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ABSTRACT

Rational strategic reasoning is the process whereby art agen
sons about the best strategy to adopt in a given multi-agest s
nario, taking into account the likely behaviour of othertjz#pants

in the scenario, and, in particular, how the agent’s chofcgrat-
egy will affect the choices of others. We presemtrL, a logic
that is intended to facilitate such reasonim@aTL is an extension
of Alternating-time Temporal LogicATL ), which supports reason-
ing about the abilities of agents and their coalitions in gdike
multi-agent systemsCATL extendsaTL with a ternarycounterfac-
tual commitmenbperator of the fornCi(o, ), with the intended
reading “if it were the case that agantcommitted to strategy,
then ¢”. By using this operator in combination with the ability
operators ofaTL, it is possible to reason about the implications of
different possible choices by agents. We illustrate the@agh by
showing howCATL may be used to express properties of games
such as Nash equilibrium and Pareto efficiency. We also shatv t
the model checking problem faATL is tractable, and hence that
efficient implementations of strategic reasoners basedkon are
feasible.
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1. INTRODUCTION

Strategic reasoning is commonplace in the literature ofegén@ory
and multi-agent systems. Strategic reasoning from the kmghvn
one-shot prisoner’s dilemma game is a good example here [18]

Suppose my opponent cooperates. Then my best re-
sponse is to defect, since that way | get the best pos-
sible outcome. But suppose he defects. Then, again, |
would get the best outcome by defecting.

Strategic reasoning of this kind t®unterfactual since it involves
suppositions (‘suppose he cooperates... suppose he slefejt
that may be false or that may have an undetermined truth y&lye
22]. For example, the statement “if Napoleon won in 1812 then
all would speak French” is counterfactual, since it invehaesup-
position (“Napoleon won in 1812") that is in fact false. Glasl
logic is of no use when analysing such reasoning, since ssical
logic, any implication with a false antecedent is by defomitirue.
So, to capture strategic reasoning of the kind above — inhylic
order to determine the best choice of action, we must makergss
tions that may be true, false, or undetermined — we need sorhe s
of counterfactual construction. Our aim in this paper isr@spnt
and evaluate a logic that supports precisely this kind csaaing.

CATL (which stands foiCounterfactualaTL, but it can be also
read asCommitmentatL) is based omTL, the Alternating-time
Temporal Logic of Alur, Henzinger, and Kupferman [1, 2], gi
which supports reasoning about the abilities of agents aadi-c
tions of agents in game-like multi-agent systentsaTL extends
ATL with ternarycounterfactual commitmenperators, of the form
Ci(a, ), with the intended reading “if it were the case that agent
i committed to strategy, theny would hold”. TheC;(o, ¢) op-
erators are counterfactual because they involve a suppos¢ihat
agenti commits to following strategy) which is not known to be
true or false; we say they ammmitmenbperators because they
capture the notion of an agent committing to follow a pafécu
strategy* A formula Ci(o, ¢) will be true in a statey of a system
M iff o is true at state| in the systenM’, whereM’ is exactly like
M exceptthat agent is only able to perform the actions dictated by
strategyo.

Our work makes three key contributions to the area of logics f
multi-agent systems:

e First, CATL is, to the best of our knowledge, the first logic

!Note that this is a rather different sense of the term comaitrto
that which is more commonly used in the multi-agent systéf®is |
ature [16], in particular because commitment as repredenteur
counterfactual commitment operatorsiiikevocable We present
our preliminary approach to a modal logic of revocable cothmi
ments in another paper [15].



which combines reasoning about strategic ability with eoun
terfactual reasoning.

e Second, although there has been previous work on logical

characterisations of game-theoretic solution concephay
lieve that the combination of ability operators and thetstra

gic counterfactual operator enables to express these prope

ties much more elegantly and intuitively than has hitherto
been possible.

e Third, our language extendsrL by introducing strategies

as first-class components of the language, in much the same
way that programs are first class components of the language

of dynamic logic [12]. The resulting language not only en-
ables one to reason abowhat coalitions can achieve, but

alsohowthey can achieve them. As we shall see in Section 4,

the ability to name strategies explicitly within the langea

seems essential if we are to express properties such as Nash

equilibrium.

The remainder of the paper is structured as follows. We blegin
introducingAction-based Alternating Transition Syste(AsTss)
which are used to give a semanticsaatrL. Next, we describe
the formal syntax and semantics@&TL and show that the model
checking problem focATL is tractable (i.e., can be solved in de-
terministic polynomial time). To illustrate the power oktlogic,
we introduce a simple formal model of games, and show ban.
can be used to reason about such games. In particular, we defin
notion of correspondence between games and models in tlwe log
and show how game-theoretic concepts such as dominatee-stra
gies, Pareto optimality, and Nash equilibrium can be exyaess
formulas ofcATL. Finally, we present some conclusions. We do
not include proofs of propositions ammkTL properties due to lack
of space.

