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Abstract—We address the problem of computing accurate
Worst-Case Execution Time (WCET). We propose a fully auto-
matic and modular methodology based on program slicing and
real-time model-checking. We have implemented our methodol-
ogy and applied it to standard benchmarks. To further validate
the approach, we also compare our results to the real execution
times of the programs measured on a real board.

I. INTRODUCTION

Embedded real-time systems are composed of a set of
tasks (software) that run on a given architecture (hardware)
that are subject to timing constraints, the most prominent one
being schedulability. Checking schedulability requires upper
bounds for the execution times of each task. Performance
wise, determining tight bounds is crucial since rough over-
estimates might either result in a set of tasks being wrongly
declared non schedulable, or lead to the choice of an over-
powered and expensive hardware.
The WCET Problem. Given a binary program P , input data
d, and hardware H , the execution time of P and d on H , is
the number of processor cycles from the beginning until the
end of the computation of the result of P for d. The worst-
case execution time (WCET) of P on H1, WCET(P,H), is
the supremum, over all input data d, of the execution times of
P for H . The WCET problem is to compute WCET(P,H).

In general, the WCET problem is undecidable because
otherwise we could solve the halting problem. However, for
programs that always terminate and have a bounded number
of paths, it is computable. Indeed the possible runs of the
program can be represented by a finite tree. Notice that this
does not mean that the problem is tractable though.

Programs run on complex architectures featuring multi-
stage pipelines and caches: they both influence the WCET
in a complicated manner. It is then a challenging problem
to determine a precise WCET even for relatively small
programs running on complex architectures.
Methods and Tools for the WCET Problem. The reader
is referred to [1] for an exhaustive presentation of WCET
computation techniques and tools. There are two main
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1We assume that H has a single initial state. A more precise definition
using hardware initial states is given on page 3, equation (1).

streams for computing WCET: Simulation-based [2], [3]
methods are based on experiments i.e., running the program
on some input data, using a simulator or the real platform.
The upper bound of the simulations is unreliable if the
simulation is not exhaustive, and this scheme is often unsafe
for safety critical embedded systems. Verification-based or
static methods) rely on the computation of an abstract graph
(AG) obtained from the control flow graph (CFG) and an
abstract model of the hardware. The AG generates a super-
set of the set of all feasible paths and thus the largest
execution time on the AG is an upper bound of the WCET.
Such methods produce safe WCET and tools implementing
this scheme are Bound-T [4] and aiT [5], [6].

The verification-based tools mentioned above have some
disadvantages though: (1) they rely on the construction
of a CFG, and the determination of loop bounds and
often they both require manual annotations. The algorithms
implemented in the tools use both the program and the
hardware specifications to compute the CFG fed to an
Integer Linear Programming (ILP) solver. (2) the correctness
of the abstract models used in the tools is not easy to
establish; the efficiency of the procedures implemented in
the tools strongly rely on the assumption that the hardware
is timing anomaly free [7], [1], [8]. The architectures of the
tools themselves are monolithic: it is not easy to add support
for a new hardware. (3) to the best of our knowledge, the
accuracy of the results has not been thoroughly evaluated
and results are not compared (using benchmarks) against
execution times measured on a real platform. Some tools
report comparisons with ARMulator, which is not cycle
accurate. The above mentioned drawbacks (1), (2) and (3)
are reported in the WCET’11 Challenge Report [9].

Related Work. Considering that (i) modern architectures
are composed of concurrent components (the units of the
different stages of the pipeline, the caches) and (ii) the
synchronization of these components depends on timing
constraints (time to execute in one stage of the pipeline,
time to fetch data from the cache), formal models like timed
automata (TA) [10] and state-of-the-art real-time model-
checkers like UPPAAL [11] appear well-suited to address
the WCET problem. A. Metzner already showed [12] that
model-checking could be used to compute the WCET for
programs running on pipelined processors. More recently,



Lv et al. [13] combined AI techniques with real-time model-
checking to compute WCET on multi-core platforms.

The use of network of timed automata (NTA) and UPPAAL
for computing WCET on pipelined processors with caches
was already reported in [14], [15] where the METAMOC2

method is described. METAMOC consists in: 1) computing
the CFG of a program, 2) composing this CFG with an NTA
model of the processor and the caches and 3) computing
the longest path (time wise) in this NTA. This framework
is very elegant yet shares some of the disadvantages we
mentioned previously: (1) METAMOC relies on a value
analysis phase (to compute a CFG) that may not terminate,
(2) some programs cannot be analyzed (if they contain
register-indirect jumps), (3) manual annotations (for loop
bounds) are still required on the binary program, and (4) the
unrolling of loops is not safe for some cache replacement
policies (FIFO). In [16] we have already reported some
similar results on the computation of WCET: we used NTA
to model the caches and pipeline but the computation of the
CFG was done in a totally different manner.

In this paper we introduce program slicing as a key
ingredient to make the model-checking approach feasible.
Program slicing to compute WCET was considered in [17]
but 1) slicing is performed on structured programs in the
intermediate “NIC” format (different from binary) and 2)
the authors assume that the CFG of the program is available.
In this paper we are slicing binary programs and computing
automatically the CFG.
Our Contribution. Compared to [16], we propose three
new original contributions: (1) a method to automatically
compute a CFG (Section VI) and a reduced abstract program
equivalent WCET-wise to the original program (Section V);
(2) a modular technique (Section IV) to compute WCET;
and (3) a comparison of computed WCET with measured
WCET on a real hardware. Noteworthy, our method is robust
against timing anomalies.

An extended version of this paper [18] is available at http:
//www.irccyn.fr/franck/wcet.

