the process. In these cases, the events related to the tem-
plate help to isolate the fault. In Sayed-Mouchaweh (2012), expert
knowledge is associated with condition templates to identify the
faults related to missing or unexpected events, and progressive
monitoring is used to reduce the set of fault candidates after the
occurrence of new observable events.

Another practical fault-free modelling approach for fault diag-
nosis of manufacturing systems has been proposed by Roth, Lesage,
and Litz (2011). This approach, depicted in Fig. 10, starts by iden-
tifying the fault-free model of the system. A fault is detected for
any system behaviour that is not part of the identified model. Fault
localization is inspired by the residual techniques commonly used
in continuous systems. It is based on comparing the observed and
expected sequences and calculating a small set of unexpected and
missed fault candidates. This set is further reduced by applying a
heuristic candidate-set reduction algorithm that provides a good
estimate about the fault that may have occurred. Despite its sim-
plicity and practicality, this approach can exhibit a high-rate of
false alerts and it provides no guarantee concerning the diagnos-
ability of certain faults. An extension to timed models was pro-
posed in Schneider, Litz, and Danancher (2011).

3.4. Classification of diagnosis methods with respect to the decision
structure

Three main processing structures, or architectures, are used to
calculate the fault diagnosis decision: centralized, decentralized
(Boel & van Schuppen, 2002; Chakib & Khoumsi, 2012; Debouk,
Lafortune, & Teneketzis, 2000; Qiu & Kumar, 2006; Sengupta,
1998; Takai & Kumar, 2010; Wang, Yoo, & Lafortune, 2007; Zhou,
Kumar, & Sreenivas, 2008) and distributed (Fabre et al., 2005; Genc
& Lafortune, 2007; Pencolé & Subias, 2009; Ramirez-Trevino et al.,
2007; Su, Wonham, Kurien, & Koutsoukos, 2002; Su & Wonham,
2004). Note that the distinction between the decentralized and
the distributed structures is sometimes blurry. Generally speaking,
decentralized approaches have a set of diagnosers, each with dif-
ferent observation capabilities, but all considering the global sys-
tem model in their model-based inferencing. In distributed
approaches, the individual diagnosers only use partial (local) sys-
tem models as opposed to the global system model.

3.4.1. Centralized diagnosis
In the centralized structure, the diagnosis is calculated using

one global (monolithic) diagnoser, which is constructed using the
global model of the system to be diagnosed. This structure is de-
picted in Fig. 11. The Mask represents the observation function. It
filters out the unobservable events of the plant and provides the
sequences of observed events to the diagnoser.
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The main advantage of centralized diagnosis approaches is their
diagnosis precision and conceptual simplicity. However, their main
disadvantage is their prohibitive computational complexity, since
they require a centralized plant model to generate the centralized
diagnoser. The resulting models may become too large to be phys-
ically stored when a large-scale system is under consideration.
Even if a centralized diagnoser exists physically, it may still suffer
from weak robustness and low maintainability.
3.4.2. Decentralized structure with coordinated diagnosis
In the decentralized structure (Fig. 12), the system is parti-

tioned into a number of sites. Each site knows the entire system
model, has local observations, and uses a local diagnoser that com-
putes a local diagnosis decision based on its partial observation of
the whole system. A coordinator provides the final diagnosis deci-
sion as a function of the local diagnosis decisions that are commu-
nicated to it. The local diagnosers and the coordinator are
constructed using a global model of the system. The local diagno-
sers may not communicate directly with each other, and usually
only limited communication among them through the coordinator
is permitted.

The main problem to address in decentralized architectures is
about how the sites can jointly discover the occurrence of a fault,
knowing that the available information can be ambiguous, incom-
plete, delayed, and possibly erroneous. The coordinator should
therefore have some memory and processing capabilities to coordi-
nate the required exchange of information between the local diag-
nosers to resolve the ambiguities of the local decisions. However,
these capabilities should be constrained, otherwise, the centralized
structure could be replicated at the coordinator’s site by communi-
cating all observations to it, which would defeat the purpose of the
decentralized structure.
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Fig. 12. Decentralized diagnosis structure.
The main objective of decentralized diagnosis is therefore to de-
sign a set of protocols, analyze their ‘‘complexity–performance’’
trade-off, build diagnosers and compare their performance to the
centralized case, and verify diagnosability. For example, three pro-
tocols using a coordinator with varying but limited memory and
processing capabilities were proposed in Debouk et al. (2000).

