
The Temporal Logic of Branching Time

llo~dechai Ben-A~i Zohar Manna Amir Pnueli

Tel Aviv University Stanford University Tel Aviv University

Weizmann Institute of Sciences Weizmann Institute of Sciences

A temporal

presented which

time structure,

language and system are

are based on branching

By the introduction of

symmetrically dual sets of temporal oper-

ators, i.t is possible to discuss propert-

ies which hold either along one path or

along all paths. Consequently it is pos-

sible to express in this system all the

properties that were previously expressi-

ble in linear time or branching time sys-

tems . We present an exponential decision

procedure for satisfiability in the lang-

uage based on tableaux methods, and a com-

plete deduction system. As associated

temporal semantics is illustrated for both

structured and graph representation of

programs.

Introduction

From the first introduction of the

Temporal Logic formalism as a tool for

reasoning about programs, there arose a

basic~
This research was supported in part

by: NSF under grant MCS-80-06930, Office

of Naval Research under grant

NOOO-14-76–C-0687 and the Israeli Academy

of Sciences and Humanities, the Basic

Research Foundation.

Permission to copy without fee all or part of this material is grant-

ed provided that the copies are not made or distributed for direct

commercial advantage, the ACM copy- right and its date appear,
and notice is given that copying is by permission of the Associa-

tion for Computing Machinery. To copy otherwise, or to republ-
ish, requires a fee and/or specific permission.

@ 1981 ACM 0-89791 -029 -X/81 /O100-O164 $00.75

eloped into a controversy. The question

involves the nature of the underlying

structure of time on which the formalism

is based. The dichotomy is between the

linear time approach which considers time

to be a linear sequence, and the branching

time approach, which adopts a tree struc-

tured time, allowing some instants to have

more than a single successor.

The difference in approaches has very

little to do with the philosophical ques-

tion of the structure of physical time

which leads to the metaphysical problems

of determinancy versus free will.

Instead, it is pragmatically based on the

choice of the type of programs and prop–

erties one wishes to formalize and study.

Linear time is the correct model to

use in order to characterize the set of

all execution sequences which a program

generates and to study properties which

uniformly hold for all the execution se-

quences of a program. Even a nondeter-

ministic program generates for each set

of possible choices a linear execution

sequence in which each execution state

has a unique successor. The class of

properties related to the set of execu-

tion sequences are the universal prop-

erties such as universal total correct-

ness and universal responsiveness. Both

these

164

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1981 ACM 0-89791-029-X…$5.00

properties ~equi~e that m execution

sequence of the program will eventually

achieve some goal such as termination with

a correct result or correct response to

some request, The in?erpretati.on of tem-

poral formulas over execution sequences of

a given program was found to be very uSe-

ful for reasoning about both sequential

deterministic programs and concurren-t pro-

grams. In the case of concurrent prog-

rams, where the nondeterminism is caused

by different scheduling scripts, we gen-

erally wish to prove that the program ter-

minates OP responds correctly regardless

of how the individual processes are sched-

uled. This approach is pursued in [F’NI,

[MP], [L].

The branching time approach, on the

other hand, considers for a given program

the set of all execution trees generated

by the program. With a nondeterministic

program P and a given input x we can

associate the tree of all possible compu-

tations of P on x. Since the program

<s nondeterminj-stic, some of the execu-

tion states will have more than one suc-

cessor corresponding to a nondeterminis-

tic choice. Over execution trees we can

study existential properties such as coF-

rect termination for at least one possible

computation (for every input). More gen-

erally, we may study the property that

there is always one possible computation

which realizes some goal. This certainly

does not imply that all computations will

realize the same goal. Consequently,

this approach is useful for nondeterminis-

tic programs which are executed by system-

atically exploring all possible choices

by methods such as breadth first search,

etc. This interpretation of nondeterm<n-

ism is recommended for example in [F] as

a design tool and is the one classically

used in automata and complexity theory.

The branching time approach is implied in

the underlying structure of Dynamic Logic

([H], [AI), but was not previously studied

in a temporal framework.

In the end, the choice between linear

and branching models cannot be made on

philosophical grounds but instead should

be dictated by the type of programs, exec–

uti.on policies and properties which one

wishes to study. For a fuller discussion

of this issue see [L].

A natural step at this point would be

to formalize and investigate a branching

temporal logic i_n o~der to compare the two

approaches discussed above under the con-

trolled environment of the same logic. It

turns out that a unified system which com-

bines both approaches is no more complex

than the two separate systems.

We define UB: the unified system of

branching time. The underlying model will

be the branching tree of all possible com-

putations of a program. We define, how-

ever, additional temporal operators that

allow reference either to all possible ex-

ecution sequences or only to a single se-

quence. The meta-theoretical results in

UB include:

1) An exponential decision procedure for

satisfiability.

2) A finite model property.

3) A simple axiomatization which is shown

to be complete.

The decision procedure uses semantic

tableaux. Tableaux systems provide a rap-

id way of deciding “natural” formulas.

