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Abstract In this paper we offer an efficient controller synthesis algorithm for assume-
guarantee specifications of the form ¢; A @2 A -+ A @, — Y1 A Y2 A -+ A Yy, Here,
{gi, ¥} are all safety-MTL , properties, where the sub-formulas {¢;} are supposed to
specify assumptions of the environment and the sub-formulas {1/} are specifying require-
ments to be guaranteed by the controller. Our synthesis method exploits the engine of
UPPAAL- TIGA and the novel translation of safety- and co-safety-MTL , properties into
under-approximating, deterministic timed automata. Our approach avoids determinization
of Biichi automata, which is the main obstacle for the practical applicability of controller
synthesis for linear-time specifications. The experiments demonstrate that the chosen specifi-
cation formalism is expressive enough to specify complex behaviors. The proposed approach
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is sound but not complete. However, it successfully produced solutions for all the experi-
ments. Additionally we compared our tool with Acacia+ and Unbeast, state-of-the-art LTL
synthesis tools; and our tool demonstrated better timing results, when we applied both tools
to the analogous specifications.

1 Introduction

Automatic controller synthesis is concerned with the algorithmic construction of a control
strategy, that will ensure a given behavioural specification to be satisfied regardless of the
input provided by an environment. This problem was first stated in a discrete time setting
by Church in 1962 in [14] and then theoretically solved for various specification formalisms
n [11] and later works [10,19,24,28,31,32].

The synthesis problem is computationally harder for linear time logics than the satisfiabil-
ity and model-checking problems, and has for this reason been considered to be intractable for
along time. The main problem was that the first synthesis approaches involve the determiniza-
tion of Biichi automata, which is a computationally hard problem. However, the synthesis
problem has recently gained in practical performance with the development of the so-called
Safraless synthesis algorithms [23] that avoid the Biichi determinization phase. This approach
has been strengthened by using the bounded synthesis [33] and the antichain-based algorithm
in [20] that have resulted in the tools ACACIA and ACACIA+ that demonstrate good perfor-
mance for the reasonable sized formulas arising in practice [21]. Another direction of research
tries to restrict the specification formalisms so that the synthesis problem will be easier to
solve [7,30]. We combine both directions, i.e. restrict ourselves to a formalism that does not
require Safra’s procedure.

In the current paper we study the synthesis problem in a real-time setting. We focus our
attention to the Metric Interval Temporal Logic (MITL) [3], a formalism which has proved
to be useful for specifying real-time systems [1]. Unfortunately, the MITL synthesis problem
is undecidable in general [17], but there are sub-classes that render the synthesis problem
to be decidable [10,26]. The main challenge for the real-time controller synthesis is that the
Safraless approach is not always applicable for the timed case since determinization is not
possible in general. Thus it makes sense to completely avoid the automata determinization
phase.

In the current paper we push the boundaries of MITL synthesis forward to an important
class of assume-guarantee properties, i.e. properties of the form ¥ = g1 A2 A -+ - A @y —
Y1 AP A~ - Ay, Here the implicants {g; } are typically used to specify assumptions of the
behaviour of an environment, and the implied part {1/, } is used to specify the requirements to
the controller. We assume that every ¢; and v belong to safety-MTL, o, being the positive
fragment of MITL where all until operators should have only upper bounds, and all release
operators can have either upper or lower bound. Still, the safety-MTL o fragment allows
us to express important bounded-response properties, e.g. d(a — {<1b) that tells that every
a should be followed by » within 1 time unit.

As we show in a number of case-studies such assume-guarantee properties can be used
to express many useful real-time specifications; and our implementation can handle these
specifications. At the same time this formalism lives close to the edge of undecidabil-
ity, as e.g. allowing the lower bounds for the until operator makes the synthesis prob-
lem undecidable [10]. However, we believe that our approach can be extended to the
specifications being arbitrary Boolean combinations of safety-MTL ~, formulas (not only
implications).
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Fig. 1_Deterministic monitors for —U(req — ﬁ<5—-req), O(grant — ﬁ<5—|grant) and O(req —
—reqU<sgrant), and the winning strategy (from left to right)

Our approach translates the overall specification W to a network of timed game automata—
one automaton for every requirement ¥r; and one automaton for the negation of every assump-
tion ¢;. A central contribution is the extension of the translation presented in [12], with the
advantage that the resulting automata contain no Biichi acceptance conditions and are deter-
ministic by construction. Hence, there is no need for a determinization phase. However, it
is not always possible to translate MTL( «, properties into language-equivalent determinis-
tic automata,! and in this case we produce a deterministic under-approximation. Thus our
approach is sound but not complete, i.e. it may fail to generate a strategy even if the specifi-
cation is realizable. As we shall see, this theoretical incompleteness does not show up in our
case studies.

It now remains to use UPPAAL- TIGA [5] to synthesize a control strategy for the resulting
timed game fulfilling all the requirements {v;} or violating at least one of the assumptions
{¢i}. Additionally, the synthesized strategy should avoid generating Zeno behaviour (playing
infinite number of actions in a finite amount of time). We do this by either forcing UPPAAL-
TIGAto generate non-Zeno strategy using Biichi winning condition; or by proving that no Zeno
strategy will be winning for the controller. Finally, having synthesized a winning strategy, it
may be transformed into executable code.

As an illustration, consider the speciﬁcation:2

O(req — ﬁ<5ﬁreq) — O(grant — ﬁ<5—-grant) AO(req — (ﬁreq)ﬁfs(granl))

This specification says that every request (req) should be served (grant) within 5 time-units
under the assumption that the environment does not make repeated requests with less than a
separation of 5 time-units. Also, the specification forbids grants to be issued too frequently—
again a minimum time-separation of 5 time-units is required. Figure 1 contains the network of
deterministic timed game automata generated by our approach for this specification, together
with a winning strategy for this network synthesized by UPPAAL- TIGA. Here, the dashed
transitions are uncontrollable, and in the strategy the controller always proposes to take
the earliest enabled controllable transition. Although some formulas are defined over single
actions, the corresponding automata use both actions since —req renders to grant (and the
other way round) under the assumption that only these two actions are available.

1.1 Related work

The paper [27] is the first work that proposed the algorithms for the controller synthesis
based on timed games. In this work the game rules (i.e. what controller and environment can

! For instance, there is no equivalent deterministic Timed Automata for MTLg o, property O<j(p A
Dfl (=r) A $<1(g)). This can be proved by adapting the proof of [25] that MITL(, ;) formula Elfl (p —
Qr1,2)(—9)) is not determinizable.

2 As we will define in Sect. 2, 0 and U are modifications of the “classical” globally and until operators that
do not take into account the first observation of a trace.
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potentially do) were defined as timed game automata. The winning goals (i.e. what controller
should achieve) were expressed as Rabin conditions. This differs from our setup since we
use linear-time specifications to define both parts. Later the authors of [13] restricted their
attention to timed games with reachability and safety properties. They proposed an efficient
symbolic on-the-fly algorithm that has been implemented in the UPPAAL- TIGA tool [5].

The paper [26] was the first work that studied the controller synthesis problem for the case
when the specification itself is given as a linear-time temporal formula and a system works in
real time. This work proposes an algorithm for the synthesis of the properties of the form O,
where ¢ is a safety-MITL < property that can also contain past formulas. Our approach works
well for assume-guarantee properties and it might be hard to fit such properties into the logic
of [26]. Additionally, [26] makes the bounded variability assumption, i.e. it assumes that the
number of times a signal changes per one time unit is bounded by some known constant k.
This might be too strict in the dense time setting and we do not make this assumption.

The paper [10] and [17] present a series of decidability and undecidability results for the
synthesis and realizability for different fragments of real-time logics MTL, ECL and LTL .
However it is an open question whether the synthesis problem for our fragment of MTL is
decidable or not. If we limit the resources of the controller (i.e. the number of clocks it can
have and the maximum constants), then the problem is decidable according to [10].

The paper [16] proposes the Safraless procedure for the synthesis of LTL; properties.

The translation procedure of [16] involves the solution of a timed game with K2 locations,
where k depends on the specification itself and can be relatively large.

Outline. The rest of the paper is organized as following. Section 2 provides all the neces-
sary definitions. In Sect. 3 we formally state the problem being solved. Section 4 describes the
novel translation of safety- and co-safety-MTL o, properties into exact non-deterministic
monitoring Timed Automata and under-approximation deterministic Timed Automata. Sec-
tion 5 describes how we use UPPAAL- TIGA to solve the synthesis games. Section 6 contains
the case studies.

2 Definitions and problem statement
2.1 Timed words and MTLy « logic

A timed word over a finite set of actions ¥ is a finite or infinite sequence of time points and
actions (1, ar)(t2, a2) (3, a3) . .., where for every i we have a; € X,1; € R>¢ and for any
non-last i we have #;y1 > f;. Let Runs(X) denote the set of all finite timed words over X
and Inf Runs(X) the set of all infinite timed words over X.

A timed word is called Zeno iff it contains infinitely many discrete actions during a
finite amount of time. Certainly, the controllers that produce Zeno timed words are not
implementable in real life. In our modeling formalism Zeno behavior can also be forced
by the environment (if it emits uncontrollable actions infinitely often). In order to distin-
guish these two situations we define Zeno behavior over sets of actions. A timed word
(t1, a1)(t2, az)(t3, az) . . .is called Zeno for ¥’ C X, if itis time-bounded (i.e. #; < t for some
t and for all i ) and there are infinitely many actions from X’ init (i.e. for any j there existsi > j
suchthata; € ').Let Zeno(X') denote the set of all infinite timed words that are Zeno for X'.

Definition 1 An MTLy o formula ¢ over actions ¥ is defined by the grammar

g =truelal=¢ o1 A2 | O¢ | 91U~a 92| 91U~y 92

wherea € ¥, ~€ {<,<,>,>}andd € N.
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The common abbreviations are: false = —true, o1 V @2 = =(2¢1 A ~¢2), 91 —
@2 = (1) V @2, p1R~g 93 = (=1 U~g =02), 91R~a 2 = 2(=01U~yg =¢2), O~a ¢ =
trueU~g @, O~g @ =trueU~g ¢, O~g ¢ = falseR—g ¢, and O~y ¢ = falseR—; ¢.

