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CHAPTER 18

Routing Games

Tim Roughgarden

Abstract

This chapter studies the inefficiency of equilibria in noncooperative routing games, in which self-
interested players route traffic through a congested network. Our goals are threefold: to introduce
the most important models and examples of routing games; to survey optimal bounds on the price of
anarchy in these models; and to develop proof techniques that are useful for bounding the inefficiency
of equilibria in a range of applications.

18.1 Introduction

A majority of the current literature on the inefficiency of equilibria concerns routing
games. One reason for this popularity is that routing games shed light on an important
practical problem: how to route traffic in a large communication network, such as the
Internet, that has no central authority. The routing games studied in this chapter are
relevant for networks with “source routing,” in which each end user chooses a full
route for its traffic, and also for networks in which traffic is routed in a distributed,
congestion-sensitive manner. Section 18.6 contains further details on these applications.

This chapter focuses on two different models of routing games, although the in-
efficiency of equilibria has been successfully quantified in a range of others (see
Section 18.6). The first model, nonatomic selfish routing, is a natural generalization of
Pigou’s example (Example 17.1) to more complex networks. The modifier “nonatomic”
refers to the assumption that there are a very large number of players, each controlling
a negligible fraction of the overall traffic. We also study atomic selfish routing, where
each player controls a nonnegligible amount of traffic. We single out these two models
for three reasons. First, both models are conceptually simple but quite general. Sec-
ond, the price of anarchy is well understood in both of these models. Third, the two
models are superficially similar, but different techniques are required to analyze the
inefficiency of equilibria in each of them.

The chapter proceeds as follows. Section 18.2 introduces nonatomic and atomic
selfish routing games and explores several examples. Section 18.3 studies the existence
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and uniqueness of equilibria in routing games. It also offers a glimpse of the potential
function method, a technique that will be developed further in Chapter 19. Section 18.4
proves tight upper bounds on the price of anarchy in nonatomic and atomic selfish
routing games. Section 18.5 proposes two ways to reduce the price of anarchy in
nonatomic selfish routing games. Section 18.6 concludes with bibliographic notes.

18.2 Models and Examples

18.2.1 Nonatomic Selfish Routing

To introduce nonatomic selfish routing games, we recall the essential features of
Pigou’s example (Example 17.1 and Figure 17.1). First, we are given a network
describing the routes available to the players. In Pigou’s example, there are two parallel
routes, each a single edge, that connect a source vertex s to a sink vertex t . Each edge
has a cost that is a function of the amount of traffic that uses the edge. We assume that
selfish players choose routes to minimize the cost incurred; in an equilibrium outcome,
all players choose a path of minimum cost. In the equilibrium in Pigou’s example, all
players choose the second edge, and the cost of this edge in this outcome is 1.

More generally, a selfish routing game occurs in a multicommodity flow network,
or simply a network. A network is given by a directed graph G = (V, E), with vertex
set V and directed edge set E, together with a set (s1, t1), . . . , (sk, tk) of source–sink
vertex pairs. We also call such pairs commodities. Each player is identified with one
commodity; note that different players can originate from different source vertices and
travel to different sink vertices. We use Pi to denote the si–ti paths of a network. We
consider only networks in which Pi �= ∅ for all i, and define P = ∪k

i=1Pi . We allow the
graph G to contain parallel edges, and a vertex can participate in multiple source–sink
pairs.

We describe the routes chosen by players using a flow, which is simply a nonnegative
vector indexed by the set P of source–sink paths. For a flow f and a path P ∈ Pi ,
we interpret fP as the amount of traffic of commodity i that chooses the path P to
travel from si to ti . Traffic is “inelastic,” in that there is a prescribed amount ri of traffic
identified with each commodity i. A flow f is feasible for a vector r if it routes all of
the traffic: for each i ∈ {1, 2, . . . , k}, ∑

P∈Pi
fP = ri . In particular, we do not impose

explicit edge capacities.
Finally, each edge e of a network has a cost function ce : R+ → R+. We always

assume that cost functions are nonnegative, continuous, and nondecreasing. All of
these assumptions are reasonable in applications where cost represents a quantity that
only increases with the network congestion; delay is one natural example. When we
study the price of anarchy in Section 18.4, we also explore more severe assumptions
on the network cost functions. We define a nonatomic selfish routing game, or simply
a nonatomic instance, by a triple of the form (G, r, c).

Next we formalize the notion of equilibrium in nonatomic selfish routing games.
Define the cost of a path P with respect to a flow f as the sum of the costs of
the constituent edges: cP (f ) = ∑

e∈P ce(fe), where fe = ∑
P∈P : e∈P fP denotes the

amount of traffic using paths that contain the edge e. Since we expect selfish traffic to
attempt to minimize its cost, we arrive at the following definition.
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Definition 18.1 (Nonatomic equilibrium flow) Let f be a feasible flow for
the nonatomic instance (G, r, c). The flow f is an equilibrium flow if, for every
commodity i ∈ {1, 2, . . . , k} and every pair P, P̃ ∈ Pi of si–ti paths with fP > 0,

cP (f ) ≤ cP̃ (f ).

In other words, all paths in use by an equilibrium flow f have minimum-possible
cost (given their source, sink, and the congestion caused by f ). In particular, all paths
of a given commodity used by an equilibrium flow have equal cost. Section 18.3.1
proves that every nonatomic instance admits at least one equilibrium flow, and that all
equilibrium flows of a nonatomic instance have equal cost.

In Pigou’s example, routing all of the traffic on the second link defines an equilibrium
flow; only one path carries flow, and the only alternative has equal cost. Splitting the
traffic equally between the two links defines a flow that is not an equilibrium flow;
the first link carries a strictly positive amount of traffic and its cost is 1, but there is a
strictly cheaper alternative (the second link, with cost 1/2).

Remark 18.2 Our description of nonatomic selfish routing games and their
equilibria does not parallel that of simultaneous-move games in Chapter 1. For
example, we have not explicitly defined the set of players. While more general
types of nonatomic games are frequently defined explicitly in terms of player
sets, strategy profiles, and player payoff functions, selfish routing games possess
special structure. In particular, the cost incurred by a player depends only on its
path and the amount of flow on the edges of its path, rather than on the identities
of any of the players. Games of this type are often called congestion games.
Because of this structure, it is sufficient and simpler to work directly with flows
in nonatomic selfish routing games.

When we quantify the inefficiency of equilibrium flows in Section 18.4, we consider
only the utilitarian objective of minimizing the total cost incurred by traffic. (Other
objectives have been studied; see Section 18.6.) Precisely, since the cost incurred by a
player choosing the path P in the flow f is cP (f ), and fP denotes the amount of traffic
choosing the path P , we define the cost of a flow f as

C(f ) =
∑
P∈P

cP (f )fP . (18.1)

Expanding cP (f ) as
∑

e∈P ce(fe) and reversing the order of summation in (18.1) gives
a useful alternative definition of the cost of a flow:

C(f ) =
∑
e∈E

ce(fe)fe. (18.2)

For an instance (G, r, c), we call a feasible flow optimal if it minimizes the cost over
all feasible flows.

As in Chapter 17, the price of anarchy of a nonatomic selfish routing game, with
respect to this objective, is the ratio between the cost of an equilibrium flow and that of
an optimal flow. We can use the cost of an arbitrary equilibrium flow in lieu of that of
a worst equilibrium flow (cf. Chapter 17), since all equilibrium flows of a nonatomic
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c(x) = xp
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c(x) = 1

Figure 18.1. A nonlinear variant of Pigou’s example (Example 18.3).

instance have equal cost (Section 18.3.1). In Pigou’s example, the equilibrium flow
routes all of the traffic on the second link and has cost 1. As we will see in Section 18.3.1,
the optimal flow splits the traffic equally between the two links and has cost 3/4. The
price of anarchy in Pigou’s example is therefore 4/3.