The completeness theorem shows how to

“read-off” a Proof from a tableau.

The expressive power of the system is

illustrated by formalizing both universal

and existential properties of nondetermin-

istic programs. Finally we give a tempor-

al semantics for nondeterministic pro-

g~ams , complementing the semantics given

in [PN] for deterministic but concurrent

programs. The semantics will be given for

programs which are presented both in graph

form and in structured form.

The UB Language-Syntax and Semantics

The base of ~8 is the p~opositional

calculus on ~ and v with the other

connective defined as usual. We use six

165

“modal operators symmetrically represented

.Dy the digraphs: VG,VF,VX,3G,3F and 3X.

The first symbol denotes quantification

over paths. The second symbol denotes the

temporal quantification along the selected

paths, with G,l? and X having their mean-

ings as in [PN].

Let T be a tree and s a node in

T. Let a be a proposition which can hold

at some nodes in the tree. Then the in-

tuitive meaning of the modal operators

when applied to a proposition is as fol-

lows :

Wu

VFa

VXa

3Ga

3Fa

3Xa

holds at s (in T) iff a is

true at all nodes of the subtree

rooted at s (including s).

holds at s iff on every path

departing from s there is some

node at which a is tvue.

holds at s iff u is true at

every immediate successor (des-

cendant) of s.

holds at s iff there exists a

path departing from s such

that a is true at all nodes on

this path.

holds at s iff a is true at

some node in the subtree rooted

at s, i.e. there exists a path

departing from s such that a

is true at some node on this

path.

holds at s iff a is true at

one of the immediate successom

of s.

We give a now a more formal defini-

tion of the semantics of U13.

A model T for UB is a triple

T = (S,P,R) where S is a set of states

and P is an assignment of proposition

letters to states. For a proposition a

and a state Scs , aEP(s) iff a is true

at the state s. R is a binary relation

on states which defines the structure of

T. When s Rt holds, we say that t is

an immediate successor (descendant) of s.

To capture the concept of non–ending time,

we require that R be total, i.e.

Vs3tQ(sRt) - every state has a successor.

R+: is the reflexive transitive closure of

R. Thus sR~:t iff there is an R-path

leading from s to t. An s-branch b is

an infinite

that Sits

notion of a

isfied at a

T,s k p or

understood.

path b = (s ❑ SO,S1,. ..) such

and siRs . We define the1+1’
general formula p being sat-

node s in T - written as

St=p when T is implicitly

1. For a proposition a, s 1= a iff aEP(s).

2. Sk’bp iff S~P

3. s 1= pvq iff Sl=por St=q

4. s 1= VGp iff VbVt (tEbat*p)

5, s k VFp iff Vb3t (tEbAt*p)

6. s 1= Vxp i ff Vt(sRtatep)

7. s E 3Gp iff 3bVt (tEbat@p)

8. s != 2Fp iff 3b3t (t6bAtl=p)

9. s E Slxp iff dt (sRtAt 1= p)

In the

of b

A

A

A

above formulas the quantification

is over all the s-branches in T.

formula p is satisfiable if for

some model T and some state

sES – T,s~ p.

formula p is true in T if for

every state SES - T,si= p. We

write T t= p.

formula p is valid if it is true

for every model T. We write ~ p.

In subsequent sections we will pre-

sent a procedure for deciding satisfiabil-

ity and an axiomatic system for proving

all valid formulas in UB.

Expressing Program Properties in UB

As an example of the power of the

language to express both universal and

existential properties, consider a non-

deterministic program:

p:@.>{=>->@

We distinguish two special locations

in this program - the beginning node b

and the exit node e. We define special

location propositions of the form aft for

each location L in the program. The pro-

position a.t.t is true at execution state s

166

if the execution currently resides at loc-

ation t in the program. Consequently

the proposition atb holds at all initial.

execution states and the proposition ate

is true at all terminated execution

states. Let Q and ~ be respectively

input and output predicates forming a cor-

rectness specification for the program P.

Following [Ml], [M2] we can distinguish

four types of correctness of P relative

to (Q?,*):

a) P is partially ~-correct with res-

pect to (Q,iJ).

Either there is an infinite computation

or there is a finite correct computa-

tion. This is expressible by the UB

formula:

If we evaluate this formula over execu-

tion trees of the program P i? forces

every tree whose initial state satisfies

q to contain a path all of whose states

satisfy ate a +. This implies that ‘the

computation corresponding to the path

either diverges and never reaches t or

terminates at Q with $ correct. Once

we reach e the rest of the branch. must

infinitely repeat the same state since the

program dictates no farther change. This

explains the representation of finite com-

putations in our infinite model.

b) P is totally ~-correct with respect

to (Kl,$). There is a finite correct

computation, but other computations

may be incorrectly terminating or div-

ergent. This is expressible by:

d) P is totally V-correct with respect

to (@,$). Every computation ter-

minates and satisfies ~ on ter-

mination. This is expressible by:

A similar four way classification is

given in [H] for the different notions of

total correctness. The model of program

to be studied here admits also a 6U.i.&M&

node which implies incorrect termination

or abortion:

“:o-’4

The following four notions of total

correctness of P’ with respect to (w,+)

are possible:

A) For all inputs satisfying Q, all

computations of P terminate and

yield correct results, i.e. re-

sults satisfying b. This is ex-

pressible as:

(a-tbw) = VF(a-teA~)

B) For all g-inputs, every compu-

tation either terminates success-

fully or loops. No computation

may fail.

c) For all ~-inputs each computa-

tion will either fail or reach c

successfully. No infinite compu-

tations are allowed.

