The Temporal Logic of Branching Time

Mordechai Ben-Ari Zohar Manna

Amir Pnueli

Tel Aviv University Stanford University Tel Aviv University

Weizmann Institute of Sciences Weizmann Institute of Sciences

Abstract

A temporal language and system are
presented which are based on branching
time structure. By the introduction of
symmetrically dual sets of temporal oper-
ators, it is possible to discuss propert-
ies which hold either along one path or
along all paths. Consequently it is pos-
sible to express in this system all the
properties that were previously expressi-
ble in linear time or branching time sys-
tems. We present an exponential decision
procedure for satisfiability in the lang-
uage based on tableaux methods, and a com-~
plete deduction system. As associated
temporal semantiecs is illustrated for both
structured and graph representation of
programs.
Introduction

From the first introduction of the
Temporal Logic formalism as a tool for
reasoning about programs, there arose a

basic question which later almost dev-
This research wag supported in part

by: NSF under grant MCS-80-06930, Office
of Naval Research under grant
N0OOO-14~76-C-0687 and the Israeli Academy

of Sciences and Humanities, the Basic

Regearch Foundation.

Permission to make digital or hard copies of part or al of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citdion onthefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

© 1981 ACM 0-89791-029-X...$5.00

164

eloped into a controversy. The question
involves the nature of the underlying
structure of time on which the formalism
is based. The dichotomy is between the
linear time approach which considers time
to be a linear sequence, and the branching
time approach, which adopts a tree struc-
tured time, allowing some instants to have
more than a single successor.

The difference in approaches has very
little to do with the philosophical ques-
tion of the structure of physical time
which leads to the metaphysical problems
of determinancy versus free will.
Instead, it is pragmatically based on the
choice of the type of programs and prop-
erties one wishes to formalize and study.

Linear time is the correct model to
use in order to characterize the set of
all execution sequences which a program
generates and to study properties which
uniformly hold for all the execution se-
gquences of a program. Even a nondeter-
ministic program generates for each set
of possible choices a linear execution
sequence in which each execution state
has a unique successor. The class of
properties related to the set of execu~
tion sequences are the universal prop-
erties such as universal total correct-
ness and universal responsiveness. Both
these

properties require that every execution
sequence of the program will eventually
achieve some goal such as termination with
a correct result or correct response to
some request. The interpretation of tem-
poral formulas over execution sequences of
a given program was found to be very use-
ful for reasoning about both sequential
deterministic programs and concurrent pro-
grams. In the case of concurrent prog-
rams, where the nondeterminism is caused
by different scheduling scripts, we gen-
erally wish to prove that the program ter-
minates or responds correctly regardless
of how the individual processes are sched-
uled. This approach is pursued in [PN],
(mvpl, [LI1.

The branching time approach, on the
other hand, considers for a given program

the set of all execution trees generated

by the program. With a nondeterministic

program P and a given input x we can
agssociate the tree of all possible compu-
tations of P on x. Since the program
is nondeterministic, some of the execu-
tion states will have more than one sﬁc—
cessor corresponding to a nondeterminis-
tic choice. Over execution trees we can
study existential properties such as cor-
rect termination for at least one possible
computation (for every input). More gen-
erally, we may study the property that
there 1s always one possible computation
which realizes some goal. This certainly
does not imply that all computations will
realize the same goal. Consequently,

this approach is useful for nondeterminis-
tic programs which are executed by system-
atically exploring all possible choices

by methods such as breadth first search,
etc. This interpretation of nondetermin-
ism is recommended for example in [F] as

a design tool and is the one classically
used in automata and complexity theory.
The branching time approach is implied in
the underlying structure of Dynamic Logic
(IH], [AD), but was not previously studied

in a temporal framework.

165

In the end, the choice between linear
and branching models cannot be made on
philosophical grounds but instead should
be dictated by the type of programs, exec-
ution policies and properties which one
For a fuller discussion

[L].
A natural step at this point would be

wishes to study.
of this issue see

to formalize and investigate a branching
temporal logic in order to compare the two
approaches discussed above under the con-
It

turns out that a unified system which com-

trolled environment of the same logiec.

bines both approaches is no more complex
than the two separate systems.

us:
The underlying model will

We define

branching time.
be the branching tree of all possible com~

the unified system of

putations of a program. We define, how-
ever, additional temporal operators that
allow reference either to all possible ex-

ecution sequences or only to a single se-

quence. The meta-theoretical results in

UB include:

1) An exponential decision procedure for
satisfiability.

2) A finite model property.

3) A simple axiomatization which is shown
to be complete.
The decision procedure uses semantic

tableaux. Tableaux systems provide a rap-

id way of deciding "natural" formulas.
The completeness theorem shows how to
"read-off" a proof from a tableau.

The expressive power of the system is
illustrated by formalizing both universal
and existential properties of nondetermin-
istic programs. Finally we give a tempor-~
al semantics for nondeterministic pro-
grams, complementing the semantics given
in [PN] for deterministic but concurrent
programs. The semantics will be given for
programs which are presented both in graph
form and in structured form.

