
Model-Checking Distributed Real-Time Systems
with States, Events, and Multiple Fairness

Assumptions�

Farn Wang

Dept. of Electrical Engineering, National Taiwan University
1, Sec. 4, Roosevelt Rd., Taipei, Taiwan 106, ROC
+886-2-23635251 ext. 435; FAX:+886-2-23671909

farn@cc.ee.ntu.edu.tw, http://cc.ee.ntu.edu.tw/~farn

Model-checker/simulator Red 5.1 will be available at http://cc.ee.ntu.edu.tw/˜val

Abstract. At this moment, there lacks a specification language for dis-
tributed real-time system properties involving states and events. There
also lacks a language for fairness assumptions in dense-time systems. We
have defined a new temporal logic, TECTLf , for the flexible specifica-
tion of distributed real-time systems with constraints involving events,
states, and fairness assumptions. Then we have also designed algorithms
for model-checking TECTLf formulas. Finally, we have endeavored to im-
plement and experiment the ideas in our tool, Red 5.1, and shown that
the ideas could be used in practice.

Keywords: Distributed, real-time, model-checking, verification, events,
fairness.

1 Introduction

It has long been argued that neither pure state-based nor pure event-based lan-
guages quite support the natural expressiveness desirable for the specification
of real-world systems [11,17,18]. The inadequacy of such pure languages is even
more salient in the setting of distributed real-time systems, where multiple clocks
do not tick at the same times. For example, to specify that an event must even-
tually happen using dense-time state-based language TCTL (a branching-time
temporal logic) [1], one common style is to use an artificial state (or urgent state)
that immediately follows this event. But for distributed real-time systems, this
style looks cumbersome and unnatural since there is no perfect way to say how
long this urgent state should last or whether we allow other transitions to hap-
pen in this state. Although there were many works in combining state-based
and event-based languages [11, 16–18, 20], they were all developed for untimed

� The work is partially supported by NSC, Taiwan, ROC under grants NSC 92-2213-E-
002-103, NSC 92-2213-E-002-104, and by the System Verification Technology Project
of Industrial Technology Research Institute, Taiwan, ROC (2004).

C. Rattray et al. (Eds.): AMAST 2004, LNCS 3116, pp. 553–567, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

554 Farn Wang

P1 P2 P3 P4

(a) linear network of 4 processes

P1 P2

P3

P4

P5

P6

P2

P4

P5

P6

P7

P1 P3 P8

(b) binary tree network of 6 processes (c) lattice network of 8 processes

Fig. 1. Network configurations for diffusive computations

systems. Facing the undecidability of verification problems of discrete-time ex-
tensions of linear temporal logics [3, 4], we have chosen to extend TCTL1 [1]
to a specification language for dense-time properties involving both states and
events.

Another challenge arises in specifying that “something good will eventually
happen” in distributed real-time systems. Such properties are called “liveness”
in linear-time logics and “inevitability” [27] in branching-time logics. For exam-
ple, after turning on their computers, people “naturally” expect that operating
systems will start correctly. But such a property can be impossible to verify
with the models of nondeterministic automata unless we assume that each com-
ponent of the system has a fair share of execution. The concept means that we
do not have to worry about those “unnatural” behaviors as long as the systems
work fine with those “natural” behaviors. For example, we may have the linear,
binary tree, and lattice networks in figures 1(a), (b), and (c) for diffusive com-
puting [10]. An arrow from a process Pi to another Pj means that the finishing
of Pi may lead to the finishing of Pj . For convenience, we let src(i) be the index
set of processes with an outgoing arrow to Pi. P1 will nondeterministically make
transition, with event σ1, to its finished state. For each i > 1, process Pi will non-
deterministically check if any process with index in src(i) has finished and make
transition, with event σi, to its finished state. Note here, we add a dummy cycle
transition with events σ1, σ2, σ3, σ4 to their respective finished states. This is the
traditional way to model fairness in finite-execution systems. The automata do
not guarantee that all processes will enter their finished states. But it will be
odd that if some process does not execute infinitely often. Thus with the fairness
assumption that “every process executes infinitely often,” we can deduce that
all processes will enter their finished states.

Two commonly accepted concepts of fairness assumptions [13] are:
• Correctness with strong fairness assumption: The concept of strong

fairness means that “something will happen infinitely often.” For the net-
works in figure 1 with four processes, in order to verify the eventual finishing
of all processes, we may want to assume that “for each i, transitions with
event σi execute infinitely often.”

1 TCTL model checking probelm against timed automatas is PSPACE-complete.

Model-Checking Distributed Real-Time Systems 555

σ1 : x1 ≥ 1

x1 := 0;

standby1 finished1

σ1

(a) process 1’s automaton for diffusive compting

xi := 0;

standbyi

σi : ei,1

σi : ei,k

σi : ēi,1

σi : ēi,k

σi

finishedi

Assume src(i) = {h1, . . . , hk}.
ei,j : when finishedhj

∧ xi ≥ 1, goto finishedi.

ēi,j : when (¬finishedhj
) ∧ xi ≥ 1, let xi = 0 and goto standbyi.