II. ARCHITECTURE OF THE ARM920T

The hardware we model in this paper is an Ar-
madeus APF9328 board which bears a 200MHz Freescale
MC9328MXL micro-controller with an ARM920T proces-
sor which embeds an ARM9TDMI core that implements the
ARM v4T architecture. Formal models of this board are
discussed in Section VII and available as UPPAAL TA from
http://www.irccyn.fr/franck/wcet.

The ARM architecture is a Reduced Instruction Set Com-
puter (RISC) architecture. The instruction set consists of
fixed size instructions and a few simple addressing modes.
There are 16 general purpose registers r0 to r15 (r13 to r15

2METAMOC stands for Modular Execution Time Analysis using Model
Checking.

are also called sp : stack pointer, lr : link register and pc :
program counter), specialized memory transfer instructions
(load/store), and data-processing instructions that operate on
registers only. Other relevant features are multiple load/store
instructions and conditional execution of instructions. The
ARM920T uses a 5-stage execution pipeline the purpose of
which is to execute concurrently the different stages (Fetch,
Decode, Execute, Memory, Writeback) needed to perform
an instruction. The optimal execution flow may be slowed
down when pipeline stalls occur.

Fact 1: In order to determine pipeline stalls, it is suffi-
cient to know what registers are read from/written to by an
instruction and if an instruction is performed (if conditional).
Both instruction/data caches of the ARM920T have the same
architecture. They are 16KB, 64-way set associative caches
with 8 sets and 512 32-byte lines. Replacement policy may
be set to pseudo-random or round-robin (FIFO). Transfers
between the caches and main memory are serialized.

Fact 2: To determine cache misses/hits it is enough to
know the current state of the cache and (i) the location
(address) of an instruction for the instruction cache and (ii)
the addresses referenced by an instruction for the data cache.

III. PROGRAM SEMANTICS

We make the following assumptions on a binary program
P : (A1) P always terminates and there is a uniform upper
bound (P ) s.t. for every input data, P terminates in at most
(P ) steps; (A2) P does not contain recursive calls.

(A1) rules out programs that have to traverse an array
with unknown size at compile time: the (maximal) size
of the array has to be hard encoded in the program. A
program doing a binary sort on an array of at most 10 items
satisfies (A1) as there is a bounded number of steps over all
input data. A program that first reads the size of an array
(unconstrained) and does a binary search does not satisfy
(A1): the WCET in this case is unbounded. (A2) ensures
that the CFG can be computed automatically.

We let P = {le, gt, · · · } be a finite set of predicate
variables to hold the truth values of the conditions used
in the conditional instructions of the program.3 An example
program FIBO0 (its CFG) is given in Fig. 1 (the full text is
given in appendix A.) The semantics of programs is given
in terms of assignments to registers, predicates and memory
locations. For instance, a comparison operator sets the truth
value of the predicate variables.

To compute the execution times of program runs, we view
the hardware as an abstract machine H that reads sequences
of triples (◆, A, d) generated by P . H acts as a transducer
and outputs the time (in cycles) it takes to process such a
sequence. A triple (◆, A, d) consists of an instruction ◆ =

3In the ARM 32-bit instruction set, the truth values are stored in the
status bits N, Z, C, V.
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(` : i), the set A of memory addresses ◆ references and a
boolean d that indicates whether ◆ is performed or not.4

We use these triples (and sequences thereof) because they
contain the relevant information to compute the execution
time of a run: (i) pipeline stalls are fully determined by (a)
the first component of the triple ◆ that contains the complete
description of the instruction and the read/written registers
and the (immediate) constants and (b) the value of d (Fact 1);
(ii) cache hits/misses are determined by the set A (Fact 2).

Given a sequence of triples w and a state � of H ,
timeH(�, w) is the execution time of w from �. The set of
initial states for program P and registers/memory contents
is denoted I (register pc is set to the initial instruction) and
the contents of the registers, predicates and main memory
is an admissible value in the finite set D. Notice that there
can be many initial states as the input data of P can range
over large sets. P also has a set of final states, F , that can
be defined by the value of register pc (the last instruction of
P ). The language LF

I (P ) of P is the set of sequences of
triples generated by P that start in I and end in F . As we
assume that P terminates for each input data, this language
is finite (D is finite).

IV. COMPUTATION OF THE WCET

Modular Definition of WCET. WCET(P,H) is completely
determined by LF

I (P ) and an initial state � of H:

WCET(P,H) = max

w2LF
I (P )

timeH(�, w). (1)

Computing WCET(P,H) thus amounts to: (i) generating
LF
I (P ), (ii) feeding H with each w 2 LF

I (P ) and tracking
the maximal execution time. It is easy to see that LF

I (P ) and
H are independent of each other. In this sense the definition
we have is modular as generating LF

I (P ) and building H
are two separate problems. Moreover, the algorithm to track
the maximal execution time is also independent from the
language LF

I (P ) and the hardware H . The initial state of
H may not be unique (caches lines might be dirty.) We can
accommodate this in Equation 1 and the UPPAAL models as
well by setting the initial state of the hardware.
Abstract Domain Semantics. In order to take into account
all the possible values of the input data, we use an extended
domain for the values of the registers and memory contents.
Let D? = D[{?} be the extended abstract domain with ?
the unknown value. The semantics of instructions is extended
in a straightforward manner to this domain: for instance,
the abstract semantics5 of add r0,r1,#1 is given by
[[r0]] = ? if ([[r1]] = ?) and [[r1]] + 1 otherwise. The
semantics of comparison instructions e.g., cmp r0,r1 is
extended as well to D?: for predicate le, [[le]] = ? if

4As said previously, some instructions are conditional and performed
only if the condition is true; if the condition is false they bahave as nop
(increment pc only).

