

Computation, Logic, Philosophy

A collection of Essays

Mathematics and Its Application (China Series)

Managing Editor:

M. HAZEWINKEL

Centre for Mathematics and Computer Science, Amsterdam. The Netherlands

Editorial Board:

F. CALOGERO, Universita deg/i Studi di Roma, Italy
Yu. I. MANIN, Steklov Institute of Mathematics, Moscow, U.S.S.R.
A. H. G. RINNOOY KAN, Erasmus University, Rotterdam, The Netherlands
G.-C. ROTA, M.I. T., Cambridge, Mass., U.S.A.

Computation, Logic,
Philosophy
A Collection of Essays

Professor Wang Hao

Famous Mathematical Logician, Mathematician and Philosopher
Rockefeller University, New York, USA

Science Press
Beijing, China

Kluwer Academic Publishers

Dordrecht/ Boston/ Lancaster/Tokyo

Responsible Editors Yang Xianying Mei Lin

lSBN-13: 978-94-010-7561-9
DOl: 10.1007/978-94-009-2356-0

Distribution rights throughout the world,
excluding The People's Republic of China,
granted to Kluwer Academic Publishers,
P.O. Box 17/3300 AA Dordrecht, Holland

Sold and distributed in the U. S. A. and Canada
by Kluwer Academic Publishers,

e-lSBN-13: 978-94-009-2356-0

101 Philip Drive, Assinippi Park, Norwell, MA 02061, U.S.A.

Sold and distributed in the People's Republic of China
by Science Press, Beijing

In all other countries, sold and distributed
by Kluwer Academic Publishers Group,
P. O. Box 322, 3300 AH Dordrecht, Holland

All Rights Reserved
© 1990 by Science Press, Beijing, China and Kluwer Academic Publishers, Dordrecht,
Holland
Softcover reprint ofthe hardcover I st edition 1990
No part of the material protected by this copyright notice may be reproduced or util

ized in any form or by any means, electronic or mechanical, including photocopying, re
cording or by any information storage and retrieval system, without written permission
from the copyright owners.

SERIES EDITOR'S PREFACE

~Et moi, si j'avait su comment en revenir,
je n'y serais point alle.'

Jules Verne

The series is divergent; therefore we may be
able to do something with it.

O. Heaviside

One service mathematics has rendered the
human race. It has put common sense back
where it belongs, on the topmost shelf next
to the dusty canister labelled 'discarded non·
sense'.

Eric T. Bell

Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non
linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for
other sciences.

Applying a simple rewriting rule to the quote on the right above one finds such statements as:
'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com
puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And
all statements obtainable this way form part of the raison d'etre of this series.

This series, Mathematics and Its Applications, started in 1977. Now that over one hundred
volumes have appeared it seems opportune to reexamine its scope. At the time I wrote

"Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the 'tree' of knowledge of
mathematics and related fields does not grow only by putting forth new branches. It
also happens, quite often in fact, that branches which were thought to be completely
disparate are suddenly seen to be related. Further, the kind and level of sophistication
of mathematics applied in various sciences has changed drastically in recent years:
measure theory is used (non-trivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowsky lemma, coding theory and the structure
of water meet one another in packing and covering theory; quantum fields, crystal
defects and mathematical programming profit from homotopy theory; Lie algebras are
relevant to filtering; and prediction and electrical engineering can use Stein spaces. And
in addition to this there are such new emerging subdisciplines as 'experimental
mathematics', 'CFD', 'completely integrable systems', 'chaos, synergetics and large-scale
order', which are almost impossible to fit into the existing classification schemes. They
draw upon widely different sections of mathematics."

By and large, all this still applies today. It is still true that at first sight mathematics seems rather
fragmented and that to find, see, and exploit the deeper underlying interrelations more effort is
needed and so are books that can help mathematicians and scientists do so. Accordingly MIA will
continue to try to make such books available.

If anything, the description I gave in 1977 is now an understatement. To the examples of
interaction areas one should add string theory where Riemann surfaces, algebraic geometry, modu
lar functions, knots, quantum field theory, Kac-Moody algebras, monstrous moonshine (and more)
all come together. And to the examples of things which can be usefully applied let me add the topic
'finite geometry'; a combination of words which sounds like it might not even exist, let alone be
applicable. And yet it is being applied: to statistics via designs, to radar/sonar detection arrays (via
finite projective planes), and to bus connections of VLSI chips (via difference sets). There seems to
be no part of (so-called pure) mathematics that is not in immediate danger of being applied. And,
accordingly, the applied mathematician needs to be aware of much more. Besides analysis and
numerics, the traditional workhorses, he may need all kinds of combinatorics, algebra, probability,
and so on.

In addition, the applied scientist needs to cope increasingly with the nonlinear world and the

v

extra mathematical sophistication that this requires. For that is where the rewards are. Linear
models are honest and a bit sad and depressing: proportional efforts and results. It is in the non
linear world that infinitesimal inputs may result in macroscopic outputs (or vice versa). To appreci
ate what I am hinting at: if electronics were linear we would have no fun with transistors and com
puters; we would have no TV; in fact you would not be reading these lines.

There is also no safety in ignoring such outlandish things as nonstandard analysis, superspace
and anticommuting integration, p-adic and ultrametric space. All three have applications in both
electrical engineering and physics. Once, complex numbers were equally outlandish, but they fre
quently proved the shortest path between 'real' results. Similarly, the first two topics named have
already provided a number of 'wormhole' paths. There is no telling where all this is leading -
fortunately.

Thus the original scope of the series, which for various (sound) reasons now comprises five sub
series: white (Japan), yellow (China), red (USSR), blue (Eastern Europe), and green (everything
else), still applies. It has been enlarged a bit to include books treating of the tools from one subdis
cipline which are used in others. Thus the series still aims at books dealing with:

- a central concept which plays an important role in several different mathematical and/or
scientific specialization areas;

- new applications of the results and ideas from one area of scientific endeavour into another;
- influences which the results, problems and concepts of one field of enquiry have, and have had,

on the development of another.

The present volume, one of the first in the 'Chinese subseries' of MIA, also, appropriately enough,
one dealing with fundamental issues: interrelations between logic and computer science. The advent
of computers has sparked off revived interest in a host of fundamental issues in science and
mathematics such as computability, recursiveness, computational complexity and automated
theorem proving to which latter topic the author has made seminal contributions for which he was
awarded the ATP prize in 1982.

It is a pleasure to weicome this volume in this series.

The shortest path between two truths in the
real domain passes through the complex

domain.
J. Hadamard

La physique ne nous donne pas seulement
I'occasion de re-oudre des problemes ... e1Ie
nous fait pressentir la solution.

H. Poincare

Bussum, August 1989

V]

Never lend books, for no one ever returns
them: the only books I have in my library
are books that other folk have lent me.

Anatole France

The function of an expert is not to be more

right than other people, but to be wrong for
more sophisticated reasons.

David Butler

Michiel Hazewinkel

CONTENTS

INTRODUCTION , , , , , xi

PART ONE. BROAD ISSUES .. 1

1. ON FORMALIZATION ... 3
1.1 Systematization [1955(53)] .. 3
1.2 Communication .. 4
1.3 Clarity and consolidation .. 5
1.4 Rigour .. 6
1.5 Approximation to intuition ... 7
1.6 Application to philosophy ... 8
1.7 Too many digits ... 9
1.8 Ideal language .. 10
1.9 How artificial language? .. 11
1.10 The paradoxes .. 12

2. THE CONCEPT OF COMPUTABILITY [(1953)J. .. 13

2.1 Formalizing intuitive concepts .. 13
2.2 The intuitive concept of computability ... 13
2.3 Computation by theoretical machines ... 15
2.4 General recursive functions ... 15
2.5 Constructive proofs .. 17
2.6 Effective methods ... 19
2.7 Speed functions .. 20
2.8 Transfinite recursions ... 22
2.9 The indeterminate domain of computable functions 25

3. PROCESS AND EXISTENCE IN MATHEMATICS [1961(60)] 30

4. LOGIC, COMPUTATION AND PHILOSOPHY [1971(66)]. 47

4.1 Logic and logical positivism .. 47
4.2 What is mathematics? ... 48
4.3 Logic and computation ... 50
4.4 Relatively undecidable propositions and absolutely unsolvable

problems ... 51
4.5 Foundations of set theory ... 53
4.6 What is mathematics? (continued) .. 56

vii

viii Computation, Logic, Philosophy

PART TWO. AUTOMATED THEOREM PROVING(ATP)• 61

5. COMPUTER THEOREM PROVING AND ARTIFICIAL
INTELLIGENCE [1984(82)] ... 63

APPENDIX: CITATION FOR HAOWANG AS WINNER OF
"MILESTONE" AWARD IN AUTOMATIC THEOREM-
PROVING .. 75

6. PROVING THEOREMS BY PATTERN RECOGNITION, I
[1960(59)] ... 76

6.1 Introduction ... 76
6.2 A program that does 9 chapters of Principia in 9 minutes 83
6.3 The ElA case solved with sequential tables .. 94
6.4 General remarks ... 96

7. OBSERVATIONS ON ATP .. 103

7.1 Mechanical mathematics and inferential analysis [1963(61)] 103
7.2 The mechanization of mechanical arguments [l963(62)a] lIB
7.3 Formalization and automatic theorem-proving [1965(64)]

... 127

B. SOME DATA FOR ATP ... 139

8.1 On axioms of conditional set existence [1967(66)J.. ~ 139
B.2 Natural hulls and set existence [1967(66)a] ... 143
8.3 A theorem on definitions of the Zermelo-Neumann ordinals

[1967(66)b] .. 149

9. PROVING THEOREMS BY PATTERN RECOGNITION, II

[1961(60)a] .. ·159

9.1 A survey of the decision problem ... 159
9.2 The Skolem, case .. 167
9.3 The A2E satisfiability case .. 174
9.4 The AlElAl satisfiability case .. 176
9.5 A proof procedure for the predicate calculus .. 186
9.6 Remarks on mathematical disciplines .. . IB9

PART THREE. DECIDABILITY AND COMPLEXITY 193

10. GAMES, LOGIC AND COMPUTERS [1965aJ. .. 195

APPENDIX: NOTES ON A CLASS OF TILING PROBLEMS
[1975(60)] ... 209

Contents IX

11. DOMINOES AND THE AEA CASE OF THE DECISION
PROBLEM [1963(62)] ... 218

12. TOWARDS FEASIBLE SOLUTIONS OF THE TAUTOLOGY
PROBLEM (with B.Dunhan) [1976(74)] .. 246

12.1 Computational complexity and Boolean validity 246
12.2 A brief overview with some general observations 248
12.3 Some basic properties of Boolean validity ... 252
12.4 Some calculations and classifications ... 257
12.5 Hard examples and negative results .. 263
12.6 A feasible decision procedure for biconditional expressions 266
12.7 Two partial methods and an indication of two generic methods

... 269

13. RANKED MATCHING AND HOSPITAL INTERNS
(with D.A.Martin) [(1977)] .. 275

13.1 Preliminary .. 275
13.2 Deletion of useless names: Operations I and II 276
13.3 The canonical form TI of T .. 278
13.4 The student and hospital optimal assignments 280
13.5 Mixed assignments and a characterization of all stable

assignments ... 284
13.6 The marriage problem .. 286

PART FOUR. TOPICS FROM THEORY TO PRACTICE 291

14. LOGICAL FRAGMENTS RELEVANT TO COMPUTER
SCIENCE ... 293

14.1 Logic of many-sorted theories [1952(50)J ... 293
14.2 Ackermann's consistency proof [1962(53)J .. 304
14.3 Partial systems of number theory [1962(55)] 314
14.4 The calculus of partial predicates and its extension to set

theory [1961(61)J ... 319
14.5 Model theory [1974(71)]. ... 325

15. COMPUTERS AND MATHEMATICAL ACTIVITy 331

15.1 Remarks on machines, sets and the decision problem
[1964(63)J .. 331

15.2 Logic and computers [1965J .. 344
15.3 Remarks on mathematics and computers [1970(67)J 349
15.4 On the long-range prospects of automatic theorem-proving

[1970(68)aJ .. 355

16. ON INFORMATION PROCESSING OF THE CHINESE
LANGUAGE [1979J .. 361

x Computation, Logic, Philosophy

THE LIST OF THE PUBLICATIONS OF THE AUTHOR 371

Note. The numbers in square brackets refer to the list of References at the end of
the Introduction. The first number refers to the year when the material was published
for the first time, and the second number, in paratheses, refers to the year when it was
written. For instance, [1955(53)] means that the item was written in 1953 and
published initially in 1955.

INTRODUCTION

Over the years I have thought and written about certain aspects of theoretical
computer science, quite directly in connection with mathematical logic and broader
conceptual issues. My greater and more continued concentration on this type of work
was over the decade from 1953 to 1963, when computer science was in its infancy. Much
has happened since that period, but computer science remains, in its fundamental
theory, an immature discipline even today. Indeed, with the dominance of specialization
and the pressure to publish, there is a tendency to lose sight both oflarger issues and of
guiding motivations more transparently revealed in simpler situations. In addition, the
concern with longer range prospects and less obvious applications of mathematical logic
in my early writings appears to remain relevant to a considerable extent for current
research. There is of course also the general fact that familiarity with the initial stages of a
subject often improves one's understanding of the field.

For all these reasons I am grateful to the late Professor Wu, Yunzeng for
encouraging me to carry out the idea of collecting together those of my essays which are,
in one way or another, directly or indirectly, related to computers, whose prevalence
today is a socially important phenomenon. It may indeed be said that seemingly idle
preoccupations with, e.g., formal precision, what is a 'small' number, the classification
of (in particular, computable) sets and functions, the algorithmic components of pure
mathematics, different concepts of infinity, etc. all begin to acquire more tangible
significance through the surprising advance of computers.

The most surprising feature in the development of computers since the 1940s has
been the radical and rapid improvements of the basic components: much smaller in size
(more information for the same size), much faster, much more reliable, and much
cheaper. This must be an exceptional phenomenon in the history of technology: usually
not all factors can be maximized at the same time. This fact naturally induces an
expansion of the range of application of computer-like devices to areas which would
otherwise not be feasible (on account of cost or speed or size or reliability). Moreover, it
has the consequence that more efforts are needed for software (to help the flexible use of
computers) than hardware (to make computers). Even in the realm of theory, the
unexpected development has its effects. For example, J. v. Neumann proposed a theory
in 1952 to improve the reliability of computers (to guard the guardian') on the basis of
an estimate of the probability of a component (such as vacuum tubes at that time)
malfunctioning at 0.5%, while the actual probability today is much smaller and the
reliability is more than 107 times better than his estimate. (For a discussion of his idea,
see my Survey, i.e. 1962(59) in the list of References at the end of this Introduction,
chapter 5.6)

Xl

xii Computation, Logic, Philosophy

One aspect among the broad impacts of the computers is the creation of
opportunities to utilize human talents which formerly had less chance to be exercised.
One frequently encounters people doing significant research and other work with
computers who would have been rather unsuccessful in more traditional disciplines. At
the same time, there is a greater danger of pointless research in computer science both
for the great practical importance of computers and for its interdisciplinary character. It
often happens that work of neither theoretical nor practical interest is defended on two
fronts: it is said to be of value for application to the mathematician and of theoretical
value to the engineer. This seems to have been the case with a considerable portion of
'automata theory,' the 'resolution method' in theorem proving, 'fuzzy sets,' etc.
Moreover, when more objective standards have not yet been formed, there is a tendency
to exaggerate the future promises of insignificant beginnings. For many years, this has
frequently happened in the field of artificial intelligence. It, therefore, seems necessary
to cultivate a better scientific taste by being at home with some more mature discipline
(such as mathematical logic or combinatorial analysis or electronics). In addition, a
familiarity with some part of the brief history of computer science may also help to
broaden one's perspective.

An advantage of computer science as a research area is the relatively slender
accumulation of significant results so far. As a result less preparation is needed than in a
mature subject to get to the frontier of research. This advantage is balanced by the
disadvantage that much of the subject is not so well structured yet. Consequently, it is
harder to distinguish more significant from less significant problems; indeed,
discoveries in one context often turn out to be rediscoveries of what have long been
familiar in other contexts. For example, various innovations in computer theory appear
to repeat ideas formerly introduced for different purposes in mathematical logic. It
must have been the frequency of this phenomenon that has led some leading computer
scientists to urge beginners in computer science to acquire a greater familiarity with the
relevant parts of logic.

If we compare computer science today with physics in its early stage, we see
important differences as well as possible similarities. Physics deals directly with nature
in its fundamental aspects while computer science deals with an exceptionally important
class of man-made objects (viz., the computers) and uses more results from a variety of
other disciplines. It does seem, however, that we can look forward toward a more
substantive and more sophisticated theoretical computer science. In particular, one can
anticipate making a sharper distinction in the future between theoretical and
mathematical computer science, just as theoretical and mathematical physics are taken
as two distinct (though related) areas. There is also a temptation to say that the
importance of logic for theoretical computer science today is comparable to the
importance of classical analysis for physics up till the last few decades (when, e.g., group
theory became relevant too).

My interest in computer science has always been one-sided (as a logician and
philosopher) and for many years my principal preoccupation has not been with
computer science. Given this fact, my views are severely prejudiced and have serious

Introduction xiii

limitations. In particular, I am not able to place the essays of this volume judiciously
within the frame of the current state of computer science. I have no other alternative but
to survey the essays of the volume from my highly restricted perspective. The only
comfort is that, used with the proper reservation, a subjective account may be more
suggestive and provocative than a more balanced one. To render more complete a
statement of my perspectives I may mention that related considerations are included in
my three other books (as listed in the references): Survey [1962(59), chapters 1 to 10J,
MP [1974(72), chapters 9 and lOJ and Popular lectures [1981(78), chapers 3 and 6, as
well as the three appendices]. I shall often refer to relevant parts of these books.

In broad terms there are included in my work relevant to computer science the
following items: (1) reflections on the concepts of formalization and feasibility (in
particular, feasible computation); (2) the first extensive programming development of
idealized computers (including a proof of the theoretical dispensability of erasing); (3)
extensive work in automated theorem proving (ATP); (4) a systematic treatment of
sequential circuits (finite automata) revealing and leading to the study of an interesting
type of monadic second-order theory; (5) the introduction and use of' domino problems'
(or problems of colored tiles) which have since had applications in various directions not
only in logic proper but also in computational complexity. Later in this introduction I
shall try to give a more detailed summary of my work along these and other lines in
chronological order. Unfortunately I have not kept up with recent literature and cannot,
therefore, give anything like an adequate account of recent work related to my early
ideas.

I would like to use this opportunity to present some vague idea of mine regarding
the formidable NP problem. As is well known, Cook, in his 1971, first introduced a
representation of nondeterministic computation by a formula in the propositional
calculus and proposed the interesting question whether P (polynomial computation) is
equal to NP (nondeterministic polynomial computation). The title of the paper appears
to hark back to his early interest in ATP around 1965 at Harvard. As he stated in his oral
presentation, his clever representation was inspired by the representation of Turing
computation by the domino problems (and the AEA formulas): that is why there is a
reference to my 1963(62) in the bibliography of the published version. This is an
interesting example of arriving at a new discovery by combining two seemingly
unrelated directions, as can be seen from the exclusive emphasis on the more obvious
direction in Cook 1983, which contains an overview of the results not only on the NP
problem but also in the broader area of complexity theory. (By the way, Cook's survey
presents, in my opinion, a relatively mature area of theoretical computer science in such
a meticulous manner as to warrant the belief that computational complexity has become
an established discipline matrix.) There appears to be also a more direct connection
between complexity theory and the domino problems. For example, recently NP
completeness problems have been developed with bounded domino problems as the
starting point in Lewis-Papadimitriou 1981 (chapter 7.6), and domino problems are
said to be the best tool for studying computational complexity in Emde Boas 1983.

Most experts conjecture that P is not equal to NP. But there is really no persuasive

XIV Computation, Logic, Philosophy

argument to support this conjecture; we simply do not know enough to have a
reasonable conjecture one way or the other. As is well known, many famous problems
are NP complete so that each can be chosen according to one's preference to study the
open question. Here I shall state my vague ideas in the context of the' tautology problem'
but I believe that similar ideas apply to other problems (on graphs, on equations, integer
programming, etc.). The tautology problem asks whether there is a polynomial
algorithm to decide the satisfiability of a propositional formula (oor Boolean expression)
in conjunctive normal form (oor the validity of one in disjunctive normal form).

From 1973 to 1974 B. Dunham and I developed several fast partial decision
procedures for the tautology problem [reported in 1976(74) which is included in this
collection as chapter 12]. The hope was to develop a collection of such partial methods
which taken together will decide all tautologies in polynomial time. In order to arrive at a
solution of the tautology problem along such a direction, a clearer understanding of the
partial methods seems necessary. Otherwise even if we had in fact an adequate collection
of them, we would not be able to prove the adequacy. I have since that time come upon
an open-ended research project which appears to promise cumulative progress toward a
better understanding of the large central problem.

One idea is to try to determine more precisely the range of applicability of each
partial method. More generally, we look for a characterization of the indefinite subclass
of all propositional (oor Boolean) expressions which can be decided by one known
method or another in polynomial time. Progress toward such a characterization will help
us find counterexamples which fall outside of the subclass and suggest additional partial
methods that will also decide them quickly. In addition, there is room to use computers
to assist both in determining the characterization and in finding counterexamples. The
solution of the four color problem suggests the idea of looking for quickly decidable
categories of propositional expressions so that we can narrow down the range of
expressions not obtainable by combining such categories. The least that may be
attainable by such efforts is to separate out the harder to decide expressions and reduce
the original problem to a more limited one. The most that can be hoped is to arrive at a
good set of categories and prove by suitable reduction procedures that all propositional
expressions are quickly decidable; such a solution would parallel the success with the
four color problem (cf. an exposition in chapter 3.7 of my Popular lectures). An initial
task could be the attempt to characterize the ranges of the partial methods described in
1976(74) (i.e., chapter 12).

Even this initial task does not appear easy at all. But I do feel vaguely that the task
should be manageable and, if it is carried out in a moderately satisfactory manner, we
shall be in a better position to look for further advances. One attractive feature of the
project appears to be the promise of the likelihood of being able to make steady
piecemeal progress by means of cooperative efforts. At any rate, I do not presently see
where, if there is any, the insuperable obstacle along the envisaged path lies. I hope there
will be attempts to render these vague suggestions more definite and thereby transform
them into something more useful.

Let me now turn to a chronological summary of my diversified thoughts which may

Introduction xv
be relevant to computer science.

The evolution of the axiomatic method since Euclid's book on geometry eventually
led to an intuitive concept of formal proofs and formal systems which requires that the
proofs be mechanically checkable [see 1953(52)]. But the idea of formalization has a
number of dimensions; these are discussed in 1955(53) (included in this collection as
chapter 1). There are several essays which were written initially as topics in logic but are
apparently useful in computer science: these are 1952(50), 1962(53), chapter 15 of
Survey, 1961(61), and a part of 1974(71); they are included in this collection as chapter
14.

In 1953 I decided to look for some area of research which is more closely linked to
the practical than my preoccupation with pure mathematical logic and the philosophy of
knowledge. Theoretical issues centered around the emerging large computers appeared
to me to be a natural choice on account of their intimate relations to logic, as well as a
certain conceptual elegance that is often associated with any yet unexplored domain and
seemed particularly striking in this area. For the next few years this interest was
combined with a study of Wittgenstein's views on the philosophy of mathematics that,
according to my interpretation, has much to do with the activity of doing mathematics,
with special emphasis on 'surveyability,' 'perspicuity,' and feasibility (for proofs, which
include computations as a special case).

At this time I was struck by the difference between primitive and general recursive
functions. While the former are built up stage by stage, the latter are given all at once by
a general condition of existence. I tried to find ways of classifying general recursive (or
theoretically computable) functions which would give some sort of hierarchy according
to their computational complexity. The inconclusive result is (1953), being published
here for the first time as chapter 2. I understand that these considerations are relevant to
current computer science.

My next work is 1957(54) (see Survey, chapter 6) which gives an elegant
programming language for Turing machines and avoids the use of erasing. It was
presented to a meeting of the Association for Computing Machinery in June 1954. In it is
'proved that a theoretically simple basic machine can be imagined and specified such
that all partial recursive functions (and hence all solvable computation problems) can be
computed by it and that only four basic types of instruction are employed for the
programs: shift left one square, shift right one square, mark a blank space, conditional
transfer. In particular, erasing is dispensable, one symbol for marking is sufficient, and
one kind of transfer is enough.'

According to Minsky: 'The first formulation of Turing-machine theory in terms of
computer-like models appears in the paper of Wang [1957], which contains results that
would have been much more difficult to express in the older formalisms.' In addition, he
speaks of 'the remarkable fact, first shown by Wang [1957], that for any Turing
machine T there is an equvalent Turing machine TN that never changes a once-written
symbol!' (See Minsky 1967, p. 200 and p. 262). My programming formulation has been
extended by Shepherdson-Sturgis 1963 to give languages which are even closer to the
computer languages commonly in use. In addition, I have considered also universal

xvi Computation, Logic, Philosophy

Turing machines in relation to self-reproduction and growth in 1957(57) (see Survey,
chapter 7). A number of general observations are appended to 1957(54). For example,
'the question involved in the imitation of mind by machine or in the attempt to study the
philosophy of mind by comparing mind with machine are surely fascinating but quite

often we cannot even formulate the problems clearly, ... What has been discussed less
frequently is the possibility of using machines to aid theoretical mathematical research
on a large scale. One main contribution of mathematical logic is the setting up of a
standard of rigor which is, at least by intention, in mechanical terms The important
point [in the use of computers] is that we are trading qualitative difficulty for
quantitative complexity. On account of the great restriction on the mind's ability to
handle quantitative complexities, we find it more necessary to rely on insight, ingenuity
and vague intuition. Using machines, we find our ability in this respect increased
tremendously and it is but natural to expect that we can then go a longer way even with
less ingenuity.' (Survey, pp. 157-158).

On the relation between logic and computers (Survey, p. 154):
While mathematical logic had often been criticized for its uselessness, most

professional logicians do not seem to have been overwhelmed by the extensive
application oflogic to the construction and use of computing machines in recent years.
There is a strong feeling that the useful part of logic does not coincide or even overlap
with the interesting part; or even a suspicion that what is interesting in logic is not
useful, what is useful is not interesting. Yet it cannot be denied that there is a great deal
of similarity between the interests and activities of logicians on the one side and
designers and users of computers on the other. Both groups are interested in making
thoughts articulate, in formalization and mechanization of more or less vague ideas.
Certainly logicians are not more precise and accurate than the machine people who are
being punished for their errors more directly and more vividly. Just as logicians speak of
theorems and metatheorems, there are programs and metaprograms. Just as logicians
distinguish between using and mentioning a word, automatic coding must observe the
distinction between using an instruction and talking about it. Just as logicians contrast
primitive propositions with derived rules of inference, there is the distinction between
basic commands and subroutines. Shouldn't there be some deeper bond between logic
and the development of computers?'

In autumn 1954 I went to England and gave six lectures at Oxford in spring 1955
'on formalizing mathematical concepts.' At that time I had an opportunity to read parts
of Wittgenstein's manuscripts which were later published in 1956 as Remarks on the
foundations of mathematics. In autumn 1956 I gave a seminar on this book and
afterwards continued to reflect for several years on the notions of surveyability and
feasibility in relation to the mathematical activity. Around 1957 I discussed the paradox
of 'small' numbers: 1 is a small number, n + 1 is a small number if n is; therefore, by
induction, every number is small. An extended consideration of this paradox is given in
Dummett 1975(70) and a considerable amount of material has been published on this
paradox since the appearance of his paper.

In this connection it is appropriate to say a few words about the relation between

Introduction xvii

feasible computation and that in polynomial time. On account of the fundamental
character of polynomials and the many nice closure properties of polynomal time, it is
obviously of interest to investigate the realm of algorithms perfonnable in polynomial
time. At the same time, it is obviously false to dientify feasibility with executability in
polynomial time. Indeed, we have here a special case of the paradox of small numbers:
linear time (i.e., polynomial of degree 1) is feasible, and degree n + 1 is feasible if degree
n is; therefore, by induction, any polynomial time is feasible. Put in this way, it appears
clear that something is amiss in regarding polynomial time of high degrees as feasible.
For example, a polynomial algorithm for linear programming has been given in
Khachian 1979, but it is not accepted as generally feasible or indeed considered more
efficient (for the majority of interesting cases) than alternative methods which do not
always have polynomial bounds. (By the way, the relation between linear programming
and the NP-complete problem of integer programming is instructive; I do not know
whether, for other NP-complete problems, such as the tautology problem, the
analogously related problems might not be of intrinsic or instrumental interest.) These
observations also point to the elusive character of the notion of feasible (or 'small')
computations.

A more accessible line of approach may be the consideration of feasibility, not in an
absolute sense, but relative to given computer models and current states of technology.
In this way one might look for a 'theory of relativity' for the concept of feasible
computation. Indeed, by intention, feasibility is a relative concept. It is relative to the
existing computer models of the day, in terms of cost, speed, size, reliability and
structure (such as the intricacy of parallel computation, and the tolerance of local
errors). Moreover, the feasibility of a given computational problem also depends on its
importance, and consequently, also the ability of the people engaged in tackling it.
Hence, the theoretical enterprise of elucidating the concept of feasibility en joys an
exceptional intimacy with practice; more than other theoretical pursuits, it directly faces
the formidable task of unifying theory and practice. It is, therefore, not surprising that
the development of a satisfactory theory of feasibility calls for a novel combination of
experiences and abilities.

Related to the broader issue of feasibility are my paper 1961(60) (included in this
collection as chapter 3) and the observation on 'anthropomorphism' (or 'strict finitism'
which, however, appears to imply a less appropriate idea) in my 1958 (57). Since this
latter paper is not included in this collection and since the material appears to be of
current relevance, I should like to reproduce the section on anthropomorphism (or
anthropologism?) here (from Survey, pp. 39-41).

'In mathematics, we constantly use the word "can" to refer to theoretical
possibilities. If we are concerned with mathematics as a human activity, practical
possibilities become more interesting. In his 1935, Bernays suggests studying such a use
of "can" but says explicitly that he is not recommending that we do arithmetic with a
restriction to "feasible" ("effectable") processes (pp. 61---62). Bernays mentions the
fact that we pass without hesitation from k and j to ki although nobody 'has given or can
give the decimal expansion of, say, 67 to the power of 251729• Yet intuitionists (and

xviii Computation, Logic, Philosophy

finitists, for that matter) do not question the meaningfulness and truth of the assertion
that such an expansion exists. One may ask whether we have in this case truly intuitive
evidence. "Isn't it rather the general method of analogy that is applied here, consisting
in the extension to inaccessible numbers the relations which can be verified concretely

for the accessible numbers? Indeed, the reason for applying this analogy is all the more
strong since there is no precise limit between the numbers which are accessible and the
ones which are not. One could introduce the notion of 'feasible' processes and restrict
implicitly the range of significance of recursive definitions to feasible operations. To
avoid contradictions, it would only be necessary to abstain from applying the law of
excluded middle to the notion 'feasible'." In his Remarks on the foundations of
mathematics (1956), Wittgenstein makes many cryptic observations (e.g., lines 23-25,
p. 65; lines 16-22, p. 84; lines 5--9, p. 156) which become understandable if we keep in
mind his preoccupation with the conception of mathematics as feasible activity.

'It is on this basis that we can distinguish a finitist proof from one which can
actually be carried out and be kept in mind (what Wittgenstein calls "surveyable" or
"perspicuous"). For example, from this point of view, a definition, even an explicit one,
is not a "mere" abbreviation as it enables us to see a new aspect, to see an old expression
as something different, and to grasp as a matter of fact a wider range of expressions. The
"reduction" of numerical arithmetic to the predicate logic with identity or that of the
decimal notation to the stroke notation entails, from this point of view, a great loss which
consists in a considerable decrease of the range of numbers which we can actually
handle.

'Mathematical induction codifies the analogy between accessible and inaccessible
numbers. While the justification of the principle lies beyond what is concretely
presentable, we are able, once we accept it, to bring a great deal of new things into the
range of the surveyable. While we cannot survey the corresponding stroke numeral of
every decimal numeral, we convince ourselves by induction that there exists a unique
decimal or stroke notation for each positive integer. So also we get an indirect survey of
all possible proofs of a system by an inductive consistency proof.

'As an actual calculating machine can only handle a restricted amount of data, we
have to twist and tum the notations and techniques in order to increase the range of
manageable calculations. If one views foundational studies as primarily concerned with
the determination of the range of mathematics which we actually can do, then
mathematical logic as is practised today could play at most a minor role and its
dominance would be giving us a wrong impression of the problems of foundations. For
example, if we had only the stroke notation, we could not manipulate with numbers
much larger than 10, the decimal notation extends the range, and exponentiation
extends it further still; in the use of calculating machines, what notation we use to
represent numbers is an important problem. New definitions and new theorems interest
the working mathematicians even though mathematical logic may claim that they were
implicitly contained in the logical system to begin with. Anthropologism draws our
attention to this distinction which is neglected by mathematical logic.

'From this approach, besides number, set, proof, notation also becomes officially

Introduction XIX

an object of study. To describe a system, we have to include not only the basic rules but
also the definitions and proofs since how much we can actually do with the system
depends a great deal on what definitions and proofs are at our disposal. So also a
proposition receives its meaning from a proof or a refutation of it because only
afterwards can we place it at the right place in our understanding. Every proof changes
our actual concept somewhat and may be said to give us a new concept. Or again, if we
reflect on the human elements involved, it is doubtful that a contradiction can lead to a
bridge collapsing.

'The comparison with machines must not give us a wrong impression. People
actually engaged in the use and construction of calculating machines find the current
automata studies not quite what they want, and there is demand to study, e.g., what the
length of a calculation is, or how to develop something about machine operations that is
similar to information theory in paying attention to quantitative details. However, these
problems, or even the problems about an actual machine whose internal structures and
tendency to make mistakes are not clear to us, are different from those for
anthropologism. To deal with such machines, one might think of the application of
statistics in gas dynamics, and, like von Neumann, talk about "probabilistic logics," but
we would still get something similar to mathematical logic in so far as they all deal with
something like the truth functions and their distributions. Anthropologism looks for a
logic not of the static but of the developing, the becoming. Thus, since it is far beyond
our present knowledge and understanding to treat fruitfully man as a machine,
anthropologism suggests a behaviouristic or phenomenological, rather than a
physiological, treatment of mathematical thinking. This seems to suggest a vague area of
research quite different from mathematical logic, although there is no justification in
believing that the different lines of research cannot enjoy coexistence.

'The intuitionistic logic might turn out to be applicable to anthropologism. But if
one wishes to hold consistently to the position of anthropologism, he cannot accept the
usual formulation of the intuitionistic calculus which allows for arbitrarily long
formulae and arbitrarily long proofs.' [This completes the quotation on
'anthropologism. 'J

In the summer of 1956, I worked with A. W. Burks on the 'logic of automata' and
wrote a long paper with him. The most interesting proof in the original paper turned out
to contain a serious mistake. As a result, we had to revise it hastily, and the result was
1957(56) (included in Survey as chapter 9). Section 1 of the paper gives the following
summary (Survey, p. 175):

'We are concerned in this paper with the use of logical systems and techniques in
the analysis of the structure and behavior of automata.

'In Section 2 we discuss automata in general. A new kind of automaton is
introduced, the growing automaton, of which Turing machines and self-duplicating
automata are special cases. Thereafter we limit the discussion to fixed, deterministic
automata and define their basic features. We give methods of analyzing these automata
in terms of their states. Four kinds of state tables -- complete tables, admissibility
trees, characterizing tables, and output tables -- are used for this purpose. These

xx Computation, Logic, Philosophy

methods provide a decision procedure for determining whether or not two automaton
junctions behave in the same way. Finally, a class of well-formed automaton nets is
defined, and it is shown how to pass from nets to state tables and vice versa. A coded
normal form for nets is given.

'In Section 3 we show how the information contained in the state tables can be
expressed in matrix form. The (i, j) element of a transition matrix gives those inputs
which cause state Si to produce state Sf Various theorems are proved about these
matrices and a corresponding normal form (the decoded normal form or matrix form)
for nets is introduced.

'In Section 4 we first show how to decompose a net into one or more subnets which
contain cycles but which are not themselves interconnected cyclically. We then discuss
the relation of cycles in nets to the use of truth functions and quantifiers for describing
nets. We conclude by relating nerve nets to other automaton nets.'

It was in connection with these considerations that I got interested in adding the
time element to the familiar representation of computer circuits by Boolean
expressions. It seemed to me that an elegant extension of Boolean algebra can be made to
take care of what is known as the 'delay' element in computer technology. It was at the
beginning of 1959 that I decided to settle down and work out such an extension; the
result was 1959(59) (included in Survey as chapter 10). While the formulation is
intimately connected with the practical engineering task of circuit synthesis, it also
suggests a monadic second order theory with a successor function which is of interest in
logic. Indeed, the further developments of theories of this general type in, e.g., Buchi
1960 and Rabin 1969 all appear to be natural extensions of the problems on 'sequential
Boolean equations.'

The content and motivation of the paper are briefly (Survey, pp. 269-270):
'There is an intrinsic ambiguity in the standard problems of analysis (given circuit,

find formula) and synthesis (given formula, find circuit), because both the circuit and
the formula (i.e., the condition to be satisfied) are to be specified in suitable symbolisms
but there are no universally accepted symbolisms for these purposes. This is especially
true of the initial languages expressing the conditions to be synthesised. Of course, the
richer the language, the easier it is to express an intuitive requirement, but at the same
time, the harder it is to obtain a systematic procedure for dealing with all conditions
expressed in the language. A good starting language would seem to be that of sequential
Boolean equations obtained by adding to the ordinary Boolean operations a sequential
operator to take care of the time element.

'We shall study in this paper the general problem of solving such equations to get
explicit representations of outputs as functions, or rather functionals, of time and the
input functions. It turns out that in general such equations can have three different
types of solution: deterministic ones, (effective) predictive ones, and noneffective ones.
The first two types are effective and can be realized by circuits in one way or another.
Algorithms for deciding solvability and exhibiting the solutions will be given for the
different senses of solution. The last two types of solution do not seem to have been
much studied in the literature.

Introduction XXI

'We extend ordinary Boolean algebra by introducing a distinction between input
variables and output variables, and adding a time operator d so that intuitively, e.g., x
means Xi and dx means xi + l • More exactly, each equation is obtained by joining two
terms with the equal sign =, and a term is either a constant 1 (on, true) or 0 (off, false),
or an input variable i, j, etc., or an output variable x, y, etc., or obtained from given
terms A, B by the Boolean operators', ., +, or by the time operator d, e.g., A', A.B, or
AB, A+B, dA etc.'

Only in the summer of 1958 and 1959 did I actually work directly with computers:
writing programs to prove theorems in first order logic. The results have been published
in 1960(58) and 1960(59). From autumn 1959 on my attention shifted to more
theoretical considerations. For the next decade I continued to think about and be invited
to lecture on questions related to ATP (automated theorem proving). A review of my
thoughts in this area is given in my 1984(82). which is included in this collection as
chapter 5. I would like to add only a few supplements to that review.

In 1960(58) it is observed that the development of computers coincidentally
vindicates an ideal of formal logic (Survey, pp. 257-258):

'The suspiciously aggressive term "mechanical mathematics" is not unattractive to
a mathematical logician. It is a common complaint among mathematicians that
logicians, when engaged in formalization, are largely concerned with pointless
hairsplitting. It is sufficient to know that proofs can be formalized. Why should one take
all the trouble to make exact how such formalizations are to be done, or even to carry out
actual formalizations? Logicians are often hard put to it to give a very convincing
justification of their occupation and preoccupation. One lame excuse which can be
offered is that they are of such a temperament as to wish to tabulate all scores of all base
ball players just to have a complete record in the archives. The machines, however, seem
to supply, more or less after the event, one good reason for formalization. While many
mathematicians have never learned the predicate calculus, it seems hardly possible for
the machine to do much mathematics without first dealing with the underlying logic in
some explicit manner. While the human being gets bored and confused with too much
rigour and rigidity, the machine requires entirely explicit instructions.

'It seems as though that logicians had worked with the fiction of man as a persistent
and unimaginative beast who can only follow rules blindly, and then the fiction found its
incarnation in the machine. Hence, the striving for inhuman exactness is not pointless,
senseless, but gets direction and justification.'

A summary of 1960(58) is the following (Survey, pp. 226-227):
'The writer wrote three programs last summer (1958) on an IBM 704. The first

program provides a proof-decision procedure for the propositional calculus which
prints out a proof or a disproof according as the given proposition is a theorem or not. It
was found that the whole list of theorems (over 200) of the first five chapters of Principia
Mathematica were proved within about 37 minutes, and 12/13 of the time is used for
read-in and print-out, so that the actual proving time for over 200 theorems was less
than 3 minutes.

'The second program instructs the machine to form itself propositions of the

xxii Computation, Logic, Philosophy

propositional calculus from basic symbols and select nontrivial theorems. The speed
was such that about 14,000 propositions were formed and tested in 1 hour, storing on
tape about 1000 theorems. The result was disappointing in so far as too few theorems
were excluded as being trivial, because the principles of triviality actually included in

the program were too crude.
'The third program was meant as part of a larger program for the whole predicate

calculus with equality which the writer was unable to complete last summer due to lack
of time. The predicate calculus with equality takes up the next 5 chapters of Principia
Mathematica with a total of over 150 theorems. The third program as it stands can find
and print out proofs for about 85% of these theorems in about an hour. The writer
believes that slight modifications in the program will enable the machine to prove all
these theorems within 80 minutes or so. The full program as envisaged will be needed
only when we come to propositions of the predicate calculus which are much harder to
prove or disprove than those in this part of Principia Mathematica. '

The other papers related to ATP are included in this collection as part two
(chapters 5 to 9). Chatper 8 contains examples of rather simple and detailed
mathematical arguments which may serve as useful examples for experimenting with
ATP; in this regard several other papers in the list of reference are similar, viz., 1964a,
1966, 1966a, and 1966b. A helpful survey of ATP from 1958 to 1983 is the collection of
papers Automated theorem proving: after 25 years, edited by W. W. Bledsoe and D. W.
Loveland and published in 1984 as volume 29 of the AMS series on 'contemporary
mathematics.' The paper by Chou, Shang-ching in this volume and a new paper by W u
himself (1. sys. sci. & math. sci., vol. 4, no. 3, 1984, pp. 207-235) are helpful
expositions ofWu, Wen-tsiin's algorithm for ATP in geometry. (By the way, a point of
conceptual interest is the status of the axioms of order in elementary geometry. As is well
known, the axioms of order were implicitly assumed in Euclid's Elements. It was only in
the 19th century that M. Pasch and others succeeded in uncovering this group of
axioms. Rather surprisingly, the restriction ofWu's algorithm is to consequences of all
except this group of axioms of elementary geometry. At the same time, ingenious
applications of the algorithm appear to bypass the axioms of order in many cases. This
phenomenon suggests the possibility of recovering, even from a mechanical procedure,
some of our intuitive power to make leaps, as revealed by the fact that the human mind
generally arrives at correct proofs even when making unconscious appeals to the axioms
of order.)

Chapter 9, a reprint of 1961 (60)a, is transitional in that it represents the shift of my
attention from ATP to the more theoretical decision problem of first order logic. Several
remarks on this paper are in order. This is the paper in which I introduced for the first
time the class of problems of dominoes (or colored tiles) in connection with the search
for a decision procedure for the AEA class of the formulas of first order logic. At the
time (spring 1960) I expected the class to be decidable and conjectured, contrary to its
resolution later, that the unrestricted domino problem is decidable. That was probably
also the reason why I did not include my seminal proof of the result that the origin
constrained domino problem is unsolvable. Only a year later did I put it forth as the

Introduction XXlll

technical report 1961(60)b. This report is here included as an appendix to chapter 9,
with which it belongs. Another point about this chapter is the brief observations on the
inclusion of equality in 2.5. Like all others in the field, I believed at the time that the
EA2E case, as Godel first asserted in 1933, remains decidable by easy extension when
equality is included. It has recently been proved by W. Goldfarb (Bulletin AMS, vol.
10, 1984, pp. 113-116) that this (Godel) case with equality is unsolvable and a
reduction class.

·1 have briefly mentioned above the relations of the domino problems to the theory
of computational complexity. In Popular lectures, I have tried to give a very incomplete
list of the extensive literature on the domino problems and their unexpected
applications (pp. 110-112). I shall not repeat the list here; nor can I make it more
complete. Instead, I shall only mention its central place in the reduction problem (of
first order logic). In autumn 1961, the AEA case was shown to be a reduction class by
way of the domino problems and the proof was published in 1962(61). This result and
further extensions were given a more leisurely exposition in 1963(62), which is included
in this collection as chapter 11. Given the surprising fact that the seemingly very simple
AEA case is a reduction class, all reduction classes in the prefix form (a natural principle
of classification) follow as immediate corollaries. Indeed, the only other interesting
prefix reduction classes are Suranyi's AAAE case and the Godel case with equality. The
former class can directly be seen to include the class of AEA formulas. The same is true
of the latter class, once an axiom of infinity expressible by a formula in the class is
available; indeed, it was Goldfarb's construction of such an axiom of infinity which had
been the missing link for many years.

Of the remainder of this collection, I have already briefly commented on chapters
12 and 14. Chapter 13 is an incomplete paper based on casual discussions with D. A.
Martin in 1977. It is included here as an example of problems which arise naturally in
everyday life. The chapters 10, 15, and 16 are relatively nontechnical expositions which
should be as easy to read as the initial four chapters on broad issues.

In the last two paragraphs of chapter 4 (originally written in 1966), I suggested as an
alternative to the familiar idea of trying to obtain a grand system that yields all proofs,
the idea of studying, for each interesting proof, all the systems in which it can be carried
out. In particular, I said: 'Our intuition of the real numbers is not captured in any of the
particular formal systems. A closer approximation could be obtained if we look instead
for the class of formal proofs (and therewith the underlying formal systems) which all
can represent a given intuitive proof. In this way, each intuitive proof would correspond
to a class of formal proofs, and we can classify intuitive theorems according to the classes
of formal systems in which they can be represented naturally.' I am under the
impression that in the last decade or more a good deal of interesting work has been done
which may be seen as in agreement with my loose suggestion.

With regard to the colored tiles (or dominoes), the combinatorial aspect has been
carefully and extensively considered in a recent book: Branko Grunbaum and G. C.
Shephard, Tilings and Patterns, 1987, W. H. Freeman and Company. In particular, the
questions of aperiodic solutions and of the relations to other tiling ideas are discussed in

xxiv Computation, Logic, Philosophy

chapter 11, entitled 'Wang tiles' (pp. 583--608). From their discussions, it appears that
the several fruitful ideas for tilings are intimately connected. In this regard it is of
interest to note that within this family of apparently 'pure' conceptions, what is called
the 'Penrose tiling' has found applications in physics (see, lor instance, the report by
David R. Nelson on 'quasicrystals,' Scientific American, vol. 255, no. 2, August
1986, pp. 42-51).

References

P. Bernays

1935. Sur Ie platonisme, L'enseignement math., vol. 34, pp. 52--69.

R. Biichi

1960. Weak second order theories and finite automata, ZMLGM, vol. 6, pp. 66---72.

S. A. Cook

1971. The complexity of theorem proving procedures, Proc. 3rd A CM Symp. on Theory of

Computing, pp. 151-158.

1983. An overview of computational complel!.ity, Communications ACM, vol. 26, pp. 401--408.

M. Dummett

1975(70). Wang's paradox, Synthese, vol. 30, pp. 301-324.

P. v. Emde Boas

1983. Dominoes are forever, First GTI workshop, Paderborn, pp. 75--95.

D. Harel

1983. Recurring dominDes: making the highly undecidable highly understandable, Proc. In/. Conf.

Fund. Compo Theory, Burgholm, Sweden.

L. G. Khachian

1979. Soviet math. doklady, vol. 20, pp. 191-194. (For an exposition, see C. H. Papadimitriou and K.

Steiglitz, Combinatorial optimization, 1982.)

H. Lewis and C. H. Papadimitriou

1981. Elements of the theory of computation.

M. Minsky

1967. Computation: finite and infinite.

J. v. Neumann

1952. Probabilistic logics (reprinted in his collected papers).

Introduction xxv
M. O. Rabin

1969. Decidability of second order theories and automata on infinite tree, Transactions AMS, vol. 141,

pp.I-35.

J. C. Shepherdson and H. E. Sturgis

1963. Computability of recursive functions, Journal ACM, vol. 10, pp. 217-255.

Hao Wang

1952(50), Logic of many-sorted theories, JSL (i.e., Journal of symbolic logic), vol. 17, pp. 105-116.

1953(52). Quelque notions d'axiomatique, Revue philosophique de Louvain, vol. 51, pp. 409-;-443.

English version entitled 'The axiomatic method' is included in Survey [1962(59)]

as chapter 1.

1955(53). On formalization, Mind, vol. 64, pp. 226---238. Reprinted in Contemporary readings in

logical theory, edited by I. Copi and J. Gould, 1967, pp. 29-39; also included as the opening

essay in their Contemporary philosophical logic, 1978, pp. 2-13.

(1953). The concept of computability. This essay was first written in 1953. It was then revised in 1954; but

it has not been published before.

1962(53). Ackermann's consistency proof. These notes were written in 1953 and first published in Survey

(pp. 362-375).

1955(54). On denumerable bases of formal systems. Invited hour lecture at the International Congress of

Mathematicians, Amsterdam, 1954; published in Mathematical interpretation of formal

systems, pp. 57-84.

1957(54). A variant to Turing's theory of computing machines, Journal A CM (i.e., of the Association for

Computing Machinery), vol. 4, pp. 63-92. The paper was presented to the meeting of ACM

in June, 1954.

1962(55). Partial systems of number theory. This material was written in 1955 and published for the

first time in 1962(59), pp. 376---382.

1974(55). On formalizing mathematical concepts. Six essays delivered as the second series of John Locke

Lectures at the University of Oxford in spring 1955; parts were published in revised form in

1974(72), chapters 1 and 2.

(1956). Elementary philosophy of mathematics. An uncompleted typescript of 450 pages written during

1955-56; only some fragments have been published.

1957(56). (With A. W. Burks). The logic of automata, JACM, vol. 4, pp. 193-218 and pp. 279-297.

Reprinted in Survey as chapter 8.

1957(57). Universal Turing machines: an exercise III coding, ZMLGM (i.e., Zeitshrift fur

M athematische

Logik und Grundlagen der Mathematik), vol. 3, pp. 69-80. Reprinted III Survey as

chapter 7.

1958(57) Eighty years of foundational studies, Dialectica, vol. 12, pp. 466-497. Reprinted in Survey as

chapter 2.

1960(58). Toward mechanical mathematics, IBM journal of research and development, vol. 4,

pp. 2-22. Reprinted in Survey as chapter 9: also reprinted in The modelling of mind, edited

by K. Sayre and F. Crosson, 1963; Russian translation in Problems of cybernetics.

XXVI Computation, Logic, Philosophy

1959(59). Circuit synthesis by solving sequential Boolean equations, ZMLGM, vol. 5, pp. 216-239.

Reprinted in Survey as chapter 10.

1962(59). A survey of mathematical logic (Survey), Science Press, 1962,652 pp. + x; also distributed by

North-Holland Publishing Company, 1963. Reprinted by Chelsea, New York, 1970 under

the title Logic, computers and sets. The manuscript was completed and submitted in

June 1959 (at Oxford).

1960(59). Proving theorems by pattern recognition, I, Communications ACM, vol. 3, pp. 220-234.

Invited lecture at the ACM meeting in May 1960.

1961(60). Process and existence in mathematics, Essays on the foundations of mathematics. pp.

328-351. This was read to the Philosophical Club of Harvard University in spring 1960; a

Russian translation carne out in 1965.

1961(60)a. Proving theorems by pattern recognition, II, Bell system technical journal, vol. 40, pp.

1-41.

1961(60)b. An unsolvable problem on dominoes, The Computation Lahoratory, Harvard University,

Report BL-30, I, July 1961, 5 pp.

1975(60). Notes on a class of tiling prohlems, Fundamcnta mathematicae. vol. 82, pp. 295-305.

1961(61). The calculus of partial predicates and its extension to set theory, I, Z1VILGM, vol. 7, pp.

283--288. It was read Lo the Logic Society in England in spring 1961; the second part

(extension to set theory) has not been written.

1963(61). Mechanical mathematics and inferential analysis, Computer programmingandformal systems,

edited by P. Braffort and H. Hirschherg, pp. 1-20. This is a revised version of an invited

lecture at a seminar, spring 1961, sponsored by IBM in Holland.

1962(61). (With A. S. Kahr and E. F. Moore). Entscheidungsproblem reduced to the AEA case,

Proceedings of the National Academy of Science, U.S.A., vol. 68, pp. 528-532.

1963(62). Dominoes and the AEA case of the decision prohlem, lVIathematicaltheory of automata, pp.

23--55. Invited lecture given April 1962 in New York.

1963(62)a. The mechanization of mathematical arguments, Experimental arithmetic, high speed

computing and mathematics, Pl'. 31-40. This was an invited lecture at a meeting of

the American Mathematical Society in 1962.

1963. Tag systems and lag systems, Mathematische Annalen (1\1A), vol. 152, pp. 6S-74. This was

included in Popular lectures [1981(78)J as appendix C5.

1963a. (With 1\1. O. Rabin). Words in the history of a Turing machine with a fixed input, Journal A CM,

vol. 10, pp. 526-527.

1964(63). Remarks on machines, sets and the decision problem, Formal systems and recursirefunctions,

pp. 304-320. An invited lecture given at Oxford, England in summer 1963.

1964. Critique of logic for the computer sciences, Communications A C.M. vol. 7, p. 218.

1964a. (with W. V. Quine). On ordinals, Bulletin of American Mathematical Society, vol. 70, pp.

297-298.

1965(64). Formalization and automated theorem proving, Proceedings of the IF!P Congress 65, pp.

51-58. This was an invited lecture to the Congress; Russian translation, Problems of

cybernetics, vol. 7 (1970), pp. 180-193.

1965. Logic and computers, American mathematical monthly, vol. 72, pp. 135-140.

1965a. Games, logic and computers, Scientific American, vol. 213, no. 5 (Nowmher), pp. 98--106.

Introduction xxvii
There is a Swedish translation in Modern Datateknik.

1965b. Note on rules of inference, ZMLGM, vol. 11, pp. 193-196.

1966. (With S. A. Cook). Characterizations of ordinal numbers in set theory, MA, vol. 164, pp. 1-25.

1966a. (With K. R. Brown). Finite set theory, number theory and axioms oflimitation, ibid., pp. 26---29.

1966b. (With K. R. Brown). Short definitions of ordinals, JSL, vol. 31, pp. 409-414.

1971(66). Logic, computation and philosophy, L'dge de la science, vol. 3, pp. 101-115.

1967(66). On axioms of conditional set existence, ZMLGM, vol. 13, pp. 183-188.

1967(66)a. Natural hulls and set existence, ibid., pp. 175-182.

1967(66)b. A theorem on definitions of the Zermelo-Neumann ordinals, ibid., pp. 241-250.

1970(67). Remarks on mathematics and computers, Theoretical approaches to nonnumerical problem

solving, pp. 152-160. An invited lecture given at Cleveland, Ohio in 1967.

1970(68). A survey of Skolem's work in logic, Selected logical works of Th. Skolem, pp. 17-.52.

1970(68)a. On the long-range prospects of automated theorem-proving, Symposium on automatic

demonstration, pp. 101-111. Invited lecture given at Versailles, France in December 1968.

1974(71). Metalogic, Encyclopaedia Britannica, vol. 11, pp. 1078-1086. All except the part on model

theory is reprinted in 1974(72) as chapter 5.

1974(72). From mathematics to philosophy, Routledge and Kegan Paul, 413 pp. + XIV. Italian

translation Dalla mathematica alia filosofia, Boringhieri, 1984, by Alberto Giacomelli.

1976(73). (With B. Dunham). A recipe for Chinese typewriters, IBM report RC4521, September 5,1973.

Chinese translation appeared in Dousou bimonthly, no. 14, March 1976, pp. 56---62.

1976(74). (With B. Dunham). Toward feasible solutions of the tautology problem, Annals of

mathematical logic, vol. 10, PI'. 117-154. (Originally issued as IBM report RC4924

on July 9, 1974).

(1977). (With D. A. Martin). Ranked matching and hospital interns. Some of the results are mentioned in

1981(78) under chapter 3.6.

1981(78). Popular lectures on mathematical logic, Science Pre;;;; and van Nostrand Reinhold. 273 pp. +
x. Chinese translation appeared about the same time, Science Press, 257 pp. + vii.

1979. On information processing of the Chinese language (in Chinese), The state of the art report of

computer technology, no. 98 (June 1979), pp. 1--4.

1981(80). Specker's mathematical work from 1949 to 1979, L'enseignement mathematique, vol. 27, pp.

85--98.

1984(82) Computer theorem proving and artificial intelligence, Automated theorem proving: after 25

years, PI'. 47-70. Lecture to accept the first Mile;;tone Prize in automated theorem proving,

awarded January 1983 at the annual meeting of the American Mathematical Society.

1984(83). The formal and the intuitive in the biological sciences, Pf'T.'pectives in biology and medicine,

vol. 27, PI'. 525-542. Opening lecture at the Ninth International Congress of Thrombosis and

Haemoslasis, Sweden, on July 3, 1983.

PART ONE

BROAD ISSUES

1. ON FORMALIZATION *

1.1 Systematization

THE most striking results of formalization occur in logic and mathematics.
Here formalization provides at least one kind of systematization. We are led to

believe that there is a fairly simple axiom system from which it is possible to derive
almost all mathematical theorems and truths mechanically. This is at present merely a
theoretical possibility, for no serious attempts seem to have been made to prove, for
instance, all the theorems of an elementary textbook of calculus. Nevertheless, we seem
to get a feeling of grandeur from the realization that a simple axiom system which we can
quite easily memorize by heart embodies, in a sense, practically all the mathematical
truths. It is not very hard to get to know the axiom system so well that people would say
you understood the system. Unfortunately just to be able thus to ul1derstand the system
neither gives you very deep insight into the nature of mathematics nor makes you a very
good mathematician.

To say that physics uses the experimental method is not to say much about physics.
To say that all theorems of mathematics can be proved from certain axioms by chains of
syllogism (or modus ponens) is to say just as little about mathematics. Merely knowing
the experimental method is not knowing the whole of physics; merely knowing an axiom
system adequate for developing mathematics is not knowing the whole of mathematics.

There is another kind of systematization which is less superficial than learning the
axiom system. It is an intuitive grasp of the whole field, a vivid picture of the whole
structure in your mind such as a good chess player would have of the game of chess. This
second kind of systematization is something that formalization (or at least formalization
alone) would not provide us.

If we had never used logistic systems at all, the many interesting results about
logistic systems (such as those of Skolem, Herbrand, and Godel) would, of course, never
have been expressed in the specific form in which they are now being expressed. But it is
not certain that essentially the same results might not have been attained, though in
other contexts and as the results about other things. Nevertheless, axiomatics or the
axiomatic method has a strong appeal in that here we seem to be able to prove sweeping
conclusions about whole fields. For many of us a significant theorem about a whole field
appears more important than particular theorems in the field. In generating systems,
formalization serves the function of enabling us to talk precisely about whole fields of
learning.

* First published in Mind, vol. 64, pp 226-238. 0 Oxford Press, 1955, Reproduced by permis
sion.

3

4 Computation, Logic, Philosophy

1.2 Connnunication

It is hard to say whether in general formalization renders a theory or a proof easier
to understand.

Consider, for example, an oral sketch of a newly discovered proof, an abstract
designed to communicate just the basic idea of the proof, an article presenting the proof
to people working on related problems, a textbook formulation of the same, and a
presentation of it after the manner of Principia Mathematica. The proof gets more and
more thoroughly formalized as we go from an earlier version to a later. It is, however,
questionable whether in general a more completely formalized version is clearer or
serves better as a means of communication. Each step of it should be easier to follow
since it involves no jumps. But even this is not certain, for there are many jumps which
we are so used to making that we find it more natural to make the jumps than not to. Or
alternatively, we may say that the step actually does not involve jumps and that our
formal proof suggests that it does only because our formal system is defective as a map of
our intuitive logic.

Who finds which proof easier to follow or who understands which proof in a shorter
while depends pretty much on what background the man happens to have. In general,
the better acquainted one is with the problem, the easier he finds the use of a more
sketchy proof. But there is also a certain limit beyond which even the expert in the
matter can no longer supply for himself the missing details. Moreover, there is always
the possibility that the presentation would be much shorter if it were not so short. It
seems safe, however, to say that a more thoroughly formalized proof is generally longer,
provided that we do not appeal to abbreviations in its presentation and the less
formalized version does not waste words.

We are all familiar with requests to explain a physical theory ·without using
mathematics, to convey the basic idea of a proof without using symbols. Therefore, it
would seem that in general the plain words or the less technical language provide a more
efficient means of communication. Actually, however, we can easily think of examples
which would indicate that this is not quite true.

To put thoughts on physics into mathematical symbols is one way of formalization.
Through accumulation and tradition this way of formalization has also become a
powerful way of communication: for those who understand the language, a short
formula may express more precisely thought which could only be explained by many
pages of ordinary words, and much less satisfactorily. Sometimes it becomes practically
impossible to avoid the mathematical language in communicating with others. An
elderly English political figure complains that none of the many eminent physicists with
whom he has corresponded is courageous enough to pass any definite judgment on his
proposed new theory of ether. Then he stresses the similarity between his theory and the
concluding paragraph of a recent article by Dirac, and proceeds to discard as non
essential the accompanying mathematical passages in Dirac's article. It may be
presumed that if he had also included comparable non--essential mathematical passages
in his theory, he would have received more definite responses.

On Formalization 5

1.3 Clarity and consolidation

Does formalization help us to analyse and clarify concepts?
Often in formalizing ordinary concepts, we appear to have platitudes restated in

pedantic obscurity; for instance, the mathematical definition of the continuity of a curve
or the technical definition of the notion of effective computability. Moreover, the exact
formalizations almost always distort our ordinary language at one place or another. For
example, it has been pointed out that Russell's theory of descriptions does not apply to
sentences such as "the whale is a mammal", and that sometimes in ordinary use the
sentence "the king of France is bald" is neither taken as true nor taken as false.

In scientific investigations, we often recognize the advantage and even necessity of
paying the price of considerable deviation from ordinary use of words in order to reach
fairly precise terminology and notation. But, in what sense is, for instance, the technical
notion of effective computability clearer than the corresponding common sense
concept? Ordinarily, we would tend to say that the technical notion is less clear because
it is more difficult to learn and a concept is clearer if and only if it is easier. We might
speak of different kinds of clarity just as Mill speaks of different kinds of pleasure. Then
we can also speak of a principle of preference: Only those who have experienced the
feeling of clarity both of the ordinary notion and of the technical one are qualified to
judge which is really clearer. And then, we hope, they will find the formalized notion
clearer.

Perhaps we should also say that which definition of a term is clearer depends partly
on the purposes we want the term to serve, and partly on our familiarity with the notions
involved in each definition. The main advantage of the more articulate definition of a
notion is, presumably, that it is sharper: for example, there are many cases where we can
give a definite answer to the question whether certain given functions are effectively
computable, only after we have made use of the technical notion of computability.

There are many cases where we could neither ask a univocal question nor obtain a
univocal answer until we possessed the formalized notion. For example, we needed an
exact definition of continuous curves before we could ask and answer the question
whether there are space~filling continuous curves. And it was necessary first to formalize
the notions of completeness and decidability before a negative answer could be given to
the question whether number theory is complete or decidable.

Significant formalization of a concept involves analysis of the concept, not so much
in the sense of analysis when we say that being a bachelor entails being unmarried, but
more in the sense that an analysis of the problem of squaring the circle is provided by the
proof of its unsolvability. When formalization is performed at such a level, it does serve
to clarify and explicate concepts.

Another function of formalization is the clarification and consolidation of
arguments or proofs. Sometimes we are not quite sure whether we have understood a
certain given proof, sometimes we understand a proof once but fail to understand it
again when reading it a few days later. Then there often comes the desire to work over
the proof thoroughly, to make explicit all the implicit steps involved, and to write down

6 Computation, . Logic, Philosophy

the expanded result once and for all. With some people this desire to formalize and
expand proofs may become a habit and a handicap to studying certain branches of
mathematics. Yet occasional indulgence in this kind of thoroughness need not be a
harmful thing.

In certain cases, there is no sharp line between formalizing and discovering a proof.
There are many cases where essentially incomplete sketches, sometimes containing
errors as well, get expanded and made into more exact proofs. Sometimes it is not until
we have the thoroughly worked out proof on hand that we begin to perceive a connexion
between it and the existing hint or sketch. Sometimes it seems hard to decide whether to
consider the sketcher or the formalizer the true discoverer of the proof.

1.4 Rigour

In a sense, to formalize is to make rigorous.
There was Berkeley's attack on the mathematicians of his day entitled:

" The analyst: or, a discourse addressed to an infidel mathematician. Wherein it is
examined whether the object, principles, and inferences of the modern analysis are more
distinctly conceived, or more evidently deduced, than religious mysteries and points of
faith." There is the long story of how Lagrange, Cauchy, Weierstrass, and others strove
to formalize exactly the basic notions of limits, continuity, derivatives, etc., providing
thereby rigorous (though not necessarily reliable) foundations for mathematical
analysis.

In the contemporary scene, we have logicians deploring how carelessly ordinary
mathematicians use their words and symbols. Some logicians are puzzled that so many
apparent confusions in mathematics do not lead more often to serious errors. On the
other hand, mathematicians in turn complain about the inaccuracy of alleged proofs of
mathematical theorems by physicists and engineers.

In the other direction, physicists consider that mathematicians are wasting their
time when they worry about "foundational crisis"; mathematicians consider that
logicians are indulging in learned hair-splitting when they devote pages and volumes to
discussing the meanings of meaning or the use of quotation marks and brackets.

The right course is to be as rigorous and detailed as the occasion or the purpose
requires. But this is more easily said than done. For example, certain authors seem to
dwell tirelessly on the obvious, while skipping the crucial and more difficult steps.

The matter of distinguishing expressions from that which is expressed may serve to
illustrate some of the questions about rigour. There were occasions when failure to be
careful about the distinction actually hindered greatly the advance of logic. It is now
customary in logic and philosophy to stress the difference, usually using quotation
marks to separate, for example, the city Peking from the word "Peking". At present,
even those who do not want to spend much time on using the quotation marks
rigorously, often find it necessary to declare, for example, "quotation marks are omitted
in most cases since we believe that no confusion will arise from this negligence". Every
now and then, we run into certain articles in which the authors are so meticulous about

On Formalization 7

using quotation marks that it becomes very difficult to read and understand what is
being said.

One might even distinguish logicians into two groups depending on whether or not
they always try to use quotation marks consistently and exactly. It may be a matter of
temperament. Or it may also be a question of whether one happens to be either too lazy
or too busy.

1.5 Approximation to intuition

To put thoughts in words or to describe a particular experience involves
formalization of intuition. It has been contended that no finite number of propositions
could describe exhaustively all that is involved in a particular experience. In other
words, it is impossible to formalize without residue the complete intuition at the
moment.

The matter of approximating intuition by formalization is clearer with regard to
mathematics. For example, we know intuitively many things about integers. If we are
asked to characterize our notion of integers, one way of answering is to say that integers
form a group with respect to addition, they form an ordered set with regard to the
ordinary relation of being greater than, and so on. The notions of group, ordered set,
etc., are more exactly defined or more formalized than the notion of integers.
Consequently, such answers tend to clarify somewhat our notion of integers, but they
are usually inadequate because they fail to characterize unambiguously the integers.

We may compare the place of abstract structures such as group, field, ordered set,
etc., in mathematics with the place of general concepts in ordinary life. They all can be
considered as results of formalization or abstraction which serve as tools of thinking and
research. As tools they help to economize our thought, as is often remarked. For
example, not only integers, but transformations in space, etc., all form groups; anything
that we prove about groups in general, of course, applies also to the special groups which
may differ from one another in many respects. Similarly, there are many different chairs
which can all be employed to support buttocks. In this way formalization, closely tied up
with abstraction, produces useful tools.

On the other hand, it is often hard to characterize adequately our intuition through
the use of formal structures. For example, it is not easy to describe exactly the colour,
shape, etc., of a particular chair. Peano's axioms are thought to be capable of
characterizing completely our notion of positive integers. Yet, as Russell observed long
ago, Peano's axioms are satisfied by all progressions such as the odd positive integers,
the negative integers. Russell thought that only by calling in a set theory could we make
a univocal characterization. More recent advances in logic show that he was wrong even
in believing this.

In fact, as we know, there are important results which indicate unmistakably that
we can formalize without residue neither the fundamental intuitive notion of positive
integers nor the basic notion of sets or classes.

Thus, there is Godel's famous theorem according to which, for any fairly rich

8 Computation, Logic, Philosophy

system, we can find some property expressible in the system such that we can prove for
each of the integers 1, 2, ... that it has the property, but we cannot prove the general
statement that all positive integers have the property in question. In other words,
although intuitively ifP(l) (i.e., 1 has the property P), P(2), P(3), ... are all true, then it
must be the case that all positive integers have the property P; yet in no fairly strong
logistic system can we formalize adequately this intuition so as to guarantee the
performability of such an inference for all the properties P expressible in the system. It
also follows that no ordinary axiom system can preclude the interpretation that besides
the ordinary 1, 2, ... the set of positive integers also contains certain other queer things;
there is no way to formalize in an ordinary logistic system our intuition that 1, 2, ... are
the only integers.

On the other hand, there is no axiom system in which we can get all the real
numbers or the classes of positive integers. This follows easily from Cantor's famous
argument for non-denumerability. Thus, given any axiom system, we can enumerate all
the classes of positive integers which can be proved to exist in the system, either by
applying Lowenheim's theorem or by reflecting on the fact that the theorems of
existence in the system can be enumerated. Hence, if we define with Cantor a class K of
positive integers such that for each n, n belongs to K if and only if n does not belong to
the n th class in the enumeration, then the existence of K cannot be proved in the
system. In other words, although in the system we can also speak of all the classes of
positive integers, we cannot really formalize without residue the intuitive notion of" all"
with regard to classes of positive integers; in each formalized axiom system, there is
always some class of positive integers that is left out.

1.6 Application to philosophy

The application of mathematical logic to the treatment of philosophical problems
may also be viewed as an attempt to formalize. Such applications often give the
impression that a formidable technical book expresses in tiresome exactitude more or
less commonplace ideas which could be conveyed more easily and more directly in a few
sentences of plain language. Yet, undoubtedly, there are cases where the appeal to
formalization is of more than pedantic interest. For instance, Heyting's formalization of
the intuitionistic view oflogic and mathematics helps quite a bit in conveying Brouwer's
ideas to those people who have a radically different orientation. Another example is the
gradual formalization of the notion of being a definite property, employed for defining
sets in Zermelo's axiomatic treatment of set theory.

Perhaps we can compare many of the attempts to formalize with the use of an
airplane to visit a friend living in the same town. Unless you simply love the airplane ride
and want to use the visit as an excuse for having a good time in the air, the procedure
would be quite pointless and extremely inconvenient. Or we may compare the matter
with constructing or using a huge computer solely to calculate the result of multiplying
seven by eleven. When the problems are so simple, even the task of translating them into
a language which, so to speak, the machine can understand would already take longer

On Formalization 9

than if we were to calculate the results by memory or with a pencil and a sheet of paper.
It is a practical problem to decide what means of transportation to use in making a

certain particular trip, or to decide whether it is feasible to build a computer to handle a
certain given type of question. As we know, there are many different factors which are
ordinarily taken into consideration before making the decision. Similarly, it is also a
practical problem to decide in each particular case whether it is profitable to apply
mathematical logic in handling a definite kind of problem. The only difference is that
the factors which have to be considered here are often more involved and less
determinate.

Take the principle of verification. Various attempts at giving an exact definition of
the notion of verifiability have failed. And systematic use of the logistic method has been
recommended as the only way to a satisfactory solution. On the other hand, there is also
the view that the important thing is a general attitude expressed vaguely in the rough
principle of verification, rather than an exact definition of verifiability. Underlying this
dispute, perhaps, are the varying attitudes toward the general desirability of
crystallization of ideas.

This raises larger problems. Why should we want such crystallization m
philosophy? What is the function and business of philosophy? Fortunately, general
observations can be made without going into such hard questions.

1. 7 Too many digits

After sketching an axiom system for his theory of probability, F. P. Ramsey goes
on to say, "I have not worked out the mathematical logic of this in detail, because this
would, 1 think, be rather like working out to seven places of decimals a result only valid
to two". There are several disadvantages in working out a result to too many places. It
uses up time which might be spent otherwise. It also makes the result harder to
memorize or to include in future calculations, if anybody should want to make use of it.
And pointless problems would arise regarding the last five places: do they exhibit any
interesting pattern which would indicate the lawfulness of nature? Do they coincide with
the five digits starting with the 101st in the decimal expansion of n? and so on.

How do we decide whether a result is valid only to two places? If the same
experiment is repeated under different but, so far as we know, equally favourable
circumstances, with results which agree satisfactorily only to the first two places, then
we tend to conclude that the places after the second are not quite reliable. If most people
refuse to calculate up to many places and a single person has an irresistible itch for
reporting every result to at least seven places, it might be rather hard to decide whether
his result is right.

The matter of constructing an exact theory of (say) probability contains an
additional factor. Since ordinary language is not exact, new words are coined or ordinary
words are given technical usage. In order to evaluate the theory, you have first to
understand it. In order to understand it, you have first to learn a new language. Since it is
usually impossible to explain clearly and exactly even the technical usages, a formal or

10 Computation, Logic, Philosophy

exact theory can almost always be defended against charges that it does not conform to
fact. As long as there is a sufficiently complicated system and a fairly big and energetic
group of people who, for one reason or another, en joy elaborating the system, we have a
powerful school oflearning, be it the theory of meaning, the sociology of knowledge, or
the logic of induction. There is always the hope that further development of the theory
will yield keys to old puzzles or fertilise the spirit of new invention. In any case, since
there is mutual support between different parts of a given system, there is little danger
that the discrepancy between one part and the facts should discredit the system. And of
course if we are interested in the "foundations", there is no need to fear any immediate
tests. The worst that can happen to such theories is not refutation but neglect.

1.S Ideal language

Language is employed for expression and communication of thoughts. Failure in
communication may either be caused by inadequate mastery of the language, or by
internal deficiencies of the language: that is, if there is thought to be conveyed at all.
Language is also sometimes used for talking nonsense. Here again, certain languages
just seem to offer stronger temptations for doing so. And sometimes the language user
is not careful enough, or he merely parrots others. In such cases he does not have
thoughts or feelings to express, and there is, of course, no question of correct
communication. A less serious disease is confused thinking, often involving internal
inconsistency. This again is sometimes the fault of the language, such as the ambiguity
of words and a misleading grammar.

The creation of an ideal language would yield a solution of these difficulties once
for all. Such a language should be so rich, clear, and exact as to be sufficient both for
expressing all thoughts and feelings v'lith unmisunderstandable clarity, and for
precluding nonsense. Given such a language, many problems now known as
philosophical would be dissolved. Disagret'mt'nt about what is to bt' taken as nonst'nse
would lead to tht' construction of differmt idt'al languages. There would be then the
problem of understanding each other's ideal language.

An alternative to the ideal language is to handle each individual case separately
and thoroughly. To explain at great length what wt' intend to say, to give concrete
examples when possible, to invite questions and discussions. And to reflect carefully
and ask what we really want to say, whether we do have something to say, whether we
are not misled by false analogies or naive syntax.

The task of constructing a comprt'hensive ideallanguagt' is in many ways similar
to that of finding a mechanical procedure to dt'cide answers to all problems of
mathematics. They are equally impossible. If and when these two tasks are clearly
formulated, the impossibility can be proved definitely in both cases. In certain simple
areas of logic and mathematics, we do possess decision procedures. Similarly in
mathematical logic and theoretical physics we have more exact languages. But there is
no mechanical method for finding decision procedures, and each significant
mathematical problem calls for a special treatment. It is demonstrably impossible to
reduce all mathematics to its decidable portion. It seems equally impossible to fit

On Formalization 11

everything we say into the language oflogic and physics. Moreover, these languages are
more exact in their abstract setup than in their actual use. It is a familiar experience
that mathematicians who know the language of mathematics very well often offer
fallacious proofs.

The quest for an ideal language is probably futile. The problem of formalization is
rather to construct suitable artificial languages to meet individual problems.

1.9 How artificial a language?

The contrast between natural and artificial languages suggests a sharp distinction.
Russian is natural, while Esperanto is artificial. But is the language of the biologists or
that of the philosophers natural or artificial? Is Mr. W oodger's proposed language for
biology natural or artificial? Hilbert's language for the Euclidean geometry is more
exact and artificial than that of Euclid's Elements. So far as the development of human
scientific activities is concerned, the creation of the language of the classical mechanics
or of the axiomatic set theory was rather natural.

We might speak of degrees of artificiality, as perhaps measured by the amount of
deviation from the natural course. The Chinese language spoken today differs to a
rather great extent from that used two thousand years ago, although the changes have
been mostly natural. If we had attempted two thousand years ago to bring about the
same changes in one year's time, we would have had to create at that time a language
quite artificial. To ir.troduce an artificial language is to make a revolution. Unless there
are compelling natural needs, the resistance will be strong and the proposal will fail. On
the other hand, when an artificial language meets existing urgent problems, it will soon
get generally accepted and be no longer considered artificial. Hence, it may be more to
the point if we compare artificial languages with Utopian projects.

Attempts to formalize the theory of probability are sometimes criticized on the
ground that the efforts fail to make contact with the crucial and burning problems of
physical science. One ready reply is that the situation is the same with many interesting
investigations in branches of mathematics such as abstract algebra, set theory, and
topology. One may argue, however, that more new ideas and methods are introduced
through such studies than through the researches on foundations of probability theory.
Or maybe there is more substance behind the new languages of algebra and set theory
and results obtained there are not as easily discredited by slight shifts of emphasis or
subtle mistakes in the original analysis.