(b) process i’s automaton for diffusive compting

Fig. 2. Diffusive propagations with fairness assumptions

• Correctness with weak fairness assumption: The concept of weak fair-
ness means that “something will eventually stabilize to a state.” In figure 2,
one example is that “eventually all processes finish their tasks.”
Motivated by the discussion in previous paragraphs, we have extended TCTL

[1] with event constraints and fairness assumptions and defined a new specifica-
tion language TECTLf (acronym for Timed Event CTL with Fairness assump-
tions) in section 3. For example, for the systems in figure 2, the goal of diffusive
computing is that all processes will eventually enter their “finished” states. This
specification can be expressed with strong fairness assumptions as

∀[σ1≥1,σ2≥1,σ3≥1,σ4≥1]♦
∧

0≤i≤m finishedi (A)

Here the strong fairness assumptions are written in square brackets as event
predicates to the superscript of the universal path quantifier ∀. Strong fairness
assumption σi ≥ 1 means that transitions with one or more events σi will happen
infinitely often. Such a style of fairness assumptions as event predicates allows
for flexible characterizations of sets of transitions.

We shall present algorithms for model-checking TECTLf formulas in sec-
tion 4. We have used our ideas to extend the functionality of our TCTL model-
checker Red [21–25]. Our implementation, Red 5.1, uses CRD (Clock-
Restriction Diagram), a BDD-like structure [5, 8], with symbolic manipulation
algorithms. We shall report our experiments to check the performance of our
techniques in section 5. The tool and benchmarks can be downloaded for free at

http://cc.ee.ntu.edu.tw/~val

556 Farn Wang

2 Timed Automata

We use the widely accepted model of timed automata [2] to describe the transi-
tions in dense-time state-spaces. A timed automaton is a finite-state automaton
equipped with a finite set of clocks which can hold nonnegative real-values.
At any moment, the timed automaton can stay in only one mode (or control
location). Each mode is labeled with an invariance condition on clocks. In its op-
eration, one of the transitions can be triggered when the corresponding trigger-
ing condition is satisfied. Upon being triggered, the automaton instantaneously
transits from one mode to another and resets some clocks to zero. In between
transitions, all clocks increase their readings at a uniform rate.

For convenience, given a set P of atomic propositions and a set X of clocks,
we use B(P, X) as the set of all Boolean combinations of atoms of the forms p
and x ∼ c, where p ∈ P , x ∈ X ∪ {0}, “∼” is one of ≤, <, =, >,≥, and c is an
integer constant.

Definition 1. (timed automata) A timed automaton A is given as a tuple
〈Σ, X, Q, I, µ, E, γ, λ, τ, π〉 with the following restrictions. Σ is a finite set of
event names. X is a finite set of clocks. Q is a finite set of modes. I ∈ B(Q, X)
is the initial condition. µ : Q 	→ B(∅, X) defines the conjunctive invariance
condition of each mode. E is the finite set of transitions. γ : E 	→ (Q×Q) defines
the source and destination modes of each transition. λ : (E × Σ) 	→ N defines
the number of instances of an event type that happen on each transition. Such
a general scheme allows for the modeling of broadcasting and multicasting of
many generic transmission events. τ : E 	→ B(∅, X) and π : E 	→ 2X respectively
defines the triggering condition and the clock set to reset of each transition. �

Definition 2. (states) A state of A = 〈Σ, X, Q, I, µ, E, γ, λ, τ, π〉 is a pair like
(q, ν) with q ∈ Q and ν : X 	→ R+, the set of nonnegative real numbers. �

We say a state (q, ν) satisfies a state predicate η ∈ B(P, X), where P is either
∅ or Q, iff the following inductive conditions are satisfied.
• (q, ν) |= q′ iff q′ = q;
• (q, ν) |= x ∼ c iff ν(x) ∼ c;
• (q, ν) |= η1 ∨ η2 iff (q, ν) |= η1 or (q, ν) |= η2;
• (q, ν) |= ¬η1 iff it is not the case that (q, ν) |= η1. �

For any t ∈ R+, ν + t is a valuation identical to ν except that for every x ∈ X ,
ν(x)+ t = (ν + t)(x). Given X̄ ⊆ X , νX̄ is a new valuation identical to ν except
that for every x ∈ X̄ , νX̄(x) = 0.

Definition 3. (runs) Given a timed automaton A = 〈Σ, X, Q, I, µ, E, γ, λ,
τ, π〉, a run is an infinite computation of A along which time diverges. Formally
speaking, a run is an infinite sequence of state-time pairs ((q0, ν0), t0)((q1, ν1), t1)
. . . ((qk, νk), tk) such that
• t0t1 . . . tk is a monotonically increasing divergent real-number sequen-

ce, i.e., ∀c ∈ N , ∃h > 1, th > c, and
• Invariance condition: for all k ≥ 0, for all t ∈ [0, tk+1 − tk], (qk, νk + t) |=

µ(qk); and

Model-Checking Distributed Real-Time Systems 557

• Transitions: for all k ≥ 0, either
− a null transition: qk = qk+1 and νk + (tk+1 − tk) = νk+1; or
− a discrete transition e: denoted qk

e→ qk+1. The constraints is that
there is an e ∈ E such that γ(e) = (qk, qk+1), (qk, νk + tk+1− tk) |= τ(e),
and (νk + tk+1 − tk)π(e) = νk+1. �

3 TECTLf(Timed Event CTL
with Fairness Assumptions)

3.1 Syntax

In our model of timed automata, a transition can be labeled with many instances
of an event type. Thus, we devise event predicates, to characterize complex event
constraints on transitions, with the following syntax.

ε ::=
∑

i aiσi ∼ c | ¬ε1 | ε1 ∨ ε2

where σi is an event name and ai’s and c are integer constants. For example, for
figure 1, σi ≥ 1 represents the set of transitions with at least one σi event.

TECTLf is an extension to TCTL [1] with the following syntax rules.