We conclude this section with two more important examples of nonatomic selfish
routing networks.

Example 18.3 (Nonlinear Pigou’s example) The inefficiency of the equilib-
rium flow in Pigou’s example can be amplified with a seemingly minor modifica-
tion to the network. Suppose that we replace the previously linear cost function
c(x) = x on the lower edge with the highly nonlinear one c(x) = xp for p large
(Figure 18.1). As in Pigou’s example, the cost of the unique equilibrium flow
is 1. The optimal flow routes a small ε fraction of the traffic on the upper edge
and has cost ε + (1 − ε)p+1, where ε tends to 0 as p tends to infinity. Precisely,
Section 18.3.1 shows that ε = 1 − (p + 1)−1/p. As p tends to infinity, the cost
of the optimal flow approaches 0 and the price of anarchy grows without bound.
Exercise 18.1 shows that this rate of growth is roughly p/ ln p as p → ∞.

While the price of anarchy in our final example is no larger than in Pigou’s example,
it is arguably a more shocking display of the inefficiency of equilibria in selfish routing
networks.

Example 18.4 (Braess’s Paradox) Consider the four-node network shown in
Figure 18.2(a). There are two disjoint routes from s to t , each with combined cost
1 + x, where x is the amount of traffic that uses the route. Assume that there is
one unit of traffic. In the equilibrium flow, the traffic is split evenly between the
two routes, and all of the traffic experiences 3/2 units of cost.

Now suppose that, in an effort to decrease the cost encountered by the traffic,
we build a zero-cost edge connecting the midpoints of the two existing routes.
The new network is shown in Figure 18.2(b). What is the new equilibrium flow?

The previous equilibrium flow does not persist in the new network: the cost of
the new route s → v → w → t is never worse than that along the two original
paths, and it is strictly less whenever some traffic fails to use it. As a consequence,
the unique equilibrium flow routes all of the traffic on the new route. Because of
the ensuing heavy congestion on the edges (s, v) and (w, t), all of the traffic now
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Figure 18.2. Braess’s Paradox. The addition of an intuitively helpful edge can adversely affect
all of the traffic.

experiences two units of cost. Braess’s Paradox thus shows that the intuitively
helpful action of adding a new zero-cost edge can increase the cost experienced
by all of the traffic!

Braess’s Paradox also has remarkable analogues in several physical systems; see
Section 18.6 for details.

The optimal flow in the second network of Example 18.4 is the same as the equi-
librium flow in the first network. The price of anarchy in the second network is
therefore 4/3, the same as that in Pigou’s example. This is not entirely a coincidence;
in Section 18.4.1 we prove that no nonatomic instance with cost functions of the form
ax + b has a price of anarchy larger than 4/3.

While this chapter does not explicitly study Braess’s Paradox, we obtain bounds on
the worst-case severity of the paradox as a consequence of our results on the price of
anarchy (Remark 18.22).

18.2.2 Atomic Selfish Routing

An atomic selfish routing game or atomic instance is defined by the same ingredients as a
nonatomic one: a directed graph G = (V, E), k source–sink pairs (s1, t1), . . . , (sk, tk),
a positive amount ri of traffic for each pair (si, ti), and a nonnegative, continuous,
nondecreasing cost function ce : R+ → R+ for each edge e. We also denote an atomic
instance by a triple (G, r, c). The intuitive difference between a nonatomic and an
atomic instance is that in the former, each commodity represents a large population of
individuals, each of whom controls a negligible amount of traffic; in the latter, each
commodity represents a single player who must route a significant amount of traffic on
a single path.

More formally, atomic instances are finite simultaneous-move games in the sense
of Chapter 1. There are k players, one for each source–sink pair. Different players
can have identical source–sink pairs. The strategy set of player i is the set Pi of si–ti
paths, and if player i chooses the path P , then it routes its ri units of traffic on P . A
flow is now a nonnegative vector indexed by players and paths, with f

(i)
P denoting the

amount of traffic that player i routes on the si–ti path P . A flow f is feasible for an
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atomic instance if it corresponds to a strategy profile: for each player i, f
(i)
P equals ri

for exactly one si–ti path and equals 0 for all other paths. The cost cP (f ) of a path P

with respect to a flow f and the cost C(f ) of a flow f are defined as in Section 18.2.1.
An equilibrium flow of an atomic selfish routing game is a feasible flow such that

no player can strictly decrease its cost by choosing a different path for its traffic.

Definition 18.5 (Atomic equilibrium flow) Let f be a feasible flow for the
atomic instance (G, r, c). The flow f is an equilibrium flow if, for every player
i ∈ {1, 2, . . . , k} and every pair P, P̃ ∈ Pi of si–ti paths with f

(i)
P > 0,

cP (f ) ≤ cP̃ (f̃ ),

where f̃ is the flow identical to f except that f̃
(i)
P = 0 and f̃

(i)
P̃

= ri .

We have defined equilibrium flows to correspond to pure-strategy Nash equilibria (see
Chapter 1). Flows corresponding to mixed-strategy Nash equilibria have also been
studied (see Section 18.6), but we will not consider them in this chapter.

While the definitions of nonatomic and atomic instances are very similar, the two
models are technically quite different. The next example illustrates two of these differ-
ences. First, different equilibrium flows of an atomic instance can have different costs;
as claimed in Section 18.2.1 and proved in Section 18.3.1, all equilibrium flows of a
nonatomic instance have equal cost. Second, the price of anarchy in atomic instances
can be larger than in their nonatomic counterparts. The following atomic instance has
affine cost functions – of the form ax + b – and its price of anarchy is 5/2; in every
nonatomic instance with affine cost functions, the price of anarchy is at most 4/3
(Section 18.4.1). We call this the AAE example, after the initials of its discoverers (see
Section 18.6).

Example 18.6 (AAE example) Consider the bidirected triangle network shown
in Figure 18.3. We assume that there are four players, each of whom needs to route
one unit of traffic. The first two have source u and sinks v and w, respectively;
the third has source v and sink w; and the fourth has source w and sink v. Each
player has two strategies, a one-hop path and a two-hop path. In the optimal flow,
all players route on their one-hop paths, and the cost of this flow is 4. This flow is
also an equilibrium flow. On the other hand, if all players route on their two-hop
paths, then we obtain a second equilibrium flow. Since the first two players each
incur three units of cost and the last two players each incur two units of cost, this
equilibrium flow has a cost of 10. The price of anarchy of this instance is therefore
10/4 = 2.5.

Exercise 18.2 explores variants of the AAE example.
Next we study the even more basic issue of the existence of equilibrium flows.

Recall that equilibrium flows for atomic instances correspond to pure-strategy Nash
equilibria, which do not always exist in arbitrary finite games (see Chapter 1). Do
they always exist in atomic selfish routing games? Our second example answers this
question in the negative.
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Figure 18.3. The AAE example (Example 18.6). In atomic instances with affine cost functions,
different equilibrium flows can have different costs, and the price of anarchy can be as large
as 5/2.

Example 18.7 (Nonexistence in weighted atomic instances) Consider the net-
work shown in Figure 18.4. Extend this network to an atomic selfish routing game
by adding two players, both with source s and sink t , with traffic amounts r1 = 1
and r2 = 2.

We claim that there is no equilibrium flow in this atomic instance. To prove
this, let P1, P2, P3, and P4 denote the paths s → t , s → v → t , s → w → t ,
and s → v → w → t , respectively. The following four statements then imply the
claim.

(1) If player 2 takes path P1 or P2, then the unique response by player 1 that minimizes
its cost is the path P4.

(2) If player 2 takes path P3 or P4, then the unique best response by player 1 is the
path P1.