Mrs. Joan Robinson somewhere remarks that economists are usually behind their
time. An urgent practical problem often ceases to be urgent or practical long before the
discovery of a theoretically satisfactory solution. Whether it is worthwhile to continue
the search for the solution of a problem which is no longer urgent depends to a large
extent on whether the particular problem is intimately connected with larger issues,
whether it is sufficiently intriguing intellectually, and whether it is likely to recur in
the near future. Similarly, the value of an artificial language has to be decided in
accordance with its elegance and its usefulness either in its direct applications or as a

12 Computation, Logic, Philosophy

model to be followed in future constructions. In a certain sense, an interesting artificial
language must not be excessively artificial.

1.10 The paradoxes

Much time and space has been devoted to the discussion of the logical paradoxes
or contradictions. Sometimes it is said that these paradoxes bring to light the self
contradictory character of our logical intuition. Indeed, as we know, the formalization
of logic and set theory was largely motivated by a desire to avoid the paradoxes and yet
obtain what we ordinarily want.

It has been suggested that we take the paradoxes too seriously, largely because of
our preoccupation with formalization and our lack of flexibility.

What is proposed instead seems to be this. Suppose we find a contradiction by a
seemingly plausible argument. Since we get a contradiction, we see that the argument
is really not correct and indeed must be faulty. So let us remember never to use the
argument again. And that is the end of the matter.

However, when we say that the argument looks plausible, we mean, among other
things, that each step of the argument also looks plausible. It seems necessary not only
to reject the whole argument as a unit but to pin down exactly which step or steps in the
argument caused the trouble. Hence, there are the various attempts to reject one or
another of the steps as unwarranted. But why can we not say that although each step is
in itself all right, they must not be combined in the particular way that leads to the
contradiction? Indeed, we may even use this possibility to justify the attitude of
indifference, on the part of many working mathematicians, toward the paradoxes.

It is only when we come to constructing a formal system to embody our
arguments that this procedure proves awkward. In a logistic system, we break up
proofs and arguments into isolated steps so that if a step is valid at all, it is valid no
matter where it occurs. In other words, certain combinations of shapes are taken as
axioms so that they can be asserted as valid no matter where they occur; and certain
(finite) sequences of combinations of shapes are taken as justified by the rules of
inference so that any such sequence, wherever it occurs, is taken as determining valid
steps. For instance, if we agree to take as an axiom, for two specific sets named a and b,
the assertion "Either a belongs to b or a does not belong to b", we can no longer reject
the same statement as an unwarranted step when it occurs in an argument that leads to
a contradiction.

Two alternatives to the customary logistic method are: (1) not to attempt any
exact characterization of all the valid arguments of any important branch of
mathematics; (2) to list either all or samples of all the warranted and unwarranted
whole specific arguments as inseparable units, instead of trying to break up all
warranted arguments into a small number of basic atomic steps. The alternative (2) will
either produce quite messy results or lead to something which is hardly distinguishable
from a logistic system.

2. THE CONCEPT OF COMPUTABILITY *

2.1 Formalizing intuitive concepts

Many philosophical problems take the form: What is x? For example, what is
time? What is truth? What is good? What is probability? What is a set? What is a
number?

There are different kinds of answers to questions of this sort. Gauss and Wessel
gave interesting and definite answers to the question: What are complex numbers?
These answers are still preserved in textbooks, while speculative discourses by their
contemporaries on the same topic have been quickly forgotten. The answers by Gauss
and Wessel are usually not considered philosophy.

What Kant had to say on time is often taken as philosophy, and probably
interesting philosophy. Frege's answer to the question "What are numbers?" is
perhaps also philosophy. How about Dedekind's closely related theory on the same
question? If we construe an axiomatic theory of sets (for example, Zermelo's) as an
answer to the question "What are sets?" - is the answer also philosophy?

When Zermelo presented at first his theory of sets, he did not give a precise
explanation of his notion of "definite property." Later on Skolem and others
succeeded in making the notion more precise. Skolem's formalization of the notion is
now generally accepted, just as the e-b--definition of continuous curves is now widely
employed as a substitute for the intuitive notion of "traceable without lifting the pencil
from the paper."

The notion of recursive or Turing computable function as a formalization of the
intuitive notion of computable function is another example along the same line.

Such questions of formalization are sometimes called mathematics, sometimes
called philosophy: a terminological dispute, important perhaps only for sociological
reasons which need not concern us here.

Among systematic procedures, computation procedures are the most interesting
mathematically.

2.2 The intuitive concept of computability

While in elementary schools and markets we are primarily concerned with
individual problems of computation, mathematicians are mostly engaged in proving
theorems or, in other words, deciding the truth and falsity of mathematical

* Not published previously.

13

14 Computation, Logic, Philosophy

propositions. The mathematician is, nonetheless, also quite interested in the problem·
of finding algorithms or computational routines, although particular questions of
computation such as "what is 352 x 267" or "what is 27 + 76" are too simple to
interest him.

An algorithm is a set of instructions which, when followed mechanically, will yield
the answer to not only a single question, but anyone of a whole class of related
questions. For example, we have algorithms for addition and multiplication and for
deciding whether a given number is a prime. As a result, we are inclined to think that
we can carry out addition and multiplication simply by obeying a few easy rules and
that machines can answer such questions too. Thus , while the schoolboy wishes to
know the sum and product of particular numbers the mathematician is interested in
the problem whether and how a particular class of questions can be answered by a
general method. Since it is natural and customary to correlate a class of questions with
a function (e.g., the class of questions of finding sums with the function of addition),
the mathematician's problem becomes one of asking whether a given function is
computable. A more general problem is to determine the totality of all computable
functions. Each determination of the totality may be viewed as a proposed definition of
the concept of computability. Moreover, it is quite satisfactory to confine ourselves to
functions of (nonnegative) integers.

In order to determine the totality of computable functions, there are the two
directions of beginning from outside and beginning from inside. Thus, knowing
functions which are not computable can help; or, if we know sufficiently many
computable functions, we can try to find out their common characteristics and then
generalize.

First, let us find a function which is demonstrably noncomputable. The usual
procedure is to assume given the totality of computable functions and then
"diagonalize" to get a function that is not computable. We need not go into the
familiar argument, as noncomputable functions got in this manner are clearly of no
direct assistance to the task of determining the totality of computable functions.

We are left with the alternative of analysing given computable functions. Since
addition and multiplication are the most familiar computable functions, it is natural to
study first the rules governing the algorithms. These are embodied in the familiar
recurSive definitions:

{a+o=a,
a + b' = (a + by.

{ ao = 0
ab' = ab + a.

It is easy to convince ourselves that all functions defined by such recursions
together with some other simple schemata are computable. In this way, we get the class
of primitive recursive functions (compare below) and the conclusion that all primitive
functions are computable.

There is a strong temptation to identify effective computability with primitive
recursiveness, since practically all the effectively computable functions which are ever
used in ordinary mathematics are primitive recursive. As we know, however,

The Concept of Computability 15

Ackermann many years ago already found an effectively computable function which is
not primitive recursive. Hence, there are more effectively computable functions than
there are primitive recursive ones. The problem is to introduce and use a wider notion
of recursiveness, and the answer is general recursive functions.

Instead of beginning with the recursive definitions for addition and multiplic
ation, one can also analyse the process of human computation into simple steps and
develop the idea that computation is essentially a mechanical procedure. This
approach leads to definitions of computability by Post and Turing.

In 1934 Godel introduced a definition of general recursive functions which he
credited in part to an oral suggestion of Herbrand (see Godel 1934 in bibliography
listed at the end of the paper). Using a variant of this definition due to Kleene, Church
proposed to identify the intuitive notion of effective computability with the notion of
general recursiveness in Church 1936. A little later, Turing gave (in Turing 1936-37)
an explication of the notion of effective computability in the form of a definition of
computing machines (commonly known as Turing machines). It was afterwards
established that a function is general recursive if and only if it is Turing computable.
Since the questions which I wish to discuss concern Turing's thesis and Church's thesis
in the same way and since they are more easily formulated in terms of the notion of
recursiveness, I shall confine my discussions mostly to Church's thesis.

2.3 Computation by theoretical machines

I should, however, like to describe a variant of Turing's theory which is very
simple and can be easily understood also by those who are familiar with ordinary
digital computers but not accustomed to mathematical logic. (Compare my abstract in
the Bulletin of Am. Math. Soc., 1954.)

It can be proved that a theoretically simple basic machine can be imagined and
specified such that all partial recursive functions (and hence all solvable computation
problems) can be computed by it and that only four basic types of instruction are
employed for the programs: shift left one space, shift right one space, mark a blank
space, and conditional transfer. In particular, erasing is dispensable, one symbol of
marking is sufficient, and one kind of transfer is enough. [For details, see my
1957(54).J

From this it follows that theoretically each computation can be performed by
drawing up a program consisting of +--, ~, *, and conditional transfer. Conditional
transfer is clearly the most complex: it involves distinguishing a blank square from a
marked square and responding accordingly. It seems rather comforting that in order to
study the basic operations involved in computations, we can confine ourselves to these
four types of operation.

2.4 General recursive functions

Of the two halves of Church's thesis, more weight is usually put on the half stating

16 Computation, Logic, Philosophy

that all functions (of natural numbers) which are effectively calculable according to the
intuitive notion are general recursive. Indeed, this is the half which has led to the many
important negative results: there is no effectively calculable function (decision
procedure) for such and such questions. The value of Church's thesis in proving these
results is obvious: it achieves a great simplification in the form of all the functions
which may be effectively calculable. If a sharp boundary is found so that a given
indeterminate region falls completely within the interior of the boundary, then
everything lying beyond the boundary lies also outside of the initial indeterminate
region. Clearly the sharp boundary helps matters when we wish to establish that
something is not in the initial region.

In this note I shall take for granted this part of Church's thesis but disqlss the
other half which is often considered less questionable and less important. I propose to
distinguish two kinds of calculability. For lack of better words I shall speak of a priori
calculability and effective calculability. In some ways the distinction resembles that
between logical possibility and theoretical possibility. I shall argue that although it
seems reasonable to identify a priori calculability with general recursiveness, effective
calculability can best be identified with a more or less vague and indeterminate notion
which is presumably narrower than general recursiveness but broader than primitive
recurSIveness.

To facilitate discussions, let me briefly review the usual definition of general
recursive functions. I quote in rough form a version of Kleene 1943:
D.l A function <l>(Xh ... ,Xn) is general recursive, if there exists a finite set E of equations
involving the symbol = , the numerals, the variables, and one or more function
symbols (fbeing the last one) such that for each set mh ... ,mn of numerals (representing
the nonnegative integers Xh ... ,Xn), an equation f(mh ... ,mn) = m is derivable from E
for exactly one numeral m (representing the value of <l>(Xh ... ,Xn)), by the following two
rules:
Rl: to substitute numerals for variables in a given equation;
R2: given a numerical equation f(mh ... ,mj) = k to replace a part f(mh ... ,mj) of the
right member of an equation by k.

In the above definition, two assertions of existence are involved: the existence of a
set E of equations containing = , variables, numerals and function symbols, and the
existence for any given mh ... ,mn , of a derived equation of E (by Rl and R2) of the
form f(mh ... ,mn) = m. If we assume a set E of equations given and ask whether it does
provide a general recursive definition, then we have to face merely the following
existential assertion: for any ml, ... ,mn , there exists a derived equation of E which has
f(mh ... ,mn) as left member and a numeral as right member. The question arises how
we are to arrive at the existential assertion.

Or, in arithmetized form, definition Dl amounts to this:
D2. A function h(n) is general recursive if there are primitive recursive functions f(n)
and g(n,m) with the following properties:
(a) for every numeral o(n>, there exists a numeral o(m) satisfying g(o(n), o(m)) = 0;
(b) for every o(n), h(o(n)) = f{l-lx[g(o(n),x) = OJ}.

The Concept of Computability 17

The phrase "there exists" in condition (a) has a clear and definite meaning. Thus,
(n) (Em) [g(n,m) = OJ has a very simple arithmetic interpretation: for every numeral
o(n), there exists a numeral o(m) such that g(o(n), o(m») = 0 is verifiable (i.e., can be
proved numerically). Nonetheless, definition D2 leaves open by what methods
condition (a) is to be established.

Church (see Church 1936, p. 351, footnote 10; Kleene 1952, p. 319) anticipates

this question and replies that all we have to do is to interpret the phrase "there exists"
in a constructive sense or to make sure that the existence assertion is proved
constructively. He then leaves the burden of determining the criterion of
constructiveness to the reader. This seems too easy a way out. What happens appears
roughly like this. Church proposes to tell us in exact terms what we mean vaguely by
effectively calculable functions. In his explanation, he makes use of a difficult phrase
"there exists" in a context of the kind which has caused constant trouble in attempts to
explicate the notion of effectiveness. We ask Church to elaborate his uses of "there
exists." He tells us that we need only construe the phrase in a constructive sense and
supply our own criterion of constructiveness. But this is disappointing since we have
always found it hard to say in exact terms what the constructive or effective sense of
"there exists" is.

The great difficulty with this modified position is of course the problem of
constructive proofs. No very satisfactory theory of constructive proofs is in existence,
and it is apparently hard to obtain such a theory.

Definition I seems, however, to be faced with similar difficulties. [This
apparently refers to a definition in an early version. I believe that it could be
reconstructed from the considerations below in section 8 and is more closely related to
the original definition of general recursive functions in GCidel1934 than to D1 or D2.J
The term "constructive ordinal" occurs explicitly in the definition, and the term
"effective well-ordering" occurs implicitly, as it is used in the definition of ordinal
recursive functions. There arise the questions: What is a constructive ordinal? What is
an effective well-ordering? These questions appear to be more specific than the
question of constructive proofs. But it is not clear that they are easier.

For example, I would consider the ordinal numbers represented in Ackermann
1951 as constructive ordinals. On the other hand, I do not feel sure that I would accept
the whole "constructive second number class" of Church 1938 and Kleene 1938.

2.5 Constructive proofs

This reduces the problem of characterizing effectively computable functions to
that of characterizing effective or constructive proofs.

Instead of asking what an effective proof is, one may ask, how is condition (a) to
be established? First, not all conditions (a) can be proved in a single formal system
(e.g., Zil in HB or Heyting's system), since the functions which are provably general
recursive in this system can be enumerated and the diagonal argument can be applied
to get a new general recursive function. Thus, for instance, it is not sufficient to

18 Computation, Logic, Philosophy

identify effectively computable functions with those for which condition (a) can be
established in Heyting's arithmetic (the system described, e.g., on p. 82 and p. 101 of
Kleene 1952).

Second, if one looks at ordinary informal proofs, one can distinguish two classes.
There are many proofs ("purely arithmetical" ones), where effective majorizing
functions f3(m) can be extracted by the substitution method of HE. For example, by
Ackermann 1940, if (m) (En) R (m,n), R primitive recursive, is provable in ZIl' then a
transfinite recursive function f3(m) of order 80 (compare below) can be extracted from
the proof such that (m) (En) [n < f3(m)& R (m,n)] holds. Similarly, one can also
extract effective majorizing effective functions from proofs in systems of set theory
which admit no impredicative sets. On the other hand, there are also set-theoretic
proofs for which such effective bounds have not been extracted, e.g., in Zermelo's
axiomatic set theory. Here, in fact, it is not even clear that the methods of proof are
consistent.

The bounds for proofs in Zil can be obtained from Ackermann 1940 in the
following manner. Thus, suppose (x)(Ey) Rxy (R primitive recursive) has been proved
in Zw Let g, e. j be respectively the number of 8-matrices, the number of 8-terms, and
highest degree of terms in the proof. Let further w, r, p,). be the functions as defined
in Ackermann 1940. Then the bound f3(x) is given by:

w{x + j,)[r(j,e,g,l, p(g,e)), g + I]}.

We may wish to say that a general recursive function is effectively computable if
the condition (a) in D2 of the form (x) (Ey) Rxy is proved constructively, and that a
constructive proof of (x) (Ey) Rxy is one from which we can extract an effectively
computable function f3(x) so that (x) (Ey) (y < f3(x) &Rxy) holds. Clearly we get then
into a circle which need not be harmful, provided we have an independent source to
supply a sufficiently large class of computable functions to begin with.

We may also avoid the circle by leaving it to the light of nature to see whether any
given proof is constructive or not.

In connection with constructive proofs, it may be of interest to consider the
questions of formalizing constructive proofs in given formal systems. By Geidel's
famous theorem, a formula of the form (x)Ax (A primitive recursive) which expresses
the consistency of Zil is not provable in Zw Yet from investigations .of Gentzen and
others, we know also that there is a simple primitive recursive well-ordering < e of
order 80 such that we can prove in Zil and prove constructively: (1) A(O); (2) (n) [n < e

m => A(n)] => A(m). The reason why in Zil we cannot infer (x)Ax from (1) and (2) is
usually said to bp the fact that we cannot prove in Zil the principle of transfinite
induction with respect to < e. The same fact can also be expressed by saying that we
cannot prove in Zil that the well-ordering < e is actually a well-ordering, because to
assert that < e is a well-ordering implies that for each formula A of ZIl' we can infer
(x)Ax from (1) and (2). Indeed, we can prove constructively, though not in Zp., that < e

IS a well-ordering.
This leads to the question whether, if we depend on the light of nature to judge

The Concept of Computability 19

the constructive character of proofs, it might not be possible to prove constructively all
true propositions of the form (x)Ax (A primitive recursive) of the form (x)(Ey)Rxy (R
primitive recursive) in a similar manner. In other words, whether it may not happen,
for instance, that for each Rxy there is a simple well-ordering <" such that we can
prove constructively: (1) < a is a well-ordering relation; (2) (Ey)Roy; (3) (m) (m <" n
::::J (Ey)Rmy) ::::J Rny. If the answer is yes, then all true assertions of consistency and
general recursiveness are provable constructively. Thus, in particular, it will follow
that, given an arbitrary formal system, if it is consistent, then its consistency can be
proved constructively, even though actually to discover the constructive consistency
proof can be very difficult. It is not easy to see how such general questions of
constructive demonstrability can be settled. Turing 1939 gives the impression of
dealing with such problems, the treatment is hard to follow.

Incidentally, if all true formulae of the form (x) (Ey) Rxy are provable
constructively, then of course all true formulae of the form (x)Ax are so provable too:
we need only take (x) (Ey) (Ax&y = y) in place of (x)Ax. The converse is not true. By
suitable use of the diagonal argument, we can prove that there is some true formula
(x)(Ey)Rxy (R primitive recursive) which is not derivable from any (x)Ax (A primitive
recursive) in the system Z/1"

2.6 Effective methods

Kleene gives a more or less standard explanation of the notion of constructive
proofs in the following words: "Therefore an intuitionistic proof of the proposition
there exists an n such that P(n) must be constructive in the following (strict) sense.
The proof actually exhibits an example of an n such that P(n), or at least indicates a
method by which one could in principle find such an example." (Kleene 1952, p. 49.)
Here, of course, the problem is shifted to knowing exactly what kind of method is
acceptable. With regard to the case which concerns us, we do have a method of finding
the corresponding equation for given n. The method consists in enumerating all the
derived equations ofE until we come upon one with f(n) as left member and a numeral
as right member. Indeed, no matter how we have reached the existence assertion, this
method is always applicable in the sense that we shall sooner or later arrive at the
equation, since it does exist in the infinite sequence of derived equations. Either we
find such methods acceptable, then the question whether the existence assertion is
proved constructively makes no more difference. Or, what is more likely, we find the
methods unacceptable because we want to have effective methods, and we feel that the
method of enumerating derivative equations is not always an effective one for finding
the desired equations. To decide between the two alternatives, we need a more exact
explanation of the notion of effectiveness.

To put the matter in a different manner, there are two distinct ways of
interpreting the notion of effectiveness. A method of finding the required equations is
in one sense said to be effective if there is a mechanical procedure for writing out one
by one the derived equations so that for each set of given argument n, an equation will

20 Computation, Logic, Philosophy

eventually turn up which has <l> (f(n)) as left member and a numeral as right member
(in other words, such an equation exists or occurs in the infinite sequence of derived
equations of E). If we accept this sense of effectiveness, then it seems unimportant
whether or not the existence of such derived equations is proved constructively. On the
other hand, if, as is done in this note, a method of finding the desired equations is said
to be effective only if we have, with regard to the mechanical procedure, a pretty good
idea how soon the process will terminate for each set of given argument values
ml, ... ,mn , then the question whether a set E of equations defines an effective method of
calculating values of its corresponding function becomes almost a subjective matter or
rather more correctly, a matter relative to our present state of knowledge. This is
perhaps as it should be. The situation is somewhat similar to the distinction between
logical possibility and theoretical possibility, i.e., something for which there is a
blueprint based on currently accepted laws of nature. So far it seems theoretically
impossible to travel to the moon, although, for all we know, the journey may become a
theoretical possibility soon and be realized in another fifty years. The analogue of
practical possibility is practical computability, i.e., a computation which could be
carried out with the available computing machines.

Corresponding to the two different interpretations, a distinction between a priori
computability and effective computability is being made.

When one asserts that all general recursive functions are effectively calculable,
one has to add the proviso that the existence clause gets a constructive proof. If we wish
to, this proviso can also be introduced in the definition (Dl or D2) of general recursive
functions, so that one could speak without qualification, using the changed definition,
that all general recursive functions are effectively calculable.

If one is not able or not willing to handle the problem of constructive proofs, there
are two alternatives. One could simply drop the proviso and try to get along with the
unqualified thesis that any function which is general recursive by Dl or D2 is
effectively computable. Or, if such a course proves defective, one could propose some
alternative course which avoids or at least postpones the problem of constructive
proofs.

In what follows, I shall try to indicate some of the defects of the first procedure
and discuss certain alternatives. We shall see that some such problem as the nature of
contructive ordinals or constructive proofs will probably have to be faced at one stage
or another. It may, however, be that different persons would prefer different problems
even when they are similar.

2.7 Speed functions

The question of deciding the effective computability of a function can be reduced
to one of knowing intuitively its speed functions: corresponding to each set of
equations E which define an a priori calculable function f(n), there is some speed
function fs(n) which, for each constant no, gives an upper bound to the number of steps
needed for getting the value of f(no) from E.

The Concept of Computability 21

Obviously, each calculable function has many definitions and each definition has
many corresponding speed functions. In most cases, we are concerned with what seem
to be the "natural" definitions and the "natural" speed functions. I shall often speak of
the speed function of a calculable function, as if there were a unique speed function.

To decide whether an a priori calculable function f(n) is effectively calculable, it
suffices to estimate the values of its speed function fs(n). At first it might be thought
that speed functions are simpler than their corresponding functions, and that an
elegant classification of all general recursive functions can be obtained by a suitable
grouping of their speed functions. A closer look, however, seems to reveal that in
general the speed function of a given general recursive function is just about as
complex as the function itself.

It is quite easy to establish that every primitive recursive function has a primitive
recursive speed function. In each case, given the ordinary definition of a primitive
recursive function, we can easily find its corresponding speed function.

It will be recalled that a function is primitive recursive if it can be defined by a
sequence of applications of the following schemata.

(I) <I>(x) = x',

(II) <I>(xt. ..• ,xn) = c,

(III) <I>(xt. ... ,xn) = Xi,

(IV) <I>(Xb ... ,Xn) = e[Xl (Xb .•. ,Xn), ... ,XIIl(Xb ... ,Xn)], <1>(0) = c,

(Va) <I>(y') = X[y,<I>(y)],<I>(O, Xb ... ,Xn) = ifJ(Xb ... ,Xn),

(Vb) <I>(y', xt. ... ,xn) = X[y,<I>(y,Xb ... ,Xn)Xb ... ,Xn]

To find the corresponding speed function of a primitive recursive function, it
suffices to write out the corresponding speed function for each of the above schemata:

(Is) <I>.(x) = 1,

(lIs) <l>s(Xl' ... ,Xn) = 1,

(III.) <l>s(Xb ... ,Xn) = 1,

(IVs) <I>.(Xb ... ,Xn) = (Xl)s (Xb ... ,Xn) + ... + (Xm)s (Xb ... ,Xn) + m

+ es [Xl(Xl, ... ,Xn), ... ,Xm (Xb ... ,xn)] + 1, <1>.(0) = 0,

(Vas) <l>s(y') = <l>s(Y) + 1 + Xs[y,<I>(y)] + 1,

(y,Xb ... ,Xn) + 1 + X.[y,<I> (y,Xb ... ,Xn), Xb ... ,Xn] + 1

Since we feel we have a pretty good idea about the values of these speed functions
for given argument values, we know that all primitive ~~cursive functions are

22 Computation, Logic, Philosophy

effectively computable. The "pretty good idea" can be obtained by examining the set
of equations which define the function in question.

Similarly, the speed function of a general recursive function is again a general
recursive function.

This can be proved by using the fact that every general recursive function can be
defined by a sequence of schemata of the forms (I) -(V) and (VI) (see, e.g., Kleene
1952, p. 289):

(VI) <I>(Xl> ... ,xn) = .u.vCP (Xl, ... ,Xn,y) = OJ,

where the following holds:

(VI --c) (xl) ... (xn(Ey)) [P(Xl,".'Xn,y) = 0].

It is known that (VI), subject to the condition (VI--c), is like (I)---(V), general
recurSIve. For example, the function <I> can be defined thus (Kleene 1943, pAS):

{
o-(O,Xl> ... ,x.,y) = y ..

(VI') 0- (z' 'Xl> ... 'x~) = o-[o(Xl> ... ,xn,y'), Xl> ... ,xn,y'J,
<I>(Xl> ... ,xn) - o-[p(Xl> ... ,xn,O), Xl> ... ,xn,O].

Here we have a typical case where, although we know, by (VI--c), that the process of
computation will eventually terminate for any given argument values Xl, ••• Xm we have
no idea how soon that will happen. The condition (VI--c) in general gives us no
information as to how big a number y could satisfy the equation p(Xl> ... ,x"y) = 0, for
given Xl> ••• ,Xn. In other words, when the schema (VI) is involved in the definition of a
certain function, the function is computable but not necessarily effectively
computable.

This becomes even clearer, if we look at the speed function of (VI') which is again
general recurSIve:

It follows that the speed function of a general recursive function is again general
recursive: a conclusion which is, however, of little value so far as the question of
classifying effectively computable functions is concerned.

2.8 Transfinite recursions

While it is accepted in this note that all effectively computable functions are
general recursive, it now appears questionable that conversely all general recursive

The Concept of Computability 23

functions are effectively computable. In any case, it seems clear that knowing that a
certain given function is general recursive does not entail knowing that it is effectively

computable.
One can follow Church and identify effectively computable functions with those

general recursive functions which can be proved to be recursive by constructive means.
But this gives little clue to a classification of all effectively computable functions into
some sort of hierarchy.

In order to reach a more informative characterization of these other functions, it
seems most suitable to use the notion of transfinite recursion introduced in Ackermann
1940 and further developed by P~ter (see, e.g., P~ter 1951). As they have not made any
general discussion of the matter, I venture to describe what I understand to be involved
in their investigations.

As is well known, every ordinal number of Cantor's second number class is of the
same cardinality (viz., xo) as the class of natural numbers. It is also known that
theoretically we can rearrange the natural numbers to get a well-ordered set of any
ordinal type of the second number class.

For example, if we put all even numbers after all odd numbers, we get a set whose
ordinal number is w2. Or again, we can rearrange natural numbers to get a set with the
first c-number as ordinal type in the following manner. Let Ai be the class of all positive
integers divisible by 2i but not by 2i+ 1 (i = 1,2,3, ...), VI (aj,az) be 2a1 -1 (2az + 1), and
v (a'" a·) be 2v ;(a" ... ,a;+1)-1 (2a + 1) (a > 0) Represent the ordinal ° by the i + I j", + Z i +2 1 •

natural number 0, the final ordinal n(n > 0) by the natural number 2n -1, w ial + ...
+ wai + ai+ I by the C Vi (aj, ... ,al + dJ--th member of Ai' From this we can easily define
a primitive recursive well-ordering relation that arranges the natural numbers in the
ordinal type co.

Let us assume that for every ordinal IX of the second number class, whenever
possible, an effective well-ordering of the class of natural numbers with ordinal type IX is
given and denoted by the sign < a' With no loss of generality, we assume also that the
natural number ° is always the earliest in each well-ordering. For every infinite ordinal
IX, a function is recursive of type IX, if it is defined by a sequence of schemata which are
either of type lower than !X or of one of the forms (I)--(V) (given above for primitive
recursive functions) and the following:

(VI) {<l>(O,XI, ... ,Xn) = t/!(xj, ... ,xn)

a <l>(y,xj, ... ,xn) = X{y,<l>C8(y), Xb""XnJ, Xj, ... , Xn

where t/!, x, 8 are given functions such that for every y, 8(y') <ay'.
It is easy to convince ourselves that all these are general recursive functions.

Indeed, it is known that if we start from a given ordinal and proceed to smaller and
smaller ordinals, we must come to a stop in a finite number of steps.

On the other hand, the situation ~ere appears to be better than the situation with
general recursive functions in the following respect. On the one hand, for certain
numbers y, there may be infinitely many x, Xa < y, and therefore the sequence
consisting of the values of y, 8(y), 8(8(y))"" could be longer than any preassigned finite

24 Computation, Logic, Philosophy

length. On the other hand, the function B is a given function so that we already have a
pretty good idea how soon for each y, the sequence y, B(y), B(8(y)), ... would lead us to the
value O. In this way, we are led to these schemata and functions gradually from the
primitive recursive functions. We have a hierarchy of functions which runs from
primitive recursive functions to functions defined by transfinite recursions of types
(say) w2 , w""', eo, el. etc.

It seems reasonable to identify the totality of all these functions with the effectively
computable functions.

The matter is actually, however, rather more complex. In the first place, the
schema (VIa) is not quite what we want. There is no reason to confine 8 to a given
function and thereby exclude "nested" occurrences of <P itself within its first argument.
We shall return to this point later on. Meanwhile, we shall continue to use (IVa) because
(1) it is simpler, (2) it has been used by most people who discuss transfinite recursions,
(3) most arguments based on (IVa) can be modified quite directly to apply to the revised
schema, to be given below, which admits "nested" occurrences of <p.

There are two further points which call for comment, viz., the relation < a and the
function B. The well-ordering relation < a is required to be effective. What is an
effective well-ordering? The function B is merely required to be a given function such
that for every y, B(y') < a y'. It may be difficult to estimate the sequence B(y), 8(8(y)), ...
because B is complex; or, B may be very simple and yet because of the character of < a, it
may still be difficult to estimate the sequence B(y),B(B(y)),

In general, there is of course no reason to suppose that different relations < a for
the same ordinals 'Y. will yield the same class of recursive functions. Indeed, it has been
established independently by N. A. Routledge and John Myhill in 1953 that given any
general recursive function f, we can find a corresponding well-ordering < w (indeed, a
primitive recursive well-ordering) such that f is recursive of type w.

This result, surprising at first sight, is often taken as a blow to attempts to classify
recursive functions by transfinite recursions. I am, however, inclined to disagree with
this contention. In my opinion, rather than destroying the hope of classifying
computable functions by transfinite recursions, the result suggests that the
classification can be made in different ways.

For example, we may not wish to accept all primitive recursive well-ordering
relations but only those which can be constructively proved to be well-ordering.
Accordingly we can again classify computable functions and their equivalent recursive
functions of order w according to the proofs for the fact that the well-ordering relations
used are indeed well-ordering relations. This alternative has the disadvantage that we
have again to face the question of constructive proofs.

Another way is to use simple well-ordering relations < a fixed for each 'Y.

throughout all investigations so that recursive function of a type always means recursive
oftype 'Y. relative to a particular well-ordering < a. For instance, in Peter 1951, < w is the
natural ordering, and 2a(2b + I) - I < wk + 12c (2d + 1) - I if and only if either a < c or
a = c but b < wkd. Using these well-ordering relations, Peter has, by the diagonal
argument, established that for every k, there is a recursive function of type wk + 1 which

The Concept of Computability 25

is not of type Wk. In her proofs, she introduces no restriction on the given function 8
apart from the condition that 8(y') < wkY', although she has to permit "nested"
occurrences in the definitions of the functions introduced by transfinite recursion.

The possibility of enumerating all functions of type w relative to the particular
well-ordering < OJk but with no restriction on 8 seems to depend essentially on the fact
that for the particular ordinals w k and the particular well-orderings < wk, all the given
functions e satisfying the condition 8(y') < wkY' can be characterized and enumerated in
a simple way. This is no longer obviously true when we come to functions of type ww.

Thus, for instance, let us assume the well-ordering relations < W w, < roW ro, etc. as
given in Ackermann 1940. It is not unlikely that all general recursive functions can be
shown to be of order WW already, if we make no restrictions on the given functions e for
which only 8(y') < OJ wy'. In other words, if we wish to classify computable functions by
ordinal numbers, as we go to recursive functions of higher ordinal types, we have to fix
not only the well-ordering relations we use, but also in some simple manner the
functions 8 to be employed in the schema of transfinite recursion.

This is quite reasonable and unobjectionable if we remember that the purpose of
classifying computable functions is after all to have a clearer picture of the different
types of computable functions. Any device which can make us understand clearly a slice
of the body of computable functions is welcome. Indeed, quite often piecemeal devices
could be more informative than whole sweeps.

It may be asked whether Peter's result about functions of ordinal type w k can be
extended to arbitrary fixed well-orderings < wk. It can also be asked whether ordinal
recursive functions of order Ware coextensions with the primitive recursive functions.

Now let us say a few words on the more correct form of transfinite recursion. The
general idea is merely this: to evaluate 4>(y') we can only make use of values 4>(x) for x
< ~ y'. From this, there is surely nothing to prevent nested occurrences of 4> in the
definition. Indeed, many useful functions (cf. Peter 1951) require such nested
occurrences in their definitions. Using just one parameter, we can so revise the schema
(VI~):

(VI *) {4>(X,O) = IX(X),
~ 4>(x,y) = P{x,y,4>[x,r(x,y)]}

where (x)[r(x,y') < ~y'], 1 may contain given functions and also itself, subject only to
the condition that for each part of the form 4>[x, 11 (x,y')] in 1, we have always (x)
[11 (x,y') < dl

2.9 The indeterminate domain of computable functions

In short, the domain of general recursive functions is too determinate to
correspond exactly to the indeterminate domain of computable functions. To preserve
the indeterminateness, we can either follow Church in adding the proviso of
constructivity in proving existence. Or else, we can identify computable functions with
recursive functions for each of which there exists some constructive ordinal IX, some

26 Computation, Logic, Philosophy

simple well-ordering <, and some simple schema r such that the function is of order (f.
according to the schema (IV, *). This latter alternative can lead us to informative
classifications of computable functions. But as it stands, it is more a program of research
than a definition. Thus, we are faced with the questions of explaining constructive
ordinal, simple well-ordering, simple schema r. In each case, the more suitable course
is perhaps not to look for general theories of constructive ordinal or simplicity, but to
judge individual cases as they come by. No matter which of the two alternatives we may
adopt, we are led to a position rather different from the straight identification of
effective with general recursive functions.

It would be of interest to decide the effects of taking this position in place of the
identification of general recursiveness and effectiveness. According to this position,
every effectively computable function is general recursive, while conversely it is not
known that every general recursive function is effectively computable. The boundary of
the region of general recursive functions forms a sort of upper or external bound to the
totality of effectively computable functions.

Hence, the adoption of this position does not affect the validity of results which
depend on the thesis that all effectively computable functions are general recursive but
not on the converse of the thesis. Thus, the interesting results (on the unsolvable
problems) of Church, Kleene, Markov, Post, Turing, and others (e.g. the theorems on p.
301 and p. 383 of Kleene 1952) remain unaffected. In other words, all impossibility
results or negative results still hold. Indeed, when we want to prove conclusions about all
effectively computable functions, it is often desirable or even necessary to speak of the
broader but less indeterminate totality of all general recursive functions.

There appear to be cases where we tend to apply the notion of general recursiveness
but not the notion of effectiveness. These cases provide evidence in support of positions
such as that suggested here which question the unqualified identification of general
recursiveness with effectiveness.

One interesting example is Peter's remark to the following effect. Although we can
decide whether each given number has a certain given property and although it is
assumed that there is some number which has the property, we cannot always effectively
seek out from all natural numbers the smallest one which has the property. (See Peter
1951, bottom of p. 9.) In his review, Robinson observes that Peter's remark contradicts
her later identification of effectiveness with general recursiveness, and seems to imply
that therefore Peter's remark is wrong. In my opinion, however, one could as well accept
Peter's remark as right and consequently reject the identification. This seems to me a
case in support of the kind of position formulated here.

It is known that if both a class C (of natural numbers) and its complement can be
enumerated by general recursive functions (say by f) and f2 respectively) then we can
find a general recursive function f(m) such that for each n, f(n) is 0 or 1 according as n
belongs to C or not (first noticed in Turing 1936--37). Roughly, since each n belongs to
either C or its complement, each n is a value of either f) or f2. Hence if we check f1 (0),
f2 (0), f) (1), f2(1), ... successively, we shall sooner or later hit either an f) (i) or an f2(j)
which has the value n; in the first case, put f(n) = 0, in the second case, put f(n) = 1. In

The Concept of Computability 27

this way, we get the desired general recursive function f(m).
The function thus defined can, we feel, hardly be called effective. It is true that by

computing the values of f1 and f2' we can, for each n, sooner or later decide whether f(n)
is 0 or 1, but we have absolutely no idea how long it will take us to get the answer.

The discrepancy disappears if we either use the indeterminate totality of transfinite
recursive functions or add Church's proviso of constructivity. For instance, when the
proviso is added, the example of enumerating the class C and its complement can be

reformulated thus. If C and its complement can be enumerated by f 1 and f2 which can be
constructively proved to be general recursive, then there is a function f which can be
constructively proved to be general recursive, etc. Similarly, Peter's remark could easily
be reconciled with the qualified identification.

Incidentally, we might, with regard to ordinals, wish to use a zig-zag definition of
constructive ordinals and ordinal recursive functions:

Step(la): we start with constructive ordinals, say those < 80.

Step(lt,): we define ordinal recursive functions of order < 80, e.g., as in Kreisel
1952.

Step (na): we define constructive ordinals by some suitable definite method using
the functions defined in steps (mI.) for m < n.

Step (nt'): using the ordinals of step (nJ we define new ordinal recursive functions.
If we choose the right method of defining new ordinals from given recursive

functions, we may be able to get a self--expanding process. For instance, at step (na) we
might wish to define constructive ordinals by the method of Church 1938 and Kleene
1938 using (instead of general recursive functions) the functions defined in steps (mb)
for m < n. It is known that in the Church-Kleene definition of constructive second
number class one can get just as many constructive ordinals using only primitive
recursive functions as one can using general recursive functions. Therefore, if we use the
Church-Kleene method in step (nJ, there will be no self---expanding process.

There are at least two objections to the positions suggested in this note. In the first
place, the totality is not clearly defined. Although we often speak of the totality of all
ordinals of Cantor's second number class, very little is known about the members of this
totality. Those members which h~ve been studied fairly carefully and given names
constitute a very small portion of the whole. Moreover, the matter seems very difficult:
the theory of the second number class which we possess today is practically the same as
that first invented by Cantor. We have a general theory and some knowledge about a
group of lower ordinals, but we know practically nothing about the peculiarities of
special higher ordinals of the class.

In the second place, it appears impossible to specify any clear totality that would
serve our purpose. Since it seems hopeless to deal ,\lith the absolutistic totality of all
ordinals of the second number class, we have to be content with as large a portion of it as
we can clearly envisage. However, as we know, any such totality is denumerable and we
could, by the familiar diagonal methods, get new effectively calculable functions which
are different from all those determined by the given totality of ordinals.

I feel vaguely that these two objections cancel each other. In the very nature of the

28 Computation, Logic, Philos?phy

matter, neither the class of effectively computable functions nor the totality of all (say)
constructive ordinals of the second number class is or should be (at least to our
knowledge) a sharply delineated whole. If we leave the boundary somewhat
indeterminate, there is no danger of automatic expansion by the diagonal arguments.
The fact that if we assume both a sharp boundary and a constructive approach, we would
get into difficulty seems to me to prove that no sharp boundary should be drawn. Others
seem to have been driven to the different conclusion that, therefore, nothing short of all
general recursive functions (a sort of transcendental totality) could catch all the
effectively computable functions.

It is true that every time we think of a given a of the second number class and
consider the totality of all recursive functions of type, we can also think of a new
effectively computable function which lies beyond. This, however, does not justify the
big jump to general recursive functions which include not only all these, but also those
about whose speed functions we know nothing positive at all (except that they are
defined everywhere).

This matter may be compared with what Brouwer says about denumerable ordinals
(Brouwer 1912, p. 91):

Let us consider the concept: 'denumerably infinite ordinal numbers.' From the fact
that this concept has a clear and well-defined meaning for both formalist and
intuitionist, the former infers the right to create the 'set of all denumerable infinite
ordinal number,' the power of which he calls aleph-one, a right not recognized by the
intuitionist. [etc.]

References

Wilhelm Ackermann

1950. "Zur Widersprucksfreiheit der Zahlentheorie." Mathematische Annalen, Vol. 117, pp. 162-194.

1951. "Konstruktiwr Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse." Mathematische

Zeitschrift, vol. 53.

L. E. J. Brouwer

1912. "Intuitionism and formalism." Trans. in Bulletin of American Mathematical Societv (November,

1913).

Alonzo Church

1936. "An unsolvable problem of elementarv number theon'." American journal of mathematics, vol.

58, pp. 345-363.

1938. "The constructive second number class." Bulletin of American Mathematical Society. vol. 44, pp.

224-232.

Kurt G~del

1934. On undecidable propositions of formal mathematical sYstems. Princeton, N. J., 30 pp.

The Concept of Computability

D. Hilbert and P. Bernays (HE)

1939. Grundla.gen dOer Mathematik, vol. II.

S. C. Kleene

29

1943. "Recursive predicates and quantifiers." Transactions of the American Mathematical Society, yo!.

53, pp. 41-73.

1952. Introduction to metamatheamtics. Amsterdam.

G. Kreisel

1952. "On the interpretation of non~finitist proofs, Part II." Journal of Symbolic Logic, vol. 17, pp.

43-58.

R~zsa P~ter

1951. Rekursive Funktionen. Budapest, 206 pp. Compare also review of the work by R. M. Robinson,

Journal of Symbolic Logic, vo!' 16 (1951), especially last paragraph of p. 281.

A. M. Turing

1936--37. "On computable numbers." Proceedings of the London Mathematical Society, vol. 42, pp.

230-265.

1939. "Svstems oflogic based on ordinals." Ibid., vol. 45, pp. 161-228.

Added note (Nov. 1, 1984). Recently I have found in my papers this manuscript
and some correspondence on it. One letter dated November 1, 1953 comments on a
revised version of the original paper, entitled 'Recursiveness and calculability.' As far as
I can recall, the initial paper was submitted to the British journal of philosophy of
science in the summer of 1953 and afterwards received a lengthy referee's report which
brought in various extraneous issues. I wrote a revision trying to take into consideration
whatever points in the report which appeared relevant. The letter of November 1, 1953
managed, however, to introduce a lot of other ramifications. The version here appears to
be a further revision made in the early part of 1954, which, however, has remained in a
somewhat unfinished state. I must have decided to drop the matter instead of trying to
satisfy the referee.

Professor Wu, Yunzeng, after seeing the manuscript, urged me to include it in this
collection. I have decided to let it stand as it was written in 1954 and made no attempt to
make any reference to work after that date. Rereading the paper reminds me of my
preoccupation with ordinals (of Cantor's second number class) all through the 1950s, as
well as the frustrations of watching the technicians turning every interesting suggestion
into repulsive complexities which bury the initial more attractive simple idea under
mechanical but inpenetrable elaborations. It is hoped that the computer scientists, ,\lith
their more concrete concerns, might find something suggestive in this discursive old
paper. In any case, that appears to be Professor Wu's view.

3. PROCESS AND EXISTENCE IN MATHEMATICS *

I. In learning elementary geometry, we are asked to prove the equality of the base angles
of an isosceles triangle. We draw a rough diagram of an isosceles triangle and observe it.
The happy idea of constructing a new line from the top vertex to the base enables us to
notice relations between the parts of the new diagram, thereby proving the conclusion.
Or, alternatively, we can do this by observing the possibility of a rigid motion in space
that interchanges the two base vertices.

We are asked to find the sum of the first 10000 positive integers, and hit on the
device of rearranging the numbers to look like:

1 2 5000

10000 9999 5001
We notice that each of the 5000 columns adds up to l000l.

When the service of a mathematician is requested by an engineer or a physicist, he
reformulates the problem into a more idealized form, striking out all the factual details
he judges to be irrelevant. This reformulation may require the joint efforts of a
mathematician and a practitioner of the source subject, sometimes combined in one
person. The new problem is more abstract and retains only a skeleton of the original
problem. It is more perspicuous, at least to the properly trained mind which is often able
to juggle it to get a method of solution either by standard techniques or by inventing new
mathematics. Sometimes the application of the method to the specific problem may be
tedious and, for example, calculating machines may have to be used to supply an actual
solution.
2. In each case, there are interplays of schematic representations (diagrams, graphs,
arrays of characters such as numerals, variables, schematic letters, logical and
mathematical constants) and mental experimentations ("Gedankenexperimente"). We
are interested in schemata or diagrams rather than pictures or portraits, because we are
concerned not with all the factual details about them, but rather their skeletons and
structures the "formal facts" about them, the forms and patterns revealed by them.
They are aids to our imagination in the process of reasoning, and, as such, essential to
mathematics. This does not mean that we always have to draw the diagrams on paper or
blackboards, nor that mathematics is a manipulation of symbols. It is not the physical
production of the diagrams that distinguishes the mathematical activity, but the
possibility of using them to assist our mental experimentations in the search for desired
necessary connections.

The mind participates actively in seeing, e.g., an array of numbers as paired off
suitably to create a new uniformity. Thus this "seeing as" enables us to take in at a

* First published in Essays on the Foundations of Mathematics. edited by Y. Bar-Hillel et al.. pp
328-351. 0 Magnus Press, 1961. Reproduced by permission.

30

Process and Existence in Mathematics 31

glance the 5000 pairs of numbers which all have the same sum 10001. In this respect, the
dots are not "mere abbreviations" either, because they, or something else like them, are
indispensable for grasping the array of numbers at one go; they embody the formal fact
that we see the 5000 pairs as a whole string with a definite beginning, a definite end, and
a definite way of continuation. In doing this calculation, one is likely to make (mental)
experiments such as trying to look for suggestions from summing up a small number of
integers. But calculation is not itself an experiment, since once the path is found,
certainty intervenes.
3. To prove that for every prime p, there is a greater prime, the crucial construction is, of
course, the function p! + 1. Here it is not natural to describe this function as obtained by
the act of "seeing as." In general, the types of construction are varied and
heterogeneous.

In searching for a solution, the activity is directed to a definite goal. One is easily
led to ask how the mental experiments are chained together. The technical problem
about methods of discovering solutions Chow to solve it") is not one for the philosophy
of mathematics, although it is of pedagogic interest and central for the mechanical
simulation of the mathematical activity. The nature of inferring and the compulsion of
the logical must, once the inference is made, is indeed the concern of philosophers. We
accept, as a matter of fact, a sequence of symbols as an application of a certain rule, e.g.,
the modus ponens. Here we may easily get into the slippery ground of truth by
convention, synthetic a priori, self-evidence. But an underlying foundation is the
sociological fact that it is so accepted.
4. That Beethoven continued to compose good music after he had gone deaf is important
for the study of the activity of composing music. Similarly, blind mathematicans are a
phenomenon which should shed some light on the nature of the mathematical activity. It
is very striking that most of us would find it very difficult, if not impossible, to multiply
three 7--digit numbers in our head. For one thing it is not easy to retain the question
without the assistance of paper and pencil. If a child asks his father who is blind to help
him to do such a sum, he would probably ask the child to serve as his pencil and paper to
record the question and the intermediate results. If such assistance is denied a blind
mathematician who wishes to do complicated numerical calculations, he would have to
train himself to be a calculating prodigy.

That pencil and paper is indispensable to complicated calculations is certainly an
important fact about the calculating activity. Most of us do not memorize a large number
of telephone numbers but we remember, or rather know, different methods of finding
them out. We do not learn the multiplication table to 100 times 100 but only to 9 times 9,
or 12 times 12. In more advanced mathematical activities, most of the things which a
mathematician knows have not come to him through a deliberate effort to memorize.
Interlinks not only increase the size of things remembered but also their duration, their
quality. Certain things are kept simultaneously in the head, and these enable one to spin
out a great deal of things in sequence. The spinning power of a head with structured
memories and dispositions determines the power to experiment mentally and the ability
to do mathematics. When one says that mathematics is an activity of the pure intellect, it
cannot be to deny that sense perceptions and memory form an integral part of it, but
rather that an excellent eyesight or a good memory is not a distinguishing characteristic

32 Computation, Logic, Philosophy

of better mathematical capabilities.
5. Some problem-solving is prompted by practical needs, others by analogy with
existing problems. Not all mathematical activity is problemsolving. Esthetic needs and
the desire to systematize and smooth out things lead to the development and
improvement of mathematical theories. It is among such results that the reduction of
mathematics to logic comes in.

And it is along such a path that one is led to the librarian's definition of pure
mathematics as the class of all conditional propositions in which all constants are logical
constants.

"All A are B, all Bare C; therefore, all A are C" is a diagram and traditional logic is
a sort of mathematics, as ticktacktoe is a sort of board game. One may feel that, being so
crude and inefficient, it hardly deserves the fair name of mathematics. However,
continuity with mathematical logic seems to lend some colour to it.

Traditional logic is more a hindrance than a help to right reasoning that is quite
adequately taken care of by our natural power. This is seen from the fact that the more
purely rational an activity is, the less is it needed. Mathematics is least in need of it while
election politics, judging from Susan Stebbing's studies, needs it most.

Mathematical logic has to a considerable extent suffered the same kind of
misfortune. Perhaps certain considerations in modern topology, which involve more
definitions than arguments, are an exception. Logic is primarily interested in the
analysis of a proof into as many distinct steps as possible, and not, like mathematics, in
efficient methods of reasoning which can produce remote consequences in one swoop or
unravel an involved entanglement. When, e.g., an elementary branch of it gets practical
applications in making machines, it does this only, so to say, accidentally and against its
own will. It is by leaving behind the basic concerns oflogic and pursuing the subject as a
simple sort of mathematics that the application is made.
6. The breaking up of a proof into a large number of small steps is desirable in so far as
the set of all possible different small steps is in general less complex than the set of a
smaller number of different bigger steps. This seems obvious, since the union of all
small steps which make up one big step is simpler than the big step which contains the
simple steps (possibly with some repetitions) plus a special mode of combination, and
some small steps generally occur in a number of different big steps. There is, however,
no equally obvious reason why such simplification should be desirable for the
mathematical activity. In fact, since we are quite at home with the bigger steps, one is
inclined to think that by multiplying the pieces in each proof, the breaking up only
serves to slow us down and make it harder for us to take a proof in.
7. Few mathematicians have taken the trouble to learn the theory of quantifiers and they
are none the worse for their ignorance. It sounds idle to rejoice over the accomplishment
that when a logician has analyzed and reformulated a proof, even a machine can check it
for correctness. Nobody, not even a logician, checks an elaborate mathematical proof in
this manner, and so far machines have not been used to check proofs.

Twenty years ago it must have appeared that if man finds such a way of checking
proofs tedious, machines would not do it any better either in speed or in accuracy. The
appearance of large machines and the rapidity with which their speed and reliability
have been improved, is one of the unexpected occurrences in history which yield

Process and Existence in Mathematics 33

consequences which are hard to predict.
There is, however, a distinct possibility that in this connection a basic application

oflogic will be found that is based on the essence rather than the accidents oflogic: viz.,
to handle inferences as efficiently as calculations. For example, some preliminary work
has already enabled a common machine to prove all theorems of quantification theory
with equality in Principia (9 chapters) in less than nine minutes.
8. The application of the analysis of inference by mathematical logic to a project of
mechanizing mathematics depends on a quite prosaic but yet fundamental sense of the
reducibility of mathematics to logic: every proof could be formalized in logic as
establishing purely by logic a conditional proposition that the theorem follows from the
relevant mathematical axioms. This is not surprising since no claim is made about
proving in logic the axioms as well. As a result, there is also no need to stretch the range
of logic to include extraneous things such as sets or classes.

Grammar is of little help to learning one's native language or cultivating elegant
writing. And we do not worry about the theory of sound waves when learning to speak.
Phonetics is a little more relevant, although few can afford tuitions from Professor
Higgins. If mathematical logic were a little less pure, perhaps it could assist a
mathematician to learn some alien branch of mathematics. In its present aloof form,
however, a training in mathematical logic is neither necessary nor likely to speed up the
pursuing of other branches of mathematics.

On the other hand, if a machine is to do mathematics, it is necessaty that methods
of logic be explicitly included. This provides incentive for doing more detailed formal
work on the decision problem and proof procedures for logic.
9. Moreover, considerations about the practical feasibility of alternative procedures are
pushed to the forefront. This supplements the basic concern that a mathematical
argument should be perspicuous, surveyable, or capable of being taken in. These two
aspects of the problem of efficiency are not identical. For example, a less efficient proof
procedure is generally easier to describe, and the argument for proving its adequacy is
generally easier to grasp. On the other hand, the two aspects combine to account for and
give direction to much of our mathematical activity. To stress the requirements that
procedures be feasible and that proofs be surveyable, one might coin the label
"praximism. "

If a machine produces a proof of Fermat's conjecture with one million lines, we still
have the somewhat easier task of making the proof perspicuous. This would be a
. situation where we could say, in a clear sense, that a proof exists but nobody has
understood it. Somebody would undoubtedly prefer to say that there is no proof yet, just
as he would say that a machine cannot calculate, cannot prove, because there must be a
final contact which lights up the whole thing and only a man can establish this contact by
taking in the whole process that makes up the calculation or the proof.

When interesting mathematical questions can be settled by machines, our chief
concern will be shifted to the methods and their representation in mechanizable
languages, And we do not expect to obtain any program with 106 lines of coding. We
synthesize and abbreviate as we make progress, in order to press more and more into a
brain as a bounded finite machine. With the increased power of mechanized methods, an
economy in storage is achieved by substituting general methods for particular

34 Computation, Logic, Philosophy

arguments.
In a different direction, the project of mechanical mathematics calls our attention

to the problem of formalizing methods of finding proofs. Here we have another hitherto
largely neglected domain which is susceptible of a treatment by the methods of
mathematical logic. Such problems are on a different level from the study of the
psychology of mathematical invention. We may be able to simulate the external
circumstances under which Poincare's subconscious functions marvelously. But it
seems preposterous to suppose we are capable of endowing a machine with a
subconscious comparable to Poincare's.
10. The more sensational reduction of mathematics to logic is the thesis that definitions
of mathematical concepts can be found in logic such that mathematical theorems can be
transformed unconditionally into theorems in logic. This is plausible only if "logic" is
understood in a very broad sense to include set theory as a part.

The term "set theory" is less familiar than the term "logic", but then, at the same
time, more unambiguous too. Since set theory is itself a branch of mathematics, the
question is that of reducing other branches of mathematics to this particular one. In this
sense, the matter is initially a domestic affair of mathematics. The concern of
philosophers has come about partly as a result of the historical accident that Frege and
Russell, rightly or wrongly, connect them with philosophy, and that at least one of them
is such a good propagandist. None the less, the persistence of such interest surely cannot
be discarded simply by deploring the poverty of philosophy. Mter all, even if set theory
is but another branch of mathematics, the claim that all other branches are reducible to
it makes it a proper concern of philosophers.
ll. The most interesting case is number theory. If we are concerned only with numerical
formulae containing addition and multiplication, it appears possible to find theorems of
logic which correspond to them rather naturally. On the other hand, if we are concerned
with general laws of arithmetic as well, the reduction is only possible when we take set
theory rather than logic proper.

It is puzzling that Kant called "7 + 5 = 12" synthetic a priori and that Frege
believes himself to have refuted this by his reduction of arithmetic to logic. One way to
make the two viewpoints plausible seems to be the following. In order that an equation
be analytic, the two sides must have the same sense, not just the same denotation. One is
tempted to say that "7 + 5" and "12" have different senses, although the same
denotation. Hence, it is synthetic and a priori, the necessity part not being questioned
here. But there is a natural way of reducing "7 + 5 = 12" to a theorem oflogic. Suppose
we use the abbreviations:

(E!lX) Gx for (Exd (y) [GXl &(Gy:::> y = Xl)]'

(E!2X) Gx for (EXl)(Ex2)(y) [Xl =I- X2 & GXl & GX2 & (Gy:::>

(y = Xl V Y = Xz))],

Then the corresponding theorem of logic is:

(*) [(E!7X) Gx & (E!sx)Hx & (u) ~ (Gu & Hu)] :::> (E!12X)(GXV Hx).

Process and Existence in Mathematics 35

Since it is natural to regard all theorems of logic, i.e., the theory of quantifiers with
equality, as analytic, Frege seems to have shown that "7 + 5 = 12" is analytic.
12. There are a number of difficulties in this explanation. The negation of something
like (*) does not give us what we want if we are interested in proving, e.g., "7 + 6 i=- 12".
The obstacle arises because the letters G, H serve as free variables so that we have to
quantify them to get the correct negation. We certainly do not wish to say that "7 + 5

= 12" is analytic but "7 + 6 -=/= 12" i5 5ynthetic a priori. Moreover, there is no way to get
around the need of existence assumptions in one form or another. If there are not
enough entities in the universe of discourse, the antecedent of (*), for instance, could be
always false, and we can change the consequent and prove, e.g., 12 = 13. We are led
back to the reduction of arithmetic to set theory, and there is an obvious choice between
saying that arithmetic has been shown to be analytic (Frege) and saying that logic (more
correctly, set theory) has been shown to be synthetic (Russell at one time).

Although the numerals 5, 7, 12 occur in (*) as subscripts, there is no direct
circularity in the reduction, because we can expand (*) and avoid the use of numerals by
employing sufficiently many distinct variables. A striking feature of the reduction is
that short propositions are reduced to long ones. As a result, it would be very clumsy if
one were to do arithmetic in such a notation, and we are quickly forced to introduce
abbreviations. This is rightly considered an inessential complication for the simple
reason that the reduction is not meant to introduce a new technique of calculation but
only yields incidentally an informal result about calculations, that one could do
arithmetic in the complicated symbolism too. This depends on the reduction plus the
information that one can do arithmetic in the customary notation.

A more basic difficulty of the reduction is the accompanying increase in the
conceptual complexity. If we attempt to give a proof of (*) in the expanded form, we find
ourselves counting the distinct variables, and going through, in addition to operations
with logic, exactly the same kind of moves as in elementary calculations. We are able to
see that (*) is a theorem of logic only because we are able to see that a corresponding
arithmetic proposition is true, not the other way round. By tacking "frills" on an
arithmetic proof of "7 + 5 = 12," we get a proof of (*) in logic. "A definition of
christening in a particular church is no longer a definition of christening."

13. There are different ways of defining arithmetic concepts in set theory. If we imagine
a determinate situation with one specific formal system of set theory, one of arithmetic,
and one specific set of linking definitions, then there is a theorem in the primitive
notation of set theory that corresponds to the arithmetic theorem "1000 + 2000
= 3000" by dint of the linking definitions. The formula would be forbiddingly long.
Does it mean the same thing as the original formula of arithmetic? When one who is not
aware of the definitions is faced with the long formula, he might be at a loss to see any
clear connections between the two formulae. He may be sufficiently familiar with set
theory to understand the long formula and still not recognize its relation to the short
one. Or even if he knows the definitions and is asked to simplify the long formula
according to them, chances are he will make errors and arrive at some incorrect result.
We are inclined to think that such considerations are irrelevant as far as the intended
meaning of the formulae is concerned. But if a man fails to see the equivalence of the two
formulae even after hours of hard labour, can we still say that the two formulae mean the

36 Computation, Logic, Philosophy

same thing to him?
This is an artificial question because nobody is expected to write out or work with

the long formula in order to do arithmetic calculations. We have a short argument to
show that there must be such a formula, and that nearly exhausts the meaning of the
hypothetical assertion that we could work directly with it too. When it is a matter of
doing mathematics, we naturally fall back on the best available technique we have. If we
had only the long version at first, then we would as a matter of fact not be able to do
much calculating until we hit on some systematic way of changing it into a short version.
We may spend many hours to read a long formal proof, but when we understand it, we
do not give each line the same status, but work out an easily memorizable structure
which may include known theorems, lemmas, subcases, reminders that certain
successions of steps are of certain familiar forms. We do not have to keep all details of
the structure in mind at the same time. The proof may be a mile long, we can still plant
posts as we go along and not worry about parts changing when we are not looking at
them. As soon as we are convinced that some parts do give us a subtheorem which is the
only contribution which those parts can make toward proving the final theorem, we
need retain only the subtheorem in our head.
14. Through the linking definitions, the theorems of set theory can be divided into two
classes: those corresponding to theorems of arithmetic and those which do not.
Theorems of both classes are, one is inclined to think, in the system all along; the linking
definitions do not change their meaning but merely provide a different way oflooking at
those in the first class. Most of us have seen pictures which appear to be a mess at first,
but reveal, e.g., a human face upon closer scrutiny. The physical object that is the
picture is not affected by the different impressions which we get from it. The picture,
however, means different things before and after we discern a face. This, one feels, is also
the situation when linking definitions enable us to see certain formulae of set theory as
disguised arithmetic formulae. If one is afraid that next time he will forget how he can
discern a face, he may, as a reminder, trace certain parts of the picture by a red pencil. As
a result, everybody can immediately see a face, although the configurations in the
picture remain the same. Does it make an essential difference whether the stress is made
by a red pencil or just seen in our mind's eye?

Does a proof change the meaning of a hitherto unproved mathematical
proposition? Does a new proof of a mathematical theorem change its meaning? Think of
the proposition as a station in a formal stysem. The country is there, but we do not know
whether there is any road which leads to the station. Presently we find one road, then we
find another. But the country is the same, the station is the same. Both of us understand
the proposition that there are infinitely many prime numbers. You know a proof of it
but I do not. Does it have the same meaning for both of us? It is not yet known whether
there are infinitely many pairs of primes nand n + 2 ("twin primes"). Will a proof of
the proposition change its meaning? The proof will reveal new connections and provide
reminders which enable every member of the mathematical community to see the
proposition as true. Does the increase of knowledge affect the meaning of a proposition
or is the relation between knowledge and meaning only an external one resembling the
relation between the weight of an elephant and our knowledge of it?

The elephant exists independently of our knowledge but in what sense does a proof

Process and Existence in Mathematics 37

exist independently of all knowledge? Once a proof is found, it can be codified and put at
its proper place within a textbook, but where did it reside previously? Moreover, to call
several pages of printed marks a proof presupposes a good deal of the sociological
circumstances which make them a proof. For instance, they are sufficient to recreate in a
few people the gradual process which culminates finally in seeing that the concluding
proposition of the several pages must be true. We are reluctant to deny that every
possible proof in a formal system exists even before we have singled it out and digested it
by constructions, mental or with red pencils. Under suitable conditions of size and
endurance, a machine can eventually grind it out. In this sense, the undigested proof has
existed all along, even though the digested proof has to be invented. Is, however, an
undigested proof a proof? To say that it is a proof because it is, though undigested,
digestable, leads to the question of distinguishing digestable in principle from
digestable as a matter of fact. Even if a miracle reveals that there is a way of seeing the
geographical contours on Venus as a proof of Fermat's conjecture, how do we know we
shall ever be able to find suitable perspectives to make such an undigested "proof'
perspicuous? It seems like a dogma to say that every undigested proof will eventually be
digested. If one does not wish to assert so much, then it is hard to provide, without
circularity, a sense of "digestable" according to which every undigested proof is
digestable.
15. I think I know how to add and multiply. But it would be easy to find complicated
problems which I cannot do within two hours. For instance multiplying 78 by 78, 78
times. With some effort, we can also find computation problems which I cannot do, at
any rate by the ordinary technique, within a month, or within my lifetime. In what sense
do I know how to add and multiply? Not just in the sense that I can handle small
numbers, because I feel I can deal with large numbers too. Or perhaps, if I live long
enough, say by keeping myself fit like a great athelete, I shall be able to complete even
the most complicated additions and multiplications? But then surely I cannot do them
with the ordinary technique for there would not be enough chalk, would not be
sufficiently large blackboards.

These considerations strike one as utterly irrelevant. When I say I can do addition
and multiplication, I do not mean to preclude the possibility that practical difficulties
may prevent me from carrying out certain complicated calculations. I feel I can do them,
shalll we say, in principle. One is generally not expected to do artificially elaborate
calculations. If it were the case that nobody is interested in multiplications of less than
300 numbers each with more than 10 digits, then one might say that nobody can
multiply unless he is assisted by a machine.

The words" can," "decidable," etc. mean different things in pure mathematics and
applied mathematics, in actual mathematical activities and in the discussions of
mathematical logicians. A man says that the further expansion of n is a further
expansion of mathematics and that the question changes its status when it becomes
decidable. Since what the millionth place of the decimal expansion of n is, is a
theoretically decidable question, the man seems to be inconsistent in saying that a
ground for the decision has yet to be invented. This is so only if we think of decidable in
the logician's sense. In the sense of actually doing mathematics, the question is not yet
decidable because it is to be expected that some ingenious general argument is required

38 Computation, Logic, Philosophy

to supply the required digit and prove to the satisfaction of mathematicians that it is
indeed the desired one. And it strikes one like dogmatism to assert categorically that
such an argument will be found. It is true that finitists and intuitionists do not worry
about such questions because once a problem is decidable in the theory, they lose all
interest in it. This, however, does not mean one cannot interest oneself in feasibility as a
concept worthy of philosophical considerations.

Confusions arise when two men choose the two different senses and refuse to
recognize that there is also the other sense. Perhaps a phenomenologist is one who
permits both senses and distinguishes them from each other. At any rate, it seems
convenient to make use of both senses, at least until we have more successfully unified
them.
16. There is a great gap between what can be done in principle and what can be done in
practice. Often we are interested in broadening the range of the latter. That is why such
techniques as the use of the Arabic notation, logarithmic tables, computing machines
are important. Are they only of practical importance or are they also of theoretical
interest? Shall we say that theoretical and practical significances merge in such
fundamental improvements in the technology of mathematics?

It is not always easy to draw the line between the theoretical and the practical.
Numbers of the form 22n + 1 are called Fermat's numbers because Fermat conjectured
that all such numbers are prime. It has been proved since Fermat's time that, for n = 5,
6, 7, 8, Fermat's numbers are composite. A proof for each case was a nontrivial piece of
mathematics, even though, with patience, these questions could be settled simply by the
ordinary methods of calcualtion. One might say that the proofs provide us new
techniques for deciding problems which could otherwise be solved by uninspired
laborious computation.

In mathematics the introduction of new techniques is important and definitions do
serve to introduce new techniques. It is therefore misleading to speak of them as "mere
abbreviations." Even if, after a proof of a theorem in number theory has been
discovered, it is possible to eliminate defined terms and translate the proof into the
primitive notation of set theory, the translated proof would not have been discovered by
one who worked exclusively with the primitive notation of set theory. Nor could the
translated proof be understood correctly even if one is aware of the definitions. If set
theory alone is given but the linking definitions with arithmetic are still missing, then we
do not yet have arithmetic in full force because we would not and could not, as a matter
of fact, do the arithmetic proofs and calculations in set theory. If both set theory and the
linking definitions are given, we continue to do arithmetic as before only with the
awareness that there is a sense in which our proofs and calculations could be translated
into set theory. But doing arithmetic is still different from doing set theory. We do not
change our manner of doing arithmetic. That is the sense in which arithmetic has not
been reduced to set theory, and, indeed, is not reducible to set theory.

Do we reduce mathematics to abstract set theory or do we get set theory out of
mathematics by padding? In analysis, we find certain real numbers such as n and e of
special significance. Somehow we are led to the search for a general theory of real
numbers. Since we want the theory to be general, we postulate many more real numbers
in order to make the surface smooth. When we find that real numbers, natural numbers

Process and Existence in Mathematics 39
and many other things can all be treated as sets, we are induced to search for a general
theory of sets. Then we add many more other sets in order to make the surface appear
smooth. "If tables, chairs, cupboards, etc., are swathed in enough paper, certainly they
will look spherical in the end." In this process, we lose sight of the distinctions between
interesting and uninteresting sets, useful and useless real numbers. In order to recover
the distinctions once more, we have to take off the padding. Could we perhaps describe
this reverse process as reducing (e.g., "Mrs. E is on a diet") abstract set theory to
mathematics?

If we think in terms of true propositions about natural numbers, then set theory is
also reducible to arithmetic at least in the sense that, given any consistent formal system
for set theory, a translation can be found such that all theorems turn into true arithemtic
propositions. The same is true of any other branch of mathematics on account of the
possibility of an arithmetic representation of formal systems. Hence, we can also say that
all mathematics is reducible to arithmetic, but in a sense quite different from, for
instance, what was known as the arithmetization of analysis. Arithmetization of logic
involves a change of subject from talk about classes, etc., to talk about how we talk.

17. When we ask, what is a number? what is the number one? we seem to be after an
answer as to what numbers reallyare. If numbers are neither subjective nor outside of us
in space, what could they be? And then it is gratifying to get the answer that they are
really certain classes. One is relieved to have thus unmasked numbers. What does the
unmasking accomplish? Frege's definition of number seems to resemble rather closely
our unanalyzed concept of number so that we are sometimes inclined to take it as
providing a true analysis of our intentions. But what more?

Apparently there is some belief that the reduction puts mathematics on a more
trustworthy basis. Otherwise, the paradoxes would not have induced Frege to say that
the foundation of arithmetic wobbles. This is, as we now know, unjustified. We
understand arithmetic better than set theory, one evidence being the highly informative
consistency proofs of arithmetic. The foundation of arithmetic is more trustworthy than
that of set theory: what would be of greater interest is rather to found set theory on
arithmetic, or an extension of arithmetic to infinite ordinals.

There are different ways of defining numbers in terms of classes. Each of them
leads to and from the undefined concept of number, and they are seen to be equivalent
not through the interconnection between themselves but by way of the channels
connecting them to the naked concept of number. Perhaps this indicates a certain
priority of numbers to their corresponding classes?

Another advantage of identifying numbers with a suitable class is said to be
"recommended by the fact that it leaves no doubt as to the existence-theorem."
"Postulating" a limit to fill the gap for each Dedekind cut is said to have advantages
which are the same as those" of theft over honest toil," while the course of honest toil is
to identify the limit with the class of ratios in the lower section of the cut. It is in a sense
true that the latter course "requires no new assumptions, but enables us to proceed
deductively from the original apparatus of logic." This is so, however, only because in
the original apparatus of logic we have already made assumptions of the same kind. If
the existence of the postulated limit is called in question, the existence of its
corresponding class is equally doubtful. There is no reason to suppose that numbers

Computation, Logic, Philosophy

evaporate but classes are rocks.
The reduction to set theory gives "the precise statement of what philosophers

meant in asserting that mathematics is a priori." This is neither an informative
statement nor a true one.

"In speaking of arithmetic (algebra, analysis) as a part oflogic, I mean to imply that
I consider the number concept entirely independent of the notion of space and time, that
I consider it an immediate result from the laws of thought." (Dedekind) It seems,
however, clear that, instead of resolving the foundational difficulties in the separate
branches, the reduction to set theory merely jumbles all difficulties together and adds a
few new ones.

It is said that the axioms of arithmetic admit diverse interpretations while the
reduction eliminates such ambiguities. True, the concept of set is involved in the axiom
of induction and the intended interpretation of the concept of set assures the intended
interpretation of the axioms of arithmetic. But arithmetic presupposes only inductive
sets which are a particular type of set. Moreover, we should not confuse the possibility of
incorrect interpretations with the impossibility of correct interpretations. It is possible
both to interpret the axioms of arithmetic correctly and to interpret the axioms of set
theory incorrectly. Moreover, interpreting the axioms of set theory involves greater
conceptual difficulties.
18. Surely one cannot deny that Frege's definition has the great virtue of taking care of
applications? But the application of number to empirical material forms no part of either
logic or set theory or arithmetic. This is undoubtedly the case if we perform a
multiplication just in accordance with the rules of calculation or argue formally by
observing the rules of logic. There may be some doubt if we consider the proposition
"Paris has 4 million inhabitants" as an application of the number 4 million, and the
proposition "two rabbits plus two rabbits yield four rabbits" as an application of the
mathematical proposition "2 + 2 = 4."

Such applications can appear neither in arithmetic nor in set theory for the simple
reason that words such as "Paris," "rabbits," "inhabitants" do not occur in the
vocabularies of these fields and the settheoretical definition of numbers offers no help.
If it is meant that the definition enables us to apply numbers within the framework of a
wider language, then it is not clear why the same does not apply without the definition.
Suppose we are to infer the proposition" she has two virtues" from the proposition "her
only virtues are beauty and wit." It is apparently thought that the inference can only be
made by using Frege's definition of the number 2, because otherwise the class of her
virtues cannot be shown to have the number 2. If, however, the full richness of ordinary
discourse is permitted, we can surely make the inference without appeal to Frege's
definition.

In any case, why should such applications be taken as the proper business of set
theory or of arithmetic? Mathematics and its applications are two things which can
coveniently be studied separately. If the desire is to have a general language which
includes both mathematics and other things, the link between numbers can just as well
be provided by axioms which assert for example that a class has n + 1 members if and
only if it is gotten from a class with n members by adding a new member. In other words,
if we adopt the course of taking numbers as undefined, we can still, if we wish, add

Process and Existence in Mathematics 41

axioms to do the job of Frege's definitions. The effects are the same except that
mathematics and its application are divided at a more natural boundary.
19. It is remarkable that the Russell-Zermelo contradiction led Frege to doubt whether
arithmetic can possibly be given a reliable foundation at all. Actually the contradictions
in no way make it necessary to modify the definitions of number in terms of sets, only
the project of formalizing a general theory of sets is affected. We are, therefore, faced
with the task of designing a consistent and adequate formal system of classes. We were at
first struck by the fact that natural numbers, real numbers, and many other things can
all be gotten out of sets. Then we found that contradictions can be gotten out of sets too.
We are now to design a calculus which includes as much of the other things as possible
but not the contradictions.

If we do not think in terms of a system, why can we not treat a proof of
contradiction as just another piece of mathematics which could be judged interesting or
uninteresting more or less in the same manner as other mathematical proofs? True, the
conclusion, being a contradiction, cannot be significant in the same way as an ordinary
theorem is. The proof establishes either more or less than usual. It either shows "the
unreliability of our basic logical intuition," or reveals some confusion on the part of the
owner of the proof. Dividing both sides of the correct equation 3 x 0 = 2 x 0 or 3(2 -
2) = 2(2 - 2) by 0, we easily get the contradiction: 3 = 2. Such a discovery does not
excite us because it is well--established that the restriction e =1= 0 is essential in inferring
a = b from ac = be. Why can one not discard the contradictions in set theory as easily?
The reason on the surface is the lack of any comparably simple and natural restriction
which would do the job. This is, it is sometimes said, an indication of the more basic fact
that our concept of class is not sufficiently clear.
20. Formal systems are to suit the actual proofs in living mathematics, not the other way
about. If a formal system adequate for analysis yields a contradiction, we say that we no
longer trust the formal system. How would this affect the many mathematical results in
analysis, accumulated through the centuries? It is hard to speculate on the basis of such
an indeterminate hypothesis. We may, however, remind ourselves that practically no
significant mathematical theorems or proofs have been given up because of the
contradictions of set theory which have, according to some people, discredited the
fundamental methods of argumentation in set theory.

The emphasis on a consistent adherence to the rules we use in mathematical
reasoning has generated a sharper distinction between confusion and contradiction. To
treat an infinitesimal sometimes as zero sometimes as a positive quantity in the same
proof is a confusing and inconsistent procedure, but does not yet yield an explicit
contradiction. The criticism of a proof using infinitesimals is ambiguity and not that a
contradiction follows.

Why should contradictions worry anybody? Imagine a mathematician pleased with
the discovery of a group of new theorems publishes a book. A rival studies the proofs
and comes along with the challenge, "Using your kind of argument, I can prove even
contradictions." Could it then be replied "Well, how nice, my methods have interesting
applications of which I was not aware, let me add another chapter entitled 'Further
Applications of the Above Methods"'? Even though contradictions are often interesting
and new methods are often recommended by the interesting theorems which they enable

42 Computation, Logic, Philosophy

us to prove, nobody, unless his purpose were to experiment with contradictions, has
recommended a method on the ground that it is powerful enough to yield
contradictions. The usual reaction to the discovery of a contradiction is to analyze the
moves involved in the derivation and pronounce some of the moves unwarranted. The
repercussions of a contradiction include the rejection of all proofs which involve similar
moves. In this sense, contradictions are contagious. Proofs which were otherwise con
sidered healthy are put into concentrated isolation on account of their contact with
contradictions.
21. It is customary to use formal systems as a tool for separating desirable from
undesirable arguments. Formal systems are constructed under the guiding principle
that when an argument is found to be faulty, all arguments of the same kind are to be
excluded. This gives the impression of being less arbitrary in our exclusion of certain
arguments because we are rejecting not only one particular argument but all arguments
of its kind. Given any argument, there is, however, inevitably an element of arbitrariness
in any attempt to determine the kind to which it belongs, that is, to account for the
troubles. Indeed, there are so many different ways by which we can determine the
underlying category of an argument. We do not even have to use formal systems for this
particular purpose.

Suppose given a group of theorems and a formal system in which proofs for these
theorems can be carried out, and a contradiction is discovered in the formal system. The
system is thereby discredited. What about those theorems which were originally
discovered with no regard to this formal system? True, there is now a uniform method of
proving all these theorems in the formal system because there is a generally accepted
principle that a contradiction implies everything. We may yet distinguish proofs of the
system which go through contradictions from those which do not. Every proposition of
the system has a proof of the first kind but not necessarily one of the second kind.

Does the inconsistency of a formal system destroy the value of those proofs which
do not go through contradictions? The first question is, of course, what values we did
attach to the proofs to begin with. Were we originally interested in the proofs on account
of their beauty, or the truth of the conclusions they establish, or the utility? Proofs in an
inconsistent system or a system not known to be consistent can often have heuristic
value: for instance, there are theorems of number theory which were at first proved by
methods of analysis and later received more elementary proofs.
22. It is known that we can derive the differential and integral calculus in some system of
set theory which is not known to be consistent. Suppose the system is found to be
inconsistent. It follows that we can derive all sorts of false and absurd consequences in
this system, some of them having to do with the differential and integral calculus.