φ ::= q |x ∼ c |φ1 ∨ φ2 | ¬φ1 |x.φ1 | ∃[α1,...,αm]
〈β1,...,βn〉φ1Uεφ2 | ∃[α1,...,αm]

〈β1,...,βn〉�εφ1

Here q ∈ Q, x ∈ X , c ∈ N . α1, . . . , αm, β1, . . . , βn are either event predicates or
TECTLf formulas. ε is either null (not specified) or an event predicate. φ1 and
φ2 are TECTLf formulas. When ε is not specified in a path formula, then we may
simply write φ1Uφ2 and �φ1. The modal operators are intuitively explained in
the following.
• x.φ means that “if there is a clock x with reading zero now, then φ is satis-

fied.”
• ∃[α1,...,αm]

〈β1,...,βn〉 means “there exists a run satisfying strong fairness assumptions
α1, . . . , αm and weak fairness assumptions β1, . . . , βn.”

• φ1Uεφ2:
− When ε is null, it works as a classical until-formula and means that along

a computation, φ1 is true until φ2 happens.
− When ε is specified, it means that along a computation, φ1 is true until

a transition, satisfying ε, happens and immediately makes φ2 true.
• �εφ1:

− When ε is null, it works as a classical always-formula and means that
along a computation, φ1 is true in every state.

− When ε is specified, it means that along a computation, whenever a
transition satisfying ε happens, immediately after the transition, φ1 is
true.

Also we adopt the following standard shorthands :
• true for 0 = 0 and false for ¬true;
• φ1 ∧ φ2 for ¬((¬φ1) ∨ (¬φ2))

558 Farn Wang

• φ1 → φ2 for (¬φ1) ∨ φ2

• ∃[] and ∃〈 〉 can both be abbreviated as ∃.
• ∃[α1,...,αm]

〈β1,...,βn〉♦εφ1 for ∃[α1,...,αm]
〈β1,...,βn〉 true Uεφ1,

• ∀[α1,...,αm]
〈β1,...,βn〉�εφ1 for ¬∃[α1,...,αm]

〈β1,...,βn〉♦ε¬φ1

• ∀[α1,...,αm]
〈β1,...,βn〉φ1Uεφ2 for ¬((∃[α1,...,αm]

〈β1,...,βn〉 (¬φ2)U ε¬(φ1 ∨φ2))∨ (∃[α1,...,αm]
〈β1,...,βn〉�ε¬φ2))

• ∀[α1,...,αm]
〈β1,...,βn〉♦εφ1 for ∀[α1,...,αm]

〈β1,...,βn〉 trueUεφ1

Example 1. For the system in figure 2, we have specification (A) already with
strong fairness assumptions in page 555. Another specification is “If process 1
eventually stabilizes to the finished state and process 2 executes infinitely many
times, then process 2 will eventually finish.” The specification with strong and
weak fairness assumptions is

∀[σ2≥1]

〈finished1〉
♦finished2 (B)

One last specification is “Every time after process 2 executes a transition and
ends in the standby mode, it will stay there for at least one more time units.”
In TECTLf , this specification is

∀�σ2≥1(standby2 → x.�(x ≤ 1 → standby2)) (C)
�

3.2 Semantics

Given an event predicate ε and a transition e ∈ E, we say e satisfies ε, in symbols
e |= ε, according to the following inductive rules.
• e |= ∑

i aiσi ∼ c iff
∑

i aiλ(e, σi) ∼ c;
• e |= ¬ε iff it is not the case that e |= ε; and
• e |= ε1 ∨ ε2 iff either e |= ε1 or e |= ε2.

For convenience of presentation, we have the following definition.

Definition 4. (runs with timed fairness assumption) Given event predi-
cates or TECTLf formulas α1, . . . , αm, β1, . . . , βn, a run

ρ = ((q0, ν0), t0)((q1, ν1), t1) . . . ((qk, νk), tk)

satisfies strong fairness assumptions α1, . . . , αm and weak fairness assumptions

β1, . . . , βn, denoted ρ |=∞
♦ {α1, . . . , αm}∧ ∞

� {β1, . . . , βn}, iff along the run,
• states or transitions satisfying α1, . . . , αm respectively happen infinitely of-

ten; and
• the system eventually stabilizes to states or transitions satisfying β1, . . . , βn.

Formally speaking, ρ |=∞
♦ {α1, . . . , αm}∧ ∞

� {β1, . . . , βn}, iff
• for each 1 ≤ i ≤ m and c ∈ N ,

− if αi is a TECTLf formula, there are a k > 1 and a t ∈ [0, tk+1 − tk] such
that tk + t > c ∧ (qk, νk + t) |= αi;

− if αi is an event predicate, there are a k > 1 and an e ∈ E such that
tk > c ∧ qk

e→ qk+1 ∧ e |= αi;

Model-Checking Distributed Real-Time Systems 559

• for each 1 ≤ j ≤ n, there is a c ∈ N ,
− if βj is a TECTLf formula, then for every k > 1 and t ∈ [0, tk+1 − tk]

such that tk + t > c, (qk, νk + t) |= βj .
− if βj is an event predicate, then for every k > 1 and e ∈ E such that

tk > c and qk
e→ qk+1, e |= βj . �

Note that we bind the concept of fairness to the divergence of time. For example
in the condition of strong fairness, we require that αi happens at infinitely and
divergently many clock readings. This is quite different from the traditional
fairness concepts in untimed systems [13].