5[[x]] reads “content of predicate/register/memory cell x”.

(([[r0]] = ?) or ([[r1]] = ?)) and ([[r0]]  [[r1]]) otherwise.
When a conditional instruction is encountered and the con-
dition is ? (unknown), the abstract semantics generates two
successors: one where the condition is TRUE and the other
where the condition is FALSE. The abstract semantics of P
on the abstract domain is defined in the usual standard way
by the abstract semantics of each instruction. Let L?(P )

be the set of sequences of triples (traces) generated by runs
of P in the abstract domain. As the abstract semantics over
the abstract domain allows more runs than in the concrete
domain, the set of traces generated by P on the extended
domain is a super set of the set of possible traces of P :
LF
I (P ) ✓ L?(P ) and hence replacing LF

I (P ) by L?(P ) in
Equation 1 gives an upper bound of WCET(P,H) that we
denote WCET?(P,H) in the sequel.
WCET Computation. We can reduce the computation of the
WCET to a reachability problem on an NTA. We first build
an automaton Aut(P ) that generates L?(P ): the initial states
of the automaton are given by I and the successor states
by the abstract semantics of each instruction. The hardware
components, pipeline stages, caches and main memory are
modelled by TA because they induce timing constraints:
duration of transaction between the cache and main memory,
duration of a cache hit/miss, processing time in each stage
of the pipeline.6 The model of hardware H is thus specified
by an NTA Aut(H). Feeding H with L?(P ) amounts to
building the synchronized product Aut(H)⇥Aut(P ) (the final
states are the states where the last instruction of P flows out
of the last stage of pipeline). Computing the WCET amounts
to determining the longest path (time-wise) and can be done
with UPPAAL [19] using a global clock and the sup operator.
Notice that to do this we have to explore the whole state
space of Aut(H) ⇥ Aut(P ). To handle large case studies,
we need to reduce the state space as much as possible.
For instance, we should avoid generating two runs of the
program P that give the same sequences of triples (same
trace) as both runs will result in the same execution time
(from the same initial state of H). Thus if we can minimize
Aut(P ) while still generating the same sequences of triples
we reduce the number of states of Aut(P ) as well as the
number of explored paths in Aut(H)⇥ Aut(P ). In the next
section we describe how to compute a reduced program P 0

that generates the same language as P .

V. COMPUTATION OF A WCET-EQUIVALENT PROGRAM

In this section we show how to use program slicing to
compute a WCET-equivalent program. Given two programs
P and P 0, if L?(P ) = L?(P

0
) then WCET?(P,H) =

WCET?(P
0, H). Our goal is thus to compute such a WCET-

equivalent program P 0, which has less states than P yet
contains enough information to generate L?(P ). We can

6Some instructions (MUL/MLA/SMULL) have data dependent durations.
In this case, in the TA model of the execute stage of the pipeline, the
duration is in an interval.
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define P 0 as a slice of P : a slice is a subset of instructions
of P together with a subset of the variables used in P .

The purpose of program slicing [20] is to compute a
program slice by removing some statements of the original
program s.t. the slice computes the same values for some
variables at some given points in the programs. The points
of interests together with the variables of interest at these
points constitute the slice criterion. The main result of [20]
is that, given a slice criterion, it is possible to compute a
sub-program, the slice, that will produce exactly the same
values for the variables at the points of interest.

In this work, we use program slicing for two separate pur-
poses: 1) to generate the CFG (Section VI) by determining
the target addresses of dynamic jumps and 2) to identify the
instructions that have to be tracked to preserve the timing
information (rest of this section).

The slice criterion contains memory transfer and condi-
tional instructions: this is the minimum set of instructions to
track in order to generate the sequences of triples (◆, A, d)
for a program. Program slicing usually discards a subset
of instructions irrelevant to the slice criterion. In our case,
the reduced program P 0 is not defined as the sliced pro-
gram alone as it would obviously not generate the same
sequences of triples. P 0 is the original program P operating
on the reduced set of slice variables with the semantics of
instructions altered as follows: if an instruction is in the
slice, its standard abstract semantics applies; otherwise, its
semantics is nop (increment pc register without modifying
the other variables.) No instruction of P is discarded but the
semantics of the instructions not in the slice is interpreted
as nop. This preserves the generated triples. The correctness
of this approach i.e., L?(P ) = L?(P

0
), is ensured by the

property of a slice (and the choice of the slice criterion.)
Let us first assume that the CFG of P is known. Slicing
binary programs is still not easy because (i) the names
of the variables used in a program have disappeared and
are references to memory locations using a base register
and an offset register and (ii) the computation of a slice
is based on an iterative solution of data-flow equations
on the set of relevant7 variables for each instruction in
the CFG of P . The addresses of the relevant variables
for an instruction might not be known at compile time.
Consider the instruction str r0,[sp,#4]. It semantics is
[[[[sp]]+4]] := [[r0]] but the value of sp (stack pointer) is fixed
only when the program executes. Other instructions like str
r2,[r1, r3 lsl #2] ([[[[r1]] + ([[r3]]⇥ 2)]] := [[r2]]) might
(read or) write to arbitrary memory locations. To overcome
this difficulty, we start by defining the sets of REF (read)
and DEF (written) variables for each instruction as follows:

• for instructions that do not involve memory transfers,
we know the exact set of DEF and REF variables
e.g., for instruction i = add r2,r1,#1 REF(i) =

7Relevant variables for an instruction are the read from/written variables.

{r1} and DEF(i) = {r2}.
• for instructions that use stack references, e.g., i =

push(lr), we define REF(i) = {lr, sp} and DEF(i) =
{sp, stack}; all we know at that stage is that the stack
is modified without any knowledge of the precise index
in the stack that is involved.