2. ACTION-BASED ATS

Several semantic structures have been proposedrior most
of them equivalent (cf. [11]). As the notion attionplays such an
important role in our framework, we find it convenient to wavrith
yet another version of such structures, in which actionsaatidn
pre-conditions are first-class citizens. We refer to thésesires
asAction-based Alternating Transition Syste(aaTss), and em-
phasise that they are for most purposes equivalent to “ciorel”
ATL models. Formally, anATS is a tuple:

M= <Q7 qo7¢7W7A97AC17- .- 7Acf17p7T7T17 e '7Tn7 HH>

where:

e Qis a non-empty (and usually finite) setsihtesof the sys-

e Each agent € Agis associated with a séig of possible
actions, and we assume that these sets of actions are airwis
disjoint. Formally,Ag is a finite, non-empty set aictions
for eachi € Ag, whereAg NAg = D foralli #j € Ag;

We denote the set of actions associated with a coal@icn
Agby Acs, SOACs = J;.¢AG. A joint actionfor a coalition
Gis atuple(as,...,ak), wherea; € Ag, for eachi € G.
We denote the set of all joint actions for coalitiGrby Jg, SO
Jo = [[iccAG. Given an elementof Js and agent € G,
we denotéd’s component of by ji.

e p : Acg — 2% is anaction precondition functignwhich
for each actionn € Acag defines the set of state$a) from
which a may be executed;

e 7 : QX Jag — Qis a partialsystem transition function
which defines the state(q,j) that would result by the per-
formance ofj from stateq — note that, as this function is
partial, not all joint actions are possible in all states {oé
pre-condition function above). Note also that the function
defines deterministic transitions: for a particular stasnd
a tuple of valid decisions from all the agentsgnthe next
state is completely determined,;

e T4,...,Tnare the sets dftrategy termg$or agentsl, ..., n
respectively. We will definstrategiesor agents later in this
section. For now, however, all we need to know about strate-
gies is that we name them in formulae@ATL via strategy
terms, and that for each agent Ag, X will denote the
set of strategies for agentas we will see below, given any
modelM, the set; will be well-defined). We call a strategy
term fromY;, i.e. one that will be interpreted as a strategy for
agenti, simply ani-strategy term As with the sets of actions
for agents, we assume that all s&tsandY; are disjoint for
i # j, and define the set of all such terffis= UieAg Ti;

o [|-[lm: T — (Uicag i) gives the denotatiofjo||m of every
strategy termr € Y in modelM. We will often omit the
subscriptM and just writef|o]|.

We require thabATSs satisfy two coherence constraints:

1. Non-triviality. Agents always have at least one legal action:
Vg€ Q,Vi € Ag, Ja € Ac s.t.q € p(a)

2. ConsistencyThep andr functions agree on actions that may
be performed¥q € Q,Vj € Jag, (0,j) € dom(7) iff Vi €
Ag.q € p(ji)

Given an agent € Agand a state] € Q, we denote the actions

tem. We assume that, at any moment, the system is in one ofavailable ta in q by optiongi, g), collecting alla € Ac for which

the states;

e (o € Qis theinitial state

e @ s a finite, non-empty set @tomic propositions

e 7 : Q — 2% isaninterpretation function, which gives the set
of primitive propositions satisfied in each statepi€ = (q),
then propositiorp is true in statey;

e Ag = {1,...,n} is afinite, non-empty set of aigents A

coalitionof agents is simply a subsetAf, i.e. G C Ag, and
setAgis sometimes called thgrand coalition of agents

g € p(a). We then say that atrategyfor an ageni € Agis a
function: oi : Q — Ac which must satisfy théegality constraint
thatoi(q) € optiongi, q) for all g € Q. Thus, a strategy may be
thought of as a conditional plan indicating how an agent iadb
in any given state of the system. girategy profilefor a coalition
G = {ai,...,a} C Agis a tuple of strategieér1,...,ox), one
for each agenty € G. We denote by~ the set of all strategy
profiles for coalitionG C Ag; if o6 € Xg andi € G, then we
denoté’s component ofrg by og.

REMARK 1. This is a deviation from the original semantics of
ATL [2], where strategies assign agents’ choicesseruencesf
states, which suggests that agents can recall the wholerkist



<load,nop ,fuel%

<nop,nop, fiel>
<load ,unload, fiel>
<unload ,,nop,,fuel>
<unload,,unload,, fuel
<nop unload, fuel>

<load,nop,nop;>
<nopnop,load;>

<nop,nop,nop;>
<load,,unload,nop;>
<unload ,nop,nop;>

load,,unload,,nop,>
<nop ,unload, load;>

<load ,nop,,load;>

T</oad,,un/oad2, load >

Figure 1: The Rocket Domain. The “bold” transitions are the
ones in which agent3 always choosesop;.

each game. In this paper, on the other hand, we employ “memory
less” strategies. While the choice of one or another notibstiat-

egy affects the semantics of the fafiL* and mostaTL variants

for games with incomplete information, perfect and imperfe-

call strategies eventually yield equivalent semanticgtier‘pure”

ATL [21].