The UB Language-Syntax and Semantics
us

The base of is the propositional

calculus on ~ and v with the other

connectives defined as usual. We use six

"modal operators symmetrically represented
By the digraphs: VG,VF,vX,3G,3F 3x.

The first symbol denotes quantification

and
over paths. The second symbol denotes the
temporal quantification along the selected
paths, with G,F and X having their mean-
ings as in [PN].

Let T be a tree and s a node in
T. Let a be a proposition which can hold
Then the in-

tuitive meaning of the modal operators

at some nodes in the tree.

when applied to a proposition is as fol-
lows:

s (in T) iff a
true at all nodes of the subtree

vGa holds at is

rooted at s s).
holds at s

departing from s

(including
VFa iff on every path
there is gome
is true.

iff «a

every immediate successor (des-

node at which a

vXa holds at s is true at
cendant) of

holds at s

s.
IGa iff there exists a
path departing from s such
that a 1s true at all nodes on
this path.

holds at s iff a
some node 1n the subtree rooted

at

Ifa is true at
8, 1.e. there exists a path
departing from s such that a
is true at some node on this
path.

holds at s 1iff a

one of the immediate successors

IXa is true at

of s.

formal defini-
us.

is a triple

We give a now a more
of the semantics of
A model T for UB
T = (8,P,R) is a set of states
and P

tion

where S
is an assignment of proposition

letters to states. For a proposition a
and a state s€S, a€P(s) iff «a
at the state s. R is a binary relation
on states which defines the structure of

T. When sRt

is true

holds, we say that t is
an immediate successor (descendant) of s.

To capture the concept of non-ending time,

166

we require that i.e.
vs3t- (sRt)
R#*

R.

R be total,
~ every state has a successor,
is the reflexive transitive closure of
Thus sR*t 1iff there is an R-path
leading from s to t. An s-branch b 1is
an infinite path b = (s = SO’Sl"") such
that siGS i1 We define the

notion of a general formula p being sat-

and s.Rs
i

isfied at a node s

in T - written as
T,s k'p or sk p when T 1is implicitly
understood.
1. TFor a proposition a, s ¥ a iff a€P(s).
2. s ®ap iff S)(P
3. s epvqg 1ff s ®p or sk q
4., s k VGp iff vbvt (t€botep)
5. s ® VFp iff vbat (tebatwep)
6. s F VXp iff Vvt(sRtotep)
7. s k 3Gp 4iff 3bvt (t€botwp)
8., s k 3IFp iff 3b3t (t€batrp)
9. s ® 3Xp iff 3t (sRtat &= p)

—
o]

the above formulas the quantification
of b is over all the s-branches in T.
A formula p is satisfiable if for
some model T and some state
s€S - T,s k p.
A formula p

is true in T if for

every state s€S - T,sk& p. We
write T & p.
A formula p is valid if it is true
for every model T. We write | p.

In subsequent sections we will pre-
sent a procedure for deciding satisfiabil-
ity and an axiomatic system for proving
uB.

Expressing Program Properties in

all valid formulas in
UB
As an example of the power of the

language to express both universal and
existential properties, consider a non-

deterministic program:

OG-

We distinguish two special locations
in this program - the beginning node b
and the exit node e. We define special
location propositions of the form atf for
each location £ in the program. The pro-

position atf 1s true at execution state s

if the execution currently resides at loc-

ation £ in the program. Consequently
atb holds at all initial

execution states and the proposition afe

the proposition

is true at all terminated execution

states. Let ¢ and ¢ be respectively
input and output predicates forming a cor-
rectness specification for the program P.

Following [M11, [M2] we can distinguish

four types of correctness of P relative
to (p,¥):
a) P is partially g-correct with res-
pect to (@,¥).
Either there is an infinite computation
or there is a finite correct computa-
tion. This is expressible by the UB
formula:

(atbayw) > 3C(atesy)

If we evaluate this formula over execu-
tion trees of the program P it forces
every tree whose initial state satisfies
¢ to contain a path all of whose states
This implies that the

computation corresponding to the path

satisfy afe o y.
either diverges and never reaches e
with ¢
the rest of the branch must

or
terminates at e correct. Once
we reach e
infinitely repeat the same state since the
This

explains the representation of finite com-

program dictates no farther change.

putations in our infinite model.
b) P is totally
to (‘-D,lll).

computation, but other computations

J-correct with respect

There is a finite correct

may be incorrectly terminating or div-

ergent. This is expressible by:
(atbag) o IF(ateny)
c¢) P is partially V-correct with respect

to ((D,ll)).

tion must satisfy ¢,

Every terminating computa-
but there is no
guarantee of the existence of any ter-
minating computation. This is expres-

sible by:

(atbag) > VG (atesy)

167

d) P 1is totally V-correct with respect
to (@,v).

minates and satisfies ¢

Every computation ter-
on ter-
mination. This is expressible by:

(atbagp) o> VF(atead)

A similar four way classification is
given in [H] for the different notions of
total correctness. The model of program
to be studied here admits also a fadllure
node which implies incorrect termination

or abortion:

Zo

The following four notions of total
correctness of P' with respect to (¢,¥)
are possible:

A) TFor all inputs satisfying ¢, all
computations of P terminate and
yield correct results, i.e. re-
sults satisfying ¢. This is ex~

pressible as:

(atbap) > vE(ateay)
B) For all ¢-inputs, every compu-
tation either terminates success-

fully or loops.
fail.