The temporal operators R and R are called release operators, and U and U are called until
operators. The release and until operators are called bounded if they have a bound “< d” or
“< d”, otherwise unbounded. We will omit writing a bound when the bound is “> 0” (e.g.
write @1 U, instead of ¢1Uxq ¢2).

Safety-MTLj o (co-safety-MTL o) is the fragment of MTL o that consists of all the
formulas in the positive normal form that do not use unbounded until (release, correspond-
ingly) operator [29]. For instance, O {<ja is in safety-MTLg ~, ¢ O<ja is in co-safety-
MTLy, 0, O<1 O<1a is both in safety- and co-safety-MTLg «, O0a is in none of them. It is
easy to see that an MTLg -formula ¢ is in safety-MTL o iff its negation is in co-safety-
MTLg .

The semantics of MTL  is defined over infinite timed words. Let w' be the i-th suffix
of the timed word w. For a given infinite timed word w = (#1, a1)(f2, a2)(t3,a3) ... and an
MTLg o formula ¢, the satisfaction relation w’ |= ¢ is defined inductively:

. w! Etrue

. w Eaiffagi =a

L wl E—piffw E e

wl EQeiffwt! =g

w EerAgiffw g and w' E @

L w E ©1U~q @2 where ~€ {<, <, >, >} iff there exists j such that j > i, w’ =
@2, t; —t; ~d,and w* |= ¢y forall k withi <k < j

7. w' E ¢1U~q @2 where ~€ {<, <,>, >} iff there exists j such that j > i, w/

@2, — 1 ~d,and w* = ¢y forall k withi < k < j

AN AW =

An infinite timed word w satisfies an MTL, oo-formula ¢ iff w! = ¢. The language £(¢)
of ¢ is the set of all infinite timed words that satisfy ¢.

2.2 MTLy,« synthesis problem

A synthesis problem is defined by a triple (¢, X, X,), where X, and ¥, are disjoint sets
of elements (that are called controllable and uncontrollable actions), and ¢ is an MTLg o
formula over XU X,,. This triple defines the rules of the game between the controller and the
environment. The game is played in rounds, and at each round the controller proposes to play
some controllable action after some delay, and then the environment can let the controller
do this, or it can overtake the controller’s choice with a smaller or equal delay and some
uncontrollable action. The behavior of the controller is determined by a strategy, a function
that during the course of the game constantly gives information as to what the controller
should do in order to satisfy the specification.

More formally, a strategy of the controller in (¢, 2., ¥,) is a function f that maps the
finite timed words from Runs(X. U X,) to the pairs (7, a), where T € R>g and a € .. An
infinite timed word (1, ay)(t2, a2) (13, a3) . . . is consistent with the strategy f, if for any i, if
f((t,a)(t2, a2) ... (t;, a;)) = (z, a), then either (t,a) = (ti+1 — i, ai+1), 0r ajy1 € Xy
andtjy] —t; < t.Let Outcomes(f, L., X,) C Inf Runs(X.U X,) be the set of all infinite
timed words over X, U X, that are consistent with the strategy f.

Since the synthesis games are played in dense real time, we should prevent the controller
from blocking time by using the Zeno strategies. We assume that a Zeno run is losing for the
controller iff there are infinitely many uncontrollable actions among it (i.e. the controller does
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not block time by itself). This means that if the environment emits infinitely many actions
among a finite amount of time, then it loses even if the controller also emits infinitely many
actions.

We come to the following definition:

Definition 2 A controller’s strategy f is called a solution for the synthesis problem
(¢, Z¢, Zy), iff for any run @ € Outcomes(f, X, £y)\Zeno(X,) we have v €
(L(@)\Zeno(%))

Obviously, for the practical application of the automatic synthesis method, a controller’s
strategy should be implementable and thus it should have a finite representation. In the current
paper we assume that a strategy in the synthesis problem is defined by a deterministic Timed
Automata, i.e. a controller has finitely many clocks that can record time passed since some
events, and finitely many control states that define the reaction to the input events.

2.3 Timed automata

Let X be a set of real-valued variables called clocks. A clock bound over X has the form
x ~nwherex € X, ~e {<, <, >, >} and n € Z>¢. We denote the set of all possible clock
bounds over X by B(X), and F(X) is the set of all Boolean formulas over B(X) (including
conjunctions and disjunctions). A valuation over X is a an element of Rfo, i.e. itis a function
v: X — Rso. We let O be the valuation that assigns 0 to any clock from X. For a given
valuation v, clock set Y € X and real number 7 € R>( we let v 4 7 to be the valuation such
that (v + 7)(x) = v(x) + 7 for every clock x € X; and v[Y] is equal to the valuation such

that v[Y](x) = 0ifx € Y and v[Y](x) = v(x) otherwise.

Definition 3 [2] A Timed Automaton (TA) over actions X is a tuple (L, Iy, X, E) where:

— L is a finite set of locations,

— 1y is the initial location,

— X is a finite set of clocks,

— ECLxYXxF(X)x2Xl x L is the finite set of edges.

The semantics of TA is defined by Labeled Transition System (LTS) (S, so, —). A set of
states L x Rfo of a TA consists of pairs of locations and valuations over X. The initial state
is (I, 0). There exists a delay transition (I, vy) 5 (l,v),iff T € Ryp and v2 = vy + 7.
There exists a discrete transition (I1, v) 5 (I2, vo) if there exists a transition (I1, a, g, Y, [2)
such that v; = g and vy = v1[Y]. In the latter case we say that a transition e is enabled in
the state (I1, vy).

A TA is called rotal for a set of actions X’ C ¥ if for any action a € ¥’ and for any state
s € S there exists at least one state s’ such that s — s’. A TA is called deterministic iff not
more than one such state s’ exists for any pair of s and a.

A run of a TA is an infinite sequence of alternating delay and discrete transitions sq SN
S1 ﬂ) 52 2) e

A timed word w = (t1, ay)(t2, az) (13, a3) ... over X is accepted by timed automaton A
iff there is an infinite sequence of states sg, s1, 52, . . . such that sq is the initial state of A and
S0 BN S1 a §2 2 . isarun of A, where 7; =1; —t;_j foreveryi > l and t; = 7. We
use L(A) to denote the set of all timed words that are accepted by A.
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Efficient controller synthesis 171

We use TA to define synthesis game arenas (where both players have freedom to choose
time delays and actions); and to define the controller’s winning strategies in which the con-
troller always takes the earliest enabled controllable transition. The latter TA define winning
strategies in the synthesis problems as the following:

Definition 4 Let (¢, X, X,) be a synthesis problem and let A be a total for ¥,, and determin-
istic TA. We say that A implements the strategy f4 in (¢, X., X,) defined in the following
way. Let w = (1, a1)(t2, a2) . .. (tn, an) be an arbitrary finite timed word over X, U X,,. Let

S0 BN S1 a, §2 ...52, be a unique run of A on w. Let 7,41 be the minimal delay such that

. .\ Tutl ant .
there exist transitions sy, RSN Son+1 and $2,41 ALY Son+2 for some controllable action
ap+1 € X.. Then we define the value of the strategy f4 on w as fa(®) = (Ty+1, An+1)-

3 Problem statement

Consider the sets 3 and X, of controllable and uncontrollable actions. Consider an MTLg o
property ¢ over X, U X, such that

V=g A@A Ay = YILAVIA - APy

where all ¢; and ¥; are safety-MTLg o, properties. Our goal is to construct a TA A such that
A implements a solution f4 for the synthesis problem (¥, ., X,).

4 From safety- and co-safety-MTLy,, to Timed Automata

In our paper [12] we presented a procedure to translate MITL< formulas, the bounded
fragment of MTL ~, into Timed Automata. For a given formula, the procedure can build
language-equivalent nondeterministic timed automata, as well as deterministic under- and
over-approximations.

In the current work we will extend the procedure of [12] to the case of safety and co-
safety MTL, . Basically, we use the classical tableau-based translation from linear-time
temporal formulas into Biichi automata, with two important modifications. First, we avoid
using Biichi acceptance condition because we consider safety and co-safety fragments of
MTLj,» on non-Zeno runs only (e.g. we cannot express [(JOa that certainly needs Biichi
acceptance condition). Second, in order to handle timed properties, we introduce an auxiliary
clock for each subformula of the form ¢ U~4 @2, 9p1R~4 02, (plUNd @ or <p1RNd @2 (where
~¢e {<, <,>,>} and ~d is not > 0). When a timed formula, for example, ¢1U<4 ¢2 is
expected to be satisfied, the automaton will reset the corresponding clock x, rewrite this
formula into ¢1U<4—x ¢ and in future observations compare the value of x with d, and
check if the promise ¢ U<4—x ¢; has been fulfilled within the time bound.

In the rest of this section, we assume that ¢ is an MTL o, formula over ¥ and has been
transformed into positive normal form, where the negation operator (—) is not allowed (—true
is replaced by false and —a is replaced by VbEZ\{a} b when a is an action in X). For the
sake of simplicity, we also make an assumption that all temporal operators occurring in ¢
are included in {U<4, R<4, Us4, R>4}.

4.1 Closures and extended formulas

We use Sub(g) to denote all the sub-formulas of ¢. For each ¢1U<4 ¢2 € Sub(p), we assign
aclock x(p Uy ¢, toit. Let Xy < be the set of all U<g-clocks, i.e. {x(pU_yp,) | ¥1U<a @2 €
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Sub(¢)}. Similarly we assign the clocks to the other until and release operators, and define
Xy>, Xr< and Xg>. We do not assign clocks to formulas ¢ Ug, and ¢;R¢», therefore we
always assume that d > 0 when we write U4 or R~ in this section.

The set of basic formulas for ¢, written as BF(¢), is a finite set defined by the following
rules:

1. If O¢1 € Sub(p), then ¢ € BF(p)

2. If o1 Ugy € Sub(g) or ¢1Ux4 @2 € Sub(gp), then 91 Ugy € BF(p)

3. If ¢1R¢2 € Sub(p) or p1R>4 @2 € Sub(y), then ¢1R¢> € BF(p)

4. Ifp1U~y 2 € Sub(p) and x is the clock assigned to 1 U~y @2, then 1 U~y_x 2, x ~d €
BF(p), where ~€ {<, >}.

5. If 1R~ 2 € Sub(p) and x is the clock assigned to 1 R~z ¢z, then piR~y_x 2, x ~ d €
BF(¢p), where ~€ {<, >} and x ~ d is the negation of x ~ d (forexample,x <d = x >
dandx >d =x < d)

The meaning of U<y—y, U<y—x, R<4y—y and R>,4_, will be given in Definition 5.