(aZbA9) = VF(aZ6v(aXeA$))
c) P is partially V-correct with respect

to (W,*). Every terminating computa-

ti-on must satisfy 4, but there is no

guarantee of the existence of any ter-

minating computation. This is expres-

sible by:

D) For all ~-inputs there Is at

least one successful computation.

Other computations may fail or

diverge.

167

Note that B) and C) did not guaran-

tee the existence of a successful computa-

tion. To enforce this it is sufficient to

add the clause 3 FaL6 -to the right hand

side of the implications.

A Deductive System for U%

Presented below is a deductive system

of axioms and inference rules for proving

validity of UB formulas. We take VG, G

and VX as primitive operators and define

the other modalities by:

D1 . vFp z ~3G*p

D2. 3Fp = mVG*p

D3. ~xp = %Vxmp

Alternately we could have taken all six

operatom to be primitive but then we

should add D1-D3 as axioms.

The axiom schemata are:

Al. 1- VG(paq) n (VGpaVGq)

A2. ~ VX(pnq) > (VXpnVXq)

A3. I- VGP n VXP A VXVGP

A4.”1- VG(pnVXp) = (PSv’Gp)

These four axioms are of universal charac–

ter. The other four are existential.

El. *VG(paq) a (3Gp~3Gq)

E2. I_ 3Gp = p A SlX3GP

S3. I-VGp - 3GP

E4. l- VG(p=HXp) n (P=3GP)

The rules of inference are:

R1 , If p is an instance of a prop-

ositional tautology then pp.

R2 . If bp and kp>q then yq

(Modus Ponens).

R3 . IfI-p then l-VGp (Generaliza-

tion).

Note in particular the two induction

axioms A4 and E4. A4 states that if p

is true at the root of a tree, and for ev-

ery state s in the tree p is inherited

by all immediate descendants of s, then p

is true for all nodes in the tree.

E4 on the other hand states that if

P is true at the root SO, and everywhere

in the tree p is inherited by at least

one immediate descendant, then there ex-

ists a rooted path (i.e. an sO-branch)

all of whose nodes s’atisfy p.

In appendix A we present some use-

ful theorems of this deductive system.

In particular there is an additional

induction theorem:

Semantic Tableaux for UB

In this section we describe the con–

struction of semantic tableaux formulas

in UB, obtain a decision procedure for

satisfiability and prove the finite model

property. In the next Section we use the

tableaux construction to derive the com-

pleteness of the deductive system.

A structure is a triple (S,P,R)

where S is a set of states, P is an as–

signment of formulas to states and R is

a binary relation on states. It is con–

venient to use the same name S for a

structure and its set of states. A

structure differs from a model <n that the

assignment P is not restricted to propo-

sitions, nor is it ‘required to always con-

tain p or ~p for every p.

A formula is a nexttime formula if

its principal connective is a modality VX

or 3X. A formula is elementary if it is

a proposition, the negation of a proposi-

tion or a nexttime formula. A formula

which is not elementary is classified as

an a-formula or a .6-formula accovding to

the table below. This table also defines

certain subordinate formulas a. and B..
1 1

A structure T is called a Hintikka

set iff:

H1 . ~pEs * p@s (abbreviating PCS

for pEP(s)).

H2. aes * u Es and
l—

a Es,
2

where a, ‘uI and
a2

are in-

stances of the entries in the

table.

H3 . BE= * Blcs ~ f3*Es?

where 6,B1,62 are instances

of the entries in the table.

H4.a. If VXpEs then s has at

least one successor and for each

t, a successor of s, JKt.

168

b. If ~XpCS

successor of

and pEt.

c. If qFp6s

s-branch b

pet.

d. If VFpCS

then there is t, a

s, such that s IN

then there exists an

and a tEb such that

then for every s-

branch b there is a tEb sucii

that pet.

T is a Hintikka set for p if pEs for

some SET.

a
al a2

pAq P q

=(pvq) -p ‘q

—P P P

VGp P vTVGp

3 Gp P 3T3Gp

+}p ‘{;}wp‘{i}Np
-’I}P‘{;}-P43-P

,5 f32

vFp P VXVFp

A consequence of the definitions is:

Proposition 1 (Hintikka~s Lemma for UB):

A UB formula p is satisfiable (has a

model) iff it has a Hintikka set.

It is easy to check that any model

is a Hintikka set when we extend P to

cover all formulas which are true in a

state. Similarly, any Hintikka set can

be extended to form a model.