No computation
may
(atbap) o vG(rvatf A (ate o ¥))
C) For all ¢-inputs each computa-
tion will either fail or reach e
successfully. No infinite compu-

tations are allowed.

(atbap) > VF(atgv(ateay))

Dy For all ¢-inputs there Is at
least one successful computation.
Other computations may fail or

diverge.

(atbag) o IF(ateay)

Note that B) and C) did not guaran-
tee the existence of a successful computa-
tion. To enforce this it is sufficient to
add the clause 3Fatb to the right hand
side of the implications.

A Deductive System for UB

Presented below is a deductive system

of axioms and inference rules for proving
validity of UB formulas. We take VG, &
and VX as primitive operators and define
the other modalities by:

Dl. VIp = ~3Gvp

D2. 3Fp = aVGwp

D3. 3Xp = ~VXvp
Alternately we could have taken all six
operators to be primitive but then we
should add D1-D3 as axioms.

The axiom schemata are:

Al. b+ VG(pog) » (VGpovGq)

A2, v ¥X(p>2q) > (VXpoVXq)

A3. t VGp 2 VXp A VXVGp

Alb. ¥+ VG(poVXp) > (poVep)
These four axioms are of universal charac-
ter. The other four are existential.

El. b+ vG(p>q) > (3Gp>3Gq)

E2. ¥ 3Gp > p A IXICp

E3. = VGp o 3Gp

E4. b ¥YG(p23Xp) > (p>3Gp)

The rules of inference are:

Rl. If p is an instance of a prop-

ositional tautology then yp.

R2. If ¥+p and +p>qg then ¢ g

(Modus Ponens).

R3, If +p then +VGp (Generaliza-

tion),

Note in particular the two induction
axioms A4 and E4. AL states that if p
is true at the root of a tree, and for ev-
ery state s in the tree p 1is inherited
by all immediate descendants of s, then p
is true for all nodes in the tree.

E4 on the other hand states that if
p 1is true at the root 8q>» and everywhere
in the tree p 1is inherited by at least
one immediate descendant, then there ex-
ists a rooted path (i.e. an so—branch)

all of whose nodes satisfy p.

In appendix A we present some use-
ful theorems of this deductive system.
In particular there is an additional

induction theorem:

+ 3G(povXp) o (p>3IGP).

Semantic Tableaux for UB

In this section we describe the con-
struction of semantic tableaux formulas
in UB, obtain a decision procedure for
satisfiability and prove the finite model
property. In the next Section we use the
tableaux construction to derive the com-
pleteness of the deductive system.

A structure is a triple (S,P,R)
where S is a set of states, P is an as-
signment of formulas to states and R is
a binary relation on states. It is con-
venient to use the same name S for a
structure and its set of states. A
structure differs from a model in that the
assignment P is not restricted to propo-
sitions, nor is it required to always con-
tain p or ~p for every p.

A formula is a nexttime formula if

its principal connective is a modality VX

or 3X. A formula is elementary if it is

a proposition, the negation of a proposi-

tion or a nexttime formula. A formula

which is not elementary is classified as
an o-formula or a B-formula according to
the table below. This table also defines
certain subordinate formulas o and B, -

A structure T is called a Hintikka
set iff:

Hl1. ~p€s = pg€s (abbreviating p€s

for p€EP(s)).

H2. o€s = alES and uQES.

1 and a, are in-
stances of the entries in the
table.

H3. BE€s = Bl€s or 62€s,

where o, o

where B,ﬁl,sz are instances

of the entries in the table.
H4.a. If VXpE€s then s has at

least one successor and for each

t, a successor of s, p€t.

168

b. If 3Xp€s then there is t, a
successor of s, such that sRt
and pet.

c. If 3Fp€s then there exists an
s-branch b and a +t€b such that
pEt.

d. If vFp€s then for every s-
branch b there is a t€b such
that pe€t.

T is a Hintikka set for p if p€s for
some s€T.
o [+1 (12
pAq p q
~(pva) ~p ~q
~~p p p
VGp VTVGp
3Gp P IT3Gp

F
()

X

F
)

X

B B, B,
pvq P q

~(pAg) ~p ~q
Ifp P 3IX3Fp
vEp D VYXVFp

A consequence of the definitions is:
Proposition 1 (Hintikka's Lemma for UB):
A UB formula p is satisfiable (has a
model) iff it has a Hintikka set.