Since the calculus can be applied in constructing bridges, we may be able to prove
that a pillar whose diameter is three feet long is strong enough although actually we need
a pillar whose diameter is seven feet long. Hence, it might be argued, bridges may
collapse because of the inconsistency of the particular system in which we can develop
the calculus.

Actually no such thing can happen. For one thing, those who construct and develop
axiomatic foundations of the calculus are usually not the same people as those who apply
the calculus in the construction of bridges. It is not impossible that, by accident, the

Process and Existence in Mathematics 43

same person may be engaged in both kinds of activity. Even then, he is not going to do
his calculations by going all the way back to his favorite axiomatic set theory. Moreover,
even if he does take the trouble to justify his calculations, after it is done, by citing
explicitly the axioms and theorems of the set theory, he is still in no danger of getting the
wrong result because he does not use all the complicated apparatus that is available in
the system but makes only such turns as could also be justified in consistent systems.

It is not necessary to formalize mathematics nor to prove consistency of formal
systems if the problem is that bridges shall not collapse unexpectedly. There are many
things which are more pertinent in so far as bridges are concerned.
23. So far as the present state of mathematics is concerned, speculations on inconsistent
systems are rather idle. No formal system which is widely used today is under very
serious suspicion of inconsistency. The importance of set-theoretical contradictions has
been greatly exaggerated among some quarters. When the non-Euclidian geometries
were discovered and found to be unintuitive, it was natural to look for consistency
proofs by modelling considerations. And then it was a short step before one asked for the
basis on which the model itself is founded. When Kronecker thought of classical
analysis as a game with words, it was again natural that he did raise the question whether
such a game was even consistent. But the more modern search for consistency proofs is
differently motivated and has a more serious purpose than avoiding contradictions: it
seeks for a better understanding of the concepts and methods.

"The superstitious fear and awe of mathematicians in face of the contradiction."
But Frege was a logician and Cantor was a mathematician. Cantor was not a bit worried
about the contradictions. In fact, he said: "What Burali-Forti has produced is
thoroughly foolish. If you go back to his articles in Circolo Matematico, you will remark
that he has not even understood properly the concept of a well-ordered set."
Admittedly Cantor's well-known definition of the term "set" is difficult, yet it cannot
be denied that the definition does exclude, through the mildly "genetic" element, the
familiar detivation of contradictions.
24. The explanation of mathematical existence in terms of consistency appears to be an
evasive twist: since we cannot give a suitable positive characterization of all
mathematical objects, let us say that in mathematics, all that is not impossible is real. On
the one hand, constructibility seems to leave out some desirable mathematical objects
and face us with the question of explaining the existence of a construction. On the other
hand, a Platonic world of ideas, unlike material things in space and time which form the
basis of the physical sciences, seems to have very little explaining power in mathematics.

The classical definition of the existential quantifier in terms of the universal
quantifier has the flavor of identifying existence with consistency, while our experience
with the physical world suggests that although the actual is not impossible, the possible
does not always exist. While in physics there is a natural distinction between things and
laws, laws and constructions seem to be all-pervading in mathematics. Radical
phenomenalism is idle and futile as far as the foundations of empirical knowledge are
concerned, but even there the basic distinction is hesitantly preserved in the dubious
entities called sense-data. Yet mathematical objects are primarily connections,
relations, and structures.
25. In doing mathematics, it might even increase some people's power of penetration to

44 Computation, Logic, Philosophy

think of mathematics as a study of the natural history of numbers and classes. As a
philosophical position, such a view would lead too quickly to mysticism and make an
articulate philosophy of mathematics well nigh impossible, except perhaps as a sort of
metaphysical poetry.

If, e.g., numerals are treated as proper names there is no point to ask then whether
positive integers exist, sinve otherwise numerals would not be proper names. The
question of existence has to be directed to the satisfiability of a property, a relation, a
condition, a theory: is there some object or some set of objects with a suitable structure
that satisfies a given condition? There exist non-Euclidean spaces since axioms of non
Euclidean geometries have models in the Euclidean. There exist complex numbers since
axioms for them can be satisfied by pairs of real numbers. Each particular complex
number, e.g., i, has a derived existence as a constituent of the whole structure of
complex numbers, satisfying certain relations to other complex numbers.

It is familiar that such modelling considerations generally come to an end with
positive integers and the continuum: there is in any case a sort of circularity in the
explanation of existence by consistency and consistency by satisfiability. We need some
basic stuff to begin with: in what sense do they exist?

It seems reasonable to suppose that if a theory is consistent, it must have some
interpretation. It may be very difficult to fabricate a model, but how can a theory be
consistent and yet sutisfied by no model whatsoever? The fundamental theorem oflogic
gives a sharper answer for theories formulated as formal systems within the framework
of logic, i.e., the theory of quantifiers: any such theory, if consistent, has a relatively
simple model in the theory of positive integers, simple in the sense that rather low level
predicates in the arithmetic hierarchy would suffice.
26. Hence, we may feel that the basic question is the sense in which positive integers
exist. More exactly, we are concerned with the existence of a structure or a relation that
would satisfy the axioms of arithmetic; the individual positive integers would enjoy a
derived existence in such a structure.

It appears at first sight that the proof-theoretical consistency proofs of the axioms
of arithmetic provides a (modified) finitist solution to this question, and that the
translation into the intuitionistic system of arithmetic gives an intuitionistic solution of
the problem. If this were indeed so, we could at least concentrate on what Hilbert calls
the combinatorial hard-core of mathematical thinking or what Brouwer calls the basic
intuition of two-in-one. There are, however, a number of difficulties accompanying the
incompletability of the axioms of arithmetic.

The arithmetic translations of theorems in the usual systems of set theory are often
no longer theorems of the usual systems of arithmetic. As a result, a consistency proof of
the axioms of arithmetic does not settle the consistency question of classical analysis or
of set theory. Even in the consistency proof of arithmetic, there appears to be an
indeterminacy in the notion of finitist proofs.

Moreover, there is a choice between different axiom systems of arithmetic not only
in the simple sense that alternative equivalent formulations of, say, the Euclidean
geometry are familiar, but in the deeper sense that extensions of the usual set of
arithmetic axioms seem to be just as natural, e.g., the addition of transfinite induction
up to the first epsilon number. This tends to indicate that there is something absolute in

Process and Existence in Mathematics 45

the concept of number and we only gradually approximate it through mental
experimentations. Or at least, we have no full control over our intentions and mental
constructions which, once in existence, tend to live a life of their own.

In a different direction, the existence of cOllsistent systems which have no standard
models (e.g., are omega---inconsistent) points to a certain discrepancy between
existence and consistency. The usual axiorm; require that certain sets or numbers exist
but remain mum on what things to exclude. On account of this, we can add unnatural
numbers to the natural numbers without violating the axioms, and, indeed, consistently
add new axioms to require that there must be unnatural numbers too. One might argue
with reason that although these unnatural numbers are required by the axioms of a
consistent system, they should not be said to exist. Such a position would foil the
unqualified identification of consistency with existence.
27. There is a temptation to cut through the foundational problems by using the
nonconstructive rule of induction (the omega-rule) and similar semantic concepts to
characterize all true propositions in arithmetic, classical analysis, and set theory. In this
way, of course, e.g., unnatural numbers are excluded by the basic principles. However,
there is not much explaining left to be done, since what is to be explained is simply taken
for granted. With it, more is accepted which is a projection by analogy of the finite into
the infinite. We can never go through infinitely many steps in a calculation or use
infinitely many premises in a proof unless we have somehow succeeded in summarizing
the infinitely many with a finite schema in an informative way. Both mathematical
induction and transfinite induction are principles by which we make inferences after we
have found by mental experimentations two suitable premises which summarize
together the infinitely many premises needed. A very essential purpose of the
mathematical activity is to devise methods by which infinity can be handled by a finite
intellect. The postulation of an infinite intellect has little positive content except
perhaps that it would make the whole mathematical activity unnecessary.

It might seem puzzling that, e.g., the Peano axioms, in particular an alternative
explicit formulation with only a finite number of axioms, should contain so many
surprises. The essential thing is of course the possibility of iterated applications of the
same old rules over and over again in an unbounded number of combinations. This is
also why proving the consistency of such a system is no easy matter.

With regard to the nature of the continuum, there are conceptual difficulties of an
order different from those confronting the positive integers. This has largely to do with
the use of impredicative definitions in the customary formal systems for classical
analysis. One indication of the difference is the fact that no comparable informative
consistency proof is available for any formal system of the classical analysis that is as
natural as the usual system for arithmetic. It is fair to say that on the basis of our present
knowledge, we have full confidence in being able to devise only consistency proofs for
predicative systems.
28. Several alternative courses for dealing with the continuum have been suggested.

It seems desirable to develop further and study more formally Brouwer's theory,
also expounded by Weyl, with the distinction of effective and free choice sequences.

There is the course of restricting sets, in particular sets of positive integers, to some
less nonconstructive totality which enjoys agreeable closure properties. For example,

46 Computation, Logic, Philosophy

hyperarithmetic set theory, or some yet to be determined domain of predicative set
theory.

A third course is to use what Bernays calls the quasi--combinatorial principle to
justify the impredicative formulation of classical analysis. This depends on a natural but
uncontrolled generalization of a situation with finite sets to infinite sets. A set of positive
integers either contains 1 or not, either contains 2 or not, etc., hence, there must be 2t</o
possible sets which includes all the number sets definable in any set theory. While this
supplies a sort of inaccessible model for the continuum, it does not yield a consistency
proof in the proof-theoretical sense. The most important mathematical problem on the
continuum appears to be a proof -theoretical consistency proof for some familiar formal
system adequate to the impredicative formulation of the classical analysis.

For this purpose, as well as the purpose of proving the consistency of predicative
systems, the central problem is to rearrange by mental experimentations positive
integers to form suitable well--ordered sequences and to see that the arrangements are
indeed well--ordered. In this way, one is justified in applying the principle of transfinite
induction relative to such rearrangements. Such well--orderings are the hard facts about
mathematical structures. It seems that as long as mathematical thoughts are expressed
in language and symbolism, there is no compelling reason to go beyond the second
number class.
29. There are other viewpoints which are somewhat too one-sided so far as the
foundations of mathematics are concerned. Algebraists tend to favor an abstract point of
view. It used to be said that group theory contains the essence of all mathematics. Since,
however, groups are of so many diverse types and so much more can be added to groups
to give other structures, group theory does not supply the correct emphases on the basic
concepts and methods of mathematics.

Sometimes it is thought that foundations of mathematics can be obtained on the
basis of physical things. Given the physical things, we can think of sets of them, sets of
sets of them, and so on. If one recognizes no ideal constructions at all, then there are no
empty sets, and a unit set is identical with its only member. Moreover, there are no sets

but only sums so that, e.g., { {x, {y, {x, y}}}}, { {x, {x, y}}, {y, {x, y,}}} are both the

same as {x, y}. In either case, unless we assume there are infinitely many physical things
or permit infinite repetitions of the process of forming new sets, we cannot arrive at the
positive integers. Such approaches deal with infinity only as an afterthought. They are,
therefore, unsuitable for the study of mathematics the essence of which is infinity.
Moreover, it is difficult to give a meaning to the supposition that there are infinitely
many physical things.

4. LOGIC, COMPUTATION AND PHILOSOPHY *

4.1 Logic and logical positivism

The great attraction of the deductive method is that it serves to «divide and
conquer» . By breaking a proof into minute steps, difficulty gives way to complexity the
comprehension of which usually requires a lower order of intellectual capacity. In the
words of Descartes, «For whenever single facts have been immediately deduced the
one from the other, they have been already reduced, if the inference was evident, to a
true intuition. But if we infer any single thing from various and disconnected facts, often
our intellectual capacity is not so great as to embrace them all in a single intuition; in
which case our mind should be content with the certitude attaching to this operation. It
is in precisely similar fashion that though we cannot with one single gaze distinguish all
the links of a lengthy chain, yet if we have seen the connection of each with its
neighbour, we shall be entitled to say that we have seen how tbe first is connected with
the last.»

Spinoza proved in the geometrical order not only Descartes' Principia but his own
major work, Ethics. Universal mathematics was for Descartes and Spinoza a sort of
bigger geometry which proposes to comprehend all knowledge including principles of
ethics. At first sight it all seems very reassuring: Our youthful dreams of a completely
solid basis of knowledge and action seem to be realized in their systems. How often do we
wish we knew for certain what we should do? If we had an ultimate goal and knew how
much every piece of action contributed to that goal, we sould be able to live and behave
resolutely. Spinoza now tells us, the highest good is the knowledge of the union existing
between the mind and the whole of nature. He wishes to direct all sciences to one end so
that we may attain this supreme perfection.

History of philosophy and science since Spinoza's time has taught us to distinguish
scientific knowledge from moral principles, and mathematics from empirical sciences.
Most of us are not fortunate enough to have our life and values organized entirely around
one ultimate end. Still less are we able to decide courses which would contribute most to
our ends, such as the vague concepts of happiness and the common good. We are
nonetheless more hesitant to relinquish the hope of organizing human knowledge in an
all-inclusive framework with a solid unquestionable basis.

In this century, we find a hybrid of Descartes' deductivism and Hume's empiricism
that promises a bigger and neater science with all empirical knowledge founded on the
rational basis of my sense-data here now and empirical induction, using the a priori

* First published in L'fige de fa science,vol. 3, pp 101-115. Editions Bordas, 1971. Repro
duced by permission of the author.

47

48 Computation, Logic, Philosophy

framework of logic and mathematics. This oversimplified view of knowledge of some
logical positivists is open to many serious criticisms and has undergone numerous
refinements and watering-downs. The most basic drawback is perhaps its utter
irrelevance to life and the exact sciences. It not only implies a rather limited philosophy
oflife, but, more seriously, it fails to provide an adequate account of the natural sciences
and mathematics. This is especially damaging since the founders of this school got most
of their inspirations from their views of physics and mathematics. Ironically, the only
directions along which logical positivism can claim to have produced some beneficial
effects are those most unexpected at first, viz., the social sciences, linguistics, and the
implications of computers.

In order to rebuild philosophy, or, less ambitiously, a philosophy of knowledge, on
the ruins of logical positivism, it seems natural to reexamine first the nature of
mathematics and then the conceptual foundations of the exact sciences. In each case, it
is essential to avoid what might be called «disembodied generalities.»

It seems likely that logical positivism requires more than one successor in order to
take account adequately of the complexity of actual knowledge. Mathematics is a
stumbling block because it is most closely tied up with its own language, so that it is
hardest for a non-specialist to have a correct overview while specialists are rarely
concerned with the varied ways in which mathematics is related to the other sciences. In
what follows an attempt is made to sketch a few points relevant to arriving at an overview
of mathematics. Such outlines are inevitably weak, since a genuine argument could
conceivably be obtained only if such outlines are carried out.

4.2 What is mathematics?

The most impressive features of mathematics are its certainty, its abstractness and
precision, its broad range of applications, and its dry beauty. The precision and
certainty is to a large extent due to the abstractness which also in part explains the wide
applicability. But the close connection to the physical world is an essential feature which
separates mathematics from mere games with symbols. Mathematics coincides with all
that is the exact in science.

According to Kant, mathematics is determined by the form of our pure intuition so
that it is impossible to imagine anything violating mathematics. If we agree that the
physical world, including our brains, is a brute fact, this view can be said to imply that
the external world, including the physiological structure of our mind, determines
mathematics. The discovery of non-Euclidean geometries need not be regarded as
refuting Kant's doctrine, since we can construe them as superstructures on the
Euclidean or even weaker foundations. A more serious objection is that Kant's theory
does not provide enough elucidation of the principles by which these and other
superstructures are to be set up.

As we all know, Shaw was accustomed to exaggerations. He defended himself by
arguing that the shock value is the best way to call attention to new ideas. In a similar
spirit, we may hope to clarify our vague thoughts by examining a few one-sided views of
mathematics.

4.2.1 Mathematics is the class oflogically valid propositions «pimplies q». Thus,

Logic, Computation and Philosophy 49

given any theorem q, we can write the con junction of the axioms employed as p, and «p
implies q» is a theorem in elementary logic. In this somewhat trivial sense, all
mathematics is reducible to elementary logic. This really says nothing about
mathematics proper, since one would like to assert pand q unconditionally. This evades
the whole question why certain p, e.g. the Peano axioms, is accepted as a mathematical
truth. A less clear and less clearly inadequate view would be to permit a broader domain
oflogic and take, e.g., propositions such as «For all x and y, if x and y have no common
members, x has 7 members y has 5 members, then xU y has 12 members.» Then one
has to define numbers in logic, and so on. Such a view is akin to the next one.

4.2.2 Mathematics is axiomatic set theory. In a definite sense, all mathematics can
be derived from axiomatic set theory. To be definite, we can adhere to a standard system
commonly referred to as ZF. This is the counterpart of Frege's and Russell's reduction
of mathematics to logic and paradoxically also' of Poincare's 1900 remark on the
arithmetization of mathematics (<<numbers and their sets»). This is what most
impressed the logical positivists, leading to, among other things, an emphasis on
axiomatization and formalization. There are several objections to this identification. As
we shall discuss later, there are many difficulties in the foundations of set theory. This
view leaves unexplained why, of all the possible consequences of set theory, we select
only those which happen to be our mathematics today, and why certain mathematical
concepts and results are more interesting than others. It does not help to give us an
intuitive grasp of mathematics such as that possessed by a powerful mathematician. By
burying, e.g., the individuality of natural numbers, it seeks to explain the more basic
and the clearer by the more obscure. It is a little analogous to asserting that all physical
objects, such as tables, chairs, etc., are spherical if we swathe them with enough stuff.
There is a side issue of logicism which continues to be upheld in some quarters in the
face of definitive evidence against it. In at least one important case, this mysterious state
of affairs is based on a mistaken identification between Frege's logical theory of sets
(extensions of predicates) with Cantor's mathematical theory of sets. The argument goes
like this. Since Frege's theory looks like logic and mathematics can be reduced to
Cantor's theory; therefore, by the identification, mathematics is reducible to logic.

4.2.3 Mathematics is the study of abstract structures. This appears to be the view of
Bourbaki. To the extent that a sequence of books has been written to substantiate this
view, it deserves a careful consideration. A conscious attempt to divorce mathematics
from applications is not altogether healthy. The inadequacy of this outlook is revealed
not only by the omission of various central results of a more combinatorial sort, but
especially by the lack of intrinsic justification in the selection of structures which
happen to be important for reasons quite external to this approach. Constructive
contents of mathematical results are not brought out. There is also a basic inconsistency
insofar as lipservice is paid to an axiomatic set theory as the foundations, while serious
foundational researches are frowned upon. It would conform more to the general spirit if
number, set, function were treated in a more intuitive manner. That would at least be
more faithful to the actual practice of working mathematicians today.

4.2.4 Mathematics is to speed up calculations. Here calculations are not confined to
numerical ones. Algebraic manipulations and juggling with logical expressions (e.g., in
switching theory) are also included. A somewhat broader view would be to say that every

50 Computation, Logic, Philosophy

serious piece of mathematics must have some algorithmic content. A different, though
related, position would be to say that all mathematics is to assist science, to assist us to
understand and control nature. These views seem to make it impossible to explain, e.g.,
why we often prefer more elegant proofs with higher bounds and why we take great
delight in impossibility results. One could argue that there is in addition the human
element in mathematical activities so that it is essential, even for applications, that the
situation should be perspicuous. Thus, we can better grasp an elegant proof and,
indirectly, are enabled to look for more efficient algorithms; and impossibility results
tell us the limitations of given methods, helping the search for positive results in the long
run. This kind of argument is, however, typical of philosophers stretching a position to
try to fit in unwanted facts.

So much for oversimplifications.
If we review quickly the history of mathematics, we would find quite a few

surprises. What appears particularly attractive is there is room for a serious and fruitful
synthesis of mathematics, for work in the philosophy of mathematics which would help
the progress of mathematics itself by making the subject more appealing and by fighting
against excessive specialization. Let us, however, postpone such discussions till the last
section.

4.3 Logic and computation

Familiar connections between logic and computers are the possibility of
representing circuits by Boolean functions and the close resemblance between formal
systems and programming languages. As early as 1656, Leibniz dreamed of a universal
scientific language in his first published work; and the search for a universal language
for computers is a rather central concern today. In an oblique way the performance of
arithmetic by computer circuits may be said to accomplish a reduction of arithmetic to
logic in a particular down-to-earth manner.

A more basic link between logic and computers is the common interest in explicit
procedures. The long evolution of attempts to formalize mathematical proofs finally led,
with the help of mathematical logic, to mechanizability as the ultimate external criterion
of a successful formalization. A common complaint among mathematicians is that
logicians, when engaged in formalization, are largely concerned with pointless
hairsplitting. Computers seem to supply, more or less after the event, one good reason
for studying formalization. While many mathematicians have never learnt the predicate
calculus, it seems hardly possible for the machine to do much mathematics without
being able to deal with the underlying logic in some fairly explicit manner. While the
human being gets bored and confused with too much rigour and rigidity, the computer
requires entirely explicit instructions.

There are some pleasant surprises in initial attempts to mechanize mathematical
arguments. But it is clear that extensive work is needed before computers can influence
mathematical research in an overall manner. For example, it is hard for the computer to
hit on x! + 1 and prove there are infinitely many primes. This type of work should in
due course affect the methods of research in logic and mathematics, as well as improve
drastically the ability of computers to do all sorts of more sophisticated intellectual

Logic, Computation and Philosophy 51

tasks. A particularly instructive direction would be to compare mechanizability with
teachability.

While the discussions on whether machines can think tend to degenerate into
terminological debates, it cannot be denied that sophisticated computers provide a
useful framework for helping to think more fruitfully on the nature of mind, both
philosophically and scientifically. Only one must resist the temptation to jump to
conclusions. Many exciting problems in this area are simply too difficult. The present
state of the study of «artificial intelligence» has been compared to alchemy both in its
negative and its positive aspects. The great present challenge is to select and formulate
fruitful problems.

The idealized models of computers developed by Turing and others are of great
philosophical and mathematical significance (see next section), and form the beginning
of a serious theory of computation. An area of current research interest is to refine the
theory so that we can take care of not only theoretical possibilities but also practical
feasibility. For example, different models which are equivalent in theoretical power can
be distinguished because some can compute faster than others. In this respect, the
intuitively obvious conclusion that multiplication is more complex than addition is, as a
mathematical theorem, at present a much sought--after result. More specifically, it is
desired to show that there is no potentially infinite machine on which we can multiply
any two n-digit numbers (for all n) in linear time (i.e., in kn operations, ka constant). On
the other hand A. L. Toom and S. A. Cook have recently shown that, for any e, there
exists some multitape Turing machine on which, for every n, two n-digit numbers can
be multiplied in n 1 +, operations. This area of computational complexity is very much a
virgin land at present.

Another apparently promising area of research is to develop an elegant theory of
programming languages.

4.4 Relatively undecidable propositions and absolutely unsolvable problems

The non-Euclidean geometries show that the parallel postulate is independent of
the other postulates. Or, in other words, it is undecidable in the axiom system consisting
of the remaining axioms. The impossibility of squaring a circle by ruler and compass
gives an infinite class of problems (one for each circle) which cannot be solved by a given
method of construction.

These two interesting results of the 19th century have stronger analogues in the 20th

century. On the one hand, we have Godel's general result that any fairly rich system is
incomplete; on the other hand, we have a group of results that cprtain infinite classes of
problems are unsolvable by any mechanical method.

It should be emphasized that these two types of result, while obtainable by related
methods, are conceptually quite different. What is undecidable is in each case a single
proposition relative to a given axiom system, what is unsolvable is in each case an infinite
class of problems (a «mass» problem) for which there exists in an absolute sense no
general method that can settle every member of the class. For example, there exists no
general method to decide whether an arbitrary Turing machine will eventually stop,
there exists no general method by which, given any proposition, we can tell whether it is

52 Computation, Logic, Philosophy

a consequence of the Peano axioms.
The fundamental import of Godel's incompleteness result is to exhibit exactly the

limitations to the possibilities of formalizing our intuitive concept of natural numbers
and sets of them. The undecidable propositions are tailor-made to fit each given system.
They are not the common and garden variety. People have tried unsuccessfully to show
Fermat's or Goldbach's conjecture undecidable in the usual system. This situation is
similar to the difference between Cantor's proof of the existence of transcendental
numbers and the proofs that e and n are transcendental. The former is philosophically
more significant while the latter is mathematically more substantial.

Another important result on the limitations of formalization is the Lowenheim
Skolem result on set theory. In particular, this result shows that we cannot even have an
adequate axiomatization of sets of integers. This general situation has led not only to
Skolem's nonstandard model for arithmetic but also P. 1. Cohen's clever proof that the
continuum hypothesis is undecidable in the usual axiom system of set theory . We shall
discuss this result in the next section, in connection with the foundations of set theory.

The absolute notion of unsolvable problems in terms of Turing computability or
other equivalent notions is of special importance in that with this concept one has for the
first time succeeded in giving an absolute definition of a basic epistemological idea, i.e.,
independent of any formal system. It is not necessary to distinguish different levels, and
the diagonal argument does not lead outside the defined notion. Somehow we have
succeeded in looking at computability from outside. This is quite different from
definability and provability. So far, we have only been able to define them relative to a
given formal system, and for each individual system it is clear that the one obtained is
not the desired one. One of the most fascinating problems in logic and foundations is to
characterize absolute notions of provability and definability.

The exact concept of computability and the accompanying phenomenon of
unsolvable problems have wide applications in different branches of mathematics. An
especially appealing feature is that we have often problems which are very easy to state
but very hard to settle. Moerover, one is able to tackle many of the problems by native
wits (especially combinatorial skills). Furthermore, several problems originated initially
from other branches of mathematics. We give a brief list of some of the settled and
unsettled problems.

4.4.1 Word problem for groups. Proved unsolvable by P. S. Novikov (1955).
Related more general results have since been obtained by G. Higman.

4.4.2 The 4-dimensional homeomorphy problem. Shown to be unsolvable by A. A.
Markov (1958).

4.4.3 Various partial results on Hilbert's tenth problem; i.e., unsolvability of
various broader classes of problems.

4.4.4 The tiling (or «domino») problems and applications to logic.
4.4.5 G. S. Tsentin and D. Scott (1955) have shown unsolvable the word problem of

the following simple system.
ac~ ca, ad~~ da, bc~~ cb, bd~ db, adac'~ abace, eca~ ae, edb~ , be.

4.4.6 The word problem is solvable if we replace e by c in adac => abace of the
above system.

Unsettled problems.

Logic, Computation and Philosophy

4.4.7 The 3--dimensional homeomorphy problem.
4.4.8 Hilbert's tenth problem (Diophantine equations).
4.4.9 The concatenation analogue of Hilbert's tenth problem.
4.4.10 Word problem on {O, 1} for the tag system:

0- _ -> 00
1 __ -> 110l.

53

With regard to Hilbert's tenth problem, one may note that it is equivalent to the
decision problem for quantifier-free number theory with addition and multiplication.
Moreover, it is of interest to remark that the problem of enumerating finite sequences is
of central importance.

-Added in proof: Recently 1. V. Mateyasivich has proved that Hilbert's tenth
problem is indeed unsolvable, and that all recursively enumerable sets are Diophantine.
The proof was reported at Novosibirsk on February 9, 1970 and a paper has just been
published.

4.5 Foundations of set theory

Wittgenstein complains of the fuss mathematicians made over the contradictions.
This is rather inaccurate since Frege and Russell are logicians while Cantor is a
mathematician. Cantor's view is not that bridges will not collapse because of an
inconsistent system of set theory, but rather that contradictions arise only because of an
inadequate understanding of the concept of set. Admittedly it remains debatable
whether Cantor's theory of sets might not after all contain contradictions. It is
unquestionable that the extensive discussion of contradictions has little direct relevance
to Cantor's theory.

According to Cantor, by a "set" we shall understand any result M of collecting
together definite, distinct objects (the "elements" of lid) of our intuition or of our
thought (1895, Gesammelte Abharullungen, p. 282). In his letter to Dedekind (1899,
ibid., p. 443), Cantor is more explicit and distinguishes sets from inconsistent
multiplicities. In particular, that of all sets and that of all ordinals are inconsistent
multiplicities. Hence, the Burali-Forti paradox of 1897, known to Cantor two years
earlier, does not apply.

A familiar interpretation of Cantor's idea, first explicitly formulated by D.
Mirimanoff (1917, L'enseignement Math.), is the maximum iterative concept of set
which is determined by the power set operation Prelative to a basic domain Do of things
and the totality Q of ordinal numbers. For example,

Do=A
Dn+ 1 = l1(,Dn)
U= DO) = UDn

determines a model of set theory with finite sets only. Using all ordinals Q in place of w,
one obtains not only a model for the current axioms of set theory but even, it is believed,
a characterization of Cantor's original concept. Since the choice of the basic domain Do
is extraneous to set theory proper, the problem reduces to explaining the power set
operation P and the totality Q of ordinals.

'54 Computation, Logic, Philosophy

Not only is the maximum iterative concept familiar, it is claimed to be natural on
the ground that it is generally accepted and that one learns rather quickly to apply it. On
this claim of naturalness it is possible to expend endless philosophical discussions. For
the present purpose, we simply accept the choice as a postulate to exclude what we
regard as peripheral controversies.

Ordinals are central and we have five principles of generating ordinals.
PI. A new ordinal is generated by the addition of a unit to an ordinal which has

already been formed.
Pl.. There is an infinite ordinal w.
P3. Given any ordinal and an arbitrary well-ordering of all earlier ordinals, we get

another ordinal. If we speak of any definite succession of ordinals, we would have to
impose at least a restriction on cardinality.

P4. Given any cardinality, we can consider the totality of all ordinals of that
cardinality and introduce an ordinal of a next higher cardinality.

PS. Given any set of ordinals, we can introduce new ordinals by replacement.
The first principle is concerned with the potentially (countably) infinite, and a

thorough absolute theory is available in terms of computability, finite methods,
algorithms, syntax, two-oneness, the unity of contraries, or the intuition of the effective.

Pl. and P3 should be combined either to give only countable ordinals or, better, to
give definable ordinals in some mildly constructive sense. What is involved is the basic
difficulty of surveying all countable ordinals. It is not unreasonable to suppose that all
definable sets and ordinals are countable. In any case, we face here the question of
definability.

P4 introduces us directly to the position of «platonism» and embodies an
analogue of the power set operation. It is also the natural place to introduce the
continuum hypothesis (Cantor, op. cit., p. 192, 1883).

Ideally the impredicative should be a limit of the predicative. There is no
philosophical reason why the impredicative and the uncountable should be tied
together. We think of them together only because, as a result of our inability to survey
either all the countable or all the predicative, we can only arrive at the uncountable from
the impredicative and we do not have a good understanding of non-standard countable
models of the impredicative set theory.

PS gets us beyond and is in itselfless basic. Since, however, we do not have a good
understanding of the range and variety (the width) of the countable, we are tempted to
increase the width by using bigger ordinals introduced through PS. One is, for example,
led to speculate on stronger axioms of infinity in order to obtain more sets of integers.

Cantor was pleased with his power of creating a lot of new numbers. The late
philosopher (a critical realist) W. P. Montague tried to imitate Cantor by introducing
the rainbow series. He thought that by taking logarithm base 2 of aleph zero and
repeating, he could introduce cardinals between the finite and the infinite.

Cantor did not use an axiomatic approach. There is, in fact, no obvious reason why
his intuitive theory should be axiomatizable. In fact, it is clear from the Skolem paradox
that Cantor's theory is not axiomatizable. Hence, philosophically, the axiomatic
approach is not satisfying except perhaps on the ground that so far we have not been able
to get very far from any but the axiomatic approach, which, at any rate, is useful as an

Logic, Computation and Philosophy 55

auxiliary tool, if indeed not the only humanly possible tool.

Cantor thought he had a proof of the continuum hypothesis long before the
development of axiomatic set theory. And there does not appear to be any intrinsic
reason why a better understanding of the concepts of sets and well orderings of integers
could not yield a decision of the continuum hypothesis independently of particular
axiom systems.

Even Zermelo's axiom system left open what a definite property is. While the exact
formulation by Skolem sharpened the system and indeed for the first time made it into a
genuine axiom system, the vaguer formulation is closer to our intuitive requirement.

Once the axiomatic approach is adhered to, problems such as the continuum
hypothesis change their nature drastically. It was expected that a solution of the
problem relative to the current axiom system would inevitably illuminate the original
problem. Cohen's solution has contradicted this expectation. Instead of yielding any
strong hint as to how to solve the original problem, it reveals how incomplete the axiom
system is. It almost seems to be man's fate that on the most fundamental questions the
best results can only be negative ones.

In his paper «Some remarks on the axiomatic founding of set theory» of 1922,
Skolem diagnosed the inadequacy of axiomatic set theory (on account of Lowenheim's
Theorem) and predicted rather accurately Cohen's result. Skolem suggests it would be
interesting and probably difficult to add a new set of integers to the set theory and prove
relative consistency. In this connection, he adds a footnote 9.

9. Since Zermelo's axioms do not uniquely determine the domain B, it is very
improbable that all cardinality problems are decidable by means of these axioms. For
example, it is quite probable that what is called the continuum problem, namely the
question whether 2"0 is greater thanMl, is not solvable at all on this basis; nothing need
be decided about it. The situation may be exactly the same as in the following case: an
unspecified commutative field is given, and we ask whether it contains an element x
such that x 2 = 2. This is ust not determined, since the domain is not unique.

Later Skolem repeated this remark in connection with a review of Hilbert's paper
«On the infinite» (1925).

In 1938, Godel announced a proof of relative consistency. This in itself did not say
much about the truth and falsity of the continuum hypothesis. But the very special
character of the proof enhances Skolem's conjecture that the continuum hypothesis may
be independent of the usual axioms.

Finally in 1963, Cohen proved the independence, and in addition, brought out
spectacularly how incomplete the axioms of set theory are.

It is natural to ask whether extending the axioms might change the picture. One
precise way of getting a richer axiom system is by assuming measurable cardinals. Very
recently it has been proved that the addition does not affect the undecidability of the
continuum hypothesis.

There are two other ways of attacking this question (apart from finding specific
richer set theories):

To prove a more general theorem: any axiom systern if consistent must leave the
question undecided. Here, of course, we cannot quite achieve the same generality as the
incompleteness of arithm~tic. Since C. H. is a single statement, we can always refute the

56 Computation, Logic, Philosophy

claim by adding C. H. or its negation. Hence, we must give some delimitation of the type
of axioms we are permitted to add-- e.g., strong axioms of infinity. But then we have to
give some general characterization of axioms of infinity.

We may give up the axiomatic approach altogether by returning to Zermelo's
indefinite concept of definite properties or by introducing a maximum principle: no
greater universe satisfies the axioms (this is a statement of a different sort and
transcends the usual situation that any theory with a model of certain size always has
bigger models. We are supposed to envision all sets).

Apart from the difficulty in accepting and interpreting such a principle, there is a
basic difficulty about deriving consequences from it, in particular on the truth or falsity
ofC. H.

While Cantor was mainly interested in the ontic question of the existence of sets
and ordinals, Brouwer was primarily concerned with the epistemic question of
provability. This has its obvious parallel in the history of philosophy. The concern of the
French semi-intuitionists with definability was something in between.

It is of interest to see how these questions may be related. From the epistemic
approach, one might argue that we should stop worrying about meaningless questions
such as the continuum hypothesis. From the ontic approach, someone has conjectured
that all number-theoretic questions become decidable provided we get enough strong
axioms of infinity.

There is a familiar comparison between the continuum hypothesis and Fermat's
conjecture, the latter being true if undecidable. This fact does not, however, contradict
Post's suggestion that Fermat's conjecture might be undecidable in some absolute
sense. If, however, one gives any proof of such absolute unprovability, one would get
into trouble because then Fermat's conjecture would be proved, seeing that we cannot
reasonably exclude the ability to produce numerical counterexamples. In fact, Brouwer
accepts the double negation of the law of excluded middle which is interpreted as saying
that we can never prove something absolutely unprovable.

Many feel that to speak of improving our understanding of the concept of set
implies an absolutist conception of set, or that all statements about sets have a definite
truth value. This does not seem necessary. As a historical fact, we have come to accept
axioms of choice, regularity, and replacement and feel they conform to our intuitive
concept. We feel that we understand the concept of set better as a result.

4.6 What is mathematics? (continued)

Foundational studies in this century have been very fruitful in several ways. The
analyses by Brouwer of basic concepts of mathematics are, for some people anyhow,
philosophically satisfying. And the study of proof theory has yielded many fundamental
results, especially negative ones, on decidability and solvability. On the whole, there
remains, however, the impression that foundational problems are somewhat divorced
from the main stream of mathematics and the natural sciences. Whether this is as it
should be seems to me a highly debatable point.

The principal source of detachment of mathematics from rnathematicallogic is that
logic jumps more quickly to the more general situation. This implies a neglect of

Logic, Computation and Philosophy 57

mathematics as a human activity, in particular, of the importance of notation and
symbolism, and a neglect of the more detailed relations of mathematics to applications.
It is philosophically attractive to study in one sweep all sets, but in mathematics we are
primarily interested in only a very small range of sets. In a deeper sense, what is more
basic is not the concept of set but rather the existing body of mathematics. For example,
the distinction between linear and nonlinear problems, the invention of logarithms, the
different ways of enumerating finite sequences, the nature of complex numbers and
their functions, or the manipulation with infinities by physicists (such as Dirac's delta
function and the intrusion of infinities in quantum electromagnetic theory) all seem to
fall outside the range of problems which interest specialists in foundational studies.
Rightly or wrongly, one wishes for a type of foundational studies which would have
deeper and more beneficial effects on pedagogy and research in mathematics and the
SClences.

As a first step, one might envisage an «abstract history» of mathematics that is
less concerned with historical details than conceptual landmarks. This might lead to a
resolution of the dilemma between too much fragmentation and too quick a transfer to
the most general.

4.6.1 Concrete arithmetic began with practical problems. The idealization of the
indefinite expandability of the sequence of numbers and the shift from individual
numbers to general theorems about all numbers give rise to the theory of numbers. Only
around 1888, was Dedekind able to formulate the so-called Peano axioms by analyzing
the very concept of number.

4.6.2 The solution of equations together with the use of literal symbols such as
letters for unknowns marks the beginning of algebra («transposition and removal»).
Only in 1591 (Viete) were letters used for known quantities as well (variables and
parameters).

4.6.3 Geometry deals with spatial forms and geometrical quantities such as
length and volume. The number of a set is an abstraction of that which is invariant under
any changes whatsoever of the properties and mutual relations of the objects in the set
(e.g., color, weight, size, distance), provided only the identity of each object is not
disturbed (by splitting or merging). Similarly a geometrical figure or body is an
abstraction of an actual body viewed purely with regard to its spatial form, leaving out all
its other properties. Rather surprisingly, such an abstract study led not only to pure
geometry but also to the first extensive example of the deductive method and axiomatic
systems. There was even a geometrical algebra in Greece.

4.6.4 Measurement of length and volume is a union of arithmetic and geometry,
applying units to calculate a number. This, just as the solution of equations, is a natural
way ofleading to fractions and even irrational numbers. The desire to have an absolutely
accurate or rather indefinitely improvable measurement leads to the general concept of
real numbers. Algebra led to negative numbers and complex numbers. But a better
understanding of complex numbers was only reached through their geometrical
representations.

4.6.5 By the way, in terms of speeding up computations, the invention of
logarithms (Napier, 1614) was a great advance.

4.6.6 In an indeterminate equation, say 3y - 2x = 1, we may view x and y as

58 Computation, Logic, Philosophy

unknowns or as variables so that the given equation expresses the interdependence of
these two variables. The general concept of function or interdependence is the subject
matter of analysis. Using the Cartesian coordinates, we get a connection of algebra and
geometry, with function playing the central role. In this sense, analytic geometry may be
said to be the simplest branch of analysis. It is implicitly assumed that we deal with at
least all real numbers.

4.6.7 If we add in addition the concept of change or motion, and study a broader
class of functions, we arrive at the calculus. The original source was from geometry and
mechanics (tangent and velocity, area and distance.) Theories of differential and integral
equations search for functions rather than numbers as solutions. They are natural both
from applications and from an intrinsic combination of the calculus with the algebraic
problem of solving equations. In the same spirit, functional analysis is not unlike the
change from algebra to analysis, the interest being no longer confined to finding
individual functions but rather the general interdependence of functions.

4.6.8 It is not easy to understand why functions of complex variables turned out
to be so elegant and useful. But it certainly was a gratifying phenomenon that an
extension serves to clarify many facts in the original domain. Incidentally, if we require
the axioms of fields be satisfied, extensions of complex numbers are not possible. For
quaternions, e.g., multiplication is not commutative.

4.6.9 The lively development of the theory of probability has been connected
with statistical mechanics, and its foundations are a fascinating but elusive subject.

4.6.10 In algebra, Galois theory not only gives a conclusive treatment of the
solution of equations but opens up a more abstract study of abstract structures dealing
with operations on arbitrary elements rather than just numbers.

4.6.11 The greatest changes in geometry have been the discovery of non
Euclidean geometries and Riemann's general idea on the possibility of many different
« spaces» and their geometries. Figures are generalized to arbitrary sets of points.

4.6.12 The development in functions of a real variable touches on various
philosophical problems such as the definition of real numbers and the meaning of
«measure» .

In this century, the development oflogic, the emergence of computing machinery,
and the prospect of new applications such as in the biological sciences and in linguistics
all tend to emphasize what might be called «discrete mathematics», even though
continuous mathematics is well-entrenched and as lively as ever.

The fond hope of a meaningful synthesis of all mathematics and its applications
belongs perhaps only to one who is ignorant and quixotic. But then it is a heart-warming
dream.

One of the very basic problems is that we still do not have any definitive theory of
what a real number or what a set of integers is. Perhaps we can never have a definitive
theory. It seems quite unknown how this fundamental unclarity affects the rest of
mathematics and the novel applications of mathematics in physics.

Relative to different concepts of set and proof, one could reconstrue most of
mathematics in several different ways. What is not clear is, whether these different
formulations are just essentially equivalent manners of describing the same grand
structure or there exists a natural framework in which everything becomes more

Logic, Computation and Philosophy 59

transparent.
I would like to suggest a more schematic approach to the formalization of

mathematics. It is a striking fact that in diverse systems of different strength we can
prove counterparts of all ordinary theorems on real numbers. This, suggests that no
proof in any formal system formalizes faithfully the true mathematical result. Our
intuition of the real numbers is not captured in any of the particular formal systems. A
closer approximation could be obtained if we look instead for the class of formal proofs

{and therewith the underlying formal systems} which all can represent a given intuitive
proof. In this way, each intuitive proof would correspond to a class of formal proofs, and
we can classify intuitive theorems according to the classes of formal systems in which
they can be represented naturally. This approach would avoid the futile dispute as to
which formal system is the correct one. Also it would reveal more fully the intuitive
content of ordinary informal mathematical proofs(!) .

(1) The section on set theory was included in a talk presented at the joint meeting of the American
Philosophical Association and the Association for Symbolic Logic in December, 1965. The whole paper was
presented with omissions at The Rockefeller University in January 1966, and without omissions (in two
sessions) as the «Class of 1927 Lecture» at The Rensselaer Polytechnic Institute in March 1966.

PART TWO

AUTOMATED THEOREM PROVING (ATP)

5. COMPUTER THEOREM PROVING AND

ARTIFICIAL INTELLIGENCE *

It gives me a completely unexpected pleasure to be chosen as the first recipient of
the milestone prize for ATP, sponsored by the International Joint Conference on
Artificial Intelligence. (See appendix.) I have worked in a diversity of fields; I am
correspondingly limited in my capacity to appreciate, or express my appreciation of, a
large range of efforts in each of these fields; and I tend to shun positions of power.
Undoubtedly to a considerable extent as a result of these innocent shortcomings, honors
have a way of passing me by. I have indeed slowly grown used to this. Hence, the present
reward has surprised me.

I had hoped to arrive at an understanding of current work in the field in order to
relate it to my early aspirations and expectations. For this purpose, I had asked
Professor Woody Bledsoe for help, who has kindly sent me some papers and references.
I soon realized that with my present preoccupation with philosophy I shall not be able to
bring myself to concentrate enough to secure a judicious evaluation of these writings
which at first sight appear largely alien to my own way of thought. Indeed several years
ago Joshua Lederberg thoughtfully sent me a copy of Dr. D. Lenat's large dissertation
(AM: an artificial intelligence approach to discovery in mathematics as heuristic
search) which I found thoroughly unwieldy and could not see how one might further
build on such a baffling foundation. This previous experience strengthens my
reluctance to plunge into a study of current work. Hence, I have decided to limit myself
to a summary of my own views with some comments only on one line of current research
with which I happen to have some familiarity. Actually I have just noticed, in the
announcement of the prize, an explicit statement that "the recipients will present one
hour lectures on their work." Hence, restricting to work familiar to me is quite proper.
It is possible that certain aspects of my thought have been bypassed so far and they may
be of use to future research.

Around the beginning of 1953 I became dissatisfied with philosophy (as seen at
Harvard) and, for other reasons, I also wanted to do something somewhat more
obviously useful. Computers struck me as conceptually elegant and closely related to my
training. The first idea was to see in computers a home for the obsessive formal precision
of (the older parts of) mathematical logic which mathematicians tend to find irrelevant
and worse, pedestrian and perhaps a hindrance to creativity. With little conception of
the industrial world, I accidentally got an appointment as 'reserch engineer' at
Burroughs. Unfortunately I was not permitted to use the only local computer and even

* First published in Contemporary Mathematics, (1984), pp 49-70. Reproduced by permission
of the American Mathematical Society.

63

64 Computation, Logic, Philosophy

discouraged from taking a course for electronics technicians. I was reduced to
speculations which led to a programming version of Turing machines and some idle
thoughts on 'theorem-proving machines.' The material was wTitten up only quite a bit
later (probably in 1955) and published in January 1957 (see reference 1, §6 is devoted to

theorem-proving) .
The section begins with the observation that logicians and computer scientists

share a common concern. 'Both groups are in terested in making thoughts articulate, in
formalization and mechanization of more or less vague ideas.' Decidable theories are
mentioned in passing. But the main emphasis is on 'the possibility of using machines to
aid theoretical mathematical research on a large scale.' A few modest research goals are
mentioned: the independence of axioms in the propositional calculus; 'we often wish to
test whether an alleged proof is correct'; this is related to the matter of filling in gaps
when 'the alleged proof is only presented in sketch'; to confirm or disprove our
hunches;' to disentangle a few exceedingly confusing steps' in a (proposed) proof.
Herbrand's theorem on cut free proofs is mentioned as possibly helpful. 'We can
instruct a proving machine to select and print out theorems which are short but require
long proofs (the 'deep' theorems).' And a general observation: 'The important point is
that we are trading qualitative difficulty for quantitative complexity.'

It was not until the summer of 1958 that I began to work actually with a computer
(an IBM 704, using SAP, the Share Assembly Programming Language), thanks to
Bradford Dunham's arrangement. It was an enjoyable long summer (owing to the fact
that Oxford begins school only late in October) when I learned programming, designed
algorithms, and wrote three surprisingly successful programs. 'The first program
provides a proof-decision procedure for the propositional calculus' and proves all such
theorems (about 220) in Principia mathematica (briefly PM) in less than three (or five?)
minutes. 'The second program instructs the machine to form itself propositions of the
propositional calculus from basic symbols and select nontrivial theorems.' 'Too few
theorems were excluded as being trivial, because the principles of triviality actually
included in the program were too crude.' The third program dealt with the predicate
calculus with equality and was able to prove 85% of the over 150 theorems in PM in a
few minutes. This was improved in the summer of 1959 (see below) to prove all these
over 150 theorems. The improved program embodies a proof-decision procedure for the
'AE predicate calculus with equality' '(i.e., those propositions which can be transformed
into a form in which no existential quantifier governs any universal quantifier) which
includes the monadic predicate calculus as a subdomain.'

What is amazing is the discovery that the long list of all the theorems of PM in the
undecidable predicate calculus (a total of ten long chapters) falls under the exceedingly
restrictive domain of the AE predicate calculus. This seems to suggest that of the vast
body of mathematical truths, most of the discovered theorems are among the easier to
prove even in mechanical terms. Such a suggestion would be encouraging for the project
of computer theorem proving. A more definite general implication of the situation of
PM with regard to the special case of the predicate calculus is the desirability of
selecting suitable subdomains of mathematical disciplines which are, like the AE

Computer Theorem Proving and Artificial Intelligence 65

calculus, quickly decidable and yet contain difficult theorems in the human sense. The
recent work ofWu (see below) in elementary and differential geometry would seem to be
an excellent illustration of such a possibility.

The work of the summer was written up and submitted to the IBM Journal in
December 1958. But for some curious reason it appeared only in January 1960. The
paper (see reference 2) begins with a comparison between calculation and proof, arguing
that the differences present no serious obstacles to fruitful work in mechanical
mathematics. In particular, 'much of our basic strategies in searching for proofs is
mechanizable but not realized to be so because we had had little reason to be articulate
on such matters until large, fast machines became available. We are in fact faced with a
challenge to devise methods of buying originality with plodding, now that we are in
possession of slaves which are such persistent plodders.' 'It is, therefore, thought that
the general domain of algorithmic analysis can now begin to be enriched by the inclusion
of inferential analysis as a younger companion to the fairly well-established but still
rapidly developing leg of numerical analysis.'

The paper concludes with a long list of remarks such as the relation between
quantifiers and functions, quantifier-free number theory, the central place of induction
in number theory, the Entscheidungsproblem, 'formalizing and checking outlines of
proofs, say, from textbooks to detailed formulations more rigorous than PM, from
technical papers to textbooks, or from abstracts to technical papers,' etc. (By the way, I
now feel that the reverse process of condensing is of interest both for its own sake and for
instructiveness to the original project.) 'It seems as though logicians had worked with
the fiction of man as a persistent and unimaginative beast who can follow rules blindly,
and then the fiction found its incarnation in the machine. Hence, the striving for
inhuman exactness is not pointless, senseless, but gets direction and justification.'

At that time, several reports were in circulation by Newell-Shaw-Simon which deal
with the propositional calculus in an inefficient manner and contain claims against
'automatic' procedures for producing proofs. Their claims were refuted conclusively by
my work. Hence, I included some discussion of their work. 'There is no need to kill a
chicken with a butcher's knife. Yet the net impression is that Newell-Shaw-Simon failed
even to kill the chicken with their butcher's knife.' A larger issue is the tendency at that
time to exclude what are now called' expert systems' from artificial intelligence. Relative
to the project of theorem proving, I put forward at that time a plea for 'expert systems':

'Even though one could illustrate how much more effective partial strategies can be
if we had only a very dreadful general algorithm, it would appear desirable to postpone
such considerations till we encounter a more realistic case where there is no general
algorithm or no efficient general algorithm, e.g., in the whole predicate calculus or in
number theory. As the interest is presumably in seeing how well a particular procedure
can enable us to prove theorems on a machine, it would seem preferable to spend more
effort on choosing the more efficient methods rather than on enunciating more or less
familiar generalities. And it is felt that an emphasis on mathematical logic is unavoidable
because it is just as essential in this area as numerical analysis is for solving large sets of
simultaneous numerical equations.'

66 Computation, Logic, Philosophy

In the summer of 1959 I went to Murray Hill to continue with the work of the
preceding summer, and before long a program adequate to handling the predicate
calculus with equality in PM was completed. It contains about 3,200 instructions. All
the over 350 theorems of this part of PM are proved in 8.4 minutes with an output of
about no pages of 60 lines each. The result was written up before the end of 1959,
published in April 1960 (see reference 3) and then presented in May at the ACM
Conference on Symbol Manipulation. Most of the other papers at the conference were
devoted to introducing programming languages. I recall that several of the speakers
illustrated the power of their languages by giving a succinct presentation of 'the Wang
algorithm' viz. the simple program for the propositional calculus described in reference
2. With a special emphasis on the role of logic (which I now consider an unnecessary
limitation), I suggested that 'computers ought to produce in the long run some
fundamental change in the nature of all mathematical activity.' The recent extensive use
of computers in the study of finite groups and in the solution of the four color problem
would seem to confirm this expectation and point to an effective general methodological
principle of paying special attention to and taking advantage of potentially algorithmic
dimensions of problems in pure mathematics.

Toward the end of 1959, I was struck by the interesting patterns of the Herbrand
expansions of formulas in the predicate calculus. My thought at that time was that if we
can handle the interlinks within each pattern in an effective way, we would not only
decide many subdomains of the predicate calculus but also supply a generally efficient
procedure to search for proofs as well. At that time Paul Bernays and Kurt Schutte
happened to be at the Princeton Institute. Schutte impressed on me the importance of
the challenging and longoutstanding problem of whether the apparently simple AEA
case is decidable. The attraction of such a clean problem lured me away from the
computer enterprise which seemed to suggest indecisively a large number of different
directions to continue.

While working on this theoretical problem, since I en joyed discussions with my
colleagues who had little training in logic, I came to introduce a class of tiling problems
(the 'domino problems') that captures the heart of the logical problem. I was surprised
to discover that the' origin-constrained domino problem' can simulate Turing machines
and is therefore undecidable. These results were ""Titten up in reference 4 but
unfortunately I neglected to include the easy result on the origin-constrained problem,
which was made into a technical report only a year later (in the summer of 1961). Soon
after that, with the assistance of my student A. S. Kahr, I was able to prove, using the
domino problems, that the AEA case is undecidable, contrary to my previous
conjecture.

The paper 4 also includes a few concrete examples. An analysis is given of how x =F x
+ 1 and x + y= y+ x would be proved in quantifier-free number theory from the Peano
axioms. A research paper by J. Hintikka is reformulated into a relatively simple example
of deciding a formula in the predicate calculus. This last example was further elaborated
in reference 6 in which the vague concept of 'stock-in-trade systems' was introduced and

two examples from number theory (the infinitude of primes and the irrationality of 12)

Computer Theorem Proving and Artificial Intelligence 67

were mentioned. It was only in the 1965 IFIP address (reference 8) that I offer more

detailed discussions of four examples from number theory and three examples from the

predicate calculus. I am not aware that anybody has actually solved any of these
examples on a computer, either by working out my suggestions or by other means. I
believe that these examples remain useful today because particularity often sharpens the
challenge to provoke sustained thinking. Some general points underlying the comments
on these examples are made more explicit in reference 9, which also goes into more
general speculations such as the following.

'We are invited to deal with mathematical activity in a systematic way one does
expect and look for pleasant surprises in this requirement of a novel combination of
psychology, logic, mathematics and technology.' There is the matter of contrasting the
formal and the intuitive: for example, Poincare compares Weierstrass and Riemann,
Hadamard finds Hermite's discoveries more mysterious than those of Poincare. The
four stages of an intellectual discovery are said to be: (1) preparation; (2) incubation, (3)
illumination; (4) verification. To mechanize the first and the last 'stages appear
formidable enough, but incubation leading to illumination would seem in principle a
different kind of process from the operations of existing computers.'

A chapter of reference 10 is devoted to a general discussion of 'minds and
machines,' with a long section on the relation to Godel's incompleteness theorems, as
well as a section contributed by Godel. An account of some aspects of computer theorem
proving is included in reference 11.

I should like to take this opportunity to publicize an idea of using some simple
mathematics to bridge the gap between computer proofs and human proofs. I have in
mind proofs which include more formal details than usual which are more likely
candidates for comparatively easier computerization. In particular, around 1965 I wrote
a number of set-theoretical exercises, some by myself and some with my students: see
references 12 to 17. In all these cases I am confident that I can without a good deal of
effort turn the fairly detailed outlines into completely formal proofs. My suggestion is to
use these papers as initial data to help the designing of algorithms for discovery and
verification of sketches of proofs.

For some time I have assumed that it is desirable to have accomplished
mathematicians involved in the project of using computers in their special areas. This
has certainly taken place in several regions as auxiliaries to broader projects of settling
certain open problems (say on finite groups and map coloring). A less frequent
phenomenon is to design efficient algorithms wherever possible and then examine their
ranges of application. It used to be the case that pure mathematicians tended to shun
computers as something ugly and vulgar. In recent years, with the rapid spreading of
computers, more and more younger mathematicians are growing up with computers.
Hence, a basic obstacle to their use has been removed and the remaining division is less
sharp: some would only use computers as a hobby while others would more or less
consciously think of taking advantage of computers to extend their own capacity for
doing more and better mathematics.

Along the line of searching for algorithms in branches of mathematics, I happen to

68 Computation, Logic, Philosophy

have some familiarity with the work of W u Wen-tsiin, an accomplished geometer. (At
one time Wu taught secondary schools and, for lack of contact with modern
mathematics, became an exceptional expert of elementary geometry. This misguided
training has since not only helped him in his research in advanced mathematics but also
turned out to be very useful for his recent project of mechanizing certain parts of
geometry.) In 1977 Wu discovered a feasible method which can prove mechanically
most of the theorems in elementary geometry involving only axioms of incidence,
congruence and parallelism but not axioms of order and continuity (in Hilbert's famous
axiomatization). The method was later extended to elementary differential geometry.
These are reported in 1978 and 1979 (references 18 and 19).

Among the theorems proved on an HP computer (9835A and then WOO) are the
gou-gu or Pythagorean theorem, some trigonometric identities, the Simson-line
theorem, the Pappus theorem, the Pascal theorem, and the Feuerbach theorem. Among
the 'new theorems' discovered and proved are: (1) the 'anticenter theorem and the
anticenter line theorem'; (2) the 'Pappus-point theorem'; (3) the 'Pascal-comic
theorem.' In differential geometry the results proved include Dupin's theorem on triply
orthogonal families of surfaces, the affine analogue of the Bertrand curve-pair theorems,
and the Biickland theorems on the transformation of surfaces. For more details, please
consult Wu's recent paper, reference 20.

In 1978 Douglas McIlroy and I experimented with Wu's algorithm for elementary
geometry and found that without proper caution the requirement for storage tended to
be large. For example, a crucial step is to test whether a polynomial g vanishes modulo
given irreducible polynomials Ph ... , pn. If we work with each coefficient separately
rather than dealing with the whole expansion of g, the size of calculation is reduced
considerably. McIlroy has since continued to toy with matters surrounding the
algorithm and accumulated an amount of interesting data.

I should now like to turn to a few general remarks on the larger topic of artificial
intelligence (briefly AI) as well as on its relation to theorem proving.

The area of AI is rather indefinite. In a broad sense it includes 'expert systems' (or
'knowledge engineering') which, according to Michie (p. 195) 'transfer human expertise
in given domains into effective machine forms, so as to enable computing systems to
perform convincingly as advisory consultants. Expert systems development is
becoming cost effective.' Michie goes on to list more than ten examples. One might
argue about the cost effectiveness but at least we get here a tangible criterion of success.
Most of the 'basic' or 'theoretical' work in AI does not admit any such transparent
standards of evaluation: this is undoubtedly one of the several reasons why the field is so
controversial. But let me delay over expert systems a bit.

DENDRAL takes the pattern generated by subjecting an unknown organic
chemical to a mass spectrometer, and infers the molecular structure. This program is
commonly regarded as a success. Indeed I was full of enthusiasm about it when I first
heard of the project in the 1960s. But the outcome fell short of my high expectations.
One problem is that experienced chemists are often unable to state explicitly the rules
they know how to use when confronting actual particular situations. An unquestionable

Computer Theorem Proving and Artificial Intelligence 69

authority told me that the direct outcome of DENDRAL was not worth all the
investment put into it but that when one took into consideration its more general
influence in starting the trend to develop expert systems, the evaluation was different.
The more interesting meta-DENDRAL project has apparently been left in abeyance for
complex sociopsychological reasons.

I can no longer be sure whether my programs for proving theorems in the predicate
calculus qualify as an expert system. They did use some 'expert' knowledge of logic.
And I was told that people did use my programs for other purposes. In this case it is clear
that they were cost effective since it involved only a few months' labor of one person plus
less than ten hours on a 704 machine. At any rate, my getting a prize from an
international AI organization shows that I am finally being accepted into the AI
community, twenty years after I was commended as a 'cybernetist' in the Soviet Union.
This example illustrates why I get confused over the range of AI which, like any other
subject, undoubtedly evolves with time.

Critics of AI quote the less interesting part of my work only in order to berate the
unprofessional job of Newell-Shaw-Simon (e.g., Dreyfus, first edition, p.8 and
Weizenbaum, p.l66). (By the way, Dreyfus reduces all the 220 theorems to only the 53
selected by Newell-Shaw-Simon.) They miss the central point that although the
predicate calculus is undecidable, yet all the theorem,; of PM in this area were so easily
proved. Enthusiasts for AI simply leave me alone. The professional writer McCorduck
at least makes a bow to theorem proving: 'and I rationalize such neglect by telling myself
that theorems would only scare away the nonspecialist reader this book is intended for'.
This incidentally leads to some other factors which render the field of AI controversial.
It incites popular interest yet, unlike physics, it is a more mixed field in which natural
scientists and social scientists (not to mention philosophers) with quite different
standards meet. More, since it is near big technology, it is close to industrial and
government money. As a result of all these factors, public relations tend to playa larger
role than in more mature disciplines. And that tends to put some people off even though
they find the intellectual core of many problems in the area appealing and challenging.
Exaggerated and irresponsible claims and predictions, instead of being chastised,
appear to be a central ingredient of the glory of many of the 'giants' in this field.

The controversies over AI are a mixed bag. At one end there are relatively solid
accomplishments which may be evaluated in terms of 'cost effectiveness' and cleancut
'milestones.' There is a middle region which contains results which are not particularly
decisive in themselves but seem to promise more exciting future developments. But in
most cases the promises are fairly subjective and precarious. When we move to 'basic'
AI which in many ways is the most exciting for the widest audience, we seem to be
arguing over conclusions for or against which our universal ignorance of crucial aspects
offers so little evidence that individual psychology over ethical, esthetic, political, and
philosophical matters generally appears to play a dominant role. The fascinating
question seems to shift from who is right (science?) to the motley of sources of the
vehement disagreements (socio-psychology of convictions). Let me try to sort out some
of the larger issues as I darkly see them.

70 Computation, Logic, Philosophy

Is the brain a computer? By now it seems generally agreed that the brain is certainly
not a computer of the kind we are familiar with today. This point was argued, for
example, by 10hn von Neumann, who used to say that the brain is a professional job
(which the computer isn't), in The computer and the brain, 1958. There remains the

position that whatever the brain can do, some computer of the current type can do it as
well, some day. This seems implausible and in any case so indefinite that we don't know
how to begin assembling evidence for such a position. Recent proponents of mechanism
take rather different forms. For example, according to Hofstadter (p. 579), the AI thesis
is: 'As the intelligence of machines evolves, its underlying mechanisms will gradually
converge to the mechanisms underlying human intelligence.' I presume that 'the
evolution of machines' will require quite a bit of human intervention. I can't help
wondering that if we postulate the possibility of such convergence, why not include also
a divergence? Since human intelligence is not perfect, if the machine is believed to be on
the way of converging to the complex human intelligence, surely it can be expected to
acquire other superiorities (apart from the obvious one of speed in certain situations).
There is no indication how long the evolution will take.

Webb undertakes to argue that Godel's incompleteness theorems are for rather
than against mechanism. (By the way, he also argues the stronger thesis that these
theorems are for rather than against Hilbert's program. Here he is certainly wrong since
Hilbert's requirement of'finitist viewpoint' is sufficiently definite to admit a conclusive
refutation of his program by Godel's results.) Webb is certainly only arguing for a
matter of principle. 'But the ultimate test would be to simulate Hilbert's metatheorem
about Thales' theorem, undertaken to analyze his implicit commitment to spatial
intuition in plane geometry. Existing machines are presumably light years away from
results like this, much less the philosophical motivation for them, but I see no obstacle
of principle' (p. Ill). Is he merely saying that nobody has mathematically refuted
mechanism (or, for that matter, the existence of God')?

The more familiar battleground over larger claims of AI involves the issues
whether machines can handle natural language, acquire commonsense understanding,
and especially situated understanding. In this area we of course easily come upon
perennial problems in philosophy and the methods of psychology. Before getting into
this more nebulous area, it may be better to discuss a somewhat neutral and modest
thesis: Every 'precisely described' human behavior (in particular, any algorithm) can be
simulated (realized) by a suitably programmed computer. (In the 1950s I heard
something like this attributed to 10hn von Neumann who believed that not all human
behavior can be precisely described.) There is a slight ambiguity in this thesis which
relates to the by now familiar distinction between theoretical and feasible computability.

We can precisely describe a procedure for finding a nonlosing strategy for playing
chess or deciding theorems in elementary geometry. But, as we know, these
computations are not feasible. It could be argued that carrying out such computations is
not normal human behavior. But, for example, in deciding tautologies in the
propositional calculus or dealing with cases of the travelling salesman problem, we do
naturally try the standard simple algorithms which are in the general case not feasible.

Computer Theorem Proving and Artificial Intelligence 71

One would have thought at first that this type of behavior is exactly what the computer
can profitably simulate and get beyond our limited capacity in managing complexity.
The point is that there are many different levels of precise description which, even with
the computer's increased speed and storage, are often inseparable from commonsense
understanding or sophisticated reasoning, if the descriptions are to lead to feasible
computation. For example, if we increase a thousandfold the matrix for pattern
recognition, the computers could do a much better job, except for the fact that the
procedures are no longer feasible for the computers.

There is a tendency to view theorem proving as of little central interest to the large
goals of AI. The idea is that it is too pure and clean to run into the tougher problems. But
I disagree. For example, the surprising human ability to make connections may be
illustrated by the discovery of hundreds of problems equivalent to P = NP. I mentioned
earlier the stage of incubation leading to illumination which is typically applicable to
mathematical discoveries. Poincare reports on how dreams played a crucial role in the
process of some of his discoveries. If we use the distinction of conscious, preconscious
and unconscious, it is said that phenomenology places its main emphasis on the line
between the conscious and the preconscious, while psychoanalysis is preoccupied with
the line between the unconscious and the preconscious. As we know, dreams are one of
the main tools for getting at the unconscious. Hence, the experience of Poincare points
to the involvement of the unconscious in mathematical discoveries. That is certainly not
something 'pure and clean' nor irrelevant to the larger contrast of minds and machines.

I recently observed to a colleague, 'How are we to introduce the unconscious into
the machines?' After a pause, he answered. 'I would say that machines are entirely
unconscious.' In other words, we haven't yet made machines 'conscious' or able to
simulate our conscious behaviors, it seems very remote to get at the unconscious and
then endow the machines with a reservoir of the unconscious. This sort of consideration
may be what has led to the talk of evolution, child development, and the 'Society of
Minds.' Minsky speaks of trying 'to combine methods from developmental, dynamic,
and cognitive psychological theories with ideas from AI and computational theories.
Freud and Piaget play important roles. In this theory, mental abilities, both
"intellectual" and "affective" (and we ultimately reject the distinction) emerge from
interactions between "agents" organized into local, quasi-political hierarchies.' (p. 447).
This is certainly an ambitious and awe-inspiring project which would seem to be remote
from existing computers. 1 am much in sympathy with the project, but more as one in
philosophy rather than one in AI. Perhaps the idea is to simulate the development of
mankind and the universe but to speed up evolution and individual as well as societal
developments to such a high degree that the mental states ofliving human beings all get
mirrored into a gigantic computer program? In one sense, since the project is interesting
in itself, a good theory is welcome more or less independently of its connections with AI.
The problem is rather whether a preoccupation with AI helps or hinders the
development of a good theory of such a dimension.

Minsky and Seymour Papert draw on Freud and Piaget but say nothing about the
sources of their political theory. Dreyfus rather appeals to Heiddeger, to Wittgenstein,

72 Computation, Logic, Philosophy

to Medeau-Ponty, and, more recently, also to John Dewey. Dreyfus sees a convergence
of Minsky's earlier 'frame theory' to Hussed's phenomenology which has, for Dreyfus,
been superseded by the work of the four philosophers just mentioned (p. 36). In fact,
Dreyfus explicitly follows Heiddegger in his view of the history of western philosophy

and it is refreshing to see him relate such a view to a critique of AI. While I find the
debates stimulating for my philosophical pursuit, I am unable to render clear to myself
direct connections between these interesting observations and my mundane reflections
on AI.

One problem I find tangibly enticing is how one chooses an appropriate research
project. Of course we are often ignorant of the real causes behind our choices and we all
make more or less serious mistakes in our choosing. (Closely related to the individual's
choice, there is a problem of the society's choice.) For instance, given the present state of
AI, what sort of young people would be making a good choice to enter the field? That
means, among other things, they would be happier or do better work or both, than in
some other field. 'Happier' and 'better work' are tough and elusive concepts. Yet I feel
that even using such considerations as a guide would be more realistic than trying to find
out whether either the AI enthusiasts or their opponents are more in the right. For one
thing, they seem to argue over a motley of diverse issues. More, it is particularly difficult
to decide on remote possibilities and impossibilities, even harder to have them guide
one's action and short-term goals. -- Certainly the problem for a popularizer is quite
different from that for a prospective research worker, and will not be discussed here.

Once Freud argued against mysticism in the following words (letter of 1917 to
Groddeck):

'Let us grant to nature her infinite variety which rises from the inanimate to the
organically animated, from the just physically alive to the spiritual. No doubt the
Unconscious is the right mediator between the physical and the mental But just
because we have recognized this at last, is that any reason for refusing to see anything
else? ... the monistic tendency to disparage all the beautiful differences of nature in
favour of tempting unity. But does this help to eliminate the differences?'

That the unconscious should play such a key role certainly throws a long shadow
over the attempts to understand better the relation between mind and body. It does in a
way tempt people to some form of mysticism. But the larger question raised is the
dilemma between the cleanliness of universality and the richness of particularity. It is so
difficult to take full advantage of the proper particularity while striving successfully for
universality. Applied to problems in AI, for instance, somebody's proving a theorem or
recognizing a pattern is a particular event which generally resists the universalizing
process of a 'precise description' of what is involved in it.

A particular act of recognition or reasoning depends on one's genes, the history of
one's mind and body, some essential relation to desire, even race, class, sex and many
other factors. Of most of these factors we have at best an imperfect knowledge and
understanding. In AI we can only take into consideration some small residues of these
factors which happen to be noticeable by perception or introspection. This is not to deny
that we have often unexpected surprises in technology for one reason or another. But the

Computer Theorem Proving and Artificial Intelligence 73

courses of advance are hard to predict and certainly do not coincide with the history of
human development. For example, I once thought of getting a gadget which would do
the work of a dog. I was surprised to get a box which sounds the alarm when bodily
temperature is suddenly introduced. It is surprising that the computer can playa good
game of chess. Yet it can't yet drive a car well in traffic. But for the human intelligence
situated in a technological society the latter task is easier than the former.

In short, I am not able to find the right mix of participation in and distancing from
the AI project to offer any clear and distinct ideas on the loudest current controversies in
this area. To rationalize my own failure in this regard, I venture to give my impression
that the strong voices come usually from committed believers who begin with
couclusions, perhaps reached through incommunicable private sources. Hence, it is
easier to be more decisive since merely assembling arguments to support predetermined
positions suffers from less distractions. Those who wish to examine the available
evidence with an open mind, as is to be expected, are at a disadvantage.

References

Hao Wang.

1. "A Variant to Turing's Theory of Computing Machines," Journal of the Association for Computing

Machinery, vol. 4 (1957), pp.63-92; reprinted in reference 5 below.

2. "Toward Mechanical Mathematics," IBM Journal, vol. 4 (1960), pp.2-22; reprinted in reference 5

below.

3. "Proving Theorems by Pattern Recognition," Part I, Communications of the Association for

Computing Machinery, vol. 3 (1960); pp. 220-234.

4. "Proving Theorems by Pattern Recognition," Part II, Bell System Technical Journal, vol. 40 (1961),

pp. 1-41 These two parts also appeared as Bell Technical Monograph 3745.

5. A Survey of]\!Iathematical Logic, Science Press, Peking, 1962,652 pp. + x; also distributed by North·

Holland Publishing Company, Amsterdam, 1963. Reprinted by Chelsea, New York, 1970 under the title

Logic, computers and sets.

6. "Mechanical Mathematics and Inferential Analysis," Seminar on the Relationship Between

Nonnumerical Programming and the Theory of Formal Systems, P. Braffort and D. 'Hirschberg (eds.)

(1963), pp. 1-20.

7. "The Mechanization of Mathematical Arguments," Proceedings of Symposia in Applied Mathematics,

voLl5, American Mathematical Society (1963), Experimental Arithmetic, High Speed Computing and

Mathematics, pp. 31-40.

8. "Formalization and Automatic Theorem Proving", Proceedings of IFIP Congress 65, 1965,

Washington, D.C., pp. 51-58. Russian translation in Problems of Cybernetics, vol. 7 (1970), pp. 180-

193.

9. "On the Long-range Prospects of Automatic Theorem-Proving," Symposium on automatic

demonstration, Springer-Verlag, 1970, pp. 101-111.

10. From Mathematics to Philosophy, Routledge & Kegan Paul, 1974,431 pp. + xiv.

11. Popular Lectures on Mathematical Logic, Science Press, Beijing; Van Nostrand Reinhold Company,

74 Computation, Logic, Philosophy

New York, 1981-

12. (With S. A. Cook) "Characterizations of Ordinal Numbers in Set Theory, "Mathematische Annalen, vol.

164 (1966), pp. 1-25.

13. (With K. R. Brown) "Finite Set Theory, Number Theory and Axioms of Limitation," ibid., pp. 26--29.

14. (With K. R. Brown) "Short Definitions of Ordinals," Journal of Symbolic Logic, vol. 31 (1966), pp.

409-414.

15. "On Axioms of Conditional Set Existence," Zeitschr.J. Math. Logik und Crundlagen d. Math., vol. 13

(1967), pp. 183-188.

16. "Natural Hulls and Set Existence," ibid., pp. 175-182.

17. "A Theorem on Definitions of the Zermelo-Neumann Ordinals," ibid., pp. 241-250.

Wu Wen-tsiin.

18. "On the Decision Problem and the Mechanization of Theorem Proving in Elementary Geometry,"

Scientia Sinica, vol. 21 (1978), pp. 159--172.

19. "Mechanical Theorem Proving in Elementary Differential Geometry," Scientia Sinica, l'v[athemalics

Supplement, I (1979), pp. 94--102.
20. "Mechanical Theorem Proving in Elementary Geometry and Differential Geometry," Proc. 1980

Beijing DD-symposium, vol. 2 (1982), pp. 1073-1092.

A. M. Turing.

21- "Computing Machinery and Intelligence," Mind, Vol. 59 (1950), pp. 433--460.

Joseph Weizenbaum.

22. Computer Power and Human Reason: From judgment to Calculation, W. H. Freeman and Co., 1976.

Hubert L. Dreyfus.

23. What Computers Can'/ Do: The Limits of Artificial Reason, revised edition, 1979 (original edition

1972).

Douglas R. Hofsladter.

24. Codel, Escher, Bach: An Eternal Colden Braid, 1979.

Judson C. Webb.

25. Mechanism, Mentalism, and Metamathematics, 1980.

Donald Michie.

26. Machine IntPlligence and Related Topics: An Information Scientist's Weekend Book, 1982.

Pamela McCorduck.

27. Machines Who Think, 1979.

Marvin Minsky.

28. 'The society theory of thinking,' Artificial Intelligence: An MIT Perspectit'e, Vol. 1, 1979, pp. 421-

450.

Computer Theorem Proving and Artificial Intelligence

APPENDIX: CITATION FOR HAO WANG AS
WINNER OF "MILESTONE" AWARD IN

AUTOMATIC THEOREM-PROVING

75

The first "milestone" prize for research in automatic theorem-proving is hereby
awarded to Professor Hao Wang of Rockefeller University for his fundamental
contributions to the founding of the field. Among these, the following may be listed:

1. He emphasized that what was at issue was the development of a new intellectual
endeavor (which he proposed to call "inferential analysis") which would lean
on mathematical logic much as numerical analysis leans on mathematical
analysis.

2. He insisted on the fundamental role of predicate calculus and of the "cut-free"
formalisms of Herbrand and Gentzen.

3. He implemented a proof-procedure which efficiently proved all of the over 3S0
theorems of Russell and Whitehead's "Principia Mathematica" which are part
of the predicate calculus with equality.

4. He was the first to emphasize the importance of algorithms which" eliminate in
advance useless terms" in a Herbrand expansion.

S. He provided a well-thought out list of theorems of the predicate calculus which
could serve as challenge problems for helping to judge the effectiveness of new
theorem-proving programs.

Articles by Hao Wang on automatic theorem-proving
The list consists of items 2 through 4 and 6 through 9 in the references given above

and is, therefore, omitted.
That concludes the citation.
In the text of the paper I have supplemented the citation with a few additional

remarks. (a) My work can be viewed as an early example of 'expert systems' in contrast
with the related work of Newell-Shaw-Simon. (b) I have stressed that in order to use
computers in a mathematical discipline, it is essential to go beyond the predicate
calculus and put emphasis on principles special to the discipline (e. g., induction in
number theory). (c) It is extremely helpful that the computerization be undertaken by
accomplished mathematicians in the particular discipline to be computerized.

In the announcement of prizes for advancements in automatic theorem proving, it
is stated:

'A committee of mathematicians and computer scientists has been formed to
supervise all aspects of the prizes. The current members of this ATP Committee are:
Woody Bledsoe (Chairman), Robert Boyer, Martin Davis, Bill Eaton, Daniel
Gorenstein, Paul Halmos, Ken Kunen, Dan Mauldin, John McCarthy, Hugh
Montgomery, lack Schwartz, Michael Starbird, Ken Stolarsky and Francois Treves.'