The purpose of introducing decentralized diagnostic architec-
tures is to perform fault detection and isolation in a manner that
accounts for the decentralization of information in complex (inter-
connected) systems, while still preserving, if possible, the diagnos-
tic capability of a centralized diagnoser. However, a decentralized
diagnostic architecture still requires, in general, a centralized sys-
tem model to construct the local diagnosers, and this will also re-
sult in complex computations.

3.4.3. Distributed diagnosis
Distributed approaches (Benveniste et al., 2003; Pandalai & Hol-

loway, 2000; Pencolé & Subias, 2009; Su & Wonham, 2004) achieve
diagnosis using a set of local models without referring to a global
system model (Fig. 13). The aim is to improve scalability and
robustness of diagnostic methodologies. Each subsystem knows
only its own part of the global model and has its local diagnoser
in order to perform diagnosis locally. This diagnosis computation
is based on the local model and the information communicated di-
rectly to it by the other local diagnosers through a communication
protocol. The information exchanged among local diagnosers is
used to update their own information and compensates their par-
tial observation.

A communication protocol must be defined to insure consis-
tency among local diagnosers in case of conflicts between their lo-
cal decisions. If the local models (subsystems) do not interact in a
hierarchical or tree-like manner, the communication protocol may
require time-consuming computation and a large state space. The
challenge of distributed diagnosis is how to perform local diagnosis
that is equivalent, if possible, to the global one, using a scalable
communication protocol (with respect to the number of compo-
nent modules), and without the need to use a global model.

Different settings and model structures – modular, hierarchical
– have been proposed for distributed diagnosis (Debouk, Malik, &
Brandin, 2002; Fabre, Benveniste, & Jard, 2002; Pencolé & Cordier,
2005; Qiu & Kumar, 2005b; Ricker & Fabre, 2000; Su & Wonham,
2005 and Su & Wonham, 2006). The aim of this diversity is to deal
with different issues related to synchronization types, communica-
tion delays and losses, order preservation of information, model
structure and complexity.

As a consequence of the various decentralized and distributed
diagnosis structures that have been considered by researchers,
many corresponding diagnosability notions and properties have
been defined and analyzed. These include local diagnosability
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(Pencolé, 2004), independent diagnosability (Sengupta, 1998), joint
diagnosability (Sengupta & Tripakis, 2002), codiagnosability (Qiu &
Kumar, 2006), conditional codiagnosability (Wang, Yoo, & Lafor-
tune, 2005), D-codiagnosability (Wang et al., 2007), modular diag-
nosability (Contant, Lafortune, & Teneketzis, 2006), and many
others. It is therefore not easy for the non-expert reader to clearly
understand the differences between – and the positioning of –
these diagnosability notions and properties. A comparative review
of this area of research would be most useful, but is beyond the
scope of the present paper.
(a) (b)
Fig. 14. A stochastic automaton (a) and its corresponding sensor output automaton
(b).
4. Related problems

This section presents some complementary issues that are di-
rectly related to fault diagnosis. They include fault prediction, de-
sign problems, sensor selection and reliability, robust diagnosis,
active diagnosis, and fault-tolerant control.

4.1. Predicting faults

The task of fault prediction is to ascertain the occurrence of an
impending fault prior to its occurrence, based on the strings of ob-
servable events (Genc & Lafortune, 2006; Jéron, Marchand, Genc, &
Lafortune, 2008; Kumar & Takai, 2008 and Kumar & Takai, 2010).
This helps provide timely reaction to an impending fault so that
corrective actions may be initiated before its occurrence. Note
the contrast with the task of diagnosis, which requires the detec-
tion and the localization of a fault after its occurrence. The corre-
sponding notion of predictability has also been proposed and
investigated by Genc and Lafortune (2006), Kumar and Takai
(2008). A system is predictable if each faulty trace possesses a
non-faulty prefix such that any indistinguishable trace will inevita-
bly lead to the fault. Many contributions have been concerned with
the development of algorithms for the (polynomial) verification of
predictability and the construction of off-line, on-line and decen-
tralized predictors. Algorithms to predict the occurrences of a
pattern that describes event sequences have also been proposed
(Jéron et al., 2008).