It is easy to check that any model
is a Hintikka set when we extend P to
cover all formulas which are true in a
state. Similarly, any Hintikka set can
be extended to form a model.

A semantic tableau is a systematic
The tableau
Each

node contains a set of formulas derived

search for a Hintikka set.
is constructed as a tree of nodes.
from the original formula p whose sat-
isfiability we wish to check. Later we
identify some of the nodes as states of
a structure which will be shown to be a
Hintikka set.

Notation:

If n 1is a node of T

169

then Un is the set of formulas labelling
n. A formula p may be marked as "check-
ed" Pl .

Let p be a UB formula and label
the root of the tree T by {p}. The
tableau is constructed inductively from
the root by applying the following rules

to nodes n which are leaves of T.
Ra: If ann then create m a son
U, = (Un—{a}) U {a',0q,053,
By this we mean-mark o as
checked and add. aq and ey
RB: If BEUn then create two sons,
my and my of n and let:
Umi = (U, - {8}) U {B",8;}, i = 1,2,
RX: If all non<-elementary formulas
in n are checked, let
Vn = {BXpl,...Hka,Vqu,...VXq}

be the set of nexttime formulas

in U -
Then, for each 1 = 1,...,k
create a son m- with

Um = {Pi:ql:---aqz}.

i

If k=0, & > 0, create an only
son m with
Um = {ql,...,qz}_

If k=2=20

a terminal leaf; no further

then node n 1is

rules are applied to n.

A node n which is not a leaf is

called an a-node, B-node or an X-node if
the Ra—rule, RB-rule or

pectively was applied at n.

Rx-rule, res-

Every X-node is defined to be a
state. Two states and
lated by R if 5,
countered as a descendant of

construction of T

sy s, are re-
is the first state en-
s, in T. The
is kept finite by ob-
serving the two following termination
rules:
T1:
both p

If a created node n contains

and ~p then mark this node as

closed and do not expand it any fur-
ther.

T2: If a state m 1is to be created as
as a son of n, and there is a state
t (which has already been created)
elsewhere in the tableau such that
Um = Ut’
connect n to t instead,

then do not create m but

Since the number of distinct formulas
that can appear in a u, is finite, these
two rules ensure termination. The result-
ing structure is no longer a tree because
of T2 but is finite.

Consider the resulting structure T
as a candidate for being a Hintikka set.
It satisfies H1l, H2, H3 and H4a,b but
not necessarily Huic,d. Consequently we
proceed to eliminate from T violations
of Huw~c,d. The elimination is performed
by successive deletion of nodes. A simi-
lar procedure is used in [PR] for con-
structing a model for PDL. The deletion
of nodes follows the rules below:

Ml. Every node which contains both

p and ~p for some p is de-
leted.
M2. If n 1is an oa-node and m, its
son, has been deleted, then de-
lete n.

M3. If n 1is a g-node and both
its somns, my and m, , have
been deleted, then delete n.

M4. If n dis an X-node and any of
its descendants has been dele«
ted, then delete n.

M5. Let 3Fp€n which is also a

state. If there is no path from

n leading to a node t contain-

ing p, then delete n.

M8. Let VFpeEn which is alss a
state. If there is a maximal
n-path b (a path which cannot
be extended), such that

1) For all +t€b, pét;
2) Every VFp node t€b
(i.e. a node to which the 8 rule

for VFp has been applied) has

only one descendant;

then delete n.

The root ng of T is deleted
by the elimination process iff pEUno is

Lemma 1

Is unsatisfiable.

= The proof of the completeness theorem
in the next section shows that if the root
of T 1is deleted then the negation of the
formula p in the root is provable. Since
the proof system is sound, p is unsat-
isfiable.

< We need to show that if the rcot is not
deleted then p 1is satisfiable. By Propo-
sition 1 it is sufficient to show that
there is a Hintikka set for p. The only
step that is not straightforward from the
construction is to show that H4 holds
for vf-formulas. In fact, the surviving
part of T may not form a Hintikka set
but we show that we can always construct
a Hintikka set out of the surviving part
of T. An alternative node for VIp

is a B-node for VFp both of whose sons
have survived.

Informally we unwind T so that ev-
ery non-fulfilling branch is forced to
eventually include the fulfilling son of
some alternative node. We construct a
structure T' whose nodes are instances
of surviving nodes of T. Denote instan-
ces of n€T by n',n"€T' etc. In the re-
mainder of the proof, "nodes" refers only
to surviving nodes.

ng is the root of T'. If n!' is
a leaf of T' then extend T' as follows,
where n(ni,nj) denotes the path from ni

to nj in T'.

Wl. If n 4is not an alternative
node in T for any VFp, then
for every son m. of n let mi
be a son of n' in T',

W2. If n 1is an alternative node in
T for some VFpen, let k be
the number of instances of n
in ﬁ(né,n').
(i) If k = 1 then let mi (ar-

bitrarily) be the son of n'

in T.