Since a conjunction of basic formulas can be regarded as a subset of BF(¢p), for simplicity,
we use 2BF@ for the set of all subsets of BF(¢p) as well as the set of all conjunctive formulas
over BF(¢). Because a conjunction with zero conjuncts is true, so true € 2BF@),

We define CL(¢), the closure of ¢, to be the set of all positive Boolean combinations
(i.e., without negation) over BF(¢). Obviously, CL(¢) has only finitely many different non-
equivalent formulas.

For a clock x € Xy> U Xgr<, we use rst(x) to represent that x will be reset at the current
step. Similarly, for x € Xy<U XRr>, we use unch(x) to represent that x will not be reset at the
current step. Now we defined Ext(¢p), the set of extended formulas for ¢, with the following
rules:

1. Sub(p) € Ext(p)

2. If ¢ € CL(p), then ¢, O¢ € Ext(p)

3. If x € Xy< or x € Xr>, then unch(x) € Ext(p)
4. If x € Xy> or x € Xgr<, thenrst(x) € Ext(g)
5
6

. If x ~d € BF(p), then x ~ d € Ext(p)
. If @, &y € Ext(p), then @1 A Do, @1V @y € Ext(p)

Extended formulas can be interpreted over extended timed words. An extended timed word
w = (t1, a1, v1)(t2, az, v2)(13, az, v3) ...isasequence where w = (11, ay), (f2, a2)(t3,a3) . ..
is a timed word over X, and for every i € N, v; is a clock valuation over X=Xy < U Xy> U
Xpr<UXRg> suchthatforeachx € X, either v y1(x) = v; (X)+tj41—14 0r v;41(X) = ti41—1;.

The semantics for extended formulas is naturally induced by the semantics of MTL,
formulas:

Definition 5 Let w = (#1, ay, v1)(t2, az, v2)(t3, a3, v3) ... be an extended timed word and
@ € Ext(¢p). The satisfaction relation o' =, @ is inductively defined as follows:

1. o =o x ~diff v;(x) ~ d, where ~€ {<, <, >, >}.

o e rst(x) iff vigy (x) = fip1 — 1

o' e unch(x) iff vip1(x) = vi(x) + tip1 — i

a) e ¢ iff w' = ¢, if ¢ € Sub(p)

a) =e @1 U~g—_x @y iff there exists j such that j > i, wl/ @2, tj —t; ~d —v;(x), and

w = ¢ forall k withi <k < j, where ~€ {<, >}.

6. o' = p1R~g_x ¢y iff for all j > i suchthatt; —t; ~d —v;(x), either wl E @ or there
exists k withi < k < j and wk = @1, where ~€ {<, >}.

A
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7. 0 e @1 A D iff 0 =, @) and o =, P
8. w’_ =, &1V oy iffa)’ =, @1 or ' =e @2
9. v ., QP iff o' =, @

o' is a model of @ if ' =, @. Two extended formulas are said to be equivalent if they have
exactly the same models.

4.2 Constructing non-deterministic automata

Let us show how we construct a timed automaton A, = (L, lp, X, E) for ¢. L is defined to
be {¢} U2BF® 10 is o, and X is Xy= U Xy= U Xg< U Xgs.

Foreach ¢ € L, we will define how to compute the set of outgoing transitions from . The
core of the computation is a rewriting function f§ that tells what formula should be satisfied
in the next observation and which clocks should be reset when we see this observation. g is
defined inductively for all formulas in Sub(¢) U CL (¢), as follows.

L. Be1 Ugp) = Be2) vV (B(p1) A Op1 Uga))

2. B(g1 U<qg 2) = B(92) V (B(p1) A O((x < d) A (p1 U<g—x ¢2))), where x is the clock
assigned to @1 U<4 @2

- B(p1 U<g—x ¢2) = B(@2) V (B(g1) Aunch(x) AO((x < d) A (@1 U<q—x ¢2)))

4. B(p1 Usa 92) = B(p1) Arst(x) AOW(p1 Uzg—x 92) V ((x = d) A (91 U ¢2))), where x
is the clock assigned to ¢1 Usy4 ¢

- B(@1 Usg—x ¢2) = B(@1) A OUp1Uza—x 2) V ((x = d) A (91U 92)))

. Blp1 R@2)= B(p2) A (B(p1) vV Ole1 Rg2))
7. B(p1 R<a ¢2) = B(p2) A (B(p1) V 1st(x) A O((@1 Reg—x 92) V (x > d))) , where x is

the clock assigned to ¢1 R<4 ¢2
8. B(p1 R<a—x 92) = B(@2) A (Ble1) vV O(p1 Reg—x 2) V (x > d)))
9. B(@1R>q¢2) = Bo1) V OU((x < d) A (91 R>4—x ¢2)) V (91 R@2)), where x is the
clock assigned to ¢1R>4 @2

10. B(@1 Rza—x 2) = B(g1) V (unch(x) A O(((x < d) A (g1 Rza—x 2)) V (91 R ¢2)))

1. B(p1 A @2) = B(g1) A B(g2)

12. B(g1 Vv @2) = B(e1) V B(¢2)

13. B(Op1) = O(e1)

14. B(¢1) = ¢1, if @1 is an action or a clock bound

15. B(true) = true

16. B(false) = false.

w

AN W

It is obvious that S(v) is an extended formula in Ext(¢).

From the semantics given in Sect. 2 for MTLg o, we know that (\/ .5, a) = true and
forany a,b € X,ifa # b, then a A b = false. Using these facts and that () distributes
over disjunction and conjunction, we can show by induction that 8(1/) can be transformed
equivalently into a disjunction of the following form:

k
\/ (aj Agj Arst(X;) Aunch(Yj) A O(l/fj))
j=1

where for every j between 1 and k: a; € X is an action, g; is a conjunction of clock bounds,
X; € (Xy> U Xg<) and ¥; © (Xy< U Xg>), ¥ € 2BF@ 757 (X)) is the abbreviation of
/\xeX/, rst(x) and unch(Y;) is the abbreviation of /\XE},,, unch(x).

Wecalleachaj A gj Arst(X ;) Aunch(Y;) A O(¥;) abasic conjunction of ().
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From each basic conjunction a; A g; A rst(X;) Aunch(Y;) A O(¥;), we can define a
group of transitions from v to v ;:

(W’aj»gj’r’lﬁj)GE lffngrg(X\Yj)

Theorem 1 Let ¢ be a safety MTLy o formula over X, and Ay, be a TA for ¢ built according
to the procedure given above. Then L(Ay)\Zeno(X) = L(p)\Zeno(X).

Theorem 2 Let ¢ be a co-safety MTLy o formula over X, and Ay, be a TA for ¢ built accord-
ing to the procedure given above. Then Lyeqcn(Ay, {true})\Zeno(X) = L(p)\Zeno(%),
where Lyeach(Ay, {true}) denotes the timed words that are accepted by a run that eventually
reaches the location true(that is, the empty subset of BF(¢)).

4.3 Proofs for Theorem 1 and Theorem 2

In this subsection we will provide proofs for Theorem 1 and Theorem 2. The following two
lemmas proves the validity of the rewrite rules.

Lemma 1 Let w be an extended timed word and r € Sub(¢) U CL(p). If w =, B(), then
e .

Proof We prove this by induction on the structure of .

1. If ¢ is an action or a clock bound, then 8(1) = ¥ and the conclusion is true.
2. Assume that the conclusion is true for all sub-formulas of .

Case 1. ¥ = Y A Y2t
Since B(¢) = B(¥1) A B(Yn), it is easy to see that the conclusion is true for .
Case 2. ¥ = ¢1U<q ¢2:

l. Ifw e B(g2), then @ =, @2, and s0 @ =, ¢1U<q ¢2.

2. If w %, B(¢2), then from w =, B(¥) and B(¥)= B(p2) V (B(p1) A O((x < d) A
(91 Ua—x 92))), we know that o =, Bp1) A O((x < d) A (g1 U<g—y ¢2)). Hence
o F=e Ble1) and o = O((x < d) A (91 U<q—x ¢2)). From the induction assumption
we get that w =, ¢1. From o =, ¢ and w =, O((x < d) A (@1 U<g—x ¢2))) we then
get the conclusion that w =, ¢1U<q ¢2.

The proofs for the rest of the cases are similar and are omitted here. O

Deﬁniiion 6 Given a timed word w = (#1,ay), (t2, a2)(t3,a3) ... and a clock valuation
vy = 0, an extended timed word w = (1, ay, v1)(t2, az, v2)(t3, a3, v3) ... can be defined
inductively as follows:

1. If x is the clock assigned to ¢1 U<y ¢ € Sub(p), then

i (X) + tig1 — fi, ifvi(x) <d, w' = @1U<gy ) 92 and w' ¥ g
tiv1 — b, otherwise.

Vi41(x) = [
2. If x is the clock assigned to ¢1Ux4 @2 € Sub(gp), then

Vi) = | T ifw' = ¢1Uzq ¢2;
o v (x) + tit1 — t;, otherwise.
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3. If x is the clock assigned to ¢1R<4 @2 € Sub(g), then

tiv1 — 1, ifw’ = p1R<g @2 and w' ¥ ¢y
vip1(x) =

vi(x) +ti41 —t;, otherwise.

4. If x is the clock assigned to ¢1R>4 @2 € Sub(g), then

Vi (X) 4+ tig1 — 1, ifvi(x) <d, w' | @IRsg—y ) @2 and w' E ¢y
tiy1 — ti, otherwise.

vip1(x) = {

Lemma 2 Let w be a timed word, and w be the extended timed word defined in Definition
6, then for every Y € Sub(p) U CL(p), if w =, Y thenw =, B(Y).