6. PROVING THEOREMS BY
PATTERN RECOGNITION, 1*

6.1 Introduction

Certain preliminary results on doing mathematics by machines ("mechanical
mathematics") were reported in an earlier paper [20]. The ",Titer suggested developing
inferential analysis as a branch of applied logic and as a sister discipline of numerical
analysis. This analogy rests on the basic distinction of pure existence proofs, elegant
procedures which in theory always terminate, and efficient procedures which are more
complex to describe but can more feasibly be carried out in practice. In contrast with
pure logic, the chief emphasis of inferential analysis is on the efficiency of algorithms,
which is usually attained by paying a great deal more attention to the detailed struc
tures of the problems and their solutions, to take advantage of possible systematic
short cuts. The possibilities of much more elaborate calculations by machines provide
an incentive to studying a group of rather minute questions which were formerly
regarded as of small theoretical interest. When the range of actual human computation
was narrow, there seemed little point in obtaining faster procedures which were still far
beyond what was feasible. Furthermore, on account of the versatility of machines, it
now appears that as more progress is made, strategies in the search for proofs, or what
are often called heuristic methods, will also gradually become part of the subject
matter of inferential analysis. An analogous situation in numerical analysis would be,
for example, to make the machine choose to apply different tricks such as taking the
Fourier transform to obtain a solution of some differential equation.

The present paper is devoted to a report on further results by machines and an
outline of a fairly concrete plan for carrying the work to more difficult regions. A
fundamentally new feature beyond the previous paper is a suggestion to replace
essentially exhaustive methods by a study of the patterns according to which exten
sions involved in the search for a proof (or disproof) are continued. The writer feels
that the use of pattern recognition, which is in the cases relevant here quite directly
mechanizable, will greatly extend the range of theorems provable by machines.

As is to be expected, the actual realization of the plan requires a large amount of
detailed work in coding and its more immediate preparations. The machine program P
completed so far on an IBM 704 contains only a ground-work for developing the
method of pattern recognition. It already is rather impressive insofar as ordinary logic
is concerned but has yet a long way to go before truly significant mathematical
theorems can be proved. For example, the program P has to be extended in several
basic directions before a proof can be obtained for the theorem that the square root of 2

* First published in Communications of the ACM.vol. 3, pp 220-234. @ Association for Com
puting Machinery, Inc, 1960. Reproduced by permission.

76

Proving Theorems by Pattern Recognition, I 77

is not a rational number. On the other hand, theorems in the logical calculus can be
proved very quickly by P. There are in Principia Mathenwtica altogether over 350
theorems strictly in the domain of logic, yiz., the predicate calculus with equality,
falling in 9 chapters (1 to 13, since there are no 6, 7, 8, and since 12 contains no
theorems). The totality of these is proved ,'lith detailed proofs printed out by the
program P in about 8.4 minutes. To prove these theorems, only about half--and the
easier half---of P is needed. The other half of P can prove and disprove considerably
harder statements and provides at the same time groundworks for handling all in
ferential statements. This program P will be deseribed in section 2.

Since the central method to be discussed is primarily concerned with the predi
cate calculus, its wider significance may be appreciated better, if we review briefly
certain familiar facts about the relation of the predicate calculus to mathematics in
general.

Thus, it is well known among logicians that if we add equality and the quantifiers
"for all x," "for some y" to the propositional connectives "and," "if", "or," "not,"
etc., we obtain the predicate calculus in which every usual mathematical discipline can
be formulated so that each theorem T in the latter becomes one in the former when the
mathematical axioms A applied are added as premises. That is to say, if T is the
theorem in the mathematical discipline, "if A, then T" is one oflogic. This, rather than
the constructions of F rege and Dedekind, is the significant sense in which mathematics
is reducible to logic. From this fact it is clear that in order to prove mathematical
theorems by machines a major step is to deal with theorems of the predicate calculus.

There is a natural uneasy feeling that this cannot be a feasible way of handling
mathematics since we expect the methods to be largely dictated by the peculiar
mathematical content of each individual branch, which presumably gets partly lost
when the disciplines are thus uniformly incorporated into the predicate calculus by
formalization and abstraction. This is quite true, and indeed we have to add special
methods for each special mathematical discipline. But the point often neglected is that
an adequate treatment of the predicate calculus is of dominating importance and that
for each discipline the basic additional special methods required are relatively homog
eneous. For number theory, the essential new feature is largely concentrated in math
ematical induction as a method of proof and as one of definition; for set theory, in the
axiom of comprehension, i.e., the axiom specifying all the conditions which define sets.
Hence, there is the problem of choosing the formula to make induction on, or the
condition for defining a set. While it seems doubtful that there is any uniform efficient
mechanical method for making such selections, there are often quite feasible partial
methods. For example, for making such selections in number theory the obvious
uninspired method of trying a conclusion and its subformulae as the induction formula
should suffice in many cases.

Thus, it would seem that, once a feasible way of doing logic is given, fairly simple
additional methods could carry us quite some way into special mathematical disci
plines. Moreover, the method of pattern recognition is basically number-theoretic, and
as such recovers a considerable amount of the mathematical content of each branch of
mathematics. This is so because, in order to establish, e. g., a conclusion (x) (Ey) Rxy,
it aims at choosing a simple correct function f such that (x) Rxfx. And it seems not

78 Computation, Logic, Philosophy

unreasonable to contend that a good deal of originality in mathematics consists pre
cisely in the ability to find such functions.

The proposed method for doing logic always begins from scratch for each
theorem. This is quite different from the type of proof we encounter in Euclid, where it
is essential that later theorems are proved with the help of earlier ones. While this
problem of selecting relevant earlier theorems to apply appears unimportant in the
domain of logic as dealt with by the method to be described, it has to be faced at some
stage, and the writer does not have a ready general solution of it. Two remarks,
however, seem to be relevant. In the first place, because of the greater speed of
calculations by machines, it is natural to expect that it is often faster to provean easy
old theorem anew rather than look it up. Hence, we may neglect easy theorems and
record only hard ones, perhaps as new axioms. In this way we arrive at a conception of
expanding axiom systems which include difficult new theorems as additional axioms.
Here it is irrelevant that the new axioms are not independent, since the goal is to prove
other new theorems as quickly as possible. When we use such expanding axiom
systems, we arrive at a compromise between pedantry and ignorance. This is not much
different from the practice of a good mathematician who remembers only a number of
important theorems and works out simple consequences as he is in need of them. In the
second place, although it is of interest to extend the range of problems which the
machine can do without human intervention, it is fair to expect that when we arrive at
the stage of having machines try to prove theorems which we cannot prove, we shall not
hesitateto feed the machine all the useful suggestions we can think of. Eventually
machines are to be an aid to mathematical research and not a substitute for it; there is
no point of running a handicap race by refusing to lend the machine a hand to
complement its shortcomings. In fact, once the general framework is available, one
would expect that, compared with a mere expert of the general techniques, a mathema
tician working on a particular problem >'rill more likely succeed in using the framework
with additional hunches appended to get a proof of the desired theorem by machine.

Another question is that the axiom of induction and the axiom of comprehension
both have infinitely many instances. Or, in the usual formulation of number theory
and set theory, each contains infinitely many axioms beyond the predicate calculus.
Hence, if we ask whether, e. g., a statement T is a theorem of number theory, we are
actually asking whether it is a logical consequence of the infinitely many axioms. If
there are only finitely many axioms, we can write their conjunction A, and ask simply
whether A ---+ T is a theorem of the predicate calculus. This trick is denied us when the
axioms are infinite in number. It, therefore, seems desirable to use only finitely many
axioms when possible, and indeed there are standard methods for reducing usual sets
of axioms to finite sets (see, e. g., [18] for one such formulation of number theory).
The matter is, however, not very clear since we have to make selections from the
axioms anyhow and the finite set only gives an enumeration of the infinite set, intro
ducing meanwhile complexities through another avenue. Finite sets of axioms are
however, undoubtedly useful for many purposes of mechanization, e. g., when one
comes to classifying theorems according to their logical forms.

Since most of us learned Euclid and number theory without worrying about the
predicate calculus, it might seem that the natural course is to bypass logic and go

Proving Theorems by Pattern Recognition, I 79

directly to mathematics. The writer is opposed to such an approach if the aim is to
prove more and harder theorems rather than to study the psycholgy and history of
mathematical thinking. Obviously what is natural for man need not be natural for the
machine. More specifically, iflogic is not treated in an explicit and systematic manner,
constant additions of adhoc new devices make the progress toward less trivial theorems
slower and slower, as well as more and more confusing. As a result, one may, e.g., even
mistake the introduction of familiar logical principles for genuinely giant steps. Devis
ing a vast machinery specifically designed to obtain a few easy theorems is wasteful.
The writer feels that results obtained from different approaches ought to be measured
against the generality and economy of the machinery behind them, and that prelimai
nary steps should be capable of supporting large superstructures yet to be erected. It is
the writer's conviction that the alternative approach of treating logic only by the way
would score very poorly by both criteria.

This is, however, not to deny that some of the problems encountered in dealing
directly with mathematics will still have to be faced by the present approach. It is
merely contended that the alternative approach does not take advantage of the possi
bility of "divide and conquer." As a result, what could be handled simply with the help
of known techniques is mixed up with the less easily manageable further details, so that
an intrinsically complex problem is made even more complex than necessary. The
present attempt is concerned less with obtaining partial results which immediately
excite man's undisciplined imagination, but rather more with setting up a framework
capable of yielding rich results in the long run. There is a third approach which
concentrates on coding known decision procedures for isolated areas such as elemen
tary geometry, or arithmetic with only multiplication. Since these areas do not include
very many interesting theorems and do not form organic parts of proof procedures for
more interesting areas, the writer feels they are not of central importance to the
program of proving theorems by machines. At a later stage they may serve as useful
auxiliary devices to assist the more basic techniques. It cannot be denied, however, that
this type of problem has the advantage that only more restricted theoretical consider
ations are needed for their mechanical implementation.

In the previous paper [20], the writer has suggested an Herbrand-Gentzen type
proof procedure which is also an efficient decision procedure in the realms of the
propositional calculus and the AE predicate calculus (i. e., those formulae which can be
transformed to ones with prefix (Xl) ... (Xm)(EY1) ... (EYn)). In the more general case,
there is the well-known unbounded search procedure illustrated in the following
simple example.

Example (1).

(x)(Ey)(Gyy & Gxx)::::J (Ex)(z)(Gzx & Gzz);

or, alternatively,
(Ex)(y)(z)[(Gyy & Gxx)::::J (Gzx & Gzz)].

According to Herbrand's theorem to be described in Part II, (1) is a theorem if
and only if there exsts some N such that Sl v··· VSN is a truth-functional tautology,
where the Si'S are:

80 Computation, Logic, Philosophy

51 :(x, y, z,) = (1, 2, 3): (G22 & Gll) ~ (G31 & G33)
5z:(x, y, z) = (2, 4, 5): (G44 & G22) ~ (G52 & G55)
53 :(x, y, z) = (3, 6, 7): (G66 & G33) ~ (G73 & G77)
54 :(x, y, z) = (4, 8, 9): (G88 & G44) ~ (G94 & G99)

Since (1) is not a theorem, there can exist no tautologous disjunction 51 v'" v5n , or
briefly, Dn- If we are to test successively the disjunctions Db Dz, etc., we can never
reach an answer. One can undoubtedly use some special argument to show that (1) is
not a theorem, but then there is the question of formalizing the argument and gen
eralizing it to apply to some wide range of cases. As it happens, (1) falls under a simple
decidable class, viz., the EIA case of all formulae beginning with a prefix (EX)(Yl) ...
(Yn), and it has been shown that for each formula A in the class, one can find some N,
such that either DN is tautologous or A is not a theorem. Hence, it may seem that
simply adding the method of calculating N to the unbounded search procedure would
already provide a decision procedure for the class in question. This is, however, only a
theoretical possibility and hardly feasible ever on machines. For example, according to
Ackermann's evaluation for N (see [3J, p. 265) the value of N for the simple example
(1) is no less than 248 - 1. Of course, the bounds for more complex formulae in the
class, and formulae in more complex decidable classes, are much higher according to
the traditional decision procedures. This situation led the writer to envisage in [20J the
prospect of not using more decision procedures but trying to simplify directly the
brute force search procedure of proof as soon as we get beyond the AE predicate
calculus.

More recently, steps along such a direction have been taken by Gilmore, Davis
and Putnam. Gilmore has written a program using essentially the brute force method
and tested a small sample of examples [8J. Davis and Putnam have in [4J devised
efficient techniques for testing whether a given disjunction Sl v ... VSN is tautologous.
An efficient test for truth-functional tautologies in general, proposed earlier by
Dunham-Fridshal-Sward, has also been coded and run on a machine [7].

The writer feels that Gilmore's result is basically negative, i.e., it shows that
without fundamental improvements the brute force method will not do. Perhaps the
two most interesting examples, a nontheorem (2) and a theorem (3), which his program
fails to decide, are fairly simple and can indeed be decided by the method of pattern
recognition quite easily, as will be shown in Part II. His examples are (drawn from [3J,
p. 262):

Example (2).
(Ex)(Ey)(z){[Gxz == Gzy) & (Gzy== Gzz) & (Gxy== Gyx)J:::l (Gxy== Gxz)}.

Example (3).
(Ex)(Ey){z){[GxY:::l (Gyz & Gzz)] & [{Gxy & HXY):::l {Hxz & Hzz)]}.

Davis and Putnam have indicated that by their improved method of testing for
tautologies, a treatment of (3) becomes feasible. Since their method is concerned only
with the last stage, viz., that of testing each disjunction, it can of course do nothing
with nontheorems such as (2). Moreover, since it provides no device for deleting
useless terms among S[, S2, etc., it is not likely to be of use even when a formula is
indeed a theorem but the smallest n for which SlV ... vSn is tautologous is large. For

Proving Theorems by Pattern Recognition, I 81

example, with regard to (3), SlV ... VS25 is the earliest tautology; in 21 minutes on an
IBM 704, only Sl v ... VS7 has been handled by Gilmore's program. Although the
particular example appears to be mechanically manageable by the method of Davis and
Putnam, one would expect that expressions can easily become too long to handle by
this method.

The writer now feels that a more basic step is to eliminate in advance useless terms
among S10 S2, etc., or, alternatively, instead of actually constructing and testing the
disjunctions; examine in advance, for each given problem, all the possible courses
along which counterexamples to S1. SlvS2, etc. may be continued. Using the second
alternative, we obtain at the same time a disproving procedure for most cases. The
detailed techniques for achieving these-goals are here called the method of proving
theorems (and disproving nontheorems) by pattern recognition, or, more specifically,
the method of sequential tables. When applied to Example (1), the method gives the
desired answer in the following manner. When we substitute numbers for the vari
ables, each elementary part Gyy, Gxx, Gzx, Gzz gives way to infinitely many new
elementary parts which occur in S1. S2, etc. We now. ask whether we can so assign
truth values (true or false) to the infinitely many elementary parts that Sl S2, etc. all
become false. If that is impossible, (1) is a theorem, otherwise we get a counterexample
and (1) is not a theorem. If we look at the matrix of (1):

(Cyy & Cxx) =:> (Czx & Czz) ,
we see that it IS false only when:

Gxx Gyy Gzx Gzz
t f t

t t t f
t t f f

Since, as happens in this case, different variables are always replaced by different
numbers, each of the above rows can make each of Sl, S2, etc. false if we imagine that
the variables are replaced by their corresponding numbers. The problem is whether we
can select simultaneously one row for each Si which, taken together, will not conflict
with one another. For example, although each row can falsify S1. and even both Sl and
S2, S3 becomes true when G33 gets the value f. Hence, to falsify S1. S2, and S3, we
must take the first row for Sl:

Gll G22 G31 G33
t t f

Then any row can falsify S2 and S3. But in order to falsify also S5, G55 has to be t, so
that again we can use only the first row for S2:

G22 G44 G52 G55
f t

Similarly, in order to falsify S7 and S3 one has to use the first row for S3. It is clear that
by always using the first row we can simultaneously falsify all S;'s since the constraints
imposed on later S;'s by earlier S;'s are uniform. Hence, we conclude that (1) is not a
theorem. In fact, as will be discussed in section 3, all we have to do is to cross out every
falsifying row in which Gyy or Gzz gets a value which Gxx does not get in any row.
Mter repeated application of this operation, either no row is left and then the original
statement is a theorem, or else some row is left and then a countermodel is possible.

82 Computation, Logic, Philosophy

This last method, called the method of sequential tables, seems to be a new feature that
goes beyond the general method of pattern cognition.

As will be shown in Part II, the method can be generalized and rigorously justified
for a number of broad classes. The type of considerations involved in such a method
should be clear, however, from the above example.

The basic ideas of the general method of pattern recognition, though not the
special addition of the method of sequential tables directed at efficiency, go back to
Herbrand [lOJ and, in a less general form, also to Skolem [16]. By this method,
Herbrand was able to give in a uniform way a treatment of most solvable cases of the
decision problem (for logic) known at his time, and to discover two interesting new
cases, viz., a generalization of the EIA case and the disjunctive predicate calculus
dealing with formulae with a matrix that is a disjunction of elementary parts and their
negations. Church gave along a similar line a more exact treatment of these same cases
plus two cases by Skolem but minus Herbrand's generalization of the EIA case [2, 3].
The chief additional case at first obtained by the more usual sort of technique, shortly
after Herbrand's treatment, has recently been handled by Klaua [12J with this general
method. Dreben has pursued the matter further and announced in general terms a
number of results [6]. We understand Dreben is writing a monograph on the subject.

The writer believes that in several direction's the important implications of the
method has not yet been fully exploited in the works just cited. First, the method can
be used to give decision procedures for well-known unsolved cases. The writer has
found a partial solution of the decision problem for the class of formulae with the
prefix (Ex)(y)(Ez) (this open problem is mentioned, e.g., by Church, [2, p. 271J, and
by Ackermann, [1, p. 85J; it seems to go back to the early thirties). The solution will be
given in Part II. This case is of special interest since it is a natural class and includes
simple examples which are nontheorems but have no finite countermodels. A well
known example due to Schutte [1, p. 83J IS:

Example (4).
(Ex)(y)(Ez){GXy:::J [Gxxv(Gyz & ~ Gxz)J}.

The negation of this ia an axiom of infinity, i.e. a statement satisfiable only in an
infinite domain. A related but more familiar form of axioms of infinity is the con junc
tion of:

(i) (x) ~ Gxx; (ii) (x) (Ey) Gxy; (iii) (Gxy & Gyz):::J Gxz.
Secondly, the method and ideas of pattern recognition can be extended to give

some quasi-decision procedure for the whole predicate calculus. By this is meant a
procedure which in theory always gives a proof if the given formula is indeed a
theorem, and which in "most" cases gives also a counterexample if the given formula is
not a theorem, so that the mudecidable formulae become, one might say, points of
singularity. In general, it is no longer a question whether a nontheorem has finite
countermodels but whether it has either finite or simple infinite countermodels. For
example, if a nontheorem has no recursive countermodels, it is to be expected that a
natural quasi decision procedure will not be able to refute it. It is possible to design
different quasi-decision procedures which have different ranges of application. The
way to get such procedures is roughly to apply the consideration of patterns to all
formulae or to all in a reduction class, i.e., a class such as all formulae with the prefix

Proving Theorems by Pattern Recognition, I 83

(Ex)(Ey)(Ez)(w), such that there is an effective method by which each formula can be
transformed into an equivalent one in the class. There are many ramifications in
carrying out the matter in detail.

Thirdly, as is only natural, not sufficient attention has been paid to the question of
efficiency, or the difficulties in actually applying the procedures by man or by ma
chines In particular, the method of sequential tables is an example of the possible ways
to improve efficiency. A related minor point is that the more difficult decision proce
dures are usually not illustrated by examples.

In view of these three explorable areas, the writer feels that there is a good deal of
interesting theoretical work which is yet to be done. This is one of the reasons why it
seems to the writer difficult to make definite estimates and predictions as to how fast
and how far theorem proving can be mechanized. At present, it appears that there are a
succession of rather difficult but by no menas humanly impossible steps yet to be
taken which do not embody any known limitations. Man will have to devise methods or
methods for devising methods, but the machine will use the methods to do things
which man cannot feasibly do. There is nothing paradoxical in this. Even today long
multiplications and other calculations provide ample examples. Since we should, as a
fundamental methodological principle, expect no ,miracles, the fact that there is much
yet to be done and that we have a fairly good idea of the sort of thing to be done seems a
very good indication that we are not after a will--o' -the-wisp.

Mter a longer paper had been nearly completed, the writer learned of the restric
tion on the length of the paper As a result, the paper is divided into two parts. Nearly
all detailed theoretical considerations are given in Part II, which will be made a
memorandum at the Bell Laboratories and presumably published eventually.

In this first part, section 2 gives a general description of the completed machine
program mentioned above. Sketches are given of results on elementary domains such
~s the restricted AE predicate calculus (similar to Qp in [20, p. 10], except for a
method of eliminating functors) and the AE calculus, as well as general preliminary
steps useful for extension of the program to the whole predicate calculus. In particular,
devices will be stated which are useful for the systematic simplification of formulae so
that many additional formulae are reduced to members in classes known to be decid
able. It should be emphasized that in the program actually completed procedures using
the method of pattern recognition in the specific sense explained above have not been
included, although the program is oriented toward a systematic preparation for the
treatment of such procedures.

Section 3 gives a solution of the simple E1 A case as an illustration of the general
method of pattern recognition, and, more specifically, for the method of sequential
tables. In Part II, all the main decidable cases, the new case (Ex)(y)(Ez), as well as
quasi-decision procedures, will be considered, all along a line similar to that followed
by the method in section 3.

Finally, section 4 contains a number of general remarks.

6.2 A program. that does 9 chapters of principia in 9 minutes

The running program P on an IBM 704 accepts any sequent S in the predicate

84 Computation, Logic, Philosophy

calculus (with equality), in particular, any sequent expressing that a theorem follows
from certain axioms in some special mathematical discipline; reduces it to a finite set of
atomic sequents (in other words, gives its quantifier-free matrix in a conjunctive normal
form); and compiles an economic quantifier tree (see below) for S which can be used
directly or as a basis for selecting a most favorable prefix (i. e., a quantifier string that
does not violate the relations of dominance in the tree). When no negative variables [20,
p.9] occur in the set of atomic sequents, or briefly, the matrix, of S, the program P can
decide always whether S is a theorem, and give a proof or a counterexample. The
program P can often, though not always, do the same for S, when no positive variables
(U-variables) are governed by negative variabies (E-variables) in the matrix of S, i.e.,
when S is reducible to the AE-form. It is fairly easy to extend the program P to include a
procedure for dealing with all AE cases. We have not done this so far because of a rather
paradoxical situation. On the one hand, the restricted AE method which is included in P
already suffices to decide a clear ma jority of the examples encountered in books on logic,
and there are few actual examples which are undecidable by the restricted AE method
but decidable by the full AE method. On the other hand, considered in the abstract,
even the full AE method can deal with only a very restricted class of sequents which are
of interest to us.

Hence, on the one hand, for the simple purpose of illustrating the surprising ease
with which machines can be employed to prove and disprove common examples in logic,
the theoretically narrow range of the restricted AE method is more remarkable than
some more extended method. On the other hand, when we ,,,ish to use examples
obtained by formalizing the statement of mathematical theorems as consequences of
certain axioms, our needs will quickly go beyond even the full AE method. That is why
considerable thought has been given to the question of reducing a given sequent S to the
simplest possible form as a uniform basis for the treatment of many diverse cases. Most
pieces in the program P are designed in such a way that they can be efficiently useful in
handling all more complicated cases. Thus, the elimination of logic connectives, the
reduction of each problem to as many simpler subproblems as possible, the construction
of the simplest quantifier trees, and the relatively fast comparison routine for deciding
atomic sequents: all these are designed as a common part in further extensions.

Familiarity Vvith [20] should be helpful, though not necessary, for understanding
the following more detailed description of P. Even though P is essentially an extension
of the program III as described in [20], and we shall try to avoid repetitions, there are a
number of differences in those parts which are dealt with in both programs. Some of
these differences should be mentioned in advance to prevent misunderstandings. While
negative variables (E-variables) are replaced by numbers in [20], it has been decided to
use in P the more natural course of replacing initial positive variables (U-variables) by
numbers. The reduction to the miniscope form envisaged in [20] has in part been
abandoned; in P, what is taken as a better procedure is used instead. Functors with
explicit arguments attached to them are not used in P; rather the governing relations
among the letters which replace the variables are tabulated separately.

We proceed to give a more detailed description of the program P. The program is
written entirely in the language of SAP except that the subroutines of reading and
writing tapes are from the Bell Monitoring System. This impurity could, if one wishes,

Proving Theorems by Pattern Recognition, I 85

be gotten rid of by changing just a few instructions. The whole symbolic deck of the

program contains about 3200 cards. About 13,000 words of the core storage are assigned
for use by the program, although a lot of these words are only reserved spaces for
handling more complex problems. For the problems actually run so far, it should be easy
to fit everything into a machine with 8000 words. Auxiliary storages are not needed
except that, as a convenience, tapes are used to avoid going through on-line input
output equipments.

At present, there are two somewhat irksome restrictions on the program. It can
only deal with a problem expressible with no more than 72 characters (i.e., one card
long). This is quite adequate for handling common theorems of logic, but insufficient
when we wish to apply the program to, e.g., number theory or elementary geometry It is
highly desirable to remove this restriction, which is the sort of thing that has been taken
care of in several systems for symbol manipulation. Since we have no immediate plan for
using such systems, we only envisage a modification that will accept, say, a problem 10
cards long.

A less fundamental restriction is the use of a sort of Polish notation, partly to speed
up operations, partly to reduce the length of the sequent stating a given problem, and
partly necessitated by the fact that machine printers do not have the familiar logic
symbols. This has the consequence that it is not so easy to read the outputs. A translation
routine could be added to bring the outputs (and, if one wishes, also the inputs) into a
form which resembles some ordinary notation more closely. To assist exposition, we
shall, in what follows, neglect this notation feature, and speak always as if everything had
been done in a more familiar notation. (For a "dictionary," see [20, p. 6].)

A readily quotable, albeit misleading, indication of the power of the program P is
the fact that it disposed of nine chapters of Principia in about 8.4 minutes, with an
output of about no pages of 60 lines each, containing full proofs of all the theorems
(over 350). This is misleading for two reasons. On the one hand, proving these theorems
does not require the full strength of the program which can do considerably more things
that are basically different from this particular task. Hence, this does not give a fair
summary of what the program is capable of doing. On the other hand, while many
college and graduate students, especially in philosophy, find it not so easy to prove these
theorems in their homeworks and examinations, the methods we use are a bit easier than
the usual methods and of the type that is specially suitable for machines. As a result, the
theorems in Principia are far easier to prove than expected, and it is not very remarkable
that they can be proved in a reasonably short time. The actual time required came,
however, as a bit of a surprise At the very outset, the writer guessed 20 hours on an IBM
704 as the probable time required to prove these (over 350) theorems. In [20J, the
theorems of the propositional calculus (over 200) were proved in about 37 minutes with
the on-line printer, and it was estimated that the computing time was only about 3
minutes; the majority of the theorems with quantifiers (over 150) were also proved than,
and it was conjectured that about 80 minutes would be needed to prove the lot. The final
result with the program P is that the 200 strong theorems in the propositional calculus
took about 5 minutes, while the 150 strong theorems with quantifiers took less than 4
minutes. (The writer has not been able to determine how much of the time was spent on
input and output operations.) In every case, it seems that the machine did better than

86 Computation, Logic, Philosophy

expected. While this fact presumably means very little, it was natural that one felt
encouraged by it.

On second thought, there is an uneasy feeling that the efforts to improve the
restricted AE method were a bit wasted. As the time when [20J was written, it was
already quite clear that even with rather slight changes, the program available then
would yield proofs of the desired theorems in a few hours. What is the point of spending
many week's efforts to bring the time down to a few minutes? Would it not have been
better if the efforts had been spent on studying more difficult cases? As a matter of fact,
however, in the process of trying to handle the restricted case more efficiently, one also
got a clearer view of more general questions. Moreover, while the difference between a
few minutes and a few hours is not very important, the difference between a few hours
and several hundred hours may prove to be decisive; and it is of interest to have a
definite example of the degree of increase in speed which one can expect from improved
methods.

A possible objection to the present approach to the problems of coding is that a
good deal of time has been spent in those parts of the procedures which are relatively
easy to carry out even by hand. The more sensible alternative approach would seem to be
a concentration of efforts on testing those parts where there is a serious doubt whether
machines can feasibly succeed at all. To this objection, the answer can only be that the
gradual approach adopted here is meant as the beginning of a long range scientific
project rather than a quick test whether crude standard methods can already produce
amazing results. In fact, it is fair to say that we have learned enough to see a healthy
situation with regard to the question of proving theorems by machine: the prospects are
encouraging, but one has no right to expect fast miracles. This being so, the gradual
approach has the advantage that we can more easily test a large number of sample
problems because little work is needed in preparing them by hand.

The master control of the program P has 45 instructions. Subroutines are heavily
employed. When a problem on a single card is accepted, the program first takes the
following preliminary steps:

S1. If the first 6 characters of the card all are blanks, the program P interprets this as an indication that no

more data cards are to be accepted. The machine stops or goes to some other job (e. g., run or compile the next

program in waiting). Otherwise, P searches for the arrow sign ---> (actually the sign / could be used to serve the

same purpose).

S2. If ---> does not occur, the input is treated as ordinary prose. It is printed out without comment and P

proceeds to receive the next data card. If the arrow sign does occur, P searches for quantifiers. By the way,

standard BCD representation of characters is used in the cores, except that the BCD representations of zero

and blank are interchanged.

S3. If quantifiers do not occur (the equal sign may occur), proceed more or less in the same way as in the

treatment of the quantifier-free case in [20]. Otherwise, we have the principal case.

S4. When the input problem contains quantifiers, the following preliminary simplifications are made. (i)

All free variables are replaced by numbers, distinct numbers for distinct variables. (ii) Vacuous quantifiers, i.

e., quantifiers whose variables do not occur in their scopes, are deleted. (iii) Different quantifiers are to get

distinct variables; for example, if (x) occurs twice, one of its occurrences is replaced by (z), z being a new

variable. This last step of modification is specially useful when occurrences of a same quantifier are eliminated

Proving Theorems by Pattern Recognition, I

more than once at different stages.

87

55. After the above preliminary simplifications, each problem is reduced to as many subproblems as

possible in the following manner. (i) Eliminate in tbe usual manner every truth-functional connective which is

not governed by any quantifiers. (ii) Drop every initial positive quantifier (i. e., universal in the consequent or

existential in the antecedent that is not in the scope of any other quantifier) and treat its variable as free, i. e.,

replace all its occurrences by those of a new number. (i) and (ii) are repeated for as long as possible. As a final

result of this step, each problem is reduced to a finite set of subproblems such that the problem is a theorem if

and only if all the subproblems are.

To illustrate the steps Sl to S5, we give in an ordinary notation a proof obtained by
the program P:

11 * 53 / --> (x)(y)(Gx =:J Hy) = «Ex)Gx =:J (y)Hy)

/ --> (x)(y)(Gx =:J Hy) = «Ez)Gz =:J (w)Hw) (1)

I/(x)(y)(Gx::::J Hy) --> (Ez)Gz =:J (w)Hw (2)

2/GI, (x)(y)(Gx =:J Hy) --> H2 (3)

11 (Ez)Gz ::::J (w)Hw --> (x)(y)(Gx ::::J Hy) (4)

41 (w)Hw --> G3 ::::J H4 (5)

5/G3,(w)Hw --> H4 (6)

41 --> G3 =:J H4,(Ez)Gz (7)

7 I G3 --> H4,(Ez)Gz (8)

8/GI--> H2,(Ez)Gz (1)

I/GI--> H2,GI 5VA (2)

PQED

6/GI, (w)Hw --> H2 (1)

I/GI, H2-->H2 5VA (2)

PQED

3/GI, (x)(y)(Gx ::::J Hy) --> H2 (1)

I/GI, (y)(Gx::::J Hy) --> H2 (2)

2/GI, Gx =:J Hy --> H2 (3)

3/Gl--> H2, Gl 5VA (5)

3/GI, H2 --> H2 5VA (4)

QED

In the above example, all quantifiers are made distinct in (1). By (i) of S5, (1) is
reduced to (2) and (4). By (i) and (ii) ofS5, (2) is reduced to (3), which can be reduced no
further by (i) or (ii) of S5. By (i) of S5 and then (ii) of S5, (4) is reduced to (5) and (7).
Finally, by (i) of S5, (5) and (7) are respectively reduced to (6) and (8). Hence, the
original problem Ih53 is reduced to the 3 subproblems (3), (6), (8). It is possible to
show the following:

T2.1. The original problem is a theorem if and only if all its subproblems (in
above sense) are.

Hence, if any subproblem is refuted, then the original problem is also. If no
subproblem is refuted, but some subproblem is undecidable by some restricted method,
then the original problem is undecidable by the same restricted method.

88 Computation, Logic, Philosophy

Hence, the remaining problem is to study each subproblem (in the above sense). In
theory, this reduction to subproblems is rather wasteful, since it could be automatically
taken care of by tackling the whole problem directly in a uniform manner similar to the
way in which each subproblem is tackled. In practice, however, it is clearly desirable to
isolate separate problems whenever possible. It is to be noted that further reductions are
of a different nature because the subproblems would be interconnected through
variables attached to some common quantifiers. This will soon become clear.

Now, e.g., we may study (3), (6), (8) in the above example each as a separate
problem in itself. Each is stored away temporarily until we have obtained the last, (8) in
the example. Then (8) is taken as a new first line and treated. Mterwards, (6) and (3) are
called back and handled similarly. Note also that the numbers in each subproblem begin
from 1 both at the end of each line and inside the body of the proofs. Each of (3) (6), (8)
happens to be a theorem, so we conclude at the end that Ih53 is itself a theorem.

We now explain how each subproblem is to be treated. In order to do this, we have
to describe first how quantifiers in general are handled, as well as how different
comparison procedures are performed on atomic sequents.

Variables can be replaced by 3 kinds of symbol according to the status of their
quantifiers.

(i) Free variables and initial U-variables: by 1, 2, 3, ... , 9 (numbers).
(ii) All E-variables: by s, t, u, v, w, x, y, z. (In fact, unchanged.)
(iii) U-variables governed by E-variables: k, 1, m, n, 0 (functors).
With U-variables governed by E-variables and E-variables governed by such U

variables, a record is kept separately of the letters which govern them.
The present method avoids the necessity of reducing a formula first to a prenex

normal form, as well as an unpleasant feature about == For example, if we have a formula
(Ex)Gx == (y)Hy, then we should get 4 quantifiers when == is eliminated. The situation
may be seen from the reduction of (1) to (2) and (4) in 11*53. Now, since it is necessary,
for certain purposes, to have distinct variables for distinct quantifiers, we may feel we
have to double the number of variables in such cases. Since, however, the two
quantifiers resulting from one quantifier always have different signs, the above
convention about the replacement of variables automatically assures us that the two new
quantifiers get different symblos. Thus, in Ih53, the variable x in (4), being an initial
U-variable, is replaced by the number 3 in (5), while the variable x in (2), being an E
variable, will remain unchanged after the quantifier (x) is dropped, as is seen in (2) in the
last part of the whole proof.

In determining what variables or functors govern a given quantifier Q, we use a
somewhat more economic criterion. Instead of recording all quantifiers which contain Q
in their scopes, we use all the variables (and functors) which are free in the scope of Q
and distinct from the variable of Q. This requires a theoretical justification that can be
stated (true only under restrictions):

T2.2. We can separate out Q and its scope .from those quantifiers whose variables
do not occur in the scope of Q.

Another device is employed to simplify the governing relations among variables
and functors when one subproblem is reduced to a finite set of atomic sequents (a
matrix). Two symbols, each a variable or a functor, are connected if there is an

Proving Theorems by Pattern Recognition, I 89

elementary part in the matrix which contains both symbols or contains one of the two
symbols as well as a variable or functor connected to the other. Then a variable or
functor is really governed by another if its quantifier was originally governed by the
latter and they are connected. A subroutine EFCTR serves to reduce the governing
relations in this way. This will be justified in Part II by:

T2.3. If two symbols, each a functor or a variable, are not connected in the final
matrix, we can always so transform the original sequent as to separate the two
quantifiers which give way to them.

We make use of several kinds of comparison procedure in deciding an atomic
sequent. Given an atomic sequent, we first compare the antecedent with the conseq
uent as if no quantifiers occur, i.e., whether a same atomic formula occurs on both
sides, or, if = occurs, whether a selfidentity occurs in the consequent or substituting
equals for equals would yield an atomic formula on both sides. This is COMP, a
procedure described in [20]. If the answer is yes, then the atomic sequent is a thoerern,
and we put a VA on it and print it out. We do not have to worry about it anymore.

If the answer is no, we generally go to a different comparison routine COMQ, which
permits us to make substitutions on the variables: each variable can be replaced by any
number, as well as by any functor not governed by the variable, or by another variable. If
in this way, we can obtain a result valid by the previous criterion, we put tentatively the
label SVA on and store the sequent away. This comparison routine is quite complex
because we require that the same variable get the same substituent not only in each
atomic sequent but in all the atomic sequents which come from one given subproblem.
The presence of = makes this part doubly complex.

If every atomic sequent from a subproblem gets SV A by compatible substitutions,
the subproblem is proved. If at one stage, an atomic sequent fails to get SV A with any
substitution compatible with earlier substitutions, we shall test no more atomic sequents
by substitution until we have, if possible, simplified the governing relations of variables
and functors with regard to the whole set of atomic sequents obtained from the orginal
subproblem.

The substitutions are made in a sensible way in the sense that we do not try all
possible substitutions but try only the most likely ones (compare [20, p. 11]). This is an
important factor in making P more efficient than the earlier program.

At a later stage there is also a negative comparison test called NTEST in which each
atomic sequent is tested separately by substitution, possible conflicts with substitutions
for other atomic sequents being neglected. When this is not possible and the atomic
sequent contains no functors, the atomic sequent, and therewith the original
subproblem, is refuted. This step again requires a theoretical justification.

Let us now give some examples (at the right) from the outputs of P and then
summarize the main steps.

These should be a fair sample of the shorter results among the problems beyond
Principia which have been handled by the program P. We now give a summary of the
steps needed in solving each subproblem and illustrate them by the above examples.
When a problem has only one subproblem the subproblem is of course the problem
itself.

90 Computation, Logic, Philosophy

S6. Eliminate quantifiers and truth-functional connectives whenever possible, i.e., whenever a sequent

under consideration is not an atomic sequent. By the way, before all subproblems were obtained, atomic

sequents were not dealt with, e. g., (5) in 19*10.

S7. If the sequent is atomic, try to decide it by COMPo Put on VA if it is valid and continue with next

sequent. If it is not valid, put on NO and finish a subproblem (hence, also the problem) which contains no

quantifiers. This is the case with the subproblem (8) in 19*10.

S8. If the subproblem contains quantifiers, go to COMQ. If this makes it valid, i. e., there are acceptable

substitutions to make the sequent valid, put on SVA and store it away. If this is the last atomic sequent of a

subproblem, then we have proved it. We put the line out together with all earlier SV A sequents which have

been stored away. For example, this is the case with 14*4 and 15*16.

S9. If this cannot make the atomic sequent valid, we store it away and record the fact. We then continue

with the problem but test no more atomic sequents bevond COMPo When all the atomic sequents are obtained,

we use EFCTR to simplify the governing relations between the functions and variables. There are four

possibilities given under SIO, Sl1, S12, SI3.

SIO. If there is no governing relations in the result, i. e., the result is in the AE form; then either this was

so all along, or this is so only because certain functors could be eliminated (i. e., not really governed and can

therefore be replaced by new numbers). In the first case, test whether there is only one undecided atomic

sequent or only one number occurs in the undecided atomic sequents. In either case, the restricted AE method

is sufficient, and

14*4/(x)(Hx & Hy) => Gx), p, (x)Hx --> Gy

/ (x)(Hx & HI) => Gx), p, (z)Hz --> GI (1)

1/ (Hx & HI) => Gx, p, (z)Hz --> G 1 (2)

2/Gx, p, (z)Hz --> GI (3)

2/p, (z)Hz --> GI,Hx & HI (5)

Sip, Hz-->GI,Hx & HI (6)

6/p, HI--> GI, HI SVA (8)

6/p, HI--> GI, HI SVA (7)

3/GI, p, HI--> GI SVA (4)

QED

14*15/ (Ex)(y)Gxy --> (x)(Ev)Gxy

/ (y)GIy --> (Ew)G2w (I)

I/Gly (Ew)G2w (2)

2/GIy --> G2w SNO (3)

NOT VALID

14*6/ --> (Ex)(y)(z)(~Gxw => Gwy) => (Gzw => Gwz))

/ (y)(z)(~GxI => GIy) => (Gzi => GIz)) (I)

1/ --> (y)(z)(~GxI => GIy) => (Gzi => GIz)) (2)

2/--> (z)(~Gxl => GIk) => (Gzi => Glz)) (3)

3 / --> (~GxI => GIk) => (Gml => Glm) (4)

4/ ~ Gxl => Glk --> Gmi => Glm (5)

5/Glk --> Gml => Glm (6)

5/ --> Gml => Glm, ~Gxl (8)

8/Gml --> Glm, ~ Gxl (9)

6/G31, Gl2 --> GI3 NO (7)

Proving Theorems by Pattern Recognition, I 91

NOT VALID

14d6/ (x)Gxu -+ (Ew)(Gyw & Gzw)

/ (x)Gxl -+ (Ew)(G2w & G3w) (1)

1/ Gxl -+ (Ew)(G2w & G3w) (2)

2/Gxl-+ G2w & G3w (3)

3/Gxl-+ G2w F (4)

4/Gxl-+ G3w F (5)

NONE

15*16/ (x)x = x, (Ey)(Ez)y i= z

-+ (Ex)(Ey)(Ez)(x i= y & y i= z)

/ (x)x = x, 1 i= 2 -+ (Ew)(Ev)(Eu)(w i= v & v i= u) (1)

1/ (x)x = x -+ (Ew)(Ev)(Eu)(w i= v & v i= u), 1 = 2 (2)

2/ x = x -+ (Ew)(Ev)(Eu)(w i= v & v i= u), 1 = 2 (3)

3/x=x-+wi=v&vi=u,1=2 (4)

4/x=x-+wi=v,I=2 (5)

4/ x = x -+ v i= u, 1 = 2 (7)

7/2 = 1, x = x -+ 1 = 2 5VA (8)

5/1 = 2, x = x -+ 1 = 2 5VA (6)

QED

19*10 / -+ ((Ey)Guy & ~ Guu) & (Guv => (Gvw => Guw))

/-+ ((Ey)Gly & ~Gll) & (G12 => (G23 => G13)) (1)

1/ -+ (Ey)Gly & ~ Gll (2)

2/ -+ (Ey)Gly (3)

2/-+~Gll (4)

4/Gll-+ (5)

1/ -+ G12 => (G23 => G13) (6)

6/GI2-+G23 => G13 (7)

7 /G23, G12 -+ G13 (8)

8/G23, G12 -+ G13 NO (1)

NOT VALID

19*13/-+ (Ex)(y)(Ez)((~ GxyvGxx)v(Gzx & ~ Gzy))

/ -+ (Ex)(y)(Ez)((~ GxyvGxx)v(Gzx & ~ Gzy)) (1)

1 / -+ (y)(Ez)((~ GxyvGxx)v(Gzx & ~ Gzy)) (2)

2/ -+ (Ez)((~GxkvGxx)v(Gzx& ~ Gzk)) (3)

3 / -+ (~ GxkvGxx)v(Gzx & ~ Gzk)) (4)

4/ -+ ~ GxkvGxx, Gzx & ~Gzk (5)

5/-+ ~ Gxk, Gxx, Gzx & ~ Gzk (6)

6/Gxk -+ Gxx, Gzx & ~ Gzk (7)

7/ Gxk -+ Gxx, ~ Gzk (9)

7/ Gxk -+ Gxx, Gzx FNO (8)

9/ Gzk, Gxk -+ Gxx FNO (10)

k by x
z by k

we have sufficient data to conclude that the subproblem is not a theorem. This is the case with 14*15.

Otherwise, we go to 514. This is the case with 14*16.

92 Computation, Logic, Philosophy

SI1. If the result contains no mor" functors after elimination, we know that the subproblem can be

treated by the full AE method. In general, it is, however, necessary to first transform the matrix by a

procedure similar to the reduction to a miniscope form (5ee[20J). Such a procedure is not included in tbe

program P. Instead, we use the original matrix with functors replaced bv numbers and go direclly to S14 for

a negative test only. 14*6 is an example.

S12. If the result is not in AE form and no eliminations have been made, go to Sl4 directly. This is the

case with 19d3.

S13. If the result is not in the AE form but some eliminatiom have been done, repeat S8 and S9 except

that upon failure the program goes to S14.

S14. Make a negative test. If some atomic formula with no functors cannot be made valid even by

NTEST, append NO to it, and refute the whole problem. This is the case with 14*6.

S15. Otherwise, the question is undecided. In thi;; case, restore functors if eliminations have been made.

And then, put F after each atomic sequent. If an atomic sequent could not be made valid by NTEST but

contains functors, add also NO after F. The two cases are seen in the last lines of 14*16 and 19d3.

S16. Finally, print out the best possible governing relations among the functors and variables. In the

case of 14* 16, there is none. This means the problem can be settled by the full AE method. In the case of

19*13, we have an irreducible string (Ex)(y)(Ez) of quantifiers.

This completes the summary of the program P. It is clear that at the end we are
ready to add more powerful methods which are usually classified according to the
string of quantifiers. The governing relations we list in general give quantifier trees
("trees" in an intuitive sense). Thus, if x governs k, y governs m, m governs z, and we
treat k, m as variables for the moment, then we are free to use several different strings
as long as the governing relations are preserved, e. g., (Ex)(k)(Ey)(m)(z), (Ex)
(Ey)(k)(m)(z), (Ey)(Ex)(k)(m)(z), etc. That is why quantifier trees give us in general a
better reduction of a given problem.

It should be emphasized that although the methods of the program P are essenti
ally confined to a subdomain of the AE method, it can solve problems which are not
~olvable by the ordinary full AE method. Quite a number of problems can be decided
by the auxiliary procedures introduced along the way. So far we have only been able to
give a small sample of shorter prohlems. Now we list below a number of further
examples which have been definitely

LIST 1. Theorems Proved by P

14*7/ (Ez)Hxz :::J (z)Gxz,(z)(Gzz :::J Hzy) -> Hxy = (z)Gxz
15*3/-> (Ex)(Ey)[(x = u & y = v) :::J (Gu :::J Gv)]
15*4/-> (Ew)(Ex) (y) (z){ (Gvy & Gwz):::J

[(Gv.'Y & Gxy)v(Gvz & Gxz)]}
15*6/-> (Eu)(v)(Ew)(x){[((Gux == Gxw) == Gwx) == Gxu] &

[((Gvx == Gxw) == Gwx) == Gxv]}
15*7/ ->(Eu)(v)(Ew)(x){ (Gux == Gvx) :::J [((Gux == Gxw) ==

Gwx) == Gxv]}

Proving Theorems by Pattern Recognition, I

15*9/---+ (Eu)(Ev)(z){[(Gxu ~ Gzx) ~ Gxx] ~ (Gxx & Guv)}
15*18/---+ (Ex) (y)(Ez){ Gyy ~ [Gxxv((GxzvGyz) & GzxvGzy))]}
19*2/---+ ~ (Ex)(y)(Gyx == ~ Gyy)

93

proved or disproved by the program P . We shall not list problems for which the
program P has given no complete solutions. (All the examples are drawn mainly from
[3] and [1].)

It seems fair to say that the program P can decide some rather complex propo
sitions. With a more advanced program, one can naturally expect mechanical proofs of
more elaborate theoreIlL"i of logic. Since only quite simple logical principles are em
ployed in actual methematics, it seems reasonable to expect that mechines will often
turn out proofs rather different from those obtainable by man. In fact some fairly
complex but quite useful logical principles might be suggested by mechanical proofs of
even familiar mathematical theorems.

We discuss now briefly the possible full AE methods. Among the examples given
earlier, 14*16 is not solvable by the restricted AE method but solvable by a full AE
method. One method is this. In general, whenever all functors can be eliminated, we
simply take the con junction of all the undecided atomic sequents and make all possible
substitutions of numbers for variables, and test the disjunction of all the instances. In
the case of 14*16, we have:

x = 1, w = 1: Gll---+ G21; Gll---+ G31
and

(x, w) = (1,2),(2,1), (2,2), (1,3), (3,1), (2,3), (3,2), (3,3)

This is like Qr [20,p.12], except that the elimination of functors extends the range
beyond Qr.

It is, however, clear that this is not efficient and we can improve the method by
using pattern recognition. In cases, however, like 14* 16, which can be seen to be of the
AE form at the beginning, we may proceed simply as follows. From the original
sequent, we see that there are 3 initial positive quantifiers and 2 negative quantifiers.
Hence, we need to consider just:

GIl, G21, G31---+ G21 & G31, G22 & G32, G23 & G33

which is easily seen to be a tautology. (Compare Qq, [20,p.12].)
In the original version of the program P, step Sl1 contained also an erroneous

method of proving a subproblem directly after the elimination of all functors. As a

LIST II. Nontheorems Disproved by the Program P

14*12/(y){[Jx = (Jy ~ Gy)] & [Gx == (Jy ~ Hy)] &
[Hx == ((Jy ~ Gy) ~ Hy)]} ---+ Hz & Gz & Jz

94

15*5/---> (Ex)(y)(Ez)[(GxyvGxz)
15*10 /---> (Ey)(z)(x oF zvy oF z)

Computation, Logic, Philosophy

& (- Gxyv - Gxz)]

15*13/---> (Ex)(Ey)(Gxy ::::J p) = (x)(y)(Gxy ::::J p)
19*5/---> (Ey)(x)[Gxy = (z) - (Gxz & Gzx)]
19* 12/ ---> (Ey)(z)[(Gxy & '" Gxx) & (Gzx::J Gzy)]
19*14/---> (Ey)Gxy & [Gxy::::J (z)(Gxz::::J Y = z)] & [Gyx::::J

(Gzx ::::J y = z)] & (Ex)(y) - Gy-x
19*17/---> (Ey)Gxy & (Ex)(y) - Gyx & [Gyx::::J (Gzx ::::J Y = z)]

result, some nontheorems were asserted to be theorems in the print-out. This fact was
noticed by John McCarthy, and has led to the revised SI1.

6.3 The EtA case solved with sequential tables

The EtA case is simple becuse, as can be seen from example (1) in the introduc
tion, we need only worry about those elementary parts each of which contains only
occurrences of a same variable, and then only the relations between the U-variables
and the single E-variable require considerations. A simple subcase is explained quite
thorughly in [3, p. 259].

In general, let us consider:
(3.1) (Ex)(Yt)'" (Yn)Mx .. · Yn,M containing N predicates Gb .. ·, GN •

To form S10 S2, etc.,we need only replace (x, Yt. "', Yn) by (1, 2,"', n + 1), (2, n
+ 2, ... , 2n + 1), etc. The number of possible elementary parts in M depends of course
on the number of places of the predicates Gt , ... , G'I' If, e. g., they are all dyadic, then
there are 32N possible elementary parts Gixx, Gixy, Giyx, Giyy, Gixz, Gizx, G Gsz,
Gizy, Gizz (i = 1, ... , N). In the present case, the number of places of each predicate is
immaterial since we have to consider only Gix'" x, GS'" y, Giz'" z, and each predi
cate behaves like a monadic one.

Thus, for example (1) in the introduction, we need consider only the following
table T of all possible assignments of t and f to Gxx, Gyy, Gzz which would make the
matrix of (1) false:

Gxx Gyy Gzz
t t

t t f

Since St. S2, S3, etc., are obtained by substituting (1, 2, 3), (2, 4, 5), (3,6, 7), etc., for
(x, y, z), we get a tree structure:

~(4,8,9)

1
(2'4'5)-~,

(5,10,11)
(1,2,3)-

-(3,6,7)-L (6,12,13)

(7,14,15)

Proving Theorems by Pattern Recognition, I 95

In order that a row Q can falsify SI, i. e., M123, it is necessary that there is a row R
which falsifies S2, i. e., M245, and a row S which falsifies S3, i.e., Mf67. For this
purpose, it is only necessary that Gyy in Q is the same as Gxx in R, and tljat Gzz in Q is
the same as Gxx in S. Since Gxx can take at most two values, t and t, if a table T
contains two rows, one with Gxx taking t as value, one with Gxx taking f as value, we
can always find a countermodel because, for each row falsifying Sb we can always find
two more rows which together with it falsify simultaneously S[, S2, S3; and the same is
true for any Si and, therefore, for any Di. If in every row of the table T, Gxx always
takes one value, say t (or f), then it is necessary and sufficient to have one row in which
both Gyy and Gzz take the same value, viz., t (or f). Hence, it is very easy to decide
whether a statement (Ex)(y)(z)M, with a single predicate is a theorem, since, by the
fundamental theorem of logic, it is a theorem if and only if there is some k such that Dk
is a tautology.

In general, if a statement (Ex)(yd'" (Yn)M contains a single predicate, the crite
rion is the same, viz.,
(3.2) It is not a theorem if and only if either (i) its table T contains two rows in which
Cx'" x get different values, or (ii) it contains one row in which Cx'" x, CYb
". Yl "', CYn'" Yn all get the same value.

If now there are N predicates G[, ". GN in the martrix of (Ex)(Yl) ", (Yn)Mx'" Yn.
then the matter is a little more complex, because we have to consider a table T with (n
+ 1) N columns:

G1X"·X,,·GNX"·XG1Yl "'Yl ,,·GNYI ".
Yl,,·G 1Yn"·Yn,,·GNYn"·Yn

In this case, G1x ... x, ... , GNx ... x together have 2N possible sets of values, if every set
occurs in some row of T, then the original formula is of course not a theorem. In
general, use the following "sequential method".

Examine each row R of T and determine for each i(i = 1, ... , n), whether there is
a row Ri such that the values which Glx'" x, ". , GNx'" x take in Ri are respectively
the same as the values which Gl Yi ... Yi, ... , GNYi'" Yi take in R. If there is one such Ri
for each i, retain R, otherwise, cross out R. Each time a row is crossed out, the same
process is repeated with the reduced table until either the table is empty or the table is
not empty but no further reduction is possible. Using this procedure, it is easy to prove
the following theorem:
(3.3) The formula (EX)(yl) ... (Yn)M is a theorem if and only if its reduced truth table
is empty.

This method seems considerably more efficient than existing alternatives in the
literature which are usually based on a determination of some constant K such that the
given formula is a theorem if and only if Dk is tautologous.

When all the predicates are dyadic, Ackermann gives the bound J in terms of
validity in a domain of J members as a sufficient condition of general validity. If we
recall that nK + 1 numbers occur in Dk , we can calculate that his bound for K is no
better than:

n3k - 1 2

n> 1, K = (n _ 1)' where k = 2Nn ,

96

when

n = 1, K = 3(2N) - 1.

Computation, Logic, Philosophy

Church does not give the general bound, but calculates that [2, p. 213J; [3, pp.
260, 261]:

when
n = 2, K = 2k - 1, where k = 2N.

It appears that if one extends Church's argument, by using a tree with n branches
at each node and of height 2N - 1, the general bound would be (compare Herbrand
[l0, p. 46J):

nk -1
n > 1, K = --1' k = 2N

n-

In particular, when N = 1, K = n + 1.
It seems quite clear that the sequential method is faster than testing the Herbrand

disjunctions Db D2 , etc. Take a simple example with n = 2, N = 4 and a table T with
16 rows such that in Rb Gx, Hx, Px, Qx gets tttt or 0000 = 0, but Gy, Hy, Py, Qy, as
well as Gz, Hz, Pz, Qz all get tttf or 0001 = 1, and similarly in every R i , Gx, Hx, Px,
Qx, get the truth values corresponding to the binary notation i -- 1, where the y, z parts
both get the values corresponding to i. In such a case, it is easily seen by the sequential
method that the formula is not a theorem since the reduced table is the same as the
original table, yet by the alternative methods, we have to test Dk with K = 865536 - 1
by one method and K = 65535 by the other. This example incidentally illustrates that
just speeding up the method of testing each Dj is not sufficient to handle many
interesting formulae.

Incidentally, there is a striking similarity between the type of argument involved
in these decision procedures and the method of "sequential tables" developed in [19].
The similarity suggests the question of a more abstract mathematical treatment of
more basic underlying principles which govern such sequential methods. The writer,
however, has no inkling as to whether results will be obtained on this question and, if
so, how interesting they will be.

6.4 General remarks

One is naturally curious to know how far we are from machine proofs of truly
significant mathematical theorems in different domains. The writer cannot see suffi
ciently far and clearly into the future to make any responsible predictions, except that
the simplicity of all theorems of Principia in the predicate calculus came as a great
surprise, suggesting the opinion that one could be too conservative in estimating the
potentialities of machines in theorem proving. It seems that several types of objectives
are likely to be achieved with just a few more months of programming efforts along the
present approach which precludes ad hoc measures designed specially for a few im-

Proving Theorems by Pattern Recognition, I 97

mediate specific problems. Among these are proving a large portion of theorems in

Landau's booklet [14] on the number systems, proving a fair number of theorems in
high school algebra and geometry, formalizing fairly interesting theorems in set theory.
In the last category, it seems likely that the machine will soon be able, e. g., to do the
tedious but less inspired part of the work needed to establish the main conclusion of
[11], viz., to derive the contradiction from the few axioms chosen in advance by man.
Those who have worked on this type of problem would appreciate that such assistance
is not to be despised. A considerably more difficult and remote task would be to
formalize Specker's derivation of a contradiction [17] in Quine's "New Foundations"
plus the axiom of choice, which is a more complex system. However, in view of the
apparent artificiality of the formal system concerned, the advantage of man over the
machine is greatly reduced when results on such systems are to be established.

On the whole, it seems reasonable to think that machines will more quickly excel
in areas where man's intuition is not so strong. Hence, the author is now in- clined to
feel that difficult theorems in analysis and set theory will more easily be proved by
machines than those in number theory. For example, the writer feels that among

possible targets for the next year or two the irrationality of ,j2 and the unique
factorization theorem may tax the ingenuities of machines and their programs equally
heavily as theorems in set theory and analysis, such as the Heine-Borel theorem and
the Bernstein theorem, which man finds considerably harder to understand. This may
appear rather nonsensical in view of the great conceptual difficulties we have with the
continuum and higher infinities. In the writer's opinion, however, the decisive factor is
rather the fact that we are capable of making much more varied and extended moves
when general theorems about natural numbers are being considered; this is likely to
make it harder for machines to catch up with us. On the other hand, it is well known
that machines are good at dealing with essentially combinatory problems, which are,
however, not the chief concern of number theory.

When imagination is given free rein, Fermat's and Goldbach's conjectures, the
Riemann hypothesis, the four--color problem, the consistency of impredicative analy
sis, the continuum hypothesis, and other famous overwhelmers all come to mind. Of
these celebrated problems, it seems fair to concede that at present we have no idea how
machines might assist in arriving at a settlement of any. It is of course possible that
machines may get hold of things which have eluded man for decades or centuries,
since, after all, viewed in the context of Plato's realm of ideas, man's path must have
been pretty narrow. Since, however, machines will, we hope, never become the Master
and they have no higher masters than man in the horizon, it would be very surprising
indeed if they should quickly surpass man in areas which demand the highest human
creative genius and prove a whole lot of theorems which the best mathematicians have
strived and failed to establish for very long. At any rate, it is a happier thought that
machines will increase the power of mathematicians rather than eliminate them, and
there is no evidence at present that the latter alternative will ever materialize.

The writer, as an amateur programmer and as one who has given little thought to
designing monitoring systems for symbol manipulation, has little to say on the theory
of prograrmning. One obvious suggestion is that the writer's program P as it exists now
should be used as a guinea pig for testing symbol manipulation systems: see how much

98 Computation, Logic, Philosophy

easier it is to rewrite the program in each system and determine how much slower the
new program runs. A careful study of the program P may also suggest to the experts to
add or modify certain devices in their systems in order to meet the natural demands by
neutral programs which involve a good deal of symbol manipulation.

(Mter the above paragraph had been written, the writer saw John McCarthy's
"The Wang algorithm for the propositional calculus programmed in LISP," Artificial
Intelligence Project, MIT, Symbol Manipulating Language, Memo 14. This deals
roughly with program I of [20]. "It took about two hours to write the program and it
ran on the fourth try." Even making allowance for the fact that this part of the
program P is relatively simple and specially suited to LISP, the coding time required is
still amazingly short. The running time is also much better than the writer had
expected. Apparently, for the same problems, the LISP program takes no more than 10
times longer than the original SAP program; and presumably this can be further
improved. Moreover, it is stated in the memo that the algorithm has also been useful in
suggesting a general concept of ambiguous functions to be used in computations.)

Like many people embarked on ambitious computing projects, the writer used to
think how nice it would be to have at disposal a STf{ETCH computer or something
beyond. Recently, however, the writer has come to feel a bit differently. Of course a
larger machine can handle more difficult problems and one can afford to use more
crude methods which are hopeless on some slower machine. But so often the difference
in speed between different methods is so great that even an increase by 100 is quite
inadequate to compensate for the deficiencies in a more crude method. How far can
100 go when people indulge in exponentiations? For example, if one were to use the so
called British Museum algorithm or even the less wasteful brute force search method
mentioned above, a simple formula, say with a conjunction of two disjunctions of
elementary parts as its quantifier-free matrix, would have for SIV'" VSIOO a formula
with 2100 long disjunctions to test.

If, however, one is to seek more efficient methods, it often happens that we can
only begin with simpler cases and proceed to more complex cases. Then it is likely that
a good deal of effort is needed before one can do full justice to a large machine. For
example, the writer has made no special efforts to economize storage and feels sorry to
have been able to use only less than half of the 32,000 words on the particular IBM 704.
Similarly, the writer is sorry to have found no natural problems for the program which
actually require a long running time that is justified by the intrinsic interest of the
problems. The building of more powerful machines and the designing of more efficient
methods to use them both require time and human efforts. A big lagging behind in
either direction causes waste. At least financially, a long lag in the using direction is the
worse of two evils. When the best existing method does demand the full capacity of the
largest existing machines, we have the happy situation of a harmonious coordination.
This is truly nice only when there is no immediate prospect for improving the method.
Under those circumstances, the problems solved must be quite interesting, because
otherwise we should say that the method is not yet good enough for use on machines,
or that the problems are not yet suitable for machine treatment. It seems that the
machines, when cursed for being too slow or too small, may often with justification
demand in turn that the user do some more thinking.

Proving Theorems by Pattern Recognition, I 99

We have a feeling that there are things which machines can do and things they
cannot do, things for which they are especially adapted and things for which they are
not quite suitable. The familiar ambiguities of the word "can" seem to give at least two
different conclusions. In one sense, it is silly to make machines do what they cannot do.
In another sense, this is precisely the exciting thing Compared with numerical calcul
ations, proving theorems seems like forcing machines to do what they cannot do.
Compared with proving theorems, mechanical translation, for example, seems even
more remote from the natural aptitudes of machines.

Quite justifiably, mechanical translation has a wider appeal than mechanical

mathematics. For one thing, more people use languages than mathematics. However,
so far as the near future of the two projects is concerned, it would seem fair to say that
mechanical mathematics has a brighter prospect. While inferential analysis can draw
from a body of profound exact results in theoretical logic, a mathematical treatment of
language is very much something yet to come and seems to involve fundamental
intrinsic difficulties, particularly in dealing with meaning and ambiguities. Any sub
stantial progress in mechanical translation would be impressive in so far as machines
would be doing something for which they are apparently not suitable. It is, however,
highly unlikely that machines can give better translations than expert human trans
lators. On the other hand, machine proof of theorems is quite likely to yield impressive
results in the more absolute sense: Viz., the doing of things which lie beyond unas
sisted human capabilities.

It seems undeniable that computers have changed somewhat the face of applied
mathematics. The writer feels that the cross-fertilization of logic and computers ought
to produce in the long run some fundamental change in the nature of all mathematical
activity. Such a development will not only make pure mathematicians take computers
more seriously but provide proud applications for the parts of logic which are logi
cians' primary concern. Modern logic is intrinsically interesting, yet it is customary
among mathematicians to think of it as a bit irrelevant. As logic matures, the relevance
is being felt, e. g., in the general study of effective procedures and the analysis of
existence proofs. Advances in mechanical mathematics will spread the influence of
logic further and bring to the forefront detailed works on logic in the narrower sense of
dealing with inferences in the first place.

The relevance of logic is perhaps rather gratifying to experts in advanced pro
gramming which seems to attract capable people who en joy thinking but dislike
extensive implicit presuppositions. The energy, created by their unfulfilled desire for
solid theories unhampered by such presuppositions, finds an outlet in logic, and with
the increasing relevance of logic they can now spend time to learn the new trade with a
clear conscience. On the other hand, thinking on many logic problems can be assisted
when the more exacting demands of machines and programming are kept in mind.

As far as we know, machines can only do significant things by means of al
gorithms. But in the human mathematical activity one also speaks of intuition, insight,
and heuristic methods, which do not seem to possess easy exact definitions. When
these terms are applied to machines, the unity of contraries sounds distinctly paradox
ical. In particular, the term "heuristic method" has gained some currency among
sophisticated users of machines, since Polya revived the term in a rather orthodox

100 Computation, Logic, Philosophy

context.
In ancient times Archimedes distinguished a method of proof (the method of

exhaustion in this case) from a method of discovery (the heuristic method) in finding
out the area or volume of a configuration. His heuristic method includes considerations
of the law of the lever and the center of gravity, and also of intuition such as that
cylinders, spheres, and cones are made up of parallel circular discs. (An extensive
discussion of the matter is given in T. L. Heath, The 1Vlethods of Archimedes, 1912.) In
modern times, Euler was perhaps the best-knmm mathematician who told of how his
theorems were often first discovered by empirical and formalistic experimentations.

In these examples, there appears to be an element of inexactness in the methods
so that they cannot be rigorously formulated, cannot be taught in words alone but only
by awakening certain latent understanding implicit in the pupil's mind. For the same
reason heuristic methods are usually not taught explicitly, and while, e. g., Polya's
attempt to teach them is very likely a good pedagogic idea, one would expect that
pupils in the same class would achieve very different results which are determined
largely by the ability of each pupil. There is nothing important in this trite prediction
except the equally obvious conclusion that a machine in such a class can hardly be
expected to do as well as the average pupil. This would seem to indicate that there are
rather serious difficulties in teaching machines heuristic methods. It is very doubtful
that any completely mechanized method, available so far, can properly be called a
heuristic one. Much more elaborate instructions are necessary in order to produce the
impression that the machine is actively participating as a creative agent in the search
for a mathematical proof.

Sometimes it is suggested the heuristic methods are just the methods which a man
would find natural to use. This is not very helpful. For example, it is not hard to
contend that the method of doing propositional calculus described in [20] is quite
natural, but by no stretch of imagination can it be called a heuristic method.

It can be a useful thing to fill an old bottle with new wine. But if this is being done
when specific mechanical methods are said to be heuristic, it would perhaps be less
misleading if the constituents of the new wine are explained a little more exactly. One
might think it silly to make heavy weather on what is just a trivial terminological
matter. The truth is, however, that such expansive obscurity can arouse useless en
thusiasm in some lighthearted quarters and generate harmful suspicion among the
more seriously-minded scientists.

If we leave aside at the present rather primitive stage the emotion-laden term
"heuristic method," there are a few more prosaic distinctions which can be made
among the algorithms for proving theorems and disproving nontheorems. A partial
algorithm may be able to give yes and no answers only in some part of a domain, e. g., a
partial decision procedure such as the monadic within the predicate calculus, or only
yes as answer, e.g., the proof procedure for the predicate calculus. Among partial
decision procedures, there are those for which we know in advance the ranges of
application, i.e., there are some simpler effective methods by which we can test
whether any given problem is decidabie by the method. There are also those with
ranges of application which are undecidable in advance or simply undecidable. All the
procedures which are commonly studied have, however, one thing in common, viz.,

Proving Theorems by Pattern Recognition, I 101

when the method does give a decisive answer, the answer should be correct. In actual
research, however, we also use alternative methods which tend to give us an answer
more quickly, and often although not always correctly. Then we can use more elaborate
methods to verify whether the tentative answers are correct. Such methods, when
mechanizable, would resemble the methods of approximation in numerical analysis
and have, indeed, some flavor of the heuristic methods.

On the whole, we need interlocked hierarchies of methods, and the mysterious
elements in the creative activity seem likely to be replaced by a complex web of clearly
understood, definite and deterministic algorithms, rather than random elements or
obscure machine programs. If man gets results by intuitive methods we cannot easily
formalize, it does not mean that by introducing uncontrollable elements, a machine
will more likely behave like man. If we do not understand how certain turns are made
at crucial junctures, casting a die each time to guide the machine will scarcely ever
produce the desired final effect. With machines, large masses of well-organized minute
details seem to be the only sure way to make the correct surprises emerge.

References

1. W. ACKERMAV'. Solvable Cases of the Decision Problem. 114 pp., 1954, Amsterdam.

2. ALO'\ZO C1WRCII. Special cases of the decision problem, Revue philosophiquf' de Louvain 49 (1951), 203-

221; a correction, ibid., 50(1952), 270-272.

3. ALO'iZ() CIILRCIt. Introduction to Mathematical Logic, I. 376 pp., 1956, Princeton.

4. M. DAVIS A'iIJ H PtT,\AM. A computational proof procedure. AFOSR, 1959 (submitted to journal of

Association for Computing Machinery).

5. B. DREBE,\. On the completeness of quantification theory. Proc. Nat. A cad. Sci, USA, 38 (1952),

1047-1052.

6. B. DREIlE". Systematic treatment of the decision problpm. Summaries of talks at the Summer Institutp of

Symbolic Logic, p. 363, 1957, Cornell.

7. B. Dl·,\HAM. R. FRlllSIIAL, and G. L. SW'HIl. A nonheuristic program for proving elementary logical

theorems (abstract). Comm. ACM, 2 (1959), 19--20

8. P. C. GILMORE. A proof method for quantification theory: its justification and realization. IBM). Res.

Develop. 4 (1960), 28-35.

9. J. HERIlRA'iD. Recherches sur la Theorie de la Demonstration. 128 pp., 1930, Warsaw.

10. J. HERBRANIl. Sur Ie probleme fondamental de la logique mathematique, Compt, rend. Soc. Sci. Lettres

Varsovie, Classe III, 24(1931), 12-56.

11. K. J . .J HI,\TIKKA. Vicious circle principle and the paradoxes.). Symbol. Logic, 22(1957), 245-249.

12. L. KALMAR. Vber die ErfiiIlbarkeit oprjpnigpn ZiihlausdruckP, welche in opr 1'iormalform zwei l",nach·

barte AIlzeichen enthalten. Math. Ann. 108(1933), 466-484.

13. DIETER KLAl'A. Systematische Behandlung der losbaren FaIle des Entseheidungsproblems fur den

Pradikatenkalkul der ersten Stufe. Zeit. math. Logik Grundl. Math. 1 (1955), 264-270.

14. E. LANDAL', Grundlagen der Analysis, 1930, Leipzig.

15. W. V. Quine. Methods of Logic. 1950 and 1958, New York.

16. T. SKOLEM. Vber die mathematische Logik. Norsk Mat. Tidsskrift, 10 (1928), 125-142.

17. E. SPECKER. The axiom of choice in Quine's new foundations for malhematicallogic. Proc. Nal. Acad.

Sci. USA, 39 (1953), 972-975.

102 Computation, Logic, Philosophy

18. HAO W A~G. A theory of eonstructive types Methodos 1 (1949), 374--384.

19. HAO WA~G. Circuit synthesis by solving sequential Boolean equations. Zeit. math. Logik Grundl.

Mathe. 5 (1959), 291-322.

20. HAO W A~C. Toward mechanical mathematics. IBM }. Res. Develop. 4 (1960), 2-22.

7. OBSERVATIONS ON ATP*

7.1 Mechanical mathematics and inferential analysis

1. General Speculations

If we compare calculating with proving, four differences strike the eye: (1)
Calculations deal with numbers; proofs, with propositions. (2) Rules of calculation are
generally more exact than rules of proof. (3) Procedures of calculation are usually
terminating (decidable, recursive) or can be made so by fairly well-developed methods
of approximation. Procedures of proof, however, are often nonterminating
(undecidable or nonrecursive, though recursively enumerable), indeed incomplete in
the case of number theory or set theory, and we do not have a clear conception of
approximate methods in theorem-proving. (4) We possess efficient calculating
procedures, while with proofs it frequently happens that even in a decidable theory, the
decision method is not practically feasible. Although shortcuts are the exception in
calculations, they seem to be the rule with proofs in so far as intuition, insight,
experience, and other vague and not easily imitable principles are applied. Since the
proof procedures are so complex or lengthy, we simply cannot manage unless we
somehow discover peculiar connections in each particular case.

Undoubtedly, it is such differences that have discouraged responsible scientists
from embarking on the enterprise of mechanizing significant portions of the activity of
mathematical research. The writer, however, feels that the nature and the dimension of
the difficulties have been misrepresented through uncontrolled speculation and
exaggerated because of a lack of appreciation of the combined capabilities of
mathematical logic and calculating machines.

Of the four differences, the first is taken care of either by quoting Godel
representations of expressions or by recalling the familiar fact that alphabetic
information can be handled on numerical (digital) machines. The second difference has
largely been removed by the achievements of mathematical logic in formalization during
the past eighty years or so. Item (3) is not a difference that is essential to the task of
proving theorems by machine. The immediate concern is not so much theoretical
possibility as practical feasibility. Quite often a particular question in an undecidable
domain is settled more easily than one in a decidable region, even mechanically. We do
not and cannot set out to settle all questions of a given domain, decidable or not, when,

* First published in Computer Programming and Formal Systems, edited by P. Brafford and H.
Hirschberg, pp 1-20. W North-Holland Publishing Company, 1963. Reproduced by per·
mission.

103

104 Computation, Logic, Philosophy

as is usually the case, the domain includes infinitely many particular questions. In
addition, it is not widely realized how large the decidable subdomains of an undecidable
domain (e.g., the predicate calculus) are. Moreover, even in an undecidable area, the
question of finding a proof for a proposition known to be a theorem, or formalizing a
sketch into a detailed proof, is decidable theoretically. The state of affairs arising from
the Codel incompleteness is even less relevant to the sort of work envisaged here. The
purpose here is at most to prove mathematical theorems of the usual kind, e.g., as
exemplified by treatises on number theory, yet not a single "garden-variety" theorem of
number theory has been found unprovable in the current axiom system of number
theory. The concept of approximate proofs, though undeniably of a kind other than
approximations in numerical calculations, is not incapable of more exact formulation in
terms of, say, sketches of and gradual improvements toward a correct proof.

The difference (4) is perhaps the most fundamental. It is, however, easy to
exaggerate the degree of complexity which is necessary, partly because abstract
estimates are hardly realistic, partly because so far little attention has been paid to the
question of choosing more efficient alternative procedures. The problem of introducing
intuition and experience into machines is a bit slippery. Suffice it to say for the moment,
however, that we have not realized that much of our basic strategies in searching for
proofs is mechanizable, because we had little reason to be articulate on such matters
until large, fast machines became available. We are in fact faced with a challenge to
devise methods of buying originality with plodding, now that we are in possession of
servants which are such persistent plodders. In the more advanced areas of
mathematics, we are not likely to succeed in making the machine imitate the man
entirely. Instead of being discouraged by this, however, one should view it as a forceful
reason for experimenting with mechanical mathematics. The human inability to
command precisely any great mass of details sets an intrinsic limitation on the kind of
thing that is done in mathematics and the manner in which it is done. The superiority of
machines in this respect indicates that machines, while following the broad outline of
paths drawn up by people, might yield surprising new results by making many new
turns which man is not accustomed to taking.

The attempt to mechanize, as much as possible, mathematical thinking opens up a
large area of research. In my opinion, the theoretical core of this area is a new branch of
applied logic which may be called inferential analysis, characterized by an emphasis on
the explicitless and practical feasibility of methods of inference. This discipline enjoys a
measure of autonomy not shared by numerical analysis which, for example, does not
deal with logical operations on the choice and arrangement of numerical methods. It is
believed that the development of mechanical mathematics will influence pedagogical
and research methods in mathematics, as well as affect certain epistemological questions
of a specifically mathematical coloring.

The governing general principle is: what can be formulated exactly can be put on a
machine, subject to the practical limitations on the manageable dimension and
complexity. Repetitions are a good indication of the suitability of a mechanical
treatment. Thus, for example, much of the activity of teaching mathematics is tedious

Observations on ATP 105

and requires patience. If no interaction between pupil and teacher were necessary,
televisions, or sometimes just gramophones, would be sufficient to replace teachers. As
it is, these ready-made conveniences are only used as partial substitutes but, even so,
teaching has already begun to enjoy to a certain extent the advantages of mass
production. However, interesting problems of mechanical mathematics arise only when
we come to tasks which call for an active agent to give answers, advices, and criticisms,
the simplest being the correction of exercises and examination papers. Psychologically,
the pupil has many reasons for preferring a patient machine teacher when the problem
is, as in the majority of situations, a matter of drill rather than inspiration. The result
may be that human teachers will employ mechanical devices as teaching assistants.

In a similar fashion, since in mathematical research there is also a great deal of
mechanizable tedious work, mechanical devices may be used to aid individual
mathematicians. In this connection, in view of the fact that specific mathematical
discoveries are made essentially once and for all, there are less of exact repetitions, but
more of the problem of using mechanical devices flexibly by, for example, designing and
combining programs on general purpose computers. In order to use machines either to
aid research or to aid teaching, the results, methods, and spirit of formalization in
mathematical logic are to play an essential role.

The advance of mechanical mathematics may also affect some of our concepts in
the philosophy of mathematics. We get, not only in theory, but even in practice, an
objective criterion of mathematical rigor in mechanical terms. The range of feasible
mathematical methods will be extended so that the theoretically feasible and the
practically feasible begin to converge, and we have a more realistic guidance to the
improvement of feasibility. As we understand more fully the range of mechanical
mathematics, we get a clearer view of the relation between complexity and conceptual
difficulty in mathematics, since we would probably wish to say that mechanizable
pieces, even when highly complex, are conceptually easy. When alternative proofs are
fully mechanizable, we obtain also a quantitative measure of the simplicity of
mathematical proofs, to supplement our vaguer but richer intuitive concept of
simplicity. With the increasing power to formalize and mechanize, we are freed from
tedious details and can more effectively survey the content and conceptual core of a
mathematical proof.

