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ABSTRACT
Rational strategic reasoning is the process whereby an agent rea-
sons about the best strategy to adopt in a given multi-agent sce-
nario, taking into account the likely behaviour of other participants
in the scenario, and, in particular, how the agent’s choice of strat-
egy will affect the choices of others. We presentCATL, a logic
that is intended to facilitate such reasoning.CATL is an extension
of Alternating-time Temporal Logic (ATL ), which supports reason-
ing about the abilities of agents and their coalitions in game-like
multi-agent systems.CATL extendsATL with a ternarycounterfac-
tual commitmentoperator of the formCi(σ, ϕ), with the intended
reading “if it were the case that agenti committed to strategyσ,
thenϕ”. By using this operator in combination with the ability
operators ofATL , it is possible to reason about the implications of
different possible choices by agents. We illustrate the approach by
showing howCATL may be used to express properties of games
such as Nash equilibrium and Pareto efficiency. We also show that
the model checking problem forCATL is tractable, and hence that
efficient implementations of strategic reasoners based onCATL are
feasible.

Categories and Subject Descriptors
I.2.11 [Distributed artificial intelligence ]: multiagent systems;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs—logics of programs

General Terms
Theory
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1. INTRODUCTION
Strategic reasoning is commonplace in the literature of game theory
and multi-agent systems. Strategic reasoning from the well-known
one-shot prisoner’s dilemma game is a good example here [18]:

Suppose my opponent cooperates. Then my best re-
sponse is to defect, since that way I get the best pos-
sible outcome. But suppose he defects. Then, again, I
would get the best outcome by defecting.

Strategic reasoning of this kind iscounterfactual, since it involves
suppositions (‘suppose he cooperates. . . suppose he defects . . . ’)
that may be false or that may have an undetermined truth value[17,
22]. For example, the statement “if Napoleon won in 1812 thenwe
all would speak French” is counterfactual, since it involves a sup-
position (“Napoleon won in 1812”) that is in fact false. Classical
logic is of no use when analysing such reasoning, since in classical
logic, any implication with a false antecedent is by definition true.
So, to capture strategic reasoning of the kind above – in which, in
order to determine the best choice of action, we must make assump-
tions that may be true, false, or undetermined – we need some sort
of counterfactual construction. Our aim in this paper is to present
and evaluate a logic that supports precisely this kind of reasoning.

CATL (which stands forCounterfactualATL , but it can be also
read asCommitmentATL ) is based onATL , the Alternating-time
Temporal Logic of Alur, Henzinger, and Kupferman [1, 2], a logic
which supports reasoning about the abilities of agents and coali-
tions of agents in game-like multi-agent systems.CATL extends
ATL with ternarycounterfactual commitmentoperators, of the form
Ci(σ, ϕ), with the intended reading “if it were the case that agent
i committed to strategyσ, thenϕ would hold”. TheCi(σ, ϕ) op-
erators are counterfactual because they involve a supposition (that
agenti commits to following strategyσ) which is not known to be
true or false; we say they arecommitmentoperators because they
capture the notion of an agent committing to follow a particular
strategy.1 A formula Ci(σ, ϕ) will be true in a stateq of a system
M iff ϕ is true at stateq in the systemM′, whereM′ is exactly like
M exceptthat agenti is only able to perform the actions dictated by
strategyσ.

Our work makes three key contributions to the area of logics for
multi-agent systems:

• First, CATL is, to the best of our knowledge, the first logic

1Note that this is a rather different sense of the term commitment to
that which is more commonly used in the multi-agent systems liter-
ature [16], in particular because commitment as represented in our
counterfactual commitment operators isirrevocable. We present
our preliminary approach to a modal logic of revocable commit-
ments in another paper [15].



which combines reasoning about strategic ability with coun-
terfactual reasoning.

• Second, although there has been previous work on logical
characterisations of game-theoretic solution concepts, we be-
lieve that the combination of ability operators and the strate-
gic counterfactual operator enables to express these proper-
ties much more elegantly and intuitively than has hitherto
been possible.

• Third, our language extendsATL by introducing strategies
as first-class components of the language, in much the same
way that programs are first class components of the language
of dynamic logic [12]. The resulting language not only en-
ables one to reason aboutwhat coalitions can achieve, but
alsohowthey can achieve them. As we shall see in Section 4,
the ability to name strategies explicitly within the language
seems essential if we are to express properties such as Nash
equilibrium.

The remainder of the paper is structured as follows. We beginby
introducingAction-based Alternating Transition Systems(AATSs)
which are used to give a semantics toCATL. Next, we describe
the formal syntax and semantics ofCATL and show that the model
checking problem forCATL is tractable (i.e., can be solved in de-
terministic polynomial time). To illustrate the power of the logic,
we introduce a simple formal model of games, and show howCATL

can be used to reason about such games. In particular, we define a
notion of correspondence between games and models in the logic,
and show how game-theoretic concepts such as dominated strate-
gies, Pareto optimality, and Nash equilibrium can be expressed as
formulas ofCATL. Finally, we present some conclusions. We do
not include proofs of propositions andCATL properties due to lack
of space.