• for instructions that make main memory references,
we abstract away their contents: we assume that the
content of the memory outside the stack is unknown.
For instruction i = str r2,[r1, r3 lsl #2] we
set REF(i) = {r1, r2, r3} and DEF(i) = ? (the
content of the main memory not in the stack is always
unknown.)

ENTRY

120 stmdb sp!,{lr}

END

124 sub sp,sp,#12

128 mov r3,#300

132 str r3,[sp,#4]

136 ldr r0,[sp,#4]

140 bl 0

0 sub sp,sp,#32

4 str r0,[sp,#4]

8 mov r3,#1

12 str r3,[sp,#16]

16 mov r3,#0

20 str r3,[sp,#20]

24 mov r3,#2

28 str r3,[sp,#12]

32 b 50

80 ldr r2,[sp,#12]

84 ldr r3,[sp,#4]

88 cmps r2,r3

92 ble 24

36 ldr r3,[sp,#16]96 ldr r3,[sp,#16]

40 str r3,[sp,#24]

44 ldr r2,[sp,#16]

48 ldr r3,[sp,#20]

52 add r3,r2,r3

56 str r3,[sp,#16]

60 ldr r3,[sp,#24]

64 str r3,[sp,#20]

68 ldr r3,[sp,#12]

72 add r3,r3,#1

76 str r3,[sp,#12]

100 str r3,[sp,#28]

104 ldr r3,[sp,#28]

108 mov r0,r3

112 add sp,sp,#32

116 bx lr

144 mov r3,r0

148 mov r0,r3

152 add sp,sp,#12

156 ldmia sp!,{lr}

160 bx lr

Figure 1. WCET-equivalent Slice for FIBO0.

In a first phase we define a slice criterion SC0 that
consists of every instruction that reads8 or writes the
stack pointer (for FIBO0, Fig. 1, SC0 contains (0, {sp}),
(4, {sp}), . . . , (120, {sp}), . . .. We compute the correspond-
ing slice, simulate it (initial values of the stack pointer must
be given) and collect the possible values of sp at the points
defined by SC0. This enables us to define more precisely
the set of DEF and REF variables for each instruction
referencing the stack pointer: we can now replace the
variable stack (in REF and DEF) by actual stack indices.

8In the implementation we start with instructions writing to sp and then
forward propagate the values to instructions reading sp.
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For instance, if the set of values of register sp for instruction
i = str r0,[sp] is {60, 64}, we set REF(i) = {sp, r0}
and DEF(i) = {stack60, stack64}.

Given this precise definition of the DEF and REF variables
for each instruction, we can compute a WCET-equivalent
program in a second phase. The slice criterion we start with
is SC1 and contains (as said at the beginning of this section)
the instructions that (i) make memory transfers or (ii) are
conditional. This ensures that the sliced program generate
the same triples (◆, A, d) for all these instructions.

An example of a slice for FIBO0 is given in Fig. 1: there are
7 variables in the slice ({pc, r0, r2, r3} and 3 stack values),
13 instructions (highlighted in red) out of 41 (the ones not
in the slice do not modify the sliced variables and solely
increment pc.) Notice that instructions 8 and 16 are not in the
slice: they load values in r3 which are pushed onto the stack
but these values do not influence the control flow later on.
This enables us to avoid manual loop counter annotations.
The variables in the slice suffice to precisely control the
number of loop iterations. Indeed, as witnessed by example
in Fig. 1, all the instructions that control the loop are in the
slice and the variables used for temporary storage (on the
stack) are included as well. It follows that all the necessary
variables and updates are captured by the slice.

A 2-stage Slicing Algorithm. Computing a WCET-
equivalent program using the stack variable only (without
pre-slicing with sp) generates large slices: indeed, any
instruction that reads the stack depends on any instruction
that writes to the stack. Computing first the precise values
encountered for sp enables us to obtain small slices in
the subsequent step: an instruction that reads stack variable
stack4 will not depend on an instruction that writes stack16.
The slices computed for the first phase are very small and
cheap to compute as the stack pointer is usually used to
allocate some space on the stack on function calls and
release it when the function returns.

Table I, page 8, column “Slice” (a/b) gives, for each
program P , the number of instructions a that are in the
slice of P compared to the total number of instructions b in
the CFG of P ; it clearly shows a drastic reduction (and the
number of slice variables is also very small compared to the
full set of registers and full stack). This is essential for the
scalability of the method as discussed in Section VIII. In
the worst-case the slice contains all the nodes of the CFG.

Correctness and Termination. The correctness of the al-
gorithm follows from the slice criterion: as it comprises
of the conditional and memory transfer instructions, we
guarantee that the slice preserves the triples generated by
L?(P ). Termination is not guaranteed as we simulate the
programs in the extended abstract domain. Nonetheless, for
all the programs we processed so far (Table I), the abstract
simulation terminated.

VI. COMPUTATION OF THE CONTROL FLOW GRAPH

The algorithm to automatically compute the CFG consists
in three steps that are iterated:

• Step 1, Unfold. Given a set of source nodes S, unfold
the CFG as much as possible, i.e., until dynamic
branching instructions are encountered. This gives a
(partial) CFG C where some dynamically computed
branching (register-indirect jumps) are considered as
nodes to be resolved (set R).

• Step 2, Slice. Slice C with the slice criterion that
corresponds to the set R.

• Step 3, Simulate. Simulate the previous slice and
compute the successors nodes succ(R) for R. Add
edges from the nodes in R to their computed successors
succ(R). Set S to the set of nodes in succ(R) that are
not final nodes (of the program) and goto Step 1.