(3) If player 1 takes the path P4, then the unique best response by player 2 is the
path P3.

(4) If player 1 takes the path P1, then the unique best response by player 2 is the
path P2.

We leave verification of (1)–(4) to the reader.

On the other hand, Section 18.3.2 proves that every atomic instance in which all
players route the same amount of traffic admits at least one equilibrium flow. We call

s t

w

v

47x

x2 + 443x2

6x2x + 33 13x

Figure 18.4. An atomic instance with no equilibrium flow (Example 18.7).
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instances of this type unweighted. Example 18.6 is an unweighted instance, while
Example 18.7 is not.

18.3 Existence, Uniqueness, and Potential Functions

This section collects existence and uniqueness results about equilibrium flows in
nonatomic and atomic selfish routing games. We also introduce the potential func-
tion method, a fundamental proof technique.

18.3.1 Nonatomic Selfish Routing: Existence and Uniqueness

Our next goal is to show that in nonatomic selfish routing games, equilibrium flows
always exist and are essentially unique. By “essentially unique,” we mean that all
equilibrium flows of a nonatomic instance have the same cost. In particular, the price
of stability (Section 17.1) and the price of anarchy coincide in every nonatomic instance.
Formally, our aim is to prove the following theorem.

Theorem 18.8 (Existence and uniqueness of equilibrium flows) Let (G, r, c)
be a nonatomic instance.

(a) The instance (G, r, c) admits at least one equilibrium flow.

(b) If f and f̃ are equilibrium flows for (G, r, c), then ce(fe) = ce(f̃ e) for every
edge e.

Part (b) of the theorem and Definition 18.1 easily imply that two equilibrium flows of
a nonatomic instance have equal cost.

We prove Theorem 18.8 with the potential function method. The idea of this method
is to exhibit a real-valued “potential function,” defined on the outcomes of a game, such
that the equilibria of the game are precisely the outcomes that optimize the potential
function. Potential functions are useful because they enable the application of optimiza-
tion techniques to the study of equilibria. When a game admits a potential function, there
are typically consequences for the existence, uniqueness, and inefficiency of equilibria.

To motivate the potential functions corresponding to nonatomic selfish routing
games, we present a characterization of optimal flows in such games. To state this char-
acterization cleanly, we assume that for every edge e of the given nonatomic instance,
the function x · ce(x) is continuously differentiable and convex. Note that x · ce(x) is
the contribution to the social cost function (18.2) by traffic on the edge e. Let c∗

e (x) =
(x · ce(x))′ = ce(x) + x · c′

e(x) denote the marginal cost function for the edge e. For
example, if c(x) denotes the cost function c(x) = axp for some a, p ≥ 0, then the cor-
responding marginal cost function is c∗(x) = (p + 1)axp. Let c∗

P (f ) = ∑
e∈P c∗

e (f )
denote the sum of the marginal costs of the edges in the path P with respect to the
flow f . The characterization follows.

Proposition 18.9 (Characterization of optimal flows) Let (G, r, c) be a non-
atomic instance such that, for every edge e, the function x · ce(x) is convex
and continuously differentiable. Let c∗

e denote the marginal cost function of the



P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 May 23, 2007 4:23

existence, uniqueness, and potential functions 467

edge e. Then f ∗ is an optimal flow for (G, r, c) if and only if, for every commodity
i ∈ {1, 2, . . . , k} and every pair P, P̃ ∈ Pi of si–ti paths with f ∗

P > 0,

c∗
P (f ∗) ≤ c∗

P̃
(f ∗).

Proposition 18.9 follows immediately from the first-order conditions of a convex opti-
mization problem with nonnegativity constraints. We omit the details and focus instead
on how the proposition leads to a potential function for equilibrium flows in nonatomic
instances, and on the implications of this potential function for the existence and
uniqueness of equilibrium flows.

Definition 18.1 and Proposition 18.9 immediately imply that equilibrium flows and
optimal flows are the same thing, just with respect to different sets of cost functions.

Corollary 18.10 (Equivalence of equilibrium and optimal flows) Let (G, r, c)
be a nonatomic instance such that, for every edge e, the function x · ce(x) is convex
and continuously differentiable. Let c∗

e denote the marginal cost function of the
edge e. Then f ∗ is an optimal flow for (G, r, c) if and only if it is an equilibrium
flow for (G, r, c∗).

For instance, in Pigou’s example (Example 17.1), the marginal cost functions of the
two edges are c∗(x) = 1 and c∗(x) = 2x. The equilibrium flow with respect to the
marginal cost functions splits the traffic equally between the two links, equalizing their
marginal costs at 1; by Corollary 18.10, this flow is optimal in the original network. In
the nonlinear variant of Pigou’s example (Example 18.3), the marginal cost functions
are c∗(x) = 1 and c∗(x) = (p + 1)xp; the optimal flow therefore routes (p + 1)−1/p

units of traffic on the second link and the rest on the first. In Braess’s Paradox with the
zero-cost edge added (Example 18.4 and Figure 18.2(b)), routing half of the traffic on
each of the paths s → v → t and s → w → t equalizes the marginal costs of all three
paths at 2, and therefore provides an optimal flow for the original instance.

To construct a potential function for equilibrium flows, we need to “invert” Corol-
lary 18.10: of what function do equilibrium flows arise as the global minima? The
answer is simple: to recover Definition 18.1 as an optimality condition, we seek a
function he(x) for each edge e – playing the previous role of x · ce(x) – such that
h′

e(x) = ce(x). Setting he(x) = ∫ x

0 ce(y) dy for each edge e thus yields the desired po-
tential function. Moreover, since ce is continuous and nondecreasing for every edge e,
every function he is both continuously differentiable and convex.

Precisely, call

�(f ) =
∑
e∈E

∫ fe

0
ce(x) dx (18.3)

the potential function of a nonatomic instance (G, r, c). Invoking Proposition 18.9,
with each function x · ce(x) replaced by he(x) = ∫ x

0 c(y) dy, yields the same condition
as in Definition 18.1; we have therefore characterized equilibrium flows as the global
minimizers of the potential function �.
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Proposition 18.11 (Potential function for equilibrium flows) Let (G, r, c) be
a nonatomic instance. A flow feasible for (G, r, c) is an equilibrium flow if and
only if it is a global minimum of the corresponding potential function � given
in (18.3).

Theorem 18.8 now follows from Proposition 18.11 and routine calculus.

Proof of Theorem 18.8 We first note that, by definition, the set of feasible
flows of (G, r, c) can be identified with a compact (i.e., closed and bounded) sub-
set of |P|-dimensional Euclidean space. Since edge cost functions are continuous,
the potential function is a continuous function on this set. By Weierstrass’s Theo-
rem from elementary mathematical analysis, the potential function � achieves a
minimum value on this set. By Proposition 18.11, every point at which � attains
its minimum corresponds to an equilibrium flow of (G, r, c).

For part (b), recall that each cost function is nondecreasing, and hence each
summand on the right-hand side of (18.3) is convex. Hence, the potential func-
tion � is a convex function.

Now suppose that f and f̃ are equilibrium flows for (G, r, c). By Proposi-
tion 18.11, both f and f̃ minimize the potential function �. We consider all
convex combinations of f and f̃ – that is, all vectors of the form λf + (1 − λ)f̃
for λ ∈ [0, 1]. All of these vectors are feasible flows. Since � is a convex function,
a chord between two points on its graph cannot pass below its graph. In algebraic
terms, we have

�(λf + (1 − λ)f̃ ) ≤ λ�(f ) + (1 − λ)�(f̃ ) (18.4)

for every λ ∈ [0, 1]. Since both f and f̃ are global minima of �, the inequal-
ity (18.4) must hold with equality for all of their convex combinations. Since
every summand of � is convex, this can occur only if every summand

∫ x

0 ce(y) dy

is linear between the values fe and f̃ e. In turn, this implies that every cost function
ce is constant between fe and f̃ e.