A semantic tableau is a systematic

search for a Hintikka set. The tableau

is constructed as a tree of nodes, Each

node contains a set of formulas derived

from the original formula p whose sat-

isfiability we wish to check, Later we

identify some of the nodes as states of

a structure which will be shown to be a

Hintikka set.

Notation: If n is a node of T

then Un is the set of formulas labelling

n. A formula p may be marked as l’check-

ed” p’ .

Let p be a UK formula and label

the root of the tree T by {p}. The

tableau is constructed inductively from

the root by applying the following rules

to nodes n which are leaves of T.

Ra : If @Jn then create m a son

urn = (Un-{a}) u {a’,c41,Q2}.

By this we mean-mark a as

checked and add. a
1

and a .
2

‘6 :
If LWJn then create two sons,

‘1 and m2 ‘f n and let:

u
II?i

= (Un - {B]) U {B’,Bi}, i ❑ 1,2.

Rx: If all non-elementary formulas

in n are checked, let

Vn = {3xp1,. . . axpk,vxql,. ..k%l}

be the set of nextti’me formulas

in Un,

Then, for each i = 1,. ..,lt

create a son m- with
1

urn = ‘Pi>q~2. .->q~}.
i

If k . 0, L > 0, create an only

son m with

urn = {ql,. ..,ql}o

If k= 1 ❑ O then node n

a terminal leaf; no further

rules are applied to n.

A node n which is not a leaf is

called an a-node, 6-node or an X–node

is

if

the Ra-rule, RB-rule or Rx-rule, res-

pectively was applied at n.

Every X-node is defined to be a

state. Two states
‘1

and
‘2

are re-

lated by R if S2 is the first state en-

countered as a descendant of s, in T. The

const??uction of T is kept finite by ob-

serving the two following termination

rules :

T1 : If a created node n contains

both p and Wp then mark this node as

169

closed and do not expand it any fur-

ther.

T2: If a state m is to be created as

as a son of n, and there is a state

t (which has already been created).

elsewhere in the tableau such that

Um ❑ Ut, then do not create m but

connect n to t instead,

Since the numbe~ of distinct formulas

that can appear in a Un is finite, these

two rules ensure termination, The result-

ing structure is no longer a tree because

of T2 but is finite.

Consider the resulting structure T

as a candidate for being a Hintikka set.

It satisfies Hl, H2, H3 and H4a,b but

not necessarily H4c,d. Consequently we

proceed to eliminate from T violations

of H4-c,d. The elimination is performed

by successive deletion of nodes. A simi.

lar procedure is used in [PR] for con-

structing a model for PDL . The deletion

of nodes

Ml.

M2 .

M3.

M4 .

M5.

M6 .

follows the rules below:

Every node which contains both

P and -p for some p is de-

leted,

If n is an a-node and m, its

son, has been deleted, then de-

lete n.

If n is a B-node and both

its sons, ml and m2, have

been deleted, then delete n.

If n is an X-node and any of

its descendants has been dele,-

ted, then delete n.

Let 3FpEn which is also a

state. If there is no path from

n leading to a node t contain-

ing p, then delete n.

Let VFpGn which is also a

state. If there is a maximal

n-path b (a path which cannot

be extended), such that

1) For all tCb, pat;

2) Every VFp node tCb

(i.e. a node to which the ~

for VFp has been applied)

rule

has

only one descendant;

tEen delete n.

Lemma 1 Tlie root
‘o ‘f

T is deleted

by the elimination process iff pEU is
‘o

Is unsatisfiable.

* The proof of the completeness theorem

in the next section shows that if the root

of T is deleted then the negation of the

formula p in the root is provable. Since

the proof system is sound, p is unsat–

isfiable.

* We need to show that if the root is not

Geleted then p is satisfiable. By Propo-

sition 1 it is sufficient to show that

there iS a Hintikka set for p. The only

step that is not straightforward from the

construction is to show that H4 holds

for Vf-formulas . In fact, the surviving

part of T may not form a Hintikka set

but we show that we can always construct

a Hintikka set out o’f the surviving part

of T. An alternative node for VFp

is a e-node for VFp both of whose sons

have survived.

Informally we unwind T so that ev-

e~y non-fulfilling branch is forced to

eventually include the fulfilling son of

some alternative node. We construct a

structure T’ whose nodes are instances

of surviving nodes of T. Denote instan-

ces of nET by n’,n’’ET’ etc. In the re-

mainder of the proof, “nodes!! refers only

to surviving nodes.

n; is the root of T! . If n! is

a leaf of T’ then extend Tt as follows,

where n(n~,nj) denotes the path from n!
1

to n!
3

in T’.

wl . If n is not an alternative

node in T for any VFp, then

for every son mi of n let m;

be a son of n’ in T!.

W2 . If n is an alternative node in

T for some VFpEn, let k be

the number of instances of n

in r(n~,n ‘).

(i) If k ❑ 1 then let mi (ar-

bitrarily) be the son of n!