The algorithm starts with S being the entry point of the
program to be analyzed. It stops when S is empty. When
the algorithm terminates we have the CFG of the program.

We illustrate the algorithm on program FIBO0. In the first
iteration, Step 1, S = {120}, we unfold the program up to
instruction 116 which is a dynamically computed branching:
116: bx lr “branch to [[lr]]” and [[lr]] is unknown at
compile time. In this CFG (Fig. 2, left), the successor of
instruction 116 is unknown (stored in lr) and thus the un-
folding terminates at this node (this is denoted by the special
successor node EXIT0xN ) and R = {116}. To compute the
successor of this node we slice (Step 2) this CFG with the
slice criterion SC0 = {(116, {lr})} that contains instruction
116 and the associated variable lr. The sliced program
(red nodes in Fig. 2, left) is composed of instructions 140

(“(b)ranch to 0 and save return address to (l)ink register lr”)
and 116. Simulating (Step 3) this two-instruction program
we get the possible value of lr at instruction 116 which is
144: thus a new node succ(R) = {144} is created and an
edge from 116 to 144. As can be readily seen this slice is
very small (two instructions). When we simulate the slices,
we set the initial values of sp and pc to known values and
set the initial values of the other registers to ?.

In the next iteration of the 3 steps, we start with S =

{144} (the newly discovered successor of 116). We unfold
this CFG (Step 1) from 144 to obtain a CFG (Fig. 2,
right) comprising of all the instructions up to instruction
R = {160} which is a dynamically computed branching
(register-indirect jump) again.

This second CFG is sliced (Step 2) to compute the
successor of instruction 160: the new slice (red nodes in
Fig. 2, right) contains 6 nodes, 120, 124, 0, 112, 152,
156 and 160 with associated variables. Notice that we first
have to determine the stack variables used by instructions
156, 120 as they are used to store the return address on top
of the stack: this is done using the algorithm described in
the previous section. We can then simulate (Step 3) the new
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slice and compute the successor of node 160 which is a
program final node and thus the algorithm terminates. The
final CFG is given in Fig. 1.

The computation of the possible values of sp described in
Section V is actually performed when computing the CFG.
When we have computed the final CFG we also have the
possible values of the stack indices at each node of the CFG.

Remark 1: If the abstract semantics simulation generates
an unknown target value ? for pc, the construction of the
CFG aborts. This never happened on the benchmark pro-
grams and can only happen if the (unknown) input data have
an influence on a dynamically computed target. Dynamically
computed targets are used as “return” statements in functions
and thus rarely depend on input data.
Correctness and Termination. Correctness is guaranteed
by the slice criterion and the property of slices: each
dynamically computed target of a branching instruction is
in a partial unfolding of a program. Termination is not
guaranteed as we simulate the program on an extended
abstract domain.

VII. HARDWARE FORMAL MODELS

The hardware formal model of the platform described in
Section II is a NTA comprising of the following components:
pipeline stages, instruction and data caches, write-buffer and
main memory. The hardware model is deterministic (we use
priorities in UPPAAL to enforce this.)

The pipeline, caches and write buffer operations greatly
impact the WCET. This is especially true for caches as small
variations like the base address of the data can double the
WCET. To get tight bounds, we have to build very accurate
models of the hardware. The official documentation, the
ARM9TDMI Technical Reference Manual [21], gives some
information (mostly examples) about the pipeline timings
and caches. It is not detailed and systematic enough to cover
all the situations and build a formal model of the hardware.
To overcome this problem and build accurate formal models,
we have carefully designed custom binary programs to stress
particular features of the hardware and determine the precise
timing of some sequences of instructions, caches, write
buffer and memory accesses.

Notice that we used this method because we were not
able to obtain detailed hardware specifications from the
vendor, but ideally, formal models of the hardware (or
good abstractions thereof) could be directly provided by the
vendor. The timed automata for the caches, pipelines are
available at www.irccyn.fr/franck/wcet. Some of the models
are rather involved and we do not detail them in this paper
due to lack of space.

Compared to other tools, our hardware formal models are
available as UPPAAL timed automata. It is thus possible
to check their accuracy and level of details. METAMOC
models simpler: our formal models are a lot more detailed

and capture advanced features of the ARM920T hardware
like the write buffer, alignment.

VIII. IMPLEMENTATION & EXPERIMENTS

Implementation. The binary programs are computed from
C/C++ programs with the GCC tool suite for ARM (gcc,
objdump) from Codesourcery.

We have implemented the construction of the CFG (Sec-
tion VI) and the computation of the WCET-equivalent
program (Section IV). Together with a parser of ARM
binary programs it comprises of three thousand C++ lines of
code. We have implemented very efficient versions of post-
dominators algorithms [22] and post dominance frontiers
algorithms [23] as they are used intensively for computing
slices. We have also implemented a functional software sim-
ulator for ARM programs to simulate the slices and collect
the results. Using our implementation we can generate the
WCET-equivalent program together with the model of the
hardware in a UPPAAL.
Methodology. The precise methodology to measure the
execution time on our testbed is described at http://www.
irccyn.fr/franck/wcet. What should be noticed is that we
(really) measure, on the real hardware, the execution times
(in cycles) of the programs. For programs with multiple
paths, we supply the data that should9 produce the WCET:
this way we obtain a measured lower bound of the WCET.
Experiments. Results on the Mälardalen University bench-
marks [24] are reported10 in Table I (models, programs are
available from http://www.irccyn.fr/franck/wcet). Regarding
the benchmarks themselves, we point out that:

• the difficulty of computing the WCET is not related to
the size of the program; some programs are huge but
contain few paths, others are very compact but have a
huge number of paths.