A computationis an infinite sequence of statds= go, qi, . . ..
A computation\ € Q~ starting in statey is referred to as a-
computation if u € N, then we denote by\[u] the component
indexed byu in A (thus A\[0] denotes the first elemend[1] the
second, and so on). Given a strategy prafitefor some coalition
G, and a statg € Q, we denote bgomgog, q) the set of possible
computations that may occur if every agente G follows the
corresponding strategyi, starting when the system is in state
Q. Notice that, for any grand coalition strategy profilg and state
g, the setompoag, q) will be singleton.

2.1 ARunning Example: The Rocket Domain

As an example, consider a modified version of the Simple Rocke
Domain from [6]. The task is to ensure that a cargo eventwaHy
rives in Paris (propositioraP), and there is a rocket that can be
used to accomplish the task. Initially, the cargo is at thedan air-
port (cal); during the game, it may also lie inside the rockeiR).
Accordingly, the rocket can be moved between Londah ) and
Paris (oP).

There are three agent$:who can load the cargo, unload it, or
move the rocket2 who can unload the cargo or move the rocket,
and3 who can load the cargo or supply the rocket with fuel. Ev-
ery agent can also decide to do nothing at a particular mo(tiesnt
nop— “no-operation” actions). The agents act simultaneouleg
“moving” action has the highest priority (so, if one agergrto

unloading). The rocket can move only if it has some fi@tlOK),

and the fuel must be refilled after each flight. We assume that a
the agents move with the rocket when it flies to another pl@be.
AATS for the domain is shown in Figure 1 (we will refer to this
system asvl; throughout the rest of the paper). States of the sys-
tem are labeled with natural numbers; we assume that thalinit
state isqp = 1. All the transitions for staté (the cargo and the
rocket are in London, no fuel in the rocket) are labeled. Qugh
agents’ choices for other states is analogous. We do nottlgere
algebraic definition oMy here due to lack of space, but it can be
easily extracted from the description.

2.2 Committing to Strategies

We now want to consider the idea of an ageainmittingto, or
choosinga strategy. In committing to a strategy, an agent changes
the structure of theATs in which it is involved. This is because it
eliminatescertain possibilities from that structure: if agemom-
mits to o, then in future it must choose actions that are consis-
tent with o. When every agent has made up its mind, the fu-
ture of the system is determined: there will be just one bbessi
computation of the system. To capture commitment formailly,
introduce a commitment operatign, whereM t;i o is the AATS
obtained fromM by eliminating from it all transitions in which
agenti makes a choice that is not consistent with Formally, if
M = <Q7QO7¢’:7T:AQ:AC17 s 7AC'17P77—7T17' . .7Tn, || ) ||> is an
AATS, ando is a strategy oM, then:

M Ti o= <Q7 CI07A97 AC17 s 7Acﬂ:pl77—/7¢)7ﬂ—7 H”M/)v

where:
1. Va € Ac: p'(a) = {q]| o(q) = a}
2. Vq S Q, V] S JAg:

T’(qj)* 7(0,]) if (q,j) € dom7 & ji = o(q)
1771 undefined otherwise
3. T ={o}

4. All other components d¥1 i o are as irM.

Thus thefi operator represents aqpdateon systems. Note, how-
ever, that this update does not delstates only transitionsbe-
tween states. The operator is very similar to the model @pdpt
erator already proposed in [14] for the implementation dfiao
laws inATL, and has essentially the same properties.

ExAaMPLE 1. Leto be the “lazy” strategy for agens, i.e. o(Q)
= nop; for every g. System M3 o includes only the transitions
that are indicated with bold face font and thick arrows in fig 1.