4.2. Design issues: sensor selection and dynamic activation

A common approach to ensure diagnosability and build diag-
nosable systems is to change its observability properties by equip-
ping the system with an appropriate set of sensors. The challenge is
then to determine the optimal, feasible set of sensors that will
meet the requirements: Which sensors to use? How many of
them? Where to place them? To answer these questions, many
economic, security, and energy-related factors can be considered,
such as the cost of measurements, sensors availability and their
lifespan, and battery power.

In diagnosability analysis, different approaches have been pro-
posed to select a minimal subset of sensors (Debouk, Lafortune,
& Teneketzis, 2002; Jiang, Kumar, & Garcia, 2003; Yoo & Lafortune,
2002b), a least expensive set of sensors (Ribot, Pencolé, & Comba-
cau, 2008), or an optimal sensor configuration to balance the cost-
performance trade-offs (Lin, Yoo, & Garcia, 2010; Lin, Garcia, & Yoo,
2013). Basilio, Souza Lima, Lafortune, and Moreira (2012) have pro-
posed a method to compute minimal or optimal event subsets that
ensure diagnosability by exploiting the structure of the diagnoser.
The idea is to avoid selecting the events that lead to indeterminate
cycles by focusing on events of traces that take uncertain states to
some cycles of certain states of the diagnoser.

Other recent contributions deal with the problem of dynamic
activation and deactivation of sensors for diagnosis purposes (Cas-
sez & Tripakis, 2008; Dallal & Lafortune, 2011; Shu et al., 2010;
Thorsley & Teneketzis, 2007; Wang, Lafortune, Girard, & Lin,
2010). This dynamic modification of the set of events to observe
is very important in communication networks, for example, where
the sensors are not purchased for the whole duration of the process
and/or where a small cost is incurred every time the sensor is used.
The problem here is to determine which sensors to activate –
which information is really needed – after the occurrence of a trace
of events, as sensor measurements may be costly for bandwidth,
security, energy, or other considerations. Many issues have been
studied and formalized in this context, including ensuring diagnos-
ability while solving an optimal control problem that captures the
number or cost of the sensors, and/or their commutation
frequency.

4.3. Sensor reliability

Most of the established literature on fault diagnosis of DES clas-
sifies events as either observable, in which case a sensor outputs a
reading when the event occurs, or unobservable, in which case no
sensor outputs a reading. Faults are often modelled as instances of
unobservable events. The implicit assumption in this sensor model
is that all the sensors reading the observable events are perfectly
reliable, that is, whenever an observable event occurs, the associ-
ated sensor will transmit its occurrence. In practice, in many safety
hazard situations, such as in nuclear systems, this assumption is
not valid because the difficulty in placing sensors and analyzing
sensor data makes sensors inherently unreliable. In the same
way, sensors reading observable events are not perfectly reliable
in many other application domains.