• they are designed to be representative of the difficul-
ties encountered when computing WCET: for instance
janne-complex contains two loops and the number of
iterations of the inner loop depends on the current value
of the counter of the outer loop (in a non regular way).

• we have experimented with different compiled versions
(O0, O1, O2) of the same program because the binary
code produced stresses different parts of the hardware.
Moreover, the strongest optimization (O2) produces
a binary program which is very different from the
original C program and it is almost impossible to infer
loop bounds automatically (a disadvantage for standard
techniques). Our method is automatic and accurate.

• we have increased the number of iterations of the
benchmarks (e.g., we compute the WCET of Fib(300)

9Of course this only gives a lower bound on the execution time as we
cannot prove that the supplied data corresponds to the worst case. Worst-
case input data are included in the source code of the benchmarks.

10We also compute the Best case execution time (BCET) using the inf
UPPAAL operator.
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ENTRY

120 stmdb sp!,{lr}

124 sub sp,sp,#12

128 mov r3,#300

132 str r3,[sp,#4]

136 ldr r0,[sp,#4]

140 bl 0

0 sub sp,sp,#32

4 str r0,[sp,#4]

8 mov r3,#1

12 str r3,[sp,#16]

16 mov r3,#0

20 str r3,[sp,#20]

24 mov r3,#2

28 str r3,[sp,#12]

32 b 50

80 ldr r2,[sp,#12]

84 ldr r3,[sp,#4]

88 cmps r2,r3

92 ble 24

36 ldr r3,[sp,#16] 96 ldr r3,[sp,#16]

40 str r3,[sp,#24]

44 ldr r2,[sp,#16]

48 ldr r3,[sp,#20]

52 add r3,r2,r3

56 str r3,[sp,#16]

60 ldr r3,[sp,#24]

64 str r3,[sp,#20]

68 ldr r3,[sp,#12]

72 add r3,r3,#1

76 str r3,[sp,#12]

100 str r3,[sp,#28]

104 ldr r3,[sp,#28]

108 mov r0,r3

112 add sp,sp,#32

116 bx lr

EXIT_0x100807a00

ENTRY

120 stmdb sp!,{lr}

124 sub sp,sp,#12

128 mov r3,#300

132 str r3,[sp,#4]

136 ldr r0,[sp,#4]

140 bl 0

0 sub sp,sp,#32

4 str r0,[sp,#4]

8 mov r3,#1

12 str r3,[sp,#16]

16 mov r3,#0

20 str r3,[sp,#20]

24 mov r3,#2

28 str r3,[sp,#12]

32 b 50

80 ldr r2,[sp,#12]

84 ldr r3,[sp,#4]

88 cmps r2,r3

92 ble 24

36 ldr r3,[sp,#16]

96 ldr r3,[sp,#16]

40 str r3,[sp,#24]

44 ldr r2,[sp,#16]

48 ldr r3,[sp,#20]

52 add r3,r2,r3

56 str r3,[sp,#16]

60 ldr r3,[sp,#24]

64 str r3,[sp,#20]

68 ldr r3,[sp,#12]

72 add r3,r3,#1

76 str r3,[sp,#12]

100 str r3,[sp,#28]

104 ldr r3,[sp,#28]

108 mov r0,r3

112 add sp,sp,#32

116 bx lr

144 mov r3,r0

148 mov r0,r3

152 add sp,sp,#12

156 ldmia sp!,{lr}

160 bx lr

EXIT_0x100807a00

Figure 2. Unfoldings of the CFG of FIBO0.

instead of Fib(30)11); this way, modelling errors/inac-
curacies (e.g., producing an extra cycle per loop in our
model) will incur a magnified over-approximation in
the result and be glaring.

The results in Table I fall into three main sections:
Single-Path programs. For this program there is only one
execution path and thus for a given initial hardware state the
measured execution time is the WCET. The results show
that the abstract models (program and hardware) we have
designed are adequate for obtaining tight bounds for the
WCET. Even for janne-complex and its inner loop counter
that depends on the outer loop counter, the maximum error is
2.4%. This validates the accuracy of the program/hardware
model we have computed.
Single-Path programs with data dependent instruction du-
rations. Some programs use variable execution time instruc-
tions like MUL/MLA/SMULL. For these instructions the

11The computation of Fib(300) results in an arithmetic overflow but we
can still compute the time it takes to compute the result.

time spent in the E stage is within an interval (this is another
strength of using time automata as timing can be easily
and precisely defined including uncertainty). This explains
the difference between the computed and the measured
WCETs because in the measured WCET the worst-case
duration for the MUL/MLA/SMULL instructions is never
encountered. In this case, column “Error (%)” of Table I
does not represent the over-approximation of the computed
WCET but rather the under-approximation of the measured
WCET with the supplied input data.
Multiple-path programs. These programs contain branch-
ings that are input data dependent. The measured WCET is
the execution time (on the hardware) obtained with input
data that should produce the WCET. As emphasized earlier
we cannot guarantee that the input data produces the WCET.
Our computed WCET however considers all the possible
input data. Notice that when the measure M is less than
1000, measurement error exceeds 1%.