18.3.2 Atomic Selfish Routing: Existence

We now consider equilibrium flows in atomic instances. The AAE example (Exam-
ple 18.6) suggests that no interesting uniqueness results are possible in such instances,
so we focus instead on the existence of equilibrium flows. Similarly, Example 18.7
demonstrates that a general atomic instance need not admit an equilibrium flow. There
are two approaches to circumventing this counterexample. The first, taken in this
section, is to place additional restrictions on atomic instances so that equilibrium
flows are guaranteed to exist. The second approach, discussed in Remark 18.26,
is to relax the equilibrium concept so that an equilibrium exists in every atomic
instance.

The key result in this section is the following theorem, which establishes the exis-
tence of equilibrium flows in atomic instances in which all players control the same
amount of traffic.
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Theorem 18.12 (Equilibrium flows in unweighted atomic instances) Let
(G, r, c) be an atomic instance in which every traffic amount ri is equal to a
common positive value R. Then (G, r, c) admits at least one equilibrium flow.

proof We obtain Theorem 18.12 by discretizing the potential function (18.3)
for nonatomic instances and the proof of Theorem 18.8(a). Assume for simplicity
that R = 1. Set

�a(f ) =
∑
e∈E

fe∑
i=1

ce(i) (18.5)

for every feasible flow f . Note that �a is the same as the previous potential
function � for nonatomic instances, except that the integral

∫ fe

0 c(x) dx has been

replaced by the sum
∑fe

i=1 ce(i).
Since the atomic instance (G, r, c) has a finite number of players, and each of

these has a finite number of strategies, there are only a finite number of possible
flows. One of these, call it f , is a global minimum of the potential function �a .
We claim that f is an equilibrium flow for (G, r, c). To prove it, assume for
contradiction that in f , the player i could strictly decrease its cost by deviating
from the path P to the path P̃ , yielding the new flow f̃ . In other words, we assume
that

0 > cP̃ (f̃ ) − cP (f ) =
∑

e∈P̃ \P
ce(fe + 1) −

∑
e∈P \P̃

ce(fe). (18.6)

On the other hand, consider the impact of player i’s deviation on the potential
function �a: for edges in P̃ \ P , the corresponding sum in (18.5) acquires the
extra term ce(fe + 1); for edges in P \ P̃ , the corresponding sum sheds the term
ce(fe); and for edges of P ∩ P̃ , the corresponding sum remains the same. Thus,
�a(f̃ ) − �a(f ) is precisely the third expression of (18.6). Since this expression
is negative, the potential function value of f̃ is strictly less than that of f , which
contradicts our choice of f .

Remark 18.13 The proof of Theorem 18.12 establishes a remarkable property
of the potential function �a: it “tracks” the change in cost experienced by a
deviating player. More formally, for every flow, every player, and every deviation
by a player, the change in the player’s cost is identical to the change in the
potential function. This property has consequences beyond the existence result
of Theorem 18.12. For example, it implies that “best-response dynamics” are
guaranteed to converge to an equilibrium flow. See Chapter 19 for further details.

Remark 18.14 The proof of Theorem 18.12 did not use any assumptions about
the edge cost functions. In particular, it is also valid when cost functions are
not nondecreasing. This property will be crucial for some of the network design
games studied in Chapter 19, which can be viewed as atomic selfish routing games
with decreasing cost functions.
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The next theorem guarantees the existence of equilibrium flows under a different
restriction – affine cost functions. (Recall that a cost function ce(x) is affine if it has the
form aex + be; we always assume that ae, be ≥ 0.)

Theorem 18.15 (Equilibrium flows with affine cost functions) Let (G, r, c)
be an atomic instance with affine cost functions. Then (G, r, c) admits at least one
equilibrium flow.

The proof of Theorem 18.15 follows the same outline as that of Theorem 18.12, and
uses a variant of the potential function method. See Exercise 18.4 for further details.

18.4 The Price of Anarchy of Selfish Routing

18.4.1 Nonatomic Selfish Routing: The Price of Anarchy

This section gives an essentially complete analysis of the price of anarchy in nonatomic
selfish routing games. As we know from the nonlinear variant of Pigou’s example
(Example 18.3), the price of anarchy depends on “nonlinearity” of the network cost
functions. Our goal is to show that it depends on nothing else – not the network size, the
network structure, nor the number of commodities. More precisely, we show that for
every conceivable restriction on the cost functions of a network, the price of anarchy is
maximized (over all multicommodity networks) by the network that best “simulates”
Pigou’s example and its nonlinear variants.

As an aside, we note that the potential function characterization of nonatomic
equilibrium flows (Proposition 18.11) already gives a good, but not optimal, upper
bound on the price of anarchy. The intuitive explanation is simple: if equilibrium
flows exactly optimize a potential function (18.3) that is a good approximation of the
objective function (18.2), then they should also be approximately optimal.

Theorem 18.16 (Potential function upper bound) Let (G, r, c) be a nonatomic
instance, and suppose that x · ce(x) ≤ γ · ∫ x

0 ce(y) dy for all e ∈ E and x ≥ 0.
Then the price of anarchy of (G, r, c) is at most γ .

proof Let f and f ∗ be equilibrium and optimal flows for (G, r, c), respectively.
Since cost functions are nondecreasing, the cost of a flow (18.2) is always at least
its potential function value (18.3). The hypothesis ensures that the cost of a flow
is at most γ times its potential function value. The theorem follows by writing

C(f ) ≤ γ · �(f ) ≤ γ · �(f ∗) ≤ γ · C(f ∗),

with the second inequality following from Proposition 18.11.

Theorem 18.16 implies that the price of anarchy of selfish routing is large only
in networks with “highly nonlinear” cost functions. For example, if ce is a polyno-
mial function with degree at most p and nonnegative coefficients, then x · ce(x) ≤
(p + 1)

∫ x

0 ce(y) dy for all x ≥ 0. Theorem 18.16 then shows that the price of anarchy
in nonatomic instances with such cost functions is at most linear in p.
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Corollary 18.17 (Potential function bound for polynomials) If (G, r, c) is a
nonatomic instance with cost functions that polynomials with nonnegative coef-
ficients and degree at most p, then the price of anarchy of (G, r, c) is at most
p + 1.

This upper bound is nearly matched by Example 18.3, although the upper and lower
bounds differ by roughly a ln p multiplicative factor (Exercise 18.1). We close this
gap using a different and important proof technique, which is driven by variational
inequalities.

We first formalize a natural lower bound on the price of anarchy based on “Pigou-like
examples.”

Definition 18.18 (Pigou bound) Let C be a nonempty set of cost functions. The
Pigou bound α(C) for C is

α(C) = sup
c∈C

sup
x,r≥0

r · c(r)

x · c(x) + (r − x)c(r)
, (18.7)

with the understanding that 0/0 = 1.

The point of the Pigou bound is that it lower bounds the price of anarchy in instances
with cost functions in C.

Proposition 18.19 Let C be a set of cost functions that contains all of the
constant cost functions. Then the price of anarchy in nonatomic instances with
cost functions in C can be arbitrarily close to α(C).

proof Fix a choice of c ∈ C and x, r ≥ 0. We can complete the proof by
exhibiting a selfish routing network with cost functions in C and price of anarchy
at least c(r)r/[c(x)x + (r − x)c(r)]. Since c is nondecreasing, this expression is
at most 1 if x ≥ r; we can therefore assume that x < r .