(ii) If %k > 1 +then if mj (mg)
was the son of n" taken at
the k-1'st instance n" of n
then let m} (m{) be the
son of n' in T'.

Thus we alternate our choices.

W3, If n has a previous instance
n" in #(n",n') and every al-

ternative node t which has an

instance in 7 (n",n') has at
least two instances in «(n",n')

then identify n' with n".

The construction must ultimately
terminate since there 1s only a finite
number of alternative nodes.
that

generated

For suppose

T = m', mé,... is an infinite path
by the construction of T'.

is finite there is a k
such that for all i 3

itely many instances in

Then gince T
K, m. has infin-
x = mi, m£+l,...
In particular, every alternative node in

T, must appear infinitely often and thus

for some %, mﬁ and mé are instances
of the same node and every alternative
node which appears in T, appears at
least twice in e Thus W3 should
have been applied to identify and mé.
Let VFpé€n'eT!'
there is n'-branch b in T!'
fulfill vFp.

alternative node for VFp

M
and suppose that
which

By construction

an
does not
(W2), no

appear more than once in b.

can
Since T'

is finite, eventually there must be nodes
m', m" such that no alternative node for
vEp By the tableau
construction, if VFpen'€b and b
not fulfilling then
VIp

But then from the inverse image of

appears in w(m',m").
is
VXVEFp propagates
to all nodes of b including m'.
m{m',m") we would be able to construct in
T an infinite non-fulfilling path for
VIpEm
VFp, contradicting the assumption that m
(Mé) .

We show how to trace

T'.

containing no alternative nodes for

was not deleted by
Let IJFpEn'eT'.

a fulfilling path in By assumption

171

there is a fulfilling path ™ in T. As

long as we don't reach an alternative node
in m, then we can trace the path ﬂi of
T!'. Similarly, if m; €y
is an alternative node in

T,
If T' contains the wrong
" .
mj then if m;

instances in
m.,,€r., and
it1v 1
t mt
m. €T, son
i+l
1"

instance mY

has a next

in T' which is accessible from mi then
add mi,...,mg to ni and continue with
the correct son by W2. If not, then note
that if 3Fp€m;, then 3Fp is in both
sons of m, . Find a fulfilling path L

in and continue to trace a

T from mj

fulfilling path in T'. By assumption m,
has no imstance in T' accessible from
m5 so eventually 3IFp is fulfilled or we

gtart tracing = for a different alter-

3
native node my . Since the number of (al-
ternative) nodes is finite, eventually 3Fp
is fulfilled. o

There is a decision pro-
UB. UB has

Proposition 2.
cedure for satisfiability in
the finite model property.
Proposition 2 follows easily from
the previous lemma and constructions. Note
that if we are only interested in satis-
fiability then we do not need to construct
the "unwound" tableau. It is sufficient
to check whether the root node was deleted
by the elimination process. The decision
procedure including both the tableau con-
struction and the deletion procedure can
be shown to be exponential in the size of
the formula.
Completeness

Let p De a valid UB formula.

Create a tableau for {~p}. If the elim-

ination procedure is applied then n, is

eliminated, otherwise ~p would have been

satisfiable. If U = {p,} is a set of

formulas in a node n then éﬁn’ the

associated formula of n, is Y(~pi). In a
i

typical proof of completeness by the tab-
[RUI), one shows
for every leaf and that prov-

leau method (for example
that = gfn
ability is preserved as one ascends the
In UB these meta-the-

tree to the root.

orems hold but are not sufficient because

of the non-fulfilling branches. TFor these

we need induction axioms A4 and Eb.
We show in a series of lemmas that we can
prove the af of every eliminated node.
Since ng is eliminated, its af which
is p 1is provable,
Lemma 2. If n 1is a closed leaf then
waf .
Proof. + ~~pv~p by R1l, hence v+af, by
dilution. g
Lemma 3. If n€T i1is an (i) a-node, (ii)
g-node, (iii) X~-node and (i) b'afm, (ii)
= af and = af_ , (iii) b af for some

m m m.

1 2 i

i, ‘then t afn.
Proof: For Ra and R8 the lemma fol~

lows by simple propositional reasoning and
T13-T14 (Appendix A).
T9

For the Rx—rule,
we need to use to deduce

r--VX:,LA...AVXq2 > VX~p, from

- VX (qjA...AQ, > ~p;) o

This part of the completeness proof,

the definition of af and the proof that
taf

by the use of the nexttime operator whe

is preserved, is greatly simplieifed
compared with a classical completeness

[rUJ.
ity by the need to give

proof Now we pay for this simplic-
the meta-~theory
for the induction axioms. In practice,
this meta-theory is easy to apply and
proofs
the tableau method.
ques used below were first used in [PRI].
Let t be a node (state) in T
which was deleted by M5 Dbecause 3F~p
was not fulfilled. Let [t]* be the set

of states accessible from t by taking

can beg construcTed by

Some of the techni-

the 3X3aF~p defined sons. For wu€eltl#
let [ul be the immediate successors of
u in [t]* and let Vu be the set of

all formulas ¢q such that VXq is a
universal nexttime formula in wu. Let
t
Wy= A g and W = UV _W. W is
q€y,, unel+tl*

called the invariant of t.
Lemma 4: F W' o VXWT

172

For t as in lemma. 4 and for
all ue€lt]#, » ¥ o p, hence FW' > p.
Proof:{#)For all u € [t]#*