An important question is the practical effect of slicing and
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Program� loc†
UPPAAL

Time/States Explored¶
Computed

BCET/WCET (C)
Measured

BCET/WCET (M) Error (%)‡ Slice§

Single-Path Programs
fib-O0 74 2s/74181 8098 8064 0.42% 47/131
fib-O1 74 0.6s/22333 2597 2544 2.0% 18/72
fib-O2 74 0.3s/9711 1209 1164 3.8% 22/71
janne-complex-O0⇤ 65 1.7s/38038 4264 4164 2.4% 78/173
janne-complex-O1⇤ 65 0.5s/14600 1715 1680 2.0% 30/89
janne-complex-O2⇤ 65 0.5s/13004 1557 1536 1.3% 32/78
fdct-O1 238 21s/60534 4245 4092 3.7% 100/363
fdct-O2 238 3.24s/55285 19231 18984 1.3% 166/3543

Single-Path Programs‡ with MUL/MLA/SMULL instructions (duration of instruction depends on data)
fdct-O0 238 124s/85008 11242/11800 11448 3.0% 253/831
matmult-O0⇤ 162 217s/10531262 502849/529250 511584/528684 0.1% 158/314
matmult-O1⇤ 162 25s/1112527 129967/156367 127356/153000 2.2% 71/172
matmult-O2⇤ 162 121s/6780931 122045/148299 116844/140664 5.4% 75/288
jfdcint-O0 374 92s/100861 12726/12918 12588 2.6% 159/792
jfdcint-O1 374 12s/35419 4880/5072 4668 8.6% 25/325
jfdcint-O2 374 5.38s/175661 [16746,16938] 16380 3.4% 56/2512

Multiple-Path Programs
bs-O0 174 30s/1421274 478/1068 1056 1.1% 75/151
bs-O1 174 23s/1214673 321/738 720 2.5% 28/82
bs-O2 174 12s/655870 273/628 600 4.6% 28/65
cnt-O0⇤ 115 4s/77002 9025/9027 8836 2.1% 99/235
cnt-O1⇤ 115 1.4s/27146 4123/4123 3996 3.1% 42/129
cnt-O2⇤ 115 9s/11490 3067/3067 2928 4.6% 39/263
insertsort-O0⇤ 91 598.98s/24250738 3133 3108 0.8% 79/175
insertsort-O1⇤ 91 353.80s/11455293 1533 1500 2.2% 40/115
insertsort-O2⇤ 91 11.68s/387292 1326 1320 0.4% 43/108
ns-O0⇤ 497 60s/3064316 940/30968 30732 0.8% 132/215
ns-O1⇤ 497 8s/368720 605/11701 11568 1.1% 61/124
ns-O2⇤ 497 55s/1030746 441/7280 7236 0.6% 566/863

� file-Ox indicates that file was compiled using gcc -Ox
† lines of code in the C source file
‡

(C�M)
M ⇥ 100 computed using the upper bound for C and M

§Instructions in Slice/Instructions in Program
⇤Program selected for the WCET Challenge 2006
¶UPPAAL 4.1.11/Intel Pentium 5/3.1Ghz/16GB

Table I
SUMMARY OF THE RESULTS.

the use of the WCET-equivalent program. What happened
when no slicing is used is given by the METAMOC results12:
they show (http://metamoc.dk/, benchmark results), that even
with abstract caches, and a large amount of memory (32GB)
for UPPAAL, it is impossible to compute a WCET for large
programs (compiled with options O0, O1) and only the
(small) programs compiled with option O2 can be handled
(and with simple cache models). This clearly shows that
slicing and the computation of a reduced WCET-equivalent
program is a critical step in the model-checking method.
Statistical Model-Checking. The WCET is an upper bound
and as any upper bound it may happen only for a few input
data. A complementary approach is to get a distribution of
execution times to gain more insight on the timing behaviour
of the program. This is usually done by simulating the
program. Doing this requires setting up a testbed, providing
(random) input data and measuring execution times.

The UPPAAL models obtained after the slicing phase
can also be used to for simulation. This is an advantage
of our method that we have executable UPPAAL formal
models. This is a very nice feature as it is possible to use
the statistical model-checking [26] approach to gain more
insight into the distribution of the execution times. It is also

12We cannot compare the WCET estimates from METAMOC with ours
as the hardware is different.

a good alternative to the computation of the WCET using
the exhaustive approach in case it is impractical (due to the
state explosion problem).
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Figure 3. Distribution of Execution Times for bs-O2.

The distribution of execution times for program bs is
given in Figure 3 (’k/n’ in the legend represents p). This
program performs a binary search on an 800 elements array.
The “probability to find” the element searched for is p, and
if it is in the array we assume it can be at any position with
uniform probability p

800 (this the probability that the element
is not found is 1 � p). The probability distribution, Fig. 3,
for this program can be computed by UPPAAL-SMC [26].

8



IX. STRENGTHS AND LIMITATIONS OF OUR METHOD

The most valuable advantage is certainly the automatic
computation of the CFG and the reduced WCET-equivalent
programs. This avoids the tedious and error-prone task of
loop bound annotations of all other methods and tools.
The slicing algorithm [22] we have implemented is linear
in the size of the CFG and and scale up to very large
programs. On the sliced program P 0 we can apply standard
model-checking (without time) and compute: loop bounds,
maximum stack size, maximum number of cache misses,
etc. There are other advantages for using model-checking
techniques: the model-checker can output a witness program
trace for the longest path; we can check whether this trace is
feasible and if so generate corresponding initial input data;
in case the witness trace is not feasible, counter example
guided refinement (CEGAR) can be carried out to refine the
model.