170

W3.

in T.

(ii) If k > 1 then if my (m:)
LL

was the son of n“ taken at

the k-1’st instance n“ of n

then let mj (m-j_) be the

son of nt in T’.

Thus we alternate our choices.

If n has a previous ins?ance

n“ in ~(n’’,n!) and every al-

ternative node t which has an

instance in IT (n’’,n’) has at

least two instances in ~(n’’,n’)

then identify n’ wi?h n“.

The construction must ultimately

terminate since there is only a finite

number of alternative nodes. For suppose

that r=mt > ml,...
2

is an infinite path

generated by the construction of T’.

Then since T is finite there is a k

such that for all i b k, mi has infin-

itely many instances in
‘k = m& m~+l~...

In particular, every alternative node in

‘k
must appear infinitely often and thus

for some !2, m~ and ml are instances

of the same node and every alternative

node which appears in ~k appears at

least twice in
‘k “

Thus W3 should

have been applied to identify m; and m;.

Let VFpEn’ET’ and suppose that

there is an n’-branch b in T’ which

does not fulfill VFp. By construction

(W2), no alternative node for VFp can

aPPear more than once in b. Since T’

is finite, eventually there must be nodes

m’ ~ m“ such that no alternative node for

vFp appears in r(m!,m”). By the tableau

construction, if VFp6n’Eb and b is

not fulfilling then VXVFp propagates

VFp to all nodes of b including m’ .

But then from the inverse image of

r(m’ ,m”) we would be able to construct in

T an infinite non-fulfilling path for

VFpCm containing no alternative nodes for

VFp, contradicting the assumption that m

was not deleted by (M6).

Let 3FpCn’CT’ . We show how to trace

a fulfilling path in T! . By assumption

there is a fulfilling path ITl in T. As

long as we dontt reach an alternative node

in T, then we can trace the path T; Of

instances in T! . Similarly, if mi~rl

is an alternative node in T, EIT1 and‘i+ 1

m:+l~~’” lf “ contains the wrong son

m: then if mi has a next instance m;

in T’ which is accessible from m! then
1

add m! II=> . . . ,m. to ,i and continue with
1

the correct son by W2. If not, then note

that if 3FpEmi, then 3Fp is in both

sons of mi. Find a fulfilling path X2

in T from m. and continue to trace a
1

fulfilling path in Tt, By assumption mi

has no instance in T’ accessible from

m! so eventually
1

3 Fp is fulfilled or we

start tracing IT3 for a different alter-

native node mk. Since the number of (al-

ternative) nodes is finite, eventually 3Fp

is fulfilled. o

Proposition 2, There is a decision pro-

cedure for satisfiability in U%. UB has

the finite model property.

P~oposition 2 follows easily from

the previous lemma and constructions. Note

that if we are only interested in satis-

fiability then we do not need to construct

the “unwound” tableau. It is sufficient

to check whet-her the root node was deleted

by the elimination process.The decisiop.

?roccdtirc including both the tableau con-

struction and the deletion procedure can

be shown to be exponential in the size of

the formula.

Completeness

Let p IYe a valid UB formula,

Create a tableau for {-p}. If the elim-

ination procedure is applied then nO is

eliminated, otherwise -p would have been

satisfiable. If Un ❑ {pi} is a set of

formulas in a node n then a~n, the

associated formula of n, is V(-pi). In a
i

typical proof of completeness by the tab-

leau method (for example [RuI), one shows

that 1- ~fn for every leaf and that prov-

ability is p~eserved as one ascends the

tree to the root. In UB these meta-the-

171

orems hold bu~ are not sufficient because

of the non-fulfilling branches. For these

we need induction axioms A4 and E4.

We show in a series of lemmas that we can

prove the af of every eliminated node.—

Since no is eliminated, its af which—

is p is provable.

Lemma 2. If n is a closed leaf then

kafn.

Proof. t- +pv-p by Rl, hence ~afn by

dilution. u

Lemma 3. If nET is an (i) a-node, (ii)

B-node, (iii) X-node and (i) &afm, (ii)

~ af and 1- af (iii) l-af m for some
‘1 ‘2 ‘ T

~> then t- af
n“

Proof :

10WS by

T13-T14

we need

For ~ and
‘B

the lemma fol-
CY,

simple propositional reasoning and

(Appendix A). For the RX–rule,

to use T9 to deduce

kv~yLA. ..Ah%lJ& ~ VX-Pi from

kVX (qlA...AqL ~ ‘Pi) 0

Tliis part of the completeness proof,

the definition of af and the proof that—

t- af is preserved, is greatly simplieifed

by the use of The nexttime operator whe

compared with a classical completeness

proof [RU]. Now we pay for this simplic-

ity by the need to give the meta-theory

far the induction axioms. In practice,

this meta-theory is easy to apply and

proofs can b< .cmstr~~t~d b>

the tableau method. Some of the techni-

ques used belowwere first used in [PR].