2. The Central Role of Logic

In theory all mathematical arguments can be formalized m elementary logic
(quantification theory, predicate calculus). If we add equality and the quantifiers "for
all x" and "for some y" to the propositional connectives "and", "if', "or", "not", etc.,
we obtain the predicate calculus, in which, as logicians will know, every usual
mathematical discipline can be so formulated that each theorem Tin the latter becomes
one in the former when the relevant mathematical axioms A are added as premises. That
is to say, if T is the theorem in the mathematical discipline, then "if A, then T' is a
theorem oflogic. From this fact it is clear that in order to prove mathematical theorems

106 Computation, Logic, Philosophy

by machines a major step is to deal with theorems of the predicate calculus.
One may question the advantage of thus handling mathematics, on the ground that

the peculiar mathematical content of each individual branch is lost when the disciplines
are thus uniformly incorporated into the predicate calculus by formalization and
abstraction. Now it is indeed true that we must add special methods for each special
mathematical discipline. An adequate treatment of the predicate calculus is, however, of
dominant importance, and for each discipline the basic additional special methods
required are fairly uniform. For number theory, the essential new feature is largely
concentrated in mathematical induction as a method of proof and of definition; for set
theory, in the axiom of comprehension, i.e., the axiom specifying all the conditions
which define sets. So there is the problem of choosing the formula to make induction on,
or of choosing the condition for defining a set. While it seems doubtful that there is any
uniform efficient mechanical method for making such selections, there are often quite
feasible partial methods. For example, for making such selections in number theory the
obvious uninspired method of trying the desired conclusion of one or another of its
clauses as the induction formula should suffice in many cases. It would seem that, once a
feasible way of doing logic is given, fairly simple additional methods could carry us quite
some way into special mathematical disciplines.

Since most of us learned Euclid and number theory without worrying about the
predicate calculus, it might seem that the natural course is to bypass logic and go
directly to mathematics. But in fact such an approach is ill-advised, so long as the aim is
to prove more and harder theorems rather than merely to re-enact the history of
mathematical thinking. What is natural for people need not be natural for the machine.
Iflogic is not treated in an explicit and systematic way, constant subsequent additions of
ad hoc devices keep slowing our progress toward interesting theorems, while
multiplying the sources of possible confusion. In general, a vast machinery specifically
designed to obtain a few easy theorems is wasteful; results obtained from whatever
approaches should be measured against the generality and economy of the machinery
used. Foundations, furthermore, should be scaled to large future superstructures. It is
our conviction that to treat logic only by the way would score very poorly by both
criteria.

3. Some Possible Directions for Further Exploration

Results so far are too rudimentary to provide us with any decisive conclusions as to the
dimension of the long-range effects of the pursuit of mechanical mathematics.
Nevertheless, I shall venture a few comments drawn from my own restricted experience.
(a) I have examined the theoretically undecidable domain of the predicate calculus and
managed to make an IBM 704 prove all theorems (over 350) of Principia mathematica in
this domain in less than 9 minutes; this suggests that we usually do not use the full power
of strong mathematical methods and should not be prevented from trying to handle an
area on account of pessimistic abstract estimates of the more difficult cases in the region.
(b) Care in the theoretical design of the procedures is essential and a certain amount of

Observations on ATP 107

sophistication in mathematical logic is indispensable, because most existing methods
are not immediately applicable on machines. (c) In particular, one often has to
reformulate available methods or even invent fundamentally new ones; sometimes
theoretically insignificant improvements could increase the speed or reduce the
necessary storage by several orders of magnitude, for example, a device to tryout certain
"preferred" substitutions first. (d) Long-range planning and efforts to make results
cumulative are necessary; ad hoc measures and desire for quick sensation should be
avoided because otherwise the limit of diminishing return will be reached too soon; the
correct course would increase reward per unit of work more and more quickly with
greater and greater efforts. (e) While more can be done with larger machines, the design
and choice of methods is, at least at the present stage, more crucial because we are far
from having made full use of an IBM 704 or 7090 yet. (f) Distrust luck and do not, for
example, use obscure methods with the hope that something wonderful might happen
since we do not know what will happen; the chances of undesirable consequences are
much bigger.

At the present stage, mechanical mathematics seems to be one of the areas in
information processing which promise the highest reward for each unit of labor. Only
accidental circumstances such as the lack of alliance of potential contributors in
administration, programming, and logic have so far sabotaged more rapid
developments. The laziest solution of this practical difficulty is for one to attack
problems in isolation and hope that the pieces will miraculously fit together in due
course. This is not the most satisfactory solution but perhaps the most feasible, given all
the facts of competition, sales exaggeration, desire for liberty and independence. There
are at least three groups of preliminary work necessary for genuine advances in the long
run: a good common (idealized programming) language for crystallization,
communication, and accumulation of results; a decent library of subroutines for simple
algebraic and logical manipulations of symbols, as well as for simple basic proof and
decision procedures; and a fairly sophisticated logical analysis of a number of specific
mathematical proofs with a view to bringing out the details which have to be taken care
of in order to thoroughly formalize and mechanize them.

It is of course not excluded that one would often run into blind alleys. But I am
confident major wastes can be avoided through careful planning and alert flexibility.
With these provisos in mind, I now proceed to list a few possible directions which, in my
opinion, are worthy of .at least some preliminary exploration.

That proof procedures for elementary logic can be mechanized is familiar. In
practice, however, were we slavishly to follow these procedures without further
refinements, we should encounter a prohibitively expansive element. It is desirable to
study underlying properties of such expansions in order to increase efficiency. In this
way we are led to a closer study of reduction procedures and of decision procedures for
special domains, as well as of proof procedures of more complex sorts. Such deeper
considerations of elementary logic also provide us with a systematic approach to
axiomatic theories viewed as applied predicate calculus. The insights thus obtained can
complement our direct treatment of specific mathematical disciplines.

108 Computation, "Logic, Philosophy

For the sake of a more concrete goal to guide the choice of theoretical questions, we
may set ourselves the aim of programming machines to formalize and" discover" proofs
in quantifier-free number theory and axiomatic set theory. These areas are chosen both
because they are so central and because it seems desirable to isolate the two basically
difficult mathematical concepts: functions and quantifiers. It is possible that the
quantifier-free theory of positive integers, including arbitrary simple recursive
definitions, can be handled mechanically with relative ease, and yield fairly interesting
results. It is clear from works in the literature that this restricted domain of number
theory is rather rich in content. It goes beyond logic in an essential way because of the
availability of (quantifier-free) mathematical induction. On the other hand, in axiomatic
set theory, the explicit use of functions can be postponed for quite a long time.
Moreover, here certain general concepts often prove difficult; perhaps machines will
more quickly excel in areas where people's intuitions are not strong. A case in point
would be Quine's axiomatic system "New Foundations," which was obtained by
relaxing certain syntactical restrictions of the theory of types.

While the ulterior aim is to use machines to aid mathematical research with the
assistance of logic, machines can also be used to aid our theoretical research in logic at
the present stage. Computers can be put to good use in the quantity production of
concrete examples, which we constantly need as a means of clarifying our concepts and
so expediting general theoretical results.

Already in the limited experience in the mechanizing of logical procedures, the
machine outputs have from time to time brought out features of the procedures which
one had not thought out clearly in advance. Such experiences have sufficed to persuade
us that we would do well to experiment with computing machines even if it were only for
purposes of theoretical logic.

Some other possible directions are: (1) Experiment with redoing school and college
mathematics by machines; instruct a machine to compete with the average student by
using its patience to compensate its lack of intuition; partial decision procedures in
algebra, trigonometry, analytic geometry, the calculus; prove theorems in elementary
geometry and algebra with extensive use of methods dealing with the underlying logic.
(2) Try to combine numerical and inferential methods so that principles can be
introduced for the machine to choose particular methods to apply according to the
nature of the given problems; this aims at delegating to the machine as much as possible
of the work which now requires a mathematical analyst. (R.W. Hamming is much
interested in work along this direction.) (3) In fields like algebraic topology where often
definitions are long but proofs are short, it is not unlikely that mechanized logical
methods will prove to be of practical use in helping to sort out logical consequences of
new concepts. (4) Fairly simple mathematical researches involving combinatorial
considerations such as questions of completeness, independence, deducibility in the
various systems of the propositional calculus can presumably be helped radically by a
few suitably devised machine programs. (5) Use this type of work as data to guide us in
the design of more realistic idealized programming languages.

With regard to the formulation of programming languages, it seems desirable not

Observations on ATP 109

to pursue the task in isolation and then look for applications afterwards. One must not
let the initial investment in a programming language control the choice of problems to
be programmed, but frequent revisions of a fix(>d language require a prohibitive amount
of energy and work which can easily prevent one from meeting new demands with an
open mind.

A good compromise between rigidity and complete lack of organization would
seem to be the isolation of necessary devices such as the designing of MACRO instructions
at every stage, as is called for by specific but typical occasions. In this way, a body of
quite well-or-ganized data would gradually emerge as more programs are written.
Attention to the accumulation of good MACRO instructions also brings into the somewhat
routine task of programming a theoretically more interesting element of formulating
exactly concepts which are intuitively familiar.

4. Case Studies and Stock-of-Trade Systems

To analyze in detail specific mathematical proofs is clearly a useful preliminary step
toward the mechanization of types of arguments. One might attempt to work out a few
examples of such case studies drawn from number theory, geometry, and axiomatic set
theory.

In number theory, one might compare quantifier and free variable proofs of the
infinitude of primes and of the fundamental theorem of arithmetic, putting emphasis on
recursive functions and mathematical induction. In geometry and axiomatic set theory,
one might consider mildly difficult theorems which are proved with quantifiers but
without functions. In each case, two types of problems can be conveniently separated:
deriving very elementary properties such as the commutativity of addition from the
basic axioms on the one hand, and organizing such elementary properties to obtain a
basis for further derivations on the other. For the human being, the first type of problem
is rather artificial and contraintuitive. For example, the very early theorems in
elementary geometry are more abstruse than the simple exercises about parallels,
triangles, etc. A good organization of elementary properties plus an exact formulation of
familiar methods of trying to find a proof would presumably yield in each discipline
something similar to the principles obtained from what is often called the "heuristic
approach". It is here proposed that such organizations be called stock-of-trade systems.
However, despite terminological disputes, everybody probably agrees as to roughly
what sort of thing is to be done, and the more relevant question is how good a result one
gets. It is with regard to this last point that a patient study of special cases with ample use
also of the stocks in trade of mathematical logic appears indispensible. For instance,
even a formalization of Euclid's proof of the infinitude of primes contains a few
surprises, and there are quite a number of theoretically interesting questions connected
with the problem of proving the irrationality of 1/2 with no appeal to quantifiers.

We consider here only an example in axiomatic set theory derived from a paper of
Hintikka [13].

If a theorem is proved in a system, even one with only a finite set ofaxioms, it would

no Computation, Logic, Philosophy

seem that one major problem is to select the axioms needed for the proof. It stands to
reason to expect that it would be easier for the machine to begin with the selected
axioms. In so doing, we may lose some alternative proof which uses other axioms but
that is something which we do not have to worry about yet. Moreover, it appears easier to
select and prove intermediate lemmas and break up the whole proof into parts. In both
cases, if we do not have the selection to begin with, it is not easy to decide whether it is
advantageous to take all to begin with, or to add routines to select. In the long run, one
would expect to use the latter alternative. But when the methods of selecting
subproblems and branching out are as cumbersome as some existing crude attempts
appear to be, it is not necessarily more efficient to use the selection alternative.

The example to be considered is of special interest because it lies in an area which
has not been developed nearly as much as old subjects such as number theory.
Consequently, we can draw very little from a cumulative intuition, and our advantages
over machines are not great. Moreover, this area has been pursued with a considerable
emphasis on formal arguments.

Let Hxy and 3 zGxyz be short for:

3 z(z#x!\ z #y!\ Fzy!\ Fyz).
(1)
(2)
(3)
(4)
(5)

u#v.
y # a ~ (Fya := Hay).
y # b ~ (Fyb:= 1 Hby).
y#c~(Fyc:=(y=aV y=b)).
y#d~(Fyd:=y=c).

The assertion is that the conjunction of (1)--{5) is contradictory. More exactly, this
says that the following formula is a theorem of the predicate calculus.

(I) 13 u3 v3 a3 b3 a eN y'V z3 w3 x

{u#v
!\ [y#a~((Fya!\Gayw)V (,Fya!\ I Gayz))]
!\ [y#b~((Fyb !\IGbyz)V (IFyb!\Gbyx))]
!\ [y#c~ (Fyc:=(y=aV y=b))]
!\ [y#d~(Fyd:=y=c)]}.

If the system does not include =, then we have to treat a = b as an abbreviation for

'V x(Fxa:=Fxb),
and add the axiom:

a=b~'V y(Fay:=Fby).
This incidentally illustrates the fact that for mechanical mathematics it is in practice
desirable to include = to begin with. In that case, the formula is in one of the familiar
decidable cases since it contains only two consecutive 3 's (for validity). In terms of
satisfiability, the part without the initial I has no model and can be decided by the
3'V 23 satisfiability case (see [23]).

On the whole, it seems easier to make machines do some of the formalizing work

Observations on ATP 111

which logicians sometimes have to do. This may be viewed as an application of the
principle "Charity begins at home." Some malicious soul might use this as evidence for
his favorite view that logic is trivial, and he will be wrong for too many reasons which it is
tiresome to elaborate.

In general, what is needed for mechanization is not just axiomatic systems "with
emphasis on economy and elegance but rather "stock-of-trade systems" and
formalizations which are exact and yet remain as close to good common expositions as
possible.

5. Some Theoretical Difficulties

In order to mechanize proof procedures of the predicate calculus, it seems natural
to use Herbrand's Theorem. This has been suggested and carried out to varying degrees
of completion by different people (see [21 J, [22J, [IOJ, [16J, [6J). The crucial part
contains the generation from a given formula of a sequence of propositional or Boolean
conditions, and the testing of them. It is clear, both by theoretical estimates and from
results obtained so far, that (i) doing the expansion and the testing both by a brute force
approach is not feasible; (ii) even greatly speeding up the testing part is not adequate to
dealing with fairly interesting cases because often we have to generate a large number of
Boolean conditions.

Hence, a central theoretical problem is to find ways of selecting only useful terms
from each sequence of Boolean conditions. This problem has been explored in a
preliminary manner in [22J and [23J. One element is to develop decision procedures for
subdomains of the predicate calculus. Another element is to use miniscope forms
instead of prenex forms. A third element is to develop semi decision procedures whose
range of application we do not know exactly in advance ([23J, p.30).

The decision procedures appear not to include the formulas which are of the most
interest to us. More specifically, the decision procedures mostly deal vvith formulas in
the prenex form, and when we derive a theorem from a few axioms, even though the
theorem and the axiom.s are separately of simple forms, putting the implication (of the
theorem by the axioms) in a prenex form quickly gets us outside the decidable
subdomains. This suggests that we should try to extend the decision procedures to truth
functions of formulas in the prenex form. Property C in Herbrand's dissertation [llJ
(see below) seems relevant to this question.

The semidecision procedure of [23J is not developed far enough in that the
conditions under which we are to terminate the procedure are not specified explicitly.
For example, if we encounter a periodic situation (a torus), we can naturally stop; but
since the initial colunms occupy a special place, we permit also cases while the initial
colunms and the others have two periods which can be fitted together. Closer
examination is necessary in order to lay down broader stopping conditions.

The miniscope form defined in [22J is different from the one developed in
Herbrand's dissertation becau"e it permits the breaking up of a quantifier into several.
While this permits more extensive reductions, it makes an elegant general treatment

112 Computation, Logic, Philosophy

difficult. Hence, it seems desirable to return to Herbrand's treatment which is again
connected intimately with his Property C and Property B.

Both for these reasons and for the additional reason that Herbrand's dissertation
contains a wealth of relevant material which has been largely overlooked hitherto in the
literature, we shall reproduce here in part lecture notes given at Oxford in the
Michaelmas term of 1960 on Herbrand's dissertation, especially on the Properties Band
C. His Property A also appears interesting and has been revived in Ackermann's book
([1], p.93), but will not be discussed here because we do not understand fully its
implications for mechanization.

6. Herbrand's Dissertation

6.1 Herbrand's System H. The primitive logical constants are I, V ,(+v) (or 'V v),
(- v) (or 3 v), with :=>, V , == defined in the usual manner.

To avoid confusion, we shall use p,q,r, ... Fx, Gxy, ... as atomic formulas and X,
Yx, ... as arbitrary formulas which mayor may not be atomic. By a "tautology" we shall
mean a formula that is always true according to the customary interpretations of truth
functional (Boolean) connectives, abstracting from an analysis of parts which contain
quantifiers.

The system H contains six rules ([11], pp.31-32).

RT. Rule of tautology. Every quantifier-free tautology is a theorem. (For example, p
:=> p, although not 'V xFx:=> 'V xFx, falls under this.)

RI. Rules of inversion. Given a theorem X of H, we get another theorem of H if we
replace within X a part which is of one of the following forms by its dual:

RU.
RE.
RC.
RD.

IIY
i(±v)Yv
(±v)(Yv V Z)

Z not containing v.

Y
(=t=v) 1 Yv
(±v)YvV Z

Rule of universal generalization. Xxx ---? + yXyy ("---?" for infer).
Rule of existential generalization. Xxx ---+ - yXxy.
Rule of contraction. xV X ---? X.
Rule of detachment (cut, modus ponens). X, X:=> Y ---? Y.

The difference between RU and RE can be brought out by:
x = x ---? + y(Y = y)
x = x---? -y(x = y)
x = x ~ + y(x = y).

The first important result is a direct proof of the following ([11], p.36).
6.2. Theorem 1. Every tautology is a theorem ofH; in other words, if we substitute
quantifier expressions for parts in RT, we again get theorems of H.

ObseIVlliions on ATP 113

6.2.1. xV .. V X -t X.
6.3. Positive and Negative Parts. It is familiar that every formula can be brought into a
prenex normal form with a matrix in the conjunctive (or disjunctive) normal form:

(±Vl)"'(±Vn) XV1 ... Vn

such that X is in, say, a conjunctive normal form.
If we wish to determine whether a quantifier turns into + or -, or whether an

atomic proposition (an occurrence of it) gets negated or not in such a normal form, we do
not have to carry out the transformation but may "calculate" directly by using the
notion of positive and negative parts.
6.3.1. Signs of occurrences of propositional parts ([llJ, p.21 and p.35).

(a) The sign of the occurrence of X in X is +.
(b) The sign changes from Y to "I Y; i.e., if an occurrence of "I Y in X has one

sign, the same occurrence of Y in X has the other sign.
(c) The sign does not change from XV Y to X or Y.
(d) The sign does not change from (±v)Xv to Xv.

6.3.2. A positive occurrence of + v or - v remains + v or - v in a prenex form; a
negative occurrence of + v or - v becomes - v or + v.
6.3.3. When a formula X without quantifiers is transformed into a conjunctive normal
form Y, the sign of each occurrence of each atomic formula is preserved; in particular, a
negative or a positive occurrence of e.g., a letter p turns respectively into one or more
occurrences of p preceded by "I or not.
6.3.4. If p has only positive occurrences in X (P), then

1- H(P:::> q) :::> (X(P) :::> X(q));
if p has only negative occurrences in X(P), then

1- H(P:::> q) :::> (X(q) :::> X(P)).
Proof by induction on the number of logical constants in X. ([llJ, p.36.)
6.3.5. General and restricted variables. A quantified variable is general if it is + and
begins a positive part, or - and begins a negative part; in the other two cases it is called a
restricted variable. ([llJ, p.35.)
6.3.6. Miniscope form. A formula is in the miniscope form if the quantifiers cannot be
driven inwards any further by the rules of inversion RI.

Each formula has a unique miniscope form.
6.4. Champs (sections, cycles). In a given formula, we may replace each general
variable v by an indexing function (a Skolem function, an Herbrand function) with the
restricted variables governing v in the formula as arguments. Since ordinary functions
(the descriptive functions) add no basic complications, we shall exclude them.
Functions for ungoverned general variables are (indexing) constants, they are always
contained in Cz as defined below.

For an arbitrary set S of indexing functions, we can define the associated champs as
follows. The champ of order 1, C1 , contains only one fixed object al, which may be taken
as the number 1. Given the champs Cb ... ,Cb Ck + 1 consists of all and only the indexing
constants and the values of the indexing functions in S with arguments drawn from
C 1,"" Ck • We shall assume that the values of different functional expressions are always

114 Computation, Logic, Philosophy

different. Thus, given a set of indexing functions, we can always determine the number
nk of the members of the union of Cj, ... ,Ck •

7. Property B and Property C

Given an arbitrary formula, we replace each general variable by a function of all the
restricted variables which govern it. Then we can define the champs and a function nk

which gives the number of numbers occurring in C1, ... ,Ck •

7.1. The reduced form of order k of a formula X. Let N=nk'
(1) An atomic formula is its own reduced forni.
(2) If the reduced forms of Yand Z are y* and Z *, those of I Y, W Z are I Y*,
Y*V Z*.
(3) If + x or - x is a general variable and the reduced form of Yx is Y*x, that of + x Yx
or - x Yx is Y*x(Yt. ... , Ym), where Yl "",Ym are the restricted variables which govern x.
(4) If - x is restricted, the reduced form of - x Yx is:

Y*l V ... A Y*N.
If + x is restricted, that of + x Yx is:

y* 1 A ... A y* N.
7.2. A proposition X has Property C of order k if its reduced form of order k is a
tautology. It has Property B of order k if its rniniscope form has Property C of order k.

A very important theorem in Herbrand's dissertation ([llJ, pp.10l-105) is:
Theorem2. [fa proposition has Property C (or B) of order k, then every proposition

derivable from it by the rules of inversion Rl has Property C (or B) of order k.
The first rule for negation exchanging Z and I I Z obviously makes no

difference.
The rules of exchanging (±v) I Zv and I (=Fv) Zv, (±v) (Yv V Z) and

(± v) YvV Z do not affect the reduced forms when (± v) is a general variable, since a
general variable remains general by the transformation.

When (± v) is a restricted variable, the rules of negation do not affect Property C
because of the definition of A in terms of V , from which we have:

(I YlA ... A I YN)== I(YlV .. V YN)
(I Yl V .. V I YN) == I (YlA ... A YN).

The complex cases are with the rules of dis junction when (± v) is a restricted
variable.
Case (a). The exchange of (- v) Yv V Z and (- v) (Yv V Z).

Suppose U and Vare the same except that an occurrence of (- v) Yv V Z in U is
replaced by (-v) (Yv V Z) in V. Let U* and V* be the reduced forms of U and Vof
order k. We wish to show that U* is a tautology if and only if V* is.

The difference between U* and V* is that, for every general variable yin Z, we use
Y(Xl,""Xn) to get U*, Y(Xl,""Xn,v) to get V*. The number nk in the two cases are, say, Nl
and N z, Nl < N z.

(a1). If V* is a tautology, then U* is one. If V* is a tautology, then, in particular, if
Y(Xl , ... ,xn,l), ... ,Y(Xl , ... ,xmNz) are all identified, the result is again a tautology, since we

Observations on ATP 115

are thereby merely restricting the choice of truth values of certain atomic propositions.
Hence, if we delete repetitions, we can derive U* from V*. Hence, U* is also a tautology.

(a2). If some assignment falsifies V*, then there is also some assignment which
falsifies U* . We choose for each falsifying assignment of V* a falsifying assignment of a
suitably chosen U** which can be shown to be implied by U*.

Since Xl, ... ,Xn are the (only) free variables in (-v) Yv V Z and (-v) (Yv V Z),
the two parts may multiply their occurrences in U* and V* according to the values given
to Xj, ... ,Xn from {I, ... , Nd and {l, ... ,Nz} respectively. Now we define U** from U* by
choosing one number i from {l, ... ,Nz} for each fixed set of values of Xj, ... ,Xn from
{l, ... ,Nz}, and replacing y(xj, ... ,xn) in U* by y(xl,,,.,x",i). It is essential that U** is
modified to be over {l, ... ,Nz} rather than {l, ... ,Nd.

First, we make the choice of i for U** for a fixed falsifying assignment T of V* and
a fixed choice of (xj, ... ,xn) from {l, ... ,Nz}. The corresponding parts in U** and V* are:

Y*l V .. V Y*Nz V Z*i (1)
(Y*l V Z*1) V .. V (Y*Nz V Z*Nz). (2)

If in the assignment T, (2) gets the value true, then either Y* j is true for some j, and we
can take any number, say 1 as i, or else, Z* j is true for some j, and we choose the smallest
suchjto be i. If (2) gets the value false, then i can be any number, say 1. It is clear that (1)
and (2) get the same truth value by the choice, and we can similarly choose an i for each
set of values Xj, ... ,Xn from {l, ... ,Nz}. In this way, it follows that the assignment T
falsifying V* also falsifies U** which is like V* except for containing parts like (1) in
place of parts like (2).

Now we have to show that U* implies U**. Just the replacement of Y(Xl, ... ,Xn) by
y(xj, ... ,xn,i) makes no difference since we merely give the former a new name. But the
fact that U* is relative to {l, ... ,Nd, but U** is relative to {l, ... ,Nz}, Nl <Nz, means
there are more clauses in U** than in U*. If we look at (4) of7.1, we see that a positive
occurrence of (- x) Wx is replaced by a disjunction, a negative occurrence of (+ x) Wx is
replaced by a conjunction. Hence, using 6.3.4, we can get U* ::::J U** from:

(Wl V ... V WN1)::::J (Wl V ... V WNz)
(Wl /\ ... /\ WNz)::::J (Wl/\ ... /\ WN1)

Therefore, a falsifying assignment of V* yields one for U*, i.e., V* is a tautology if
U* is.

By (a1) and (a2), we have proved Theorem 2 for Case (a).
Case (b). The exchange of (+v) Yv V Z and (+v)(Yv V Z).

The proof is similar to Case (a) except that in choosing i for U**, we use:
(Y*l/\ ... /\ Y*Nz)V Z*i (1*)

(Y*l V Zl) /\ ... /\ (Y*Nz V Z*Nz). (2*)

If (2*) gets true in the assignment T, then take any number, say 1, as i. If (2*) gets false,
then (y* j V Z)) must be false for some)~ take the smallest such j as i.

This completes the proof of Theorem 2.
It is clear that, from this theorem, we can use a prenex form or the miniscope form

and retain the same order k of Property C (oor Property B).

116 Computation, Logic, Philosophy

8. Herbrand's Theorem

The fundamental theorem proved by Herbrand ([llJ, pp.1l2-113) is somewhat
different from what is commonly known as Herbrand's Theorem:

Herbrand's fundamental theorem
(i) If X has Property B of order k, then 1- H X; one can e ffectivel y find the proof

of X from the number k.
(ii) Given a proofinH ofa proposition X, we can effectively find a number k such

that X has Property B of order k.
By Theorem 2, if X has Property B of order k, a prenex form of X has Property B of

order k and can be proved in H with the help of 6.2.1, in a manner which is familiar
nowadays. Hence, by RI, we get a proof of X in H. And (i) is proved.

To prove (ii), we make induction on the number of steps in the proof.
An axiom must be a case of RT and has Property B or C of order l.
By Theorem 2, RI does not affect the order of Property B or C. RU does not change

the reduced form.
If Xxx has Property C of order k with nk = N), then (- y}Xxy has Property C of

order k or k + 1. We may assume Xxx in the prenex form (by Theorem 2), and then the
reduced form of (- y}Xxy of order k+ 1 must be a disjunction X*;l V ... V X*jNz
which includes all the disjuncts of the reduced form of Xxx of order k, since Nl < Nz.
For example, (- z)(Gzx V I Gvx) is of orderl since its reduced form G12V J G12 is
a tautology; (- y) (- z) (Gzx V J Gvy) is of order 2 since its reduced form
(G12V "I GIl) V (G22V I GIl) V (G12V J G12) V (G22V J G12) is a tau
tology and y does take the fixed value 2 of x. Hence, RE preserves Property Bore with
the possible increase of the order by l.

Re does not change the order of Property B because, given a falsifying assignment
of the reduced form of X, we get one for that of xV X by the same assignment of truth
values to the atomic formulas.

RD preserves the order of Property B. First, if X and Zhave Property B of order k,
then X /\ Zhas the same order. Thus, take the reduced form Xl V ... V Xj of X and
Y1 V ... V Y, or Y. Then the reduced form of X /\ Z clearly contains all disjuncts
XaYb, l~a~j, l~b~t, and is therefore a tautology.

Hence, if X and X:::::> Yare of order k, so is also X /\ (X:::::> Y).Let X be (± Y1 ± ...
±yp) MYl·""ypX1···Xm and Y be (±Zl ±···±Zq) NZl ••. ZqXl .•. Xn. To avoid conflicts of
variables, we replace Yb .•. 'yp in X by Ub .•• 'Up to get Xt. and consider X /\ (Xl:::::> Y).
To get this into a prenex form, we can pair off Ui with Yh one of which must be positive
while the other is negative. We put them pairwise at the beginning, with the negative
preceding the positive in each case. Let the negative one of the pair Yi and Ui be Vi and the
other be Wi, then we have:
(- V1 + W1 - •.. - Vp + Wp ± Zl ± ... ± Zq)

[MYl .•• ypXl •.. Xn /\ (MUl •.• UpXl ••. Xn :::::> NZl ..• ZqXl ••• X n)].

Now we form a champ of order k for this formula, and identify suitable elements in
it to get one for Y. Thus all elements Wi + 1 (vt. ..• ,Vi), with arbitraryvl , ... ,Vh are identified

Observations on ATP 117

with Vi+ 1; all elements Zi(Vb ••• ,Vp,Zib ... ,Zij) with a fixed zi(ab ... ,ap,zi1, ... ,Zij)'

In this way, we get a champ for Yof order p since the only indexing functions are
those for the negative quantifiers among Z 1 , •.• ,Zq plus the indexing constants for the free
variables X1""'X ..

By hypothesis, X /\ (X:::> Y) has Property B of order p and has, therefore, a
dis junction:

[X1/\ (Xl:::> Y1)]V ... V [XN/\ (XN :::> YN)]
which is a tautology. Mter the identifications, we get a new tautology in which certain
disjuncts are repeated and can be deleted. Suppose the formula is the result after the
deletions, then we can derive by the propositional calculus:

Y1 V ... V YN •

But then this tautology is essentially the reduced form of order k of the formula Y.
This completes the exposition of Herbrand's fundamental theorem.
Recently Peter Andrews and Burton Dreben discovered in Herbrand's thesis (see

their forthcoming paper "Some difficulties in Herbrand's Theorem") a subtle mistake
which is preserved in the above exposition in the sketched proof of Case (b) on p.l? We
have to replace the two occurrences of" order k" in the statement of Theorem 2, on p.lS
above, by "some finite order." The fundamental Theorem remains correct except that
the detailed calculations of the order of Property B become more complex. Dreben is
planning a thorough discussion of these questions. (October, 1962).

References

[1] ACKERMANN, W., Solvable Cases of the Decision Problem. Amsterdam, 1954.

[2] Goodstein, R.L., Recursive Number Theory. Amsterdam, 1957.

[3] Peter, R., Rekursive Funktionen. 2nd edition, Budapest, 1957.

[4] Quine, W.V., Mathematical Logic. Revised Edition, Cambridge, Mass., 1950.

[5] Suninyi, J., Reduktionstheorie des Entscheidungsproblems. Budapest, 1959.

[6] Davis, M. and H. Putnam, "A Computing Procedure for Quantification Theory." Journal ACM, vol.7

(1960), pp.201-215.

[7] Dunham, B., R. Fridshal, G.L. Sward, "A Nonheuristic Program for Proving Elementary Logical

Theorems." Proceedings I.C.I.F., Paris, 1959 (pub. 1960), p.284.

[8] -, J. H. North, Exploratory Mathematics by Machine (to be published in a symposium volume at

Perdue University).

[9] Gelernter, H., "Realization of a Geometry Theorem Proving Machine." Proceedings I.C.I.F., Paris,

1959 (pub.1960).

[10] Gilmore, P.C., "A Proof Method for Quantification Theory: Its Justification and Realization." IBM

Journal, vol.4 (1960), pp.28---35.

[11] Herbrand, J., Recherches sur la Theorie de fa Demonstration. Warsaw, 1930.

[12] -, "Sur Ie Probleme Fondamental de la Logique Mathematique." CR, Warsaw, No.24 (1931).

[13] Hintikka, K. J. J., "Vicious Circle Principle and the Paradoxes." Journal of Symbolic Logic, vol.22

(1957), pp.245-248.

[14] Minsky, M., "Steps Toward Artificial Intelligence." Proceedings I.R.E., vol.49 (1961), pp.8---30.

[15] Newell, A., J.e. Shaw, H.A. Simon, "Empirical Explorations of the Logical Theory Machine: A Case

118 Computation, Logic, Philosophy

Study in Heuristics," Proceedings W.}.C.c., (1957), pp.213--230.

[16] Prawitz, D., H. Prawitz, :'Ii. Voghera, "A 'Vlechanical Proof Procedure and its Realization in an

Electronic Computer." Journal ACM, "01.7 (1960), pp.102-123.

[17] -, "An Improved Proof Procedure." Theoria, \01.26 (1960), pp.102-139.

[13J Robinson, A., "On the Mechanization of the Theorv of Equations." Bulletins of the Research Council

of Israel, vol.9F, No.2 (Nov. 1960), pp.47-70.

[19] Shepherdson, J., The Principle of Induction in Free Variable Systems of Number Theory. (Lecture at

the Polish Academy, Spring, 1961, to be published).

[20] Skolem, Th., "Begriindung der elementaren Arithmetik." Kristiania, 1923, 33 pp.

[21] Wang, H., "A Variant to Turing's Theory of Computing Machines." Journal ACM, vol.4 (1957),

pp.63-92.

[22] -, "Toward Mechanical Mathematics," IBM Journal, vol.4 (1960), pp.2-22.

[23] -, "Proving Theorems by Pattern Recognition." Part I, Communications ACM, \01.3 (1960),

pp.220----234; Part II, Bell System Technical Journal, vol.40 (1961), pp.l--4l.

7.2 The mechanization of mathematical argmnents *

1. Interaction of logic and computers
The attempt at theorem-proving by machine owes its chief attraction to the

prospect of delegating more and more of the tedious part of mathematical research to
machines, while reserving the conceptual innovations and designs of plots to people.
Unthinking scepticism against this sort of enterprise may perhaps be alleviated a little if
we think of developing mechanical assistants or collaborators for mathematicians. Once
a stock of mechanical methods is available and when it is a question of finding significant
new results, we shall certainly not wish to have the machines run a handicap race but will
readily feed them with all suggestions we can think of.

The pursuit of mechanizing mathematical arguments has quite immediate
consequences in computer and logical research.

1.1. The demands in this area of extensive manipulations with nonnumerical data
in a systematic manner suggest new principles of organizing computers and
programming languages.

1.2. The requirements of mechanization introduce a new criterion of classifying
mathematical arguments.

1.3. It provides an incentive to formalize more thoroughly concepts, theorems, and
rules of inference, with the guidance of a more objective mechanical norm.

1.4. It yields an external standard of applicability on machines for evaluating
mathematical results having to do with decision and proof procedures; one does not
desert a useful domain just because at one stage the work gets messy and offends the
good sense of mathematicians.

1.5. Concern with machines leads to a tendency to be entirely literal and explicit
which is helpful for certain types of research; for example, this factor is helpful in
obtaining some new results on the decision problem and the reduction problem such as

* First published in Proceedings of Symposia in Applied Mathematics, (1963), Vol. 15, pp 31-
40. Reproduced by permission of the American Mathematical Society.

Observations on ATP 119

those reported in [15].
A more immediate example is a new VIew of the project of a systematic

development of mathematics as pursued by Frege, Peano, Whitehead-Russell, Quine,
Bourbaki, Rosser. In all these cases, one is forced to a choice of two evils either stop at
the very early stage or sacrifice rigor. Aftt'r a devdopment of rudimentary set theory and
arithmetic Rosser contented himsdf with a brit' sketch and a pious hope [23, p.517] that
number theory and analysis can be obtaint'd. Bourbaki, who uses a different approach
with special emphasis on abstract structures, explicitly stresses the importance of
"abuses oflanguage" for mathematicians and appt'ars to think of them like the boxer's
gloves, to borrow a simile from Hilbert. The prospect of genuine mechanization
recommends to us a whole-hearted pursuit of the project with consistent efforts to
analyze and rende harmless abuses oflanguagt'. Even though it is probably natural and
more efficient for people to misuse language in mathematics, it is certainly not too much
to believe that the patience of machines is sufficient"to compensate the loss in efficiency
caused by being denied the ability to misuse languagt', i.e., to vary the meanings in
different contexts without explicit declarations of intention.

A major theoretical undertaking being contemplated is to redo tht' Bourbaki books
more exactly in the system H of [28, p.237].

There is nothing to prevent us from mechanizing abbreviations and derived rules
of inference. It is somewhat hardt'r to get rid of voluntary misuses oflanguage. An even
harder task is to formalize the abilitit's needed to fill in tht' gaps which are normally left
to the intelligent reader. All these three aspects are most conveniently considered in
connection with the undertaking just stated.

In terms of writing machine programs to do specific works, the lack of a generally
accepted programming language makes accumulation and communication rather
difficult. In addition, the specific methods underlying the particular programs are also
not easy to compare.

An example of results obtained to date is a program which embodies a fairly general
procedure along familiar lines that turn out to produce proofs in a few minutes for all the
over 350 theorems in the predicate calculus with equality actually included in the book
Principia Mathematica. The most interesting lc-sson from these results is perhaps that
even in a fairly rich domain, the theorems actually proved are mostly ones which call on
only a very small portion of the available resources of the domain.

Usually a good deal of theoretical work ought to precede the writing of a particular
program. There are, however, several methods which appear to be ripe for the
preparation of machine programs. (For longer discussions of these, compare later
sections of this paper.)

1.6. Decision procedure for the EAzE case.
1. 7. Free variable systems for algebra and rudimentary number theory.
1.8. Reduction procedure of the decision problem to games with dominoes.
1.9. Modification of the semidecision procedure of Friedman.
1.10. Modification of the semi decision procedure through AEA formulas.
1.11. Dunham's fast test of Herbrand expansions.

120 Computation, Logic, Philosophy

2. Types of application

There are simple mathematical results which depend essentially on certain

combinatorial considerations well v.cithin the range of the capacity of existing machines.
An example is the various questions of independence in complete and partial systems of
the propositional calculus. In such areas the possibility of using machines as an aid is
quite obvious.

For more serious questions in combinatorial analysis and number theory, one can
often experiment with special eases and employ the results as a heuristic aid to the study
of more general statements. QUE'stions of this sort have been discussed extensively by
Ulam.

What we wish to discuss here is rather a different type of possibility which may be
said to be nonnumerical in so far as mathematical propositions and inferences are dealt
with directly. In this connection tht' knowledge about formalization accumulated in
mathematical logic is E'specially rdE'vant. Thus, for example, we have decidable regions
of logic and mathematics, and unbounded proof procedures which can be mechanized.

The major problem is, howt'wr, that tht' dt'cidable domains are usually not broad
enough to include sufficit'ntly intt'rt'sting mathematical domains, while the proof
procedures are too inefficient to yit'ld mt'chanically proofs of significant theorems even
by large computers. This is not very surprising since mathematical logic has been
developed with an interest more in theoretical mechanizability than in practical
performability. It is to a certain extent for the same reason that mathematical logic has
not been useful in increasing the mathematician's ability to discover new theorems.

This defect is not intrinsic to the pursuit of formalization but is a result of the
additional motive, natural to everymathE'matician, of achieving theoretical elegance in
the proofs of decidability or complE'tE'ness, as well as economy in the basic apparatus. It
is familiar that such elegance and economy is oftE'n bought at the price of slower speed
and more cumbersome operations. For E'xample, Turing machines are theoretically
much more elegant than the commercial machinE'S currently in use. A mathematician, in
trying to prove a new theorem, does not go back to the logician's axioms.

Hence, what we have to pursue is formalization "With special attention to practical
feasibility. This requires a kind of work that is like a mixture of mathematics, physics,
and engineering. It is like mathematics in so far as we strive for decision or proof
procedures which are certain and general. But the additional constraint of feasibility
means that there is an external criterion which often contradicts the aesthetic sense of a
mathematician. In fact, one would have to work quite hard to get results which are by the
current mathematical standard nothing new. Since, at least at the present stage, this type
of work is not easier than more orthodox research, one is troubled by the lack of
incentive to venture into a field of research which is not immediatdy rewarding.

An intermediate type of work is developed in R. W. Hamming's recent book on
numerical analysis in which methods are given for selecting calculation methods to
apply as called for by the problem on hand.

Observations on ATP 121

3. Decision procedures

We may wish to adapt known decision procedures to the task of proving theorems.
One example that appears to be of some general interest is the result from the 1930's that
there is a general procedure by which, given any formula of the form

Ex-··EyAuAvEz··EwMx-··yuvz···w,

we can decide whether the formula has any models at all.
From this result it follows that if in a formal discipline without function symbols we

have a theorem B which can be deduced from the axioms A I, ... , An, then we can decide
whether
(1) (AI /\ ... /\ An) --> B
is true, provided each of AI;··,An contains no more than two (consecutive) universal
quantifiers and B contains no more than two (consecutive) existential quantifiers. This
is so because (1) is a theorem of the predicate calculus if and only if its negation
(2) Al/\ ... /\ A,,/\ I B
has no model at all. Since AxGx /\ AxHx is equivalent to Ax(Gx V Hx), the prenex
normal form of (2) falls under the E-·EAAE··E case if AI,···,An , I Bfall under the case.

In set theory, there appear to be fairly interesting theorems with proofs falling
under the form (1). Thus, among the permissible axioms is the axiom of extensionality.
As to the axioms of set existence, we may begin with an axiom for the empty set
EyAx (Fxy =x =1= x), F for the membership relation. We obtain a collection of sets and
axioms of the required form: given two sets in the collection, their pair set is in the
collection; given a set in the collection, its power set and sum set are in the collection; in
general, given a set in the collection, any subset with a defining condition containing
only one quantifier belongs to the collection. In fact, any axiom vvith a one-quantifier
defining condition belongs to the collection. This can be employed to experiment with
possible selections from axioms of the form EyAx(Fxy= - x-). It is essential that no
axiom of infinity can be of the required form. One application is to a paper by Hintikka
[30, p.37] and it is likely that there are other similar applications.

The equality sign is included. If we wish to apply the decision procedure to
geometry, it is desirable that we extend tht' procedure to a many-sorted theory, to take
care of points, lines, angles, etc. In fact, for certain purposes, it is better to extend the
predicate calculus to include ordered pairs and n-tuples, as well as certain fundamental
operations on predicates such as taking tht' intersection, etc., perhaps also the Hilbert
selection symbol.

The particular case is not useful for number theory because functions are not
permitted, and in order to represent g(x) =); by Gxy, we need

AxAyAz[(Gxy/\ Gxz) => y=z]

as an axiom, which is no longer of the giyen form.

122 Computation, Logic, Philosophy

4. Free variable systems

While it seems advisable to study axiomatic set theory at first without reference to
function, number theory and algebra may be studied initially with quantifiers excluded.
An underlying region is the study of algebraic manipulations, in particular, the question
when two algebraic expressions are reducible to each other. A large part of the secondary
school education on mathematics is to teach this stock of trade which is useful in algebra,
analysis, and physics. This calls for a basic language with a set of organized rules which
are natural to anybody with a reasonable mathematical education.

With a moderately good solution of this problem, it is a small step to set up a system
to deal with, e.g., trigonometric identities. One can use a free variable system
(propositional calculus, equality, perhaps two sorts of variables) and supply a decision
procedure by a reduction to some normal form.

To deal with number theory is more serious. Follovving Skole~ we can develop a
free variable system that allows proofs by induction, as well as arbitrary primitive
recursive definitions of functions and predicates. This, however, does not quite give us
what we want, because it takes a long time to get to the simple theorems which ordinarily
we do not bother to prove. Instead, we normally begin with a body of familiar theorems
and strategies. Hence, we are faced with the problem of setting up a stock-of-trade
system. As a start, we may try to analyze theorems such as there are infinitely many
primes, the fundamental theorem of arithmetic, and 2 is not a rational number. This
would involve an unsatisfactory empirical experimentation more like Peano than
Dedekind. Perhaps Grassmann's work and Peano's work can be of some assistance here.

5. Proof verifiers, proof formalizers, proof discoverers

In order to restrict one's task at the beginning, one might wish to consider first the
question of writing a program that will verify that a proposed proof is indeed a proof.
This seemingly attractive idea is somewhat confused. If we are concerned with
completely formal proofs, the project is of little theoretical interest and would be
something like a FORTRAN editor with the additional disadvantage that the verifier
has little application. If a verifier checks just things like punctuation, passing the test
does not assure us that the result is a proof. If the test is to give the assurance, then since
practically no proofs are completely formalized, in order to have a reasonable range of
application, the verifier must be able to fill in gaps and even decide whether certain gaps
can be filled in.

For a proof to be formal does not mean that each step must be a very small one
recognized in standard axiomatic systems devised by logicians. It is perfectly all right
that bigger steps are taken, provided we somehow possess a list or a procedure of testing
all the permissible steps. Since we permit a large variety of moves, for a checking to be
feasible, we have to have an organized list of permissible steps so that we do not have to
check off slavishly each item on the list one by one.

As a result, there is no way to distinguish a reasonably interesting proof verifier

Observations on ATP 123

from a proof formalizer that proposes to supply a formal proof starting from a rather
detailed sketch. In either case, the more serious problem is not so much the writing of a
program as the devising of the organized body of permissible steps and strategies for
checking them.

In this connection we ought to introduce a criterion for judging work in this area.
Roughly, the work is not determined just by a selection of the things which a program
can do but, more important, by how the things are done. In other words, a good piece of
work automatically advances our knowledge and produces something new that can be
embodied in our accumulation of scientific information. This in particular excludes
strictly ad hoc devices introduced just to produce a small number of desired results.

Viewed in this light, a proof formalizer is an unavoidable integral part of a proof
discoverer, and the difference can only be one of degrees in complexity and significance.

6. Mathematical problems as games of dominoes

The comparison of mathematics with games has often produced spirited
controversies in philosophical discussions. It is, however, possible to say that
mathematics can be viewed as games ",cith symbols for the purpose of mechanization
without having to defend the emotion-laden thesis that mathematics is just a game. It
has been shown, for example, that the problem of proving a statement by certain axioms
can be reinterpreted as one of telling whether a Turing machine will stop, which in turn
may be treated as a question of whether one can win a suitable game with dominoes.

We assume there are infinitely many square plates (the dominoes) of the same size
(say, all of the unit area) with edges colored, one color on each edge but different edges
may have the same color. The type of domino is determined by the colors on its edges
and we are not permitted to rotate or reflect any domino. There are infinitely many
pieces of every type. The game is simply to take a finite set of types and try to cover up
the whole first quadrant of the infinite plane with dominoes of these types so that all
corners fall on the lattice points and any two ad joining edges have the same color.

6.1. A (finite) set of domino types is said to be solvable if and only if there is some
way of covering the whole first quadrant by the dominoes of these types.

The following simply stated problem which is two years old remains open:
6.2. The (unrestricted) domino problem. To find an algorithm to decide, for any

given (finite) set of domino types, whether it is solvable.
On the other hand, it is not hard to show that if we require a fixed type to occur at

the origin, the (origin-constrained) domino problem is unsolvable because to every
Turing machine we can find a set of domino types such that the former stops if and only
if the latter has no solution. Hence, to each mathematical problem we can find a question
of solving a corresponding finite set of domino types.

It turns out that the result can be extended to the diagonal-constrained domino
problem and then yield a reduction of the general decision problem to that for the class
of all formulas of the form AxEuAyMxuyor AxAyMxxy, x' being short for x+ 1 (see
[15]). This reduction to the AEA case makes it appear plausible that we can devise more

124 Computation, Logic, Philosophy

powerful decision procedures vvith the help of our better intuitive grasp of the simpler
structure. In fact, we can get a semidecision procedure (see [30, pp.25--32]).

7. Semidecision procedures

The reduction procedure depends on the expansion of a formula Fto a sequence SF
of truth-functional formulas and replaces the predicates in Fby predicates connecting
the formulas in SF' Moreover, we can modify the reduction procedure so as to preserve
finite models; every formula in the reduction class has a recursive model if it has any
model at all.

The semidecision procedure is such that it always terminates if the original formula
F either has no model (i.e., its negation is a theorem) or has finite models. In fact, it is
easy to show that an AEA formula has no model (finite model) if and only if the
corresponding semidecision procedure has no solution (a periodic solution). Moreover,
the procedure can also decide a number of cases when the formula has only infinite
models. Thus, when we recognize that apart from the first few rows or columns the rest
has a periodic solution, we get a formula with only infinite solutions. It is also possible
that we can find conditions which enable us to recognize formulas with only more
complex infinite models. To accomplish this, we may wish to experiment with examples
on a machine program to look for new recognizable patterns of recursion.

When we deal with the general case, we find that often, for a given F, too many
terms of SF are needed before we can even recognize that F has no model at all. It,
therefoer, seems desirable to look for some relevance algorithm such as some
generalization of the considerations on [30, p.18]. Since, however, it is not easy to find a
good one for the general case, it is natural to deal with this problem relative to some
normal form. And the semi decision procedure may be viewed as a relevance algorithm
using the AEA normal form of each formula F. This is more than a proof procedure
since it does not only give an answer when Fhas no model. It is not a decision procedure
because we cannot tell in advance the exact range to which it applies. But it does include
all classes knowl1 to be decidable in the sense that any formula falling under one of the
known decidable classes can be decided by this procedure. The belief is that, in addition,
the procedure is more efficient than the existing proof and decision procedures for the
predicate calculus and its subdomains.

Recently it came to the author's attention that Joyce Friedman has, since 1956,
introduced in her unpublished report [l0] a very nice semidecision procedure which
applies directly to formulas in the Skolem normal form: for formulas belonging to most
of the classical decidable cases, the procedure yields a decision procedure, and for all
formulas, the procedure in general yields a reduction to a somewhat simpler form.

It seems desirable to make several modifications on the procedure: (1) to permit
formulas in prenex form and miniscope form; (2) to use Herbrand's Property B; (3) to
avoid "saturation" or, in other words, expansions for the "don't care" cases; (4) to
include equality.

With these modifications, and combined with Dunham's fast test of Herbrand

Observations on ATP 125

expansions, the procedure should be very powerful and efficient.

8. Methods of testing Herbrand expansions

Let us assume the Herbrand expansion H written in the disjunctive normal form.
Compare every pair of clauses in H, whenever one contains some proposition letter p and
the other contains I p, circle both p and 'I p. For example, if one clause is I p 1\ q 1\ r
and another clause is p V 'I r 1\ s, circle r and I rIp and Ipl. After we have
introduced all possible circles, we can delete every clause which contains a literal
without a circle. Then we erase the circles and repeat the process until finally we arrive at
a disjunction in which no clause contains any literal without a circle. Call the resulting
disjunction minus the circles H*. In his lecture [5J, Dunham introduces the above
procedure and proves:

Dunham's theorem. If H is a tautology, so is H*.
This is clearly useful in eliminating irrelevant clauses. Dunham further discusses

how we can efficiently carry out the above procedure on a computer. In particular, he
envisages very long disjunctions and gives efficient ways of record-keeping and the use
of magnetic tapes. A forward-looking feature is introduced to take advantage of the
characteristics of the process to date in deciding what to do next, and also, perhaps in a
non validity determination. He stresses the ordering of the steps in the method of
solution in order that we can anticipate storage needs and use the tapes without loss of
time.

Details of these results will be fully described in the paper [8].

9. Direct characterization of recursive predicates: a digression

The consideration of models of AEA formulas suggests a type of recursive
definition which uses predicates rather than functions. These definitions should be
useful for studying models of formulas in the predicate calculus without function
symbols. Although the relation to theorem-proving is rather indirect, we include it here
on the ground that it is desirable to give a mathematical result in a paper for a
mathematical symposium.

Definition. A sequential proposition is a proposition obtainable in the following
manner. There are the individual constant 0 and infinitely many variables x, y, z, etc.,
and infinitely many predicates F, G, etc., including =. A term is either 0 ora variable, or
obtained from a given term t by applying the successor operation, viz., t'. An atomic
proposition is a predicate followed by a suitable number of terms. Applying truth·
functions to given propositions we get again propositons. Consequences of a set of
sequential propositions are obtained by substitution of numerals 01.····1 for variables,
equals for equals, and truth-functional inferences.

Theorem. A sequential proposition defines a set of recursive predicates if and
only if: (i) it has a unique rrwdel relative to the natural interpretation of 0 and the
successor function, or (ii) for every set of numerals nl ; .. ,nj and every predicate P in the

126 Computation, Logic, Philosophy

proposition, either ~nl;··,nj) or -, P{nl;··,nJ is a consequence, but never both.
This is related to 9.7 on p.316 of [27]. Some essential steps in the proof were

suggested by Specker. We merely sketch the proof.
If a sequential proposition has a unique model, then we can tryout, from small

numerals to large, all possible truth values of the predicates involved followed by
numerals. Since each predicate, unlike a function, has only two possible values (true or
false) for each given set of arguments, we can, by the infinity lemma. narrow down the
value of P(nl;",nJ to the correct one after a finite number of trials, where nl;",nj are
given numerals. Hence, the predicates are recursive, and we can derive a unique truth
value for P(nl;",nj) in each instance.

Conversely, we can also simulate every general recursive definition by a sequential
proposition as follows, using AXl"'XnY for f(Xl ;··,xn) = y.

9.1. Axy'=' y=x'.
9.2. AXl···XnZ'='z=c.
9.3. AXl···XnZ'='Z=Xi.
9.4. Composition. (AXl"'XnYl/\ ... /\ AmXl"'XnYm/\ BYl"'YmU) ~ (CXl"'XnV'='u

= v).
Observe that C defines a function when A1;",Am, B define functions.
9.5. Primitive recursion.

[BXl"'XnU ~ (AXl"'XnOv '=' U = v)] /\ [(AXl"'XnYV /\ CXl"'XnYVw)
~ (AXl"'XnYz '=' z=w)].

9.6. Use AXl"'XnU to represent uvR(Xl;",Xn,y)= u.
[BXl"'XnO,=,Rxl"'XnO] /\ [BXl"'XnY '=' (BXl"'X"y/\ Rx1"'xnY)]

/\ [AXl"'XnO '=' BXl"'XnO]
/\ [AXl"'XnY '=' ("I BXl"'XnY /\ BXl···XnY)].

References
1. W. Ackermann, Solvable cases of the decision problem, lIiorth·HoIland, Amsterdam, 1954.

2. N. Bourbaki, Elements de mathematique, Hermann, Paris.

3. J.R. Biichi, Turing machin('s and the Entscheidung "problem, Notices Amer. Math. Soc., 8(1961),

354.

4. M. Davis and H. Putnam, A computingprocedureforquanification theon-. J. Assoc. Compul. Mach.,

7(1960),201-215.

5. B. Dunham, Theorem testing by computer. Lecture at Harvard Computation Laboratorv, Februarv 15,

1962.

6. B. Dunham, R. Fridshal and G. L. Sward, A nonheuristic program for proring elementary logical

theorems, Proc. Internal. Conf. on Information Processing, UNESCO, Paris, 1959 (published in

1960), p.284.

7. B. Dunham, R. Fridshal and J.H. North, Exploratory mathomatics by machine, Proe.

Sympos, Decision and Infonnation Processes, Macmillan, New York, 1961.

8. B. Dunham and J. H. North, J'heorem testing by computcr, Sympos. Math. TheorY Automata,

Brooklyn Polytechnic Institute, Brooklyn, N.Y., April, 1962.

9. G. Frege, Grundgesetze der Arithmetik. Jena, 1893 and 1903.

10. J. Friedman, A semi·decision procedure for the functional calculus, J. Assoc. Compul. Mach.,

Observations on ATP
10(1963), 1-24.

127

n. H. Gelernter, Realization of a geometry theorem proving machine, Proc. Internal. Conf. on

Information Processing, UNESCO, Paris, 1959 (published in 1960).

12. P. C. Gilmore, A proof method'for quantification theory: its justification and realization, IBM J.

4(1960), 28-35.

13. H. Grassmann, Lehrbuch der Arithmetik, Berlin, 1861.

14. J. Herbrand, Recherches sur la thiwrie de la demonstration, Warsaw, 1930.

15. A. S. Kahr, Edward F. Moore and Hao Wang, Entschcidungsproblcm reduced to the AEA case, Proc.

Nal. Acad. Sci. U.S.A., 48(1962), 365-377.

16. M. Minsky, Steps toward artificial intelligence, Proc. I.R.E., 49(1961), 8-30.

17. A. Newell, J. C. Shaw and H. A. Simon, Empirical explorations of the logical theory machine: a case

study in heuristics, Proc. Western Joint Computer Conference, IRE, New York, pp.218--230,

1957.

18. G. Peano, Formulaire de mathematiques, Turin, 1894--1908.

19. D. Prawitz, H. Prawitz and N. Voghera, A mechanical proof procedure and its realization in an

electronic computer, J. Assoc. Compul. Mach., 7(1960), 102-128.

20. D. Prawitz, An improved proof procedure, Theoria 26(1960), 102-139.

21. W. V. Quine, Mathematical logic, Harvard Cniv. Press, Cambridge, Mass., 1951.

22. A. Robinson, On the mechanization of the theory of equations, Bull. Res. Council Israel (9F)

No.2(1960), 47-70.

23. J. B. Rosser, Logicfor mathematicians, McGraw-Hill, New York, 1953.

24. Th. Skolem, Begriindung der elementarcn Arithmetik durch die rekurrierende Denkweise ohne

Anwendung scheinbarer Veriinderlichen mit unendlichem Ausdehnungsbereich, 38 pp., Skr.

Videnskap"elskapet i Kristiania, I. Mal. ·Naturv. Klasse No.6, 1923.

25. J. Suranvi, Reduktionstheorie des Entscheidungsproblems, Ungarischen Akademie, Budapest, 1959.

26. S. M. Ulam, A collection of mathematical problems, Interscience, New Y urk, 1960.

27. H. Wang, Circuit synthesis by solving sequential Boolean equations, Z. Math. Logik Grundlagen

Ylath. 5(1959), 291-322.

28. ---, Ordinal numbers and predicativc set theory, Z. Math. Lagik Grundlagen 5(1959), 216--239.

29. ----, Toward mechanical mathematics, IBM Journal 4(1960), 2-22.

30. , Proving theorems by pattern recognition. I, Camm. ACM 3(1960), 220-234; II, Bell

Sy,tem Tech. J., 40(1961), 1-41.

31. A. N. Whitehead and B. Russell, Principia mathematim, Cambridge Vniv. Press, Cambridge,

1910-1913.

7.3 Fonnalization and automatic theorem-proving*

General survey

The main purpose of this paper is to give some new examples of mechanizing proofs
in number theory and quantification theory, which, it is believed, suggest a few
additional steps to be taken to advance the area of mechanical mathematics. Before

* First published in Proceedings of the IFIP Congress, pp 51-58. Spartan Books, 1965. Repro
duced by permission of the author.

128 Computation, Logic, Philosophy

plunging into such technical matters, a somewhat incomplete summary of existing
results is given to conform to the wishes of the organizers of the meetings.

There are different ways of using computers to assist the proving of theorems. The
highly interesting work of Lehmer2 3 in number theory consists essentially in reducing
(by the human being) a general theorem to a number of complex numerical instances
which are verified by machines. New theorems have been proved in this way which is
certainly a clever application of machines. But this is not the sort of application
envisaged here, because the computer is making indisputably only numerical
calculations. It is not that logicians will insist on beginning exclusively with the Peano
axioms. In fact, the writer also envisages an organization of the stock of trade in
mathematics, as well as frequent interventions by people. What is different is the desire
to extend the well-known power of computers in numerical calculations to the range of
making logical inferences.

Among those who attempt to make this extension, two basic trends are discernible
which might be labeled psychocentric and logocentric. The distinction is in principle
not a sharp one. In practice, the psychocentric approach appears to have a deceptive
glamour which generally leads to disappointments. At any rate, it would seem better to
evaluate each individual piece of work on its own merit rather than indulge in debates of
a political flavor.

The well-known work of Newell, Shaw, Simon 2 S,2 6 has had important by-products
in the study of programming languages but, as far as theorem-proving is concerned,
appears to be too ill-defined to permit any solid superstructure to be built on such
foundations. Moreover, although it is likely that thinking on questions of mechanical
simulation can be suggestive to a psychologist, it is not easy to see how the results of
actually carrying out these ideas on computers can contribute in any substantial way to
the progress of the field of psychology.

The geometry-proving scheme of Gelernter and his colleagues17 offers results
which were puzzling at first. But the careful analysis by Gilmore seems to show that
much less had been accomplished than one was at first led to believe: "The
programming that the authors have done is entirely conventional in the sense that well
defined algorithms have been realized on a computer" (Gilmore19, p,26).

Slagle34 has a successful program to have computers do integration problems in
the calculus. It would be of interest to have a more systematic study of the whole
problem of integration. The program by Bobrow2 to have computers solve story
problems in algebra is carefully worked out and explained. It is interesting that a few
simple devices enable him to handle a moderately wide range of English sentences.
However, the emphasis is on matters not central to the type of problem considered in
this paper.

In the more logocentric approach, the main emphasis thus far is on quantification
theory, Outside quantification theory, several people have worked on the Sturm-Tarski
decision procedure for elementary algebra, in particular, Collinss. A. Robinson
proposes, in a somewhat different direction, a system for the theory of equations29 ,3o.

Brown has developed an efficient practical system for algebraic manipulations 3 •

Observations on A TP 129

The first serious attempt to do quantification theory on computers seems to date
from the summer of 1958 as reported in Ref.36, with quite pleasantly surprising results.
A lot of related work has been done since then, both on proof procedures* and on
decision procedures for interesting subdomains**. It is encouraging to observe a slow
but steady progress toward more and more efficient procedures.

The basic theoretical result for both approaches goes back to the work of Skolem
and Herbrand, commonly known as Herbrand's Theorem. In order, however, to make
the theoretically possible expansions practically feasible, a novel species of question
arises which demands considerations of a rather high order of complexity.

In the area of decidable subdomains of quantification theory, Friedman! 6 not only
gives an efficient program for deciding whether a formula of the form

is a theorem, but also treats systematically the question of amplification (don't care
clauses). Desirable immediate extensions are the inclusion of equality, and the removal
of the restriction to dyadic (and monadic) predicates.

Among the proof procedures studied on machines, the most powerful methods
thus far completed would seem to be Chinlund's et a1.,4 and Robinson's3!. A more
efficient procedure is given in Robinson 32; similar ideas were independently reported in
Aanderaa1 . Neither method has been realized on a computer, although Aanderaa seems
to specify more details to guide the programmer. It is desirable to add equality to both
methods.

None of the programs completed so far have succeeded in dealing with the
examples ExQl, ExQ2, ExQ3 (in order of increasing difficulty) discussed below. It is
hoped that these examples will be accepted as test cases for new programs.

A more general question is whether the method of Herbrand expansion is basically
sufficient. It may be necessary to introduce special strategies which have no direct
connections with testing Herbrand expansions. For example, the strategy of eliminating
quantifiers by substituting Fu for (Ex) (x = u /\ Fx) or (x) (x = U ::::J Fx) is considered
below.

In the case of number theory, little has been done to mechanize the arguments.
Very likely, many people have tried and found the task too formidable. The section
covering examples from number theory, below, will be devoted to a preliminary
exploration of some of the possibilities. It appears that a suitable goal for the near future
would be to mechanize the proofs in Skolem33 .

* See Refs.4,6-8, 18, 27, 28, 31, 32, 40.

** See Refs.14--16, 37.

130 Computation, Logic, Philosophy

The writer has speculated extensively elsewhere* on the future of automatic
theorem-proving and will refrain from repetitions. Four short items seem worth
stressing.

Although formalization is only part of the battle, since, for mechanization, we need
in addition a method of choosing the next step, it is highly Besirable to do more work on
formalization, with a view to developing a repertoire of precise tricks. An attractive
feature of this line of work is the possibility of avoiding computers. Hence, we have an
area where one does not have to get one's hands dirty. This helps the division oflabor.

It is unrealistic to expect practical methods which are fully "automatic" from the
beginning, since the goal is to extend human ability by delegating more tedious steps to
machines**.

It might be instructive to contrast mechanizability with teachability.
The fitting together of diverse methods into a more widely applicable structure

presents many serious difficulties. For example, Boolean operations are cheap, but if we
inject such operations at many different stages, it is essential that at each stage not too
many such operations are required.

Examples from number theory

Given a formula of number theory to be proved, we assume it false and take a least
counter-example LC, which is represented by an ambiguous constant. In general, an
existence statement (Ex)Fx yields an ambiguous constant which is ambiguous but has
the property F. Universal quantifiers are dropped and free variables are used. We shall
use a, b, c, x, y, z, etc., for variables; m, n, k, xm, Ym, etc., for ambiguous constants. The
basic strategy is to derive properties about these ambiguous constants in the hope of
finding contradictory ones. Variables range only over positive integers (excluding 0).

To make such an approach feasible, it is necessary to use a stock-of-trade file SF and
a list TF of simple truth-functional transformations.

The four examples to follow are merely meant as illustrations of the sort of thing
one may do. The proofs become increasingly more sketchy and less mechanicaL It is
possible to extend the methods sketched below to obtain a complete system of number
theory in the sense that any theorem in the usual axiom system of number theory can in
theory be proved, but this aspect will not be considered here. For example, to achieve
repeated inductions, one needs, besides LC, the general choice of a least ambiguous
constant.

The truth-functional principles (including one for equality) are for the moment
confined to the following:

TFl. If A and A:::J B, then B.
TF2. If A, C, (A 1\ C) :::J B, then B.
TF3. If A:::J Band IB, then IA.

* See Refs.35 to 39.

** Compare Ref.37, p.221, and more specifically Ref.31.

Observations on ATP

TF4. If A:::J (BV C) and "lC, then A:::J B.
TF5. If A == B and A, then B (usually for definitions).
TF6. Substitute equals for equals.
TF7. If "lA, delete A:::J B.

The basic instructions (oon the first level of complexity) are as follows:
LC. Write down conditions for least counter-examples.

131

AC. Create ambiguous constants and substitute them for free variables in earlier

lines of the proof.
TFL. Apply TFI-TF7, as far as possible, to lines obtained so far in the proof

which contain no free variables.

far.

TFG. Apply TFl-TF7 on the basis of both the lines of the proof and
SF, but with the restriction that at least one of the premises is in the
proof and without free variable, and that the consequence contains no
functions or predicates not occurring in the proof so far.
Sc. Search for contradictions in the lines of the proof obtained thus

A number of mechanizable implicit conventions are assumed. For
example, addition and multiplication are commutative and associative. x ry and x 1- y
for "I x/y, "I x < y. x < y < z for x < y /\ y < z. a = band b = a are treated as the
same.

For the initial SF, we take arbitrarily the following, with much room for
improvement:

BL a 1:. a; B2. (a < b /\ b < c) :::J a < c;
B3. a ~a; B4. ab = aC:::J b = c; B5. x ~ y == (x=yV x < y); B6. x = yV x

< y V y < x; B7. a ~ b :::J b 1- a.
DL x I x; D2. (x I y /\ y I z) :::J xlz; D3. xly == y = xuxy ; D4. xy = z :::J (xlz /\ ylz);

D5. xlY:::J x~y.
PI. (Px /\ xlyz) :::J (xlyV xlz); P2. y> 1 :::J ["I Py==(l <Xy < y /\ Xy I y)].

As a first round of an attempted proof, we proceed as follows. Start: (1) LC, (2) AC,
(3) TFL, (4) SC, (5) TFG, (6) SC, (7) return to (2) and repeat. Exit either when a
contradiction is found at SC or when AC yields no new substitutions. In the latter cases,
more complex appeal to SF is called for.

ExNL x > 1 :::J (Ey) (Py /\ ylx)
By LC, we get:

Apply AC:

m>l
Pb:::J blm.

1 < a < m:::J (PYa /\ Yala).

Pm:::Jmfm.
l<m<m:::J (PYm/\ ymlm).

TFL and SC produce nothing. Apply
TFG. By TF7 and Bl, (5) can be deleted.

IPm, by (4), D1, and TF3.

(1)
(2)
(3)

(4)
(5)

(6)

132 Computation, Logic, Philosophy

iPm==(l<xm<mA xmlm), by (1), P2, TFl.
By (6), (7), TF5:

I<xm<m.
xmlm.

SC produces no result. Return to AC:
PXm ::::> Xm t m, by (2) with Xm for b.

1 < x < m ::::> (PYx /\ Y x I xm), by (3) with x for a.
Apply TFL: m m m m

Px , by (9), (10), TF3.
pYx:, by (S), (11), TFl.

y'm I x , by (S), (11), TFl.
SC produces no result. Apply "tFG.

l Px == (1 < u,m < x /\ Ux I x), by (S), P2, and TFl.
m 1 < U x <;;', by n(I2)7 (15), TFS.

uxJ x , by (12), (IS), TFS.
YXm I m,hy (9), (14), D2, TF2.
uXm I m, by (9), (17), D2, TF2.

SC produces no result. Return to AC:
PYx ::::> yx .rm.

m m
PUxm ::::> uXm .rm.

1 < v, < m::::> (Py,. V y, I y,).
l<~xm <m::::>(Py;,XmV Yu'nllu;n).

m 'm ~ m
Apply TFL:

(7)

(S)
(9)

(10)
(11)

(12)
(13)
(14)

(15)
(16)
(17)
(IS)
(19)

(20)
(21)
(22)
(23)

YAm tm, by (20), (13), TFl. (24)
"I Pyxm, by (20), (IS), TF3. (2S)
I PUxm' by (21), (19), TF3. (26)

Apply SC and we find (24) contradicts (IS), (2S) contradicts (13). Hence, ExNI is a
theorem of number theory.

In order to prove the next theorem, we extend SF by adding:
P3. y> 1 ::::> [IPy == (1 < x, < y /\ Px, /\ x, I y)].
BB. (alb /\ al(b+c)) ::::> ale.· ..
Fl. a~b::::>alb!; F2. I<a!+I; F3. a<a!+I; F4. Da!+I~a.
ExN2. Px::::> (Ey) (Py /\ x < y~x! + 1).

By LC:
Pm. (1)

Pa::::> (a~mV m! + 1 < a). (2)
The least part happens to be useless and, for brevity, we omit it.
Apply AC:

Pm::::>(m~mV m! + I<m). (3)
P(m! + I)::::>(m! + I~mV m! + I<m! + 1). (4)

TFL and SC produce nothing except:
m~ m V m! + 1 < m, by (1), (3), TFl. (S)

Apply TFG:

Observations on A TP 133

P(m! + 1) :::J m! + 1 ~ Ill, by (4), Bl, TF4.
I P(m! + 1), by (6), F4, TF3.

1 <m! + 1, by F2 (not justified by restricted TFG).
1 <Xm!+l < m! + 1, by (8), (7), P3, TFl, TF5.

(6)
(7)
(8)
(9)

PXm!+l·
xm!+ll m! + l.

(10)
(11)

SC produces nothing. Return to AC:

PXm!+l:::J (Xm!+I~mV m! + 1 < Xm!+l). (12)
Apply TFL:

m! + 1 t xm!+I' by (9) (not explicitly provided for). (13)
PXm!+l:::J xm!+l~m, by (12), (13), TF4. (14)

xm!+l~m, by (14), (10), TFl. (15)
SC produces no result. Apply TFG.

xm!+ll m!, by (15), Fl, TFl. (16)
xm!+ 111, by (16), (11), B8, TF2. (17)

xm! + 1 ~ 1, by (17), D5, TFl. (18)
lixm!+l by (18), B7, TFl. (19)

But (19) contradicts (9).
The next two examples suggest the need of more complex strategies such as

ordering all occurring ambiguous constants, breaking up products, considering the
separate cases a = b, a < b, b < a; and so on.

ExN3. PW:::J wx2 #- l.
The application of LC is ambiguous since there are more than one free variables.

We take the following:
Pk (D

km2 =n2 • (2)
(a<m/\ b<n):::Jka2#-b2. (3)

There are various ways of applying AC, mostly with trivial results. TFL is rather
useless. Go to relaxed TFG with the guiding principle of breaking products.

kln2, by D4, (2), and TFl. (4)
m 2 1n2 • (5)

kin, by (1), (4), PI, TF2 (and convention of replacing A V A by A). (6)
n=xknk, by (6), D3, TF5. (7)

n2 =k2(xkn)2, using a=b:::Ja2 =b2 , because n2 occurs above. (8)
km2 = k2 (xkY, by (8), (2), TF6. (9)

m2 = k(xkY, by (9), B4, TFl. (10)
m < n, by (2), (1), and (Pa /\ ab2 = c2):::J b < c. (11)
xkn < n, by (7), (1), and (Pa /\ ab = c):::J b < c. (12)

Substitute Xkn for a, m for b in (3):
(xkn < m /\ m < n) :::J k(xkY #- m2 • (13)

k(xkY#-m2 , by (13), (11), (12), TF2. (14)
But (14) contradicts (10).

ExN4.

134 Computation, Logic, Philosophy

[x = rrr ~ 1 Y = rrr ~ 1 Zi j\ (i)~ -1 (y ~ Yi + 1 j\ Py < PYi + 1)

j\ (i)~-l (z ~ Zi + 1 j\ PZ j\ PZi + l)j ::::) (u=V j\ (i)'l Yi = Z;).
Take least countere~ample x= k~ If Yl = z., then IIr~2 y. = II~ ~2 z <k. If Yl <zj,

then y 1 IIi ~ 2 z < IIi ~ 1 z., and y 1 divides both sides. Hence, y'l I (Zl - Y:) IIi ~ 2 z. Since
PZj, Yl(Zl - Yl), and Yl~2 ... Zn- Hence Yl II7=l t. =(Zl - Yl)IIf=2z. <k. ' , ,

Examples from quantification theory
Instead of proving that a given formula is a theorem, we take its negation and derive

a contradiction. We use similar notation for ambiguous constants as in the section
covering examples from number theory. The principal example of this section is:

ExQl. Derive a contradiction from the conjunction of:
mi=n,
ni=k,
ki=m,

y= m V [Fym= (Ez) (zi=mA zi=y A FyzA Fzy)] ,
y=n V [Fyn=(Ez)(zi=n A zi=y A Fyz A Fzy)],

y=kV [Fyk=(y=mV y=n)].

(1)
(2)
(3)
(4)
(5)
(6)

Two related but harder examples are:
ExQ2. Replace (2) and (3) in ExQ1 by (2') (n = k V k = m) and (3') y

= jV (Fyj=y=k).
ExQ3. Drop (2') from ExQ2.

These harder examples will not be discussed here. For a more intuitive understanding of
these examples, think of F as the membership relation E.

There are three somewhat different methods of doing ExQl. The first method
would be to use the decision procedure for the special prefix. Thus bring the con junction
to the prenex form with prefix (Em) (En) (Ek) (y) (z) (Eu) (Ev). If one removes artificial
restrictions from, and adds methods for dealing with equality to the program of
Friedman16 , then ExQ1 should be manageable.
Second Method

Substitute m, n, k for y in (4), (5), (6) much as with AC before. Of the nine possible
substitutions, three give trivial results (m for y in (4), etc.). We consider just 4 of the
other 6, and simplify by (1), (2), (3), k = k, n = n:

Fkm=(Ez) (zi=mA zi=kA FkzA Fzk) , k for y in (4). (7)
Fkn=(Ez)(zi=nA zi=kA FkzA Fzk), k for y in (5). (8)

Fmk, m for y in (6). (9)
Fnk, n for y in (6). (10)

We deal with (Ez) by trying to apply the equivalence ofGw with (Ez) (z=w V Gz).
From (6), we get:

(Fyc A yi=kA yi=m) ::::) y=n;
(FycA yi=kA yi=n)::::) y=m.

Hence, we can augment the right side of (7) by y = n, and that of (8) by y = m. Thus,
eliminating Ez in both cases, we get:

Observations on ATP

Fkm= (n#m/\ n#k /\ Fkn/\ Fnk).
Fkn= I (m#n /\ m#k/\ Fkm /\ Fmk).

By (1) and (2), these can be simplified.
Fkm= (Fkn /\ Fnk).

Fkn= ("lFkm V I Fmk).
Fkn= I Fkm, by (9) and (12).
Fkm=Fkn, by (10) and (11).

By (13) and (14), Fkm=Fkm, a contradiction.
Third Method

135

(11)
(12)
(13)
(14)

The quantifiers and = in (4) and (5) are eliminated in a more mechanical manner to
gIve:
[y=mV FymV (u=mV u=y I FyuV I Fuy)J/\ [y
=mV "lFymV (xy#m/\ xy # y /\ Fyxy /\ Fxyy)]' (4')
[y=n V I Fyn V (v=n V v=y V I FyvV "I Fvy)] /\ [y
= n V Fyn V (wy # n /\ wy # Y /\ Fywy /\ Fwyy)]. (5')

The problem is to derive a contradiction from (1), (2), (3), (4'), (5'), and (6). We
write every clause in the conjunctive normal form so that the result is a conjunction of
many clauses:

(1);
(2);
(3);
(4.1) y=mV I FymV xy#m;
(4.2) y=mV I FymV Xy#y;
(4.3) y=m V "I Fym V Fyxy;
(4.4) y=m V "I Fym V Fxyy;
(4.5) y=mV FymV u=mV u=yV IFuyV I Fuy;
(5.1) y=n V Fyn V wy#n;
(5.2) y=nV FynV Wy#y;
(5.3) y = n V Fyn V Fywy;
(5.4) y=n V Fyn V Fwyy;
(5.5) y=nV I FynV v=nV v=yV IFyvV "lFvy;
(6.1) y=kV y#mV Fyk;
(6.2) y=kV y#nV Fyk;
(6.3) y=kV y=mV y=nV IFyk.

Substitute m for y in (6.1), using m#k and m=m:
Fmk. (15)

Fnk, n for y in (6.2), using n # k and n = n. (16)
k=nV "lFknV m=nV m=kV IFkmV IFmk,kfory

and m for v in (5.5).