3. CATL

Alternating-time Temporal LogicafTL) [1, 2] can be understood as
a generalisation of the well-known branching time temptgic
CcTL [9], in which path quantifiers are replaced byoperation
modalities A cooperation modality(G))¢, whereG is a coali-

move the rocket and another one wants to, say, load the cargo,tion, expresses that the coaliti@ can cooperate to ensure that

then only the moving is executed). “Loading” is effected whiee

; more precisely, that there exists a collective plstnategy pro-

rocket does not move and more agents try to load than to unload file) for G such that by following this plarG can ensure». Thus,

“Unloading” works in a similar way (in a sense, the agentst&lo

for example, the system requirement “agehtand 2 can coop-

whether the cargo should be loaded or unloaded). If the numbe erate to ensure that the system never enters a fail state”bmay

of agents trying to load and unload is the same, then the ¢argo
mains where it was. Finally, “fueling” can be accomplishetyo
when the rocket tank is empty (alone or in parallel with logdor

captured by thaTL formula((1, 2)) []—fail. The [] temporal op-
erator means “now and forever more”; other temporal corvesct
in ATL are U (“until”) and O (“in the next state”). Additional



operator<> (“either now or at some point in the future”) can be
defined as> = T U . Every occurrence of a temporal operator
is preceded by exactly one cooperation modalitain (which is
sometimes called “vanillaATL). The broader language offL*,

in which no such restriction is imposed, is not discusse@.hieiis
worth pointing out that ATL, proposed in this paper, makes use of
terms that describe strategies, and in this sense is vegyatit to
ATL, in which strategies appear only in the semantics anchatre
referred to in the object language. In order to capture apnsgces
of an agent’s commitment to execute a particular strategyntvo-
duce a ternary modal operaGi(o, ¢) with the intended meaning:
“suppose that ageritchooses the strategy denoted dythen ¢
holds”. Having added formulas of this kind &oL, we obtain a
new logic that we call “CounterfactuafrL” or “ ATL with Commit-
ment” —CATL in short. Formally, the syntax @fATL, (with respect

to a set of agenté\g, primitive propositionsb, and strategy terms
T = UieAg T;), is given by the following grammar:

¢ 1= Pl=ele V¢l Cilai, ) [ (G O wl(G) el (Ghe U ¢

wherep € @ is a propositional variablé,c Agis an agents C Ag

is a set of agents, angl € Y; is ani-strategic term. For reasons
that will become clear shortly, we require that iRstrategy term

7 occurs ing in the formulaCi(oi, ). We now first define the
semantics oL ATL formulas, and then discuss strategic terms and
their denotations.

3.1 Semantics of CATL

We now give the truth definition of ATL formulas on amATs
M and a state:

M,ql=p iff pem(q)
M.q =~ iff M,q = ¢;
M.gkEeVvy iff Mgl @orM,q = ¢;
M. q = Ci(o,¢) iff (MTi [|o]]),q = ¢;

M,qE (G)O iff Joe € X, such that’A € comfoc, q), we
haveM, \[1] & ;

(wherep € ®);

M, q = (G) Oy iff Joe € Xg, such tha¥A € comgog, q), we
haveM, Alu] = ¢ forallu € N;

M,qE (GheUp iff Jog € X, such thatYA € comgog, q),
there exists soma € N such thatM, Alu] = +, and for all
0 < v < u, we haveM, A[V] = ¢.

The other connectives £, “ —”, “ ") are assumed to be defined
as abbreviations in terms ef, . Also, (G)){>¢ is shorthand for
—({(G) T U . We omit set brackets in cooperation modalities, wri-
ting ((i, . . ., k)) rather thar(({i, ..., k})). Validity and satisfiability
are defined as usual for a modal logic: we wiitep to indicate
thatyp is valid.

Two cooperation modalities play a special role in the remhain
of the paper, and are worth singling out for special attentibhe
cooperation modality()) (“the empty set of agents can cooperate
to...”) asserts that its argument is true on all computati@nd
thus acts likecTL’s universal path quantifieh. Similarly, the co-
operation modality(Ag)) asserts that its argument is satisfied on at
least one computation, and thus acts liked¢hie path quantifieie.

The following example shows that sometimes, a coalition can
achieve more if another agent commits himself to a strategy.

nop

o

@)

die

@

dead

@

Figure 2: The single agent system

EXAMPLE 2. Let nop be the term denoting the “lazy” strat-
egy for agenB, i.e., the strategy in which he always chooses to do
nothing. Then, M, 1 = Cs(nops, (()) [IroL), because the rocket
will never move away from London in the system from Figure 1.
Similarly, Mi,1 = Ci(nop, (2,3)<{>caP), although M,1 =
—{(2, 3){>caP when no commitment is considered.

We can now explain why we forbidstrategic terms; to occur in
», in the commitment formul&; (o, ¢). Conceptually this makes
sense because, onceommits to strategyi, there is no need to
reason about other strategies @inymore. Technically, recall that
M 7i oi is the model that “cuts out” all transitions frol for i, that
do not accord withsi. Hence, in that updated model, a strategy
71 would not have an interpretation any more. Another option to
deal with this would be to allow for partial strategies (ct5]),
but for the moment we feel we can stick to our definition of full
strategies as given in Section 2. Given a set of strategyst&rnme
say that theaATs modelM complies withY if every termo € YT
corresponds to a stratedy || in M. It is then easy to verify that if
M complies withY, andM’ is the result of updatiny! in order to
evaluateCi(oi, ), thenM’ complies with the set’ of all strategies
named inp.