Proof By induction on . O

Lemma 3 For each v € Sub(p) U CL(p), B(Y) can be transformed equivalently into a
disjunction of basic conjunctions:

k
\/ (aj A gj Arst(X;) Aunch(Yj) A OW;))
j=1

where for each j between I and k : aj € X, g; is a conjunction of clock bounds, X; C
(Xu> U Xr<),Y; € (Xu< U Xr>), and r; € 2BF@).

Proof We first define Length(v) for each ¥ € Sub(¢) U CL(gp) as follows.

. Length(true) = 0;

. Length(false) = 0;

. Length(yr1) = 0, if ¢ is an action or a clock bound;

. Length(Oy) = 0;

. Length(yr1opy2) = Length(y1)+ Length(y2) + 1, where op is an operator in the set
(A, V,U, U<y, Usg, Ucyx, Usg—x, R,R<y, R>y, Ry, Rog i ).

Now we prove the conclusion by induction on Length(y).

S S I S R

1. Since B(true) =true = \/ ,cx a = \/ 45 (a A Ol(true)), the conclusion is true for the
case of ¥ = true.

2. Since B(false) = false is the disjunction of zero disjuncts, the conclusion is also true
for the case of Y = false.

3. If ¥ = a, and a is an action, then S(¥) =a = (a A O(true)), and the conclusion is true
for the case of ¥ = a.

4. If ¥ is a clock bound x ~ d, then B(Y) = (x ~d) = /5 (a A (x ~d) A O(true)).
So the conclusion is true for ¥ = (x ~ d).

5. Ify = Oy, then B(Y) = OW1) = Vyex (@ A O®@W1)). So the conclusion is true for

this case.
6. If Yy = @1 A @2, then B(Y) = B(¢1) A B(p2). By the induction assumption, we have that

ki

Blw) = \/ (@ A g} Arst(X)) Aunch(Y]) A OW)))

i=1
and
ko
Blw) = \/ (d] A g Arst(X)) nunch(Y]) A OW))).
j=1
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then
ki kp

B(Y) = \/ \/ ((a; /\a}’)/\(gl{Ag}’) Arst(X; U X}') Aunch(Y] U YJ/»/)/\O(W;/\w}/))

i=1j=1

Since a; A a}’ is either equals to a; or false, it can be concluded that the conclusion is
true for the case of v = @1 A .
7. The other cases can be proved similarly. O

Now let us begin to prove the Theorem 1.

Proof of Theorem 1 1. L(Ay)\Zeno(X) C L(p)\Zeno(X).

Letw = (#1, a1), (2, a2), (13, a3) ... be anon-Zeno timed word in £(A,,), then there exist
Vi, Y2, Y3, ... € L, (Y1, ar, g1,7r1, ¥2), (Y2, a2, 82,72, ¥3), ... € Eand v, v, 03, ... €
Rg() such that Yy = ¢, and for each i > 1: there are X; € (Xuy> U Xr<) and ¥; C
(Xu< U Xg>) suchthata; A g; Arst(X;) Aunch(Y;) A O(¥i+1) is a basic conjunction of
BWi), Xi Cri S (X\Y3),vi & gi,and viy1 = (vi[ri]) + (i1 — 1).

Then we get an extended timed word w = (1, ay, v1), (2, az, v2), (3, az, v3), ..., and
o = a; A gi Nrst(X;) Aunch(Y;).

For each i > 1, using o’ and v, we can define an assignment u; (V) € {true, false}
for all extended formulas in Ext(¢) as follows.

1. Foreacha € X, ui(a) = trueiffa = q;

2. wilx ~d) =trueiffv;(x) ~d

3. wi(rst(x)) =true iff vy (x) = tig1 — t;.

4. pi(unch(x)) = true iff viy1(x) = vi(x) +tig1 — &

5. For each ¢1 € BF(¢), ni (O(p1)) = true iff 1 € ¥;y1 ( please noted that ¥; 41 is a
subset of BF(¢))

6. wi(@1 A @2) = pi(p1) A pi(g2)

7. wiler VvV @2) = pi(e) vV pi(e2)

8. wi(p1 Rp2)= wi(@2) A (ile1) Vv 1i(O(p1 R 2)))

9. wmi(@1R<q 2) = wi(p2) A (pi(p1) v pi(rst(x)) A (i (O(@1 Reg—x92)) V i (Ox >

d)))), where x is the clock assigned to ¢1 R<4 ¢2
10. The other cases for w;(¢1 U<q 92), i (@1 U<q—x 2), ti (91 R<q—x ¢2) can be defined
similarly, accordig to the rewriting rules in Sect. 4.2.

It is easy to show that if a A g A rst(X1) A unch(Y}) A Q) is a basic conjunction of
B(r), and w;(a A g Arst(X1) Aunch(Y)) A Q') is true, then w; (¥) is true.

Thus for each i > 1, we get that u; (;) = true, and furthermore, for each basic formula
¥ € i, we have u; (¥) = true.

Now we show that for each ¢ € Sub(¢)U CL(¢), if i () = true, then o = Y.

1. If 4 is an action or a clock bound, the conclusion is obviously true.
2. If y = O(¢), and w; (Y) = true,

then ¢ € VY41, and pi41(p) = true.

By induction, we get that ' t! =, ¢.

So o' =, O(9).
3. If v = ¢1 A ¢ and w; (W) = true,

then i (¢1) = ni(p2) = true. _

By induction, we get that o' =, ¢ and o' =, ¢2.

Thus we get the conclusion that o' =, ¢1 A ¢».
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4. Ify = ¢1 V ¢y and u; (Y) = true,
then w;(¢1) = true or u; (¢2) true.
By 1nduct10n we get that o' =, ¢ or o' =, ¢.
Thus o' =, ¢1 V ¢o.
5. If ¢ = ¢1R¢po and w; () = true,
then p; (@2) A (i (@1) V i (Oe1 R ¢2))) is true.

Thus we get that i (¢2) = true, and that M (1) =trueor o1 Ry € Y.
By induction, we get that o' =, @2, ®' =, @1 0r 1 Rgn € ¥4.

Case 1. If o' ‘lze ¢ and o =, @1, then o =, ¢1R @2, and the conclusion is true.
Case 2. If o' =, ¢ and 91 Ry € Vi1, then from ¢ Ry € ;4 we know that
i+1(1 R ) = true, thus w;1(@2) = true,and p;y1(p1) = true or o1 R gy € ¥i42.

By induction, we have that o' ! |=, @2, o' ™! |=, @1 or 91 R2 € Y0

Q.1 If o't! =, ¢ and o' t! =, ¢, then from the fact that o' =, ¢-, we know that
o' |;e ¢1R¢;. So the conclusion is true.
(2.2) If 't Ee ¢2 and @1 R @2 € v¥i10, then we know that ;2 (@1 R ¢p) = true.

Thus 1 12(92) = true, and p;12(p1) = true or 1 R gy € ¥iy3.
By induction, we get that ' *? =, ¢, @' ™2 =, @1 or o1 R @y € ¥; 3.
This procedure can stop or proceed infinitely; in both case, we could get that w' =, ¢1R¢p».

6. We omit the proofs for the other cases.

Since p1(¢) = true, from the above conclusion we get that w' =, @, thus we finish the
proof for L(Ay)\Zeno(X) C L(p)\Zeno(X).

2. L(p)\Zeno(X) € L(Ap)\Zeno(X).

Let w = (t1,a1), (2, a2), (t3,a3)... be a non-Zeno timed word in L(¢) and
w=(ty, ay, v1)(t2, az, v2)(13, a3z, v3) ... be the extended timed word defined in Definition 6.

From w € L(¢), we know that w =, ¢.

Let ¢; = ¢, then by Lemma 2, we get that w =, B(¢1). Since B(¢1) can be written as a
disjunction of some basic conjunctions, so there is a basic conjunction o; A g1 Arst(X1) A
unch(Yy) A O(g2) of ¢1 such that w =, a1 A g1 Arst(X1) Aunch(Y1) A O(g2).

Thus oy = ay, vi = g1, and W =, rst(X1) A unch(Yy), and w? =, ¢.

Let ri={x | x € X\Y1,andva(x) =t, — 1}, then X1 C r; C (X\Y1).

So from the construction in Sect. 4.2, (¢1, a1, g1, 71, ¢2) € Eis a transition of A, w2 =
@2, and vy = vi[r] + (1 — 11).

Similarly, from w2 . @2, by Lemma 2, we know that there is a basic conjunction wp Aga A
rst(X2) Aunch(Y2) AO(p3) of o such that w? =, ap Aga Arst(X2) Aunch(Y2) AO(g3).

Thus a; = az, v2 = g2, and w? |=, rst(X2) A unch(Y;), and w? =, @3.

Let rp={x |x € X\Y2, and v3(x) = t3 — 1}, then X» C rp € (X\Y2).

Thus (@2, az, g2, 12, ¢3) € Eis a transition of A, w e @3,and v3 = va[r2] 4 (13 — 12).

By repeating above reasoning, we can get a run of A, that accepts w = (#1, a1), (t2, a2),
(t3, a3) . . .. This completes our proof for Theorem 1. O

Now we turn to the proof for Theorem 2.

Proof of Theorem 2 1. Lyeqen (Ay, {true})\Zeno(X) C L(p)\Zeno(X)
Let w = (11, a1), (2, a2), (13, a3) . .. be a non-Zeno timed word in Lyeqcn(Ay, {true}),
then there are v, Yo, ¥3,... € L and vy, v, v3,... € R)z(o such that ¥ =
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o, (Yi,a;, gi,ri, ¥iy1) € Eisatransitionof Ay, and a; Ag; Arst(X;) Aunch(Y;) AQOWit1)
is a basic conjunctionof 8(;), X; € r; C (X\Y)), v; = gi,and viy1 = (vi[ri )+t 11— 17).
Then we get an extended timed word w = (f1, ay, v1), (2, a2, v2), (13, a3, v3), ..., and
o' = ai A gi Nrst(X;) Aunch(Y;).
Because ¥, ¥, ¥3, ... could reach the location true, we can assume that y,, = true.
Now we prove by induction that for all i < n: o' =, ;.