I Fkn V I Fkm, by (1), (2), (3), (15), (17).
Fkm V IFkn, k for y and n for u in (4.5), by (1), (2), (3), (16)

I Fkn, by (18), (19).

(17)

(18)
(19)
(20)

136 Computation, Logic, Philosophy

w #n, wk#k, FkWk, Fwkk, k for y in (5.1)-{5.4), by (2) and (20).
k

Wk = m, Wk for y in (6.3), by (21).
Fkm, by (21) and (22).

xk#m, xk#k, Fkxb Fxkk, k for y in (4.1)-{5.4), by (3) and (23).
Xk = n, Xk for yin (6.3), by (21).

Fkn, by (24), (25).
(20) and (26) contradict each other.

(21)
(22)
(23)
(24)
(25)
(26)

This proof is quite close in spirit to those obtained in Chinlund, et al. 4 Indeed, if we
extend the method of Chinlund, et al.,4 by adding a treatment of equality and eliminate
wasted steps, the machine can probably come up with a proof more or less like the one
given, in a reasonable time. Apart from the question of equality, there is, however, one
major theoretical difference between the method of Chinlund, et aI., and the above
proof, viz., the above proof does not use the prenex normal form. This improvement is
suggested by Herbrand' s thesis * and requires a somewhat more elaborate justification 1 0

than the method using the prenex form.
Work for this paper was supported in part by Bell Telephone Laboratories, Murray

Hill, N.J.

References

1. S. Aanderaa, A Deterministic Proof Procedure (manuscript), Harvard, May 1964.

2. D. G., Bobrow, "Natural Language Input for a Computer Problem·Solving System," Ph.D. thesis,

MIT, September, 1964.

3. W. S. Brown, The ALPAK System, MM-63-1214-3, Bell Laboratories, April 1963.

4. T. Chinlund, M. Davis, P. G. Hinman and D. McIlroy, Theorem-Proving by Machine, Bell

Laboratories, Spring 1964.

5. G. E. Collins, Computational Reductions in Tarski's Decision Methodfor Elementary Algebra, IBM

Corporation, Yorktown Heights, July 1962.

6. M. Davis, and H. Putnam, "A Computing Procedure for Quantification Theory," Journal of the

Association for Computing Machinery, 7, 1960. pp.201-215.

7. M. Davis, G. Logemann and D. Loveland, "A Machine Program for Theorem-Proving,"

Communications of the Association for Computing Machinery, 5, 1962. pp.394-397.

8. M. Davis, "Eliminating the Irrelevant from Mechanical Proofs," Proceedings of Symposium in

Applied Mathematics, American Mathematical Society, v. 15, 1963.

9. B. Dreben, P. Andrews and S. Aanderaa, "False Lemmas in Herbrand," Bulletin of the American

Mathematical Society, v. 69, 1963. pp.699-706.

10. B. Dreben, and H. Wang, A Refutation Procedure and Its Model-Theoretic Justification

(manuscript), Harvard University, November 1964.

11. B. Dunham, R. Fridshal and G. L. Sward, "A Nonheuristic Program for Proving Elementary Logical

Theorems," Proceedings of the First International Conference on Information Processing, Paris,

1959; pub. Unesco, 1960. pp.282-285.

* Compare Refs. 9, 20, and 38.

Observations on ATP 137

12. B. Dunham. R. Fridshal and J. North. Exploratory Mathematics by Machine, Recent Development in

Information and Decision Processes, Robert E. Machol and Paul Grey (eds.), Mac-Millan, N. Y.,

1962. (Proceedings of a Slmposium at Purdue Unicersity. April 1961.)

13. B. Dunham and J. H. North, "Theorem Testing bv Computer." paper presented April 24-26, 1962,

Mathematical Theon- of Automata, Polvtechnic Press, Brooklyn, 1963. pp.173-177.

14. J. Friedman, "A Semi decision Procedure for the Functional Calculus," journal of the Associationfor

Computing Machinery, v. 10, 1963. pp.1-24.

15. J. Friedman, "A Computer Program for a Solvable Case of the Decision Problem," journal of the

Association for Computing Machinen-, v. 10, 1963. pp.348--356.

16. J. Friedman, A Neu' Decision Procedure in Logic and [ts Compuler Realization, Ph.D. thesis,

Harvard Universitv, September 1964.

17. H. Gelernter, J.R. Hanson and D. W. Loveland, "Empirical Investigations of the Geometry Theorem

Machine," Proceedings of the Western joint Computer Conference, San Francisco, 1960. pp.143-

149.

18. P. C. Gilmore, "A Proof Method for Quantification Theorv-Its Justification and Realization," IBM

journal of Research and Development, v. 4, 1960. pp.28--35.

19. P. C. Gilmore, An Examination of the Geometry Theorem Machine, IBM Corporation, Yorktown

Heights, April 1962.

20. J. Herbrand, "Recherches sur la Theorie de la Demonstration," Travaux de la Societe des Sciences el

des Lewes de Varsovie, Cl. III, Math. Ph,s., v. 33, 1930.

21. S. Kanger, "A Simplified Proof Method for Elementarv Logic," Compuler Programming and Formal

Svslems, P. Braffort and D. Hirschberg (eds.), North·Holland Publishing Co., Amsterdam, 1963.

pp.87-94 (Proceedings of Seminars al Blaricum, Holland in 1961).

22. S. Kuroda, "An Investigation of the Logical Structure of Mathematics XIII, A Method of

Programming Proofs in Mathematics for Electronic Computers," Magoya Mathematical journal, v.

16, 1960. pp.195-203.

23. D. H. Lehmer, "Some High Speed Logic," Proceedings Symposium in Applied Jli[athematics,

American Mathematical Society, v.15, 1963.

24. J. McCarthv, "Computer Programs for Checking Mathematical Proofs," AMS Symposium on

Recursive Function Theory, New York, April 1961.

25. A. Newell, J. C. Shaw and H. A. Simon, Empirical Explorations of the Logic Theory Machine,"

Proceedings of the Western joinl Computer Conference, 1957.

26. A. Newell, and J. C. Shaw, A Variely of Inlelligml Learning in a General Problem Solver, in Self·

Organizing Systems, Marshall C. Yovits and Scott Cameron (eds.), New York, Pergamon Press, 1960.

pp.153-189.

27. D. Prawitz, H. Prawitz and N. Voghera, "A Mechanical Proof Procedure and its Realization in an

Electronic Computer," journal of the Association for Computing Machinery, v. 7, 1960. pp.102-

128.

28. D. Prawitz, "An Improved Proof Procedure," Theoria (a Swedish Journal of Philosophy and

Psychology), v. 26, 1960. pp.102-139. (Widener, Phil 29--27(5W.))

29. A. Robinson, "On the Mechanization of the Theory of Equations," Bulletin of Ihe Research Council

of Israel, 9F, 1960. pp.47-70.

30. A. Robinson, "A Basis for the Mechanization of the Theory of Equations," Computer Programming

8. SOME DATA FOR ATP*

3.1 On axioms of conditional set existence1l

1. Outline of arguments

In what follows, the (restricted) predicate calculus with equality is assumed
throughout. Let (Ufu) Hu be short for (w) (u) «Hw /\ Hu) :::J w= u), (E!y) Hy be short
for (Ey) Hy /\ (U!y) Hy, Func Hbe short for (v) (U!u) Huv. The convention is to think
of Huv as u= f(v), so that a one-many relation defines a function. The basic axioms of
the extended ZERMELO set theory, commonly referred to as ZF. are given as:
A. Axiom of extensionality. (z) (ZE x == zE y) :::J x= y.
B. Axioms of conditional existence.

B1. The axiom of pairs. (Ey)(x) (XE y == (x = a /\ x= b)). Briefly,
(Ey) (y = {a, b}).

B2. The sum set (union) axiom. (EY)(U)(UEy== (EV)(UEV/\VEX)). Briefly,
(Ey) (y = Ux).

B3. The power set axiom. (Ey) (u) (UE y == us;;x). Briefly, (Ey) (y = Px).
B4. The axIOm (schema) of replacement. Func C:::J (Ey)

(UE Y == (EV)(VEX /\ Cuv)).
Briefly, FuncC:::J (Ey) (y = C"x).

C. Axiom of infinity (unconditional set existence).
The other axioms (regularity and choice) are generally regarded as more specialized.

The purpose of this note is to discuss the possibility of combining BI-B4 into an
organic single schema. This is in part motivated by a wish to supply an analogue of the
three axioms of type theory: extensionality, (the axiom of) comprehension, and infinity.
The search is not completely successful because in each case the axiom of unit set is
required as an auxiliary. It is not clear whether this is a natural need to answer to the
notational distinction of different types.

The axiom of unit set is:
1. (x) (Ey) (Z)(ZE y==z=x) or (x)(Ey) (y= {x}).

Two axiom schemata are considered:
K. FuncH:::J (Ey) (y= U (H"(Px))), or briefly, FuncH:::J (Ey) (y= UH" Px).
L. FuncH:::J (Ey) (y=H"PUx).

More exactly, y= UH" Px is:
(s) (SEy== (Eu)(s E u /\ (Ev)(v s;; x /\ Huv))).

* First published in Zeitschriftf. Mathematische Logik undGrundlageriforschung, vol, 13, pp 183
-188.0 VEB Deutscher Verlag, 1967. Reproduced by permission.

1) Work for this note was supported by NSF grant GP-228.

139

140 Computation, Logic, Philosophy

The main result of this note is:
Theorem. II we assume the predicate calculus with equality and the axiom 01

extensionality A, K (or L) and] are equivalent to Bl~B4. Consequently. Bl~B4can
be replaced by K (or L) and J in the above system ZF; this remains true il we omit the
axiom of infinity.

In fact, the details of the derivations from K yield a slightly stronger result. Let A *
and K* be:

A*. (x) (E!y) (y= {x}).
K*. FuncH::::J{E!y) (y= UH"Px).

Corollary. The axioms A and Bl~B4 are equivalent to A* and K*.
Intuitively the proofs are quite simple. The notation UH" Px and H" pUx makes

it clear that K and L are derivable from B2~B4; J is a special case of Bl. In the other
direction, Bl is known (ZERMELO [3], p.31) to be derivable from B3 and B4. For each of
B2, B3, B4, we choose a suitable H so that U H"Px (or H"PUx) is the required set.
Thus, for K and J, we have:
B2. Ux= UH;Px, Hjuv being v= {u}.
B3. Px=UH~Px, Hzuv being u={v}.
B4. C"x= U H~ Px, HG uv being (Ez) (Ew) (Czw /\ u= {z} /\ v= {w}).
For Land J, we have:
B2. Ux = ({u} =v)"PUx.
B3. Px= (u=v)" PU{x}.
B4. C"x= (Ew) (Cuw /\ v= {w})"PU {x}.

The need of J in the case of L is very explicit, while the need of J in the case of K is
more concealed. In fact, the writer erroneously thought that J is not needed and said so
in [2]. The application of J is needed in replacing (Ey) (y= {x} /\ Fy) by F{x}, even
when {x} does not occur before E. Thus, since {x}={x}, if we can infer (Ey)(y
= {x} /\ y= y), we obtain J right away; conversely, if {x} does not occur before E in
F{x}, we can use J to derive the desired equivalence. To get F{x} from (Ey) (y
= {x} /\ Fx) is elementary. On the other hand, (y= {x} /\ F{x}) ::::J (Ey) (y= {x} /\ Fy);
therefore, (Ey)(y= {x}) ::::J (F{x} ::::J (Ey) (y= {x} /\ Fy)); and the antecedent is
dropped by 1.

To obtain the corollary, we use the fact that in the detailed derivation of B2~B4
from K and L, only one special case of the axiom of extensionality is needed, viz., (a
= {x} /\ b= {x}) ::::J a= b. We note first that Axiom A yields (U!y) (y= UH"Px). On
the other hand, we can parallel the derivation of B4 from K and J to derive FuncC
::::J (E!y) (y= C"x) from J* and K*. If we take u= vas Cuv, then clearly FuncC and,
therefore, (E!y) (y= C"x), i.e., (E!y) (U)(UE y= (Ev) (VEX /\ u=v)), or (E!y) (u)
(UEy= UEX). Hence, (Ey) (u) (UEy= UEX) and (UEy= UEZ) ((UE y= UEX) /\ (UEZ= UEX)).
But by the definition of (U!y) Hy, we have: ((u) (UEy= UEX) /\ (u) (UEZ= UEX))::::J y=z.
Therefore, simple rules about universal quantifiers give us Axiom A.

A result quite similar to the one in this note has been obtained previously by 0"\0 in
[1]. Even though his paper proposes to give a new approach to set theory, the main
result would appear to be the following. He offers an axiom (schema) which is, in the

Some Data for ATP 141

notation here:
G. Func H:::J (Ely) [y= H"z(Ew)(zr:;;w A wEX)].
He then proves that the axioms A, B, C are equivalent to G, J, C. It is possible to modify
his proof to avoid the appeal to C in the derivation ofB from G and J; but itis not entirely
clear that he can avoid all cases of extensionality in developing his system with G, J, C.

In fact, 01\10 does not use the axiom J but rather employs the unit set operation { }
as a primitive symbol to rcplace =; this has the effect that the axiom J is absorbed into
the predicate calculus through his axiom XE{ x}. His approach is also of interest insofar
as he argues that { } and J are a part of elementary logic rather than one of set theory
proper. From his philosophical position, the intrusion of J would appear less puzzling.

Since we often make implicit uses of the axioms of set theory, it would seem
desirable to supplement the above outline of the derivations of BI-B4 with pedantic
details. Only the derivations from K and J will be considered.

2. Detailed derivations

In the development below, familiar devices and results, including the use of
abstracts, will be assumed. To assist the checking for correctness, these definitions and
theorems are listed below. It should be emphasized that none of these appeal to the
axioms of set theory, but all are available in the predicate calculus with equality.
Dl. For any formula Hx, yE xHx stands for Hy.
D2. If A and B are two abstracts or one variable and one abstract, A = B stands for
(x) (xEA=XEB).
D3. {x} stands for y(y=x).
D4. {x, y} stands for £(z=xV z=y).
D5. 0 stands for x (x#x).
D6. If A is an abstract, AEB stands for (Ex)(x = A A xEB); if each of A and B is a
variable or an abstract, A r:;; B stands for (x) (xEA :::J xEB).
Tl. Ifa is an abstract and Hv is aformula, we can replace (Ev) (v= a A Hv) or (v) (v= a
:::J Hv) by Ha in any context; similarly, be the axiom of unit set J, if a is {b}, b is a
variable, and a does not occur immediately before E in Ha, the same is true for a.
T2. UEX={U} r:;; x, i.e., UEX=(V)(V=U:::JVEX}.
T3. {x} = {y}:::Jx=y, i.e., (z)(z=x=z=y) => x=y.
T4. If Hx=> G and x is not free in G, (Ey}Hy=> G.
T5. (Ex)(Ey) Hxy= (Ey)(Ex) Hxy.
T6. (v)(Gxy= Hxy) => (F[GxyJ = F[HxyJ), v free in G and H but bound in F.
TI. If(F x A Gx} => Hx, then ((x) Fx A (x) Gx) :::J (x) Hx.
T8. ((H= G) A (H=F))=>(G=F).
1'9. (x=yA Hx}=>Hy.
TlO. ifF=> (G:::J I-l), then G => (F=> I-l) and (F A G) => H.
TIL Ifx is not free in G, (Ex)(Hx A G)= ((Ex)Hx A G).
Derivation of B* from BI-B4.

Given x and H, FuncH.

142 Computation, Logic, Philosophy

By B3, there exists w,
(V)(vEw = V <;; x).

Since FuncH, by B4, there exists z, (u)(uEz=(Ev)(VEW /\ Huv)).
Therefore, by (1) and T6,

(1)

(u}(uEz={Ev}(v<;; X /\ Huv)). (2)
By B2, (Ey) (s) (SEy= (Eu) (SEU /\ UEZ)).
Therefore, by (2) and T6, (EY)(S)(SEy= (EU)(SEU /\ (Ev)(vSx /\ Huv))). Hence, we
get:
B*. FuncH::::J {EY)(S)(SEy= (EU)(SEU /\ (Ev)(vSx /\ Huv))).

Derivations of B1-B4 from B*.
B4. FuncG ::::J {EY)(S)(SEy= (EW)(wEX /\ Gsw)).

Given x and G, FuncG.
Take {Ez)(Ew)(Gzw/\ u={z} /\ v={w}) as Huv in B*.
By T8, {{xEv=x=a)V (XEV=X=W))::::J(x=a=x=w).
Therefore, by T7 (& D3, D2, D 1) and T3,

(v={a} /\ v={w})::::Ja=w.
Since FuncG,

(1)

GswV Gzw::::Js=z. (2)
By 1'9 (& D2), (s=z /\ t= {s} /\ u= {z}) ::::J ((X)(XEt=X=Z) /\(x) (XEU=X=Z)).
By T7 and T8, (s = Z /\ t= {s} /\ u={z})::::J(X)(XEt=XEU).
By the axiom of extensionality,

(s=z/\ t={s} /\ u={z})::::Jt=u. (3)
By 1'9,

(a=w /\ Hsa /\ Hzw)::::J (Hsw /\ Hzw). (4)
Hence, by (1), (2), (3), (4),

(Hsa /\ t={s} /\ v={a})::::J((Hzw/\ u={z} /\ v={w})::::Jt=u).
Therefore, by T4 and T10,
((Ez)(Ew)(HzwV t= {z} V v= {w})V (Ez)(Ew)(HzwV u= {z} V v= {w}))::::Jt=u.
I.e., FuncH.

Hence, by B*, there exists y, y= U H' Px.
I.e., sEy=(Eu)(SEU /\ (Ev)(v<;;x/\ (Ez)(Ew)(Gzw/\ u={z}/\ v={w}))).
By Tll and T5, sEy=(Ew)(Ez)(Eu)(u={z} /\ SEu/\(Ev)(v= {w}/\ v<;;X /\Gzw)).
By Tl, sEy= (Ew)(Ez)(SE{Z} /\ {w} <;; x /\ Gzw).
By T6 (& D1, D3),SEy= (Ew)(Ez)(s=z /\ {w} <;;X /\ Gzw).
By Tl, sEy= (Ew)({w}<;;x/\ Gsw).
By T6 and T2, sEy= (Ew) (wEX /\ Gsw), sEy= SEG" x.
Hence, G" x = U H' Px.

Observe that (3) uses the axiom of extensionality A. In fact, the caSe Al needed
here, viz. (t = { s} /\ U = { s}) ::::J t = u, is the onI y consequence of axiom A that is required
in the derivations of B1-B4. Thus given Ai> We can replace (3) by:
By 1'9, (s=z /\ t= {s} /\ u= {z})::::J(t= {s} /\ u= {s}).
By Ai> (s=z /\ t={s} /\ u={z})::::Jt=u.
B3. (x) (Ey) (y= Px).

Some Data for ATP

In B*, take u={v} as Huv. Clearly, FuncHby axiom A (or the subcase AI)'
By B*, there exists y, y= U H'Px.
I.e., sEy == (EU)(SEU 1\ (Ev)(v<;;x 1\ u= {v}))

=={EV)(SE{V} 1\ v<;;x)
== (Ev)(s=v 1\ v<;;x)
==S<;;x
== SEPx.

B2. (x) (Ey) ~y= Ux).

143

In B*, take v={u} as Huv. By T3, FuncH. Hence, by B*, there exists y, y
= U H' Px, i.e.,

SEy == {EU)(SEU 1\ (Ev)(v<;;x 1\ v={u}))
== (EU)(SEU 1\ {u} <;;x)
== (Eu) (SEU 1\ UEX)
== SEUX.

B1. (a) (b) (Ey) (y= {a,b}).
Zermelo's argument ([3J, p.31) is included here for completeness. Take (u

= v 1\ 1"# v) as Guv in B4. We get then the set 0 (DS). Take PPO = {O,{O}} as x and (u
=a 1\ v=O)V (u= b 1\ v= {O}) as Guv in B4. Then we get {a,b} = G"PPO.

References

[1] K. 0'\0, A set theory founded on unique generating principle. Nagoya Mathematical lournaI12(1957),

151-159.

[2] HAO WA\G. A universal axiom of conditional set existence. Notices of the American Mathematical

Society, 10(1963), 588.

[3] E.ZERMEI.O, Dber Grenzzahlen und Mengenbereiche. Fundamenta Mathematica 16(1930), 29--47.

8.2 Natural hulls and set existence * 1)

1. Introduction

A set x is called a partial hull, briefly PH1...x), if x is a transitive set and closed with
respect to the operation of forming power sets; it is a natural hull, briefly NH1...x), if it is a
partial hull and also closed with respect to the operation of forming sum sets (unions).
The natural hull '1a (or partial hull na) of a set a is the intersection of all x such that
NH1...x) (or PH1...x)) and aEx.
D1. Cp(x) for (Y)(yEX::::lPyEx).
D2. CU{x) for (Y)(yEx=:J UyEx).
D3. trans(x) for (y)(z)((yEz 1\ zEx)::::lyEx) or Ux<;;x.
D4. PH1...x) for trans(x) 1\ Cp(x).

* First published in Zeitschriftf. Mathematische Logik und Grundlagenforschung. vol, 13, pp 172
-182. 0 VEB Deutscher Verlag, 1967. Reproduced by permission.

1) Work for this note was supported by NSF grant G P-228.

144 Computation, Logic, Philosophy

D5. NH(x) for PH(x) 1\ CU(x).
D6. bna for (x)((PH(x) 1\ aEx):::::> bEX).
D7. bYJa for (x)((NH(x) 1\ aEx):::::> bEX).

Intuitively it is clear that if w is the intersection of all x, such that NH(x) and aEx,
then NH(w) and aEw. It requires, however, a formal proof that the intersection does
exist in a given formal system. We shall be concerned exclusively with the familiar
system ZF, the extended ZERMELO theory, and prove:

Theorem I. In the system ZF, we can define a functional YJ such that for each set a,
there is a unique set YJa, called the natural hull of a, for which we can prove in ZF: (1)
bEYJa=bYJa, and, therefore, YJaC;;;x ifNH(x) 1\ aEX; (2) NH(YJa) 1\ aEYJa. Similarly, we
can define the partial hullna of every set a so that bEna= bna, and PH(na) 1\ aEna.

As a first application of the concepts of natural and partial hulls, we shall prove that
if in the axiom of replacement, the replaced set x is substituted for by nx or YJx, the
resulting schema is as strong as all axioms of set existence taken together. To express this
fact more exactly, we state the new axioms explicitly and recall the basic axioms of ZF.

It is convenient to use some familiar abbreviations.
D8. FuncH for (u)(v)(w)((Huv 1\ Hwv):::::> u= w).
D9. y=H'x for (U)(UEy= (Ev)(Huv 1\ VEX)).
DIO. (E!y) Fy for (Ey)Fy 1\ (y)(z)((Fy 1\ Fz):::::> y=z).
SE. Axiom of set existence.

If FuncH(i.e., H is one-many), then
(Ey) (u) (UEy= (Ev) (Huv 1\ vYJx)), or, briefly, using Theorem I, (Ey)(y= H'YJx).

SE'. If FuncH, then (Ey)(y=H'nx).
DE. Axiom of unique existence.

If FuncH, then (Ely) (y= H'YJx).
UE' If FuncH, then (E!y)(y=H'nx).

Roughly, SE says that given any functional H, and a set x, the result of replacing the
sets v in the natural hull of x by their values u = Hv form a set again. Similarly, UE says
that these form one and only one set.

The basic axioms of ZF are:
A. Axiom of extensionality. (Z)(ZEX=ZEy):::::>X= y.
B. Sum set axiom. (Ey)(Uxc;;;y) or (Ey)(y= Ux).
C. Power set axiom. (Ey)(Pxc;;;y) or (Ey)(y=Px).
D. Axiom of replacement. FuncC:::::> (Ey)(y= C"x).
E. Axiom of infinity. (Ey) «(lEy 1\ (X)(XEY:::::> {x} E y)).
The axiom of pairs and the Aussonderungsaxiom are known to be derivable from C and
D. The axioms of regularity and choice are regarded as less basic,

The exact result is:
Theorem II. The axioms SE, SE, UE, UE all are derivable in ZF; and within the

(restricted) predicate calculus with equality, all the axioms A-E ofZF are derivable
ftom UE (or UE'), all the existence axioms B-E ofZF are derivable ftom SE (or SE').
In other words, SE and SE' each can replace all the existence axioms; UE and UE' each
is equivalent to all the axioms ofZF taken together.

Some Data for ATP 145

This theorem suggests as a corollary several alternative axiomatizations of the
system ZF which can be summarized as follows.
AN. Axiom of natural hulls. (Ey) (y= 1'/x) or (Ey) (z) (ZEy= Z1'/x).
AN'. Axiom of partial hulls. (Ey) (y= nx).
D*. Axiom of unique replacement. FuncG::l(E!y)(y= G"x).

Theorem III. Given the predicate calculus with equality, the system ZF can be
axiomatized by any of the following combinations: (1) DE; (2) DE'; (3) SE and
extensionality; (4) SE' and extensionality; (5) unique replacement and AN; (6) unique
replacement and AN'; (7) AN, extensionality, and replacement; (8) AN',
extensionality, and replacement.

2. Natural Hulls

In the proof of Theorem I, we are free to use familiar facts about the system ZF such
as the possibility of developing natural numbers and using inductive definitions over
natural numbers. Once Theorem I is proved, it will be obvious that SE, SE', DE, DE' can
also be derived in ZF.

In order to be explicit and to prepare for the derivations of axioms of ZF from the
new axioms, we recall that E and = are the oilly primitive predicates of ZF, other
symbols being introduced by definitions, often contextually. We give some examples
needed in this note.
Dll. xSy for (Z)(ZEX::lZEy).
D12. yEPx for ySx.
D13. yEUx for(Ez)(yEz!\ ZEX).
D14. v=Px for (y)(yEv=yEPx).
DIS. v= Ux for (y) (yEv= yEUx).
D16. Uxsx for (y)(yEUX::l yEx).
D17. PxEy for (Eu)(u=Px!\ uEy).
Dl8. UxEy for (Eu)(u= Ux!\ uEy).
D19. yE{x} for y=x.
D20. A={x} for (y)(yEA=yE{x}).
D2l. {X}EZ for (Ey)(y= {x} !\ yEz).

A slight complication in defining 1'/a and na by induction over natural numbers is
the fact that while Cp(x), CU(x) go from one set to one set, trans{x) goes from one set to
all of its members. To make the conditions uniform, we introduce two natural new
operations.
D22. U*x for {Uyl yEx}, i.e., UEU*X for (Ey)(yEx!\ u= Uy).
D23. P*x for {Py I yEx}, i.e., uEP*x for (Ey)(yEx !\ u = Py).

With the help of these notions, we can correlate with each given set a, a unique
corresponding function.fa (or ga) from natural numbers to arbitrary sets, and define na
(or lJa) in terms of it.

Definition I. .fa (1) = {a},.fa (2n) = U.fa (n),.fa (2n+ 1) = P* .fa (n).
ga (1) = {a}, ga (3k- 2) = U* ga{k), ga (3k-1) = P*ga(k), ga (3k) = Uga(k).

146 Computation, Logic, Philosophy

Definition II. bEna for (Ei)(bE!a(i)) or bE{yl (Ei)(yE!a(i))}.
bErya for (Ei)(bEga(i)) or bE{yl (Ei)(yEga(i))}.

12 Ztschr. f. math. Logik

Theorem 1. a=b=>na=nb; a=b=>rya=ryb.
The first thing is to prove that rya(na} is indeed a natural (partial) hull containing a

as a member.
Theorem 2. NH{rya) 1\ aErya; PH{na) 1\ aEna.
Proof. Since aE{ a} = ga(l), aErya.
If uErya, then there is some i, uEga(i). Then U UEU * ga(i) = ga(3i - 2), and

PUEP*ga(i) = ga(3i -1). Hence, if uErya, then UUErya and PUErya.
If uEVEga(i), then uEUga(i) = ga(3i). Hence, trans(rya).
Therefore, NH{rya) 1\ aErya.
Similarly, we can prove: PH{na) 1\ aEna.
Theorem 3. (NH{x) 1\ aEx) => rya C;; x; (PH{x) 1\ aEx)=>naC;;x.
Proof. If NH{x) 1\ aEx and uErya, we wish to show that uEx. If uErya, then there is

some i, uEga(i). We prove by induction on i that if uEga(i), then uEx.
If i = 1, then uEga(i) = {a}, and, therefore, U = a. Since aEx, uEx when i = 1.
If i=3k-2, then uEU*ga(k), i.e., (Ey)(yEga(k) 1\ u= Uy). By induction

hypothesis, if yEga(k), then yEx. But yEx=> UyEx. Hence, uEx.
If i=3k-1, then uEP*ga(k) and there is y, yEga(k) and u=Py. Since yEx by

induction hypothesis and CF1,x), we get again: uEx.
If i = 3k, then uEUga(k) and there is y, uEyEga(k). By induction hypothesis, yEx.

Since trans(x), uEx.
This completes the proof of the first half of Theorem 3. The proof of the second half

is entirely similar.
Theorem 4. bErya == brya; bEna == bna.
Proof. By Theorem 3, D7, and D6.
This completes the proof of Theorem I.
Moreover, this also shows that SE, SE', UE, UE' all are derivable in ZF. Thus, given

a set x, we can first get ryx and nx in ZF, and then apply the axiom of replacement to get
SE and SE'. In order to get UE and UE' then, we simply apply the axiom of
extensionality. Hence, in order to complete the proof of Theorem II, we only have to
derive the axioms of ZF from the new axioms. Before doing this, we give some examples
of natural hulls and partial hulls.

Example 1. Let Fbe the set of all finite sets built up from the empty set 0, i.e., OEF,
xu{y}EFif x, yEF, and nothing else belongs to F. Then rya= na= Fif aEF. If x is na or
rya, clearly xC;; F since NH{ F) 1\ aEF. On the other hand, OEX since aEx and trans(x).
Hence, PO, PPO, etc. all belong to x since CF1,x). Therefore, F=U~oPOc;;x.

Example 2. If a=F, rya=na= U~o PF.
Example 3. Let lOx, llX, l2X, etc. stand for x, {x}, {{x}}, etc., and Inf= U~o liO, a

=Ui~O ZZi+10, b=U~OZZiO. Then na=FuU~l Pa. Since OEUa, FC;;na by

CF1,na); since aEna, Pa, PPa, etc. all belong to na and, by UnaC;; na, Uy"= 1 PaC;; na.
Conversely, since PH{F), we have only to consider the infinite sets. If y€Pa, then

Some Data for ATP 147

PyEP + 1 a; if yEzEPa, then yEF; if yEZEP + 1 a. then yE P a. Hence, na = Fu U i";" 1 P a.
Since b= Ua, bElJa although brf;na. Moreover, if cis {O,IO}, then {a, c}~na although
aEna and cEna. In fact, lJa=FuU~l P Inf, and {a, c}~lJa.

We note incidentally that the formal definition of lJa and na is compatible with the
axiom of regularity being false, because infinite descending chains "'ExnEXn - 1 E""EX2EXl

are not excluded by the construction. In fact, since the axiom of regularity is known to
be independent of the axioms A-E ofZF, and UE, SE, UE', SE' are derivable from A
E, it follows that the axiom of regularity is also independent of the new axioms.

Using the notions U * and P*, we can also express natural hulls in an alternative
form:

Theorem 5. U*x ~ X= CU(x); P*x~x= Cp(x); trans{x) = Ux~x;
NH(x)={Ux~x /\ U*x~x /\ P*x~x); PH(x)={Ux~x /\ P*x~x).

3. Derivation of the usual axioms

In fact, we get four new axiomatizations of ZF according as we use SE, SE', UE, or
UE'. In every case, we assume the predicate calculus with equality. Then the four
systems are simply: (1) A, SE; (2) A, SE'; (3) UE; (4) UE'.

We note first that within the predicate calculus, UE' follows from UE, and SE'
follows from SE.

Lemma 1. bna:::JblJa; (bna/\ blJa)=bna.
Proof. NH(x):::J PH(x). Hence:

({PH(x) /\ aEx):::J bEX):::J ({NH(x) /\ aEx):::J bEX).
Lemma 1 is proved by D6 and D7.

If we take Huv /\ vnx in place of Huv in SE (or UE), we obtain immediately, by
Lemma 1, SE' (or UE').

Hence, it is sufficient to derive the usual axioms from SE' and UE'. To avoid
tedious explanations, we give just the derivation of A-E from UE'.

In other words, we use a system containing only the predicate calculus with
equality and the single axiom (schema):

UE'. If FuncH, then (E!y)(U)(UEy={Ev)(Huv /\ vnx)).
The axiom can be expressed in the primitive notation of ZF by D8, D6, D4, D3, D 1,

D17, D14, D12, Dll.
We are now to derive the axioms A-E from UE'. Once the derivation is done, the

proof of Theorem II will be complete.
Lemma 2. bEa:::J bna.
Proof. (bEa /\ Ux~x/\ aEx):::JbEX. But PH(x):::JUx~x. Hence, Lemma 2 is

proved by D6.
Axiom D (Replacement). FuncG:::J (Ey) {y= G"x).
This is derivable from SE', and, hence, also from UE'.
Let Huv be Guv /\ vEx. Then FuncH. By SE',

(Ey)(u)(UEy= (Ev)(Guv /\ vEx /\ vl'/x)).
By Lemma 2,

148 Computation, Logic, Philosophy

(VEX /\ Vl1X)=VEX.
Hence,

(EY)(U)(UEy= (Ev)(Guv/\ VEX)).
Therefore, FuncG~ (Ey)(y= G"x).

Lemma 3 (Aussonderungsaxiom). (EY)(U)(UEy= (UEX 1\ Fu)).
Proof. Take U = V /\ Fv as Guv in Axiom D, we get Lemma 3.
So far we have not made use of the axiom of extensionality A. We derive now Axiom

A from UE'.
Axiom A (Extensionality). (z) (ZEX=ZEy) ~x= y.
Proof. If we use UE' instead of SE', we can prove Axiom D and Lemma 3 in the

stronger form with E! replacing E. In particular, if u= U is taken as Fu in the
strengthened Lemma 3, we get:

(E!y)(U)(UEy= UEX).
Hence,

((U)(UEy= UEX) /\ (U)(UEW= UEX)) ~ y= W
and

(Ey) (u) (UEy= UEX).
Therefore, by simple rules of logic,

(u) (UEy= UEW)~ (U)(UEW= UEX).
Hence,

((U)(UEy= uEX) /\ (U)(UEy= UEW))~ ((U)(UEY= UEX) /\ (U)(UEW= UEX))
and, by (1),

~y=w.

Hence, by (2), (u) (UEy= UEW) ~ y= w, the axiom of extensionality.

(1)

(2)

To be entirely exact, we should either develop a fairly extensive theory to deal
directly with set terms such as Px, Ux introduced by contextual definitions, or expand
the contexts into primitive notations. Since, however, such details are rather well known
and tend to make the proofs less easy to follow, we shall be fairly informal.

Lemma 4. b s:; a ~ bna.
Proof. (b s:; a /\ e = Pa) ~ bEe,

Hence,

Therefore,

(Uxs:;x /\ bEe /\ cEx)~bEX.

(e=Pa /\ cEx)~((bS:;a /\ UXS:;X)~bEX),
PaEx~((bS:;a /\ UXS:;X)~bEX),

(Cp(x) /\ aEx) ~ PaEx.

Lemma 4 follows by D6.
Lemma 5. (EY)(U)(UEy= unx /\ Fu)).
Proof. Since SE' follows from UE', we can use SE'. Take U = V /\ Fv as Huv in SE',

we get Lemma 5.
Axiom C (Power set axiom). (Ey) (y= Px).
Proof. Take uS:; X as Fu in Lemma 5 and apply Lemma 4 to delete unx.

Some Data for ATP

Lemma 6. bEUa:::Jbna.
Proof. (cEa /\ aEx !\ U x ~ x}:::J cEX,

(bEe /\ cEx !\ Ux ~ x):::J bEx.
Therefore,

Lemma 6 follows by D6.
Axiom B (Sum set axiom). (Ey) (y= Ux).
Proof. Take UEUX as Fu in Lemma 5 and apply Lemma 6 to delete unx.

149

We have thus far derived A, B, C, D from UE'. It remains to prove Axiom E which
calls for a more elaborate argument. Roughly speaking, the set F of all finite sets built up
from the empty set is a subset of every nonempty partial hull. Hence, F~ {b I (a}bna}
= Inf and, in particular, OEInf, {x}(xEInf:::J {x}EIn}). The following derivations make
this rough sketch a little more formal.

Lemma 7. (Ey)(y= {b I (a}bna} or (EY)(U)(UEy= (v}unv).
Proof. Take (v) unv as Fu in Lemma 5 and delete unx by the relation: (v)unv:::J unx.
Lemma 8. (EY)(U)(UEy=U""U). Briefly, (Ey)(y=O).
Proof. Take U"" U as F u in Lemma 5 and delete unx by the relation: u"" u:::J unx.
Lemma 9. (v}Onv.
Proof. O~y. By Lemma 4, (y}O~y:::J(y}01]y.
Lemma 10. (v}(xnv}:::J(v}(Pxnv).
Proof. If PH{w) and xEw, then PXEW. Hence:

((PH{w}V VEW}:::J (XEW}}:::J((PH{w) !\VEW):::J(PXEW}}.
Lemma 10 follows by D6.

Lemma 11. (Ey)(y={x}).
Proof. Take u=x as Fu in Lemma 5 and delete unx by the relation: U=X:::J unx.
Lemma 12. (v}xnv:::J(x}({x}nv).
Proof. Since {x} ~ Px, by Lemmas 4 and 10, we get Lemma 12.
Axiom E (Axiom of infinity). (Ey) (OEy /\ (x) (XEy:::J {X}EY}}.
Proof. Take y={ul(a)una}. By Lemmas 9 and 12, we get E.

8.3 A theorem on definitions of the Zermelo-Neumann ordinals * 1)

1. Introduction and summary

According to the definition of ordinals by ZERMELO and VON NEUMANN, every
ordinal is the set of all smaller ordinals. Thus, 0 must be the empty set since there is no
smaller ordinal than 0, x' or x+ 1 must be xu {x}, and a limit ordinal must be the union

* First published in Zeitschriftf Mathernatische Logik und Grundlagenforschung, vol, 13, pp 241
-250.0 VEB Deutscher Verlag, 1967. Reproduced by permission.

1) Work for this note was supported in part by NSF grant GP.228.

16 Ztschr. f. math. Logik

150 Computation, Logic, Philosophy

'Lw of an infinite set w of ordinals having 'Lw as the least upper bound. Intuitively it is
clear that the ordering relation for these ordinals is just the membership relation E, or,
alternatively, proper inclusion c.

Given this intuitive conception, it remains a nontrivial task to define formally the
class of all ordinals in an axiom system of set theory, e.g., the extended ZERMELO theory,

commonly referred to as ZF.
There are in the literature at least four equivalent elegant definitions which can be

stated briefly with the help of standard abbreviations.
Dl. ar;;;.b for {x)(xEa:::JxEb}.
D2. a C b for ar;;;. b /\ ai=- b.
D3. x' for xu{x}.
D4. 0 for {yjyi=- y}.
D5. 'Lar;;;.a or trans{a} (a is transitive): (X)(Y)((XEy /\ yEa):::JxEa}.
D6. wfd(a} (a is well-founded): (c)(Occr;;;.a:::J (Eb)(bEc /\ bnc=O)).
D7. connia) (a is connected by E): (X)(y)((XEa /\ yEa /\ xi=- y}:::J (XEyV yEx)).

The four definitions are:
DZ. ZERMELO 1915 ([2J, p.6 and p.lO; [3J, p.88; [1J, p.19).
Od(a) iff (a=OV OEa) 1\ (b)(bEa:::J (b'Ea Vb') = a)) 1\ (c)(cr;;;. a:::J ('LcEa V 'Lc=a)}.

Briefly, Od(a) iff (b)(bEa:::Jb'Ea')V (c)(cr;;;.a:::J'LcEa').
DG. GODEL 1937 ([2J, pp.9----lO; [1J, p.20).

Od(a} iff 'La r;;;. a 1\ wfd(a) 1\ (b)(bEa:::J 'Lbr;;;. b).
Briefly, Od(a) iff (b)(bEa':::J 'Lbr;;;. b) 1\ wfd(a}.

DR. R.M. ROB[~sON 1937 ([1J, p.20; [3J, p.80).
Od(a} iff 'Lar;;;.a 1\ connE(a) 1\ wfd(a}.

DB. BER~AYS 1941 ([2J, p.lO; [1J, p.20).
Od(a} iff 'La r;;;. a 1\ (b)((b c a /\ 'Lbr;;;. b):::J bEa).
Briefly, Od(a) iff (b)(('Lbr;;;.br;;;.a)=bEa').

Formally, DB appears to be the shortest definition. If we assume the
Fundierungsaxiom, then wfd(a) can be deleted from DG and DR, and the shortest
definition is (b) (bEa':::J 'Lbr;;;. b). The proof of equivalence of these definitions is summed
up in BAcHMA~~'s book ([1J, pp.19----21). For the present purpose, it is convenient to set
down this result more exactly:

Lemma. With extensionality, Aussonderung, and self-adjunction (i.e., the
successor axiom (x) (Ey)(y=xu{x})), the definitions DZ, DG, DR, DB ofOd are all
equivalent.

As a result, if we wish to show that a predicate On(a) defines the class of all ordinals,
it is sufficient to derive On(a) = Od(a), with Od construed according to any of the
definitions. In fact, we shall prove a theorem by using DG to get On(a):::J Od(a) and DR
to get Od(a):::J On(a). In order to state the theorem, we shall speak of transfinite
induction for a definition On, when we mean the following particular schema.

STI. Strengthened transfinite induction for On:
[On(x) /\ (v) (Fv:::JFv') 1\ (w)(wr;;;. F:::JF('Lw))J:::J Fx.

The main theorem of this note is:

Some Data for ATP 151

Theorem 1. Let On(a) be a formula of ZF and S be a subsystem of ZF containing
extensionality, Aussonderung, and self-adjunction. IfSTI for On can be proved in S,
then 1- sOn{x) :::J Od{x); if, furthermore, I-s Od{x):::J On{x), then I-s On(x)
== Od(x), and On(a) is an adequate definition of ordinals as conceived by ZERMELO and
vo'\! NEUMA'\!N.

The interest of this theorem lies in the fact that the definitions of Od listed above do
not reveal the intuitive picture of the class of ordinals, and that this theorem enables us
to give "genetic" definitions of the class, patterned after the FREGE-DEDEKIND device of
ancestrals for finite ordinals, which seem intuitively more appealing. A perhaps more
important advantage of the genetic approach is that it depends less on the particular
successor function we choose.

The natural definition in this approach would read: a is an ordinal if and only if
(y)([OEy /\ (Z)(ZEy:::JZ'Ey) /\ (w)(wS;y:::JI>wEy)] :::J aEy).

But this is not acceptable because we could find no set yin the set theory ZF which would
satisfy the antecedent of this definition. It is, therefore, necessary to find ways of
avoiding the need of excessively large collections. OEy can be absorbed in (w)(w S; Y
:::JLwEy) since, for all y, OS;y, and LO=O.

Two definitions, suggested by previous methods for avoiding infinite sets in
defining finite ordinals, are:
DI. On{x) for (u){[(V)((VEU /\ V'EX'):::JV'EU) /\ (w)((ws;u/\ LwEX'}:::J LwEU)]:::JXEU}.

DI*. On(x) for {U){[XEU /\ (V)(V'EU:::JVEU)]:::J (EW)(LwEU/\ ws;x/\ unw=O)}.
Since it is easy to prove STI for On according to either DI or DI* and it is fairly

clear that every ordinal does satisfy both definitions, a more or less immediate corollary
of Theorem I is:

Theorem II. The theory of transfinite ordinals can be developed on the basis 0 fDI
or DI*, using extensionality, Aussonderung, and self-adJunction; when
Aussonderung is strengthened to replacement, we can also obtain definitions by
transfinite recursion. Finally, we specify DI, DI* and Theorem II to finite ordinals.

2. Proof of Theorem I

Let S be the system having as axioms extensionality, Aussonderung, and self
adjunction; and On(x} be an arbitrary predicate for which we assume STI. We shall
prove that if On{x), then x is an ordinal by DG. Essential use will be made of the fact that
the successor function x' is xu{x}. The procedure is to prove first in S the induction
hypotheses for LXS;X, {b)(bEx:::J Lbs; b}, and wfd{x); then we get On{x}:::J Od(x) by STI.
We shall use the convenient notation w S; F to stand for (Z)(ZEW:::J Fz).

Lemma 1. Lv S; C :::J LV' S; v'.
Proof. Since v' = vu { v}, we have:

(yEz /\ZEV'):::J((yEZ/\ZEV)V (yEz/\z=v»
Therefore, (trans(v) /\ (yEz /\ ZEV'»:::J yEv:::J yEv'.

Lemma 2. w<;;trans:::Jtrans(L.w), or (Z)(ZEW:::JL.Z<;;Z):::JL.(L.w)<;;L.w.
Proof. UEyEL.W:::J (EZ)(UEyE ZEW).

152 Computation, Logic, Philosophy

Since w <;; trans, we have:
(UEyEZ /\ ZEW}::::l(UEZ /\ ZEW}::::lUELW.

In proving the other induction hypothesis, it is sometimes necessary to append the
condition of transitivity.

Lemma 3. (LV<;;V /\ (b)(bEV::::lLb<;;b)}::::l (LV'<;;V' /\ (b)(bEV'::::l Lb<;; b)).
Proof. By L.1, we only have to derive (b)(bEV'::::lLb£b) from LV£V, (b)(bEV

::::lLb<;;b). By D3, bEV'::::l(bEVV b=v). But
(LV<;;V /\ b=V}::::lLb<;;b, ((b)(bEV::::lLb<;;b)/\ bEV}::::lLb<;;b.

Hence,
bEV'::::l Lb<;; b.

Lemma 4. (z) [zEw::::l(b)(bEZ::::lLb<;;b)] ::::l (b}(bELW::::l Lb<;;b).
Proof. bELW::::l (Ez}(bEZEW). By the antecedent, (ZEWV bEZ}::::lLb<;;b.

Hence, bELW::::l Lb <;; b. The proof of L.4 is complete.
Lemma 5. (LV<;;V /\ wfd(v}}::::l(LV'<;;V' /\ wfd(v')).
Proof. By L.I, we have to derive only wfd(v') from LV<;;v and wfd(v). By D3, v'

=vv{v}. Therefore:
Occ<;;v'::::l (Occ<;;vV O<;;c-{v}<;;v}::::l (Occ<;;vV c={v}V OCC-{V} <;;v). (I)

Since wfd(v),

Clearly,

Occ<;;V::::l(Ey)(yEc/\ ync=O)
c={v}::::l [(vEC/\ vn{v}=O}V (vn{v}=c={v})].

(2)
(3)

C= {v} /\ vEc /\ vn{v} =O::::l(Ey)(yEc /\ ync=O) (4)
vn{v}=c={V}::::lVEV::::l v'=v (by D3).

By hypothesis, wfd(v). Therefore, wfd(v'). Hence, since c={v}::::lOcc<;;v', we
have:

(c={v} /\ vn{v}=c=v}::::l(Ey}(yEc/\ ync=O). (5)
By (3), (4), (5), we get:

c= {v} ::::l(Ey)(yEc/\ ync=O). (6)
Finally, we consider the last alternative of (I).

yn(c-{v}}=O::::l(ync=OV (vEy /\ VEC}). (7)
(yEc- {v} /\ c- {v} <;; v}::::l yEv. (8)

Since LV<;;V, (yEvA' vEy}::::lVEV.
By D3,

(yEvV vEy}::::lV=V' (9)
(yEc-{v}/\ ync=O)::::l(yEc/\ ync=O) ::::l(Ey)(yEc/\ ync=O). (10)

By (7), (8), (9), (10),
(yEc- {v} /\ yn(c- {v}) =O}::::l ((Ey)(yEc /\ ync=O) V (c- {v} <;; v::::l v=v'».

But by wfd(v),
Occ- {v} <;;v::::l(Ey)(yEc- {v} /\ yn(c- {v}}=O).

Hence,
Occ- {v} <;; v::::l(Ey)(yEc V ync=O) V v=v'. (11)

If v=v', then, by hypothesis wfd(v), we have wfd(v'). Hence:
(v= v' /\ Occ- {v} <;; v} ::::l(wfd(v'} /\ Oc c<;; v'}::::l (Ey)(yEc /\ ync=O). (12)

Some Data for ATP 153

By (11) and (12):
Occ- {v} c:;v::> {Ey)(yEc!\ ync=O}. (13)

By (1), (2), (6), (13), we have, using wfd(v) and LvC:;v: wfd(v'), i.e.,
OccC:;v'::> (Ey)(yEc!\ ync=O).

This completes the proof of L.S.
Lemma 6. {wc:;trans !\ wc:;wfd}::> {trans(Lw}!\ wfd{Lw}}.
Proof. By L.2, we only have to derive wfd(Lw) from wc:; trans and wc:; wfd. In

other words, given Oc cc:; Lw, we wish to prove: (Ey) (yEc !\ ync=O).
Suppose there where c, Occc:;Lw and:

(y)(yEc::>ync,,", 0). (1)
Since c ""' 0, let y 1 Ec. Then, since c c:; Lw, there is some z, y 1 EzEw. Hence, y 1 Ec V Y 1 Ez,
and cnz is a nonempty subset of c. By (1), (y)(yEznc::> ync ""' 0); i.e.,

yEznc::> {Et)(tEy !\ tEC). (2)
By hypothesis, wc:; trans. Since zEw, LzC:; z and:

tEyEZ::> tEz.
By (2) and (3),

yEznc::> {Et)(tEy !\ tEznC}::> yn (znc) ""' o.
Hence, under the assumption (1), there is a set z:

zEw
and

o c znc c:; z!\ I (Ey)(yEznc !\ yn(znc) = O}.

(3)

In other words, under the assumption (1), we get a counterexample to the premiss
wc:; wfd. Hence, wfd(Lw) is a consequence of wc:; trans and wc:; wfd, and the proof of
L.6 is complete.

It should be emphasized that thus far our considerations depend only on the
particular successor function :xl = xU {x} and do not depend on how the whole class of
ordinals is formally defined.

If now we make use of the other hypothesis of Theorem I, i.e., that STI is available
for On, then we immediately complete the proof of Theorem I.
STI. [On(x) !\ (v)(Fv::> Fv') !\ (w)(wc:;F::>F(Lw)}] ::>Fx.

Let Fx be Lx c:; x !\ (b)(bEX::>Lbc:;b)!\ wfd(x), i.e., Od(x) according to DC.
By L.3, L.S, we have clearly: Fv::> Fv'. By L.4, L.6, we have: (w) (w c:; F::> F(Lw)).
Hence, by STI, we get: On(x)::> Fx. In other words, we have:

Theorem 1. On(x)::> Od(x).
This completes the proof of Theorem I.

3. Proof of Theorem II

We shall first prove STI for On as defined by DI, using extensionality,
Aussonderung, and self-ad junction; hence, by Theorem I, the class On by DI is included
in the class Od. Next, we shall, using the same axioms, prove that the class On in DI* is
included in the class On in DI. Finally, we shall show, using the same axioms, that the
class Od is included in the class On by DI*. Clearly this will prove the three classes

154 Computation, Logic, Philosophy

coextensional and establish Theorem II, since the development of transfinite recursion
(compare [3]) can be repeated with the help of the axiom of replacement.

To avoid notational confusion, we restate DI and DI* with indices on On.
D!. On)(x) for (u) {[(V) ((V'EX' /\ VEU):::J V'EU) /\(W)((LuEX' /\ wC;:; U):::JLuEU)] :::JXEU}.

DI*. On2(x) for (y)[(XEy /\ (V)(V'Ey:::JVEY)):::J (EW)(LuEy /\ wc;:;x /\ ynw=O)].

Theorem 2. [Onl(x) /\ (v)(Fv:::JFv') /\ (w)(wC;:;F:::JF(LW))] :::JFx.
Proof. By Aussonderung and self-ad junction, there is, for each set x, a set U

= {t [(Ft /\ tEX')}.
Hence, by DI, if we assume On) (x), we have:
If (a}(v)((Fv /\ vEx' /\ v'Ex'):::J(Fv' /\ V'EX')) and

(b) (w) [((z)(zEw:::J(FzV ZEX')) /\ LuEX'):::J(F(LW)V LuEX')],
then XEX' and Fx.

But, if (v) (Fv:::JFv'), then (a); and if (Z)(ZEW:::J (FzV ZEX')) then wc;:;F, and
therefore, if (w)[wc;:; F:::J F(LW)], then (b).
Hence, the proof of Th.2 is complete.

Remark. If we use a different successor function, say nx as x', in DI, we can
similarly derive Th.2 from DI, with self-adjunction replaced by a successor axiom for
the different successor function. The condition EO follows from the last hypothesis of
Th.2 and is, therefore, left out for convenience. It is perhaps of interest that in contrast
with the derivation of L. 1-L.6, which depends heavily on the particular successor
function used, the derivation of transfinite induction is "invariant" relative to the
successor functions.

Hence, by Theorem I, we have:

Theorem 3. Oni (x):::J Od(x).
Next we prove:
Theorem 4. On2(x):::J OnI(x),
Proof. Puty= {t[(tEx' /\ tC;:;x' /\ t$U) in DI*. Such a set yexists for each given set X

by self-adjunction and Aussonderung. Hence, if On2(x), then:
If XEX' /\ x c;:; x' /\ x$u, and
(1) (v) ((V'EX' /\ v'c;:;x' /\ v'$U):::J (VEX' /\ vC;:;x' /\ v$u)), then
(2) (Ew) [LWEX' /\ LWC;:;x' /\ Lw$U /\ wc;:;x /\ (Z)((ZEX' /\ zC;:;x' /\ z$u):::Jz$w)].

Clearly XEx' and x c;:; x' are true and can be dropped. By contraposing, we get:
(A) xEu if (1) and .
(2*) (W){[LuEX' /\ LwC;:;x' /\ wc;:;x /\ (Z)((ZEx' /\ zC;:;x' /\ ZEW) :::JZEU)]:::JLuEU}.

Now (1) is equivalent to the conjunction of:
(la) (Vj((V'EX' /\ v'c;:;x' /\ v'$U):::J (VEX' /\ vc;:;x')), and
(lb) (v) «v'EX' /\ v' C;:;x' /\ VEU):::JV'EU).

Since VEv' and vc;:;v', v'C;:;X':::J(VEX' /\ vc;:;x') and (la) is true. Therefore, (1) is
equivalent to (lb) and we have:

Some Data for ATP 155

(3) (V)((V'EX' A VEU):::>V'EU):::> (1).
In (2*), z<;;x' can be dropped because zEw and LW<;;X' yield it as a consequence.

Hence, (2*) can be written briefly as:
(2*) (W)[(LwEX' A LW<;;X' A W<;;X A x'nw<;;u):::>LwEU].
But X <;; x' and, therefore, (w<;;x A x' nw<;; u):::> w<;; u. Hence, we get:

(LwEX' A LW<;;X' A W<;;X A x'nw<;;u):::>(LwEX' A w<;;u).
Therefore:
(4) (W)((LwEX' A w<;;u) :::> LwEU):::> (2*).

By (A), (3), and (4), we have:
(u){[(V)((V'EX' A VEU):::>V'EU) A (W)((LwEX' A W<;; u) :::> LwEU)] :::>XEU},

i.e., Onj(x). Hence, Onz(x):::> Onj(x). •
Finally, we prove:
Theorem 5. Od(x):::> Onz(x).
Here we can draw on standard developments of ordinals and use the Lemma about

the equivalence of various definitions of Od. In fact, since it is intuitively clear that
ordinals do possess the property Onz, it is reasonable to accept Th.S as provable even
before formal details are supplied.

For the sake of completeness, we give a derivation of Th.S by using the
development of Od by BER"AYS ([3J, pp.80-89) together with the lemma just
mentioned. Thus we are entitled to use the following theorems on Od:
T1. Od(a):::> [La=a V (Ey) (a= y'ALa= y)J ([3J, p.88, 2.14 and 2.12).
T2. ((w) [(Od(w) A W<;; 1'):::> FwJ A Od(x)):::>Fx ([3J, p.86, 1.17).
T3. Od(x):::> (LX<;;X A LX' <;;x') ([3J, p.80, 1.4, and p.87, 2.2).

Before proving Th.S, we use a similar but simpler argument to prove STI for Od:
T4. Od(x) A (v) (Fv:::> Fv') A (w)(w<;;F:::>F(LW)):::>Fx.

Proof. It is sufficient to derive the hypothesis of T2 from that of TS.
[(W<;;F:::>F(LW)) /\ LW=WJ :::>(W<;; F:::> Fw). (1)

[(w= y' /\ LW= y) /\ (Fy:::> Fy') /\ (w<;; F:::> F(LW))]:::> (w<;; F:::> Fw). (2)
ByTl,

Od(w):::> [LW=WV (Ey)(w=y' /\ LW=Y)]. (3)
Combining (1), (2), (3), we get:

[Od(x) /\ (v) (Fv:::> Fv') /\ (w)(w<;;F:::> F(LW))]:::> [Od(x) /\ (w)((Od(w) /\ w<;; 1'):::> Fw)].
Hence, T4 is proved.
Remark. In view of the derivation ofT4 from T1 and T2, it follows from Theorem I

that instead of STI for On, we can require that T1 and T2 be provable for On (i.e.,
replace Odby On in them). Hence, it is sufficient to find a condition cond(x) such that we
can derive T2 for On when On(x} is taken to be cond(x)/\ [LX=XV (Ey)(y' =x /\LX
=y)].

If we drop the clause w<;;x from the consequent of DI*, we get a more elegant
definition which W. V. Qur"'E and the "'Titer will elsewhere prove to be adequate, with the
hel p of the axiom of power set. For this simpler definition, a counterpart of Th.S is easily
forthcoming.
TS. [Od(x) /\xEu /\(V)(V'EU:::>VEU)]:::>(Ew)(LwEU /\unw=O).

156 Computation, Logic, Philosophy

Proof. Put t¢u for Ft in T4 and contrapose.
It does not seem possible to apply T4 to shorten the proof of Th.5. Rather T2 is

used directly, in conjunction with Tl.
We can restate Th.5 more explicitly:
Theorem 5. [Od(x)V XEUV (V)(V'EU:=lVEU)]:=l(Ew)(LWEUV w<;;;.xV unw=O).
Proof. Put tEx':=l t¢u for Ft in T2 and simplify. We get:

(XEUV Od(x)):=l (Ew)(Od(w)V (wnx')nu=OV WEx'V WEU). (1)
It is sufficient to derive the consequent (c) ofTh.5 from xEu, Od(x), (a) (v) (V'EU:=l VEU),
with the help of the consequent of (I): briefly, (b) (Ew) (Od(w)V Hwxu).

By T3, (Od(x)V WEX'):=l w <;;;. x, because WEx':::J (w = xV WEX). Hence, wnx' = w
and we have:

(Od(x)V WEx'V (wnx')nu=O):::J(w<;;;,xV wnu=O). (2)
Moreover, (LW=WV WEU):::JLWEU. (3)

{w=y'V LW=YV {y'EU:::JyEU)V WEU):::JLWEU. (4)
By (2) and (3), (Od(x)V Lw=wV Hwxu):::J(c).
By (2) and (4), ((a) A (Ey)(w=y' A2:.w=y)V Hwxu):::J(c).
Hence, (Od(x) A (a) A (Ew)((2:.w= w A {Ey)(w= y' A LW= y)) AHwxu)):::J (c). (5)
By Tl, (b) :::J{Ew)((2:.w= wV (Ey}(w= y' A 2:.w= y)) AHwxu). (6)
By (1), (5), (6), (XEU A Od(x) A (a)):::J (c).

Hence, Od(x):=l On2{x), and the proof of Th.5 is complete.
When we combine Th.3, Th.4, Th.5, we get: Od= Onl = On2' Since all the proofs

are done in the predicate calculus with equality with the help only of extensionality,
Aussonderung, and self-ad junction, the proof of Theorem II is complete.

4. Finite Ordinals

If we specialize DI and DI* to finite ordinals, then the only nonsuccessor case is 0,
and we get:
DN. Nnl{X) for (U){[(OEX':::J OEu) A {V)((V'EX' A VEU):::J v'EU)]:::J XEU}.
DN*. Nnz{x) for (U){[XEU A (V)(V'EU:::JVEU)] :::JOEu}.

DN is new, while DN* is a definition proposed by W.V.QUI'lE and developed by
K.R.BRow'I. BRow"I's direct development of DN* contains many interesting features.
Previously, Qu 1'1 E had already given a thorough treatment of a predecessor of D N* with
{x} instead of xu{x} as x' (see [4J).1t is, however, ofinterestto observe here that we can
derive results about Nnl and Nn2 rather quickly from a comparison with BER"JA YS'
definition of finite ordinals ([3J, p.89).
DB. Nu(x) for Od(x) A (y) {yEx':::J (y= oV (Ez){ Od(z) A y= z')).

In fact, we can prove:
Theorem 6. Nnl{X) = Nn2{X) = Nu(x); or briefly, Nnl =Nn2 =Nu.

Hence, since BER"JAYS has developed arithmetic (PEA'IO axioms and recursive
definitions) on the basis of Nu with the help of extensionality, Aussonderung, and
adjunction, i.e., (x)(y)(Ez)(z=xu{y}), we can derive the following:

Theorem III. Arithmetic can be developed on the basis ofDN or DN*, using

Some Data for ATP 157

extensionality, Aussonderung, and adjunction; selfadjunction is sufficient if
recursive definitions are not required.

The part on DN* was proved first by BROW'\! using an elegant direct argument (not
going through infinite ordinals); he had previously already a similar result where v'Eu is
replaced by (V'EuJ\ V'EX).

By the way, OEx':::l can be dropped in DN, if we use adjunction to get induction.
The key lemma for proving Th.6 is:
Lemma 7. Nnl <;; Onl; Nn2 <;; On2.
Proof. Immediate from DI and DN (or DI* and DN*) since OEX'::JOEU if

(w)[(w<;; u J\ LWEX')::J LWEuJ, and (EW)(LWEU J\ w<;;x J\ unw=O) ifOEu (seeing that
LO=O, O<;;x, and unO=O).

Hence, if Nnl(X) or Nn2(X), x has all properties proved to hold for ordinals. For
example:

Lemma 8. Nn2(x)::J LX' <;; x'.
Mathematical induction is immediate for Nnl and Nn2.
Lemma 9. [FD J\ (v)(Fv::J Fv') J\ Nnl (x)J ::J Fx.
Proof. Take {vl(Fv J\ VEX')} as u in DN and simplify.

Lemma 10. [FD J\(v)(Fv::JFv') J\Nn2(x)J::JFx.
Proof. Taking {vl(VEX'V - Fv)} as u in DN* and assuming Nn2(X), we get:

[XEX' J\ - Fx J\(V)((V'EX' J\ - Fv')::J (VEX' A - FV))]::J (OEx' A - FD).
Dropping XEX' as true, breaking up p::J (q Ar) into (p::J q) A (p::J r), and contraposing, we
get:

[FD A (V)((V'EX' J\ - Fv')::J VEX') J\ (v)((v'EX' J\Fv)::J Fv')J::J Fx.
By 1.8, (Nnz(x)V v' EX'}::J VEX', since vEv'. Hence, we can drop the second clause as true.
But the third clause follows from (v)(Fv::J Fv'). Hence, 1.10 is proved.

The following is now immediate:
Lemma 11. Nnl (x)::J Nu(x); Nn2(x)::J Nu{x}.
Proof. By 1.7 and the previously established fact that Od = Onl = On2, we have:

Nnl (x}::J Od(x), Nnz(x)::J Od(x). Let, now, Fx be
(y)(yEx' => [y= oV (Ez)(Od(z) J\ y= z')])

in 1.9 or 1.10. Clearly FD, since yEO'::J y=O. Assume Fv, i.e.,
(y}(yEv'::J [y= oV (Ez)(Od(z) A y= z')])

Since yEv" ::J (yEv'V y= v'), Fv' follows from Fv. This is clear when yEv'. When y= v', we
use the fact VEv'; by Fv, v=O or (E2)(Od(z) J\ y=z'). In either case Od(v) by 2.1 and 2.2
of [3J (p.87).

Finally, since induction is available for Nu ([3J, p.90, 3.4), we can derive:
Lemma 12. Nu(x)::J Nnl (x); Nu{x)::J Nn2(x}.
Proof. Putting tEX' => tEu for Ft in the induction principle for Nu, we get:

[Nu{x} J\ (OEx'::J OEU) J\ (V}(((VEX'::J VEU) A V'EX'}::J V'EU} J\ XEX']::J xEu.
The third clause can be broken up into (v) (V'E x' c:: (v' EUV VEX')) and (V)((VEU J\ V'EX')
=>V'EU). The first is true by the fact that Nu(x)=>~x's;;x' (from [3J). Hence, Nu(x)
=>Nnl(X).

Putting tr/=u for Ft and contraposing, we immediately get; Nu(x)=>Nnz(x).

158 Computation, Logic, Philosophy

TIlls completes the proof of Th. 6 and therewith the proof of Theorem III.

References

[1] H. BACHMANN, Transfinite Zahlen, Berlin 1955.

[2] P. BERNAYS, A system of axiomatic set theory, Part II, Journal of Symbolic Logic 6 (1941), 1-17.

[3] P. BERNAYS and A. FRAENKEL, Axiomatic Set Theory, Amsterdam, 1958.

[4] W. V. QUINE, Set Theory and its Logic, Cambridge, Mass. 1963.

9. PROVING THEOREMS BY PATTERN*

RECOGNITION, II

Theoretical questions concerning the possibilities of proving theorems by
machines are considered here from the viewpoint that emphasizes the underlying logic.
A proof procedure for the predicate calculus is given that contains a few minor peculiar
features. A fairly extensive discussion of the decision problem is given, including a
partial solution of the (x) (Ey) (z) satisfiability case, an alternative procedure for the
(x) (y) (Ez) case, and a rather detailed treatment 0 fSkolem 's case. In connection with
the (x) (Ey) (z) case, an amusing combinatorial problem is suggested in Section 4.1.
Some simple mathematical examples are considered in Section VI.

9.1 A survey of the decision problem

1.1 The Decision Problem and the Reduction Problem

With regard to any formula of the predicate calculus, we are interested in knowing
whether it is a theorem (the problem of provability), or equivalently, whether its
negation has any model at all (the problem of satisfiability). Originally this decision
problem was directed to the search for one finite procedure which is applicable to all
formulae of the predicate calculus. Since it is known that there can be no such
omnipotent procedure, the main problem is to devise procedures effective for classes of
formulae which satisfy suitable conditions.

The complementary problem of reduction is to give effective procedures which
reduce broader classes to narrower ones while preserving provability or satisfiability. In
this way, a decision procedure for a smaller class can be made to apply to a larger one.
Thus far, most work on the reduction problem has been directed to the special case of
finding procedures which reduce all fromulae of the predicate calculus to members of
some special class(e.g, those in the Skolem normal form). Each such class is called a
reduction class relative to satisfiability or provability according to whether satisfiability
or provability is preserved by the transformations (Ref. 2, p. 32). It follows
automatically that the corresponding decision problem for each reduction class is
unsolvable.

The reduction classes and the procequres employed to obtain them are, being

* First published in Bell System Technical Journal, vol, 40, pp, 1-41. CC> 1961 AT&T. Repro
duced by special permission.

159

160 Computation, Logic, Philosophy

concerned with undecidable cases, only of indirect use for the problem of discovering
positive results on the decision problem. More directly relevant are reduction
procedures which are applicable when the reduced class is not a reduction class and may
in particular be a decidable class. Some very preliminary results on this more general
aspect of the reduction problem will be described in Section V.

For both the decision problem and the reduction problem, there is, beyond the
"yes or no" as to satisfiability, a further question of determining all models and devising
transformation procedures which preserve all models. Such questions have been studied
to a certain extent (Ref. 3, p. 23), but will be disregarded in what follows.

It is customary to characterize reduction classes and decidable classes in terms of
formulae in the prenex normal form, i.e., with all quantifiers at the beginning.
Sometimes, with regard to satisfiability (oor provability), conjunctions (or dis junctions)
of formulae in the prenex normal form are considered. We shall call this the extended
prenex form.

In Section V, a procedure will be given for reducing any formula to a finite set of
generally simpler formulae in the extended prenex form such that the original formula is
provable if and only if all formulae in the reduced set are. In this and the next few
sections, we shall only be concerned with formulae in the extended prenex form.
Furthermore, we shall give in Section V a proof-decision procedure for the quantifier
free logic, obtained from the propositional calculus by adding equality, function
symbols and individual constants. Any theorem in it is called a quantifier-free
tautology, as an extension of the notion of a propositional tautology . We shall make use
of the fact that we can always decide whether a given formula is a quantifier-free
tautology.

1.2 A Brief Formulation of the Predicate Calculus

1.2.1 Primitive Symbols

1.2.1.1 Variables x, y, z, etc. (an infinite set).
1.2.1.2 Individual constants (a finite or infinite set).
1.2.1.3 Propositional (Boolean) operations: ~, V , &, :::::>, -.

1.2.1.4 Predicate letters (a finite or infinite set).
1.2.1.5 Function letters (a finite or infinite set).
1.2.1.6 Equality: = (a special predicate symbol).
1.2.1.7 Quantification symbols: (), (E).
1.2.1.8 Parentheses.

1.2.2 Inductive Definition of Terms and Formulae

1.2.2.1 A variable or an individual constant is a term.
1.2.2.2 A function symbol followed by a suitable number of terms is a term.
1.2.2.3 A predicate followed by a suitable number of terms is a formula (and an

Proving Theorems by Pattern Recognition, II 161

atomic formula); in particular, if !x, 13 are terms = (!X, 13) or ex = 13 is a formula (and an
atomic formula).
or ex = fJ is a formula (and an atomic formula).

1.2.2.4 If cp, 1/1, are formulae and a is a variable, then (a)cp, (Eex)cp, '" cp, cp V 1/1, cp &
1/1, cp => 1/1, cp == 1/1 are formulae.

1.2.3 Inductive Definition of Theorems

1.2.3.1 A quantifier-free tautology is a theorem.
1.2.3.2 If a dis junction D of n alternatives is a theorem, cpa is one of the alternatives

and 13 is a variable, then:
(a) If a is a term, then the result of replacing cpa by (Ef3)cpf3 in D is a theorem;
(b) if a is a variable free in cpa but not free in the other alternatives and 13 is a or does

not occur in cpa, then the result of replacing cpa by (fJ) cpfJ in D is a theorem.
1.2.3.3 If cp V ... V cp is theorem, so is also cp.
The above formulation is complete only with respect to formulae in the extended

prenex form.

1.3 The Fundamental Theorem of Logic

The main purpose of the next few sections is to study the decision problem on the
theoretical foundation of the fundamental theorem of logic, an approach initiated by
Skolem4 and Herbrand, 5 and recently revived by Church, 6, 7 and by Klaua8 and
Dreben. 9,1 0

Suppose Mxyz is a quantifier-free matrix:
1.3.1 (x) (Ey}(z}Mxyz,
1.3.2 (Ex}(y}(Ez) '" Mxyz.

Let now Dn be Ml V ... V Mn and M; be MIii', if being an abbreviation for i + 1.
The fundamental theorem, when applied to 1.3.1, states:
1.3.3 The following three conditions are equivalent:
(a) 1.3.1 is a theorem of the predicate calculus; (b) for some n, Dn is a quantifier-free
tautology; (c) 1.3.2 is not satisfiable.

If Dn is a quantifier-free tautology, then, by 1.2.3.1, both it and the result of
substituting distinct variables for distinct numbers in it are theorems. For example,
suppose the result is:
1.3.4 Maab V Mabc V Macd.
We have: by 1.2.3.2(b),

by 1.2.3.2(a),

Similarly,

Maab V Mabc V (z}Macz;

Maab V Mabc V (Ey}(z}Mayz.

Maab V (Ey}(z}Mayz V (Ey}(z}Mayz,
(Ey}(z}Mayz V {Ey}{z}Mayz V {Ey}{z}Mayz,

162 Computation, Logic, Philosophy

by 1.2.3.3,
(Ey)(z)Mayz;

by 1,2.3.2(b),
(x)(Ey)(z)Mxyz.

Hence, condition (b) implies conditions (a) and (c) in 1.3.3.
On the other hand, if no Dn is a quantifier~free tautology, then there is, for each Dn,

some interpretation of the function and predicate symbols on the set {I, ... , n'} which
satisfies ~ Dn- By a well-known argument, there is then an interpretation on the domain
of all positive integers which satisfies ~ Db ~ D2 , etc. simultaneously. This, however,
means that under the interpretation each finite segment of the infinite conjunction
1.3.5~ Ml12 & ~ Ml23 & ~Ml34 & ...
is true. But then there is an integer x, viz. 1, such that for every integer y, there is an
integer z, viz. i, such that ~ Mxyz. In other words, 1.3.2, the negation of 1.3.1, is true
under the interpretation. Hence, the negation of condition (b) implies the negations of
conditions (a) and (c).

If we take 1.3.5 as a model of 1.3.2, it seems natural to regard yas an independent
variable z as a dependent variable and x as an initial variable (the limiting case of a
dependent variable, a function of zero arguments). The general principle of constructing
Mn from 1.3.1 may be summarized by saying that each initial variable gets a constant
number, the independent variables taking on all possible positive integers as values and
the dependnet variables always taking on numbers not used before.

In the general case, we must consider a disjunction (for provability) or conjunction
(for satisfiability) of formulae with arbitrary strings of quantifiers. Then we can again
construct the related quantifier~free formulae in the same way, with the numbers in
each clause proceeding independently.

Thus, if we wish to study the satisfiability problem, we consider any formula of the
form:

1.3.6 (n ~ 1),

where each <P1 is of the form, with d1 ~ 0, ee ~ 0, c ~ 1, eb d2 , e2, ••• , de ~ 1:

1.3.7 (EyD ... (Eydt)(xt) ... (xe 1) ••• (E/1) .. .

(EYd~) (x~) ... (x~) Myt ... x~e.
One familiar way of obtaining M 1 , M 2 , etc. for the formula 1.3.7 begins by

replacing the dependent variables (those with the letter y) each with a function
(sometimes called a "Skolem function") of all the preceding independent variables
(those with the letter x), and then dropping all the quantifiers. Let the result be M*. In
particular, the initial (depeEdent) variables are replaced by distinct constants which
maybeviewedastrivialfunction.Supposee1 + ... + ee = p,d1 + ... + de = qin1.3.7.

The Skolem functions are any functions gl, ... , gq which, taken together, satisfy the
following conditions:

1.3.8 (a) For each gi, gi(Ut. ... , urn) i= Uj, j = 1, ... , m2 i = 1, ... , q.

Proving Theorems by Pattern Recognition, II 163

(b) For each gi, gi(Ub ... , urn) = gi(Vb ... , vrn) only when Ul = Vb ... , Urn = Vrn ·
(C) For any gi, gj, i =1= j, gi(Ub ... , urn) =1= gj(Vb ... , vn), for all Ub ... , Urn, Vb ... ,

Then we can take the smallest domain which contains the constants for the initial
(dependent) variables (or an arbitrary constant when there is no such initial variable)
and is closed with respect to the Skolem functions. Once such an (enumerable) domain
is available, we can some-how enumerate all the p-tuples of members of the domain.
Then, for each i, ~ is simply the result obtained from M* when the independent
variables are replaced respectively by members of the ith p-tuple.

The satisfiability problem of 1.3.7 is then reduced to that of the infinite
conjunction:

1.3.9 Ml &Mz & ...

Similarly, the satisfiability problem of 1.3.6 can be handled by reducing each <Pi
separately and then taking the conjunction of the n infinite conjunctions of the form
1.3.9.

It is customary to use the positive integers as the domain, fix some enumeration of
the p-tuples, and specify the Skolem functions in a natural manner. One familiar
enumeration of the p-tuples is the following:

1.3.10 (at. ... ,ap) precedes (bb ... , bp). if either

(a) they are permutations of each other but (aj, ... ,ap) precedes (bb ... , bp) in the
lexicographic order; or

(b) max(aj, ... ,ap) = max(b j, ... , bp), Lai = Lbi, but (ab ... ,ap), rearranged
according to nondecreasing magnitude, precedes (b j , ••• , bp), similarly rearranged, in the
lexicographic order; or

(c) max(ab ... ,ap) = max(bJ, ... , bp), but Lai < Lbi; or
(d) max(aj, ... ,ap) < max(bb ... , bp).

The Skolem functions are usually chosen by going through the infinite con junction
1.3.9 from left to right and using each time the smallest unused integer for the next
functional expression not yet evaluated. Thus, e. g., yL ... , yJ j in 1.3.7 get the constant
values 1, ... , db and M j is:

Ml ... dn ... Id'j ... (d j + dz) ... (q - de + 1) ... ql ... 1.

Fach time a functional expression gets a value, the value is substituted in all later
occurrences of the same expression.

In this way we arrive at a form of the fundamental theorem of logic as a
generalization of 1.3.3.

It is natural to observe that the infinite conjunction 1.3.9 can be divided into
sections (Ref. 4, p. 138):
1.3.11 The first section is the set of those M/s in which the p-tuples replacing the
independent variables are made p of integers in the set {I, ... , dd, or the set {I} if dj

= 0; the (n + 1)th section is the set of those M; 's not belonging to the nth section in

164 Computation, Logic, Philosophy

which the p-tuples are made up of integers which occur in the union of the first n

sections.
The notion has been used by Skolem in explaining some decision procedures (see

Section II below).

1.4 Special Cases of the Decision Problem

The principal known decidable classes are, with regard to satisfiability the
following:

I. The monadic case. The class of all formulae which contain only monadic
predicate letters and no function symbols.

II. THe EA satisfiability case (the AE provability case). The class of all formulae
in the prenex form with prefixes of the form (EY1) ... (EYm) (Xl) ... (xn), m, n ~O, and no
function symbols [or the form (Yl) ... (Ym) (EX1) ... (Exn) for provability J-

IlL The conjunctive satisfiability case. Every formula in the prenex form with a
matrix which is a con junction of atomic formulae and their negations. (Equivalently, the
disjunctive provability case.)