Let t be a node (state) in T

which was deleted by M5 because 3 F-p

was not fulfilled. Let [t]$’ be the set

of states accessible from t by taking

the 3XSFNp defined sons. For uE[t]$’

let [u] be the immediate successors of

u in [tl~’ and let Vu be the set of

all formulas q such that Vxq is a

universal nexttime formula in u. Let

Wv=llq
t

and W z Wu. Wt is

q~yu UdvtJ’”

called the invariant of t.

Lemma 4: 1- Wt
t> Vxw

Lemma 5. For t as in lemma. 4 and’ for

all ue[tl~~, l-w u ~ P, hence t-wt > p.

Proof:(H)For all u E [t]”: we can deduce

Fwu 3 V (A VXq) and then by T9
VEIUI qEvv

FWu 3 v vX(A q). The lemma follows
VEIUI qEvr

from the definitions using TIO to ex-

tract VX. ❑

Proof:(S)Let n be the node which was ob-

tained from u by applying the X rule

?0 3X3F-p. Un = Vu U{3F-P}. Without

loss of generality we can assume that

3F-pEn * -pEn or 3X3F-p C n is the

first tableau rule applied at n. Then

u = Vuu{-’p}. Without loss of generality
‘1

we can assume that 3F-pEn + -pEn or

51X3F-p.En is the first tableau rule ap-

plied at n, Then Urn, = vu u {-p}. The

node
‘1

must be deleted, otherwise M5

would not have been applied. By the in-

ductive hypothesis baf which is
‘1

kwu ~ p. D

From ~emma 4 7 generalization and A4,

kWt s VGWt. From Lemma 5, generalization

and Al, EvGWt a VGp. Trivially,

kwt ~ Wt since t E [t]’”. Thu S

kWt > vGp which is afn for some node n

obtained from t by applying the Rx-

rule. By Lemma 3 (iii), t-aft.

If t was deleted by M5, let b be

a branch as described there: VF-p6t ,

-p$nEb and all fulfilling alternatives

already deleted,

For each uEb let u’ be the im-

mediate successor of u in b. Denote

by u >$ the set of states in b accessi-

ble from u and by Vu, the set of form-

ulas in the node u’ .

v
u’

will be {qilVXqiEu} U {1-1 for the

r such that 3XrEu caused u’ to be

generated.

Let Zu be the conjunction of all

the formulas in VU, Zt ❑ v z“.and

Lemma 6: ~ Zt
t u~t 9,

3 3X2 .

Proof:——

used to

implies

Like Lemma 4 except that Tll is

deduce that 1- Zu = A vxqiA3xr

t433X(A9i/w).
qialu ,

0

172

Lemma 7: bzt~p.

Proof: By M6 nodes containing -p were

deleted; hence by induction their a_f’s

are provable. As in Lemma 5, l-Zu~ p

hence I- Zt = p. n

Using E4, El instead of A4, Al we obtain

bZt = 3GZt, k3GZt = 3Gp, l-Zt a 3Gp and

k aft k c1

Proposition 3: A1-A4, El-E!, R1-R3 form

a complete deductive system for LIB.

The UB Semantics of Nondeterministic

Programs

The utility of UB for proving the

program properties so elegantly express-

ible in the language depends on the abil-

ity to restrict the class of possible mod-

els to the class of execution trees of a

given program P. This is done by specify-

ing a set of axioms which impose the

structure of computation according to a

given program on our general models. It

may also be considered as specifying the

temporal semantics of the programming

language by connecting its syntactical

constructs to transformations and dev-

elopments in time.

In order to do this we extend our

language by allowing predicates on var-

iables.

We have three types of variables:

a) Computation variables, Yl,Y2,. . .

which are modified by the execu-

tion and vary from state to

state.

~) Free variables X1,X2,. ,. which

remain constant in time and are

used to express relations between

values of computation variables

in different instances. Thus

(y=X) ~ 3F(y=f(x))

is the expression cf the state-

ment that there exists some com-

putation and some state in it

such that the value o? y in this

state is equal to f of’ the in-

itial y.

c) A program variable v whose val-

ue at any state points to the segment of

program yet to be executed.

To emphasize the general principle

underlying the semantics consider first

an unstructured language in which programs

are represented by transition graphs,

G = (N,E). The set N of nodes is called

the set of locations. E is the set of

edges each of which is labeled by a guard-

ed instruction of the form

g(y) –> [y := f(y)]

with the meaning that this edge is enabled

if y(y) is true and passing through the

edge involves the assignment of fy to y.

We form our temporal semantics of

such programs by letting II range over N

(the location set) and forming for each

node a semantic formula. Let a node IEN

admit the following transitions:

gl(;) —> [y:=fiyl

4

9.

‘gin(y) —> [y:=fmyl
,

Then we form the formula scheme

Here Q = Q(m,y) is an arbitrary

predicate depending in general on the

program variable T and the computation

variables y. It may also refer to free

variables .