2. ACTION-BASED ATS
Several semantic structures have been proposed forATL , most

of them equivalent (cf. [11]). As the notion ofactionplays such an
important role in our framework, we find it convenient to workwith
yet another version of such structures, in which actions andaction
pre-conditions are first-class citizens. We refer to these structures
asAction-based Alternating Transition Systems(AATSs), and em-
phasise that they are for most purposes equivalent to “conventional”
ATL models. Formally, anAATS is a tuple:

M = 〈Q, q0,Φ, π,Ag,Ac1, . . . ,Acn, ρ, τ,Υ1, . . . ,Υn, ‖·‖〉

where:

• Q is a non-empty (and usually finite) set ofstatesof the sys-
tem. We assume that, at any moment, the system is in one of
the states;

• q0 ∈ Q is theinitial state;

• Φ is a finite, non-empty set ofatomic propositions;

• π : Q → 2Φ is an interpretation function, which gives the set
of primitive propositions satisfied in each state: ifp ∈ π(q),
then propositionp is true in stateq;

• Ag = {1, . . . , n} is a finite, non-empty set of allagents. A
coalitionof agents is simply a subset ofAg, i.e. G ⊆ Ag, and
setAg is sometimes called thegrand coalition of agents;

• Each agenti ∈ Ag is associated with a setAci of possible
actions, and we assume that these sets of actions are pairwise
disjoint. Formally,Aci is a finite, non-empty set ofactions,
for eachi ∈ Ag, whereAci ∩ Acj = ∅ for all i 6= j ∈ Ag;

We denote the set of actions associated with a coalitionG ⊆
Agby AcG, soAcG =

S

i∈G Aci . A joint actionfor a coalition
G is a tuple〈α1, . . . , αk〉, whereαi ∈ Aci , for eachi ∈ G.
We denote the set of all joint actions for coalitionG by JG, so
JG =

Q

i∈G Aci . Given an elementj of JG and agenti ∈ G,
we denotei’s component ofj by j i .

• ρ : AcAg → 2Q is an action precondition function, which
for each actionα ∈ AcAg defines the set of statesρ(α) from
whichα may be executed;

• τ : Q × JAg ⇀ Q is a partialsystem transition function,
which defines the stateτ (q, j) that would result by the per-
formance ofj from stateq – note that, as this function is
partial, not all joint actions are possible in all states (cf. the
pre-condition function above). Note also that the function
defines deterministic transitions: for a particular stateq and
a tuple of valid decisions from all the agents inq, the next
state is completely determined;

• Υ1, . . . ,Υn are the sets ofstrategy termsfor agents1, . . . , n
respectively. We will definestrategiesfor agents later in this
section. For now, however, all we need to know about strate-
gies is that we name them in formulae ofCATL via strategy
terms, and that for each agenti ∈ Ag, Σi will denote the
set of strategies for agenti (as we will see below, given any
modelM, the setΣi will be well-defined). We call a strategy
term fromΥi , i.e. one that will be interpreted as a strategy for
agenti, simply ani-strategy term. As with the sets of actions
for agents, we assume that all setsΥi andΥj are disjoint for
i 6= j, and define the set of all such termsΥ =

S

i∈Ag Υi ;

• ‖·‖M : Υ → (
S

i∈Ag Σi) gives the denotation‖σ‖M of every
strategy termσ ∈ Υ in model M. We will often omit the
subscriptM and just write‖σ‖.

We require thatAATSs satisfy two coherence constraints:

1. Non-triviality. Agents always have at least one legal action:
∀q ∈ Q,∀i ∈ Ag,∃α ∈ Aci s.t.q ∈ ρ(α)

2. Consistency. Theρ andτ functions agree on actions that may
be performed:∀q ∈ Q,∀j ∈ JAg, (q, j) ∈ dom(τ ) iff ∀i ∈
Ag, q ∈ ρ(j i)

Given an agenti ∈ Ag and a stateq ∈ Q, we denote the actions
available toi in q by options(i, q), collecting allα ∈ Aci for which
q ∈ ρ(α). We then say that astrategyfor an agenti ∈ Ag is a
function: σi : Q → Aci which must satisfy thelegality constraint
thatσi(q) ∈ options(i, q) for all q ∈ Q. Thus, a strategy may be
thought of as a conditional plan indicating how an agent is toact
in any given state of the system. Astrategy profilefor a coalition
G = {a1, . . . , ak} ⊆ Ag is a tuple of strategies〈σ1, . . . , σk〉, one
for each agentai ∈ G. We denote byΣG the set of all strategy
profiles for coalitionG ⊆ Ag; if σG ∈ ΣG and i ∈ G, then we
denotei’s component ofσG by σi

G.

REMARK 1. This is a deviation from the original semantics of
ATL [2], where strategies assign agents’ choices tosequencesof
states, which suggests that agents can recall the whole history of
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Figure 1: The Rocket Domain. The “bold” transitions are the
ones in which agent3 always choosesnop3.

each game. In this paper, on the other hand, we employ “memory-
less” strategies. While the choice of one or another notion of strat-
egy affects the semantics of the fullATL * and mostATL variants
for games with incomplete information, perfect and imperfect re-
call strategies eventually yield equivalent semantics forthe “pure”
ATL [21].

A computationis an infinite sequence of statesλ = q0, q1, . . ..
A computationλ ∈ Qω starting in stateq is referred to as aq-
computation; if u ∈ N, then we denote byλ[u] the component
indexed byu in λ (thus λ[0] denotes the first element,λ[1] the
second, and so on). Given a strategy profileσG for some coalition
G, and a stateq ∈ Q, we denote bycomp(σG, q) the set of possible
computations that may occur if every agentai ∈ G follows the
corresponding strategyσi , starting when the system is in stateq ∈
Q. Notice that, for any grand coalition strategy profileσAg and state
q, the setcomp(σAg, q) will be singleton.

2.1 A Running Example: The Rocket Domain
As an example, consider a modified version of the Simple Rocket

Domain from [6]. The task is to ensure that a cargo eventuallyar-
rives in Paris (propositioncaP), and there is a rocket that can be
used to accomplish the task. Initially, the cargo is at the London air-
port (caL); during the game, it may also lie inside the rocket (caR).
Accordingly, the rocket can be moved between London (roL) and
Paris (roP).