Let G be a two-vertex, two-edge network as in Figure 18.1. Give the lower
edge the cost function c1(y) = c(y) and the upper edge the constant cost function
c2(y) = c(r). By assumption, both of these cost functions lie in C. Set the traffic
rate to r . Routing all of the traffic on the lower edge yields an equilibrium flow
with cost c(r)r . Routing x units of traffic on the lower edge and r − x units of
traffic on the upper edge gives a feasible flow with cost [c(x)x + (r − x)c(r)].
The price of anarchy in this instance is thus at least c(r)r/[c(x)x + (r − x)c(r)],
as desired.

While Proposition 18.19 assumes that the set C includes all of the constant cost func-
tions, its conclusion holds whenever C is inhomogeneous in the sense that c(0) > 0 for
some c ∈ C (Exercise 18.5).

We next show that, even though the Pigou bound is based only on Pigou-like
examples, it is also an upper bound on the price of anarchy in general multicommodity
flow networks. The proof requires the following variational inequality characterization
of equilibrium flows.
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Proposition 18.20 (Variational inequality characterization) Let f be a fea-
sible flow for the nonatomic instance (G, r, c). The flow f is an equilibrium flow
if and only if ∑

e∈E

ce(fe)fe ≤
∑
e∈E

ce(fe)f ∗
e

for every flow f ∗ feasible for (G, r, c).

proof Fix f and define the function Hf on the set of feasible flows by

Hf (f ∗) =
k∑

i=1

∑
P∈Pi

cP (f )f ∗
P =

∑
e∈E

ce(fe)f ∗
e ;

the same reversal of sums used to prove the equivalence of (18.1) and (18.2)
shows that these two definitions of Hf (f ∗) agree. The value Hf (f ∗) denotes the
cost of a flow f ∗ after the cost function of each edge e has been changed to the
constant function everywhere equal to ce(fe). By the second definition of Hf , the
proposition is equivalent to the assertion that a flow f is an equilibrium flow if
and only if it minimizes Hf (·) over all feasible flows.

Examining the first definition of Hf shows that a flow f ∗ minimizes Hf if
and only if, for every commodity i, f ∗

P > 0 only for paths P that minimize cP (f )
over all si–ti paths. Since the flow f satisfies this condition if and only if it is an
equilibrium flow, the proof is complete.

We now show that the Pigou bound is tight.

Theorem 18.21 (Tightness of the Pigou bound) Let C be a set of cost func-
tions and α(C) the Pigou bound for C. If (G, r, c) is a nonatomic instance with
cost functions in C, then the price of anarchy of (G, r, c) is at most α(C).

proof Let f ∗ and f be optimal and equilibrium flows, respectively, for a
nonatomic instance (G, r, c) with cost functions in the set C. The theorem follows
by writing

C(f ∗) =
∑
e∈E

ce(f ∗
e )f ∗

e

≥ 1

α(C)

∑
e∈E

ce(fe)fe +
∑
e∈E

(f ∗
e − fe)ce(fe)

≥ C(f )

α(C)
,

where the first inequality follows from Definition 18.18, applied to each edge
e with x = f ∗

e and r = fe, and the second inequality follows from Proposi-
tion 18.20.

Proposition 18.19 and Theorem 18.21 show that, for essentially every fixed restric-
tion on the allowable cost functions, the price of anarchy is maximized by Pigou-like
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examples. Determining the largest-possible price of anarchy in Pigou-like examples
(i.e., the Pigou bound) is a tractable problem in many cases. For example, it is pre-
cisely 4/3 when C is the set of affine cost functions (Exercise 18.6), and more generally
is [1 − p · (p + 1)−(p+1)/p]−1 ≈ p/ ln p when C is the set of polynomials with degree
at most p and nonnegative coefficients. In these cases, the maximum price of anarchy
(among all multicommodity instances) is achieved by the instances in Examples 17.1
and 18.3. The Pigou bound is also known for several other classes of cost functions;
see Section 18.6 for references.

Remark 18.22 (Bounds on Braess’s Paradox) Braess’s Paradox (Example
18.4) shows that adding edges to a network can increase the cost of its equi-
librium flow. Since the equilibrium flow in the original network is a candidate for
the optimal flow in the second network, the ratio between the costs of the new and
original equilibrium flows is a lower bound on the price of anarchy in the latter
network.

On the other hand, Theorem 18.21 and Exercise 18.6 show that the price of
anarchy is at most 4/3 in every network with affine cost functions. Thus, adding
edges to a network with affine cost functions cannot increase the cost of its
equilibrium flow by more than a 4/3 factor. Example 18.4 is therefore a worst-
case manifestation of Braess’s Paradox in networks with affine cost functions.
Similar bounds also apply to the physical analogues of Braess’s Paradox that are
described in Section 18.6.

18.4.2 Atomic Selfish Routing: The Price of Anarchy

We now consider atomic selfish routing games. We again obtain tight bounds on the
price of anarchy, at least for polynomial cost functions, but the discrete nature of atomic
instances complicates the analysis.

We first note that the potential function method, which gave nontrivial bounds on the
price of anarchy for nonatomic instances (Theorem 18.16), cannot be used for atomic
instances. The difficulty stems from the non-uniqueness of equilibrium flows in atomic
instances (Example 18.6). Recall that a bound on the price of anarchy is a guarantee
that all equilibrium flows of an instance are nearly optimal. Reviewing the proof of
Theorem 18.16, we observe that the potential function method argues about only one
equilibrium flow – the one with minimum potential function value. As a result, the
potential function method is directly useful only for bounding the price of stability
rather than the price of anarchy. While these two quantities coincide in nonatomic
selfish routing games, they are generally different in atomic ones. (See Section 18.6
for results on the price of stability in atomic selfish routing games.)

We instead rely on proof techniques that are partially inspired by the variational
inequality of Proposition 18.20. This inequality expresses the fact that equilibrium
flows route all traffic on shortest paths, with respect to the induced edge costs. We derive
a similar, if more complicated, condition for atomic instances. To keep the proofs as
transparent as possible, we focus on atomic instances with affine cost functions. Recall
from Theorem 18.15 that every such instance admits at least one equilibrium flow. The
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analysis can also be extended to other cost functions and other equilibrium concepts;
see Remark 18.26 and Section 18.6 for more details.

Our goal is the following theorem.

Theorem 18.23 (The price of anarchy in affine atomic instances) If (G, r, c)
is an atomic instance with affine cost functions, then the price of anarchy of
(G, r, c) is at most (3 + √

5)/2 ≈ 2.618.

A variant of the AAE example (Example 18.6) shows that the upper bound in Theo-
rem 18.23 is the best possible if different players can control different amounts of flow
(Exercise 18.2(a)). If all of the players control the same amount of flow, then a variant
of the following proof gives an improved upper bound of 5/2, which matches the lower
bound furnished by the AAE example (Exercise 18.7).

We build up to Theorem 18.23 in a sequence of steps. We begin with a lemma that
follows immediately from the definition of an equilibrium flow.

Lemma 18.24 (Equilibrium condition) Let (G, r, c) be an atomic instance in
which each edge e has an affine cost function ce(x) = aex + be with ae, be ≥ 0.
Let f and f ∗ be equilibrium and optimal flows, respectively, for (G, r, c). Let
player i use the path Pi in f and the path P ∗

i in f ∗. Then∑
e∈Pi

[aefe + be] ≤
∑
e∈P ∗

i

[ae(fe + ri) + be]. (18.8)

Our second step is to combine the inequalities of Lemma 18.24 – one per player –
to relate the cost of an arbitrary equilibrium flow to that of an optimal flow.