IV. The Skolem case. Every formula in the prenex form with no function symbols
such that it has a prefix ending with (EY1) ... (EYn), n> 0, and every atomic formula
occurring in the matrix contains either one of the variables Yb ... , Ym or all the
independent variables. [For provability, (Yl) ... (Yn) at the end.]

V. The EAzE satisfiability case (the AEzA provability case). Every formula
contammg no function symbols m the prenex form with a prefix
(EyD ... (Ey~)(xl)(xz)(EYn···(EYn).

VI. The Ackermann case. For satisfiability, every formula which contains no
function symbols, no equality sign, only a single dyadic predicate (G say), and hasthe
form (x)(Ey)Gxy & (Xl) ... (Xm) MX1 ... Xm, m ~ 4, M quantifier-free.

In addition to these, two other cases may be mentioned:
VII. The A1E1Al satisfiabilitycase. Every formula with the prefix (xd(Ey)(xz)

and with no function symbols.
VIII. The Surdnyi normal form case. For satisfiability, every formula which has no

equality sign, no function symbols, only dyadic predicate symbols, and has the form
(Xl) (xz) (X3) MX1XZX & (xd (xz) (EY3), NX1X2Y3, M, N quantifier-free.

It may be noted that in all the cases, with the single exception of III, no function
symbols are permitted. Indeed, very little is knmvn about the decision problem of
formulae containing function symbols (compare Ref. 3, pp. 98--107). Unless otherwise
stated, we shall always assume that no function symbols occur.

In what follows, cases I and VI will not be considered. So far as the monadic case
without equality (a subcase of I) is concerned, it is possible to obtain a decision
procedure from one for case II. Some of the problems suggested by the Ackermann case
are also encountered by the A 1 El A 1 case, while other implications of this case seem to
call for a closer examination of certain arithmetic perdicates.

Formulae under case VIII form a reduction class in the sense that there is an

Proving Theorems by Pattern Recognition, II 165

effective procedure by which every formula, possibly containing = and function
symbols, can be reduced to one in the class with satisfiability preserved (Ref. 2, p. 60). It
follows that there exists no decision procedure for this case. It is, however, desirable to
findsome "semidecision procedure" for the class which is a decision procedure for some
subclass of it that is not specified explicitly in advance. It is thought that such
semi decision procedures are a useful way of extending the range of formulae decidable
by a predetermined finite set of procedures. A brief discussion is included in Section IV
to point to the sort of thing which can be done along this line. It should be of interest to
design semi decision procedures for case VIII, as well as for other reduction classes.

The case VII is perhaps the best known unsettled case; it has been mentioned in
vrious connections (see, e.g., Ref. 11, p. 576 and Ref. 12, p. 420). In Section IV a
procedure will be given which may be a decision procedur for the whole case but has
only been shown to terminate for certain special cases. A proof of finiteness of the
procedure is wanting. It is thought that, incomplete as the solution is, it is quite
suggestive for further works on the decision problem. Some rather amusmg
combinatorial problems are also related to the considerations on this case.

An alternative decision procedure for the much-studied case V will be given in
Section III in the equivalent form A2E (for satisfiability).

The Skolem case will be examined in considerable detail in Section II, using ideas
proposed by Skolem4 (p.138) and Church6 (p.264). Remarks relevant to machine
realizations of the procedure will also be included.

The Skolem case includes the following special cases:
IVa. The A I E satisfiability case. Because every atomic formula has to include some

variable and there is only one independent variable.
IVb. For satisfiability, every formula whose prefix ends with (EYI) ... (EYn), and in

which every atomic formula contains at least one of the variables YI'''',Yn'
IVc. For satisfiability, every formula whose prefix is

and in which every atomic formula contains either all of Xb"',Xn or at least one of
2 2

YI '''',Yk .
IVd. For satisfiability, every formula in the Skolem normal form, i.e., with

prefix{xI) ... (xm){Eyd ... (EYn), such that every atomic formula contains at least m
distinct variables.

For the extensive literature on the decision problem, the reader is referred to the
bibliographies in Refs. 2 and 3. The writer has not been able to study carefully much of
the relevant literature, and is not certain that the procedures deseribed in Sections II
and III may not turn out to be inferior to existing ones. Recently, the writer noticed that
ideas along the line of the solution of the EIA provability case given in Section 3 of Part
II are contained in Skolem's writings (e.g., Ref. 4, p. 135).

Of the two remaining cases, II and III, some brief comments will suffice.

166 Computation, Logic, Philosophy

1.5 Two Simple Cases

The EA satisfiability case II has agreeable decision procedures not dependent on
the fundamental theorem of logic (see Ref. 13, p. 13). It is also easy to devise a decision
procedure on the basis of the fundamental theorem. Consider

1.5.1

This is in fact equivalent to:

1.5.2 M J & ... & Mb k = mn , or 1 when m = O.

In fact, this is a limiting case of the fundamental theorem because no Skolem functions
are needed, so that the m constants for the initial variables are all we need for fabricating
a model. In other words, either the negation of 1.5.2 is a quantifier~free tautology, and
the negation of 1.5.1 is a theorem; or 1.5.2 has a model, and 1.5.1 has a model too. The
presence of the equal sign is permitted, but the presence of function symbols in 1.5.1
would invalidate the procedure.

The conjunctive satisfiability case III was originally solved by Herbrand (Ref. 5,
pp. 44---45). Suppose the matrix is:

1.5.3

or, in different notation:

1.5.4

Assume first that neither equality nor function symbols occur. If no predicate letter
occurs both on the left side and on the right side, then we can simply choose to make all
predicates occurring on the left side true of all numbers and those on the right false for
all numbers, and then the infinite conjunction corresponding to the given formula is
true under the interpretation.

Whenever there is one clause on the left and one on the right which contain the
same predicate letter, e.g., Ai is Gabc and Bj is Guvw, we compare them and ask whether
it is possible to assign the same integers to their arguments in some M, and Mr
respectively. If the answer is yes, the original formula can have no model, because the
infinite conjunction must be always false. If the answer is no for every such pair, then the
original formula has a model.

To compare Ai and Bj , we examine the three pairs of corresponding variables. If
both variables in some pair are distinct dependent variables, then the two clauses Ai and
Bj can never get the same numbers. When this is the case for none of the pairs, we can
decide the question by asking whether there are positive intgegers s, t such that a(s)
= u(t), b(s) = v(t) and c(s) = w(t), where, for each variable IX in the original
formula, lX(n) is a function giving the number which replaces IX in Mn. It is possible to
give a scheme to generate such function for each given formula. When there are
solutions for some pair of clauses, the original formula is not satisfiable.

If the formula 1.5.4 contains function symbols but not = , then the comparison of
Ai and B j has to take functions into considerations sometimes. We may have to ask

Proving Theorems by Pattern Recognition, II 167

whether j(a(s)) = g{u(t)), instead of a(s) = u(t), has a solution. In such cases, there is a
solution only whenf and g are the same function, because otherwise we can always give
different values to j(a(s)) and g{u(t)) to avoid the incompatibility of Ms and Mr.

When the equals sign also occurs, we have to list all the equations among Al,···,Am,
if there is any, and complete the list by using transitivity. If there are none, we need only
to proceed as before, except that we can also reject satisfiability on the ground of, e. g.,
having an equation u = v among B1 , •.• , Bn , and u(P) = V(P) has a solution inp. In the
general case, we must compare Ai and B j, which have the same predicate letter, in a more
complicated manner. One way to do this is to give an effective survey of all the equalities
obtainable in M), ... , Mr, for every t. And then the question of comparing Gabc and
Guvw is reduced to the following: whether there are p, q. t such that, with the help of the
equalities obtainable from M), ... , Mr, we have a(p) = u{q), b(P) = v(q}, C{P} = w(q}.
Since these considerations are only subsidiary for the main purpose of the paper, details
for this and other steps sketched above will not be supplied.

9.2 The skolem case

2.1 Outline of a General Method

The subcase IVb, where every atomic formula contains at least one of the last string
of dependent variables, is particularly simple. Thus, in every M k , each such variable
always gets replaced by some new number so that no atomic formula in Mk can have
occurred in any of M1, ... ,M-l. Hence, a formula of such a form is satisfiable ifand
only if ~ Ml is not a quantifier-ftee tautology.

In the general Skolem case, we make use of the definition of sections given above
in 1.3.11. Let (a1, ... , a;) be the p-tuple which replaces the dependent variables in M to
get M k.

Given any member M; of the nth section, the only related instances in the nth
section are those Mk for which(a~, ... , a;) is a permutation of (aL ... , a~), and the only
related instances in the (n + 1) th section are those A1i for which (aL ... , a~) include only
numbers occurring in M; and at least one number not in the set {aL ... , a~}.

Hence, it is possible to get a decision procedure by determining whether there
exists any set cf possibilities which includes models for the instances of the first section,
as well as models for all related instances Mk any M j for every model for M; in the set.

When the formula is in the Skolem normal form or the form onv c, somewhat more is
true:
2.1.1 If A1i belongs to the (n + l)th section, then it can have common atomic formulae
with only at most one M j in the nth section.

This is so because each atomic formula in M j either contains a new number not
occurring in any member of the nth section, or otherwise contains all of {a{, , a~} with
at least one number (say a{) which appeared for the first time in one specific member
(say M;) of the nth section. In the first case the atomic formula in A1i does not occur in
any member of the nth section. In the second case, A1i can contain no common atomic

168 Computation, Logic, Philosophy

formula with any member of the nth section except possibly M;, since a{ does not occur
in any of the other members of the nth section.

Detailed considerations will be confined to the treatment of a simple special case.

2.2 An Explicit Procedure for a Special Case

We consider a very simple special case in which the matrix contains no equals sign
(and of course no function symbols), and a single dyadic predicate G:

2.2.1 (x) (y) (Ez) Mxyz.

As an illustration, we use the negation of Example (2) of Part U

2.2.2 (x) (y) (Ez) [(Gxy & Gyx & ~ Gxz & ~ Gzy & ~ Gzz)
Gzz & ~ Gxy & ~ Gyx)].

V (Gxz&Gzy&

In an alternative notation, the matrix is:

2.2.3

2.2.4

Cxy, Gyx -+ Gxz, Gzy, Gzz;

Gxz, Gzy, Gzz -+ Gxy, Gyx.

We construct a truth table of all the possibilities which can satisfy the above matrix:

Gxy
t

f

Gyx
t

f

Gxz
f
t

Gzx Gyz Gzy
f
t

Gzz
f
t

The blanks may take either t or f as values. Hence, there are eight rows ·in all.
For the prefix (x) (y) (Ez), the numbers to substitute for (x,y,z) in M j , M 2 , M 3 , M 4 ,

etc., are (1,1,2), (1,2,3), (2,1,4), (2,2,5), etc. In order to decide whether a formula of the
form 2.2.1 has a model, we ask whether it is possible to make Ml12, M123, M214, etc.,
simultaneously true, or, in other words, whether we can find for each M; one row from
the above table according to which M; is true, such that these infinitely many rows are all
compatible in the sense that the same atomic formula always gets the same truth value (t
or f).

Among the number triples we can distinguish two classes, those in which x and y
get the same numbers, such as (1,1,2), and those in which they get different numbers,
such as (2,1,4). The conditions under which a model is possible are roughly: (i) to satisfy
Maab, a row in the truth table has to behave in a way that x and yare interchangeable;
(ii) for each row satisfying Mabc, there must be a related row satisfying Mbac; (iii) for
the two types of row, two corresponding patterns of continuation must be possible, e. g.,

-[
Ml23

Ml12

1\.1225

{

Ml36

Ml23 1\.1238

M33(10)

Proving Theorems by Pattern Recognition, II 169

These conditions can be formalized more exactly and applied, in particular, to show
that 2.2.2 has a model, and therefore its negation is not a theorem. For this purpose, we
assume a formula of the form 2.2.1 for which a truth table T like 2.2.4 is constructed.
When, for example, Gxy in a row R of T gets the same value as Gzz in a row 5 of T, we
shall use the brief notation Rxy = 5 zz •

2.2.5 A row 5 in the table T is a uniform row if 5xy = 5yx, 5xz = 5yz , 5zx = 5zy"

Clearly, for a row to satisfy Ml12, it is necessary that it be uniform. If there is no

uniform row, then there is no model for the original formula.

2.2.6Arow Sin the table Tis an heir of a row Rin Tif Sisa uniformrowandRzz = SXY'
2.2.7 A row in T is trivial if it has no heir.

Since a row having no heir cannot be continued, we may. cross out all trivial rows
and be concerned only with nontrivial rows. This is not theoretically necessary because
further requirements would cross out trivial rows anyhow, but it makes for efficiency.
2.2.8 A row R in the table T is an ordinary row if there is a row 5 such that Rxy = 5yx,

Ryx = 5xy , Rxz = 5yz, Rzx = 5zy, R yz = 5xz , R zy = 5zx . Rand 5 are said to be mates of
each other.

This is the condition under which Rand 5 can satisfy (Ml23, M214) or (M214,
Ml23) respectively.

In the table 2.2.4 for the formula 2.2.2, it is easily verified that only the two
following rows are uniform rows or rodinary rows:

f3

Gxy
t
f

Gyx
t
f

Gxz
f
t

Gzx
f
t

Gyz
f
t

Gzy
f
t

Gzz
f
t

In fact, a and f3 are the only uniform rows, as well as the only ordinary rows. Each of
a and f3 is only a mate of itself.
2.2.9 A uniform row R is permanent if (i) it has an heir which is permanent, and (ii) there
is a permanent ordinary row 5 such that R yz = 5xy , R zy = 5yx . 5 is said to be a
subordinate of R.
2.2.10 An ordinary row R is permanent if (i) it has an heir which is a permanent
(uniform) row, (ii) it has a mate that is a permanent ordinary row, and (iii) there are two
permanent ordinary rows P and 5 such that Rxz = PXY ' Rzx = PYX, R yz = 5xy , R zy

= 5yx• P and 5 are asid to be a pair of subordinates of R.

The two definitions 2.2.9 and 2.2.10 embody a simultaneous recursion. Condition
(ii) in 2.2.9 is necessary, if, e.g., R is to satisfy Ml12 and 5 is to satisfy Ml23. Condition
(iii) in 2.2.10 is necessary if, e.g., R is to satisfy Ml23, P is to satisfy Ml36 and 5 is to
satisfy M238.
2.2.11 The formula 2.2.1 has a model if and only if its truth table T contains a permanent
uniform row.

This assertion will be justified in 2.3. We observe first that both IX and f3 are
permanent uniform rows for the example 2.2.2. In fact, we have various models for the
formula, which are determined, in outline, by the following patterns of continuation:

170 Computation, Logic, Philosophy

More exactly, choose. e.g., \1. as a model of l\1l12. As a continuation of this, j3
satisfies l\1l23 and M225; since j3 is its own mate in the sense of 2.2.8, j3 also satisfies
M214. Similarly, since \1. is its own mate, as a continuation of j3 satisfying l\1l23, \1.

satisfies l\1l36, M317, M238, M329, and M33(1O). In this particular case, the model j3
of M214 can be continued in the same way. Moreover, the model j3 of M225 can be
continued by the row \1., and, e.g., the model \1. of l\1l36 can be continued by the row j3,
and so on.

In the general case, a symmetry argument is needed to show that if a medel of, e.g.,
l\1l23 can be continued, then a model of M214 can also be continued. For example, if
(R, S) satisfy (1\1123, l\1l24) respectively, and (A, B, C, D) satisfy respectively the
continuation (l\1l36, M317, M238, M329) of l\1l23, then it is easy to see that (B, A, D,
C) satisfy the corresponding extension of M214. This means that condition (ii) of 2.2.10
can be weakened to require a mate that is an ordinary row with a permanent heir.

The decision procedure implicit in the above definitions may be described
explicitly thus:
2.2.12 The decision procedure:

1. Construct a truth table T.
2. Find all uniform rows.
3. Cross out all trivial rows.
Let Uo be the set of remaining uniform rows, Vo be the set of remaining ordinary

rows. Each time, assume Un and Vn are given and continue the following four steps:
4. Eliminate every uniform row from Un which has no subordinate row in Vn, thus

obtaining Un + 1 from Un and Vn.
5. Eliminate from Vn every ordinary row which has no mate or no pair of

subordinate rows in Vn , thus obtaining Vn + 1 from Vn-
6. Eliminate every uniform row from Un + 1 which has no heir in Un + 1, thus

obtaining Un + 2 from Un + 1 .

7. Eliminate every ordinary row from Vn + 1 which has no heir in Un + 2 , thus
obtaining Vn + 2 from Vn + 1 and Un + 2·

8. The steps 4 through 7 are repeated until one of two things happens: either at
some stage we obtain an empty U; and an empty ~, then we stop and conclude that the
original formula 2.2.1 has no model; or else after a whole round of the steps 4 and 7, we
find Un + 2 and Vn + 2 remain the same as Un and Vn, then we stop and conclude that the
original formula 2.2.1 has model.

In practice, it is more efficient to perform, if possible, each of the steps 4 through 8
repeatedly, before going to the next step.

The procedure is clearly finite, since Uo and Vo are finite, and each round of steps 4

Proving Theorems by Pattern Recognition, II 171

through 8 must reduce the size of Un or Vn if the procedure has not come to a stop yet.
Moreover, the final sets Ui and V; must be both empty or both nonempty.

2.3 Justification of the Procedure

As a Skolem case, the formula 2.2.1 must not contain Cxx and Cyy. It is, however,

not obvious that we are justified in not including two columns Cxx and Cyy in the truth
tables such as 2.2.4. For a model constructed on the basis of such reduced tables, it is
not evident that, for some positive integer a, Gaa might not be compelled to take on the
value t at one place, and the value f at another. However, we can prove the following:
2.3.1 In every model obtained on the basis of a truth table not including columns for Gxx
and Gyy, for every number a, Gaa is never compelled to take on two different values.

Take, for example, G22. If Gzz occurs in the original formula, G22 is compelled to
take a fixed value in a model with a row R for Ml12. In the same model, if 5 is the row for
1\1225, then Rzz = SXY = Syx. Hence, it is harmless that Sxx and Syy are compelled to take
the same value as both Rzz and SXy(oor Syx). In all other cases, the values for G22 can
always be given the value of Rzz because there is no other place where G22 is
independently compelled to take a certain turth value.

For the same reason, if neither an atomic formula nor anyone obtainable from it by
permuting the variables occurs, we may leave out the columns for them. For example, if
Gzz does not occur, we can leave it out. If neither Gxy nor Gyx occurs, we can leave both
of them out.

On the other hand, if e.g., Gxy and Gzy occur but Gyx does not, we still must
include a column for Gyx. Otherwise, since we do not record the value of Gyx, it may
happen that R satisfies Ml12, with Rzy = t, and 5 satisfies 1\1214 with SXY = f. Then no
row P can satisfy Ml23, because PYX is compelled to take both the value t and the value f,
and this is not recorded without a column for Gyx.

To prove 2.2.11, we remark first that there are three types of instances illustrated
by Ml12, Ml23, 1\1214. For the first kind, an M; of the form Maab, the only ~,j > i,
which have common atomic formulae with M; are Mbbc, Mabd, Mbae, because these
are the only ways in which both the independent variables x and y can be replaced by
numbers occurring in M;, and having only one of the two arguments from M; yields no
common atomic formula. Similarly, if M;is Mabc, a < b, there are only five M j , j > i
which have common atomic formula with M;. By the symmetry argument preceding
2.2.12, the mate Mbae is also taken care of.

Hence, if there is any permanent uniform row, we canfind a model for all instances
M l , M2 , etc., such that each has some common atomic formula with an earlier one, or,
in other words, all those occurring on an infinite tree beginning at MI. This does not
exhaust all the instances. For example, Ml4 and M lS [i.e., M34(15) and M43(16)] are
not included. Since, however, they contain no common atomic formulae with the
instances already interpreted, we can take two permanent ordinary rows which are mates
and get a model for another sequence of instances. In this way, it is seen that, if there is a
permanent uniform row in the table T, then one can so interpret the predicate G in the
domain of the positive integers that the whole sequence Mb M2 , etc., are

172 Computation, Logic, Philosophy

simultaneously satisfied.
The converse is quite obvious. If there is no permanent uniform row, then no

interpretation of Ml12 can be continued indefinitely, and there is an i. such that Ml &
... & M; is true under no interpretation.

2.4 Questions of Efficiency

When doing an example by hand, there are shortcuts we find natural to use. These
may be viewed as more refined methods which can be mechanized by additional efforts.
We give some informal illustration of the type of quick method we tend to use.

Consider the negation of Example (3) given in Part 1. 1

2.4.1 (x)(y)(Ez){ [Gxy & (~ Gyz V ~ Gzz)]

V [(Gxy & Hxy) & (~Hxz V ~Hzz)]).

In the alternative notation, the matrix of the above formula is:

2.4.2 Gxy -4+ Gyz; Gxy +* Gzz; Gxy, Hxy + Hxz; Gxy, Hxy +* Hzz.
The truth table for this is:

2.4.3 Gxy Hxy Gyx Hyx Hxz Hzx Gyz Gzy
rx t f

/3 t
')' t t f
() t t

Gzz Hzz

f

f

Although the formual contains two predicates instead of just one, it is easy to see
that the procedure described above can be extended to cover the case in a very straight
forward manner.

Since there are many blanks in the table, it is essential for efficiency that we do not
expand the table by filling in the blanks (there would be 224 rows), until we are
compelled to do so. In other words, we try to carry out the decision procedure by
treating each row containing blanks as a single row and make expansion only when we
are not able to eliminate them as single rows.

We observe that for every row, in particular, every uniform row, Gxy gets the value
t. It follows that row /3, or more exactly, all the 27 rows obtainable from /3 are trivial by
2.2.7, since an heir of /3 must have Gxytake the value of Gzz in /3, which is f. Hence we
may delete row /3 altogether.

In order that row rx, or any specification R of rx, be permantnt (uniform or
ordinary), it is necessary, by 2.2.9 and 2.2.10, that there is a subordinate row S, such that
Gxy gets the same value in S as Gyz in R, or ~yZ = SGxyo But this is impossible because
~yZ is fin every row obtainable from rx, but SGXY is t in every row. Hence, we can delecte
row rx altogether, and be concerned only with the rows')' and b.

Since Hxy gets t in all the remaining rows and Hzz gets the value fin b, every row

Proving Theorems by Pattern Recognition, II 173

obtainable from b has no heir, and the whole row b can be deleted.
However, no permanent ordinary row can be obtained from,), alone bacause, by

2.2.10, for any such row R there must be a subordinate row P such that RHxz = PHXY'

but in row')', Hxz is always f and Hxy is always t. Hence, there can also be no permanent
uniform row, and, by 2.2.11, the formula 2.4.1 has no model. Therefore, Example (3) in
Part 1,1 the negation of 2.4.1, is a theorem.

Another method of deciding 2.4.1 is the following. We begin with Mb which is a
disjunction of conjunctions, and choose M;, M j , etc., which contain common atomic
formula with Mb in the hope that Mi & M; & M j & .. , as multiplied out into a
disjunction of conjunctions will include in each conjunction some atomic formula and
its negation. The process may have to be continued.

As we observed before, only M2 , M3 , M4 can have common atomic formulae with
Mi' Of these three, on account of the special structure of 2.4.1, M3 has no common part
with Mi' Hence, we need to consider, to begin with, only Mb M 2 , M 4 :

Ml12
Ml23
M225

(i)
Gll -f-> G12;
G12 +> G23;
G22 +> G25;

(ii)
Gll--/'> G22;
G12 --/'> G33;
G22 -+> G55;

(iii)
Gll, ID1--/'>ID2;
G12,ID2 -1-+ ID3;
G22,H22 -1-+ H25;

(iv)
Gll,ID1 -1-+ H22
G12,ID2 -t+ H33
G22,H22 -t+ H55

By the row for Ml23, (i) of Ml12 can be deleted because (i) contains ~ G12 (i.e.,
after -1+), while each clause in the row for Ml23 contains G12. It can be seen then that
every row in colunm(i) can be deleted in the same way, Similarly, (ii) of the row for
Ml12 can be deleted because it contains ~ G22, while each clause in the row for M225
contains G22; therefore, the whole colunm (ii) can be deleted eventually, and we need
only consider the colunms (iii) and (iv). But then (iii) of the row for Ml12 can also be
deleted because it contains ~ ID2, and all the remaining colunms of the row for Ml23
contain ID2. Finally, we have only colunm (iv) left. Now, however ~ H22 occurs in the
row of Ml12 and H22 occurs in the row for M225. Hence, the con junction of the three
rows of colunm (iv) is a contradiction, and 2.4.1 has no model.

2.5 The Inclusion of Equality

The decision procedure in 2.2 can be extended to deal with cases where the equal
sign occurs in the given formula:

2.5.1 (x) (y) (Ez) Mxyz, with = occurring.

Additional considerations are needed to take care of the special properties of = .

First we bring Mxyz into a disjunction of conjunctions of atomic formulae and their
negations, in the usual manner. Then we modify the resulting matrix to take care of the
properties of =. (a) Each conjunction that contains an inequality of the form v 0/= v, v
being x or y or z, is deleted. (b) In each con junction, a clause of the form v = v is deleted.
(c) Within each conjunction, if u = v is a clause with distinct variables u and v, we add
also, as new clauses (if not occurring already), v = u and the result of replacing any

174 Computation, Logic, Philosophy

number of occurrences of u by v(oor v by u) in each clause of the conjunction; this is
repeated for every equality until no new clause is generated. (d) Repeat the steps (a) and
(b) on the result obtained by step (c); in addition, any conjunction which contains both
an atomic formula and its negation is deleted.

We now construct the truth table on the basis of the new matrix (in a disjunctive
normal form). Uniform rows, ordinary rows and permanence can be defined in a similar
manner as before, except that a uniform row has to satisfy the additional condition that
x = yand y = x both get the truth value t (not only that they just get a same value). In
this way, we can obtain a decision procedure for all formulae of the form 2.5.l.

It is believed that the same type of consideration can be used to extend all the cases
considered in this paper to include also the equal sign. In the next two sectings, equality
will be left out and attention will be confined to formulae not containing the equals sign
(nor, of course, function symbols).

9.3 The AzE satisfiahility case

We give an alternative treatment of this case which, it is conjectured, is in general
more efficient than the method of Schutte 1 1 as reformulated by Klaua. 8 The method
will be explained with the special case when only one dependent variable and only one
dyadic predicate G occur:

3.1 (x) (y) (Ez) Mxyz.

The main difference between this case and the case solved in 2.2 above is that Gxx
and Gyyare permitted to occur in Mxyz. As a result, for example, Ml23 may contain
common atomic formula with any Mabc in which a or b is one of 1, 2, 3.

As an example, we choose arbitrarily the following:

3.2 (x) (y) (Ez) [~ Gxx & (Gxy::::; ~ Gyx) & Gxz & (Gzy::::; Gxy)].

3.3

3.4

The matrix may be rewritten as:

Gxz -f> Gxx, Gxy,Gzy; Gxz,Gxy ~ Gxx,Gyx;
Gxz fr Gxx,Gyz,Gzy.

The truth table is:

Gxx Gxy Gyx
f f
f f
f t f

Gyy Gxz
t

t

t

Gyz Gzx Gzy
f
f

Gzz

The problem is, as before, to decide whether there is a model that satisfies M 1 , M z ,
etc., simultaneously. The conditions are rather similar to those in 2.2 except that for any
two rows Rand S which, say, satisfy Mabc and Mdefin a model, there must be two rows
which satisfy Mcfg and Mfth in the model. There is also a related requirement for a row
satisfying M 1, because the number 1 is never used to replace a dependent variable. The

Proving Theorems by Pattern Recognition, II

various conditions may be stated:

3.5 A row R is uniform if Rxx = Rxy = Ryx = Ryy, Rxz = Ryz , Rzx = Rzy.

3.6 A row S is an heir of a row R if S is uniform and Rzz = Sxx'

3.7 Two rows Rand S form a parallel pair if Rxx = Syy, Rxy = SyX'

Ryx = Sxy, Ryy = Sxx, Rxz = SyZ' Ryz = SXz> Rzx = SZY' Rzy = Szx-

Two rows of a parallel pair are said to be mates of each other.

175

If Rand S are to satisfy Mabc and Mbae, it is necessary that they form a parallel
pair. In general, for a row satisfying Mabc, there must also be two parallel pairs of
related rows satisfying Macd, Mcae, Mbcf, Mcbg, When a = b, the two parallel pairs
become one. TIlls, plus the requirement that every row in a model must have an heir may
be summarized in the following condition.

3.8 A row R is normal if the following conditions are all satisfied:

3.8.1 It has a normal row as a mate;

3.8.2 It has an heir which is a normal row;

3.8.3 There are two normal rows P and S such that Rxx = Pxx, Rxz = PZY' Rzx = PYX,
Rzz = Pyy, and Ryy = Sxx, Ryz = SXy, R zy = SyX' Rzz = SYy" Such rows P and S are said
to be subordinates of R.

A uniform row is its own mate, although a self-mated row is not always a uniform
row. For a uniform row, 3.8.1 is a redundant condition, and P and S coincide in 3.8.3.
The definition 3.8 of normality is clearly recursive.

In the table 3.4, we observe that, because Gxx always takes the value f, Gzz can only
take the value f in order that the row has an heir. Moreover, since Gxx always gets the
value f and Gxz always gets the value t, in order that a row has a mate, Gyymust always
take the value f and Gyz always t. Hence, we need consider only the following eight rows
which result from filling the remaining gaps:

3.9 Gxx Gxy Gyx Gyy Gxz Gyz Gzx Gzy Gzz
rx f f f f t t f f f

/31 f f t f t t f f f
/32 f t f f t f f f
a f f t f t t t f f
b f t f f t t f t f
c f f f f t t t f f
d f t f f t t t f f
e f t f f t t t f

Rowe has no mate, beacuse of the columns 5 to 8. Rows c and d have no mate,
because b, the only row satisfying the condition on Gzx and Gzy, does not satisfy the
condition on Gxyand Gyx. Neither row a nor row b has subordinates as required by
3.8.3. Hence, we have only the remaining rows rx, /31> /32 to, consider.

176 Computation, Logic, Philosophy

rx is the only uniform row, (13 1. 132) form a parallel pair, and [32 is both P and 5 in
3.8.3 for all the three rows rx, [31, [32' Hence, we have, for example:

(M225, Cl)
(M33(1O), Cl)

(M1l2, Cl) [M123' ~,) [(M135, [32)
(M316, [31)

(M237, [32)

(M328, [3d
(M214, [31)

In particular, (Ml24, [31) can be continued in the same way as (Ml23, [32)' Indeed,
continuation in every branch can be made similarly. In other words, rx, [31. [32 are all
normal by 3.8. This, however, does not yet secure a model for the formula 3.2. There are,
for example, those instances in which (1, 5), (5, 1), (3, 4), (4, 3), etc., replace (x, y) of
Mxyz; they also have common atomic formulae with the instances shown in the above
graph.

3.10 A formula 3.1 has a model if and only if (a) it has a nonempty table of normal rows,
(b) this table has a nonempty subtable T such that:

3.10.1 For every pair (R, S) in T', there is a parallel pair (P, Q) in T' such that Pxx

= Rzz, Qxx = 5zz .

3.10.2 There is a uniform row R in T' such that for every row 5 in T', there is a parallel
pair (P, Q) in T', for which Pxx = Rxx. Qxx = 5zz .

There are the additional requirements mentioned after 3.4. In the example under
consideration, the table consisting of all the three normal rows Cl, 131. [32 satisfies the
requirements on T'. Hence, 3.2 does have models. One model for the predicate G is the
relation < among positive integers. That is, however, not the only model, because the
model of G does not have to be transitive. For example, G15 and G51 can be (t, f) or (f. t)
or (f, f).

It can be verified that the conditions in 3.10 are indeed necessary and sufficient.

4.1 A Generalized Game of Dominoes

The study of the decision problem of the present case has suggested a related
abstract mathematical problem which can easily be stated in everyday language. The
problem appears to be of interest even to those who are not concerned with questions in
mathematical logic.

Assume we are given a finite set of square plates of the same size with edges colored,
each in a different manner. Suppose further there are infinitely many copies of each

Proving Theorems by Pattern Recognition, II 177

plate (plate type). We are not permitted to rotate or reflect a plate. The question is to
find an effective procedure by which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently, an infinite quadrant thereof)
with copies of the plates subject to the restriction that adjoining edges must have the
same color.

For example, suppose a set consists of the three plates:

Then we can easily find an infinite solution by the following argument.
The following configuration satisfies the constraint on the edges:

ABC
CAB
B C A

Now the colors on the periphery of the above block are seen to be the following:

1
3
2

354

354

1
3
2

In other words, the bottom edge repeats the top edge, and the right edge repeats the left
edge. Hence, if we repeat the 3 x 3 block in every direction, we obtain a solution of the
given set of three plates. In general, we define a "cyclic rectangle".

4.1.1. Given any finite set of plates, a cyclic rectangle of the plates is a rectangle
consisting of copies of some or all plates of the set such that: (a) adjoining edges always
have the same color; (b) the bottom edge of the rectangle repeats the top edge; (c) the
right edge repeats the left edge.

Clearly, a snfficient condition for a set of plates to have a solution is that there exists
a cyclic rectangle of the plates.

What appears to be a reasonable conjecture, which has resisted proof or disproof so
fam is:

4.1.2 The fundamental conjecture: A finite set of plates is solvable (has at least one
solution) if and only if there exists a cyclic rectangle of the plates; or, in other words, a
finite set of plates is solvable if and only if it has at least one periodic solution.

It is easy to prove the following:

178 Computation, Logic, Philosophy

4.1.3 If 4.1.2 is true, we can decide effectively whether any given finite set of plates is
solvable.

Thus, we proceed to build all possible rectangles from copies of the plates of
different sizes, using smaller ones first. If 4.1.2 is true, the process will always terminate
in one of two ways: either at some stage we arrive at a cyclic rectangle and, therefore, the
original set is solvable; or else we arrive at a size such that there is no rectangle of that size
in which ad joining edges always have the same colors. The latter alternative is in fact a
necessary and sufficient condition under which the original set is not solvable. However,
if 4.1.2 is not true, it would be possible that a set has a solution, but we can never see this
fact by the latter criterion at any finite stage: there would always be the possibility that
for the next size there exist no rectangles with same-;::olored ad joining edges.

There is a naturally uneasy feeling about the effectiveness of such a procedure. The
argument is essentially the familiar one that if a set and its complement are both
recursively enumerable, then the set is recursive. It shows that the procedure always
terminates (provided 4.1.2 is true) but gives no indication in advance as to how long it
might take in each case.

If 4.1.2 is proved, it seems likely that it would be proved in a stronger form by
exhibiting some simple recursive functionfwith the following property. For any set of
plates with m distinct colors and n distinct plates, if the set is solvable, there is a cyclic
square of the size k x k, where k = f(m, n). If that happens, or even if we have not
exhibited such a functionfbut 4.1.2 can be proved by fairly elementary arguments, we
would have some estimate in advance of how long the procedure takes in each case.

As it is, we can make the testing procedure quite systematic even though we do not
know whether 4.1.2 is true. The procedure would be a decision procedure and
presumably quite an efficient one, if 4.1.2 is true. If 4.1.2 should turn out to be false,
then the procedure would only be a semi decision procedure. In fact, it is possible to
show that the procedure does work in several classes of cases, e.g., when a set has unique
solution apart from translations, or whenever either horizontally or vertically no color
can be followed by different colors. But we shall not delay over such partial results.

If 4.1.2 should be false, then there would be two possibilities: either the set of all
solvable finite sets of plates is not recursive, or it is recursive but requires a more
complex decision procedure.

The problem can clearly be generalized to higher dimensions: for example, to cubes
with colored surfaces instead of squares with colored edges.

We return now to the A1E1Al satisfiability case.

4.2 Preliminary Definitions and an Example

The general form of the case is:

4.2.1 (x)(Ey)(z) Mxyz,
where M is a quantifier-free matrix containing neither function symbols nor the
equality sign. From the fundamental theorem, it follows that 4.2.1 is satisfiable
(solvable) if and only if each finite subset of the infinite set of matrices Miij (i, j = 1,2,
...) is solvable (not contradictory). Since the second number is always the successor of

Proving Theorems by Pattern Recognition, II 179

the first, we shall write Mij for Mii'j.
We illustrate the general case by considering the special case where Mxyz contains

only a single dyadic predicate G. The negation of Example (4) given in the introduction
of Part P will be the concrete example:

4.2.2 (x)(Ey)(z) [~Gxx & Gxy & (Gyz ::::J Gxz)].
In the alternative notation, the matrix is

4.2.3 Gxy, Gxz + -+ Gxx; Gxy + -+ Gyz, Gxx.
The truth table is:

4.2.4 Gxx Gxy Gyx
f t

f t

f t

Gyy Gxz
t
t
f

Gzx Gyz
t
f
f

Gzy Gzz

Since there are five blank columns, there are altogether 3 x 25 or 96 rows. The
problem now is to decide whether we can choose one row for each matrix Mij(ij = 1,2,
...) such that, taken, together, all the matrices come out true. This really involves both
the problem of finding the pieces and the problem of putting them together. Thus, if j is
distinct from i and i', any row can satisfy Mij alone, if we substitute i, i', j for x, y, z in the
truth table; but a row can satisfy Mij when j is i or i' only in case certain related columns
get the same truth values. This is the problem of finding the pieces. When there are such
pieces, there is the harder problem of putting them together. For example, if there are
rows satisfying MIl and MI2 separately, there may yet be no pair of rows which satisfy
MIl and MI2 simultaneously because the common atomic formulae in both matrices
must get identical values.

Since the putting-together part is quite complex, it seems natural to combine small
pieces into blocks first. For this purpose, we consider row pairs and row quadruples (i.e.,
pairs of pairs).

D4.1 Two rows P, Q in the truth table T form a basic row pair (P, Q) if, for some i,
they can simultaneously satisfy Mii' and Mii respectively. More explicitly, the
conditions are:

i. Pyy = Pyz = Pzy = Pzz, PXy = Pxz, PYX = Pzx;
ii. Qxx = Qxz = Qzx = Qzz, Qxy = QZY' QyX = Qyz;

iii. Pxx = Qxx, PXy = QXY' Pyx = QyX' Pyy = QyY"
In the table 4.2.4, it is easy to verify that there are only two basic row pairs (IX, 13) and

(y, 6):

4.2.5

13
y
6

Gxx Gxy
f t

f t

f t
f t

Gyx
f
f
f
f

Gyy
f
f
t
t

Gxz
t

f
t

f

Gzx
f
f
f
f

Gyz
f
f
t

f

Gzy
f

t

t

Gzz
f
f
t

f

Obviously basic row pairs are necessary for building a model of 4.2.1. In fact, given

180 Computation, Logic, Philosophy

any formula 4.2.1, if its truth table T contains no basic row paris, then it has no model
and, indeed, the conjunction of 1\111 and 1\112 is a contradiction.

We shall consider pairs of row pairs, called row quadruples, which are useful in
chaining row pairs together.

D4.2. Given any two row quadruples (A, B; C, D) and (P, Q; R, 5), if C = P, D
= Q, then the former is a predecessor of the latter and the latter is a successor of the
former.

D4.3 Four rows P, Q, R, 5 form a basic row quadruple (P, Q; R, 5) if, for some i,
they satisfy simultaneously Mii', Mii, M ii", Mi' i', respectively, or, more explicitly, if:

i. (P, Q) and (R, S) are basic row pairs;
ii. Pyy = Rxx ;

iii. (P, Q; R, 5) has a successor which is a basic row quadruple.
In the table 4.2.4, there is only one basic row quadruple, viz. (IX, /3; IX, /3). The

quadruple (IX, /3; y, (5) satisfies i and ii, but not iii. It is easy to see that, given any formula
4.2.1, if its truth table T contains no basic row quadruples, then it has no solution and,
indeed, the conjunction of 1\112, 1\111, 11123, 11122, .M34, .M33 is a contradiction.

Clearly, if a row R satisfies Mij in a model, then there must be one row 5 which
satisfies Mji, one basic row quadruple (A, B; C, D) which satisfies Mii', Mii, Mi'i",
Mi' i', and one basic quadruple which satisfies Mjj, Mjj, Mjl', Mj j. In particular, when
j is i, we get the basic row pairs which occur in some basic quadruple.

D4.4 Two rows R, 5 form an ordinary row pair (R, S) if
i. Rxx = Szz, Rxz = SZY' Rzx = SyZ' Rzz = Syy;
ii. There is a basic quadruple (A, B; C, D) such that Axx = Rxx , Azy = Rxy, Ayx

= Ryx, Ayy = Ryy;
iii. There is a basic quadruple (P, Q; K, L) such that Pxx = Sxx, PZy = SXY' PYX

= Syx, Pyy = SYy"
In the table 4.2.4, since the only basic quadruple is (IX, /3; IX, /3), it is relatively simple

to find all the rows which do occur in ordinary row pairs. Since every row which is to
satisfy some Mij in any solution must occur as one row in some ordinary row pair, we
tabulate all such rows together and, from now on, confine our attention to them. It
happens in this example that all these rows have in common five columns:

Gxx Gxy Gyx Gyy Gzz
f t f f f

Therefore, we only have to list the remaining columns:

4.2.6 Gxz Gzx Gyz Gzy ordilWry
pa~rs

IX t f f f (IX, /3)
/3 f f f t (/3, IX)

(51 t t t t ((510 (1)

Proving Theorems by Pattern Recognition, II 181

152 f f f f (15 2 , 15 2)

b3 t f f t (b 3, (3)

b4 t f t f (b 4 , 65)

b5 f t f t (b 5 , b4)

b6 t f t t (6 6 , 67)

b7 t t f t (b 7 , b6)

In fact, if only the four columns have to be considered, there are 12 rows in the
original table 4.2.4, and the two rows (R, S) in each ordinary row pair satisfy the
condition: Rxz = Sxy, Rzx = Syz. Hence, it is easy to get the above table. Briefly, the
relevant information for the example is the nine ordinary pairs given above and the basic
quadruple (0(, [3; 0(, [3).

Thus far we have been concerned only with rather elementary properties of the
rows in the truth table. The more involved part is to design a scheme of extending
recursively the construction of models. In order to explain how this is done, we
introduce a chart.

4.2.7 Chart for (x)(Ey)(z) Mxyz:
Basic Pairs Cyclic Pairs Common Row Pairs
(Mii', Mii) (Mii", Mi'i) (Mi(i" + k), M(i' + k)i)

(12,11) - (13, 21) (14, 31) (15,41) (16, 51)

d3,22)L
I L j LI L ~

(24,32) (25,42) (26,52)

(~4, 33)L
t L I L ... ~ (35,43) (36,53)

(~, 44)L I L ... (46,54)

(~, 55)L
j

I

In the chart, the ordinary row pairs satisfying (Mij, Mji) are divided into three
classes: basic when i = j, cyclic when i' = j, common otherwise. The general plan of the
procedure is as follows. The existence of basic row quadruples assures that we can find a
model for all the matrices MI2, MIl, M23, M22, etc. in the first column. Similarly, we
can define cyclic quadruples to give an effective condition for the existence of a model
for all matrices appearing in the second column of the chart, and so on. But in order that
these models can be combined to give a model for all the matrices and therewith for a
given formula 4.2.1, each column must be related to the column on its left in a suitable
manner. This situation with two infinite dimensions seems to be the chief cause of the
complexity of the A1E1Al case.

182 Computation, Logic, Philosophy

In the chart of 4.2.7, each row pair (R, S) that is not basic is subordinate to a
quadruple (A, B; C, D) made up of the two row pairs (A, B), (C, D) on its left with arrows
leading to it. The quadruple is said to be superior to the pair (R, S).

D4.S An ordinary row pair (R, S) is a subordinate of a quadruple (A, B; C, D) if
i. Rxx = Axx, Rxy = Axy, Ryx = Ayx, Ryy = Ayy, Ryz = Cxz, Rxy = Czx, Rzz

= Czz ;

ii. Sxx = Dxx, SXy = Dxy, Syx = Dyx, Sxz = Azx> Szx = Axz .
Aquadruple (R, 5; P. Q) is subordinate to a row sextuple (A, B; C, D; K, L) if (R, S) is
subordinate to (A, B; C, D), and (P, Q) to (C, D; K, L).

D4.6 Two rows R, 5 form a cyclic row pair (R. S) if
i. (R. S) is an ordinary row pair;

ii. Rxy = Szx, Ryx = Sxz, Ryy = Sxx, Ryz = SXy, Rzy = Syx'
Obviously, given 4.1, if its table contains no two rows forming a cyclic pair, then the

conjunction, briefly C6 , of MI2, MIl, M23, M22, MI3, M21 is a contradiction.
In the table 4.2.6, there are, among the nine ordinary row pairs, only one that is

cyclic, (64 , 65), Since there are only one basic quadruple, each has only one superior.
This is of course not always the case, it is only due to special features of the example
4.2.2.

In order to find out whether there is any succession of cyclic pairs which will satisfy
all rows of the column for cyclic pairs in the chart, we study cyclic quadruples.

D.4.7 Four rows P, Q, R, 5 form a cyclic quadruple (P, Q, R, S) if
i. (P. Q) and (R, S) are cyclic row pairs;

ii. Qxx = Rxx , QXY = Rxy, QyX = Ryx> Qyy = Ryy;
iii. There is a basic sextuple (A, B; C, D; K, L); which is respectively superior to (P,

Q; R, S);
iv. (P, Q; R, S) has a successor which is also a cyclic quadruple.
Obviously, given a formula 4.2.1, if its table contains no rows that form a cyclic

quadruple, then the conjunction of C6 , M34, M33, M24, M32 is a contradiction.
The existence of a cyclic quadruple certainly assures that we can satisfy all the rows

of the second column of the chart simultaneously. It assures a bit more: the two pairs (P,
Q), (R, S) of a cyclic quadruple are always compatible with any three pairs (A, B), (C, D),
(K, L) which form two basic quadruples, respectively superior to them. This is, however,
insufficient to secure that all the rows in the first two columns of the chart can be
simultaneously satisfied, because it is possible that no cyclic quadruple beginning with
(R, S) is subordinate to any quadruple begining with (K, L). In other words, the blocks
might not fit together.

A::; it happens, this problem does not arise with the example 4.2.2. Since there is
only one cyclic pair (64 , 66), there can be at most one cyclic quadruple, viz, (64 , 65 ; 64 ,

66), It can be verified by D4.7 that this is indeed a cyclic row quadruple. Since there is
only one basic quadruple (ex, fJ; ex, fJ), we see immediately that by using (ex, fJ) for (Mit,
Mii) (i = 1,2, ...) and (64 , 65) for (Mit', Mt i) (i = 1,2, ...), all these matrices (oofthe
first two columns of the chart) are simultaneously satisfied. Moreover, this is the only

Proving Theorems by Pattern Recognition, II 183

possible model for the two initial infinite columns of matrices.
We shall first define common row quadruples, settle 4.2.2, and then come back to

the more general question.

D.4.8 Two ordinary row pairs (R, 5), (P, Q) form a common quadruple (R, 5; P, Q) of
order k[i.e., in the (2 + k) th column of the chart] if

i. When k = 1, there is a cyclic row sextuple which is superior to (R, 5; P, Q); or
when k = n + 1, for some positive integer n, there is a common row sextuple of order n
which is superior to (R, 5; P, Q).

ii. (R, 5; P, Q) has a successor which is a common quadruple of order k.
By this definition, we can successively find the common row quadruples of orders

1, 2, etc. In the actual procedure, we examine each time to determine whether we have
already enough information to decide the original formula. Only when this is not the
case do we find the common quadruples of the next order.

In the case of 4.2.2, since (64 ,6 5 ; 64 , 65) is the only cyclic quadruple, it is easy to
verify, by 4.2.6 and D4.S that (6 4 , 6 5 ; 64 , 65) is the only common quadruple of order 1.
Thus, by D4.5, if (R, 5) is subordinate to the cyclic quadruple (64 , 65 ; 64 , 65), Ryz
= (6 4)xz = t, Rzy = (6 4)zx = J, and Sxz = (6 4)zx = J, Szx = (6 4)xz = t. By 4.2.6, (R, S)
must be (64 , 65),

From this, it follows that, for every n, there is exactly one common quadruple of
order n, viz. (64 , 65 ; 64 , 65), This is an immediate consequence of D4.8 and the above
transition from the cyclic column to the first common column in the chart. Hence, we
have obtained a model for 4.2.2. It is easy to verify that the model for G is just the usual
ordering relation < among pOSItIve integers.

This completes the solution of the example 4.2.2, which, however, is not a
sufficient illustration of the general case. We have to discuss a procedure by
considering more complex situations.

4.3 The Procedure

One possible procedure is to add one infinite column at a time. Thus, it is possible
to represent all possible solutions of each column by a graph, and to represent the
solutions satisfying all the initial n' columns by a finite set of graphs if it is possible so
to represent all solutions satisfying the initial n columns. Since the common columns
enjoy a measure of uniformity, simultaneous solutions for all the columns would be
assured if suitable repetitions occur. An exact explanation of such a procedure would
be quite lengthy. In any case, a successful choice of patterns of repetition has not been
found to assure that for every solvable table, such repetition always occurs.

Instead of elaborating the above procedure, we transform the problem to
something similar to the abstract question of 4.1. Thus, given any formula of the form
4.2.1, we can, as in 4.2, construct its truth table and find all the common row pairs in
the table. Among the common row pairs, some are also cyclic row pairs and some are
also basic row pairs.

If now we take the common row pairs a, b, c, d, etc., as elementary units which are

184 Computation, Logic, Philosophy

to fill up the infinite quadrant as shown it the chart given under 4.2.7, then the
following scheme appears to be feasible. Suppose the points in the infinite quadrant are
to be filled by aij, i,j= 1, b,"', then we may consider instead all the 2 x 2 matrices:

for all l, j = 1, 2, ...

In other words, given the common row pairs, we can form all possible 2 x 2 matrices of
them which satisfy the relations of subordination. These 2 x 2 matrices are then the
basic pieces from which we are to obtain an infinite solution subject to the conditions:
(a) consecutive rows or colunms from two matrices are the same; (b) only basic and
cyclic row pairs are permitted in the first two columns.

It can be verified that the problem of finding a model for the original formula is
equivalent to that of finding a way to fill up the infinite quadrant by such derived 2 x 2
blocks of row pairs.

The abstract problem is: given any finite set of 2 x 2 matrices of the form

to decide whether it is possible to fill up the infinite quadrant with copies of these
pieces. This is not quite the same as the problem of colored plates described in 4.1,
because here what is done amounts to coloring the corners, or imposing connections
between neighboring sides within a same square.

Any set of such 2 x 2 matrices can also be construed as a set of colored plates.
Conversely, given any set of colored plates, we can also find in a systematic manner a
corresponding set of such matrices such that the solvability problems for them are
equivalent. For example, we may replace a colored plate by a block of nine 2 x 2
matrices so that the restriction on neighboring sides no longer operates.

It is possible to use a procedure similar to the one described roughly in 4.1. Some
change is needed to take care of the additional conditions on the first two columns.
Thus, a sufficient condition is to get a cyclic rectangle m x n on which we can attach a
frill of two columns on the left to obtain a rectangle m x (2 + n) such that: (a) the tops
of the first two columns are the same as the bottoms; (b) the additional requirements of
being basic or cyclic are satisfied by the frills.

4.4 Further Problems

The discussions so far seem to have barely scratched the surface of a group of
rather difficult problems, among which the basic one is probably that of measuring the
complexity of formulae in the predicate calculus.

One may measure the complexity of a formula in many different ways. The
"simplest" model of a formula may be taken as a semantic measure. The quantifier
prefix or graph of a formula may be taken as a syntactic measure. In addition, for
formulae with a same prefix, we may also classify the possible matrices by the truth

Proving Theorems by Pattern Recognition, II 185

tables. Our knowledge on using these criteria to give detailed classifications seems very
limited. One example of the ignorance is the following open problem (Ref. 2, p. 177):
whether there is any class of formulae which is neither decidable, nor a reduction class.
It appears reasonable to conjecture that there must be such classes, altlwugh the first
examples which one will get are likely to be artificial ones.

Some of the reduction classes are, formally speaking, surprisingly simple. For
example, from the Suran yi normal form given above as case VIII, it follows that, for

satisfiability, one reduction class is:
4.4.1 Formulae with prefix (x)(y)(Ez)(w) Mxyzw, where M contains neither function
symbols, nor = nor predicate letters which are not dyadic.

Since each matrix M is effectively determined by a truth table on the atomic
formulae in M, the class may be viewed as a union of a simple sequence of finite classes
el , ez, etc., where en is the subclass of formulae each containing exactly n predicates
(or, equivalently, the first n predicates in some enumeration). There is a sense in which
the decision problem for each finite set of formulae is solvable, and yet usually we as a
matter of fact only solve the problem as a corollary to a solution for some infinite class.

To obtain a semidecision procedure for the class VIII or 4.4.1, we need more
complicated arrangements of triples or quadruples of positive integers than the case
A1E1Al . Take, for example, the class in case VIII. We have to consider not only the
triples (a, b, c) with b = a', but all the triples for the first half of the formula, and
among them those for the A2El case are used simultaneously for the second half of the
formula.

An example is:
4.4.2 (x)(y)(z)(~GxyV ~GyzV Gxz) & (x)(y)(Eu)(~Gxx&Gyu).
If we use the Skolem function g of the A2El case, we can rewrite the above as
4.4.3 (~ Gxy V ~ Gyz V Gxz) & (~ Gxx & Gygxy).

In general, we are concerned with deeiding the satifiablity of formulae of the form
4.4.4 Mxyz & Nxygxy.
As (x, y, z) runs through all triples of positive integers, we get an infinite sequence from
4.4.4, and a semidecision procedure is to decide, for certain cases, whether such an
infinite sequence can be simultaneously satisfied.

For example, we may throw together all permutations of a given triple, and
confine ourselves to the triples (a, b, c) with a ~ b ~ c, assigning each of them a lattice
point:

j(x, y, z} = (x - 1, z - x, z - y),
.r l(X, y, z) = (x + 1, x + y, x + Y + z).

The correlation uses all lattice points (x, y, z) of nonnegative integers. For instance, (1,
3, 5) gets the point (0, 2, 2).

We might try to create different types of cubes each with eight vertices from (i, j,
k) to (i', j, k) and piece them together. But it is not easy to see how to find a procedure
analogous to that described in 4.1 which would at the same time take into consideration
the second half of the formula.

186 Computation, Logic, Philosophy

9.5 A proof procedure for the predicate calculus

5.1 The Quantifier Free Logic F

Given the definition of formulae in 1.2, we can define sequents, antecedents,
consequents, as in Ref. 13, p. 5 The sequents in F are those containing no quantifiers
and the rules for F are exactly the same as those for P. (Ref. 13, p. 8), except for
containing not only variables but also functional expressions as terms.

Example1.1 #- x', x = x + 1 --+ 1 #- x + 1

By the rules P2a and P2b (Ref. 13, p. 5), this is a theorem if the following is:

1 = x + 1, x' = x + 1 --+ 1 = x'.

This is a theorem be P7 and Pd (Ref. 13, p. 8).

+y
Example 2.x + y' = (x + y)', y #- x + y, y' = v' ::::> y = v, v = x + y --+ y' #- x

By P2a, P2b, and PSb, this is a theorem if the following two sequents are:

1. x + y' = (x + y)', Y = v, v = x + y, y' = x + y --+ y = x + y;

ll. X + y' = (x + y)', v = x + y, y' = x + y' --+ y' = v', y = x + y.

i. is a theorem by P7 and P8 since we can replace y and x + y by v.
ii. is also a theorem because we can replace v' by (x + y)' and then y' by x + y' in

the first clause of the consequent and the result is a theorem by PI.
These rules in fact yield a decision procedure for all quantifier-free sequents. In

order to see this, we use a more efficient method to speed up applications of P7 and P8.
Given an atomic sequent which contains equality but is not yet a theorem by PI or

P7. List every pair (a, b) if a = b occurs in the antecedent. Extend repeatedly the set of
pairs by symmetry and transitivity. Join each pair by the equals sign and add all of
them to the antecedent. Now compare each clause in the antecedent with each clause in
the consequent to see whether there is a pair of clauses which can be obtained from
each other by substituting equals for equals; moreover, examine each equality in the
consequent to see whether it can trun into 11 = 11 by substituting equals for equals. If
either case occurs, the sequent is a theorem. If neither is the case, then we can find an
interpretation of the functions and predicates so that the antecedents are all true but
the consequents are all false.

5.2 The Rules for Quantifiers.

In the present formulation of the predicate calculus, one emphasis is on
separating out reversible rules of proof which serve to supply decision procedures as
well, because they have the property that not only the premises imply the conclusion
but also conversely.

Proving Theorems by Pattern Recognition, II 187

The rules governing quantifiers were gwen En Part 1.1*

The justification of the reduction to subproblems (Part I, T2.1) is obvious
because all truth-functional rules are reversible and (x)(Gx & Hx} is a theorem if and
only if (x)Gx and (x)Hx both are.

Usually T2.2 (Part I) is true, but restrictions are necessary, as the following
example would show:

{x){Ey)[{z)Gyz & Hxy J.
Although x does not occur in the scope of (z), there is no way to bring (z) out of the
scope of (x) because the variable y ties up the two clauses in the formula. There are
several possible alternatives: one may make exact the restrictions needed, or record the
scope of each quantifier in the usual manner, or use the easy simplification that when a
quantifier governs a formula with two halves joined by a logical connective but the
variable of the quantifier occurs only in one of the two halves, the scope is just that
half.

The test of connectedness of variables and functors (Part I, T2.3) is meant as a
device to simplify the interconnections between quantifiers. In particular, the test
gives a method for ascertaining that certain apparently complex sequents fall under the
AE provability case. In order, however, actually to bring such a set of sequents into the
AE form, we need in general transformations similar to those used in reducing a
sequent to the miniscope form. Since the process can be tedious, one may prefer an
alternative method of not carrying out the transformation but merely determining a
bound k such that either the original sequent is a theorem or has a counter-model with

*"54. When the input problem contains quantifiers, the following preliminary simplifications are made:

(i) All free variables are replaced by numbers, distinct numbers for distinct variables. (ii) Vacuous

quantifiers, i.e., quantifiers whose variables do not occur in their scopes, are deleted. (iii) Different

quantifiers are to get distinct variables; for example, if (x) occurs twice, one of its occurrences is replaced by

(z), z being a new variable. This last step of modification is specially useful when occurrences of a same

quantifier are eliminated more than once at different stages.

"55. After the above preliminary simplifications, each problem is reduced to as many subproblems as

possible in the following manner: (i) Eliminate in the usual manner every truth-functional connective which

is not governed by any quantifiers. (ii) Drop every initial positive quantifier (i.e., universal in the consequent

or existential in the antecedent that is not in the scope of any other quantifier) and treat its variable as free,

i.e., replace all its occurrences by those of a new number. (i) and (ii) are repeated for as long as possible. As a

final result of this step, each problem is reduced to a finite set of subproblems such that the problem is a

theorem if and only if all the subproblems are .

"T2.1 The original problem is a theorem if and only if all its subproblems (in the above sense) are.

"T2.2 We can separate out Q and its scope from those quantifiers whose variables do not occur in the

scope of Q.
"'T2.3 If two symbols, each a funcLor or a variable, are not connected in the final matrix. we can alway!')

so transform the original sequent as to separate the two quantifiers which give way to them."

188 Computation, Logic, Philosophy

no more than k objects. If this alternative is chosen, a method for calculating the bound
k has to be devised.

In any case, when we have a finite set of atomic sequents and a set of governing
relations among the variables and functors, we should further simplify the matrix, i.e.,
the set of atomic sequents by the familiar methods of dropping repetitions and
immediate consequences.

If there are two subsets of the set of atomic sequents which contain neither
common variables nor common functors, then they can be separated.

Moreover, each atomic formula that contains neither variables nor functors can be
eliminated by the familiar method of replacing F(p) by F{t) & F{f). In other words, it
can simply be dropped on the ground of the following consideration. E.g., take

Guv, Gll ---+ Guk.

This IS equivalent to the conjunction of:

Guv,t ---+ Gvk;
Guv,f ---+ Gvk.

But the second sequent is always true and can be dropped; the t in the first sequent can
be dropped, so that we have

Guv ---+ Gvk.

Mter all the above steps, we arrive at a finite set of finite sets of atomic sequents
which, taken together, are equivalent to the original problem. We may consider each
finite set of atomic sequents separately and proceed according to the governing
relations between their variables and functors.

We can view the set as a formula in the prenex form with a matrix in a conjunctive
normal form. Or, if we prefer, we may replace ---+ by -f+ and construe the variables as
universal quantifiers, the functors as existential quantifiers. Then we get a negation of
the formula in prenex form with a matrix in the disjunctive normal form.

In either case, the remaining problem is to be handled by considerations such as
those explained in Sections II through IV.

There is an easily mechanizable procedure by which we can, in theory, not only
prove all provable formulae, but also refute all formulae which have finite
countermodels. All we have to do is test, besides the sequence Mb M2 , M3 , etc.,
whether a formula is satisfiable in a domain with one object, or two objects, or etc. For
example, given

(x)(y)(Ez)Mxyz, (1)

if some of Ml12, Ml23, ... is contradictory, then the negation of (1) is a theorem; if
relative to some finite domain, (1) can be satisfied, then the negation of (1) is not a
theorem. For example, (1) is satisfiable in a domain with one object if and only if Mlll
is satisfiable; with two objects, if and only if

(x)(y)(Mxyl V Mxy2)

Proving Theorems by Pattern Recognition, II 189

or

(x) [(Mxll V Mx12) & (Mx21 V Mx22)]

or
[(Mlll V Ml12) & (Ml21 V Ml22)] & [(M2ll V M212) & (M221 V M222)]

is satisfiable.

9.6 Remarks on mathematical disciplines

Besides the contrast between proving and calculating, there is contrast between
symbol manipulation and number manipulation. There are problems such as proving
trigonometric identities, factorization, differentiation and integration, which all appear
to be mechanizable. In numerical calculations, it appears likely that the process of
choosing one or another method of ealculation can also be mechanized in many cases.

There is the problem of applying the methods considered so far to deal with
concrete examples.

One example referred to in Part 11 (p. 231) is Hintikka's derivation of a contradic
tion from his own formal system. 14Here, intuitive understanding is required to select
from the set of all axioms suitable members which are sufficient to produce contradic
tions. Experience, however, shows that, even after a reasonable selection is made, to
actually give an exact derivation of a contradiction remains quite a dreary affair. In
such a case, the sort of procedure discussed in this paper can be useful.

In fact, Hintikka uses five axioms to derive a contradiction. Write briefly:

Hayz for z=f.a & z=f.y & zEy & yEZ.

The conjunction of the axioms is:
(Ex)(Ey)(x =f. y) & (Ea)(Eb)(Ec)(Ed)(y){ [y =f. a :::J (yE a == (Ez}Hayz)] &

[y =f. b :::J (yE b == ~ (Ez}Hbyz)] & (2)
[y=f.C:::J(yEc==(y=aV y=b))] & [y=f.d:::J(YEd==y=c)]}.

The assertion is that (2) leads to a contradiction. In other words, (2) has no model,
and its negation is a theorem of the predicate calculus. To decide whether this assertion
is true, we only have to test (2) by essentially the method of Section III because (2) can
be transformed into a formula with EA 2E prefix. Such a method yields also a proof or a
refutation of the assertion that (2) gives a contradiction.

In a different direction, we may consider some simple examples in the arithmetic
of positive integers.

First, we consider the example, x' =f. x. We wish, in other words, to prove, with
the help of induction, that this is a consequence of the axioms:

x' =f. 1,
x' =f. i --+ x =f. y.

As a general principle, we try to use induction. Since there is only one variable, we
reduce the problem to:

190 Computation, Logic, Philosophy

(x)x' -# 1,(x)(y)(x' = y' ::::> x = y) -+ l' -# 1,
(x)x' -# 1,(x)(y)(x' = y' ::::> x = y), x' -# x -+ x" -# x'.

(3)
(4)

These can be dealt vvith by the program described in Part I, except that, to avoid
confusion, we use now a, b, c, etc., instead of numerals to replace the positive variables.
We have:

l' = 1, u = v -+ x' = 1,
l' = 1-+ x' = 1, u' = v',

u = v, a" = a' -+ x' = 1, a' = a,
a" == at ----t x' == 1, a' = a, u' == v'.

These sequents are all true by substitution: 1 for x in the first two; a' for u and a for v in
the last two.

As a somewhat more complex example, we take the commutaitvity of addition. In
order to prove x + y = Y + x, we may use induction either on x or on y. We arbitrarily
take the earliest variable:

1 + y= y+ 1,
x + Y = Y + x -+ x' + Y = Y + x'.

To prove 1 + Y = Y + 1, we make induction on y:

1 + 1 = 1 + 1,
1 + a = a + 1 -+ 1 + a' = a' + 1.

(5)
(6)

The first is a theorem by the property of equality. To prove the second, we use
another general principle, viz., when a defined symbol occurs, we make use of the
definition. In this particular case, we make use of the recursive definition of addition,
and try to prove

u + 1 = u', u + v' = (u + v)', 1 + a = a + 1-+ 1 + a' = a' + 1.

In order to derive the consequent from the antecedent, we start from 1 + a' and
a' + 1, use the equalities in the antecedent to transform them, and attempt to find a
chain to join them. Thus, we may try to make all possible applications of the three
equalities in the antecedent:

(1 + a) + 1 - (a + 1) + 1
1 + a' ~ (1 + a)' L (a + 1)' - (a')'- a' + 1

1 + (a + 1)-1 + (1 + a)

a' + 1~ (a + 1) + 1-(1 + a) + 1
(a')'- (a + 1)' -- (1 + a)'-1 + a'

In general, we may begin two trees simultaneously from both sides of the equality,
do not write down any term which has already occurred in the same tree, and stop when
a common term appears on both trees. When we get to the more complicated situations,

Proving Theorems by Pattern Recognition, II 191

we have to investigate two additional things. First, it would take too long to search
through trees, so that it is desirable to organize available informations in forms which
are more quickly accessible. Second, we may exhaust two trees and still fail to get a
common term. Then we need to prove some lemma which would join up the two trees.

For example, the above graphs give us a proof of (5). To prove the other induction
hypothesis, viz. (6), we may try to do the same with:

u + 1 = u'u + v' = (u + v)', a + b = b + a -+ d + b = b + d,
d + b -(a + 1) + b

b + a' ~ (b + a)' ~ (a + by ~ a + b'~ a + (b + 1)
b + (a + 1) (b + a) + 1 ~ (a + b) + 1

In this way, we have exhausted the applicable cases of the equalities in the antecedent.
Since we have proved the first induction hypothesis (5), we can add it to the
antecedent. Then we get some further extensions:

(a + 1) + b----(1 + a) + b,
b + (a + 1)----b + (1 + a),
a + (b + 1)-----a + (1 + b).

At this stage, we would ask whether any other given theorem can be used to join
up the two trees for a' + band b + a', or, if not, what a reasonable lemma would be. If
the associative law has been proved, we may observe that the missing link is supplied
by:

(a + 1) + b = a + (1 + b). (7)

Otherwise we should try to make a "reasonable" selection of some suitable lemma
and prove it. If, for example, we have chosen (7), we would try to establish it by
induction on a or on b.

It is possible that the quantifier-free theory of positive integers, including
arbitrary simple recursive definitions, can be handled mechanically with relative ease,
and yield fairly interesting results. The restriction to quantifier-free methods means
that we are concerned only with quantifier-free theorems to be proved without using
quantifiers in, e.g., applying the principle of mathematical induction. It is clear from
works in the literature that this restricted domain of number theory is rather rich in
content. It goes beyond logic in an essential way because of the availability of
(quantifier--free) mathematical induction.

With regard to the general questions of using machines to assist mathematical
research, there is a fundamental contrast between problem and method. While it seems
natural to choose first the objective (e.g., number theory or geometry) and then look
for methods, it is likely that a more effective approach is to let the methods lead the
way. For example, since the known interesting decidable classes of formulae of the
predicate calculus either do not contain function symbols or do not contain quantifiers,
we are led to the simple examples above: quantifier-free number theory or function
free set theory.

192 Computation, Logic, Philosophy

References

1. Wang, H., Proving Theorems by Pattern Recognition-I, Comm. Assoc. Compo Mach., 3, 1960, p. 220.

2. Surimyi, J., Reduktionstheorie des Entscheidungsproblems, Budapest, 1959.

3. Ackermann, W., Solvable Cases of the Decision Problem, North-Holland, Amsterdam, 1954.

4. Skolem, T., Ober die mathematische Logik, Norsk Matematisk Tidsskrift, 10, 1928, p. 125.

5. Herbrand,]., Sur Ie probleme fondemental de la logique mathematique, Sprawozdania z posiedzen

Towarzystwa Naukowege Warszawskiego, Wydz. III, 24, 1931, p. 12.

6. Church, A., Introduction to Mathematical Logic, vol. I, Princeton Univ. Press, Princeton, N. J., 1956.

7. Church, A., Special Cases of the Decision Problem, Revue philosophique de Louvain, 49, 1951, p. 203;

50, 1952, p. 270.

8. Klaua, D., Systematische Behandlung der liisbaren Faile des Entscheidungsproblems fiir den

Pradikatenkalkiil der ersten Stufe, Zeitschrift fiir mathematische Logik und Grundlagen der

Mathematik, 1, 1955, p. 264.

9. Dreben, B., On the Completeness of Quantification Theory, Proe. Nat. Acad. Sci. U. S. A., 38, 1952, p.

1047.

10. Dreben, B., Systematic Treatment of the Decision Problem, Summer Institute of Symbolic Logic,

Cornell Univ., 1957, p. 363.

11. Schiitte, K., Untersuchungen zum Entscheidungsproblem der mathematischen Logik, Mathematische

Annalen, 109, 1934, p. 572.

12. Ackermann, W., Beitrage wm Entscheidungsproblem der mathematischen Logik, Mathematische

Annalen, ll2, 1936, p. 419.

13. Wang, H., Toward Mechanical Mathematics, IBM J. Res. Dev., 4, 1960, p. 2.

14. Hintikka, K. J. J., Vicious Circle Principle and the Paradoxes, J. Symb. Log., 22, 1957, p. 245.

PART THREE

DECIDABILITY AND COMPLEXITY

10. GAMES, LOGIC AND COMPUTERS*

A close kinship among them is demonstrated by a game of solitaire played with
colored "dominoes. " Whether or not the game can be won is analogous to whether or
not a problem can be solved by computer.

Today much of the work once done by human muscles and brains is being
delegated to machines, and people in all walks of life are asking: What human abilities
are irreplaceable? What can machines not do? It may surprise the reader to learn that,
whereas the first question has no definite answer, the second has a straightforward
mathematical solution.

Even before the first modern computing machine was built the late British
logician Alan Turing asked the question: What can computers not do? In his attempt to
create a theory of what can be computed and what cannot, Turing devised a slow and
simple imaginary computer that he proved to be theoretically capable of performing all
the operations of any computer. He used his machine to demonstrate the close kinship
of computer theory and logic, branches of mathematics that are both concerned with
mathematical proof and with notations that can present our thoughts in exact form.
This article will undertake to illustrate some fundamental concepts in the area of
overlap between computer theory and logic by means of games.

The human mind can grasp only relatively small numbers and quantities. The
discipline of mathematics, on the other hand, is primarily concerned with infinity.
Finite mathematical operations and infinite mathematical entities present a significant
and fascinating contrast. The smooth transition from intuitively comprehensible
indicidual cases to unrestricted general situations is a remarkable achievement of the
human intellect. Abstract considerations concerning games can introduce us to this
phenomenon quite naturally.

Finding the sequence of moves most likely to lead to victory in a game such as
ticktacktoe presents a logical problem precisely analogous to finding the series of steps
that will yield a solution to any mathematical problem of a given class. In certain games
there is no optimum strategy that will guarantee victory; in certain classes of problems
there is no algorithm-no general method of supplying a series of steps leading to a
solution. Since a computer program is simply an algorithm designed for execution by
machine, this means that there are classes of problems that computers cannot solve.
Before considering the difficulties of constructing algorithms for solving problems
(also of devising programs for arriving at solutions and of working out optimum
strategies for winning games), let us examine why it is that their construction not only

* First published in Scientific American, vol. 213, no. 5 (November), pp 98- 106. (C) Scientific
American, 1965. Reproduced by permission.

195

196 Computation, Logic, Philosophy

is useful but also represents an ultimate goal of mathematics.
Obviously it would take infinite time and energy to memorize the multiplication

table if, instead of just including the products of all single-digit numbers taken two at a
time, the table included the products of all multidigit numbers taken in this way. Man
has made this infinite multiplication table unnecessary by memorizing, along with the
multiplication table for single-digit numbers, a list of steps involving "carrying" and
the addition of partial products that will yield the product of any two multidigit
numbers.

We know that the operations of elementary arithmetic involve formal rules. and
most of us recall that certain other operations, such as the extraction of a square root,
can be done according to a fixed list of sequential steps. As we get to problems of
greater complexity it becomes less clear that they can be solved by algorithm. Consider
the following problem: "Given the two positive integers 6 and 9, find their largest
common divisor." The reader will immediately see the answer: 3. If the two numbers
were 68 and 153, readers who are inclined to try various possibilities might still find the
answer (17). If it could be shown, however, that the general problem "Given two
positive in tegers a and b, find their greatest common divisor" can be solved by
algorithm, then anyone or any machine capable of performing the specified operations
could solve it for any a and b. Such an algorithm exists; it was devised by Euclid [see
illustrations at top of page 100].

DOMINO PROBLEM involves assembling three colored tiles called domino types to form a block that can

be infinitely extended with colors matching on all adjacent edges (opposite page). It is assumed that the

player has an infinite quantity of each domino type and that no domino can be rotated in two dimensions.

The problem is solved by finding a rectangular block in which the color sequence on the top edge is the same

as that on the bottom edge and the sequence on the left edge is the same as that on the right. Such a

unit(heavy outline on opposite page) can be repeated in all directions to fill an infinite plane.

The usefulness of algorithms in equally apparent in the realm of games, where
they provide instructions for the most advantageous moves. The mathematician, of
course, is less interested in winning a game than in understanding the abstract
structure of that class of games. By considering the existence or nonexistence of a
winning strategy, he gains insight into the abstract structure of the game and those of
the same kind.

Take, for example, the game known as nim. Any number of objects, say six
matches, are arranged in three piles. Two players, A and B, draw in turn, cach taking
any number of matches from anyone pile. Whoever takes the last match is the winner.
Since the finite quantity of matches will in the end be exhausted, it is obvious that the
game allows no draw. It is significant that only one of the two players has a winning

198 Computation, Logic, Philosophy

:R
GCD :R

:R
THI S R0UTlNE C0MPUTES THE GREATEST C01",M0N
DIVIS0R 0F TW0 INTEGERS A AND B.

: R
EXTERNAL FUNCTI0N (A,S)
N0RNAL trf1DE I S INTEGER
ENTRY T0 GCD.

L2I0P 1~.G1A I N = 3 - H(B /A)
WHENEVER REMAIN.E.O,FUNCTI0N RETURN .ABS.(A)
3 = A
A = REMAIN
TRANSFER T0 Lll:3P
END 0F FUNCT 12N

TYPE INPUT
A=8,B=12*
THE GCD 0F A AND B IS

4

TYPE INPUT
A=12345678,9=87654321*
THE GCD 0F A AND B IS

9

ALGORITHM IN COMPUTER LANGUAGE provides a series of steps by which the largest common

divisor of any two numbers can be found. At bottom are computed solutions for two pairs of numbers.

Procedure is in the language called MAD (for Miehigan algorithm decoder). Letter 0 is printed with a line

through it to distinguish it from zero.

1. Consider two positive
integers, a and b. Proceed
to next instruction.

2. Compare the two numbers
under consideration
(determine if they are
equal, and if not, which
is larger). Proceed to
next instruction.

3. If the numbers are equal,
each is the answer: stop.
If not, pl'oceed to next
instruction.

4. Subtract the smaller
number from the larger one
and replace the two numbers
under consideration by the
subtrahend and the remainder.
Proceed to instruction 2.

SAME ALGORITHM is stated in ordinary language. The process of division is rendered as repeated

subtraction, The series of steps is known as the Euclidean algorithm.

Games, Logic and Computers

o 5 1

MEMORY DIAL /
4 2

3

000000 DUll] 000000000000000000000000

TAPE
MOVER LOG'CM CONTROL

ERASER
MJD WRITER

TAPE
MOVER

199

I II II II II I * II II II II II lin LLI=rIliIiJLLiliElC[J LLLLL1~:EEliITIlTI

[JTD II I A I * lfll1JililiJiLJ ITIIIJiJiEE["J BIB D
LEEEEJ * I BIB I B IBJiIiTI LTIIJ~EIiliIIIJ

TURING MACHINE designed to perform steps of the Euclidean algorithm displays the numbers 4 and 6 on

its tape in this schematic illustration. (Each digit is represented by a stroke; asterisk signals separation of

numbers.) The logical control of the machine consists of instructions determined by a mark on the square of

tape being scanned and the position of the memory dial. Steps of the Euclidean algorithm lead to changes on

the tape illustrated is sequence at bottom. The machine first determines which number is larger by a

"comparison loop" in which it replaces strokes to right and left of asterisk with symbols ("A" at left and

"B" at right). When one set of strokes is exhausted, the machine begins a "subtraction loop," erasing the

symbols of the smaller number and converting the symbols of the larger number back into strokes. These are

separated from the two strokes representing the remainder of the subtraction by an asterisk. The process of

comparison and subtraction is repeated with 4 and 2 on tape, and then with 2 and 2; finally, 2 and 0 appear

on tape. As comparison loop begins, blank tape on one side of asterisk evokes a halt signal (!) from logical

control, and the machine stops with the answer (2) on its tape. Machine is idealized because its tape is

potentially infinite.

strategy, depending on the size of the initial three piles and who moves first. In the
particular game defined by piles of one, two and three matches the winning strategy
belongs to B, the player who moves second. This can be proved by means of a
schematic tree with the node of each set of branches representing a situation at a stage
of the game, and the branches from each node the possible moves a player can make in
that situation [see top illustration at right].