1. If i = n, then Y, = true and " =, ¥,.
2. Assume o' =, ¥; is true for all i > k + 1, now we show that o* =, ¥y is true.
From (Yrx, ak, gk, 'k, Yi+1) € E, we know that o =e ax A gk Arst(Xy) Aunch(Yy) A

OWrt1), 50 o = B(W).

Then from Lemma 1, we get the conclusion that o o Y.

2. L(@)\Zeno(X) C Lreach(Ay, {truep)\Zeno(X).

Let w = (#1,a1), (2, a2), (t3,a3)... be a non-Zeno timed word in L(¢) and
w=(t1, ay, v1)(t2, a, v2)(13, as, v3) ... be the extended timed word defined in Definition 6.

From w € L(¢), we know that w =, ¢.

Let ¢; = ¢, there is a basic conjunction a1 A g1 A rst(X1) A unch(Y1) A O(g2) of ¢
such that w = oy A g1 Arst(Xy) Aunch(Y1) A O(g2).

Then o = ay, v; = g1, and W = rst(X1) A unch(Yy), and W = ).

Let ri={x |x € (X\Y1),andva(x) =t — 1}, then X| C ri C (X\Y1).

So from the construction in Section 3.2, (¢1, a1, g1, 11, ¢2) € Eisatransitionof A, w2 =
@2, and vy = (vi[r1]) + (12 — 11).

Similarly, we can get a sequence ¢», ¢3, ¢4, ... of formulas from 2BF®) such that
(@i, ai, g, ri,¢i+1) € Eis a transition of Ay, and w; = a; A gi Arst(X;) Aunch(¥;) A
O(@pi41) foralli € N.

Now, it suffices to prove that there exists some k such that gy = true.

To do this, we define the depth dep(¢) for formulas in Sub(p)U2BF@),

. dep(a) =dep(x ~ d) =dep(true) =0;

. dep(¢1 V ¢2) =dep(¢1 A ¢2) = max{dep(¢1), dep(¢2)};

. dep(O¢) =dep(1) + 1;

. dep(¢1 U<y ¢2) = dep(¢1 R<y ¢2) = max{dep(¢1), dep(¢2)} + 2;

. dep(¢p1 Usy ¢2) = max{dep(#1), dep(¢2)} + 3;

. dep(¢1 Us4—x ¢2) = max{dep(¢1), dep(¢2)} + 2;

. dep(¢1 U ¢2) = max{dep(¢1), dep(¢2)} + I,

. dep(¢1 U<y—x ¢2) = dep(é1 R<y—x ¢2) = max{dep(¢1), dep(¢2)} + 1.

00 NN LB~ W=

Then dep(¢;) > dep(¢z) > dep(¢3) > ..., and there exists N such that for all i > N:
dep(p;) = dep(¢n).

If dep(pn) > O, then some ¢ U<g—x ¢2 , ¢1 R<g—x ¢2, ¢1 U>g—x ¢2 or ¢1 U will
remain in ¢; foralli > N.

1. If 1 U<y—x @2, 0r 1 R<y_x 2, or ¢1 U>4_, is remain in ¢; for alli > N, then we get
that x will not be reset and will not exceed d.
This is not possible, because the extended timed word w is assumed to be non-Zeno.

2. If ¢1 U ¢, is remain in ¢; for all i > N, then W E ¢ Uy will be true forall i > N,
and W' = ¢, is false for all i > N. This is also not possible!

Thus dep(¢y) must be zero, so gy 11 = true and w € Lyeaen(Ay, {truep)\Zeno(X). 0O
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4.4 Reducing the transitions in A,

Given a basic conjunction a A g Arst(X1) Aunch(Y1) A O(), its sub-formula rst (X1) A
unch (Y1) tells us that the clocks in X | should be reset and the clocks in Y7 should not be reset.
It does not tell us the other clocks in X\ (X U Y;) should be reset or not be reset. So in the
construction of Sect. 4.2 we enumerate all the possible situations for clocks in X\ (X U Y}),
and thus we get a group of transitions from a basic conjunction. In this subsection, we will
show that it is not necessary to enumerate all possible combinations for clocks in X\ (X{UY?),
there exists a best choice, that is, to reset all clocks in (Xy< U Xgr>)\Y] to zero and keep
all clocks in (Xy> U Xr<)\ X1 unchanged. The idea behind this choice is that each clock
x € (Xu< U XRr>) should be reset to zero unless unch(x) is asked to be true, and each clock
x € (Xu> U XRr<) should not be reset unless rst(x) is asked to be true. In this way, for
a given basic conjunction a A g A rst(X1) A unch(Y1) A Q1) of B(v), then transition
(W, a, g, 2, Y1) with A = (X7 U ((Xy< U Xpg>)\Y1)) will be the unique transition from
to ¥ in the following construction.

Definition 7 Let ¢ be an MTL( o, formula over X, we can define a timed automaton A,=
(L, lp, X, E) for ¢ as follows.

— L ={p} U2BF® ig the set of locations, and Iy = ¢ is the initial location;

— X = Xy< U Xus> U Xgr< U Xg> is the set of all clocks.

- (Y1,a,8, A, Yn) € E iff there exist X1 € Xy> U Xr< and V1 € Xy< U Xgr> such
that a A g A rst(X1) A unch(Y1) A O(Yr) is a basic conjunction of S(¥1) and A =
(X1 U ((Xy< U Xg)\YD).

Theorem 3 Let ¢ be a safety MTLy o« formula over X, then L(Ay)\Zeno(X) =
L(Ay)\Zeno(X).

Proof It suffices to prove that L(Ay)\Zeno(X) C L(Ay)\Zeno(X).

Letw = (11, a1), (2, a2), (13, a3) . . . be anon-Zeno timed word in L(A), then there exist
Y1, Y2, Y3, ... € L, (Y1, a1, 81,71, ¥2), (Y2, a2, 82,72, ¥3), ... € Eand vy, v2,v3, ... €
Rgo such that Yy = ¢, and foreach i > 1:thereare X; € Xy>UXr<andY; € Xy<U Xg>
such that a; A gi A rst(X;) Aunch(Y;) A O(Wit1) is a basic conjunction of (), X; C
ri € X\Y;, vi = gi,and viyy = (vi[ri]) + (ti41 — 1).

Foreachi > 1,let A; = (X; U ((Xy< U Xg=)\Y;)), then (V;, a;, gi, Ai, ¥it1) € Eisa
transition in A,,.

We define v|, v5, v}, ... € Rg() inductively as follows:
vi = v, vy = v+ (=), .. v = IGD + G — 1),
Then by induction on i we can prove that the following Assertion 1 is true. O

Assertion 1 Foreachi > 1 and x € X, if x € Xy> U Xgr< then v; (x) < vlf(x); otherwise,
i (x) = vi(x).

From the rewrite rules in Sect. 4.2, it is easy to find that the following Assertion 2 is also
true.

Assertion 2 For each x € X, if x € Xys= U Xgr<, then x > d and x > d will not occur in
gi; otherwise, x < d and x < d will not occur in g;.

From Assertion 1, Assertion 2 and v; |= g;, we can conclude that vlf = g;. Thus (1, 0) LN
h—t 13— .
W1, v) <> (2, v[Da]) 2= (W2, v5) = (P3, v[Aa]) =—> (Y3, v4) ... will be a run

of A, that accepts the timed word w = (t1, a1), (f2, a2), (13, a3) .. .. This completes our
proof.
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Fig. 2 A timed automaton for (0> 1a) v O<2b

Theorem 4 Let ¢ be a co-safety MTLy  formula over X, then Lyeqen(Ag, {true})\
Zeno(X)= Lyeach(Ay, {true})\Zeno(%).

Theorem 4 can be proved similarly as Theorem 3.
Example. Let £ = {a, b} and F = (0>1a) vV O<2b, then

B(F) = (rst(xo) NOWF1 V F2)) vV (b Arst(x)) A OQ(F3 V Fy))
= (a Arst(xo) AQF1) V (a Arst(xg) A OF)
V(b Arst(xo) AQF1) Vv (b Arst(xg) AQOF)
V(b Arst(x)) AQF3) Vv (b Arst(x)) AQFa),

where | = O>1-xpa, Fo = (x0 > 1) A Qa, F3 = (O<z—x,b) and F4 = (x1 > 2).

So F has 6 outgoing transitions: (F, a, true, {xo}, F1), (F, a, true, {xo}, F2), (F, b, true,
{xo}, F1), (F, b, true, {xo}, F2), (F, b, true, {x1}, F3), (F, b, true, {x1}, F4). Similarly, we
can continues compute the outgoing transitions for Fy, F>, etc. The whole timed automaton
constructed for F is presented in Fig. 2.

4.5 Constructing deterministic under-approximation automata

The construction in Definition 7 might produce non-deterministic automata. In fact, as stated
earlier, there exist MTL oo-formulas for which no equivalent deterministic timed automaton
exists. However, if ¢ is a safety or co-safety MTL ( o-formula, then we can construct a
deterministic under-approximation timed automaton Ay, for ¢ with the construction that we
already presented in [12].
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The basic idea behind this construction is the classical subset construction from NFA to
DFA. The deterministic timed automaton A; is constructed from non-deterministic automa-
ton A, (Sect. 4.2) with the subset-construction technique. Each state in A is a subset of the
states in Ay, and each transition of .Af/‘) can be regarded as a collection of several transitions
from A,.

The initial location of Ag is ¢, the other locations of Ag are formulas from CL(¢).

The actions of Aj, are same as that of ¢.

The clocks of A; are the set X defined for ¢ in Sect. 4.1.

Let ¢ be a formula in {¢} U CL(¢). To define the outgoing transitions from v, we further
translate S(v) in disjunctive form into the following deterministic form by repeated use
of the logical equivalence p < (p A q) V (p A —q).

Ealb el e

=\/ (@i A gi A\ st (Xix) Aunch(Yir) A OWin)))
i=1

k=1

where foralli € {1, ..., n}: a; € ¥ is an action, g; is a conjunction of clock bounds, m; is a
positive integer, X;x € Xy> U Xgr< and Yjx € Xy< U X g are sets of clocks, ¥;x € CL(p),
and forall i # j:a; #aj or g; A g; is false.