Definition 5. (Satisfaction of TECTLf formulas): We write in notations
A, (q1, ν1) |= φ to mean that φ is satisfied at state (q1, ν1) in timed automaton
A. The satisfaction relation is defined inductively as follows.
• When ε ∈ B(Q, X), A, (q1, ν1) |= ε iff (q1, ν1) |= ε, which was previously

defined in the beginning of subsection 3.2;
• A, (q1, ν1) |= φ1 ∨ φ2 iff either A, (q1, ν1) |= φ1 or A, (q1, ν1) |= φ2

• A, (q1, ν1) |= ¬φ1 iff A, (q1, ν1) �|= φ1

• A, (q1, ν1) |= x.φ iff A, (q1, ν1{x}) |= φ, where ν1{x} is a valuation identical
to ν1 except that x = 0.

• A, (q1, ν1) |= ∃[α1,...,αm]
〈β1,...,βn〉φ1U εφ2 iff there exists a run ρ = ((q1, ν1), t1)((q2, ν2),

t2) . . ., an i ≥ 1, and a δ ∈ [0, ti+1 − ti] such that

− ρ |=∞
♦ {α1, . . . , αm}∧ ∞

� {β1, . . . , βn};
− if ε is null, then A, (qi, νi + δ) |= φ2 and for all j, δ′ such that either (0 ≤

j < i)∧ (δ′ ∈ [0, tj+1 − tj]) or (j = i)∧ (δ′ ∈ [0, δ)), A, (qj , νj + δ′) |= φ1;
− if ε is an event predicate, then there is an e ∈ E with qi

e→ qi+1 ∧ e |= ε
such that A, (qi+1, νi+1) |= φ2 and for all j, δ′ with (0 ≤ j ≤ i) ∧ (δ′ ∈
[0, tj+1 − tj]), A, (qj , νj + δ′) |= φ1.

• A, (q1, ν1) |= ∃[α1,...,αm]
〈β1,...,βn〉�εφ1 iff there exists a run ρ = ((q1, ν1), t1)(q2, ν2),

t2) . . . such that

− ρ |=∞
♦ {α1, . . . , αm}∧ ∞

� {β1, . . . , βn};
− if ε is null, then for every i ≥ 1 and δ ∈ [0, ti+1 − ti], A, (qi, νi + δ) |= φ2.
− if ε is an event predicate, then for every i ≥ 1 and e ∈ E such that

qi
e→ qi+1 ∧ e |= ε implies A, (qi+1, νi+1) |= φ2.

A timed automaton A = 〈Σ, X, Q, I, µ, E, γ, λ, τ, π〉 satisfies a TECTLf formula
φ, in symbols A |= φ, iff for every state (q0, ν0) |= I, A, (q0, ν0) |= φ. �

4 Model-Checking Algorithm

The key component in the algorithm is for the construction of state-space rep-
resentations for the following formula:

∃[α1,...,αm]
〈β1,...,βn〉�εφ1 (NZF: non-Zeno Fairness)

for any given α1, . . . , αm, β1, . . . , βn, ε (specified or not), and φ1. Then in sub-
section 4.2, we present a symbolic algorithm for the construction of state-space

560 Farn Wang

representations characterized by NZF formulas. In subsection 4.3, we present our
symbolic evaluation algorithm for TECTLf formulas. Finally in subsection 4.4,
we discuss an alternative NZF evaluation algorithm to the one in subsection 4.2.
We shall compare the performance of these two algorithms in section 5.

4.1 Basic Reachability Procedures

We need two basic procedures, one for the computation of weakest preconditions
of discrete transitions and the other for those of backward time-progressions. De-
tails about the two procedures can be found in [15,21–24,26]. Given a state-space
representation η and a discrete transition e, the first procedure, xtion bck(η, e)
with γ(e) = (q, q′), computes the weakest precondition
• in which every state satisfies the invariance condition µ(q); and
• from which we can transit to states in η through e.

η can be represented as a DBM set [12] or as a BDD-like data-structures [21,
23, 25]. Our algorithms are independent of the representation scheme of η. The
second procedure, time bck(η), computes the space representation of states
• from which we can go to states in η simply by time-passage; and
• every state in the time-passage also satisfies the invariance condition imposed

by µ() for whatever modes the states are in.
With the two basic procedures, we can construct the event version of the sym-
bolic backward reachability procedure, denoted reachableε bckβ(η0, η1, η2) for
convenience, as in [15, 21–24, 26]. Intuitively, reachableε bckβ(η0, η1, η2) char-
acterizes the state-space for ∃η1Uη2 except for the following three differences.
• Only transitions satisfying β, a state predicate, are permitted in the fixpoint

calculation; and
• When ε is null, all states constructed in the least fixpoint iterations must

satisfy η0; and
• When ε is an event predicate, the postcondition immediately after a transi-

tion satisfying ε must satisfy η0.
The design of this procedure is for the evaluation of formulas like ∃�εφ1. Note
that the semantics of ∃�εφ1 says that immediately after a discrete transition
satisfying ε, the destination state must satisfy φ1; in all other cases, the states
are not required to satisfy φ1.

Computationally, when ε is null, reachableε bckβ(η0, η1, η2) can be defined
as the least fixpoint of equation:

Y = η2 ∨
(
η0 ∧ η1 ∧ time bck(η0 ∧ η1 ∧

∨
e∈E;e|=β xtion bck(Y, e))

)
.

i.e., reachableε bckβ(η0, η1, η2) ≡
lfpY.

(
η2 ∨

(
η0 ∧ η1 ∧ time bck(η0 ∧ η1 ∧

∨
e∈E;e|=β xtion bck(Y, e))

))
.