Note that, so far, we have been only describing individuah-co
mitments. Collective commitments can be defined on top ahthe

Ciiy((o1), 9) Ci(o1, )
Ca,. (o1, .., 0k), 9) Ci(o1,Cqa,.. k3 ({02, .., 0K), )
This notion is well defined because of the following:

PropPoOSsITION 1. Commitments are commutative:
': Cqy (031 , Ca, (032: ‘P)) — Cq, (032: Caq, (031 ) ‘P))

3.2 Properties under Commitment

For anaATs M with only finitely many states, actions and agents,
there are clearly only finitely many strategies. Supposetheaset
T; is rich enough so that it includes a strategy termdwery is
strategy fromi. We might expect the following equivalence to
hold inM:

(e = \/ Ciloi¢)
gi €Y

The above property expresses that wiheén achieve in a system
M, is exactly all those results that will hold aftehas commit-
ted to one of his available strategies. Unfortunately, igis gen-
eral not true in a framework witlirevocablecommitments, which
we can already demonstrate in the one agent case. Conséler th
AATS M from Figure 2. Let us abbreviafece = (((i)) Odead A
(i O—dead). Note thatM,q: = free, i.e. the agent has a free
choice to die or stay alive in statg. On the other hand, as soon as
he irrevocably commits to either of the two available sgas ¢1
with o1(q1) = nop, andos with o2 (01) = die), he does not have
the free choice any more:

M, qo &= (i) Ofree A =Ci(o1, free) A =Ci(o2, free).



This makes our approach similar to the perspective offeyextrbte-

call the “trimming” procedure every time a subformula of gha

gic reasoningn game theory: we can see agents’ commitments as C;(o, ¢ occurs. As theTL model checking algorithm enjoys com-

the result of pre-play reasoning; once the players choaselibst
strategies, the structure of the game does not matter any amar
the play is already settled before it begins. We will comekitac
the relationship betweepaTL and game theory in Section 4.

plexity of O(ml), we obtain the following result.

PrRoOPOSITION 4. Model checking a&ATL formula e in model
M can be done in time @nl), where m is the number of transitions

We have pointed out that the commitment semantics we adopt in M, and lis the length of.

has essentially the same properties as the constraint rimepl@-
tion operator from [14]. We now briefly mention two such prepe
ties of the commitment modality iDATL. First, let us point out that
commitment preserves universal properties of transitymiesns.
Moreover, existential properties that hold under committeegap-
ply to the whole system as well. To this end, we definmaersal
and arexistentialsublanguage ofTL, denotedZ" and £, respec-
tively. These languages are defined by the following grarsmar

pl-plvAv[vVul] (HOv]{)Uu| vt
Pl-pleneleVve| (Ag)Oe| (Ag)[le| (Aghelle

wherep € ®, v € £L" ande € L°.

U=
€=

PROPOSITION 2. Leto be a strategic term for i in M, let g be
astate in M, and lev € £" ande € £°. Then:

1. M,q E v — Ci(o,v).
2. M,q = Ci(o,¢) — .

The proofs are analogous to those of [14].
Note that when every agent has committed to a strategy thesfut
of the system is determined, and we have the following:

PROPOSITION 3. |= Cag(oag, () O ¢ < {(AgHO )
3.3 PDL-like Reasoning about Strategies

One of the advantages ofaTL is that the logic enables explicit
reasoning about actions and strategies in the style of Bitiqual
Dynamic Logic [12]. Reasoning about (single-step) actioas
be naturally extended to reasoning about strategies (thdieing
playedad infinitun), yielding a kind of “extended dynamic logic™:

[0c]Op = Cs(oe, (HOw)
[oc]de = Ca(os, () Ue)
[ocleUy = Co(oc, (NeU)

EXAMPLE 3. Coming back to our rocket example: every execu-
tion of action fuel by ager# in statel makes the tank of the rocket
full: Mq,1 [ [fuelfuelOK. Moreover, if3 chooses the “lazy”
strategy and the initial state i5 then the rocket will inevitably stay
in London for ever: M, 1 |= [nops] [JroL.

In [15], we propose a richer language of strategy terms, é&id d
cuss the relationship tebL in more detail.

3.4 Model Checking and Satisfiability

The model checking problerfor CATL is the problem of deter-
mining, for any givencaTtL formulay, AATS M, and statey in M,
whether or noM, q = ¢. If M is anAATS andy is a formula then
we say thaty is initially satisfiedin M if M, qo = ¢; we indicate
this by writingM = ¢. GivenM, i, ando, computingM 7; o can
be done in timeO(m) (wheremis the number of transitions ).
All we need do is go through the model deleting transitiongneh
i performs an action other than that which is dictatedobi.e.,
“trim” the model). Finally, to model-check @aTL formulae, it is
sufficient to use thetL model checking algorithm from [2], and

A formula ¢ is satisfiableif there is someaAaTs M and statey
in M such thaiM, q = ¢. Thesatisfiability problenfor ATL is the
problem of determining, for any givearL formula, whether this
formula is satisfiable or not.