FWuo> V (A V¥Xq) and then by T3
velul qev,,

rWu >V vX(A
velul q€V

from the definitions using T10 to ex-
tract VX. o
Proof :{8)Let

tained from u

Lemma 5.

we can deduce

q). The lemma follows

be the node which was ob-
X
to 3X3F~p. U, = V, U{3fF~p}. Without
loss of generality we can assume that
3X3F~p € n is the
rule applied at Then
Without loss of generality
that

n

by applying the rule

IF~p€n = ~p&n
first tableau
U, = vV Uu{~pl.
we can assume
IX3F~pEn

plied at

or
n.
dF~p€n = ~pEn or
is the first tableau rule ap-

n, Then U =V U {~p}. The

u
M5
By the in-

node m mugt be deleted, otherwise

would nit have been applied.
ductive hypothesis }--afm:L which is
PWu > p. 1]
From Lemma 4, generalization and Al,
Wit o wewt.
and Al, FVGWT > VGp.
»wt > Wt
+W,. > V6p
obtained from t by applying the

From Lemma 5, generalization
Trivially,
t € [t1*. Thus

which is afn for some node n

since

R =
rule. By Lemma 3 (iii), e af . *
If t was deleted by M5,
a branch as described there:
~pén€b
already deleted.
u€b let
mediate successor of u
the set of states in b

let b be
VE~pET,

and all fulfilling alternatives

be the im-
Denote

For each u'

in b,
ot

by u#* accessi-

ble from u and by Vu' the set of form-

ulas in the node u',

Vi1 will be {qi[VXqiEu} U {r} for the
r such that 3IXr€u caused u' to be
generated.

Let Zy Dbe the conjunction of all
the formulas in VW and Z.t = V hZu.
Lemma 6: W 7t o BXZt. uets
Proof: Like Lemma 4 except that T11 is
used to deduce that &+ 72, o A VXinEXr

implies FZy>3X(Agar). LiVur ‘

Lemma 7: & Zt D p.
By M6

deleted; hence by induction their

Proof: nodes containing ~p were
af's

are provable. As in Lemma 5, +Z4 2 D

hence Zt > p. o

Using E4, E1 instead of Ab, Al we obtain

F 2t 5 362%, vaczt 5 acp, F 2zt 5 3gp and
‘.aft; o
Proposition 3: Al-A4, El1-E4, R1-R3 form
a complete deductive system for UB.

The UB Semantics of Nondeterministic
Programs

The utility of UB for proving the
program properties so elegantly express-—
ible in the language depends on the abil-
ity to restrict the class of possible mod-
els to the class of execution trees of a
given program P. This is done by specify-
ing a set of axioms which impose the
structure of computation according to a
given program on our general models. It
may also be considered as specifying the
temporal semantics of the programming
language by connecting its syntactical
constructs to transformations and dev-
elopments in time.

In order to do this we extend our
language by allowing predicates on var-
iables.

We have three types of variables:

a) Computation variables, Y1oYgre s
which are modified by the execu-
tion and vary from state to
state.

B) Free variables R sKpsees which
remain constant in time and are
used to express relations between
values of computation variables

in different instances. Thus

(y=%) D 3r(y=£f(x))

is the expression of the state~
ment that there exists some com-
putation and some state in it

such that the value of

etate ig equal to f

y in this
of the in-
itial vy.
whose val-

¢) A program variable =

173

ue at any state points to the segment of
program yet to be executed.

To emphasize the general principle
underlying the semantics consider first
an unstructured language in which programs
are represented by transition graphs,
G = (N,E). The set N
the set of locations. E

of nodes is called
is the set of
edges each of which is labeled by a guard-

form

f(y)]

ed instruction of the

gly) — Ly :=
with the meaning that this edge is enabled
if y(y) 1is true and passing through the
edge involves the assignment of fy to y.

We form our temporal semantics of

such programs by letting = range over N
(the location set) and forming for each
Let a node %2€N

transitions:

node a semantic formula.

admit the following

gl(§) ~—> [y:=f vyl
L
. ()
%Efy) —> [y:i=fny] .
m

Then we form the formula scheme

m
A (n=g)2l{ v [gi(y)AQ(Ki,fiy)]} = 3xXQ]
i=1

z:
Q = QCm,y)

predicate depending in general on the

Here is an arbitrary

program variable 1w and the computation

variables y. It may also refer to free
variables.