The monotonicity of F in fixpoint equation Y = F (Y) ensures the computability
of the least fixpoint. Given an event predicate ε, we let Eε be the set of discrete
transitions satisfying ε while letting E¬ε be the set of those discrete transitions
not satisfying ε. When ε is an event predicate, reachableε bckβ(η0, η1, η2) ≡

Model-Checking Distributed Real-Time Systems 561

αm

α3α2α1

cycle time > CS

(qi2 , νi2)(qi1 , νi1)

(qim , νim)

(qi3 , νi3)
(q1, ν1)(q0, ν0)

satisfying φ1

satisfying φ1 ∧ ∧
1≤j≤n βj

Fig. 3. The run segment for NZF ∃[α1,...,αm]
〈β1,...,βn〉 �εφ1 and qim = qk and νim = νk

lfpY.η2 ∨ η1 ∧ time bck

(

η1 ∧
(∨

e∈Eε
;e|=β xtion bck(Y ∧ η0, e)

∨ ∨
e∈E¬ε

;e|=β xtion bck(Y, e)

))

Note that while calculating the fixpoint, we use
• formula

∨
e∈Eε

;e|=β xtion bck(Y ∧ η0, e) to enforce that states immediately
after transitions satisfying ε must satisfy η0; and

• formula
∨

e∈E¬ε
;e|=β xtion bck(Y, e) to enforce that states immediately after

transitions not satisfying ε have no obligation.

4.2 Evaluation of NZF

To maintain the non-Zeno run quantification of TCTL, it means that when we
say something like “a run along which all fairness assumptions are honored,”
we really mean “a run along which all fairness assumptions are honored AND
TIME DIVERGES.” Considering that time-divergence means “time increases
by at least c ≥ 1 infinitely often,” non-Zenoness can actually be considered as a
strong fairness condition.

An NZF formula ∃[α1,...,αm]
〈β1,...,βn〉�εφ1 is satisfied at a state (q0, ν0) with a cycle of

states and a path leading from (q0, ν0) to the cycle such that
• if ε is null, all states along the path and cycle satisfy φ1;
• if ε is an event predicate, all states immediately following a transition in Eε

along the path and cycle must satisfy φ1;
• all states along the cycle satisfy the TECTLf formulas in β1, . . . , βn;
• all transitions along the cycle satisfy the event predicates in β1, . . . , βn;
• for each of 1 ≤ i ≤ m, αi is satisfied at least once along the cycle; and
• the cycle time is greater than c ≥ 1.

In our experience [27], we found that the biggest constant, denoted CS , used in
the timed automaton and the TECTLf formula is usually a proper choice for c for
efficient evaluation. A picture for such a run segment from (q0, ν0) is in figure 3.
For convenience, we need the following notations. Let L[φ1] be the state-predicate
characterizing the set of states satisfying φ1 and gfpX.F (X) denote the greatest
solution to the the equation of X = F (X). Similarly, the monotonicity of F in
fixpoint equation Y = F (Y) ensures the computability of the greatest fixpoint.

562 Farn Wang

Also, let Bε
0(X) ≡ x > CS for all X . Finally for conciseness, let β and β̌ be the

shorthands for
∧

1≤j≤n;βj is an event predicate. βj and
∧

1≤j≤n;βj is an event predicate. βj

respectively. The state space satisfying ∃[α1,...,αm]
〈β1,...,βn〉�εφ1 can then be characterized

as follows.

reachableε bcktrue(L[φ1], true, gfpX.(x.Bε
m(X))) (FX NZF)

where for all 1 ≤ i ≤ m,
• if αi is a TECTLf formula, Bε

i (X) is defined as
reachableε bckβ

(
L[φ1], L[β̌], L[αi] ∧ Bε

i−1(X)
)

• if ε is null and αi is an event predicate, Bε
i (X) is defined as

reachableε bckβ

(
L[φ1], L[β̌],

∨
e∈E;e|=αi∧β xtion bck(Bε

i−1(X), e)
)

• if ε and αi are both event predicates, Bε
i (X) is defined as

reachableε bckβ

(

L[φ1], L[β̌],

(∨
e∈Eε;e|=αi∧β xtion bck(Bε

i−1(X) ∧ L[φ1], e)

∨∨
e∈E¬ε;e|=αi∧β xtion bck(Bε

i−1(X), e)

))

The cycle is embodied through the greatest fixpoint gfpX.(x.Bε
m(X)). Note that

the weak fairness assumptions as event predicates are enforced through β as the
restriction to transitions. The other weak ones are enforced through L[β̌] as
the second argument to reachableε bckβ(). The cycle is composed of m seg-
ments, each of which fulfills a strong fairness assumption and is constructed
differently according to whether the corresponding strong assumption is for a
TECTLf formula or an event predicate. In the 2nd and 3rd items, for an event
predicate strong assumption αi, we start constructing the corresponding seg-
ment from the precondition of the event, i.e.,

∨
e∈...;e|=αi∧β xtion bck(. . . , e).

The fulfillment of the assumptions are checked with the existence of such cycles.
The following lemma is for the correctness of this formulation.

Lemma 1. : formula (FX NZF) characterizes the set of states which satisfy
∃[α1,...,αm]
〈β1,...,βn〉�εφ1. �

Suppose that we have already calculated the state-space representations L[φ′]
for all the proper subformulas φ′ of ∃[α1,...,αm]

〈β1,...,βn〉�εφ1. We can use the following
algorithm to compute state-predicates for NZFs.