Lemma 18.25 (Equilibrium inequality) With the same assumptions and nota-
tion as in Lemma 18.24,

C(f ) ≤ C(f ∗) +
∑
e∈E

aefef
∗
e . (18.9)

proof For each player i, multiply the inequality (18.8) by ri . Summing up the
resulting k inequalities, we obtain

C(f ) ≤
k∑

i=1

ri

⎛
⎝∑

e∈P ∗
i

ae(fe + ri) + be

⎞
⎠

≤
k∑

i=1

ri

⎛
⎝∑

e∈P ∗
i

ae(fe + f ∗
e ) + be

⎞
⎠

=
∑
e∈E

[
ae(fe + f ∗

e ) + be

]
f ∗

e ,

where the equality follows by reversing the order of summation. Since the final
expression equals the right-hand side of (18.9), the proof is complete.
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To complete the proof of Theorem 18.23, we upper bound the magnitude of the
“error term” in (18.9) relative to the costs of the equilibrium and optimal flows.

Proof of Theorem 18.23 Let f and f ∗ denote equilibrium and optimal
flows, respectively, for the atomic instance (G, r, c). Assume that edge e has
the cost function ce(x) = aex + be for ae, be ≥ 0. Apply the Cauchy–Schwarz
Inequality to the vectors {√aefe}e∈E and {√aef

∗
e }e∈E to obtain

∑
e∈E

aefef
∗
e ≤

√∑
e∈E

aef 2
e ·

√∑
e∈E

ae(f ∗
e )2 ≤

√
C(f ) ·

√
C(f ∗).

Combining this with the Equilibrium Inequality (18.9), dividing through
by C(f ∗), and rearranging gives

C(f )

C(f ∗)
− 1 ≤

√
C(f )

C(f ∗)
.

Squaring both sides and solving the corresponding quadratic inequality x2 − 3x +
1 ≤ 0, we find that

C(f )

C(f ∗)
≤ 3 + √

5

2
≈ 2.618,

as claimed.

Theorem 18.23 can be extended to atomic instances with cost functions that are
polynomials with nonnegative coefficients and degree at most a parameter p. However,
the upper bound on the price of anarchy increases with p roughly in proportion to the
exponential function pp – much faster than in nonatomic instances. This exponential
dependence is not an artifact of the above proof approach, as nearly matching lower
bounds on the price of anarchy are known (Section 18.6).

Remark 18.26 Strictly speaking, the price of anarchy is not always defined in
general atomic instances, where equilibrium flows need not exist (Example 18.7).
Nevertheless, Theorem 18.23 has been extended to atomic instances with poly-
nomial cost functions in three different ways. First, when such an instance does
admit at least one equilibrium flow, then all such flows have cost at most pO(p)

times that of an optimal flow. Second, by Nash’s Theorem (Chapters 1 and 2),
every such instance admits a mixed-strategy Nash equilibrium, and the expected
cost of every such equilibrium is at most pO(p) times that of an optimal flow. Fi-
nally, similar upper bounds have been proved for “sink equilibria,” an equilibrium
concept that always exists in finite games and is motivated by convergence issues.
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18.5 Reducing the Price of Anarchy

As we have seen, the price of anarchy can be large in both nonatomic and atomic selfish
routing games when cost functions are highly nonlinear. This motivates a question first
posed in Section 17.3: how can we design or modify a selfish routing network, without
explicitly imposing an optimal solution, to minimize the inefficiency of its equilibria?
Can modest intervention significantly reduce the price of anarchy? We briefly discuss
two techniques for mitigating the inefficiency of selfish routing in nonatomic instances:
influencing traffic with edge taxes (Subsection 18.5.1) and increasing the capacity of
the network (Subsection 18.5.2).

18.5.1 Marginal Cost Pricing

Our first approach to reducing the price of anarchy in nonatomic selfish routing games
is to use marginal cost taxes on the edges of the network. The idea of marginal cost
pricing is to charge each network user on each edge for the additional cost its presence
causes for the other users of the edge. To discuss this idea formally, we allow each edge
e of a nonatomic selfish routing network to possess a nonnegative tax τe. We denote a
nonatomic instance (G, r, c) with edge taxes τ by (G, r, c + τ ). An equilibrium flow for
such an instance (G, r, c + τ ) is defined as in Definition 18.1, with all traffic traveling
on routes that minimize the sum of the edge costs and edge taxes. Equivalently, it
is an equilibrium flow for the nonatomic instance (G, r, cτ ), where the cost function
cτ
e is a shifted version of the original cost function ce: cτ

e (x) = ce(x) + τe for all
x ≥ 0.

The principle of marginal cost pricing asserts that for a flow f feasible for a
nonatomic instance (G, r, c), the tax τe assigned to the edge e should be τe = fe · c′

e(fe),
where c′

e denotes the derivative of ce. (Assume for simplicity that the cost functions
are differentiable.) The term c′

e(fe) corresponds to the marginal increase in cost caused
by one user of the edge, and the term fe is the amount of traffic that suffers from
this increase. We can also interpret the marginal cost tax τe using Corollary 18.10:
τe is precisely the “extra term” in the marginal cost function that is absent from the
original cost function. These taxes correct for the failure of selfish users to account for
the second, “altruistic” term of the marginal cost function. Formally, Corollary 18.10
easily implies the following guarantee.

Theorem 18.27 Let (G, r, c) be a nonatomic instance such that, for every edge
e, the function x · ce(x) is convex and continuously differentiable. Let f ∗ be an
optimal flow for (G, r, c) and let τe = f ∗

e · c′
e(f ∗

e ) denote the marginal cost tax
for edge e with respect f ∗. Then f ∗ is an equilibrium flow for (G, r, c + τ ).

Marginal cost taxes thus induce an optimal flow as an equilibrium flow; in this
sense, such taxes reduce the price of anarchy to 1. Theorem 18.27 also holds with
weaker assumptions on the cost functions; in particular, the convexity hypothesis
is not needed. For further discussion of pricing problems in routing games, see
Chapter 22.
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18.5.2 Capacity Augmentation

Our final result is a novel type of bound on the inefficiency of equilibrium flows in
nonatomic selfish routing games with arbitrary cost functions. This bound does not
involve the price of anarchy, which is unbounded in such networks (Example 18.3),
and instead shows that the cost of an equilibrium flow is at most that of an optimal
flow that is forced to route twice as much traffic between each source–sink pair. As we
will see, this result implies that in lieu of centralized control, the inefficiency of selfish
routing can be offset by a moderate increase in link speed.

Example 18.28 Consider the nonlinear variant of Pigou’s example (Exam-
ple 18.3). When there is one unit of traffic, the equilibrium flow routes all of the
flow on the lower edge, while the optimal flow routes ε units of flow on the upper
edge and the rest on the lower edge (where ε → 0 as p → ∞). When the amount
r of traffic to be routed exceeds one, an optimal flow assigns the additional r − 1
units of traffic to the upper link, incurring a cost that tends to r − 1 as p → ∞.
In particular, for every p an optimal flow feasible for twice the original traffic
amount (r = 2) has cost at least 1, the cost of the equilibrium flow in the original
instance.

We now show that the upper bound stated in Example 18.28 for the nonlinear variant
of Pigou’s example holds in every nonatomic instance.

Theorem 18.29 If f is an equilibrium flow for (G, r, c) and f ∗ is feasible for
(G, 2r, c), then C(f ) ≤ C(f ∗).

proof Let f and f ∗ denote an equilibrium flow for (G, r, c) and a feasible flow
for (G, 2r, c), respectively. For each commodity i, let di denote the minimum cost
of an si–ti path with respect to the flow f . Definition 18.1 and the definition of
cost (18.1) imply that C(f ) = ∑

i ridi .
The key idea is to define a set of cost functions c̄ that satisfies two properties:

lower bounding the cost of f ∗ relative to that of f is easy with respect to c̄; and
the new cost functions c̄ approximate the original ones c. Specifically, we set
c̄e(x) = max{ce(fe), ce(x)} for each edge e. Let C̄(·) denote the cost of a flow in
the instance (G, r, c̄). Note that C̄(f ∗) ≥ C(f ∗) while C̄(f ) = C(f ).