Using the facts that O distributes over Vv, and rst(Y) and unch(Y) are monotonic in Y,
the following formula F&j is an under-approximation of Fy:

n mj m;
Flf = \/ ai A gi Arst(| Xio) A unch(U Yi) A OC\ ¥in))
i=1 k=1 k=1 k=1

Then v has n outgoing transitions in Af/‘), that is, {(V, a;, gi, (U;";l Xir) U (Xy< U
XR>)\(Uk VYD, Vil i) |1 < i < n}. We use Tran(A%) to denote the set of all
transitions in A%,

Please noted that each a; A g; Arst(Xix) Aunch(Yix) A OWix) is a basic conjunction of
B (), so each transition in Afj, can be considered as a collection of several transitions from
the automaton A, (Sect. 4.2). Now we show that every timed word accepted by Ay, is also
accepted by A,.

Theorem 5 Let ¢ be a safety MTLy  formula over X, then ﬁ(A;)\Zeno(E) -
L(Ap)\Zeno(X).

Proof Let w = (t1,a1), (f2, a2), (3, a3) ... be a non-Zeno timed word in L(Af;)), then

there exist ¥y, Y2, ¥3, ... € {9} U CL(p), (Y1, a1, g1, 11, ¥2), (Y2, a2, 82,12, ¥3), ... €
Tran(.A(’:,), and vy, v2,v3,... € Rgo such that ¥y = ¢, and for eachi > 1: v; = g;, and

Vi1 = ilri]) + (ig1 — 1).

For each i > 1, since (Y;,a;, gi,ri, ¥i+1) 1s a transition of AY, there exist
Xit, Xio, ..., Xim; € 2XU3UXR5, Yit,Yio, ..., Yim; € 2XUSUXR2,and Yits Yizy ooy Yim,; €
2BF(®) guch that

ri = Uty Xit) U (Xu< U Xp=)\(U, Yie))s Yir1 = Vi, ik, and for every k €
{1,2,....,mi}:a; A gi ANrst(Xix) Aunch(Yig) A O(Wix) is a basic conjunction of B(;).

Now we can defined an infinite tree 7 using the formulas from {¢} U 2BF©) a5 follows.
. (0, ) is the root of 7.
. Foreachi > landk € {1,2,...,m;}, (i, Yir) is a node at level .
3. Foreachi >2andk € {1, 2,..., m,'}, since a; A gi N rst(Xix) A unch(Yik) A O(W,k)
is a basic conjunction of 8(i;) and ¥; = \/:lﬁf') ¥ (i—1)k, then there exists a n; such that

N =
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b,{x0,x1}

b & x0<1 & x1<=2 a,{x0}

Crimis e

b & x0>=1 & x1<=2 a & x0<1 & xI<=2

(b & x152) | (a & x152) | (a & x0>=1)

Fig. 3 Under-approximation automaton for (¢>1a) v U<2b

1 <n; <mg_y1yanda; A g Arst(Xi) Aunch(Yi) A O(ir) is a basic conjunction of
B(Wi—1)n;). We define (i — 1, ¥(;—1)n,;) to be the only parent of (i, ¥ix).

Since 7 is an infinite tree, by Konig’s Lemma, 7 has an infinite branch (0, ¢) (1, ¥1;,)
(2, Y21,) .... Because a; A g;i A rst(Xi;) A unch(Yy,) A O(i;) is a basic conjunction
of B(Yi—1i;_y)) and Xi;; € ri © (X\Yi,), thus (Y—1)1;_,,- ai» &, ris Yis;) is a transition
of Ay. Then from the fact that v; = g; and vi11 = (vi[r;]) + (tix1 — ¢;), we know that

P~ —t 13—
@, 0) 5 (@, ) & Wy, vilr D) =—> Wiy, v2) = (Y21, v2[r2]) =—> Yoy, v3) =
(Y315, v3[r3]) ... is arun of A, that accepts w = (11, a1), (2, a2), (13, a3), .. .. O

Theorem 6 Let ¢ be aco-safety MTLy « formula over X, then Ly eqcn (A%, {true})\Zeno(X)
< l:reach(Aw, {trueph)\Zeno(Z).

Theorem 6 can be proved similarly as Theorem 5.
Example. The automaton in Fig. 3 is a deterministic under-approximation timed automaton
for ¢ = (O>1a) v O<2b.

5 Finding a winning strategy using UPPAAL-TIGA

Let us first consider that the specification contains exactly one requirement and one assump-
tion, i.e. we are solving the synthesis problem (¢ — ¥, X, X,), where ¢ and y are safety-
MTLy,» formulas over X, U ;.

The negation —¢ is in co-safety-MTL o, and we apply the algorithm described in the pre-
vious section to build the deterministic TA A, such that £, ¢qcn(A—g, {true})\Zeno(%. U
Xy) € L(—¢). ¥ is in safety-MTLg o, and we build deterministic TA Ay such that
L(Ay)\Zeno(X: U X,) € L(Y¥). Next we add a location false to both A—, and Ay
and add the transitions to it that are enabled when none of other outgoing transitions from
the current location is enabled. In other words, we make Ay and A—, complete so that they
end up in false if they cannot accept the input word. This syntactic transformation can be
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done in linear time in the automaton size. In the rest of this section we describe how we apply
UPPAAL- TIGA to A—, and Ay, to generate a solution for the synthesis problem.

UPPAAL- TIGA [5] is a tool that checks whether there exists a strategy for the controller
to satisfy the given reachability or safety winning condition for all uncontrollable moves of
the opponent player. Such a strategy can be syntactically represented by a timed automaton
S derived from the input timed automata A where the guards of the controllable transitions
are restricted. The semantics of strategy TA S is urgent for the controller, i.e. a controller
always proposes to take the earliest enabled controllable transition. Thus this semantics is
essentially the same as we gave in definition 4 when we described how a timed automaton
implements a strategy for a synthesis problem.

Thus if A is deterministic and complete, and together with the winning condition it encodes
the input specification ¢ — ¥, then the winning strategy generated by UPPAAL- TIGA imple-
ments a solution for the synthesis problem (¢ — ¥, X, ).

We construct such A by forming a parallel compositionof A, and Ay, i.e. A = A—y||Ay.
This parallel composition is synchronized on actions and time delays, i.e. a transition

d . . . . ..
(s1,82) = (s1,8)) exists in A for some d € R>9 U X, U X, iff there exists a transition

d . . ... d . - .
s1 — s1in A, and there exists a transition so — s/ in Ay,. Let L, be the set of locations

of this parallel composition such that A, is in its location true, and let L? alse D€ the set of
locations such that Ay is in its location false.
The goal of the controller in A—,||Ay in UPPAAL- TIGA is to:

— violate the assumption ¢ by visiting a location from L,,%,, or
— satisfy the requirement i by avoiding visiting the locations from L% Iser

Unfortunately UPPAAL- TIGA does not support winning conditions of the form O (L,,%,) v

D(—-L?am). Thus we use a stricter winning condition of (L;p,ue)R(—-L?alm), thatis more hard

to control for the controller. Such variations of the winning condition was previously proposed

in [8] where the authors study “strict realizability of the implication” (O(L,,%,) v (—-L? alse))

and “realizability of the implication” ((L;p,ue)R(—-L‘fbglM)) for GR(1).

If the input specification contains more than one assumption and/or requirement, i.e it
is of the form ¢ A @2 A --- A @y — Y1 A Y2 A - A Yy, then we can still consider
© = @1 A@2 A -+ A @y as a single assumption and ¥ = Y1 A Y2 A - A Yy, as a
single requirement (since safety-MTLg » is closed under conjunction). However, in our
implementation we construct a separate automaton for every formula, and search for a winning
strategy in the parallel composition Ay, || - [[A—g, ||Ay, || - - [|Ay,,. It is more efficient
since we can avoid the full exploration of the game state space thanks to the on-the-fly game
solving algorithm used by UPPAAL- TIGA.

Additionally, we have to make sure that the generated strategy of UPPAAL- TIGA is non-
Zeno (otherwise, we cannot guarantee that monitoring TA approximates the specification
due to Theorems 1 and 2). We do this in either of two different ways.

The first way is to try to prove that all Zeno strategies are losing for the controller. We
do this by adapting the construction of [22]. And second, we can force UPPAAL- TIGA to
generate a non-Zeno strategy by using a Biichi acceptance condition [15]. The second way
requires a more expensive algorithm for the solution of timed games with Biichi objectives,
thus it is advisable to try the first way first. We describe both approaches in details in the next
subsection.
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Fig. 4 A test automaton Az al
for the detection and forcing e .
of non-Zeno behavior | a0 2
T N
! a3 !
lpmm e N
L1 x>=1 J/ L2

5.1 Avoiding and detecting Zeno loops in UPPAAL- TIGA

Our goal is to avoid generating strategies that can produce the timed words from
Zeno(X.)\Zeno(X,), we call such strategies non-Zeno.
Let us first describe the way of proving that all Zeno strategies are losing for the controller.

We say that there is a controllable Zeno loop in A, || Ay iff there exists a run s RPN
s7 ... such that this run is Zeno, all its actions are controllable starting from some point, and
the run does not visit locations from L? alse- 1L 18 €asy to see that if there are no controllable
Zeno loops in A—,|| Ay, then there are also no winning Zeno strategies in it. In order to detect
controllable Zeno loops, we put A—y||Ay in parallel with a test automaton depicted in Fig. 4
(we consider here that ¥, = {al, a2, a3}). This test automaton Az has two locations L1
and L2, and location L2 is urgent (see [6]), i.e. automaton arrives in location L2, it should
leave it at the next transition without time being elapsed. Additionally, the location L1 has
an invariant x < 1 which states that the TA should leave this location as soon as the value of
x reaches 1. We use UPPAAL (basic version) to check that A—,||Ay||Az satisfies property
O(L1 — ¢L2), that can be expressed as L1 —> L2 in UPPAAL. It is easy to see that there
exists a controllable Zeno loop in A—, || Ay, iff this property is not satisfied by A—, || Ay |[Az.

If there exists a controllable Zeno loop in A—y[|Ay, then we prevent the controller from
playing a Zeno strategy by adding a requirement that the time should always progress. We do

this by again considering a parallel composition A-,||Ay ||Az and asking UPPAAL- TIGA to

find a winning strategy for the winning condition ((L;/),MB)R(—-L%M)) AOOQL2 (see [15]).