NZF([α1, . . . , αm], 〈β1, . . . , βn〉, ε, W)

/* where W is L[φ1], i.e., the state-predicate for states satisfying φ1. */ {
let β̌ be

∧
1≤j≤n;βj is not an event predicate. βj ;

let β be
∧

1≤j≤n;βj is an event predicate. βj ;

R := W ∧ L[β̌]; R′ = false;

Repeat until R = R′, {
R′ := R; R := R ∧ x > CS, where x is never used anywhere else. (1)

for i := m to 1, if αi is not an event predicate,

R := reachableε bckβ(W,L[β̌], R ∧ L[αi]); (2)

else if ε is null,

Model-Checking Distributed Real-Time Systems 563

R := reachableε bckβ(W,L[β̌],
∨

e∈E;e|=β∧αi
xtion bck(R, e)); (3)

else

R := reachableε bckβ

(

W, L[β̌],

(∨
e∈Eε;e|=β∧αi

xtion bck(R ∧ L[φ1], e)

∨ ∨
e∈E¬ε;e|=β∧αi

xtion bck(R, e)

))

; (4)

R := R′ ∧ var eliminate(bypass(x = 0 ∧ R,x), {x}); (5)

}
return reachableε bcktrue(W, true, R);

}

The repeat-loop in NZF() calculates state-space representation of gfpX.(x.
Bm(X)). The inner for-loop iterates to check the fulfillment of αm, αm−1, . . . , α1

in sequence. Through the backward reachability analysis steps from statements
(1) to (4), we expect the cycle to go backward from states with x > CS (when
CS ≥ 1) to states with x = 0. The cyclic execution time > CS is enough
for non-Zenoness. The return statement uses one final least fixpoint procedure
on the result of the repeat-loop to calculate the state-space representatoin for
formulation (FX NZF).

In procedure NZF(), we use procedure var eliminate(η, {x}) which partially
implements the Fourier-Motzkin elmination [14] and will eliminate all informa-
tion in state-predicate η related to x. But before the application of this proce-
dure, we first apply procedure bypass(η, x) which will add to η any transitivity
information deducible from x. For example,

var eliminate(bypass(x < 3 ∧ y − x ≤ −2, x), {x})
= var eliminate(x < 3 ∧ y − x ≤ −2 ∧ y < 1, {x})
= y < 1

Note that in the first step, new constraint y < 1 is deduced. Details of procedures
var eliminate() and bypass() can be found in [25].

4.3 Evaluation of TECTLfFormulas

The following evaluation algorithm uses the procedures presented in the last two
subsections as basic blocks to evaluate TECTLf formulas.

Eval(A, φ̄) {
switch (φ̄) {
case (false): return false;
case (q): return q;
case (x ∼ c): return x ∼ c; ;
case (φ1 ∨ φ2): return Eval(A, φ1) ∨ Eval(A, φ2);
case (¬φ1): return ¬Eval(A, φ1);
case (x.φ1): return var eliminate(bypass(x = 0 ∧ Eval(A, φ1), x), {x});
case (∃[α1,...,αm]

〈β1,...,βn〉 φ1Uεφ2): Y1 := Eval(A, φ1);

Y2 := Eval(A, φ2) ∧ NZF([α1, . . . , αm], 〈β1, . . . , βn〉, NULL, true);
if ε is an event predicate, Y2 :=

∨
e∈Eε xtion bck(Y2, e);

return reachable bcktrue(true, Y1, Y2);

case (∃[α1,...,αm]
〈β1,...,βn〉 �εφ1): W := Eval(A, φ1);

return NZF([α1, . . . , αm], 〈β1, . . . , βn〉, ε, W);
}

}

564 Farn Wang

Theorem 1. Given a timed automaton A, a TECTLf formula φ, and a state
(q, ν), (q, ν) |= φ iff (q, ν) |= Eval(A, φ).

Proof: The framework of the proof is a standard induction on the structure of φ.
Other than that, we also need to check that instead of evaluating ∃[α1,...,αm]

〈β1,...,βn〉φ1Uε

φ2), we evaluate ∃φ1Uε
(
φ2 ∧ ∃[α1,...,αm]

〈β1,...,βn〉�true
)
. The NZF is asserted additionally

when the liveness property φ2 is fulfilled. Finally, when ε is not null, we start
the least fixpoint evaluations for ∃Uε-formulas from the preconditions of those
transitions that satisfying ε. This is compatible with the semantics of Uε. �

Given a timed automaton A and a TECTLf formula φ, A satisfies φ iff
Eval(A,¬φ) is false.

4.4 Another Algorithm for NZF Evaluation

There can be other algorithms for the valuation of NZF. We have experimented
with an algorithm that uses m auxiliary variables a1, . . . , am for the bookkeeping
of strong fairness assumption fulfillment in NZF. The auxiliary variables serve
the purpose to flag whether along the computation, corresponding strong fairness
assumptions have been fulfilled. The advantage of this algorithm is that inside
the greatest fixpoint evaluation, we only need one iteration of least fixpoint
evaluation with the new procedure reachable aux varsε bckβ() instead of m
iterations of least fixpoint evaluation with reachableε bckβ(). The idea is that
initially we start reachable aux varsε bckβ() from states where a1, . . . , am are
all false. Then in the execution of reachable aux varsε bckβ(), each time we
compute a weakest precondition from a basic time-progression (time bck()) or
from a discrete transition (xtion bck()), we check whether a strong assumption
αi has just been fulfilled and set the corresponding ai to true if it has. In the
end of this single iteration of least fixpoint evaluation, the states in the cycles
that have fulfilled all strong fairness assumptions are those with a1 ∧ . . . ∧ am

true. Then the state space satisfying ∃[α1,...,αm]
〈β1,...,βn〉�εφ1 can also be characterized

with the following formulation.

reachableε bcktrue(
L[φ1], true,
gfpX.var eliminate(

(x.reachable aux varsε bckβ(L[φ1], L[β̌], X ∧ x > CS ∧ ∧
1≤i≤m ¬ai)) ∧

∧
1≤i≤m ai,

{a1, . . . , am}
)

)

We shall report the performance comparison in the next section.