Note the presence of the ‘E’ connec-

tive which implies that this formula con-

tains two implications. The first is

stating that for every i = 1,...,m such

that gi is true there is a successor

state s in which TS = Li and Y~ ‘ fi

(current y). The other implication is a

complementary statement saying that the

only possible successor states are derived

in this fashion.

Next we will show that the temporal

formalism is nor necessarily rest~icted

to unstructured languages. Consider as

an illustration Dijkstrats language of

173

guarded commands [D]. Here we let m

range over program segments. S will of-

ten stand for an arbitrary program seg-

ment.

The semantics of an assignment state-

ment may be given by:

LTI = {y; = e; S}) = [Q({S}, e) : 3XQ(IT,Y)]

which states that provided we are about to

execute {y := e; S}, Q will be true in

the next instant iff Q(m,y) is true for

‘n ❑ {s} and y ❑ e.

In the following let

c ❑ [: gi(y) + Cil whe~e c.
1

is any
—.~.~

command and gi’s are guards. The seman-

tics of conditional is given by the axiom:

(IT ❑ {C;S}) = [{ : [gi(y)/@({ci;s},y)]}
i.1

It states that Q(n,y) will be true of the

next instant iff for some i,gi(y) is

true and so is Q with IT ❑ {ci;S} and y.

Similarity for the repetitive command

*C we

CT=
=.~

Q({C;’kC;S},y)

Lu t

Q({S},y)}

=3xQ(m,y)I

Here the computation step chooses betwee~

the case that some guard is true and the

conditional C has to be executed first,

and the case that all guards are false

and we proceed beyond the repetition >’<C.

Discussion and Conclusions

In this paper we presented a unified

branching time system which enjoys the

joint advantages of both linear time and

branching time systems, in being able to

express and ~eason about the two basic

types of termination, universal and exis-

tential. We have established the logical

properties of the UE properties by pre--

senting a decision algorithm and a com-

plete deductive axiomatic system for the

propositional fragment of the language.

The decision procedure presented is ob-

viously exponential.

This language must of course be com-

pared with process logic languages such as

PL[HKP] and its predecessors. These lan–

guages certainly can express any of the

prope~ties expressible in ~~ and many

more . However, there is a price to pay

for this expressibility which is the com–

plexity of the language. A sign of this

is the fact that FL is nonelementary

(has nonelementary decision procedure)

while UB is exponential.

Admittedly we do have six modal op-

erators which is a disadvantage compared

to simple~ systems such as DX for lin-

ear time lGPSSI or the corresponding

Kranching time systems. On the other hand

the formation rules of these operators

are simple and uniform, and they do enable

us to express most of the interesting pro-

gram properties discussed in the litera–

ture.

Another advantage lost in the Transi–

tion from linear to branching time is

expressive completeness in the sense of .

[GPSS] . Here the problem is inherent and

cannot be remedied by the addition of one

or two extra operators. In the full ver-

sion of the paper we will bring a proof

of the following:

Proposition 4: No branching time temporal

language w~th a ~inite number of modal

operators can be expressively complete.

This theorem, due to Gabbay (Unpub-

lished manuscript) is based on the foll&w-

ing observations:

a) A temporal language with a finite

number of operators can always

be translated into’s first order

formula with a number of distinct

variable names which is fixed for

the language.

b) In first order language it is

easy to come up with formulas

which need an arbitrarily large

number of distinct variable names,

Consider for example the state-

174

ment:

There exist k time

‘l’” ””’tk
no two of

lated,

This statement needs

instants

which are re-

k variables

for its expression for an arbitrary

k. These formulas for sufficiently

large k cannot therefore be ex-

pressed in any temporal logic.

Some recent works do indeed present

branching time systems which are richer

than ours and include additional opera-

tors.

[EC]

[Al]

[A21

[D]

[EC]

IF]

~FL]

Such are the systems discussed in

and [A2].

References
K.R. Abramson, Modal logic of con-
current nondeterministic programs,
Symposium on Semantics of Concurrent
Computations, Lecture Notes in Com-
puter Science 70, Springer Verlag,
Berlin. 1979-, 21-33.
K.R. Abrahamson, Decidability and
Expressiveness of Logic of Process-
es, Ph.D. Thesis, University of
~shington, August 1980.
E,W. Dijkstra, Guarded commands,
nondeterminancy and formal deriva-
tion of programs, C. ACM 18(8),
1975, 453-457,
E.A, Emerson and E.M. Clarke, Char-
acterizing correctness properties
of parallel programs using fixpoints,
TR-04-80, Aiken Computation Labora-
tory, Harvard.
R.W. Floyd, Nondeterministic algor-
ithms, J. ACM 14(4), 1967, 636-644.
M.J. Fischer and R.E. Ladner, Propo-
sitional dynamic logic of regular-
programs, Journal of Computer and
System Sciences 18(2), 1979, 194-211.