4. STRATEGIC REASONING IN CATL

AATSS encapsulate intuitions related to extensive form games as
well as strategic form games: on one hand, every agent aotgi
multiple subsequent moves; on the other, many agents praytsi-
neously at each state, and the outcome of a move dependsant the
tions of the other players. Thus, on one haswdl, formulas of type
{(G)) O ¢ can be seen as a formalization of reasoning about a single
move in a (possibly more complex) game, and operaf@$ [ |
and (G))<> as referring to an analysis of the entire game. In this
senseATL formalizes reasoning about different aspectexien-
sive game formgepresenting sequences of moves, collectively ef-
fected by the players’ actions. Alternatively, formul@s) O ¢
can be understood as expressing agents’ powers to forcenoeisc
in a single game, and operato{S)) [ and (G)<> as referring
to a collection of games played repeatedtinfinitum Thus,ATL
can be also interpreted in termsifategic game formsn a way
similar to the perspective of Coalition Logic [19]. In outrieduc-
tion, we claimed thatATL is appropriate for reasoning about the
outcome of strategies in game-like encounters. We nowfyustis
claim by showing howc ATL can be used to express important prop-
erties of games. We will focus on games in strategic form thert
concepts can be extended to perfect information gamesénsixe
form in a natural way (cf. [15]).

4.1 Games and Correspondence

We will compare strategic games wittATs models. To keep
them clearly apart, all entities in the game will havléat Note
that in a strategic game we do not have to distingaisfionsfrom
strategies We model ak-player strategic gamg as a tuplel’ =
(Ag, {Ac}, {u}), where:Ag = {1, ...k} isthe set of playersig
is the set of actions (or strategies) for plaiyel;, = Aci x - - - x Ag

is the set of all possible combinations of strategies,ﬁ;mdA]AAg —

R is playeri’s utility function, which assigns a real-valued utility to
each combination of players’ strategies. Notice that gamdéisis
sense, and OWATSS are very similar: the main differences are that
(i) games are not state dependent, in that the outcome ofaine g
depends only on the choices of actions made by agents, arhnot
the current state of the system; and, more significantlyaignts
have preferences over outcomes, determined by theiryuiiiric-
tions.

We make the relationship between games arsbs precise with
the notion ofcorrespondencelnformally, this relationship should
be clear from the notation, but to define the correspondeoce f
mally, we need to introduce intaTss a mechanism for capturing
utilities. One approach to this problem would be to exteral th
framework of coalition logic with desire or preference miititzs of
some kind. Logics of desire have been widely studied (se¢28g
24]), and modal operators for desires were successfully ingé 3]
for a modal characterisation of Nash equilibrium; an attetmpive
a game-theoretic foundation to a logic of desire was alssquied



in [23]. The disadvantage of such an approach is that it civaels
the underlying logical framework. An alternative, which agopt
in this paper, is to label states with propositions thatwagpagent’'s
utilities in these states. This approach is perhaps legaei¢han
the modal alternative [5, pp.308—-309], but it is neverteelEmpler
from a logical perspective, as we need not complicate the ieigh
additional modalities or other connectives.

We follow the approach of Baltag [3]. L&t denote the set of all
utilities that may be assigned iy functions inl". For each utility
valuev € U and ageni € Ag, we introduce a propositiofu; >
V) into our set® of primitive propositions of the corresponding
AATS modelM, and fix the valuation functiom so that(u; > v) is
satisfied in statsiff i gets at least in s. Additionally, we define
u > vas ashorthand foy/,, ., ui > V.

Consider a strategic ganie = (Ag, {Ac}, {ti}), and a model
M = (Q,qo, P, 7, Ag,ACi, ..., AC, p, 7, T1,..., Tn, | -]]) with
stateq € Q. We writel’ ~ (M, g) to denote the fact that corre-
sponds to Mg, in the sense that:

1. the sets of agents are the saig:= Ag;,

2. strategies il correspond to actions that can be executed in
M, g: Ag = optiongi, q);

. T has a termy for every strategyk in I". More precisely, we
require that for everyy € Ag there is amx € Y such that
llef| () = &, i.e. we can use strategy terms to address every :
single-step action iq;

PO {(y>v)|Ge{at},ve U}

. forallj € Jag with ¢ = 7(q,j), we havei(u; > v) € n(q)
iff G(3) >wv.