There are three agents:1 who can load the cargo, unload it, or
move the rocket;2 who can unload the cargo or move the rocket,
and3 who can load the cargo or supply the rocket with fuel. Ev-
ery agent can also decide to do nothing at a particular moment(the
nop– “no-operation” actions). The agents act simultaneously.The
“moving” action has the highest priority (so, if one agent tries to
move the rocket and another one wants to, say, load the cargo,
then only the moving is executed). “Loading” is effected when the
rocket does not move and more agents try to load than to unload.
“Unloading” works in a similar way (in a sense, the agents “vote”
whether the cargo should be loaded or unloaded). If the number
of agents trying to load and unload is the same, then the cargore-
mains where it was. Finally, “fueling” can be accomplished only
when the rocket tank is empty (alone or in parallel with loading or

unloading). The rocket can move only if it has some fuel (fuelOK),
and the fuel must be refilled after each flight. We assume that all
the agents move with the rocket when it flies to another place.The
AATS for the domain is shown in Figure 1 (we will refer to this
system asM1 throughout the rest of the paper). States of the sys-
tem are labeled with natural numbers; we assume that the initial
state isq0 = 1. All the transitions for state1 (the cargo and the
rocket are in London, no fuel in the rocket) are labeled. Output of
agents’ choices for other states is analogous. We do not givethe
algebraic definition ofM1 here due to lack of space, but it can be
easily extracted from the description.

2.2 Committing to Strategies
We now want to consider the idea of an agentcommittingto, or

choosinga strategy. In committing to a strategy, an agent changes
the structure of theAATS in which it is involved. This is because it
eliminatescertain possibilities from that structure: if agenti com-
mits to σ, then in future it must choose actions that are consis-
tent with σ. When every agent has made up its mind, the fu-
ture of the system is determined: there will be just one possible
computation of the system. To capture commitment formally,we
introduce a commitment operation†i , whereM †i σ is the AATS

obtained fromM by eliminating from it all transitions in which
agenti makes a choice that is not consistent withσ. Formally, if
M = 〈Q, q0,Φ, π,Ag,Ac1, . . . ,Acn, ρ, τ,Υ1, . . . ,Υn, ‖ · ‖〉 is an
AATS, andσ is a strategy onM, then:

M †i σ = 〈Q,q0,Ag,Ac1, . . . ,Acn, ρ
′
, τ

′
,Φ, π, ‖‖M′ 〉,

where:

1. ∀α ∈ Aci : ρ′(α) = {q | σ(q) = α}

2. ∀q ∈ Q,∀j ∈ JAg:

τ
′(q, j) =



τ (q, j) if (q, j) ∈ domτ & j i = σ(q)
undefined otherwise

3. Υ′
i = {σ}

4. All other components ofM †i σ are as inM.

Thus the†i operator represents anupdateon systems. Note, how-
ever, that this update does not deletestates: only transitionsbe-
tween states. The operator is very similar to the model update op-
erator already proposed in [14] for the implementation of social
laws inATL , and has essentially the same properties.

EXAMPLE 1. Letσ be the “lazy” strategy for agent3, i.e.σ(q)
= nop3 for every q. System M1 †3 σ includes only the transitions
that are indicated with bold face font and thick arrows in Figure 1.

3. CATL
Alternating-time Temporal Logic (ATL ) [1, 2] can be understood as
a generalisation of the well-known branching time temporallogic
CTL [9], in which path quantifiers are replaced bycooperation
modalities. A cooperation modality〈〈G〉〉ϕ, whereG is a coali-
tion, expresses that the coalitionG can cooperate to ensure that
ϕ; more precisely, that there exists a collective plan (strategy pro-
file) for G such that by following this plan,G can ensureϕ. Thus,
for example, the system requirement “agents1 and 2 can coop-
erate to ensure that the system never enters a fail state” maybe
captured by theATL formula〈〈1, 2〉〉 ¬fail. The temporal op-
erator means “now and forever more”; other temporal connectives
in ATL are U (“until”) and ❢ (“in the next state”). Additional



operator♦ (“either now or at some point in the future”) can be
defined as♦ϕ =̂ ⊤U ϕ. Every occurrence of a temporal operator
is preceded by exactly one cooperation modality inATL (which is
sometimes called “vanilla”ATL ). The broader language ofATL *,
in which no such restriction is imposed, is not discussed here. It is
worth pointing out thatCATL, proposed in this paper, makes use of
terms that describe strategies, and in this sense is very different to
ATL , in which strategies appear only in the semantics and arenot
referred to in the object language. In order to capture consequences
of an agent’s commitment to execute a particular strategy, we intro-
duce a ternary modal operatorCi(σ, ϕ) with the intended meaning:
“suppose that agenti chooses the strategy denoted byσ; thenϕ
holds”. Having added formulas of this kind toATL , we obtain a
new logic that we call “CounterfactualATL ” or “ ATL with Commit-
ment” –CATL in short. Formally, the syntax ofCATL, (with respect
to a set of agentsAg, primitive propositionsΦ, and strategy terms
Υ =

S

i∈Ag Υi), is given by the following grammar:

ϕ ::= p|¬ϕ|ϕ ∨ ϕ|Ci(σi , ϕ)|〈〈G〉〉 ❢ϕ|〈〈G〉〉 ϕ|〈〈G〉〉ϕU ϕ

wherep ∈ Φ is a propositional variable,i ∈ Ag is an agent,G ⊆ Ag
is a set of agents, andσi ∈ Υi is an i-strategic term. For reasons
that will become clear shortly, we require that noi-strategy term
τi occurs inϕ in the formulaCi(σi , ϕ). We now first define the
semantics ofCATL formulas, and then discuss strategic terms and
their denotations.