The problem of unreliable sensors has been considered in
Athanasopoulou, Li, and Hadjicostis (2006) and Thorsley et al.
(2008). The approach proposed by Thorsley et al. (2008) consists
in considering two main categories of sensor unreliability: mis-
classification, where a sensor reports an incorrect reading as a re-
sult of the occurrence of a particular event, or misdetection,
where a sensor does not make a reading as a result of an event’s
occurrence. The approach uses Markov chain construction to gen-
erate a stochastic diagnoser. The objective of the fault diagnosis
problem is to determine the probability that a fault has occurred
given a sequence of observations, and the objective of the diagnos-
ability problem is to determine conditions ensuring that any fault
occurrence will be detected. Many notions of diagnosability are
proposed to consider the probability of false negatives and false
positives. This approach is illustrated using the stochastic automa-
ton depicted in Fig. 14a (Thorsley et al., 2008). A probability is
associated with each transition together with the corresponding
event. The sum of the probabilities of the output transitions of a gi-
ven state must be equal to 1. The observable event a is reliably ob-
served and its occurrence will always result in an output of a. The
events u and f (the fault) are unobservable and any occurrence of
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these events will result in the null output e. The probability of
occurrence of each of these two events is .5 when the system is
in state 0. The event b is both misclassifiable and misdetectable.
An observation of b is the most likely outcome; however, there is
probability .1 that an incorrect sensor reading of a will be ob-
served, and there is probability .1 that no sensor reading at all will
be made when b occurs. Fig. 14b depicts the sensor output autom-
aton corresponding to the stochastic automaton of Fig. 14a and the
sensor model just described. The transitions that are labelled with
the event b in Fig. 14a are split into three transitions in Fig. 14b,
including the corresponding misclassifiable output a and the mis-
detectable output e with their associated probabilities. The result-
ing stochastic diagnoser is given in Thorsley et al. (2008). It can be
used to check diagnosability and to determine the probability that
a fault has occurred given a sequence of observations.

4.4. Robust diagnosis

In most cases, fault diagnosis of DES assume that sensors work
properly. However, bad sensor operation can make sensors fail to
report event occurrences. This means that a previously observable
event related to a sensor may become unobservable when the sen-
sor fails. Robust diagnosis can be used to obtain a diagnosable sys-
tem despite sensors failures. Robust diagnosis finds its background
in robust controller synthesis in the context of supervisory control
of DES (Rohloff, 2005).

A global approach to robust diagnosis has been proposed in Bas-
ilio and Lafortune (2009) and Carvalho, Lima, Moreira, Basilio, and
Lafortune (2013). This approach deploys the redundancy within
the diagnosis bases – i.e., the different subset of observable events
that guarantee diagnosability – to verify diagnosability and design
a robust diagnoser despite sensor failures. The idea is to run a set of
partial diagnosers in parallel, each designed for a particular diagno-
sis basis to work correctly under a certain combination of sensor
failures, and to guarantee that at least one of these diagnosers will
issue the correct diagnostic decision about unobservable faults. Gi-
ven a set of possible combinations of sensors failures, the definition
and testing of robust diagnosability for centralized and decentral-
ized systems are also proposed. The extension of robust diagnosis
and diagnosability to the case of intermittent loss of observations
is considered in Carvalho, Basilio, and Moreira (2012). In this case,
a sensor malfunction or a communication failure is modelled by
duplicating its associated transition with an unobservable event
transition.

The diagnosis problem introduced by (Takai, 2010, 2012) con-
cerns the case of systems with multi-configurations, such as flexi-
ble manufacturing systems, and requires that the system be
described by a set of possible models, each of which has its own
nonfailure specification, over a common event set. The robust diag-
nosability formulation provides conditions for the existence of a
single diagnoser that detects faults in any possible model within
a bounded number of steps. Algorithms are proposed for verifying
robust diagnosability and synthesizing a robust diagnoser.

A generalization of the two previous robust diagnosability no-
tions was proposed by Carvalho, Moreira, and Basilio (2011) to
consider uncertainties in both the system model and the observa-
ble event set.

4.5. Active diagnosis and fault tolerant control

Active diagnosis is concerned with the design of a controller
that satisfies specified control objectives and results in a diagnos-
able controlled system (Chanthery & Pencolé, 2009; Sampath,
Lafortune, & Teneketzis, 1998). This is usually achieved by restrict-
ing the behaviour of the system, by feedback control, to alter its
diagnosability property in a way that guarantees that the system
always remains diagnosable. Such an integrated approach to fault
diagnosis and supervisory control was proposed in Sampath et al.
(1998) to determine the supremal controllable, observable and
diagnosable sublanguage of a given language – representing the
desired behaviour – and to synthesize the corresponding controller
to ensure diagnosability and the diagnoser to achieve on-line fault
diagnosis. The design procedure is based on the elimination of the
traces that go through indeterminate cycles in the diagnoser.