~GPSS] D. Gabbay, A. Pnueli, S. Shelah and

IHJ

[HKPI

lHC]

~L]

[Ml]

J. Stavi,- The temporal analysis of
fairness, Seventh ACM Symposium on
Principles of Programming Languages,
1980, 163-173.
Hare!, First Order Dynamic Logic, Lec-
ture Notes in Computer Scxence 68,
Springer-Verlag, Berlin, 1979.
D. Hare[l D. Kozen and R. Parikh, Pro-
cess logic: expressiveness, decid-
ability, completeness, 21tn Sympos-
ium on Foundations of Computer Sci-
ence, 1980.
G.E. ”Hughes and M.&. Cresswell, An
Introduction to Modal Logic, Meth-
uen, London, 1968.
L. Lamport, ” ’’Sometime” is sometimes
“not never”, Seventh ACM Symposium
on Principles of Programming Lan-
guages, 1980, 174-185.
Z. Manna, Mathematical theory of
partial correctness, Symposium on
Semantics of Algorithnnc Languages,

[M21

[MP]

I F’N3

[PR]

[RU]

[s1

Lecture Notes in Mathematics 188,
Springer Verlag, Berlin, 1971, 252-
269.
Z. Manna, Second order mathematical

theory of computation, Second ACM
Symposium on Theory of Computmg,
1970, 158-168.
Z. Manna”and A. Pnueli, The modeal
logic of programs, Automata, Lan-
guages and Programming, Lecture
Notes in Computer Science 79,
Springer-Verlag, Berlin, 1979, ‘385-
409.
A. Pnueli, The temporal semantics of
concurrent programs, Symposium on
Semantics of Concurrent Computations,
Lecture Notes in Computer Science
70, Springer Verlag,-1979, 1-20.
V.R. Pratt, A practical decision
method for propositional dynamic
logic, Tenth ACM Symposium on Theory
of ComDutin~. 1977. 326-337.
N. Res;her ~nd A. Urquhart, Temporal
Logic, Springer-Verlag, Vienna, 1971.
R.M. Smullyan, First-Order Logic,
Springer-Verlag, Berlin, 1968.

Appendix A: Discussion of UB

If *VGp-p (Tl, below) is added to

A1-A4 then we get a complete deductuve

system for the universal fragment of

branching time. If VX and 3X are

merged (along with VG and 3G) so that

Vxp = +x-p is an axiom then we get a

complete deductive system for linear time.

By T1 and T5, the axioms could be ex-

pressed more symmetrically as:

Also,

T6 as

V23

./i3:kVGp 2 pAV@AvxVGP

E2:l-3Gp = p A 3XpA2X3Gp.

E3 can be derived by taking T1 and

axioms . Some axiom of the form

is needed to limit the models to

non-ending time.

Theorems of UB

T1. I-

T2. +

T3. F

T4. b

T5. &

T6. 1-

T7. I-

T80 1-

T9. I-

TIO .1-

T1l. 1-

T12. ➤

vGp D p

VGp a VFp

Vx(p=q) - (3xp33xq)

VG(p=q) n (VFpaVFq)

3Gp n 3XP

Vxp 3 3xp

VG(pAq) = VGpAVGq

3G(pAq) = 3GpA3Gq

vx(pAq) ❑ vxpAvxq

3x(pAq) = ~xPA3xq

vxPA~xq 3 ~x(PAq)

VGpA3Gp - 3G(pAq)

175

T13.

T14.

T15.

T16.

T17.

T18.

T19 .

T20.

T21.

I- vGp z pAVxVGp

I-3Gp = pA3x3Gp

~vGp = VGVGp

P 3Gp = 3G3Gp

+ 3G(p5dXp) n (p=~Gp)

I-VFVGp = VGVFp

1- 3G((pv3Gq)A(3Gpvq)) E (3Gpv3Gq)

b VXVGp = VGVXp

l-3X3Gp = 3G3Xp.

Comments: The proofs of T1-T12 are

straightforward. T13-T21 are proved using

induction axioms A4 and E4. It is also

possible to prove derived rules: ~ p+kMp

and l-p~q +1-Mp ~ Mq for any modality M.

We saw how T9 and Tll are used in the

completeness proof to deduce the induc–

tiveness of the invariant. T13 and T14

are the key to the tableau constructions:

1- -3G-pv-3x3Gp. To falsify 3Gp, either

P is false now or put off to tomoroow

the task of falsifying 3Gp.

T15.=16 correspond to the transitivity

axioms of the model system S4 [HCI. T17

is another induction axiom. We conjecture

that replacing E4 by T17 results in a

weaker system because the induction step

needed p > VXp is too strong. The sys-

tem is probably not different from linear

time. T18 is our version of the S~.2 [HCI

axiom MLpaLMp. Note that 1- 3Gp=vFp and

l- VF’3Gp a SIGVFp can be proved but this is

an artifact of the reflexiveness of UB and

would not ca~ry over if E2 were changed

to l-3Gp = 2Xp A 3X3Gp as required classi-

cally in temporal logic ~RU].

T19 is the S4.3 [HC] linearity axiom

for 3G. T20 show that VX and VG com-

mute. For 3X and 3G only the direction

shown in T21 holds.

176