3.1 Semantics of CATL
We now give the truth definition ofCATL formulas on anAATS

M and a stateq:

M, q |= p iff p ∈ π(q) (wherep ∈ Φ);

M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ ∨ ψ iff M, q |= ϕ or M, q |= ψ;

M, q |= Ci(σ, ϕ) iff (M†i ‖σ‖), q |= ϕ;

M, q |= 〈〈G〉〉 ❢ϕ iff ∃σG ∈ ΣG, such that∀λ ∈ comp(σG, q), we
haveM, λ[1] |= ϕ;

M, q |= 〈〈G〉〉 ϕ iff ∃σG ∈ ΣG, such that∀λ ∈ comp(σG, q), we
haveM, λ[u] |= ϕ for all u ∈ N;

M, q |= 〈〈G〉〉ϕU ψ iff ∃σG ∈ ΣG, such that∀λ ∈ comp(σG, q),
there exists someu ∈ N such thatM, λ[u] |= ψ, and for all
0 ≤ v< u, we haveM, λ[v] |= ϕ.

The other connectives (“∧”, “→”, “↔”) are assumed to be defined
as abbreviations in terms of¬,∨. Also, 〈〈G〉〉♦ϕ is shorthand for
¬〈〈G〉〉⊤U ϕ. We omit set brackets in cooperation modalities, wri-
ting 〈〈i, . . . , k〉〉 rather than〈〈{i, . . . , k}〉〉. Validity and satisfiability
are defined as usual for a modal logic: we write|= ϕ to indicate
thatϕ is valid.

Two cooperation modalities play a special role in the remainder
of the paper, and are worth singling out for special attention. The
cooperation modality〈〈〉〉 (“the empty set of agents can cooperate
to. . . ”) asserts that its argument is true on all computations, and
thus acts likeCTL’s universal path quantifierA. Similarly, the co-
operation modality〈〈Ag〉〉 asserts that its argument is satisfied on at
least one computation, and thus acts like theCTL path quantifierE.

The following example shows that sometimes, a coalition can
achieve more if another agent commits himself to a strategy.

q0 q1 q2

nop

die

dead

Figure 2: The single agent system

EXAMPLE 2. Let nop3 be the term denoting the “lazy” strat-
egy for agent3, i.e., the strategy in which he always chooses to do
nothing. Then, M1, 1 |= C3(nop3, 〈〈〉〉 roL), because the rocket
will never move away from London in the system from Figure 1.
Similarly, M1, 1 |= C1(nop1, 〈〈2, 3〉〉♦caP), although M1, 1 |=

¬〈〈2, 3〉〉♦caP when no commitment is considered.

We can now explain why we forbidi-strategic termsτi to occur in
ϕ, in the commitment formulaCi(σi, ϕ). Conceptually this makes
sense because, oncei commits to strategyσi , there is no need to
reason about other strategies ofi anymore. Technically, recall that
M †i σi is the model that “cuts out” all transitions fromM for i, that
do not accord withσi . Hence, in that updated model, a strategy
τi would not have an interpretation any more. Another option to
deal with this would be to allow for partial strategies (cf. [15]),
but for the moment we feel we can stick to our definition of full
strategies as given in Section 2. Given a set of strategy termsΥ, we
say that theAATS modelM complies withΥ if every termσ ∈ Υ
corresponds to a strategy‖σ‖ in M. It is then easy to verify that if
M complies withΥ, andM′ is the result of updatingM in order to
evaluateCi(σi , ϕ), thenM′ complies with the setΥ′ of all strategies
named inϕ.

Note that, so far, we have been only describing individual com-
mitments. Collective commitments can be defined on top of them:

C{1}(〈σ1〉, ϕ) =̂ C1(σ1, ϕ)

C{1,..,k}(〈σ1, .., σk〉, ϕ) =̂ C1(σ1,C{2,..,k}(〈σ2, .., σk〉, ϕ))

This notion is well defined because of the following:

PROPOSITION 1. Commitments are commutative:

|= Ca1(σa1 ,Ca2(σa2 , ϕ)) ↔ Ca2(σa2 ,Ca1(σa1 , ϕ)).

3.2 Properties under Commitment
For anAATS M with only finitely many states, actions and agents,

there are clearly only finitely many strategies. Suppose that the set
Υi is rich enough so that it includes a strategy term forevery i’s
strategy fromΣi . We might expect the following equivalence to
hold inM:

〈〈i〉〉ϕ↔
_

σi∈Υi

Ci(σi , ϕ)

The above property expresses that whati can achieve in a system
M, is exactly all those results that will hold afteri has commit-
ted to one of his available strategies. Unfortunately, thisis in gen-
eral not true in a framework withirrevocablecommitments, which
we can already demonstrate in the one agent case. Consider the
AATS M from Figure 2. Let us abbreviatefree ≡ (〈〈i〉〉 ❢dead ∧
〈〈i〉〉 ❢¬dead). Note thatM, q1 |= free, i.e. the agent has a free
choice to die or stay alive in stateq1. On the other hand, as soon as
he irrevocably commits to either of the two available strategies (σ1

with σ1(q1) = nop, andσ2 with σ2(q1) = die), he does not have
the free choice any more:

M, q0 |= 〈〈i〉〉 ❢free ∧ ¬Ci(σ1, free) ∧ ¬Ci(σ2, free).



This makes our approach similar to the perspective offered by strate-
gic reasoningin game theory: we can see agents’ commitments as
the result of pre-play reasoning; once the players choose their best
strategies, the structure of the game does not matter any more and
the play is already settled before it begins. We will come back to
the relationship betweenCATL and game theory in Section 4.