In problems that involve the two objectives of diagnosis and
control, one is confronted with the trade-off of obtaining accept-
able behaviour from a control perspective, while restricting the
behaviour to ensure that the fault detection delay is minimized.
Much remains to be understood regarding this trade-off.

Safe diagnosability for fault-tolerant supervision (Paoli & Lafor-
tune, 2005) is concerned with detecting faults after their occur-
rence, but prior to the execution of a given set of forbidden
executions, to prevent faults from developing into failures that
could cause safety hazards. If the system is safe diagnosable, recon-
figuration actions could be forced upon the detection of faults prior
to the execution of unsafe behaviour. To extend safe diagnosability
to the decentralized setting, Qiu and Kumar (2005a) have intro-
duced the notion of safe codiagnosability and an approach to syn-
thesis local diagnosers and use them for on-line diagnosis. Safe
codiagnosability requires that when the system executes a faulty
trace, there exists at least one diagnoser that can detect this within
bounded delay, before the safety specification is violated.

Wen, Kumar, Huang, and Liu (2008) have developed a fault-tol-
erant controller that can force every post-fault behaviour to be-
come equivalent to a non-faulty behaviour in a bounded number
of steps.

A recent approach to fault-tolerant control (Paoli, Sartini, &
Lafortune, 2011) concerns the design of a parameterized controller
to update the control law upon detection of faulty behaviour on the
basis of on-line diagnosis. The notion of safe controllability is intro-
duced to steer the system away from forbidden zones after the
occurrence of a fault. Active fault tolerance is achieved by safely
continuing operation after faults to guarantee pre-specified (even-
tually degraded) performance objectives for the faulty system. The
synthesized controller-diagnoser can safely detect faults and
switch between the nominal control policy and a bank of reconfig-
ured control policies.
5. Conclusion and future directions

Fault diagnosis of DES is an active scientific area that has been
recently reinforced with many established and well-recognized
formal methods and models. Many extensions of early results have
been proposed to deal with a variety of modelling tools and system
structures, and to improve design methods and algorithmic effi-
ciency. These extensions have been accompanied with many adap-
tations of the notion of diagnosability and associated algorithms to
construct diagnosers and verify diagnosability.

A major problem facing the diagnosis of DES is related to the
complexity of calculations due to the curse of dimensionality.
The reader can refer to Cassez (2012) for issues related to complex-
ity and decidability for different fault diagnosis configurations of
timed and untimed systems. To reduce the complexity of calcula-
tions, abstraction-based approaches can provide interesting means
to optimize the search space for diagnosability (Grastien & Torta,
2011; Schmidt, 2010; Ye & Dague, 2010).

To improve the applicability and the diffusion of fault diagnosis
methods of DES, it is important to develop easy-to-use general-
purpose software tools to construct diagnosers and verify diagnos-
ability (e.g., Lafortune, Ricker, & Genc, 2006; Clavijo, Basilio, &
Carvalho, 2012), as well as tools for specific methodologies (e.g.,
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Pencolé, Cordier, & Rozé, 2001). Providing practical diagnosis ap-
proaches for complex systems also requires the combination of
DES-based diagnosis methods with artificial intelligence and ma-
chine learning techniques (e.g., Cordier et al., 2004; Lamperti &
Zanella, 2003; Provan & Chen, 1998; Sayed-Mouchaweh, 2012)
on the one hand, and with approaches from continuous systems
to deal with hybrid system dynamics (Bayoudh & Travé-Massuyès,
2009) on the other hand. Moreover, designing a reliable, safe and
secure system also requires developing a global approach to link
diagnosis with control, identification, and predictive maintenance.

Finally, we point out that the property of opacity in computer
security (see Bryans, Koutny, & Ryan, 2005), which is related to
the inability of an external observer (intruder) to detect a ‘‘secret’’
about the system behaviour, is in some sense the dual of diagnos-
ability: for opacity to hold, the secret should not be diagnosable
from the viewpoint of the intruder. Recent works have explored
this connection more formally (e.g., Lin, 2011), and many research
opportunities lie ahead.
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