Thus, states iVl are mainly used to represent various possible out-
comes of the strategic ganbe

LEMMA 1. Letl’ be a game, M be anATs with a state g such
thatI" ~ (M, q); let j, y/ € Jg, be strategy profiles i, and i be

an agent in Ag= Ag. Then:

1. Gi(j) > Gi(y) iff for some ve U we have
M, 7(q,j) = (u > v)and M, 7(q,j’) E

2. Gi(3) > G(y) iffforallv € U,ifM, 7(q,j’) = (u > v) then
also M, 7(0,j) = (u > V).

=(u > V),

To keep the definitions and results as readable as possible, w
will from now assume that games have just two agehtand 2.
Moreover, we will writel ~ (M, q) without explicitly saying that
I'is a game, andl a system with statg. Since the agents in the
gamel and the modeM are the same, we omit the hat-notation for
them. Finally, in the two-agent casej ifs an agentk refers to the
otheragent.

To look at a simple example, consider a version of the Prisone
Dilemma D) presented in Figure 3A. The outcome p@i5, 0),
for instance, represents that when playetooperates@) while
player2 defects ), the sentence for playdris 5 years in prison,
while 2 can go without any punishment. The correspondings
model might have a road, and four statesqq, ..., qs, whereq:
would be obtained fromg under the profil€éC, c) and satisfy propo-
sitionsu; > —5,u; > —4,u; > —2,u2 > —5,ux > —4and, final-
ly u» > —2; the statey, would be obtained fromg under the profile
(C,d) etc. The other game in Figure 3B represents the “Bach or
Stravinsky” game, also known as the “Battle of the Sexes].

A correspondin@pATS is presented in Figure 3C.

©
(2] ¢ [ d |
C —2,-2 —5,0 <Sb>
D 0,-5 | —4,—1
B) 20 20
[1A\2][b [s | b0 0zl
o 12199 i 0
S 0012 - -

Figure 3. Strategic games: (A) “Prisoner's Dilemma”, (B)
“Bach or Stravinsky”; (C) example transition systems corre
sponding toBoS

4.2 Dominant and Dominated Strategies

The first concept we capture in our logic is that of a strategyy b
ing dominant Intuitively, a strategy is dominant if it is the best
response tall strategies that may be played by one’s opponents.
The presence of a dominant strategy makes an agent’s ragsoni
process simpler: a rational agent will always play a dontigsat-
egy. Notice that “defect” (playin® andd) are dominant strategies
for players 1 and 2 irD. We focus onweakly dominanstrate-
gies, which are “at least as good as” the alternatives. Hbrma
is weakly dominant foi in I iff for all &/ # & € Ag, and for all
B € Aw, we haveti (&, 8) > Gi(a, B).

To capture weak dominance in the corresponding model, we de-
fine a unary predicaté/Di(«), the idea being thatvDi («) is sat-
isfied in a state iffa is weakly dominant in that state. We start
with a predicatewd («), which appears promising, but is in fact
not sufficiently strong:

wd(a) = A @O >v) — Gla, (HO (U > V)

veu

The predicatevd («) expresses that ifcan guarantee a value
he can already guarantee it using his strategynfortunately, this
is too weak to makex weakly dominant, which we will demon-
strate using theos example. The best that player 1 can guarantee
is a value 0. He can also obtain this using his stratégy B,
still in this caseB is not a dominant strategp@s lacks dominant
strategies). The problem lies in the fact that the outconies o
with respect to every opponent’s respornsshould be considered
separately This suggests that we need to be able to quantify over
strategies. Indeed, if the number of strategies (actiams)$ finite,
we can express weak dominance by the following:

PROPOSITION 5. For finite I" and M, ifT" ~ (M, q) thena is
weakly dominant for i i iff M, q = WD (), where:

)= A G(B,wd(a)).

BET;

WD («

WD () above expresses thatis the best response to every par-
ticular opponent’s strategy. Notice that characterising weak dom-
inance requires the ability both to quantify over the pdssiboices
of agents in a system (which is possible in “puraL), and also
to address properties amedstrategies (which is not possible in
“pure” ATL, but can be done igATL).

The notion of adominated strategis related to that of a dom-
inant strategy, although when having more than two strasefyir
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Figure 4: A rocket game

one player, the notions are independent. It is well-knovat itier-
atively eliminating their dominated strategies may leagighme to
an equilibrium state.