We have pointed out that the commitment semantics we adopt
has essentially the same properties as the constraint implementa-
tion operator from [14]. We now briefly mention two such proper-
ties of the commitment modality inCATL. First, let us point out that
commitment preserves universal properties of transition systems.
Moreover, existential properties that hold under commitments, ap-
ply to the whole system as well. To this end, we define auniversal
and anexistentialsublanguage ofATL , denotedLu andLe, respec-
tively. These languages are defined by the following grammars:

υ ::= p | ¬p | υ ∧ υ | υ ∨ υ | 〈〈〉〉 ❢υ | 〈〈〉〉 υ | 〈〈〉〉υ U υ
ǫ ::= p | ¬p | ǫ ∧ ǫ | ǫ ∨ ǫ | 〈〈Ag〉〉 ❢ǫ | 〈〈Ag〉〉 ǫ | 〈〈Ag〉〉ǫU ǫ

wherep ∈ Φ, υ ∈ Lu andǫ ∈ Le.

PROPOSITION 2. Let σ be a strategic term for i in M, let q be
a state in M, and letυ ∈ Lu andǫ ∈ Le. Then:

1. M, q |= υ → Ci(σ, υ).

2. M, q |= Ci(σ, ǫ) → ǫ.

The proofs are analogous to those of [14].
Note that when every agent has committed to a strategy the future

of the system is determined, and we have the following:

PROPOSITION 3. |= CAg(σAg, 〈〈〉〉 ❢ϕ↔ 〈〈Ag〉〉 ❢ϕ)

3.3 PDL-like Reasoning about Strategies
One of the advantages ofCATL is that the logic enables explicit

reasoning about actions and strategies in the style of Propositional
Dynamic Logic [12]. Reasoning about (single-step) actionscan
be naturally extended to reasoning about strategies (that are being
playedad infinitum), yielding a kind of “extended dynamic logic”:

[σG] ❢ϕ =̂ CG(σG, 〈〈〉〉 ❢ϕ)
[σG] ϕ =̂ CG(σG, 〈〈〉〉 ϕ)
[σG]ϕU ψ =̂ CG(σG, 〈〈〉〉ϕU ψ)

EXAMPLE 3. Coming back to our rocket example: every execu-
tion of action fuel by agent3 in state1 makes the tank of the rocket
full: M1, 1 |= [fuel]fuelOK. Moreover, if3 chooses the “lazy”
strategy and the initial state is1, then the rocket will inevitably stay
in London for ever: M1, 1 |= [nop3] roL.

In [15], we propose a richer language of strategy terms, and dis-
cuss the relationship toPDL in more detail.

3.4 Model Checking and Satisfiability
The model checking problemfor CATL is the problem of deter-

mining, for any givenCATL formulaϕ, AATS M, and stateq in M,
whether or notM, q |= ϕ. If M is anAATS andϕ is a formula then
we say thatϕ is initially satisfiedin M if M, q0 |= ϕ; we indicate
this by writingM |= ϕ. GivenM, i, andσ, computingM †i σ can
be done in timeO(m) (wherem is the number of transitions inM).
All we need do is go through the model deleting transitions where
i performs an action other than that which is dictated byσ (i.e.,
“trim” the model). Finally, to model-check aCATL formulaϕ, it is
sufficient to use theATL model checking algorithm from [2], and

call the “trimming” procedure every time a subformula of shape
Ci(σ, ϕ occurs. As theATL model checking algorithm enjoys com-
plexity of O(ml), we obtain the following result.

PROPOSITION 4. Model checking aCATL formulaϕ in model
M can be done in time O(ml), where m is the number of transitions
in M, and l is the length ofϕ.

A formula ϕ is satisfiableif there is someAATS M and stateq
in M such thatM, q |= ϕ. Thesatisfiability problemfor ATL is the
problem of determining, for any givenATL formula, whether this
formula is satisfiable or not.

4. STRATEGIC REASONING IN CATL
AATSs encapsulate intuitions related to extensive form games as

well as strategic form games: on one hand, every agent acts through
multiple subsequent moves; on the other, many agents play simulta-
neously at each state, and the outcome of a move depends on theac-
tions of the other players. Thus, on one hand,ATL formulas of type
〈〈G〉〉 ❢ϕ can be seen as a formalization of reasoning about a single
move in a (possibly more complex) game, and operators〈〈G〉〉

and〈〈G〉〉♦ as referring to an analysis of the entire game. In this
sense,ATL formalizes reasoning about different aspects ofexten-
sive game forms, representing sequences of moves, collectively ef-
fected by the players’ actions. Alternatively, formulas〈〈G〉〉 ❢ϕ

can be understood as expressing agents’ powers to force outcomes
in a single game, and operators〈〈G〉〉 and 〈〈G〉〉♦ as referring
to a collection of games played repeatedlyad infinitum. Thus,ATL

can be also interpreted in terms ofstrategic game forms, in a way
similar to the perspective of Coalition Logic [19]. In our introduc-
tion, we claimed thatCATL is appropriate for reasoning about the
outcome of strategies in game-like encounters. We now justify this
claim by showing howCATL can be used to express important prop-
erties of games. We will focus on games in strategic form, butthe
concepts can be extended to perfect information games in extensive
form in a natural way (cf. [15]).

4.1 Games and Correspondence
We will compare strategic games withAATS models. To keep

them clearly apart, all entities in the game will have aĥat. Note
that in a strategic game we do not have to distinguishactionsfrom
strategies. We model ak-player strategic gamêΓ as a tuplêΓ =
〈Âg, {Âci}, {ûi}〉, where:Âg = {1̂, . . . , k̂} is the set of players,̂Aci

is the set of actions (or strategies) for playeri, ĴÂg = Âc1×· · ·×Âgk

is the set of all possible combinations of strategies, andûi : ĴÂg →
R is playeri’s utility function, which assigns a real-valued utility to
each combination of players’ strategies. Notice that gamesin this
sense, and ourAATSs are very similar: the main differences are that
(i) games are not state dependent, in that the outcome of the game
depends only on the choices of actions made by agents, and noton
the current state of the system; and, more significantly (ii)agents
have preferences over outcomes, determined by their utility func-
tions.