We first upper bound the amount by which the new cost C̄(f ∗) of f ∗ can
exceed its original cost C(f ∗). For every edge e, c̄e(x) − ce(x) is zero for x ≥ fe

and bounded above by ce(fe) for x < fe, so x(c̄e(x) − ce(x)) ≤ ce(fe)fe for all
x ≥ 0. Thus

C̄(f ∗) − C(f ∗) =
∑
e∈E

f ∗
e (c̄e(f ∗

e ) − ce(f ∗
e )) ≤

∑
e∈E

ce(fe)fe = C(f ). (18.10)

In other words, evaluating f ∗ with cost functions c̄, rather than c, increases its
cost by at most an additive C(f ) factor.

Now we lower bound C̄(f ∗). By construction, the modified cost c̄e(·) of an edge
e is always at least ce(fe), so the modified cost c̄P (·) of a path P ∈ Pi is always at
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least cP (f ), which in turn is at least di . The modified cost C̄(f ∗) therefore equals

∑
P∈P

c̄P (f ∗)f ∗
P ≥

k∑
i=1

∑
P∈Pi

dif
∗
P =

k∑
i=1

2ridi = 2C(f ). (18.11)

The theorem now follows immediately from inequalities (18.10) and (18.11).

Another interpretation of Theorem 18.29 is that the benefit of centralized control is
equaled or exceeded by the benefit of a sufficient improvement in link technology.

Corollary 18.30 Let (G, r, c) be an instance and define the modified cost func-
tion c̃e by c̃e(x) = ce(x/2)/2 for each edge e. Let f̃ be an equilibrium flow for
(G, r, c̃) with cost C̃(f̃ ), and f ∗ a feasible flow for (G, r, c) with cost C(f ∗). Then
C̃(f̃ ) ≤ C(f ∗).

Simple calculations show that Theorem 18.29 and Corollary 18.30 are equivalent; see
Exercise 18.8(a).

Corollary 18.30 takes on a particularly nice form in instances in which all cost
functions are M/M/1 delay functions. Such a cost function has the form ce(x) = (ue −
x)−1, where ue can be interpreted as an edge capacity or a queue service rate; the
function is defined to be +∞ when x ≥ ue. (Rigorously allowing infinite costs in
this selfish routing model requires some care; we ignore these issues in this chapter.)
In this case, the modified function c̃e of Corollary 18.30 is c̃e(x) = 1/2(ue − x/2) =
1/(2ue − x). Corollary 18.30 thus suggests the following design principle for selfish
routing networks with M/M/1 delay functions: to outperform optimal routing, just
double the capacity of every edge.

18.6 Notes

18.6.1 Nonatomic Selfish Routing

Nonatomic selfish routing was first studied in the context of transportation networks.
Pigou (1920) informally discussed Pigou’s example in his 1920 book, The Economics
of Welfare, in order to illustrate the inefficiency of equilibria. He also anticipated
the principle of marginal cost pricing discussed in Theorem 18.27; indeed, marginal
cost taxes are sometimes called Pigouvian taxes. The model was first formally de-
fined by Wardrop (1952). For this reason, equilibrium flows in nonatomic selfish
routing games are often called Wardrop equilibria. We use the term “equilibrium
flow” so that the terminology for nonatomic and atomic selfish routing games is the
same.

Beckmann et al. (1956) proved a number of fundamental results for the nonatomic
model. Theorem 18.8, Proposition 18.9, Corollary 18.10, Proposition 18.11, and
Theorem 18.27 were first proved in Beckmann et al. (1956), via proofs essentially
identical to the ones given here. Details on first-order conditions for convex pro-
gramming problems can be found in Bertsekas (1999, Chapter 2). Schmeidler (1973)
founded the theory of general noncooperative nonatomic games.
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Two decades after nonatomic selfish routing games were first defined, researchers
began to use them to model the routing of data through communication networks.
Nonatomic selfish routing is immediately relevant for networks that employ so-called
source routing, meaning that each sender is responsible for selecting a full path of links
to the receiver. Assuming that senders seek paths of minimum cost, senders of data in
such networks correspond to the users of a selfish routing network.

In large networks such as the Internet, distributed shortest-path routing is typically
used instead of source routing. In distributed shortest-path routing, each link is given
a positive length, and data are forwarded along a path of minimum total length to its
destination. Shortest-path routing leaves a key parameter unspecified: the length of
each edge. A direct correspondence between selfish routing and shortest-path routing
exists if and only if the edge cost functions coincide with the lengths used to define
shortest paths. In other words, when an x fraction of the overall network traffic is
using an edge with cost function c(·), then the corresponding shortest-path routing
algorithm should define the length of the edge as the number c(x). If the cost function
c is nonconstant, then this is a congestion-dependent definition of the edge length.
In this case, shortest-path routing will route traffic exactly as if it is a network with
selfish routing (or source routing). For details on this equivalence, see the textbook by
Bertsekas and Tsitsiklis (1989). See Qiu et al. (2003), for example, for a more recent
paper that studies selfish routing from a computer networking perspective.

Braess’s Paradox was discovered by Braess (1968). The variant in Example 18.4 was
noted by L. Schulman (personal communication, October 1999). For surveys on the
large literature inspired by Braess’s Paradox, see Roughgarden (2006) and D. Braess’s
home page (Braess, 2007).

Cohen and Horowitz (1991) noted that Braess’s Paradox has startling analogues in
physical systems. For instance, Example 18.4 can be simulated in the following system
of strings and springs. One end of a spring is attached to a fixed support, and the other
end to a very short string. A second identical spring is hung from the free end of the
string and carries a heavy weight. Finally, strings are connected, with very little slack,
from the support to the upper end of the second spring and from the lower end of the
first spring to the weight. Assuming that the springs are ideally elastic, the stretched
length of a spring is a linear function of the force applied to it. We can therefore view
the network of strings and springs as a selfish routing game, where force corresponds to
traffic and physical distance corresponds to cost. Remarkably, severing the very short
taut string causes the weight to levitate away from the ground! The rise in the weight is
the same as the improvement in the equilibrium flow obtained by deleting the zero-cost
edge of Figure 18.2(b) to recover the network of Figure 18.2(a).

The price of anarchy in nonatomic selfish routing games was first studied by
Roughgarden and Tardos (2002). The nonlinear variant of Pigou’s example (Exam-
ple 18.3) is from Roughgarden and Tardos (2002), as is Theorem 18.16. Roughgarden
and Tardos (2002) also proved the special case of Theorem 18.21 for networks with
affine cost functions (where the price of anarchy is at most 4/3). Roughgarden (2003)
introduced the Pigou bound and proved Theorem 18.21 under the same convexity
hypothesis used in Theorem 18.9. The solution to Exercise 18.5 can also be found
in Roughgarden (2003). A. Ronen (personal communication, March 2002) suggested
using the variational inequality in Proposition 18.20, which was first proved by Smith
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(1979). Correa et al. (2004) proved Theorem 18.21 without any convexity assump-
tions. This theorem has been generalized to wider classes of nonatomic games; see
Roughgarden (2005a) for a survey, as well as a discussion of the price of anarchy of
nonatomic selfish routing games with nonutilitarian objectives.

Finally, Theorem 18.29 is due to Roughgarden and Tardos (2002). A proof of
Corollary 18.30 and a counterexample to Theorem 18.29 in atomic instances can be
found in Roughgarden (2005a). For extensions of Theorem 18.29 to networks with
restricted cost functions, including a solution to Exercise 18.8(e), see Chakrabarty
(2004) and Correa et al. (2005).