6 Case studies

We present three case studies, and for some of them we compare the performance of our
tool to the performance of Acacia+ [9] and Unbeast [18] that are state-of-the art synthesis
tools for LTL. The comparison with Unbeast is of special interest because it is designed
for the assume-guarantee properties, just like our approach. Acacia+ is especially efficient
for the compositional specifications being of the form /; ¢, thus we use the compositional
synthesis in Acacia+ and transform the specifications @1 A +-- A @, — Y1 A -+ A Y, into
@ILA ANy = YDA~ A(@1 A Ay = V). We experimentally checked that
Acacia+ is more efficient in this case, even if the input specification is larger. For Acacia+
and Unbeast we use the LTL3BA tool [4] as it gives smaller automata for our specifications
than the LTL2BA tool.

For all the case studies our implementation managed to produce exact monitoring Timed
Automata for the input specifications. Additionally, our implementation detected for all the
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Table 1 Specification for the job scheduling problem

Assumption ¢ The jobs do not to arrive too often
O(job — (O<y—job))
Requirement {1 A computational unit should be assigned immediately to every incoming job
OGjob — (=job)U<o (V.. ui))
Requirement ¢ ~ The assignments should be preceded by requests
OV izr..v ui) = =X((=job)UV =y ui)) A=(Vip. y i)
Requirement yr3  There should be a time gap of N between the assignments of the same computation unit

Ni=1..n B — (ﬁgN_‘”i))

Table 2 Results for the job scheduling problem

N 2 3 4 5 6 7 8

Time Zeno behavior is proved to be losing <1s <Is <Is <ls 7s 4mdds  Timeout
Zeno behavior is avoided by Biichi <ls <lIs 4s 1m38s  Timeout Timeout Timeout

Strategy size 12 28 60 124 252 508 -

specifications that there are no winning Zeno strategies (the timing results include this check).
However, for the comparison reasons we also present the results for the Biichi-based approach.
We report the number of rules (transitions) of a strategy graph as a strategy size.

The experiments were held in Amazon Elastic Cloud on a High-Memory Quadruple Extra
Large Instance (64 GB of memory, processor power equivalent to 3.25 GHz 2007 Xeon
processor). The timeout is fixed to 1h.

6.1 Job scheduling problem

Consider the following online job scheduling problem. There are N computational units, and
computation of a job on a single unit takes 7" time units. New jobs can arrive sporadically,
and we assume that the minimal time between the arrivals of two jobs is 1 time unit.

The goal of the scheduler is to assign new jobs to the computational units, so no two
jobs overlap in time on the same computational unit. We require that this assignment should
happen immediately after a job arrives, and jobs cannot be moved from one computational
unit to another.

Obviously, the problem has a solution iff N > T'. We study the borderline case of N = T.
Our specification is defined over a set of uncontrollable actions ¥, = {job} and a set of
controllable actions X. = {uy, ua, ..., uy}. The environment triggers action job, when a
new job arrives, and the controller can assign a computation unit { to it by triggering u;.
The specification is ¢; — Y1 A Y2 A Y3, where the components are defined in Table 1.
The time results are given in Table 2. This specification is essentially based on time, thus
we didn’t apply Acacia+ and Unbeast to it. The strategy sizes are equal for the two ways
of avoiding Zeno behavior in our implementation (although we don’t prove that it is true in
general).

Figure 5 contains solution for the N = 2. For simplicity, we removed one extra clock
whose value is always equal to the value of x.
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job

(2<2)&&(y>=2)&&(x>=1) job

x:=0 (z<2)8&

Bt e LR T 5 (y<2)8&
job job o ro Ge=1)

L
I
I

| job
| (y>=2)3&0c=1) (y<2)8&(x>=1) (25=2)8&(x>=1)

ASSUMPTIONS_VIOLATED

Fig. 5 Synthesized strategy for the jobs scheduling problem for N = 2

6.2 Dining Philosophers problem

Consider that there are N philosophers (that are a part of the environment). A philosopher
may indicate that he is hungry (event hungry; for philosopher 7). The controller can tell a
philosopher to take his left or right fork, or tell him to start eating (events [ fork;, r fork; and
eat; for philosopher i). A philosopher may indicate that he finished eating (event finish;),
and at the same time he puts both forks on the table. Thus the set of uncontrollable actions is
¥y, = {hungryi, ..., hungryy, finishy, ..., finishy}, and the set of controllable actions
is . = {lforky, ..., Iforky,rforky,...,rforky,eaty, ..., eaty}.

We also transformed this MTL( « specification into the untimed LTL specifications
for Acacia+ and Unbeast (basically, we removed all the timing constraints from the for-
mula). As it can been seen from Table 6, Acacia+ and Unbeast scaled only up to N = 2,
while our tool scaled up to N = 4. One can argue that the LTL specification for certainly
requires Biichi acceptance condition, while our MTL o specification is a Boolean combi-
nation of safety formulas. Therefore we made another LTL specification for Acacia+ and
Unbeast where we discretized time (i.e. assumed bounded variability), and this specifica-
tion does not contain until operators and thus does not require Biichi acceptance condition.
For this specification Acacia+ can also handle only the case of N = 2 with the maxi-
mal time granularity of 2, and Unbeast can additionally handle N = 2 and time granu-
larity 3. We do not report strategy sizes for Unbeast because we were not able to extract
them.

Our specification is given in Table 3, and the experimental results are presented in Table 6.
The Acacia+ and Unbeast LTL specifications for the Dining Philosophers problem are
described in details in the next two subsections.

6.2.1 Dining Philosophers specification for Acacia+ and Unbeast: LTL specification

The synthesis game in Acacia+ and Unbeast is played in rounds, and in each round one
player (i.e. controller or environment) always plays first, and the other (second) player plays
second. In each round the first player proposes some subset X of his propositions, and the
second player observes X1 and proposes some subset X, of his propositions. Thus together
they produce the next element of a run that is 3| U X,.

Thus in total we face three imprecisions when we translate our Dining philosophers
specification from MTLg o into LTL:

@ Springer



Efficient controller synthesis 187

Table 3 Specification for the dining philosophers problem

Assumption ¢

Assumption ¢

A philosopher cannot say too often that he is hungry
Niz=i..n Bhungry; — (U< y—hungry;))
A philosopher cannot say that he is hungry while he is eating, and he should finish eating

within 1 time units
Ni=1..n U(eat; — ((mhungry;) U~y finish;)))

Assumption ¢3 A philosopher cannot finish eating without starting eating

Ni=1..~n O(finish; - =O((—eat;) U finishi))) A Nj=; n ~((—eat;) U finish;)

Requirement /7 A philosopher will start eating within N — 1 time units after he became hungry

Nic1..n Othungry; — (—hungry)U<y_1eat;)))

Requirement 5 Once a fork is taken, it should be not taken again until it is put on the table

Niz1. .~ O forki viforkitian) —
—~OW~finishi A= finishiy19N) U (rfork; VIforkit19nN)))

Requirement 3 A philosopher cannot start eating if he does not hold his left fork

Ni=1..n Oeat; > =O(=Ifork;) Ueat;))) A \;—1_n —((=lfork;) U eat;)

Requirement 74 A philosopher cannot start eating if he does not hold his right fork

/\i:l...N D(eati — =O((=rfork;) Ueat;))) A /\i=]...N —((—=rfork;) U eat;)

— Our tool supports time constraints, while Acacia+ and Unbeast do not. Thus we drop all

the timing constraints in the LTL specification. Additionally, in LTL we are not available
to specify the fact that a philosopher cannot say hungry too often (assumption ¢g). Thus
instead of saying this we use an assumption that a philosopher cannot say hungry twice
without being eating in between. We also consistently change ¢, and ¥ to reflect this
fact.

Ateachround in LTL synthesis game each player can propose a set of propositions, not just
a single action. Although we can force each player propose not more than one proposition
atatime (by adding additional requirements and assumptions), it will make it more difficult
for Acacia+ and Unbeast to synthesize a controller due to its algorithm that counts the
number of times an automaton visits the Biichi acceptance locations. Thus we let each
player to propose several propositions at once (e.g. tell two different philosophers to start
eating). However, we do not allow a philosopher to say that he is hungry and say that he
finished eating at the same time slot, since the order of these events is crucial and it is
unspecified in this case (assumption ¢4). Similarly, a controller cannot tell a philosopher
to start eating and to take a fork at the same time (requirement ¥s5). Additionally, we
have to modify the requirement v, to prevent the controller from giving the same fork
simultaneously to two neighboring philosophers.

The notion of the next state in our turn-based semantics is different for the first and the
second players. We assume that at each round the environment is making the first move
(by using the option “~p 1” of Acacia+). We also modify ¢3 to handle the fact that in the
semantics of Acacia+ and Unbeast the propositions of the controller and the environment
are mixed together at each round.

LTL specification for the Dining Philosophers problem is given in Table 4.

6.2.2 Dining Philosophers specification in LTL using time discretization

We define a discretized version of Until operator:
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Table 4 Untimed LTL specification for the dining philosophers problem

Assumptions ¢ A philosopher cannot say that he is hungry twice without finishing eating
Ni=1..ny Olhungry; — =O((=finish;) U hungry;)))
Assumptions ¢y A philosopher cannot say that he is hungry while he is eating, and he should

eventually finish eating
Ni=1..y Bleat; > OO finish;))
Assumptions ¢3 A philosopher cannot finish eating without starting eating
Niz1..y B(finish; — (eat; v—=O(—eat;) U finishi)))AN\;=1 n —((—eat;)
U finish;)
Assumptions ¢4 finish; and hungry; cannot be emitted simultaneously for the same i
O(=(hungry; A finish;))
Requirements vrq A philosopher will eventually eat after he is hungry
Ni=1..n Ohungry; — Qeat;)

Requirements vy Once a fork is taken by a philosopher, it should be not taken again until it is put on
the table (here putfork; is an abbreviation for finish; v finish; gy, for
simplicity)

Ni=1..ny O fork;) — (=iforkit19n) A =OW(—putfork;)U ((—putfork;)
A(rfork VIforkit19N))NA

Niz1..n O forkit19n) — (=rforki) A=O((=putfork;)U (—putfork;)
A(rforki v Iforkit19n))))

Requirements 3 A philosopher cannot start eating if he does not hold his left fork

Niz1..y Bleat; = =O(=Ifork;) Ueat;))) A \;—. y —((=lfork;) U eat;)
Requirements 4 A philosopher cannot start eating if he does not hold his right fork

Niz1. .y Oeat; > =O((—rfork;) Ueat;))) A \j—=; n —~((—rfork;) U eat;)
Requirements 5 We cannot emit eat; and [fork; (or rfork;) simultaneously for the same i

O(—=(eat; A (Ifork; v rfork;))

ULy =y V@AOY V- V@eAOpA-AO...0pr"O...O¥).
S——— ——
d—1 d

We define O ;¢ to be equal to trueU% ;¢, and 0% ;¢ to be equal to =0 ;—¢.