We make the relationship between games andATSs precise with
the notion ofcorrespondence. Informally, this relationship should
be clear from the notation, but to define the correspondence for-
mally, we need to introduce intoATSs a mechanism for capturing
utilities. One approach to this problem would be to extend the
framework of coalition logic with desire or preference modalities of
some kind. Logics of desire have been widely studied (see e.g. [20,
24]), and modal operators for desires were successfully used in [13]
for a modal characterisation of Nash equilibrium; an attempt to give
a game-theoretic foundation to a logic of desire was also presented



in [23]. The disadvantage of such an approach is that it complicates
the underlying logical framework. An alternative, which weadopt
in this paper, is to label states with propositions that capture agent’s
utilities in these states. This approach is perhaps less elegant than
the modal alternative [5, pp.308–309], but it is nevertheless simpler
from a logical perspective, as we need not complicate the logic with
additional modalities or other connectives.

We follow the approach of Baltag [3]. LetU denote the set of all
utilities that may be assigned bŷui functions inΓ̂. For each utility
valuev ∈ U and agent̂ı ∈ Âg, we introduce a proposition(ui ≥
v) into our setΦ of primitive propositions of the corresponding
AATS modelM, and fix the valuation functionπ so that(ui ≥ v) is
satisfied in states iff i gets at leastv in s. Additionally, we define
ui > v as a shorthand for

W

v′>v ui ≥ v′.

Consider a strategic gamêΓ = 〈Âg, {Âci}, {ûi}〉, and a model
M = 〈Q, q0,Φ, π,Ag,Ac1, . . . ,Acn, ρ, τ,Υ1, . . . ,Υn, ‖ · ‖〉 with
stateq ∈ Q. We writeΓ̂ ≃ (M, q) to denote the fact that̂Γ corre-
sponds to M, q, in the sense that:

1. the sets of agents are the same:Âg = Ag;

2. strategies in̂Γ correspond to actions that can be executed in
M, q: Âci = options(i, q);

3. Υ has a termα for every strategŷα in Γ̂. More precisely, we
require that for everŷα ∈ Âci there is anα ∈ Υi such that
‖α‖ (q) = α̂, i.e. we can use strategy terms to address every
single-step action inq;

4. Φ ⊇ {(uj ≥ v) | ûj ∈ {ûi}, v ∈ U}

5. for all j ∈ JAg with q′ = τ (q, j), we have:(ui ≥ v) ∈ π(q′)
iff ûi(̂) ≥ v.

Thus, states inM are mainly used to represent various possible out-
comes of the strategic gamêΓ.

LEMMA 1. Let Γ̂ be a game, M be anAATS with a state q such
that Γ̂ ≃ (M, q); let ̂, ̂′ ∈ ĴÂg be strategy profiles in̂Γ, and i be

an agent in Ag= Âg. Then:

1. ûi(̂) > ûi(̂′) iff for some v∈ U we have
M, τ (q, j) |= (ui ≥ v) and M, τ (q, j′) |= ¬(ui ≥ v);

2. ûi(̂) ≥ ûi(̂′) iff for all v ∈ U, if M, τ (q, j′) |= (ui ≥ v) then
also M, τ (q, j) |= (ui ≥ v).

To keep the definitions and results as readable as possible, we
will from now assume that games have just two agents,1 and2.
Moreover, we will writeΓ̂ ≃ (M, q) without explicitly saying that
Γ̂ is a game, andM a system with stateq. Since the agents in the
gameΓ̂ and the modelM are the same, we omit the hat-notation for
them. Finally, in the two-agent case, ifi is an agent,k refers to the
otheragent.

To look at a simple example, consider a version of the Prisoner’s
Dilemma (PD) presented in Figure 3A. The outcome pair(−5, 0),
for instance, represents that when player1 cooperates (C) while
player2 defects (d), the sentence for player1 is 5 years in prison,
while 2 can go without any punishment. The correspondingAATS

model might have a rootq0 and four states:q1, . . . , q4, whereq1

would be obtained fromq under the profile〈C, c〉 and satisfy propo-
sitionsu1 ≥ −5, u1 ≥ −4, u1 ≥ −2, u2 ≥ −5, u2 ≥ −4 and, final-
ly u2 ≥ −2; the stateq2 would be obtained fromq under the profile
〈C, d〉 etc. The other game in Figure 3B represents the “Bach or
Stravinsky” game, also known as the “Battle of the Sexes” (BoS).
A correspondingAATS is presented in Figure 3C.

(A)

1 \ 2 c d

C −2,−2 −5, 0
D 0,−5 −4,−4

(B)

1 \ 2 b s

B 2,1 0,0
S 0,0 1,2

(C)

u 01³

u 02³

u 02³

u 11³

u 01³

q0

q1 q2

< >B,s

< >B,b< >S,s

< >S,b

u 12³

u2³2

u1³2

u 02³

u 11³

u 01³

u 12³

Figure 3: Strategic games: (A) “Prisoner’s Dilemma”, (B)
“Bach or Stravinsky”; (C) example transition systems corre-
sponding toBOS

4.2 Dominant and Dominated Strategies
The first concept we capture in our logic is that of a strategy be-

ing dominant. Intuitively, a strategy is dominant if it is the best
response toall strategies that may be played by one’s opponents.
The presence of a dominant strategy makes an agent’s reasoning
process simpler: a rational agent will always play a dominant strat-
egy. Notice that “defect” (playingD andd) are dominant strategies
for players 1 and 2 inPD. We focus onweakly dominantstrate-
gies, which are “at least as good as” the alternatives. Formally, α̂
is weakly dominant fori in Γ̂ iff for all α̂′ 6= α̂ ∈ Âci , and for all
β̂ ∈ Âck, we haveûi(α̂, β̂) ≥ ûi(α̂′, β̂).