We wantbt (a1, @2) to mean thatv; guarantees (strictly) bet-
ter outcome thamy; for i, DO;(a1, a2) to mean that strategy:
is (strongly) dominated by strategy. for agenti, andD;(«) to
denote thaty is a (strongly) dominated strategy. We define these
predicates as follows:

bt (o1, a2) = \/(Ci(en, (DO (U = v)) A
—Ci(az, (DO (U > v)))
DOi(a1,a2) = /\ Cj(ﬂ,ﬁbn(al,aQ))/\\/ Ci(3,bti(az, a1))
BET; BET;
Di(a) = \/ DOi(a,a)
a’ e

PROPOSITION 6. Suppose that' ~ (M,q), and leta be a
strategy for agent i iff". Then:

1. d is dominated byis in T'iff M, g = DO (au1, ara)
2. & is a dominated strategy ifi iff M, g = Di(«).

EXAMPLE 4. Let us consider again the “rocket agents” from
Section 2.1. This time, we would like to add some information
about the agents’ preferences (utilities). Suppose thatcdrgo
contains some materials that can incriminate agérttefore the
French police. Thus] does not want the cargo to stand freely at
the London airport, but he is much more afraid that the cargyym
arrive in Paris. The best option for him is when the cargo is in
side the rocket and the rocket cannot fly (i.e., it has its &mlpty);
also, he has a slight preference for the situation when tlckabis
supplied with fuel and the cargo is outside (then the rocket fne
moved to Paris in the next step, which guarantees that thgocar
will remain away from Paris for some time. Agent 3, on the pthe
hand, gets more bonus when the rocket tank is full; also, he-is
sponsible for cargo which is on board of the rocket, so hegosef
when no cargo is loaded. We assume that agechooses to do
nothing throughout the game, and that the agents, cargo ackkt
are initially in London.AATS M2 = M1 12 nop: can be augmented
with utility-defining propositions to correspond to the ggnirig-
ure 4 shows the table of utilities for the game as well as thevemnt
part of the resulting transition system.

Let@ denote an arbitrary strategy in Mfor which@(q) = a.
Note that M, 1 = WDs(fuel) and indeed fuel is a dominant ac-
tion for agent3. Note also thatl has no dominant action, and

-WD; (nop,) A =WD; (load;) A =WD; (unload) appropriately
holds in My, 1.

Furthermore, M, 1 = Dj(unload; ) A —D; (nop, ) A —D;(load: ),
and indeed unloadis the only dominated action of playér

Unfortunately, as witnessed IBps, dominant or dominated strate-
gies seldom exist, and hence alternative solution condegpis
been developed. Of these, Nash equilibrium is the best kraowin
most important.

4.3 Nash Equilibrium

We say that a pair of strategiéd’:, a2) for the grand coalition
{1, 2} is in Nash equilibrium in game if these strategies are each
the best response to each other, i.ai; {f{ci1, oi2)) > Ui (o}, Ol;)
for all 02/1 € Aci, and, similarly,ux((d1, d2)) > UQ((OZI,oZ/Q) for
all aé € Ac. The profile(D, d) is the only Nash equilibrium in
PD, while Bos has two Nash equilibria, name(, b) and(s, S).

To express Nash equilibrium, we first characterise the natfo
one strategy being a best response to another. We BR{eu, o)
to denote the fact thats best response th playing ax is «i, and
define it as:

BR(ag, i) =
Celar A (DO (u > v)) = Cilas, (YO (u > v)))

veu

This says that ik playsak, then every utilityv that can be achieved
by i can already be achieved bplaying .

PROPOSITION 7. Supposd’ ~ (M, ); let ak be a strategy for
kinT', andd; a strategy for agent i. Then M = BR (ax, ai) iff
the best outcome i can obtain assuming k playss obtained by
playing ai.

When the number of strategies if finite, we could have also-cha
acterisedBR (ax, ai) as follows, saying that; isi best response to

a, if every utility achieved whemnplays an arbitrarys againsto,
can also be achieved by playing againsto.

PROPOSITION 8. For finiteI" and M, suppos& ~ (M, q) and

let ax be a strategy for k i, and & a strategy for agent i. Then
the following two statements are equivalent:

1. M,q | BR(cw, i)

2. M,q ': /\BiETi /\VEU(Ci(ﬂ’ Ck(ak’ (ui = V)) N
Ci(ai, Ck(ax, (Ui > V).

We can now define a propositidfE(ac) to denote the fact that
strategy profilexg is in Nash equilibrium.

NE(a1, a2) = BRi (a2, 1) A BRe(a1, a2)
The following is now immediate.

PROPOSITION 9. Supposd’ ~ (M, q) and leta; be a strat-
egy foriinI. Then Mg = NE(a1,as) iff (d1,d2) is a Nash
equilibrium inT".

EXAMPLE 5. Consider the game and the correspondixars
from Example 4 and Figure 4. Strategy pdimload;, fuel) is a
Nash equilibrium here, and accordinglysMl = NE(unload; , fuel).
Also, My, 1 = —=NE(load; , Toads ) and indeedload; , loads) is not
a Nash equilibrium point because agentan get a better payoff
againstload; by playingfuel.
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