5 Implementation and Experiment

We have implemented the ideas in our model-checker/simulator, Red version
5.1, for communicating timed automata [19]. The events are interpreted as input-
output event pairs through communication channels. Red uses the new BDD-like
data-structure, CRD (Clock-Restriction Diagram) [23–25], and supports both

Model-Checking Distributed Real-Time Systems 565

Table 1. Performance data of scalability w.r.t. number of processes

Linear networks Tree networks Lattice networks
spec.# proc’s sequential aux. var.s sequential aux. var.s sequential aux. var.s

(A) 2 0.03s/5k 0.01s/5k 0.02s/5k 0.01s/5k 0.02s/5k 0.00s/5k
4 0.10s/14k 0.09s/14k 0.08s/14k 0.13s/14k 0.14s/16k 0.17s/18k
6 0.53s/28k 0.47s/28k 0.47s/27k 1.00s/35k 0.81s/34k 1.93s/58k
8 1.86s/46k 1.71s/46k 1.99s/46k 4.82s/70k 5.42s/64k 15.0s/192k
10 5.16s/70k 4.74s/70k 5.45s/70k 19.1s/145k 17.0s/93k 99.8s/697k
12 11.7s/100k11.0s/100k 15.0s/99k 68.7s/301k 64.3s/141k 781s/2452k
14 23.7s/136k23.4s/136k 34.4s/135k 239s/635k 219s/198k 6289s/9203k
16 44.4s/179k45.4s/179k 82.1s/179k 837s/1315k 1046s/377k52383s/35356k
18 79.1s/229k82.5s/229k 163s/229k 3098s/2801k 2074s/601k Not
20 127s/288k 143s/288k 341s/287k12532s/5961k 5381s/1011k Available

(B) 2 0.00s/5k 0.00s/5k 0.01s/5k 0.02s/5k 0.00s/5k 0.00s/5k
4 0.01s/14k 0.02s/14k 0.04s/14k 0.03s/14k 0.01s/16k 0.02s/16k
6 0.05s/27k 0.08s/27k 0.10s/27k 0.12s/27k 0.18s/33k 0.21s/33k
8 0.15s/46k 0.17s/46k 0.39s/46k 0.41s/46k 0.85s/64k 0.85s/64k
10 0.29s/70k 0.36s/70k 1.12s/70k 1.22s/70k 3.11s/93k 3.29s/93k
12 0.59s/99k 0.59s/99k 2.83s/99k 3.14s/99k 10.7s/141k 10.9s/141k
14 0.99s/136k1.05s/136k 6.95s/135k 7.43s/145k 34.1s/198k 34.8s/198k
16 1.56s/179k1.69s/179k 15.5s/179k 16.4s/179k 107s/363k 108s/363k
18 2.38s/230k2.48s/230k 34.0s/229k 35.3s/229k 280s/570k 287s/570k
20 3.42s/288k3.57s/288k 70.5s/288k 73.2s/288k 789s/1010k 792s/1010k

(C) 2 0.02s/5k Not 0.02s/5k Not 0.01s/5k Not
4 0.19s/14k Available 0.16s/14k Available 0.17s/16k Available
6 1.14s/28k 0.92s/28k 0.89s/33k
8 4.85s/46k 3.70s/46k 4.76s/64k
10 15.6s/70k 12.5s/70k 14.2s/93k
12 42.1s/99k 37.7s/103k 50.0s/141k
14 100s/136k 103s/174k 174s/259k
16 212s/178k 282s/306k 604s/629k
18 433s/229k 689s/474k 1358s/906k
20 791s/288k 1878s/877k 4096s/1630k

data collected on a Pentium 4 Mobile 1.6GHz with 256MB memory running LINUX;
s: seconds; k: kilobytes of memory in data-structure; N/A: not available;

forward and backward analyses, full TECTLf model-checking with non-Zeno
computations, deadlock detection, and counter-example generation. Users can
also declare global and local (to each process) variables of type clock, integer, and
pointer (to identifier of processes). Boolean conditions on variables can be tested
and variable values can be assigned. Red 5.1 also accepts TECTLf formulas with
quantifications on process identifiers for succinct specification.

We use the diffusive computing algorithm [10] in figure 2, with the three
network configurations in figures 1, to demonstrate the performance of our tech-
niques. The TECTLf specifications in our experiment include properties (A), (B)
and (C) in example 1 in page 558. In table 1, please find the performance data.

Data in the “sequential” columns were collected with the NZF evaluation
algorithm in subsection 4.2 while those in the “aux. var.s” columns were with
the algorithm with auxiliary variables. Specification (C) does not have fairness
assumptions and does not use options for choosing NZF algorithms.