To capture weak dominance in the corresponding model, we de-
fine a unary predicateWDi(α), the idea being thatWDi(α) is sat-
isfied in a state iffα is weakly dominant in that state. We start
with a predicatewdi(α), which appears promising, but is in fact
not sufficiently strong:

wdi(α) =̂
^

v∈U

(〈〈i〉〉 ❢(ui ≥ v) → Ci(α, 〈〈〉〉 ❢(ui ≥ v)))

The predicatewdi(α) expresses that ifi can guarantee a valuev,
he can already guarantee it using his strategyα. Unfortunately, this
is too weak to makeα weakly dominant, which we will demon-
strate using theBoS example. The best that player 1 can guarantee
is a value 0. He can also obtain this using his strategyα̂ = B,
still in this caseB is not a dominant strategy (BoS lacks dominant
strategies). The problem lies in the fact that the outcomes of α
with respect to every opponent’s responseβ should be considered
separately. This suggests that we need to be able to quantify over
strategies. Indeed, if the number of strategies (actions) for i is finite,
we can express weak dominance by the following:

PROPOSITION 5. For finite Γ̂ and M, if Γ̂ ≃ (M, q) thenα̂ is
weakly dominant for i in̂Γ iff M , q |= WDi(α), where:

WDi(α) =̂
^

β∈Υj

Cj(β,wdi(α)).

WDi(α) above expresses thatα is the best response to every par-
ticular opponent’s strategyβ. Notice that characterising weak dom-
inance requires the ability both to quantify over the possible choices
of agents in a system (which is possible in “pure”ATL ), and also
to address properties ofnamedstrategies (which is not possible in
“pure” ATL , but can be done inCATL).

The notion of adominated strategyis related to that of a dom-
inant strategy, although when having more than two strategies for
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Figure 4: A rocket game

one player, the notions are independent. It is well-known that iter-
atively eliminating their dominated strategies may lead the game to
an equilibrium state.

We wantbti(α1, α2) to mean thatα1 guarantees (strictly) bet-
ter outcome thanα1 for i, DOi(α1, α2) to mean that strategyα1

is (strongly) dominated by strategyα2 for agenti, andDi(α) to
denote thatα is a (strongly) dominated strategy. We define these
predicates as follows:

bti(α1, α2) =̂
_

v∈U

(Ci(α1, 〈〈〉〉 ❢(ui ≥ v)) ∧

¬Ci(α2, 〈〈〉〉 ❢(ui ≥ v)))

DOi(α1, α2) =̂
^

β∈Υj

Cj(β,¬bti(α1, α2)) ∧
_

β∈Υj

Cj(β, bti(α2, α1))

Di(α) =̂
_

α′∈Υi

DOi(α,α
′)

PROPOSITION 6. Suppose that̂Γ ≃ (M, q), and let α̂ be a
strategy for agent i in̂Γ. Then:

1. α̂1 is dominated byα̂2 in Γ̂ iff M , q |= DOi(α1, α2)

2. α̂ is a dominated strategy in̂Γ iff M , q |= Di(α).

EXAMPLE 4. Let us consider again the “rocket agents” from
Section 2.1. This time, we would like to add some information
about the agents’ preferences (utilities). Suppose that the cargo
contains some materials that can incriminate agent1 before the
French police. Thus,1 does not want the cargo to stand freely at
the London airport, but he is much more afraid that the cargo may
arrive in Paris. The best option for him is when the cargo is in-
side the rocket and the rocket cannot fly (i.e., it has its tankempty);
also, he has a slight preference for the situation when the rocket is
supplied with fuel and the cargo is outside (then the rocket can be
moved to Paris in the next step, which guarantees that the cargo
will remain away from Paris for some time. Agent 3, on the other
hand, gets more bonus when the rocket tank is full; also, he isre-
sponsible for cargo which is on board of the rocket, so he prefers
when no cargo is loaded. We assume that agent2 chooses to do
nothing throughout the game, and that the agents, cargo and rocket
are initially in London.AATS M2 = M1 †2 nop2 can be augmented
with utility-defining propositions to correspond to the game; Fig-
ure 4 shows the table of utilities for the game as well as the relevant
part of the resulting transition system.

Let α denote an arbitrary strategy in M2 for whichα(q) = α.
Note that M2, 1 |= WD3(fuel) and indeed fuel is a dominant ac-
tion for agent3. Note also that1 has no dominant action, and

¬WD1(nop
1
) ∧ ¬WD1(load1) ∧ ¬WD1(unload1) appropriately

holds in M2, 1.
Furthermore, M2, 1 |= Di(unload1)∧¬Di(nop

1
)∧¬Di(load1),

and indeed unload1 is the only dominated action of player1.

Unfortunately, as witnessed byBoS, dominant or dominated strate-
gies seldom exist, and hence alternative solution conceptshave
been developed. Of these, Nash equilibrium is the best knownand
most important.

4.3 Nash Equilibrium
We say that a pair of strategies〈α̂1, α̂2〉 for the grand coalition

{1, 2} is in Nash equilibrium in gamêΓ if these strategies are each
the best response to each other, i.e., ifû1(〈α̂1, α̂2〉) ≥ û1(〈α̂′

1
, α̂2)

for all α̂′
1
∈ Âc1, and, similarly,û2(〈α̂1, α̂2〉) ≥ u2(〈α̂1, α̂′

2
) for

all α̂′
2
∈ Âc2. The profile〈D, d〉 is the only Nash equilibrium in

PD, while BoS has two Nash equilibria, namely〈B, b〉 and〈s,S〉.
To express Nash equilibrium, we first characterise the notion of

one strategy being a best response to another. We writeBRi(αk, αi)
to denote the fact thati’s best response tok playingαk is αi , and
define it as:

BRi(αG, αi) =̂

Ck(αk,
^

v∈U

((〈〈i〉〉 ❢(ui ≥ v)) → Ci(αi , 〈〈〉〉 ❢(ui ≥ v)))

This says that ifk playsαk, then every utilityv that can be achieved
by i can already be achieved byi playingαi .