Like in the previous (untimed) specification, in our LTL specification for fixed time gran-
ularity we also assume that at each slot(round) the environment plays first. Thus we use ¢4
and 5 from the previous untimed specification.

Let us fix an integer k being a time granularity (i.e. a number of times a signal can
change during one time unit). Our LTL specification for the Dining Philosophers problem
with discretized time is given in Table 5.

6.3 Generalized buffer controller

The generalized buffer controller synthesis problem has been first studied in [7] for General-
ized Reactivity (1). In [21] the authors reformulate this problem in LTL and apply Acacia+
to it. This specification describes a system that contains several senders and receivers with
a buffer in-between them. The specification is of the form (¢; — ¥5) A (¢, — V), where
¢s (¢, correspondingly) is the assumption over the behavior of the senders (receivers) and
¥ (Y, correspondingly) is the requirements over the behavior of the controller with respect
to senders (receivers). We transformed the specification into (¢5 A @) — (Y5 A ¥,), since
the former specification (¢; — ¥s) A (¢, — V) is not supported by our tool. Thus in the
experiments for our tool we study a weaker specification than Acacia+’s, and our MTLg o
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Table 5 LTL specification for the dining philosophers problem with discretized time

Assumption ¢

Assumption ¢y

Assumption ¢3

Assumptions ¢4

Requirement yrq

Requirements

Requirement 3

Requirement /4

Requirements 5

A philosopher cannot say too often that he is hungry

Ai=1..ny Ohungry; — QUL _,(=hungry;))

A philosopher cannot say that he is hungry while he is eating, and he should finish
eating within 1 time units

Ni=1..y Oleat; — ((mhungry;) UL, | finish;)))

A philosopher cannot finish eating without starting eating

Niz1..y B(finish; — (eat;v—=O((—eat;) U finishi ))IAN;=1 n —((—eat;)
U finish;)

finish; and hungry; cannot be emitted simultaneously for the same i

O(=(hungry; A finish;))

A philosopher will start eating within N — 1 time units after he became hungry

Ni=1.y Ohungry; — ((—|hungry,-)U*Sk(Nil)eati)))

Once a fork is taken by a philosopher, it should be not taken again until it is put on
the table (here putfork; is an abbreviation for finish; v finish; gy, for
simplicity)

Ni=1..n B forki) — (=iforkiyian) A
—Q(=putfork;) U ((mputfork;) A (rfork; VIfork;iian))))A

Ni=1..n O forkit1an) —

(=rforki) AN=O(=putfork)) U ((—putfork;) A (rfork; V1forkiii9n))))

A philosopher cannot start eating if he does not hold his left fork

Niz1..n Oleati > =O((=ifork;) Ueatp)) A \i—;_n —((=lfork;) U eat;)

A philosopher cannot start eating if he does not hold his right fork

Niz1. .y Oeat; > =O((—rfork;) Ueat;))) A \j—=; n —~((—rfork;) U eat;)

We cannot emit eat; and [fork; (or rfork;) simultaneously for the same i

O(—=(eat; A (Ifork; v rfork;))

Table 6 Results for the dining philosophers problem

N Our tool
Time Strategy size
Zeno is
proved to avoided
be losing
2 3s 1931
14s Timeout 65868
14m4s Timeout 2107776
N Acacia+ (untimed) Acacia+ (time Unbeast Unbeast (time  Unbeast (time
granularity 2) (untimed) granularity 2)  granularity 3)
Time Strategy Time Strategy Time Time Time
size
2 2ml2s 41s 212 1m13s 21s 2m53s

specification requires the buffer to behave correctly only if both senders and receivers follow

their assumptions.

Consider that there are N senders and M receivers. Acacia+ specification is defined over
controllable signals {b2s_ack_i} and {b2r_req_j} and uncontrollable signals {s2b_req_i}
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Table 7 MTL o specification for the generalized buffer controller problem of [21]

Assumption ¢

Assumption ¢y

Assumption ¢3

Assumption ¢4

Assumption ¢s

Requirement 1

Requirement v

Requirement 3

Requirement /4

Requirement /5

Requirement ¢

Requirement yry

Requirement /g

s2b_req_i_off comes only after s2b_req_i_on

Ni=1. .~ Os2b_req_i_off > =O(—=s2b_req_i_on)U(s2b_req_i_off)))) A
—((—s2b_req_i_on)U(s2b_req_i_off))

A request is not lowered until it is served

Nizi..N O(s2b_req_i_on — —((—=b2s_ack_i)U(s2b_req_i_off)))

The sender should immediately deassert s2b_req_i after getting the acknowledgment

Ni=1..n Ob2s_ack_i — Ox<ps2b_req_i_off)

Acknowledgment from the receiver can come only after the request from the buffer

Nj=1. m @20 _ack_j — =O((=b2r_req_j_on)U(r2b_ack_j)))) A
—((—=b2r_req_j_on)U(r2b_ack_j))

Acknowledgment from the receiver will come within 1 time units after the request
from the buffer

/\j:l.A.M Ob2r_req_j_on — Ox<1r2b_ack_j))

b2r_req_j_off comes only after b2r_req_j_on

/\jzlmM(D(berequJ)ﬁ‘—) —=OW(=b2r_req_i_on)U(b2r_req_i_off)))) A
=((—=b2r_req_i_on)U(b2r_req_i_off))

A buffer should immediately acknowledge a request from the sender

Ni=1..v O(s2b_req_i_on — Ox<ob2s_ack_i))

Acknowledgment from buffer can come only request from the sender

Niz1. yO@2s_ack_i —
—O(—s2b_req_i_on)U(b2s_ack_i)))) A = ((—s2b_req_i_on)U(b2s_ack_i))

Only one sender sends data at any one time

Nizi1..n B®2s_ack_i — —~((—s2b_req_i_of)U(V jx; b2s_ack_k)))

A request is not lowered until it is served

/\j:l...M Lb2r_req_j_on — =((—r2b_ack_j)U(b2r_req_j_off)))

The buffer should immediately deassert b2r_req_j after getting the acknowledgment

/\j:l...M O(r2b_ack_j — Ox<ob2r_req_j_off)

The buffer will not make two consecutive requests to any receiver

/\j:l...M Ob2r_req_j_on — =O((— Vk#j b2r_req_k_on)U(b2r_req_j_on)))

The buffer does not request two receivers simultaneously

/\j:l...M (b2r_req_j_on — —-((ﬁbZr_req_j_oﬂ)U(vk#j (b2r_req_k_on))))

and {r2b_ack_j} where i ranges in 1... N and j ranges in 1... M. {b2r_req_j} and
{s2b_req_i} are dealt as continuous signals that can be turned on for some duration of
time. Thus in the specification for our tool we model each of these signals with two
actions, one for the start of a signal and one for its end, i.e. we defined the actions
b2r_req_j_on,b2r_req_j_off and s2b_req_i_on, s2b_req_i_off. The signal b2r_req_j
(s2b_req_i) is assumed to be turned on in between the actions b2r_req_j_on and
b2r_req_j_off (s2b_req_i_on and s2b_req_i_off). {b2s_ack_i} and {r2b_ack_j} are
instantaneous signals, thus we leave them as actions as it is.

The goal of this case study is to demonstrate that our tool can be applied to a
specification already used with another tool. Thus we do not translate the formula
in the format of Unbeast and also use only the specifications sizes provided in the
Acacia+ distribution.

Our specification is given in Table 7. Basically, we added time constraints to the unbounded
“eventually” operators, so that the specification fits the format supported by our tool.

Table 8 contains the experimental results for this problem.

@ Springer



Efficient controller synthesis 191

Table 8 Results for the generalized buffer specification

Our tool Acacia+
Time Strategy size Time Strategy size
Zeno is proved  Zeno is avoided
to be losing by Biichi
2 Senders, 2 receivers 2s 5s 18,871 <ls 219
2 Senders, 3 receivers 3s 13s 35,748 1s 317
2 Senders, 4 receivers 5s 26s 57,239 3s 417
2 Senders, 5 receivers 9s 48s 83,618 8s 744
2 Senders, 6 receivers 14s 1m23s 114,885 23s 955
2 Senders, 7 receivers 22s 2ml3s 151,040 1m34s 1,067

7 Conclusions

We present an algorithm for the synthesis of the specifications of the form g1 A2 A- - - A@,, —
Y1 AY2 A~ - Ay, where all ¢; and v ; are safety-MTLg, o formulas. The algorithm is based
on anovel translation procedure from safety and co-safety MTL o into under-approximation
deterministic timed automata. This allows our approach to scale well to large specifications,
and have a comparable or better performance to the state-of-the-art synthesis tools Acacia+
and Unbeast (the specifications are not precisely the same, but have been modified for a timed
setting). We believe that our approach can be extended to the specifications being arbitrary
Boolean combinations of safety-MTL o properties.

Our approach is sound but not complete. This incompleteness comes from the fact that
the generated monitoring TA can be non-exact (under-approximates the input specification).
Additionally we use the winning condition (L{, e)R(—-L?a 1s0) in UPPAAL- TIGA that is

tru
stronger than the minimally required ¢(L,,%,) v D(—-L‘)/f alse)- However, our tool managed to
produce the solutions for all the specifications we studied. In the future work we may address
the decidability of the original problem (i.e. is it possible to provide a complete algorithm),

and provide an algorithm with better coverage.
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