The use of TA models for the hardware is also a
clear advantage as the specifications are readable, formal,
compact, executable (we can simulate them in UPPAAL)
amenable to changes/substitutions (e.g., LRU vs FIFO re-
placement, always-miss caches) and can be tested/validated
(using UPPAAL). Moreover, we can accommodate changes
in processor speed as well: for instance, in the first 10ms
the processor runs at half speed and then switches to full
speed (this can be modeled using an extra TA.) Modularity

0 mov r2,#0

4 cmp r0,r1

8 beq 16

12 nop

16 add r2,r2,#1

20 cmp r2,#10

24 ble 4

28 bx lr

Figure 4. A short Program

is a nice and important feature: (1) hardware models can be
designed and validated, and derived from VHDL specifica-
tion; replacing a hardware by another amounts to a simple
selection of hardware formal model templates in UPPAAL.
(2) the program model (slicing) can be built based on the
sole knowledge of the semantics of the language; support
for other assembly languages is made easy. (3) the model-
checking algorithm can be improved: strategies to prune the
state space can be integrated or multi-core versions can be
safely used to speed up the computation.
The current limitation of the approach is the model-checking

phase but there is room for improvements in this area.
Contrary to well-established static analysis based techniques
that are optimized for computing WCET, UPPAAL does not
(right now) take full advantage of the particular nature of
the WCET problem. A first option is to use the simulation
based statistical model-checking approach which does not
suffer from the state explosion problem. The drawback is
that we only get an under-approximation of the WCET, but
we get a distribution. A second option is to tune UPPAAL to
get advantage of the particular nature of the problem at hand.
Indeed, UPPAAL is not optimized for computing WCET. For
instance, if two states of the product Aut(H) ⇥ Aut(P )

differ only on the global time (time elapsed since the
program started), the one with the smallest time stamp can
be discarded and need not be explored further: the program
and the hardware are deterministic, and thus the set of
possible traces from the two states are equal. This can
result in an exponential reduction of the explored state space
as example of Fig. 4 shows. Assume that each instruction
takes 1 cycle and the comparison instruction 4 is input
data dependent: r0 and r1 are always unknown. Thus we
have to consider both branches each time instruction 8 is
encountered. What is remarkable is that whatever the taken
branch is, the two states of the program and hardware when
reaching instruction 16 are almost identical: the registers
have the same values, the caches as well, only the value of
the predicate eq set at instruction 4 is different. Nevertheless
the value of this predicate does not influence the set of
future traces and thus can be discarded. Clearly, the state
with the lowest current time at instruction 16 should not
be explored as the other one will for sure yield a larger
execution time. This kind of pruning is not possible yet in
UPPAAL. Note that partial-order reduction techniques [25]
can also be effective.

X. CONCLUSION AND FUTURE WORK

We have presented a framework based on program slicing
and model-checking to compute WCET. We have compared
the computed results with real execution times on the real
hardware and showed we can achieve unmatched tightness.

Our method has several advantages: (1) it is based on
a formal approach, based on efficient techniques; (2) it is
fully modular and for instance, altering/using a new model
of the hardware can be done easily by providing the timed
automata models of the hardware; (3) it computes the CFG
automatically. This avoids an error-prone, time-consuming
and tedious step of the standard methods and tools that all
require a manual intervention (loop bound annotations).
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APPENDIX A.
EXAMPLE PROGRAM FIBO0

function <fib>:
0: sub sp, sp, #32 [[sp]] := [[sp]] � 32
4: str r0, [sp, #4] [[[[sp]] + 4]] := [[r0]]
8: mov r3, #1 [[r3]] := 1
12: str r3, [sp, #16] [[[[sp]] + 16]] := [[r3]]
16: mov r3, #0
20: str r3, [sp, #20] [[[[sp]] + 20]] := [[r3]]
24: mov r3, #2
28: str r3, [sp, #12]
32: b 0x50 [#80] [[pc]] := 80
36: ldr r3, [sp, #16] [[r3]] := [[[[sp]] + 16]]
40: str r3, [sp, #24]
44: ldr r2, [sp, #16]
48: ldr r3, [sp, #20]
52: add r3, r2, r3
56: str r3, [sp, #16]
60: ldr r3, [sp, #24]
64: str r3, [sp, #20]
68: ldr r3, [sp, #12]
72: add r3, r3, #1
76: str r3, [sp, #12]
80: ldr r2, [sp, #12]
84: ldr r3, [sp, #4]
88: cmp r2, r3 [[le]] := ([[r2]]  [[r3]])
92: ble 0x24 [#36] [[le]]?([[pc]] := 36) : ([[pc]] := 96)
96: ldr r3, [sp, #16]
100: str r3, [sp, #28]
104: ldr r3, [sp, #28]
108: mov r0, r3
112: add sp, sp, #32
116: bx lr [[pc]] := [[lr]]

function <main>:
120: push {lr} [[sp]] := [[sp]] � 4; [[[[sp]]]] := [[lr]]
124: sub sp, sp, #12
128: mov r3, #300
132: str r3, [sp, #4]
136: ldr r0, [sp, #4]
140: bl 0 <fib> [[lr]] := 144; [[pc]] := 0
144: mov r3, r0
148: mov r0, r3
152: add sp, sp, #12
156: pop {lr} [[lr]] := [[[[sp]]]]; [[sp]] := [[sp]] + 4
160: bx lr

FIBO0 computes the Fibonacci number u300 with u0 = 1,
u1 = 1 and un = un�1 + un�2, n � 2. The semantics of
this program is given in terms of assignments to registers:
[[x]] denotes the content of a register or memory cell. Each
instruction assigns a new value to pc : except for branching
instructions the assignment is [[pc]] := [[pc]] + 4 and we omit
it. A comparison operator (e.g., instruction 88) sets the truth
value of the predicates that are used later in the program
(e.g., le for instruction 88 used in the branch instruction 92).

From state [[sp]] = 100 executing the instruction ◆ = (20 :

str r3, [sp,#20]) generates (20, {120}, TRUE); from state
[[le]] = FALSE, [[pc]] = 92, the instruction (92 : ble 0x24)

generates (92,?, FALSE).
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