Note the presence of the '=!

connec=
tive which implies that this formula con-

tains two implications. The first is
stating that for every i = 1l,...,m such
that g; is true there is a successor

state s in which L Ki and yg = fi
(current y). The other implication is a
complementary statement saying that the
only possible successor states are derived
in this fashion.

Next we will show that the temporal
formalism is not necessarily restricted
to unstructured languages. Consider as

an illustration Dijkstra's language of

(p].

range over program segments. S

Here we let =«
will of-

ten stand for an arbitrary program seg-

guarded commands

ment,
The semantics of an assignment state-

ment may be given by:

Cr =

111

{y: = e; S}) o [Q({S}, e) = 3XQ(m,y)]

which states that provided we are about to

execute {y := e; S}, 0@ will be true in
the next instant iff Q(w,y) is true for
m= {8} and y = e.

In the following let

m
C = [islgi(y) > c;1 where ¢, is any

command and .'s are guards. The seman-
&1

tics of conditional is given by the axiom:

m
(m = {C38}) o [{ v [gi(y)AQ({ci;S},y)]}
i=1

= 3XQ(r,y)]

It states that Q(w,y) will be true of the
next instant iff for some i,gi(y)

{c;38} and y.

is
true and so is Q with =
Similarily for the repetitive command

*C we have

Cr o= {#C38}) = [{4if .g g5 Zhen

=T gctesre;sy,
else
Q({sS}t,y)}

=3XQ(rw,y)]

Here the computation step chooses between
the case that some guard is true and the
conditional C has to be executed first,
and the case that all guards are false

and we proceed beyond the repetition #C.

Discussion and Conclusions

In this paper we presented a unified
branching time system which enjoys the
joint advantages of both linear time and
branching time systems, in being able to
express and reason about the two basic
types of termination, universal and exis-
tential. We have established the logical
properties of the uB properties by pre-
senting a decision algorithm and a com-
plete deductive axiomatic system for the

propositional fragment of the language.

174

The decision procedure presented is ob-
viously exponential.

This language must of course be com-
pared with process logic languages such as
PLIHKP] and its predecessors. These lan-
guages certainly can express any of the
properties expressible in UE and many
more. However, there is a price to pay
for this expressibility which is the com-
plexity of the language.
is the fact that PL
thas
while UB

Admittedly we do have six modal op-

A sign of this
is nonelementary
nonelementary decision procedure)

is exponential.

erators which is a disadvantage compared
DX for lin-
[6PSS] or the corresponding

On the other hand

to simpler systems such as
ear time
Branching time systems.
the formation rules of these operators

are simple and uniform, and they do enable
us to express most of the interesting pro-
gram properties discussed in the litera-
ture.

Another advantage lost in the transi-
tion from linear to branching time is
expressive completeness in the sense of .
[GPss].
cannot be remedied by the addition of one
In the full ver-

sion of the paper we will bring a proof

Here the problem is inherent and
or two extra operators.

of the following:

Proposition %4: No branching time temporal

language with a {indife number of modal
operators can be expressively complete.
This theorem, due to Gabbay (Unpub-
lished manuscript) is based on the folldbw-
ing observations:
a) A temporal language with a finite
number of operators can always
be translated into a first order
formula with a number of distinct
variable names which is fixed for
the language.
b) In first order language it is
easy to come up with formulas
which need an arbitrarily large
number of distinct variable names.

Consider for example the state-

ment:

There exist k time instants
ti,... no two of which are re-
lated.

This statement needs

> Ty

k
for its expression for an arbitrary
k.

large

variables

These formulas for sufficiently
k
pressed in any temporal logic.

cannot therefore be ex-

Some recent works do indeed present

branching time systems which are richer

than

tors.
[EC]

[A11

[A2]

[p]

[EC]

IF]
[FrL]

[GPss

ours and include additional opera-

Such are the systems discussed in
[Aaz].

References
K.R. Abramson, Modal logic of con-
current nondeterministic programs,
Symposium on Semantics of Concurrent

and

Computations, Lecture Notes in Com-
puter Science 70, Springer Verlag,
Berlin, 1979-, 21-33.

K.R. Abrahamson, Decidability and

Expressiveness of Logic of Process-
es, Ph.D. Thesis, University of
Washington, August 1980.

E.W. Dijkstra, Guarded commands,
nondeterminancy and formal deriva-
tion of programs, C. ACM 18(8),
1975, 453-457,

E.A., Emerson and E.M. Clarke, Char-
acterizing correctness properties

of parallel programs using fixpoints,

TR-04-80, Aiken Computation Labora-
tory, Harvard.

R.W. Floyd, Nondeterministic algor-
ithms, J. ACM 1u4(u4), 1967, 636-644,
M.J. Fischer and R.E. Ladner, Propo=
sitional dynamic logic of regular
programs, Journal of Computer and

System Sciences 18(2), 1979, 194-211.