PROPOSITION 7. SupposêΓ ≃ (M, q); let α̂k be a strategy for
k in Γ̂, and α̂i a strategy for agent i. Then M, q |= BRi(αk, αi) iff
the best outcome i can obtain assuming k playsα̂k is obtained by
playingα̂i .

When the number of strategies if finite, we could have also char-
acterisedBRi(αk, αi) as follows, saying thatαi is i best response to
αk, if every utility achieved wheni plays an arbitraryβ againstαk,
can also be achieved by playingαi againstαk.

PROPOSITION 8. For finite Γ̂ and M, supposêΓ ≃ (M, q) and
let αk be a strategy for k in̂Γ, and α̂i a strategy for agent i. Then
the following two statements are equivalent:

1. M, q |= BRi(αk, αi)

2. M, q |=
V

βi∈Υi

V

v∈U(Ci(β,Ck(αk, (ui ≥ v)) →
Ci(αi ,Ck(αk, (ui ≥ v)))).

We can now define a propositionNE(αG) to denote the fact that
strategy profileαG is in Nash equilibrium.

NE(α1, α2) =̂ BR1(α2, α1) ∧ BR2(α1, α2)

The following is now immediate.

PROPOSITION 9. SupposêΓ ≃ (M, q) and letαi be a strat-
egy for i in Γ̂. Then M, q |= NE(α1, α2) iff 〈α̂1, α̂2〉 is a Nash
equilibrium inΓ̂.

EXAMPLE 5. Consider the game and the correspondingAATS

from Example 4 and Figure 4. Strategy pair〈 ˆunload1, ˆfuel〉 is a
Nash equilibrium here, and accordingly M2, 1 |= NE(unload1, fuel).
Also, M2, 1 |= ¬NE(load1, load3) and indeed〈 ˆload1, ˆload3〉 is not
a Nash equilibrium point because agent3 can get a better payoff
against ˆload1 by playing ˆfuel.



4.4 Pareto Optimality
The next concept we capture is that ofPareto optimality[18]. A

strategy profile〈α̂, β̂〉 is Pareto optimal if there is no other strategy
profile 〈α̂′, β̂′〉 for {1, 2} that will lead to an increase in utility for
some members of{1, 2} without any of them suffering a decrease
in utility. The game ofBoS has two Pareto optimal profiles:〈B, b〉
and 〈S, s〉, while all combinations of strategies inPD except for
〈D, d〉 are Pareto optimal.

Formally, PO(α, β) is defined as below. We use〈u1, u2〉 ≥
〈v1, v2〉 as a shorthand for((u1 ≥ v1) ∧ (u2 ≥ v2)).

PO(α, β)=̂
V

v1

V

v2
〈〈1, 2〉〉 ❢(〈u1, u2〉 ≥ 〈v1, v2〉) →
C{1,2}(〈α, β〉, 〈〈〉〉 ❢(〈u1, u2〉 ≥ 〈v1, v2〉 ∨ ((u1 > v1) ∨ (u2 > v2))))

The displayed formula expresses that if a collective utility cannot
be achieved by coalition{1, 2} while playing strategiesα andβ
respectively (i.e. at least one of the players is bound to geta worse
outcome), then it cannot be achieved by coalition{1, 2} in general.

PROPOSITION 10. Suppose that̂Γ ≃ (M, q) and let〈α̂, β̂〉 be
a strategy profile for the grand coalition{1, 2} in Γ̂. Then M, q |=

PO(〈α, β〉) iff 〈α̂, β̂〉 is a Pareto optimal strategy profile for{1, 2}
in Γ̂.

EXAMPLE 6. The following strategy profiles in the game from
Example 4 are Pareto optimal: 〈 ˆnop

1
, ˆload3〉, 〈 ˆnop

1
, ˆfuel〉,

〈 ˆload1, ˆnop
3
〉, 〈 ˆload1, ˆload3〉 and 〈 ˆunload1, ˆfuel〉. Accordingly,

M2, 1 |= PO(nop1, load3) ∧ PO(nop
1
, fuel) etc. In the same way,

M2, 1 |= ¬PO(nop
1
, nop

3
) ∧ ¬PO(load1, fuel) and so on.

5. CONCLUSIONS
In recent years, there has been much interest in the use of logic

for representing and reasoning about game-like interactions. Ex-
amples include the development of logics intended for reasoning
about coalitional power in games [1, 2, 19], the use of dynamic
epistemic logics to capture properties of games [4, 3], Bonanno’s
work on the relationship of branching time logic to extensive form
games [7], and of course the use of epistemic logic for capturing
such game theoretic concepts as perfect recall [10].

Our logic CATL adds strategy terms to the vocabulary of modal
logic, enabling one to reason about “what-if” scenarios, which cor-
respond to agents choosing a particular strategy. We showedhow
this gives a natural framework within which several well-known so-
lution concepts from game theory can be expressed. Directions for
future research are manyfold. First of all, reasoning aboutchoices
of agents can be done in a more fine-tuned way if we allow for
more structure in strategic terms. This would make the link with
Propositional Dynamic LogicPDL more explicit. Second, yet we
only demonstrated the possibleuseof CATL; properties in terms
of axiomatization and computational complexity are not resolved.
Finally, it may be worthwhile to useCATL in the area of extensive
games, with utilities assigned to arbitrary states and various notions
of outcome.
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