18.6.2 Atomic Selfish Routing

Atomic selfish routing games were first considered by Rosenthal (1973), who proved
Theorem 18.12, using the potential function method. Rosenthal also introduced the con-
cept of “congestion games” (Remark 18.2). Monderer and Shapley (1996) undertook a
more general study of “potential games” – games that admit a potential function, which
in turn can be used to prove that best-response dynamics converge to an equilibrium
(Remark 18.13). Potential games are now studied in their own right; see Voorneveld
et al. (1999) and Roughgarden (2005a, Section 4.8) for surveys of this literature.

Rosenthal (1973) showed that equilibrium flows need not exist in weighted multi-
commodity atomic instances. Example 18.7 is due to Goemans et al. (2005). Fotakis
et al. (2005) proved Theorem 18.15 for weighted instances with affine cost functions.

The price of anarchy of atomic instances was first studied by Suri et al. (2007) in the
context of the asymmetric scheduling games described in Exercise 18.3 below. Among
other results, they proved an upper bound of 5/2 on the price of anarchy in such games
when each player controls one unit of traffic and when all cost functions are affine. This
paper also introduced the proof structure used to prove Theorem 18.23 in this chapter.

Awerbuch et al. (2005) significantly generalized the results in Suri et al. (2007).
They proved Theorem 18.23, as well as the refinement discussed in Exercise 18.7. The
AAE example and the variant in Exercise 18.2(a) are from Awerbuch et al. (2005),
as are the exponential (in the degree bound p) upper and lower bounds on the price
of anarchy for polynomial cost functions with nonnegative coefficients. For refined
versions of these upper and lower bounds, see Olver (2006). Awerbuch et al. (2005)
extended all of their upper bounds to mixed-strategy Nash equilibria. Goemans et al.
(2005) extended the upper bounds to “sink equilibria,” a notion of equilibrium that is
motivated by best-response dynamics and that always exists in finite noncooperative
games.

For unweighted instances and pure-strategy equilibrium flows, the results in
Awerbuch et al. (2005) were obtained independently by Christodoulou and Koutsoupias
(2005b). The proofs in Christodoulou and Koutsoupias (2005b) extend without much
difficulty to weighted instances and mixed-strategy Nash equilibria. Christodoulou and
Koutsoupias (2005b) also studied the price of anarchy with respect to the egalitarian
objective (see Section 17.1) and provide solutions to parts (b) and (c) of Exercise 18.2.

Caragiannis et al. (2006) provide a solution to Exercise 18.3(b), as well as numerous
other results about the price of anarchy and stability in different classes of asymmetric
scheduling instances. For results on the price of stability in atomic selfish routing
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games, see Anshelevich et al. (2004), Christodoulou and Koutsoupias (2005a), and
Caragiannis et al. (2006).

Finally, several researchers have studied selfish routing in the atomic splittable
model. This model is similar to the atomic selfish routing games studied in this chapter;
the key difference is that a player i is permitted to route its ri units of traffic fractionally
over the si–ti paths of the network. This model is also different from nonatomic selfish
routing games; for example, if there is only one player controlling all of the traffic in
the network, then the player will minimize its cost by routing this traffic optimally.
More generally, a player takes into account the congestion it causes for its own traffic,
while ignoring the congestion it creates for other players.

Equilibrium flows in the atomic splittable model can behave in counterintuitive ways
(see Exercise 18.9, taken from Catoni and Pallottino, 1991), and the price of anarchy
in this model is not well understood. It was initially claimed that the upper bounds
on the price of anarchy for nonatomic instances carry over to atomic splittable ones
(Correa et al., 2005; Roughgarden, 2005b), but Cominetti et al. (2006) recently gave
counterexamples to these claims in multicommodity networks. Obtaining tight bounds
on the price of anarchy in this model remains an important open question.
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Exercises

18.1 Recall the nonlinear variant of Pigou’s example (Example 18.3). Prove that as the
degree p of the cost function of the second link tends to infinity, the price of
anarchy tends to infinity as p/ ln p.
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18.2 This exercise explores lower bounds on the price of anarchy in atomic selfish
routing games with affine cost functions.

(a) Modify the players’ weights in the AAE example (Example 18.6) so that the price
of anarchy in the resulting weighted atomic instance is precisely (3 + √

5)/2 ≈
2.618.

(b) Can you devise an unweighted atomic instance with 3 players, affine cost
functions, and price of anarchy equal to 5/2? Can you achieve a price of
anarchy of (3 + √

5)/2 using 3 players and variable weights?
(c) What is the largest price of anarchy in an atomic instance with affine cost

functions and only 2 players?

18.3 An asymmetric scheduling instance differs from an atomic selfish routing instance in
the following two respects. First, the underlying network is restricted to a common
source vertex s, a common sink vertex t, and a set of parallel links that connect s
to t. On the other hand, we allow different players to possess different strategy sets:
each player i has a prescribed subset Si of the links that it is permitted to use.

(a) Show that every asymmetric scheduling instance is equivalent to an atomic
selfish routing game. Your reduction should make use only of the cost functions
of the original scheduling instance, plus possibly the all-zero cost function.

(b) [Difficult] Part (a) shows that the worst-case price of anarchy in asymmetric
scheduling instances with affine cost functions is at most that in atomic selfish
routing games with affine cost functions. Prove that the worst-case price of
anarchy is the same in the two models, equal to 5/2 in unweighted instances
and (3 + √

5)/2 in weighted instances.

18.4 Prove Theorem 18.15. Make use of the following potential function:

�( f ) =
∑
e∈E

⎛
⎝ce( fe) fe +

∑
i∈Se

ce(ri )ri

⎞
⎠ ,

where Se denotes the set of players that choose a path in f that includes the edge e.

18.5 A set C of cost functions is inhomogeneous if it contains at least one function
c satisfying c(0) > 0. Extend Proposition 18.19 to inhomogeneous sets of cost
functions.

[Hint: Simulate a Pigou-like example using a more complex network and cost
functions drawn only from the given set C.]

18.6 Prove that if C is the set of nonnegative, nondecreasing, concave cost functions,
then the Pigou bound α(C) equals 4/3.

18.7 Improve the upper bound of Theorem 18.23 for unweighted atomic instances
with affine cost functions. Can you match the lower bound provided by the AAE
example?

18.8 This exercise studies refinements and extensions of Theorem 18.29.

(a) Deduce Corollary 18.30 from Theorem 18.29.
(b) Show that Theorem 18.29 does not always hold in atomic selfish routing games.
(c) Suppose we define f ∗ to be a flow feasible for the instance (G, (1 + δ)r, c),

where δ > 0 is a parameter. (In Theorem 18.29, δ = 1.) How does the guarantee
of Theorem 18.29 change?
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(d) Use Example 18.3 to prove that your bound in part (c) is the best possible.
(e) Determine the smallest value of δ such that the following statement is true: for

every nonatomic instance (G, r, c) with affine cost functions, for every equilib-
rium flow f for (G, r, c) and optimal flow f ∗ for (G, (1 + δ)r, c), C ( f ) ≤ C ( f ∗).
(Theorem 18.29 implies that the statement holds with δ = 1; the question is
whether or not our restriction on the cost functions permits smaller values of δ.)

18.9 Recall the atomic splittable selfish routing model discussed at the end of
Section 18.6. Given such a game, we can obtain a new game by replacing a
player that routes ri units of traffic from si to ti by two players that each route ri /2
units of traffic from si to ti . This operation does not change the cost of an optimal
flow. Intuitively, since it decreases the amount of cooperation in the network, it
should only increase the cost of an equilibrium flow. Prove that this intuition is
incorrect: in multicommodity atomic splittable selfish routing networks, splitting a
player in two can decrease the price of anarchy.
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