] D. Gabbay, A. Pnueli, S. Shelah and
J. Stavi, The temporal analysis of

~ fairness, Seventh ACM Symposium on

IH]

[HKP]

[HC]

13

M1]

Principles of Programming Languages,
1980, 163-173,

Harel, First Order Dynamic Logic, Lec-

ture Notes 1in Computer Science 68,
Springer-Verlag, Berlin, 1979.

D. Harel,
cess logic: expressiveness, decid-
ability, completeness, 21th Sympos-
ium on Foundations of Computer Sci-
ence, 1980.

G.E. Hughes and M.J. Cresswell, An
Introduction to Modal Logic, Meth-
uen, London, 1968.

L. Lamport, "Sometime" is sometimes
"not never", Seventh ACM Symposium
on Principles of Programming Lan-
guages, 1980, 174-185,

Z. Manna, Mathematical theory of
partial correctness, Smeosium on
Semantics of Algorithmic Languages,

D. Kozen and R. Parikh, Pro-

175

Lecture Notes in Mathematics 188, :
Springer Verlag, Berlin, 1971, 252~
269.

Z. Manna, Second order mathematical
theory of computation, Second ACM
Symposium on Theory of Computing,
1970, 158-168.

Z. Manna and A. Pnueli, The modeal
logic of programs, Automata, Lan-
guages and Programming, Lecture
Notes in Computer Science 79,
Springer-Verlag, Berlin, 1979, 385~
409.

A. Pnueli, The temporal semantics of
concurrent programs, Symposium on
Semantics of Concurrent Computations,
Lecture Notes in Computer Science
70, Springer Verlag, 1979, 1-20.
V.R. Pratt, A practical decision
method for propositional dynamic
logic, Tenth ACM Symposium on Theory
of Computing, 1977, 326-337.

N. Rescher and A, Urquhart, Temporal
Logic, Springer-Verlag, Vienna, 1971.
R.M. Smullyan, First-Order Logic,
Springer-Verlag, Berlin, 1968.

[M2]

[MP]

Ipn]

[PR]

[RU]
[s]

Appendix A: Discussion of UB
If +VvGpop (Tl, below) is added to

then we get a complete deductuve

Al-Al
system for the universal fragment of
If vX ax
merged (along with VG 368) so that
VXp = ~¥X~p 1is an axiom then we get a

branching time. and are

and

complete deductive system for linear time.
By Tl1 and T5,

pressed more symmetrically as:

the axioms could be ex-

A3:FVYGp D DAVXDAVXVGP

E2:+3Gp o p A IXpA3X3AGp.
Also,
T6
v o3

non-ending time.

€3

as axioms.

can be derived by taking T1 and
Some axiom of the form

is needed to limit the models to

Theorems of UB

Tl. + VGp 2 p

T2. = VGp o VIp

T3, + vX(p>aq) o (3Xpo3Xq)
Th. » VG(p>q) o (VFpoVvFqQ)
T5. I 3Gp > 3IXp

T6. + VXp = 3Xp

T7. + VG(pPAQ) = VGPAVGq
T8. ¥ 3G(pag) > IGpadGq
T9. VX(paq) = VXpAVXq
T10.+ 3X(pAaq) > 3IXpadXqg
T1l. b VXpAdXq o 3X(paq)
T12.% VGpA3IGp = 3G(pAaqQ)

T13. + VGp = PAVXVGD

Tl4, = 3CGp = pPAIXIGCD
T15. p VGp = VGVYGp
T1l6. w 3Gp = 3G3IGP

T17. b 3G(povXp) o (p=3Gp)

T18. | VEVGp > VGVFp

T19. 3G6((pv3GqIa(3Gpvqg)) = (36Gpv3Gqg)
T20. v VXVGD = VGVXp

T21. + 3X3Gp > 3G3IXp.

Comments: The proofs of T1-T12 arvre
straightforward. T13-T21 are proved using
induction axioms A4 and E4. It is also
possible to prove derived rules: b p>¢Mp
and ¢pog >+Mp » Mg for any modality M.
We saw how T9 and T11l are used in the
completeness proof to deduce the induc-
tiveness of the invariants. T13 and T1lu
are the key to the tableau constructions:
b ~3Go~pyv~3X3Gp. To falsify 3Gp, either
p 1is false now or put off to tomoroow

the task of falsifying 3Gp.

T15«16 correspond to the transitivity
axioms of the model system Su [HC]. T17
is another induction axiom. We conjecture
that replacing E4 by T17 results in a
weaker system because the induction step
needed p » VXp is too strong. The sys-
tem is probably not different from linear
time. T18 1is our version of the Sui.2 [HC]
axiom MLpoLMp. Note that b 3GpovFp and
+ ¥F3Gp = 3GVYFp can be proved but this is
an artifact of the reflexiveness of UB and
would not carry over if E2 were changed
to v 3Gp o 3IXp A IXKIGp as required classi-
cally in temporal logic IRUJ.

T19 is the S4.3 [HC] linearity axiom
for 3AG. T20 show that VX and VG com-
mute. For 3IX and 3G only the direction
shown in T21 holds.

176