566 Farn Wang

Our techniques seem quite efficient for the benchmarks. When we carefully
check the data, we find that Red 5.1 can actually handle much higher con-
currencies since the memories used at 20 clocks are still not very much in the
“sequential” columns. It is also interesting to see that the NZF evaluation algo-
rithm in subsection 4.2 performs better than the alternative in subsection 4.4.
Though the latter needs less iterations of least fixpoint evaluations inside the
greates fixpoint evaluation, the single iteration of reachable aux varsε bckβ()
incurs huge memory complexities and usually performs worse than the algorithm
in subsection 4.2. This is understandable since the complexity of BDD-based al-
gorithms is usually exponential to the number of variables.

6 Conclusion

We investigate how to add the concepts of events and fairness assumptions to
TCTL model-checking and define the new language of TECTLf . Our frame-
work allows for the specification and verification of punctual event properties
and multiple strong and weak fairness assumptions. Our implementation and
experiments have shown that the ideas could be of practical use. More research
are expected to develop useful specification languages for distributed real-time
systems.

References

1. R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems, IEEE
LICS, 1990.

2. R. Alur, D.L. Dill. Automata for modelling real-time systems. ICALP’ 1990, LNCS
443, Springer-Verlag, pp.322-335.

3. R. Alur, T.A. Henzinger. A really temporal logic, 30th IEEE FOCS, pp.164-169,
1989.

4. R. Alur, T.A. Henzinger. Real-Time Logics: Complexity and Expressiveness. In-
formation and Computation 104, 35-77, 1993.

5. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model
Checking: 1020 States and Beyond, IEEE LICS, 1990.

6. M. Bozga, C. Daws. O. Maler. Kronos: A model-checking tool for real-time systems.
10th CAV, June/July 1998, LNCS 1427, Springer-Verlag.

7. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool
Suite for Automatic Verification of Real-Time Systems. Hybrid Control System
Symposium, 1996, LNCS, Springer-Verlag.

8. R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE
Trans. Comput., C-35(8), 1986.

9. E. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons
using Branching-Time Temporal Logic, Proceedings of Workshop on Logic of Pro-
grams, Lecture Notes in Computer Science 131, Springer-Verlag, 1981.

10. Chandy, Misra. Parallel Program Design - A Foundation, Addison-Wesley, 1988.

11. S. Chaki, E.M. Clarke, J. Ouaknine, N. Sharygina, N. Sinha. State/Event-based
Software Model Checking. IFM 2004, LNCS 2999, Springer-Verlag.

Model-Checking Distributed Real-Time Systems 567

12. D.L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Sys-
tems. CAV’89, LNCS 407, Springer-Verlag.

13. E.A. Emerson, C.-L. Lei. Modalities for Model Checking: Branching Time Logic
Strikes Back, Science of Computer Programming 8 (1987), pp.275-306, Elsevier
Science Publishers B.V. (North-Holland).

14. J.B. Fourier. (reported in:) Analyse des travaux de l’Académie Royale des Sciences
pendant l’année 1824, Partie Mathématique, 1827.

15. T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for
Real-Time Systems, IEEE LICS 1992.

16. M. Huth, R. Jagadeesan, D. Schmidt. Modal transition systems: A foundation for
three-valued program analysis. ESOP 2001, LNCS 2028, Springer Verlag.

17. E. Kindler, T. Vesper. ESTL: A Temporal Logic for Events and States. ATPN
1998, LNCS 1420, Springer-Verlag.

18. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333-354, 1983.

19. A. Shaw. Communicating Real-Time State Machines. IEEE Transactions on Soft-
ware Engineering 18(9), September, 1992.

20. R. De Nicola, F. Vaandrager. Three Logics for Branching Bisimulation. Journal of
the ACM (JACM), 42(2):458-487, 1995.

21. F. Wang. Efficient Data-Structure for Fully Symbolic Verification of Real-Time
Software Systems. TACAS’2000, LNCS 1785, Springer-Verlag.

22. F. Wang. Region Encoding Diagram for Fully Symbolic Verification of Real-Time
Systems. the 24th COMPSAC, Oct. 2000, Taipei, Taiwan, ROC, IEEE press.

23. F. Wang. RED: Model-checker for Timed Automata with Clock-Restriction Dia-
gram. Workshop on Real-Time Tools, Aug. 2001, Technical Report 2001-014, ISSN
1404-3203, Dept. of Information Technology, Uppsala University.

24. F. Wang. Symbolic Verification of Complex Real-Time Systems with Clock-
Restriction Diagram, Proceedings of FORTE, August 2001, Cheju Island, Korea.

25. F. Wang. Efficient Verification of Timed Automata with BDD-like Data-Structures,
to appear in special issue of STTT (Software Tools for Technology Transfer,
Springer-Verlag) for VMCAI’2003, LNCS 2575, Springer-Verlag.

26. F. Wang, P.-A. Hsiung. Efficient and User-Friendly Verification. IEEE Transactions
on Computers, Jan. 2002.

27. F. Wang, G.-D. Huang, F. Yu. TCTL Inevitability Analysis of Dense-Time Sys-
tems. 8th CIAA (Conference on Implementation and Application of Automata),
July 2003, Santa Barbara, CA, USA; LNCS 2759, Springer-Verlag.

	1 Introduction
	2 Timed Automata
	3 $TECTL^f$ (Timed Event CTL with Fairness Assumptions)
	3.1 Syntax
	3.2 Semantics

	4 Model-Checking Algorithm
	4.1 Basic Reachability Procedures
	4.2 Evaluation of NZF
	4.3 Evaluation of $TECTL^f$ Formulas
	4.4 Another Algorithm for NZF Evaluation

	5 Implementation and Experiment
	6 Conclusion
	References