Suppose we are to play this game with three piles containing 10 million, 234 and
2,729 matches. It is theoretically feasible to tabulate all the possible sequences of

200 Computation, Logic, Philosophy

moves with these three piles and then to tell by inspection whether A or B has a
winning strategy. No one, however, would be willing or able to undertake such a
tabulation. The mathematician would undertake a systematic search for shortcuts to
make the operations easier and to achieve economy of thought. A search of this kind
has in fact been made for the game of nim, and a simple recipe has been worked out for
determining which player has the winning strategy. The recipe states that A can always
win if, when the numbers of objects in the three piles are expressed in binary notation,
they add up to a figure that contains an odd number. Such a recipe can represent a
dazzling but unimportant stunt or a way of achieving significant mathematical insight,
depending on the nature of the game and the directness of its relation to major
mathematical and logical problems.

6 000 000

B

5 001 01 0

A V
4 011 000

B

3

A

2 022

B

A

START

011 000 000 000 000

110 101

123

000

I
I
I
I
I

022

I
I
I
I
I

101

I
I
I
I
I

11 0

TREE FOR GAME OF NIM indicates that the player who moves second, B, has a winning strategy. At

beginning of game (bottom) there are piles of one, two and three matches (digits at each node of tree give

number of matches remaining in piles). Players remove one or more matches from a single pile until

someone wins by removing the last match. Branches show all the possible moves for A and the unanswerable
response of B to each of them.

Games, Logic and Computers 201

INFINITY LEMMA is suggested by a tree that continues at top. The lemma is a proposition to the effect that

if there are infinitely many connected branches in a tree, and only finitely many branches from each of its

nodes, then there must be one node at every level from which branches extend indefinitely upward; these,

taken together, form an infinite path through the tree. The lemma can be paraphrased: "If the human

species never disappears, there exists· today someone who will at any future time have a living descendant."

A game such as nim is said to be "unfair," because one player always has a
winning strategy. A game such as ticktacktoe is said to be "futile," because each player
has a nonlosing strategy that eliminates the possibility of a winner. These
characterizations can be restated as a theorem: Every game is either futile or unfair if
there is a fIxed, fInite upper boundary to the length of cach path on its tree and only
fInitely many branches come directly from each node. The theorem holds because if
there are no endless games and only finitely many legal moves at each stage, then the
total number of possible sequences of moves is finite. If we represent all the
permissible plays by a tree, we see that if neither player has a winning strategy, then
each player has a nonlosing strategy.

The theorem does not apply directly to the game of chess, because there are no
precise rules to prevent endless matches. Let us assume, however, that we could

202

A B

Computation, Logic, Philosophy

C

NOT

v= OR
, ~ AND

X' ;;:)(+ I

(A,y, 8,'y) v (8,y A Cx'y) v (CXYA A,'))

OR OR

2

(Ay, A Byx') v 18y' ,Cy,') v (CY' A Ay,') A x

OR OR

- IA,y A 8,y) v - 18,y A Cxy) v - (C,y A A,y)

RULES FOR DOMINO PROBLEMS are set forth in the formal shorthand used by students of mathematical

logic (glossary is at top right). At top center is a set of dominoes: A, Band C. The first expression states that

colors must match on left and right edges, second that colors must match on top and bottom edges. The third

rule is that dominoes must not be placed one atop another. The fourth expression, a constraint typical of

those used to complicate games in approximating difficult problems of computation, states that only A can

lie on the main diagonal of the plane. The positions on the plane are described by Cartesian coordinates. In

designation such as "Ayx" domino's position on horizontal axis is given by the first variable, y, and vertical

position by the second.

Games, Logic and Computers

Cover Q section of the Cartesian plane
with black and white tiles so that no
block (of the size outlined at right
or larger) has edges at left and right
and top and bottom that match. Is there
a method of filling an infinite plane
in this way?

'------_ .. _----._--

203

,Ii;
~ il !

fl-I
i

f, I .

l-±~c
FOUR PROBLEMS are presented by the author to the resolute reader. Only this problem and the problem

at bottom have known solutions. Solution to this problem is on next page .

...•.. _._-_._---_ ..• _--

We can make a string of O's and 1's
Yield "progeny" by these rules:
1. If the string has fewer than
three symbols, stop.
2. If the string begins with 0,
delete the first three symbols
and append 00 to the end
3. If the string begins with 1,
delete the first three symbols

append 1101 to the end.

011010001001
01000100100
0010010000
001000000
00000000
0000000
oooouo
00000
0000
000
00

(stop)

101110110011
1101100111101
11001111011101
011110111011101
1101110111Q100
111011101001101
0111010011011101
101001101110100
0011011101001101
10110100110100
1101001101001101

(progeny continue)

SECOND PROBLEM is to find an algorithm that shows whether two strings of O's and 1's are related. The

problem is complicated by the fact that certain strings may give rise to infinite progeny. An alternative

solution would be to prove that no such algorithm can exist.

Is there an algorithm to decide
If a polynomial equation with
Integral coefficients has roots
that are Integers?

Equations of this type include

x' - 4x + 3 ~ 0
and

a2+b2-c2~0.

The first equation has only one
unknown, x. It thus has the form

and for such equations the desired
algorrthm IS known:
1. Find all the divisors of ao.
2. Substitute each for x and
calculate the resulting values for
the left side of the equation.
3. If any Yields the value 0, It
is a root. If none do, the equation
has no roots that are integers.

The problem IS to devise such an
algorithm for equations, such as

second, that contain more
one unknown.

THIRD PROBLEM has been known as "Hilbert's 10th problem" since the German mathematician David

Hilbert listed it in 1900 as an outstanding problem confronting mathematies.

204 Computation, Logic, Philosophy

introduce rules to exclude endless chess matches, without imposing a limit on the
absolute number of moves allowed in a complete match. We would then be able to
apply to chess a proposition known as the infinity lemma, which states that if there are
infinitely many connected branches in the tree of a game and only finitely many
branches from each node, then there is an infinite path.

Given the infinity lemma and the assumption that new rules have excluded
endless matches, it follows that the tree representing the game of chess has only finitely
many branches. Otherwise, in view of the fact that there are only finitely many
branches from each node, there would be an infinte path (an endless game). Hence
there are only finitely many possible sequences of moves and, as we showed earlier,
chess is either unfair or futile.

The proof of the infinity lemma is fairly straightforward. Take the node at the
very bottom of the tree. Since we are assuming infinitely many branches but only
finitely many branches directly from anyone node, at least one of the nodes on the next
level must be the bottom of a subtree with infinitely many branches. Let us call this
node X. Our hypothesis states, however, that there are only finitely many branches
directly from X. Therefore one of the nodes on the next level above X must be the root
of an infinite subtree. By repeating this argument we see that on every level there is at
least one node that is the root of an infinte subtree and that these roots together
determine an infinite path through the tree. An anthropomorphic way of applying the
infinity lemma would be to state that if the human species never disappears, there
exists today someone who will at any future time have a living descendant.

One chooses to examine a game, of course, according to the importance of the
mathematical questions it raises. In 1960, while I was studying certain problems in
logic at the Bell Telephone Laboratories, I devised a new game of solitaire played with
"dominoes" that are actually colored tiles. More recently my colleagues and I at the
Harvard Computation Laboratory have found some surprising and significant
applications of this game. Several problems that arise in the domino game are exact
analogues of problems that Turing machines are designed to solve. The conditions
under which a domino game is played can be made to correspond to the computations
of Turing machines, so that working with dominoes grants us another view-sometimes
a particularly revealing one of certain mathematical problems.

In a domino game we are given a finite set of square tiles (the dominoes); the tiles
are all the same size but each edge of a tile has a stipulated color and the colors are
combined in several specified ways. We assume that we have infinitely many copies of
each type of domino, and that we are not permitted to rotate a domino in two
dimensions. The object of the game is to cover an infinite plane with dominoes in such
a way that ad joining edges have the same color. If the plane can be covered with a given
set of dominoes, the set is said to be solvable.

Consider the set of three dominoes in the illustration on page 98. The set is
solvable because it can be assembled into a nine-clomino block that satisfies the rule
with respect to edges and can be repeated in every direction. Given a solution for the
whole plane, we can obviously chop off three quadrants, or quarters, to get a solution
over one quadrant. The converse is less obvious, but it can be established with the help
of the infinity lemma. Since there exists a solution over an infinite quadrant, there exist

Games, Logic and Computers 205

TEN-DOMINO PROBLEM calls for arranging these tiles in a block in which the color scheme is the same

for top and bottom and left and right edges. Solution is on page 106.

a

ab

abba

abbabaab

abbabaabbaababba ...

SOLUTION TO FIRST PROBLEM on preceding page is illustrated. To repeat its construction, let a

represent a black tile, b a white one (left). Write a and replace it with abo Replace b with ba and continue to

replace a and b in this way. Transcribe this sequence onto top row of plane and copy each symbol along

diagonal from top right toward bottom left.

partial solutions of its quadrants-solutions of any area n by n. We can make an infinite
tree out of such partial solutions and show by the infinity lemma that there is an
infinite path in the tree that yields a solution over the whole plane. Thus if it is possible
to fill a quadrant of the infinite plane, it is possible to fill the whole plane.

We can use dominoes to simulate various Turing machines and to create an
equivalent of Turing's important "halting problem." This is more easily done if we
specify what domino goes at the origin of the plane-what domino we put down first.
With greater effort we can accomplish the same thing either by specifying that certain
dominoes occur on the main diagonal or by omitting any restriction other than those
mentioned earlier. Let us consider this equivalence between the halting problem and
the domino game in greater detail.

Turing devised his simple computer to emulate a human calculator. A man
solving a mathematical problem is likely to use pencil and paper for writing and

206 Computation, Logic, Philosophy

erasing numbers; he may also have a collection of mathematical facts in the form of a
book of tables and, contained in his mind or in the book, a set of instructions for
performing the proper steps in the proper sequence. The imaginary Turing machine
also has a marking device and an eraser for writing numbers according to instructions
from a logical control unit that follows a prepared table of commands. The numbers
are written in the form of single strokes on square cells of an infinitely long tape
serving as the memory unit. (Since no actual machine can have an infinite memory, the
Turing machine is idealized.)

One square of the tape at a time is considered by a scanner that relays the symbol
on the square to the control [see bottom illustration on page 100]. The control then
consults its internal instructions by means of a dial that points to a location designated
"Current instruction." Depending on the symbol at hand, the instruction specifies one
of four commands: (1) Print a mark on the square, erasing it if necessary, (2) Move the
tape one square to the right, (3) Move the tape one square to the left, (4) Halt! Then the
instruction indicates the next instruction location. A Turing machine can be endowed
with the requisite number of instruction locations and commands, as well as a tape with
infinitely many squares, to solve any specified mathematical problem (if that problem
is in a class solvable by algorithm).

Turing devised the halting problem to exemplify a problem for which no program
could yield all the correct solutions. He surpassed the power of any possible single
machine by formulating a question about all Turing machines. He was able to show
that although each machine, depending on its tape, would either halt or continue
operating indefinitely, there is no general algorithm to determine this behavior, no
recipe equivalent to the one for determining the invariable ~winner of a given game of
nim. Now, it is possible to find for each Turing machine a set of dominoes such that the
machine will eventually halt if and only if the set of dominoes does not have a solution.
It is then a direct consequence that the domino problem is unsolvable. If we could
solve the domino problem, we could solve the halting problem; we cannot solve the
halting problem and so we cannot solve the domino problem. In other words, there is
no general method for deciding if any given set of dominoes has a solution.

The domino problem is an example of an infinite decision problem of the kind
that frequently turns up in logic, in computer theory and in mathematics in general. It
is an infinite problem in the following sense. Any solution to the domino problem must
be a single method that provides the correct yes or no answer to an infinite number of
questions in the form: "Does a certain set of dominoes cover the plane?" Whereas any
specified set of domino types is finite, there is of course an infinite set of such sets, and
therefore an infinite number of questions.

We have thus reduced problems about sets of dominoes to problems about
machines, and we have established results about dominoes by appealing to known
results about machines. The next step is to reduce the question of interpreting a
formula in logic to the problem of solving a set of dominoes. Since the condition that a
set of dominoes has a solution can be expressed by a simple formula in logic, ~ this
reduction yields an answer to a longoutstanding decision problem in logic.

If we wish to express the condition that a set of three domino types has a solution
in the first quadrant of our infinite plane, we think of the familiar Cartesian

Games, Logic and Computers 207

SOLUTION TO lO-DOMINO PROBLEM is a rectangular block of 36 dominoes, two of which are separated

by heavy black line through center of illustration. The solution is not unique, that is, other configurations of

the 10 dominoes are possible and equally acceptable.

208 Computation, Logic, Philosophy

coordinates for the positions of dominoes in the quadrant and represent each domino
by a predicate: Axy, for example, indicates that domino A occurs at position (x, y). If
we use x' for x + 1, the required condition can be given by a number of clauses that
require very few quantifiers (constructions with "for all" and "there is"). We are
generous only with such finite operations of formal logic as "not." "and" and "or"
[see illustration on page 102]' We can conclude that for any given set of dominoes we
can find a corresponding "AEA formula" at sentenec beginning "For all x there is a y
such that for all z " followed by a logical combination of predicates without
quantifiers such that the set has a solution if and only if the formula is not self
contradictory. In other words. we can translate a domino question into a logical
formula by specifying certain constraints and then determine if the donino set is
solvable by seeing if the formula is or is not self contradictory. Therefefe since the
general domino problem is unsolvable then is no general method for deciding if an
arbitrary AEA formula is self contradictory.

The result is useful because the complevity of formulas in logic is to a Large
extent measured by the number and order of quantifiers, and the formulas of logic are
often put into different classes according to the structure of quantifiers. It is surprising
that as simple a class as that of AEA fornulas (with three quantifiers only) is
undecidable. In fact. with this result the deeision problems for all quantifier classes are
answered. Given any string of quantifiers we can now tell if the class of formulas
determined by it is decidable.

The decision problem oflogic is signifieant because all mathematieal then ries can
be fornulated in the framework of elementary logic. The question of whether or not a
formula (F) can be derived from a set of axioms (A) is reduced to deciding if the logical
fornla "A but not P' is not sell--contradictory In this sense all mathematics is
redueible to logic. Indced one measure of the complexity of a mathematical problem is
given by the structure of its cornsponding fornmla in logic. It is therefore an important
cnterprise to cletermine the complexity of various classes of logical formnlas.

We can justifiably say that all mathematies can be reduced. by means of Turing
machines to a game of solitine with dominoes. In most instances the reduction does not
make a mathermatical problem any casier to hamdle. Nevertheless, proving certain
problems to be unsolvable by computer can be facilitated by reducing them to domino
problems.

Games, Logic and Computers 209

Appendix: Notes on a class of tiling problems *

Abstract. The class of problems considered here was at fir5t called the "domino problems"

and has found extensive applications with regard to the decision problem of the predicate
calculus. This paper include5, apart from a brief survey of work related to this class of problems,

a number of isolated results which have been obtained over the years. These results mostly have
little direct connection with mathematical logic but may be,/or that very reason, of some interest
to a wider circle of mathematicians.

The class of tiling problems deals with the following general situation. Suppose that
we are given a finite set of unit squares with colored edges, placed with their edges
horizontal and vertical. We are interested in tiling the plane with copies of these tiles
obtained by translatives only. The tiles are to be placed with their vertices at lattice
points, and abutting edges must have the same color. The first question, the
unrestricted tiling problem, is whether there is a general method of deciding which
finite sets of colored squares are solvable (i.e., can be used to tile the plane in this way).
The second question (closely related to the first, see below) is whether every solvable set
has a periodic solution (i.e. yields a square of some size which repeats to cover the plane).
If we think of the first quadrant instead of the whole plane, it is more convenient to
speak also of the origin--constrained (i.e. the tile at the origin is restricted to a given
subset) and the diagonal--constrained (i.e. the tiles along the main diagonal are
restricted) tiling problems. These apparently frivolous problems have led to various
interesting investigations. And it is my purpose here to give a number of fragmentary
results mostly obtained in discussions with colleagues and students some time ago. In
particular, several of the basic ideas are due to Edward F. Moore. I shall begin with a
brief historical survey of some of the results in the literature.

Around the beginning of 1960, while continuing my work on the mechanization of
mathematical arguments, I was diverted into a study of the theoretical problem of
deciding the class of sentences with the simple quantifier prefix AEA in elementary
logic. After a period of effort, I succeeded in transforming the decision problem into the
easily understandable combinatorial or geometrical tiling problem (called the "domino
problem" by a colleague). This greatly facilitated not only my communication with my
colleagues at the industrial laboratory who were mostly ignorant of mathematical logic,
but also the ability to focus attention on the mathematical core of the original decision
problem. At this time, I also discovered that the origin-constrained tiling problem is
unsolvable, because operations of any Turing machine can be simulated by a particular
tiling problem. The formulation of the tiling problems was ""Titten up in May 1960 and

* First published in Fundamenta mathematicae, vol, 82, pp. 295- 305. Polska Akad. Nauk.
Warszawa, 1975. Reproduced by permission of the author.

I-Fundamenta Mathematicae, T. LXXXII

210 Computation, Logic, Philosophy

published in January 1961 ([17J), and the result on the origin-constrained problem was
written up in August 1961 for circulation (see [18J).

I

In the auturrm of 1961, I lectured on these things. And in collaboration with Kahr
and Moore, I was able to show that the diagonal-constrained tiling problem was also
unsolvable for much the same reason as the origin-constrained problem. We were able to
infer that the decision problem for the AEA case is unsolvable. In fact, the AEA
sentences with only dyadic predicates form a reduction class. These results were
published in [11]. Shortly afterwards, Kahr further refined the result to eliminate all
but one dyadic predicate, using only monadic predicates otherwise. A summary of this
last result is included in [lOJ and [19J, and the full proof is given in Kahr's MIT Ph. D.
dissertation (June 1962). Afterwards Berger, another student of mine, demonstrated
that the (original) unrestricted tiling problem is also unsolvable (in his Harvard
dissertation, June 1964; a briefer version appeared as [1 J).

Over the years, there have appeared a number of papers related to these tiling
problems and decision problems. The follov-.'ing items have come to my attention. There
are three pairs of natural subclasses of the AEA sentences with dyadic predicates only.
Two of these three pairs have been shown to be decidable (see [2J and also [19J). The
remaining pair is, surprisingly, shown to be undecidable by S. Aanderaa (in his Harvard
dissertation, August 1966). Elaborations, extensions, and simplifications of [lOJ, [11 J,
and [19J are contained in the papers by Genenz, Hermes, and Maslov ([3J, [4J, [8J, [9J,
and [12J). On the question of nonperiodicity, Berger's published proof of the
unsolvability of the tiling problem contains a complex solvable set of tiles with no
periodic solution. In his dissertation, he includes a simpler set with 104 tiles. In April
1966, H. Lauchli sent me a nonperiodic set with 40 tiles which, as far as I know, has not
been published. In [15J, Robinson has gone into the solvability and the periodicity
problems carefully and obtained more economical solutions. In a somewhat different
direction, Hanf has shown in [6J that, under the origin constraints, there is a finite
solvable set of tiles which has no recursive solution. This was extended by Myers (in
[13J) to the unrestricted case. The tiling obtained by Hanf can be described by a I-trial
predicate (a concept of Putnam [14J). Carl 10ckusch has found a solvable finite set of
tiles which has no m-trial tiling for any m. Hanf s work was aimed at proving Conjecture
I of [7J, but these results have failed to settle his conjecture.

Let N be the class of unsolvable tile sets, F be the class of tile sets with periodic
solutions, and Jbe the class of solvable sets without periodic solutions. It is proved in
[5J that the classes N, F,] are pairwise recursively inseparable.

I proceed to list a number of fragmentary results, often omitting complex
constructions.

With the origin constraint, it is possible to force special solutions with amusing
properties. One example is to distinguish prime from composite numbers, first done by
Edward F. Moore and then simplified by M. Fieldhouse.

1. There is a set of 30 tiles, including three tiles A, P and C, such that if A is
required to appear at the origin, the set has a unique solution in which P and C occur
respectively at the prime and composite positions in the first row.

A variant formulation of the tiling problem is to color the corners rather than the

Games, Logic and Computers 211

edges so that each tile can naturally be represented by a 2 by 2 matrix giving the colors of
the four corners. It is easy to show that this formulation is equivalent to the other one in
an obvious sense.

It can be verified that permitting all rotations or all reflections would make all sets
of tiles solvable. If, however, we use regular hexagons instead of squares and allow
reflections and rotations, we have:

2. Given a set of square plates, we can find effectively a set of regular hexagons such
that there is a one-to-one correspondence between the solutions of the two sets.
Conversely, given a set of regular hexagons, we can also find effectively a corresponding
set of squares.

Given a set of squares AI, ... , An, we introduce a set of2n + 1 hexagons with 6 + n
new colors as follows. A "cementing" hexagon:

Suppose Ai is:

Introduce two hexagons with a new color ai:

1 D b

3 5
ai

ai 0 6

d C

4

It can be seen that on account of the cementing piece, each pair of hexagons can only be
used as a unit thus:

o
o

212 Computation, Logic, Philosophy

Conversely, given a set of regular hexagons H 1 , ••• , Hm, we give one block of three
squares for each of the 12 positions for each Hi, using two new colors for each position.
For example, if II; is

a

o e C

d

we use for the particular position the obvious combination of the three squares:

The letter x indicates a new color used for every triple.
Hence, we get a set of 36m squares with 24m + 1 new colors.
We omit the detailed proofs of the two halves of Proposition 2.
It is convenient to speak of a "torus" when we have a square or rectangle of some

size such that the top agrees with the bottom (in colors) and the left edge agrees with the
right edge. As we have noted before, Berger and others have given solvable sets which
yield no tori because they have no periodic solutions. An easier question had been
considered and answered earlier, viz. to find a set which has a solution in which no torus
occurs.

This uses an interesting construction due to Thue (see [16J), according to which
the union R of the infinite sequence obtained from a by successively replacing a by ab, b
by ba contains no part UyV with Uy = yv. Such a two-way infinite Thue sequence R
can be applied to design a pattern of a's and b's on the plane in which there is no "torus".
We put the sequence R horizontally on the plane and copy each symbol across the
diagonal bisecting the first and the third quadrants. Then there can be no rectangle
block which forms a torus. For, suppose there were such a block, say

X4X 3X 1X 1

X3 X 1 X 1Y1

X1X1Y1Yl

Then X4X3X1X1 = X1X1Y1Yl and, in particular, X4X3Xl = X2X1Yl' Therefore, X4X3X2Xl

Y1 would be a part UX2 V such that UX2 = X2 V.
In order to find a set of tiles with a solution in which no torus occurs, we represent a

and b by several tiles, taking into consideration the two neighbours in the same row.
Since we do not permit aaa or bbb, we need only six tiles:

Games, Logic and Computers 213

a b

{~} {~~}
b b

It can be verified that the pattern of a's and b's described above can be simulated to any
size. Hence, applying 5.1 to be proved below, we obtain:

3. There exists a set of six tiles which has a solution in which no torus occurs.
Incidentally, Thue also found that, for any alphabet with three or more letters,

there are sequences in which no p :rt is of the form DD. A sequence of this kind with
three letters has been found which is simpler to describe than Thue's:

4. The sequence T obtained from the sequence R described above by substituting
ca for aa, cb for bb contains no part DD.

We recall that R is the union of:
Rl = a, Rz = ab, R3 = abba, ~ = abbabaab, ...
Consider now the even terms of R beginning with R4 : R4 , R6 , etc. We observe

that, because neither aaa nor bbb occurs in R, the results of substituting ca for aa and cb
for bb are composed of occurrences of only the following 4--letter sequences:

A = acba, B = bcab, C1 = acbc, Cz = bcac.

We distinguish different occurrences of C and use Cl in a context bca, C2 in a context acb.
Define Tb Tz, T3 , etc. by:

Then Tis the union of the Tn '8 and Tn is obtained from R 2n + Z by substituting ca for aa,
cb for bb.

If DD occurs in T, then there is some Tn such that DD occurs in Tn and Tn contains
more letters following DD. Let Mbe obtained from D by substituting A, B, C1 , Cz for a,
b, Cl, Cz. Then MM occurs in Tn + 1, and Mbegins with a or b. Suppose M = xN(x = a
or b). We then have xNxN in Tn + 1. The letter following xNxN must also be x because x
followsN once in Tn+ 1 inxNxN. For example, if xisa, then Mmust begin with A or C1 ,

but C1 can only follow B, and A can only follow C1 or B. Hence, M must end with C1 or
B. But C1 can only be followed by A, and B can only be followed by A or C1 • Therefore,
the part in Tn+ 1 after xNxN must begin with a (i.e., as head of A or Cd. Hence, we have
xNxNx in Tn + 1 and, therefore, xKxKx in R 2n + 2, contradicting the fact that R contains
no part UxV with Ux = xv.

There are a number of more or less direct consequences of the infinity lemma
concerned with solutions of sets of tiles.

5.1. For a given tile set P, if, for every n, there is a solution of size n by n, then P has

214 Computation, Logic, Philosophy

a solution.
We consider partial solutions of size 2n - 1 for n = 1, 2, ... and make a tree such

that a block K of size 2n - 1 by 2n - 1 leads directly only to blocks of size 2n + 1 by 2n
+ 1 with K in the center. The hypothesis and the fact that any part of a partial solution is

also a partial solution ensures an infinite tree. Hence, the infinity lemma yields an
infinite path in the tree which represents a solution of P.

5.2. A tile set is solvable over the whole plane if and only if it is solvable over a
quadrant.

If it is solvable over the plane, we can of course get a solution over a quadrant by
deleting the other quadrants from a given solution. Conversely, if it is solvable over a
quadrant, then it has a solution of size n by n for every n. Hence, by 5.1, it has a solution
over the whole plane.

5.3. Given a tile set P for which it is possible to form two ad jacent infinite rows such
that for every m, any 1 by m block occurring in the top row also occurs in the bottom
row. Then the set P is solvable.

Let A be the given top row, B be the given bottom row. For each m, and a 1 by m
block em in A, there is a Dm in A such that Dm can be correctly put on top of em, because
em also occurs in B. Repeating this process with Dm , and so on, we can obtain a partial
solution of size m by m. Hence, by 5.1, the set P has a solution.

A solvable tile set is said to be minimal solvable if in every solution every tile of the
set occurs.

5.4. Given a minimal solvable set, there exists an integer n such that every tile of the
set occurs in every n by n block in every solution.

Assume 5.4 false and we have for every n some solution 5 and some tile T; such that
there is an n by n block not containing Ti• If the number of tiles is k, make k trees K 1 , "',

Kk as in 5.1 so that Ki includes all the 2n - 1 by 2n - 1 (n = 1,2, ...) blocks which does
not include T; in some solution. By our assumption, at least one of the trees, say K i, must
be infinite. This determines a solution in which Ti does not occur at all, contrary to the
hypothesis that the given set is minimal solvable.

5.5. If the (unrestricted) tiling problem is unsolvable, then there is a solvable set
with no periodic solution.

This was observed in [17]. If every solvable set had periodic solutions, we would
have the following situation. Either a set is solvable, there would then be some n such
that there is a torus of size n by n, Or a set is unsolvable, then, by the infinity lemma,
there would be some n such that there is no solution of size n by n, Hence, we would be
able to test successively for each n, whether there is a solution or a torus of size n by n.
This process must terminate at some finite stage, and we would have a decision method
for the tiling problem.

Of course, as mentioned before, we now know that the tiling problem is unsolvable
and we possess also relatively simple examples of solvable sets with no periodic
solutions.

Games, Logic and Computers 215

5.6. Given a solvable tile set and an integer n, there exists a solution in which every
occurring finite block of size no bigger than n by n occurs infinitely often.

Consider any given solution. Since there are only a finite number of tiles, there
must be at least one which occurs infinitely often. Let MI be the set of all tiles which
occur infinitely often. Let M2 be the set of all 2 by 2 blocks of tiles each of which occurs

infinitely often in the solution and, in addition, consists only of members of M!. M2 is
again not empty, since the set of2 by 2 blocks which occur finitely often can only take up
a finite area in the plane. In general, given Mn, the set Mn +! of n + 1 by n + 1 blocks
each of which occurs infinitely often and contains only members of Mb "', Mn is not
empty. Hence, by the infinity lemma, there is a solution with a member of MI in the
center, a member of M2 as the central 2 by 2 block, etc. This gives a solution in which
every finite block occurs infinitely often in the original solution. To make sure that we
get the desired solution for a given n, we repeat the process of eliminating blocks which
occur only finitely often. Since there is only a finite number of distinct blocks of size no
bigger than n by n, this process must come to an end.

5.7. Every solvable set has a solution 5 such that every finite block occurring in 5
occurs infinitely often in S.

Given a solution T and the set K of all finite blocks occurring in T, consider the set
L of all subsets of K such that a subset A of Kbelongs to L if there is a solution covered
by A, i.e., in which all the occurring finite blocks (or, equivalently, just squares) belong
to A. The set L is not empty because Kbelongs to it and it has minimal members. Take
any minimal member B and any solution 5 covered by B. If there is any block in B which
appears only finitely often in 5, we can eliminate it by 5.6, and B would not be minimal.
Hence, every block in B must appear infinitely often in every solution 5 covered by B.

5.S. If a solvable set P has no periodic solutions, then it has as many distinct
solutions as there are real numbers.

Since the set Pis solvable, it has, by 5.7, a solution Sin which every occurring finite
block occurs infinitely often. Hence, if an n by n block occurs in 5, it must have two
nonoverlapping occurrences. Begin with two occurrences in 5, it must have two
nonoverlapping occurrences. Begin with two occurrences in 5 of a single tile T. There
must be some nl, such that the ni by ni blocks with Tat the center at the two places are
different. Otherwise, the two infinite columns C and D containing the two occurreces of
T (or rows if they are in the same column) must be the same at corresponding positions,
in which case we join the two occurrences of Tby a staircase and consider all analogous
staircases between the two columns. Since there are infinitely many staircases, at least
two must be identical. But then we can take the region R bounded by C, D and two
identical staircases and repeat it up and down to get an infinite strip 5 bounded by the
modified columns C and If. Since C and D are identical at corresponding places, the
two vertical parts VI and V2 bounding R are identical. Therefore, we can also repeat the
infinite strip 5 and cover the plane. Since each column consists of repetitions of VI (or,
what is the same thing, V2), there must be two infinite columns which are identical (i.e.,
without any staircase shift). Since there are infinitely many segments of rows bounded
by the two columns, two of them must be identical. Therefore, we would have a torus,

216 Computation, Logic, Philosophy

contradicting the hypothesis of nonperiodicity.
Hence, beginning with Tand its two occurrences, we can expand to two different nl

by nl blocks. Each nl by nl block has two nonoverlapping occurrences which, for
similar reasons, can be extended to two distinct bigger blocks. Hence, we have, by
repeating the process, a full binary tree with as many infinite paths as there are real
numbers. But each infinite path determines a solution.

Given an infinite set K of solutions of a tile set P, a solution 5 of P is said to be a
limit solution of P and Kif every finite block in 5 agrees with infinitely many solutions
in K over that block.

5.9. Every infinite set of solutions of a tile set has a limit solution; in other words, if
there are infinitely many infinite paths, then there is a path on which every node appears
in infinitely many infinite paths.

Suppose K is an infinite set of solutions of the tile set P. Form a tree as follows: The
nodes on the nth level of the tree consist of all2n - 1 by 2n - 1 partial solutions of P
which coincide with infinitely many members of K when these members are restricted to
the 2n - 1 by 2n - 1 block centered at the origin. A node on the nth level is connected
to a node on the (n + 1)-st level if and only if the smaller partial solution comprises the
center of the larger one. To see that the resulting tree is infinite, we need only verify that
there is at least one node on every level. But this is true because there are infinitely many
members of K, but (for fixed n) only finitely many blocks of size 2n - 1 by 2n - l.
Finally it is clear that only finitely many branches spring from each node. Hence, by the
infinity lemma, the tree has an infinite path. This path describes a solution, which is a
limit solution to the set K; i.e. every finite block of the solution coincides with the
corresponding block in infinitely many members of K.

We mention incidentally an application of the infinity lemma in a different context.

5.10. If a Turing machine halts for every initial state and every initial tape (which
may contain infinitely many marked squares), then there is a number N such that the
machine always halts before N steps.

Consider at each moment t the pair (q:, Sr), where q: is the state and Sr is the symbol
under scan at t. At the initial time t = 1, we have only a finite number of (q~, SD. At each
moment, from each (q:, Sr), we have only a finite number of (q:+b Sr+l)' Since the
machine always stops, the tree contains no infinite path. But, by the infinity lemma, if
there are altogether infinitely many finite paths, there is some infinite path. Hence there
can be only a finite number of finite paths, and hence a finite bound N to the height of all
paths. The theorem is proved.

References

[1] R. Berger, The undecidability of the domino problem. Mem. Amer. Math. Soc. 66 (1966), pp.72.

[2] B. Dreben, A. S. Kahr, and H. Wang, Classification of AEAformulas by letter atoms, Bull. Amer.

Math. Soc. 68 (1962), pp. 528--532.

[3] J. Genenz, Reduktionstheorie nach der Methode von Kahr-Moore-Wang, Munster 1964, pp. 88.

Games, Logic and Computers 217

[4] 1. Genenz, Untersuchungen zum Entscheidungsproblem, Munster 1965, pp. 44.

[5] Gurjevits and Korjakov, Remarks on a paper of Berger on a problem of dominoes (in Russian), Sib.

Math. Journal 13 (2) (1972), pp. 459-463.

[6 J W. Hanf, Nonrecursive tilings of the plane I, submitted to J. Symb. Logic.

[7 J -- Model-theoretic methods in the study of elementary logic, Theory of Models 1965, pp. 132-

145.

[3 J H. Hermes, Entscheidungsproblem und Dominospiele, Selecta Mathematica II (1970), pp. 114-140.

[9 J -- A simplified proof for the unsolvability of the AEA case, Logic Colloquium 1969, (1971), pp.

307-309.

[lOJ A. S. Kahr, Improved reductions of the Entscheidungsproblem to subclasses of AEA formulas,
Mathematical Theory of Automata 1963, pp. 57-70.

[llJ --E. F. Moore, and H. Wang, Entscheidungsproblem reduced to the AEA case, Natl. Acad. Sci. US

48 (1962), pp. 365--377.

[12J S. Ju. Maslov, The inverse methodfor logical calculi. Trudy Mat. Inst. Steklov. 98 (1968), pp. 26---87

(see § 12.3).

[l3J D. Myers, Nonrecursive tilings of the plane II, to appear.

[14J H. Putnam, Trial and error predicates, J. Symb. Logic 30 (1965), pp. 49--57.

[15J R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971),

pp. 177-209.

[l6J A. Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Kristiania, 1913, pp. 67.

[l7J H. Wang Proving theorems by pattern recognition II, Bell Systems Technical J. 40 (1961), pp. 1-41.

[l3J -- An unsolvable problem on dominoes. Harvard Computation Laboratory report no. BL-30 (Il-

15), duplicated August 1961, bound Jan., 1962.

[19J -- Dominoes and the AEA case of the decision problem. Mathematical Theory of Automata 1963,

pp.23-56.

11. DOMINOES AND THE AEA CASE OF THE
DECISION PROBLEM*

It has recently been established that the AEA case is unsolvable and forms a
reduction class. Several people have looked into possible directions along which the
result can be strengthened, using in part earlier methods developed by Buchi for the F &
AEA case. There are three different aspects. First, unsolvable AEA subcases such as
restrictions on the number of dyadic predicates, on the form of the quantifier free
component, on the complexity of the models (e.g., finite, essentially periodic, etc.).
Second, solvable AEA subcases. Third, the detailed structure of the reduction of the
general case to the AEA case. A survey of these questions is presented.

I. INTRODUCTION AND SUMMARY

Since all mathematical theories can be formulated within the framework of the
predicate calculus (quantification theory, elementary logic), Hilbert spoke of "the"
decision problem when he was referring to the problem of finding a general algorithm to
decide, for each given formula of the predicate calculus, whether it is satisfiable in some
non--empty domain (or, has a model). He called this the main problem of mathematical
logic. It is familiar today that this problem in its general form is unsolvable in a technical
sense which is widely accepted as implying unsolvability according to the intuitive
meaning. An interesting problem is to investigate the limits of decidable subdomains
and the underlying reasons of the phenomenon of undecidability.

Recently, the general problem has been reduced to the formally simple case of
formulas of the form AxEuA yMxuy, where M is quantifier-free and contains neither the
equality sign nor function symbols. 8 It is, therefore, of special interest to study the AEA
case in greater detail. Moreover, the simplicity of the AEA prefix makes it possible to
confine our attention to the essential problems vvithout distraction by extraneous
complexities.

The first published attempt to settle the AEA case appeared in a paper by the
author (reference 14, pp. 23-32), in which steps toward a positive solution were
reported, and a domino problem (the unrestricted domino problem) was formulated in
connection with a procedure for deciding some AEA formulas. During the spring of
1960, when this part was written, it was also shown that the origin--constrained domino
problem is unsolvable, although the result was not included in this part.

Immediately after the appearance of reference 14, Buchi studied the domino

* First published in Mathematical Theory of Automata. pp. 23- 55. Polytechnic Press, 1963.
Reproduced by permission of the author.

218

Dominoes and the AEA Case of the Decision Problem 219

problems, independently obtained a different proof of the unsolvability of the origin
constrained problem, and combined it with a fundamentally new application of
Lowenheim's theorem to derive the unsolvability of the E I\AEA case. 3 ,4 This last
result improves the method used by Turing13 and Bernays.2 Although Buchi failed to
obtain the decisive result on the AEA case which has superseded previous results on the
reduction problem, his work greatly clarified the relation between Turing machines and
the unsolvability aspect of the decision problem, and suggested for the first time that the
AEA case might turn out to be unsolvable. Finally it was shown by Kahr, Moore and
Wang8 that the diagonal----constrained domino problem is unsolvable and thence the
unsolvability of the AEA case was derived.

Section II of this part contains a review of the formulation of the domino problems
and a proof of the unsolvability of the originconstrained domino problem along the line
originally taken. This should be useful for an understanding of reference 8. Section III
digresses into a closer examination of the relation between AEA formulas and the
unrestricted domino problem. Section IV deals with the E I\AEA case. Section V gives,
as an alternative to the treatment in reference 8, a different proof of the unsolvability of
the AEA case, with an additional result that in reducing an arbitrary formula to an AEA
formula, finite models are preserved. It then follows easily that there is no effective
method for deciding whether an AEA formula has finite models. In Section VI, we give a
rather inadequate sketch of Kahr's further reduction to the AEA case with formulas
containing, beyond monadic predicates, only a single dyadic predicate, a result
announced in reference 7. Finally, we supply in Section VII an alternative treatment of
results on solvable AEAsubcases proved in a paper by Dreben, Kahr and Wang. 6 While
Sections II, IV, V, and VI are closely interrelated and all deal with unsolvability results,
Section III is a digression, and Section VII deals with positive solutions and can be read
directly since it does not presuppose the other sections of this part.

ll. THE GAME WITH DOMINOES

Assume given a finite set P = {D h "', DM } of quadruples (a, b, c, d) of positive
integers. We wish to study assignments A of these quadruples to all the lattice points of
the first infinite quadrant of the Cartesian plane, or mappings A of the set N2 of ordered
pairs of non-negative integers into the set P, such that:

2.0. a(Axy') = c(Axy),
b(Ax'y) = d(Axy),

where Xi is short for x~l and a(D), beD), c(D), d(D) are respectively the first, second,
third, fourth members of the quadruple D. The first question is whether there is a
general procedure by which, given any finite set P, we can decide whether there exists an
assignment satisfying the condition 2.0. More graphically, we can describe this and
related questions as follows.

We assume there are infinitely many square plates (the domino types) of the same
size (say, all of the unit area) with edges colored, one color on each edge but different
edges may have the same color. The type of a domino is determined by the colors on its
edges and we are not permitted to rotate or reflect any domino. There are infinitely

220 Computation, Logic, Philosophy

many pieces of every type. The game is simply to take a finite set of types and try to cover
up the whole first quadrant of the infinite plane with dominoes of these types so that all
corners fallon the lattice points and any two adjoining edges have the same color.

2.1. A (finite) set of domino types is said to be solvable if and only if there is some
way of covering the whole first quadrant by dominoes of these types.

It is natural to use the ordinary Cartesian coordinates and identify each unit square
with the point at its lower left-hand corner. Then we can speak of the origin (0, 0), the
main diagonal x = y, etc.

The following general questions on these games have been considered:

2.2. The (unrestricted) domino problem. To find an algorithm to decide, for any
given (finite) set of domino types, whether it is solvable.

2.3. The origin~onstrained domino problem. To decide, for any given set P of
domino type and a member C thereof, whether P has a solution with the
origin occupied by a domino of type C.

2.4. The diagonal- (row-, column-) constrained domino problem. To decide,
for any given set P of domino types and a subset Q thereof, whether P has a
solution with the main diagonal (the first row, the first column) occupied by
dominoes of types in Q.

These three problems will be considered in different parts of this paper.
In order to prove the unsolvability of the origin~onstrained domino problem, we

shall reduce to it the following familiar unsolvable halting problem of Turing machines.

(HB) To decide, given any Turing machine, whether it eventually halts if the
initial tape is blank.

To keep our ideas fixed, we shall assume one special formulation of Turing
machines, although it will be clear that similar considerations are applicable to other
formulations. We use a one-way infinite tape, take ql as the initial state, the leftmost
square of the tape as the initially scanned square, two tape symbols So (blank) and Sl
(marked), the basic acts R (shift the reading head right one square), L (shift the reading
head left one square), Sl (print Sl), So (print So). Each machine has a finite number of
states ql, ... , q ,and, at each moment, the present state and the content of the scanned
square togetheF determine the acts (one print act and one shift act) to be taken, as well as
the state at the next moment.

An example which will be used for illustration is:

Machine X

q1SOS1Rq2
q2S0 S0 Rq3
q3S0 S1Lq4
q4S0 S0 Lql

q1S1S1Rql
q2S1S1 Lq3
q3S1S0 Lq4

Dominoes and the AEA Case of the Decision Problem 221

We shall give a general method by which, given any Turing machine X, we can find
a corresponding domino set P x containing a distinguished type D such that X halts on
an initially blank tape if and only if P has no solution with a domino of type D at the
origin. Essentially, we choose Px so that in a solution of P, for every y, the y-th row
contains the whole situation of X (tape, state, and scanned square) at time y. As a result
X eventually halts if and only if P x has no solution.

Thus, for the example X above, we choose P x as follows.

2.5. P x consists of the following domino types:
2.5.1. Two domino types for each tape symbol: [SoJ, [LSoJ, [SIJ, [LSI].
2.5.2. One domino type for each permissible kind of scanned square (state and

symbol): [qj Sa, i = 1, 2, 3, 4; j = 0, 1; (i, j) -# (4, 1).

2.5.3. One domino type for the next scanned square (symbol and next state) after a
left shift: [LqjSa, i = 1, 3, 4; j = 0, 1.

2.5.4. One type for the next scanned square after a right shift: [RqjSa, i = 1,2,3; j
= 0,1.

2.5.5. Four domino types for the initial row and column: [DJ for the origin, [BJ
for the beginning of the tape, [I] for initial row, [~ J for the initial column.

If we use the x--coordinate to represent tape positions and the y--coordinate to
represent time, a simulation of the particular machine X should be given by a partial
solution of P x as in Fig. 1. Machine X halts at y = 8, because the reading head ends up
scanning SI in state q4, and it is understood that the machine halts if the reading head
scans Sj in state qj but there is no entry in the machine table beginning with qjSj, or there
is a left shift while scanning the beginning of the tape.

There remains the problem of specifying the four numbers or colors of each
domino type in P x to exclude undesired solutions.

Each solution is an assignment or mapping A of a domino type to a member of N2 •

It is natural to write Axy = Dj briefly as Djxy. We can now state the conditions needed
for the simulation.

2.6. The conditions on Px:
2.6.1. The origin constraint. (Ex) [DJxx.

In other words, the type [DJ must occur somewhere. This position is treated as the
origin (0, 0). By choosing the colors on D suitably, we can make it impossible for any
domino to occur to its left or below it.

2.6.2.
2.6.2.1.
2.6.2.2.
2.6.2.3.

2.6.3.

The initial row and the initial column are the boundary:
[DJxy ::::J [BJx'y.
([BJ V [l]xY::::J [I]x'y.
([DJV [~J)yx::::J [~ Jyx'.

The next row above the initial row simulates the initial configur ation:

222 Computation, Logic, Philosophy

y - Lq4
51 q351 51 So So So

8

-- L5
Lq3

q251 So So So 1 51

7

--- LSI q1 50
Rq2

So So So SI

6

-- q 5
Rql

SI So So So 1 1 So

5

- Lq]
q4S0 SI So So So SI

4

-- LSI
Lq4

q3S0 So So So So

3

-- LS q2S0
Rq3

So So So 1 So

2

-Q1S0
RQ2

So So So So So

D B r r I r
0 2 3 4 5 6 7 x

Figure 1

Dominoes and the AEA Case of the Decision Problem 223

2.6.3.l.
2.6.3.2.

2.6.4.

2.6.4.1.
2.6.4.2.

2.6.5.

2.6.5.1.
2.6.5.2.

2.6.6.

2.6.6.1.

2.6.6.2.

2.6.7.
2.6.7.1.

2.6.7.2.

2.6.8.
2.6.8.1.

[BJyx::::J [qlS0Jyx'.

[nyx ::::> ([Rq2S0]V [SoJ)yx'.

The left or right neighbor of the scanned square at time y is in part
determined by a left or right shift and embodies information for the scanned
square at time y'. It is convenient to write briefly [LqJ for
[LqjSoJ V [LqjSlJ, [RqJ for [RqjSoJ V [RqjS.l].
[qjSax'y::::J [Lq]xy; (i, j, k) = (2, 1,3), (3,0,4), (3, 1,4), (4,0, 1).
[qS]xy ::::J [Rq lx'y; (i, j, k) = (1, 0, 2), (1, 1, 1), (2, 0, 3).

I J k

The state and scanned square at time y' are determined by [Lq.J or [Rq] at
time y. 1 1

[LqS]yx ::::J [qS]yx'; i = 1, 3, 4, j = 0, 1.
[RcI.S]yx ::::J [CI.S]yx'; i = 1, 2, 3, j = 0, 1.

I J I J

The tape symbol at time y' and position x is determined by the tape symbol
at (x, y).
[S]yx::::J ([S.JV [RqlS]V [Rq2S]V [Rq3S])yx'; i = 0, 1. [LS]yx
::::J1([LS]V tLqlS.JV [Lq3S]V [tqSJ)yx,;li = 0, 1. I

[q2S01Yx ::::J [Lq4S0Jyx', I I

[q3S1Jyx ::::J [SoJyx',
[q4S0Jyx ::::J ([RqlS0JV [Rq2S0J)yx',
[qlS0JYX::::J ([LS1JV [Lq3S1J)yX',
[qlSlJyx ::::J [LSIJyx',
[q2S1Jyx ::::J [SIJyx',
[q3S0Jyx ::::J [SIJyx',

In each row, we have to distinguish [SJ and [LSJ.
([RqlJV [Rq2JV [Rq3JV [q2S1JV [q3S0JV [q3SJ

V [q4S0JV [SoJV [SIJ)Xy::::J ([SoJV [SIJ)X'y.
([LqlJV ([Lq3JV [Lq4JV [qlS0JV [qlSlJV [q2S0J,
V [LSoJ V [LS1J x'y ::::J ([LSoJ V [LS1J V [~J)xy.

The halting conditions.
I [q4S1JXY·

We can either exclude the type [q4S1J or choose its colors so that no domino can
occur above it.

2.6.8.2.

This could be deleted if we had included the condition that no two types can be
assigned to the same place.

These conditions determine the colors on the domino types in the following
manner.

224 Computation, Logic, Philosophy

2.7. Colors on the domino types in P are given in Fig. 2. x

By 2.6.5, the top of Lq.S. or RqS. is the same as the bottom of q.S. By 2.6.3.1, the
• I J I J I J

top of B IS the same as the Dottom of Q1S0.

0 LO 1 L1

,GJ, 'N' __ J
,[:} l[}

0 LO Ll

10 30 40 11 31 41

~ L 50
1 40 ~ L 503 21 ~ L 50

4 3 ~ L i 51 40 ~ L 513 21 ~ L 514 3

LO LO LO L1 Ll Ll

10 20 30 11 21 31

,o~~, ,o~} ~ ~ ,o~~ , ~
Rq Rq

11 50 R 11 511 R 10 5/ R

0 0 0 1 1 1

Ll L1

,lq,SollO 'b,s,l" '+d' 31q3So R

10 11 21 30

LO 0 0

,lq,sol,o 31q3S,I, 40 Iq4So I,
20 31 40

6 10 6 0

{~} {~} {~l' {~}
5 5 6 5

Figure 2

Dominoes and the AEA Case of the Decision Problem 225

By 2.6.6.1, the bottom of the first three rows and the top of the first row are filled.
By 2.6.3.2, the top of [iJ is determined. By 2.6.6.3, the top of the third and the fourth
rows is determined.

By 2.6.7.1 and 2.6.7.2, the left of the first two rows, the right of the first and the
third rows, the L's and R's in the third and the fourth rows, and the right of [~] are
determined.

By 2.6.4, the remaining edges in the middle four rows are determined.
Finally, by 2.6.2, the edges of the last row are determined.
The conditions 2.6 do not exclude the possibility that several domino types occur at

the same place, although the condition 2.6.1 does yield the requirement that at least one

domino type occurs at each place. To assure uniqueness, we may either add an explicit

condition to such an effect or use =:; instead of :::J . If we replace :::J by ==, we have to put
together occurrences of the same basic formula, such as [ql SoJyx' in 2.6.3.1 and 2.6.5.1:

Such a treatment is perhaps less easy to follow.
Since the example is sufficient to illustrate the general situation, we have proved:

Theorem I: The origin-constrained domino problem is unsolvable; in fact, the
halting problem (HB) is reducible to it.

ID. FORMULAS FOR THE UNRESTRICTED PROBLEM

Given a set P = {Dl' "', D }, we may divide the set into four sets, P b Pz, P 3 , P 4,

of subsets such that two domino~s belong to the same subset in P 1 if and only if their
first members (bottom edge) are the same (oof the same color), and so on. Then we can
match up subsets of P 1 with those of P 3, subsets of P z with those of P 4 so that, for
example, a subset {De, "', D J} in P 4 is matched up with a subset {Dg, "', Dh } in P 2 if
the fourth member of De is the same as the second member of Dg.

3.1.

3.1.1.

3.1.1.1.
3.1.1.2.

3.1.2.

A mapping of NZ into P gives a solution if and only if:

Every pair (x, y) in NZ gets a unique quadruple from P; or, writing DiXy as
short for Axy = Di :

DIXYV ... V DMxy.
[DIXy:::J (iDz /\ ... /\ iD)xyJ /\ ... /\ [DMxy:::J (iDl /\ ...
/\ iDM -l)Xy]. Briefly, 3.1.1 (tharis, the conjunction of3.1.1.1 and 3.1.1.2)
is also written as: V(D1xy, ... , D xy).

M

b(Ax'y) = d(Axy). Or, using truth functions only: [(De V ... V
DJ)xy == (Dg V ... V Dh)x'yJ /\ ... /\ [(Dp V ... V Dq)xy == (Ds V ... V
Dt)x'y].

226 Computation, Logic, Philosophy

3.1.3. a(Ayx') = c(Ayx), with a similar truth functional expression of the form
V(D1yx, ... , DMyx; DIYX', ... , DMyx')·

More exactly, we have assumed that in the set P, for every domino D., there are Dj ,

Dk, such that b(Dj) = d(Di), a(Dd = c(Di), because we can effectiv'ely eliminate
domino types Di for which the above condition does not hold. The fact that we are
concerned with the first quadrant rather than the whole plane presents a slight
complication insofar as a type Di for which there is no Dj , a(Di) = c(Dj), or no Db b(Di)
= d(Dk) may occur in the first row or the first column but not elsewhere. It is, however,
clear that all members of each Pk(k = 1, 2, 3, 4) are mutually exclusive and jointly
exhaust P. Moreover, it is true in every case that in 3.1.2 and 3.1.3, for each Di, Dixyor
Dix'y or Diyx or DiYX' appears in at most one disjunct because, e.g., if C(Di) = a(Dj)

= a(Dk) and c(Dp) = a(Dj), we must also have c(Dp) = a(Dk).
In condition 3.1, we can, by the help of 3.1.1.2, replace == by :=J in 3.1.2 and 3.1.3.

Another possibility is to replace == by V ,and V by V in 3.1.2 and 3.1.3. Then we can
delete 3.1.1.1 as an independent condition.

From 2.1, it follows immediately that to every set P of domino types, there is a
corresponding formula of the form:

U(G1xy, ... , GKxy; Gdy, ... , GKx'y)

/\ V(G1yx, ... , ~yx; G1yx', ... , GKyx'), (1)

or briefly,
U(xy, x'y) /\ V(yx, yx'), (1 *)

where U and V are truth-functional combinations of the components such that P is
solvable if and only if (1) has a model. That is, there is an interpretation in the domain N
of non-negative integers of G1, ... , ~ which makes (1) true. This fact was first pointed
out by Buchi.

Note, incidentally, that we can generally use fewer dyadic predicates than
dominoes. Given M domino types, let K = j1.n(2n ~ M). We can then use K dyadic
predicates to represent the M domino types, since, for any x and y, each of G1xy, ... ,
GKxy can be true or false and we can identify each D arbitrarily with one of these 2!'
distributions of truth values; for example, we can replace Dixy by Gexy /\ ... /\ Gfxy
/\ iGgxy /\ ... /\ i~xy. Using any such representation, we can restate 3.1, for
example, by:

3.2

3.2.1.

3.2.2.

The set {Dl' ... , DM} is solvable if and only if we can assign values to G1, ... ,
GK over all (x, y) in N2, such that:

[(Dexy V ... V Dfxy) /\ (Dgx'y V··· V DhX'Y)] V··· V [(Dpxy V ... V
Dqxy) /\ (Dsx'y V ... V Dtx'y)]

Similarly for (y, x) and (y, x').

Dominoes and the AEA Case of the Decision Problem 227
The uniqueness of 3.1.1.2 is now dispensable since the truth distributions of G1 xy,

. ", G xyare automatically mutually exclusive. Moreover, as just noted, the existence of
condi¥ion 3.1.1.1 also follows from 3.2.1 (or 3.2.2) since, no matter which disjunct of
3.2.1 (or 3.2.2) is true, some Di must be true of (x, y).

We shall now prove that, conversely, given a formula F of the form (1), we can find
a corresponding domino set PF such that PF is solvable if and only ifF has a model in N.

We assume F contains K dyadic predicates Gh "', ~ and U, V are in the fully
developed dis junctive normal form so that U (or V) is a dis junction of con junctions each
of which is of the form

or (2)

(2*)

If pq is ambiguously xy, yx, x'y, or yx', we separate out the sign pattern of each
occurring K-termed conjunction ± G1pq /\ ... /\ ± GKpq by writing it as Cjpq, one
number i for each pattern. Each of the patterns Cj is taken as a color and we define the set
PF of dominoes as the set of all quadruples Dk = (Cj, Cj, Cj, Ck) such that [(Cjyx /\
Cjyx') :::;) V(yx, yx')] and [(Cjxy /\ Ckx'y):::;) U(xy, x'y)] are truth-functional
tautologies.

In this way, each sign pattern Ci gives rise to m x n domino types if it can be
followed on the top by m sign patterns, and on the right by n sign patterns. Had we taken
each C; as a single domino type. we would not be able to exclude in general the situation
that, e.g., C1 can be followed by Cz and C3 on the right, but C4 can only be followed by
Cz on the right, violating the requirement on colors.

IfF has a model, then the conjunction of all instances ofU(xy, x'y) /\ V(yx, yx') for
all (x, y) in NZ is true for some selection of a conjunction (2) and a conjunction (2*), for
each pair (x, y). This then yields a solution of P "

Conversely, if P , has a solution, we obtain fr~m the solution two con junctions (2)
and (2*) for each pai~ (x, y). All these selections yield together a model for the given
formula F. Hence, we get Theorem II.

Theorem II: Given a domino set P we can find a formula F p of the form (1) such
that P has a solution if and only if F p has a model. Conversely, given a formula F of the
form (1), we can find a domino set PF such that F has a model if and only if PF has a
solution. Hence, the unrestricted dominoproblem is undecidable if and only if the
decision problem of the class of all formulas of the form (1) is unsolvable.

IV. UNSOLV ABILITY OF THE E /\ AEA CASE.

The relation between the domino problems and certain simple classes of formulas
of the predicate calculus is brought out by Buchi's application of the familiar
Lowenheim theorem (see Skolem10) as a lemma which for our purpose may be stated
thus:

Lemma 1: A formula EzKz /\ AxEuAyMxuy, in which K and Mare quantifier-

228 Computation, Logic, Philosophy

free, is satisfiable if and only if Ko 1\ AxAyMxx'y is satisfiable in the domain of non
negative integers; similarly if we delete EzKz and Ko.

The shortest proof of this lemma uses the axiom of choice to give a function f(x)
which gives the corresponding u for each x in any given model. Since EzKz, let a be an
object such that Ka; or, when EzKz is absent, take any object a of the model. Using the
function f, we get a domain {a, f(a), f(f(a)), ... } closed with respect to f. This may be
identified with {O, 1, 2, ... }. It is important that in thus using the familiar domain of
non-negative integers, we do not assume that in the model the conditions x' -# ° and "x'
= y' implies x = y" are satisfied. Hence, finite models are not excluded.

Using this lemma, Buchi proved:3.4

Theorem III: The class of E 1\ AEA formulas with monadic predicates and three
dyadic predicates is unsolvable.

Clearly, once we have an unlimited supply of dyadic predicates, we may use some of
them as monadic predicates by allowing, for example, G to occur only in contexts Gvv,
for some variable v. Hence, this is stronger than the result, which can be derived directly
from Lemma 1 and Theorem I, that permits an unbounded number of dyadic
predicates.

We reproduce here Buchi's proof in a slightly different form in order to make some
of the details more explicit.

For a machine with K states, three dyadic predicates and K + 3 monadic
predicates are used which have the following intuitive meaning:

Zz: z is the distinguished element 0.
Sxy: The square x is marked at time y.
Kxy: The square x is under scan at time y.
Jxy: The square x' is under scan at time y.
Q.y: The state at time y is qj(i = 1, ''', K).
Ly: A left move is made at time y.
Ry: A right move is made at time y.

The procedure for writing out an E 1\ AEA formula from each Turing machine
consists of a specification of the transitions and acts of a given machine, plus a general
form applicable to all machines with the specified parts as parameters.

4.1. The specification for the machine (X) above (preceding 2.5).
4.1.1. The transition formula {fl..yxx' from time x to time x':

Kyx ::::l ({Syx ::::l [(QIX ::::l Qd) 1\ (Q2X ::::l Q3X')
1\ (Q3X ::::l Q4X')]}

1\ {,Syx ::::l [(QIX ::::l Q2X') 1\ (Q2X ::::l Q3X')
1\ (Q3X ::::l Q4X') 1\ (Q4X ::::l QIX')]}).

Dominoes and the AEA Case of the Decision Problem

4.1.2. The moves of the different states are summarized:

.fyx for [iSyx /\ (Qzx /\ Q3X)] /\ [DSyx /\ (Q3X /\ Q4X)]
9lyx for [KiSyx /\ (Q1X /\ Q2X)] /\ (Syx /\ Q1X).
Soyx for [iSyx /\ (Qzx /\ Q4X)] /\ (Syx /\ Q3X).
SlYX for [iSyx /\ (QlX /\ Q3X)] /\ [Syx /\ (QlX /\ Qzx)].

4.1.3. The halting condition is given by:
:Xyx for Kyx /\ [(Syx /\ Q4X) V (Zx /\ £yx)].

229

Relative to any specification of l2yxx', £yx, 9lyx, SoYX, SlYX,:X yx, the
corresponding formula of the given machine is given as a conjunction of conditions.

4.2.
4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.
4.2.6.
4.2.7.

4.2.8.

The formula for a given machine.
Specification of Z: EzZz 1\ IZX'.
Exactly one state at each time (see 3.1.1): V(QlX, ... , QKX).
Condition on Jxy: Kx'y = Jxy.
Initial configuration: Zx =:l [(Q1X 1\ Kxx /\ IJyx) /\ iSyx].
Transition of states: l2yxx'.
No model if halting condition emerges: I :Xyx.
The scanned square at x':

[(Kyx I\£yx) =:l Lx] 1\ [(Kyx 1\ 9lyx) =:l Rx] 1\ I (Lx 1\ Rx).
Lx =:l (Jyx == Kyx').
Rx =:l (Kyx == Jyx').

The contents of tape squares at x':
Syx' == [(Kyx 1\ SlYX) V (IKyx 1\ Syx)].

The above formula is of the form EzKz 1\ AxAyMxx'y, and has the property that it
has a model if and only if the given machine does not halt eventually when beginning
with a blank tape. Hence, by Lemma 1, Theorem III is proved.

It may be noted that the description of the machine by the above formula does not
depend on the fact that the integers are all distinct. In fact, whether or not the formula
has any finite models depends on the behaviors of K, S, J, Q 1, ... , QK. If an axiom of
infinity were included as part of the condition, there would, as with Turing and Bernays,
never be any finite models.

It is clear that the same argument can also be used to derive the unsolvability of
E V AEA from Theorem I, only without a bound on the number of dyadic predicates.
While Buchi's proof is more elegant in this case, the unsolvability of AEA 8 was obtained
originally by extending Theorem I, which also has certain advantages when we try to
find a bound on the number of dyadic predicates in an unsolvable class of AEA
formulas.

At this stage it appears obvious that the AEA case is unsolvable if and only if the
diagonal-constrained domino problem is unsolvable, since we can, in expressing the
diagonal problem, replace 2.6.1 (viz., (Ez) [D] zz) by a condition of the form
([D.] V ... V [Db])xx and avoid the extra quantifier (Ez).

230 Computation, Logic, Philosophy

V. UNSOLV ABILITY OF THE AEA CASE

In order to extend the proof of Theorem I ot the unsolvability of the row
constrained or diagonal-Bonstrained domino problem, we are faced with the difficulty
that we do not have a fixed origin. This obstacle is removed in reference 8 by the use of
relative origins (oor barriers) so that, corresponding to each moment of operation of the
simulated Turing machine X, infinitely many copies of the effective part of the
simulation of X in the origin--{;onstrained case are present in the solution. In this way,
although we do not get one fixed origin, we are assured of an infinite sequence of equally
spaced relative origins. There is the additional complication that we need, in general, an
unbounded number of tape squares in simulating a Turing machine. Since, however, at
each time t, we need only be concerned with, say no more than t' squares of the tape, we
get enough room by doubling the distance between two barriers as we come to the next
row or diagonal. This is achieved by using a notion of parity such that a barrier is
preserved in the next row or diagonal only when it has the active parity, and within each
row or diagonal, the parity changes at each barrier. The proof is carried out in reference
8 for the diagonal--{;onstrained problem. A similar but slightly simpler argument would
establish the unsolvability of the row or column--{;onstrained domino problem. We can
also give a general method by which, given P and Q, we can find p* and Q* such that P
has a column or row--{;onstrained solution relative to Q, if and only if p* has a diagonal
constrained solution relative to Q*.

Theorem IV: The diagonal-(row-, column-) constrained domino problem is
unsolvable. In fact, we can find, for each Turing machine X, a set of domino types P x
such that X eventually halts on an initial blank tape if and only ifPx has no constrained
solution.

From Lemma 1 and Theorem IV, the unsolvability of the AEA case follows
immediately. In fact, somewhat stronger results are proved8 by classifying AEA
formulas Mxx'y with dyadic predicates only according to the forms of the occurring
atomic formulas and the structure of M. Thus, if Glo ... , GK are the dyadic predicates,
there are nine possible forms Gjxx, Gjxx', Gjx'x, Gjx'x', Gjyy, Gjxy, Gjyx, Gjx'y, Gjyx' for
each Gj. We have, therefore, altogether 29-1 possible classes determined by including
or excluding formulas of each of these forms. We can furthermore specify the possible
contexts in which formulas of given forms occur. The following theorem is proved in
reference 8:

Theorem V: Any AEA class including all formulas which contain three of the four
forms (xy, yx, x'y, yx') is undecidable: the class of all AEA formulas of the form
Wxx 1\ D(xy, x'y) 1\ V(yx, yx'), that of the form U(xy, x'y) 1\ V(xy, yx), that of the form
U(yx, yx') 1\ V(xy, yx), are all undecidable, where W, D, V are, as in Eq. (1) of Section
III, truth-functional expressions. Moreover, all these classes are reduction classes.

The unsolvability of the AEA case completely settles the question of decidable and
undecidable subclasses of the predicate calculus insofar as these are determined solely

Dominoes and the AEA Case of the Decision Problem 231

by the prefIx forms of their component formulas in the prenex normal form. This
follows directly from common knowledge in the literature. 8 In fact, this is ture even
when we permit extended prenex forms (see, e.g., reference 14, p. 2 and p.5, and
reference 3), that is, formulas which are conjunctions of formulas in the prenex normal
form.

Theorem VI: An extended prefix form class is a reduction type (and undecidable) if

and only if either the prefix of at least one conjunct contains AEA or AAAE as a (order
preserving but not necessarily consecutive) substring, or there are two conjuncts of
which the prefIxes contain AAA and AE respectively. Moreover, it is decidable if and

only if it contains no axioms of infinity, i.e., formulas which have only infinite models.
When commenting on an earlier draft of reference 8, Richard Buchi and Dana

Scott independently suggested that an alternative proof of the unsolvability of the AEA
case be used which does not employ the dominoes in such a conspicuous manner. Such a
proof would be an extension of the proof of Theorem III rather than one of Theorem I.

It turns out that either way of proving the theorem can be modifIed to have
additional useful properties in connection with the question of preserving fInite models
in the reduction procedure and fInding a bound on the number of dyadic predicates.
Since the modifIcations are similar in both cases, we present here a proof along the
alternative approach which includes the additional features.

Instead of reducing (HB) as before, we shall use:

(HI) For a suitably chosen machine (usually a universal Turing machine), to
decide, given any initial tape containi,ng a consecutive fInite string of
marked squares, whether it eventually halts.

We shall reduce (HI) to the diagonal-constrained domino problem and make use of
monadic predicates to take care of the inputs. Moreover, we shall assume that the Turing
machine employed may have a distinguished state qh, entry into which puts the machine
into a suitable form of repetitive behavior. Later on we shall describe a general method
by which, given an arbitrary formula F in the predicate calculus, we get a corresponding
Turing machine T F such that, among other things, ifF has a fInite model, then a state qh
occurs in T F. The feasibility of this depends on the fact that the formulas having fInite
models form a recursively enumerable set.

We shall aim at a proof that is easy to follow, and make no attempt to economize the
number of dyadic predicates or to avoid redundant conditions. For defIniteness, we use
the particular machine given in Section II and assume that initially there is a string ofk
consecutive marked squares at the beginning of the tape. We shall arbitrarily take qs as
the distinguished state qh so that in the simulation special conditions are introduced for
qs, which are to yield certain desired properties in the corresponding AEA formula.

5.1. The machine X; same as before, except as a state qs is permitted.

Instead of simulating the configuration at time t by the row y = t, we use the t-th
diagonal x = y + t. The initial configuration is simulated on the main diagonal.

232 Computation, Logic, Philosophy

5.2. We use 2k + 4 monadic predicates to set up a basic frame:
~x == Mj+1x'(i = 0, ... , 2k+2), MZk +3x == Mox'.

V(Mox, ... , MZk +3),
(Vmeans exactly one; see 3.1 above).

We set up a period oflength 2k + 4 on the main diagonal and this is doubled as we
go from one diagonal to the next so that the period at time t is oflength 2t + l(k + 2).

5.3. We use a number of predicates with the following intended meaning:
Bxy: the point (x, y) is a barrier (relative origin), which is followed by the

beginning of the tape at time x-Yo
Pxy: the point (x, y) belongs to the active part at time X-Yo
Kxy: if (u, v) is the nearest point on the same diagonal as (x, y) such that

Buv and v < y, then the (y-v)-th square of the tape is under scan at
time X-Yo

Sxy: if (u, v) is as before, then the (y-v)-th square of the tape is marked at
X-Yo

Lxy: the move at x-y is shift left.
Rxy: the move at x-y is shift right.
Soxy: the third symbol in the quintuple used at x-y is So.
SlXy: the third symbol in the quintuple used at x-y is SI'
Hxy: the machine stops at X-Yo
Qjxy: the machine is at state qj at x-y(i = 1, 2, 3, 4, 5).
Cxy: the machine begins operation at X-Yo

5.4. To make the exposition easy, we use also Bx'y', Px'y', ... , Kx'y' and even
Kx"y'. These can be eliminated by additional predicates so that y' and x" do
not occur. For example, we can replace Kx' y' by K*x' y, and Kx" y' by K + x' y,
and add two conditions: K*yx == Kyx', and K+xy == K*x'y.

5.5. The set of conditions for a given machine.
5.5.1. Depending on the given machine, we give the transition of states and

different moves:
(Pxy 1\ Kxy 1\ Sxy) ::::> [(Q1XY ::::> Q1X'y) 1\ (Qzxy ::::> Q3X'y)

1\ (Q3Xy ::::> Q4X'y)]'
(Pxy 1\ Kxy 1\ I Sxy) ::::> [(Q1XY ::::> Qzx'y) 1\ (Qzxy ::::> Q3x'y)

1\ (Q3Xy ::::> Q4x'y) 1\ (Q4XY ::::> Q[X'y)].
(Pxy 1\ Kxy 1\ Sxy 1\ Q4Xy) ::::> Hx'y.
(Px'y'l\ Kx'y' 1\ Lx'y' 1\ Bxy) ::::> Hx'y.
{Pxy 1\ Kxy 1\ [«Qzxy V Q3Xy) V Sxy) V «Q3XY V Q4XY)

1\]Sxy)]} ::::> Lxy.
{Pxy 1\ Kxy 1\ [(iSxy 1\ Qzxy) V Q1Xy]} ::::> Rxy.
{Pxy 1\ Kxy 1\ [(iSxy 1\ (Qzxy V Q4xy» V (Sxy 1\ Q3XY)]} ::::> Soxy
{Pxy 1\ Kxy 1\ [(,Sxy 1\ (Q1XYV Q3xy» V (Sxy

1\ (Q1XY V Qzxy))]} ::::> SIXY.

Dominoes and the AEA Case of the Decision Problem 233

5.5.2. Some auxiliary conditions:
Qjxy == QjX'y', (i = 1, ... ,5), V(Q1XY, ... , Qsxy).
Lxy == Lx'y', Rxy == Rx'y', Soxy == Sox'y',

SlXY == SlX'y',
Hxy == Hx'y', i(Lxy II Rxy), i(SoXY II SlXY).

5.5.3. Determination of square under scan and contents of tape 5quares at next
moment.
(Pxy A Lxy) ::l (Kx'y' == Kx'y).
(Pxy II Rxy) :::J (Kxy == Kx"y').
(,Pxy II Bxy) :::J (iKx'yV Cx'y).
Soxy:::J iSx'y; SlXY :::J Sx'y; (Pxy II ,Kxy) :::J (Sxy == Sx'y).

5.5.4. Conditions on parity:
Bx'y' :::J [(Pxy == ,Px'y') V Cx'y].
iCx'y:::J [Bx'y == (Bxy 1\ Pxy)].
(iPxy II iCx'y) :::J (iSx'y II iKx'y).

5.5.5. Conditions on the diagonal:
Cxx.
Cxy:::J [(MoYV ... V Mk+1y) == Pxy].
CXy:::J [(MoyV Mk+zY) == Bxy].
CXy:::J Q1XY.
Cxy:::J {(Kxy == M1y) II [Sxy == (M1YV .. , V Mky)J}.

5.5.6. Conditions on stopping and the distinguished state qs:
iHxy
Cxy == Cx'y'; Qsxy == Cx'y.
This is the end of the conditions.

By the remark in 5.4, the con junction of the above conditions is a for mula F of the
form Mxx'y with monadic predicates and a finite number of dyadic predicates
determined by the number of states of the simulated Turing machine. The conjunct
iHxy ensures that the formula has no model if and only if the machine stops. By
appealing to auxiliary considerations in reference 8, we can applying Lemma 1, obtain an
alternative proof of Theorem V and therewith, one of Theorem VI. In fact, using
considerations similar to those in Section III, it is also possible to get an alternative proof
of Theorem VI in this way. If there is a distinguished state qh, then the formula F gets a
model which repeats the initial periodic diagonal (the main diagonal) on all diagonals ks
for some s, with the help of the predicate C. In the other satisfiable case, we get only
infinite models because of the doubling.

A familiar fact in logic is:

Lemma 2: There is an effective partial procedure by which, given a formula of the
predicate calculus, we can test whether it has no model, a finite model, or only infinite

234 Computation, Logic, Philosophy

models. The procedure terminates in the first two cases but does not terminate in the last
case.

Hence, given a formula, we can construct a Turing machine which stops if the
formula has no model, gets into a distinguished state qh if the formula has a finite model,
and behaves otherwise is the formula has only infinite models. The reason why the
second case yields finite models may be seen from Fig. 3. Thus, since the parallelograms
bounded by solid lines are identical, and the remaining triangles along the y-axis may be
viewed as parts of identical parallelograms, the squares are also identical and we can geta
finite model.

5.6. Definition: Consider classes of formulas of the predicate calculus. For any
class X, let N (X), I(X), F(X) be the subclasses of X which contain all
formulas in X which have respectively no model, only infinite models, finite
models. If R is a reduction procedure which reduces a given class Y to y*
and every subclass Z ofY to Z*, then R is said to be a conservative reduction
procedure for Y, if (F(Y))* = F(Y*).

Since R is a reduction procedure, (N(Y))* = N(Y*), and (I(Y) U F(Y))*
= I(Y*) U F(Y*). Hence, any effective mapping R from Y is a conservative reduction
for Yifandonlyif(N(Y))* = N(Y*), (I(Y))* = I(Y*), (F(Y))* = F(Y*). If one wishes,
the notion of conservative reduction can be further refined by distinguishing within
I (X) those formulas which have recursive models from those which have only
nonrecursive models. We shall not include this further distinction.

x

Figure 3

Theorem VII: If K is the class of all formulas of the predicate calculus and R is a
conservative reduction procedure for K, then no two of the three classes N(K*), I(K*),
F(K*) are recursively separable.

This depends on the known result of Trachtenbrot12 that N(K) and F(K) are
recursively inseparable. Thus, since R is conservative, N (K*) and F(K*) are recursively
inseparable, for if a recursive P separates N(K*) and F(K*), then Q = A(R(A) E P) is
recursive and separates N(K) and F(K). On the other hand, if N(K*) and I(K*) were
separable by a recursive P, then we would be able to test each member of P to decide

Dominoes and the AEA Case of the Decision Problem 235

whether it has a finite model or has no model. By Lemma 3, the process always
terminates, since P does not contain any member ofI(K*). Similarly, ifF(K*) and I(K*)
were recursively separable, we could do the same.

Using this theorem and Lemma 2, we get from the proof in the preceding section:
Theorem VIII: If Z is the class of AEA formulas, then no two of the three classes

N(Z), I(Z), F(Z) are recursively separable.
Thus, for each formula A of the predicate calculus, we find a Turing machine T

such that T halts on a blank tape if and only if A has no model; T gets into a distinguished
state qh if and only if A has finite models; T never halts or gets inot qh if and only if A has
only infinite models. If we use a universal Turing machine T, we can correlate each
formula A with a suitable initial input and use the same machine for all formulas. In this
way, we obtain an unsolvable class of AEA formulas which contain only monadic
predicates and a fixed finite number of dyadic predicates. The question of reducing the
number of dyadic predicates will be discussed at length in the next section.

VI. REDUCTION TO AI, THE AEA CLASS
WITH ONE DYADIC PREDICATE

Recently Kahr 7 reduced the predicate calculus to a set A 1 of formulas with the
prefix AEA such that each formula of the set contains only monadic predicates and a
single dyadic predicate. This is similar to Suranyi's result 11 for the AAA 1\ AAE prefix
(which may be written as AAEA or AAAE).

Kahr reduces A 1 to the reduction class obtained in reference 8 of asymmetric
diagonal-constrained domino problems (i.e., problems all of whose solutions A are such
that, for all distinct x and y, Axy i= Ayx). A procedure is given such that for each such
problem C = (P, Q), we can find a corresponding formula Fe such that Fe is satisfiable
if and only if C has some (asymmetric) solution. If C contains K dominoes, then Fe
contains a single dyadic predicate D and 6K monadic predicates Mo, ... , M6k - l'

Let P = {DiIO ~ i ~ K - I}, Q = {Dd.ll ~ i ~ t}, EB be addition modulo 6K, and
I

(i, j): Axy stand for (MiX V Mjy) ::::> Axy.
K-l

B(i, j) stand for 1\ [(i EB m, j EB m): (Dyx == Dxy)].
m~O

K-l K-l

k(i, j) stand for 1\ 1\ [(i EB m EB n, j EB m): (Dyx == Dx'y)].
m~O n~O

Define further Hab, for 0 ~ a ~ K - 1, 0 ~ b ~ 2K - 1. If 0 ~ b ~ K - 1 and the
right edge of domino Da and the left edge of Db are of the same color, then
Hab == Dx' y 1\ Dyx; if K ~ b ~ 2K - 1, and the bottom of Da and the top of Db _ k are
the same, then Hab == Dx'y 1\ Dyx; otherwise Hab == Dxy 1\ iDxy. This gives a
scheme for specifying the part of Fe which depends on characteristics of each given
particular domino set.

The monadic predicates are employed to set up grid boxes of size 36K2 on the
plane.

236 Computation, Logic, Philosophy

6.1 V(Mox, ... , M6K - 1X) 1\ (Mox == Md) 1\ ... 1\ (M6K - 1x == Mox').

Within each grid box, we can think of the point (x, y) such that Mix and Mjy as <i,
j). In this way each point in the first infinite quadrant gets both a global representation
(x, y) and a local representation G, j).

Each domino Di is simulated by several grid boxes depending on the choice of the
neighboring dominoes. But, in each case, the box is identified with Di by the fact that
within the box, at <2K, 0), ... , <2K, K - I) the unique dyadic predicate is true at <2K,
i) only. The K --tuple (ao, ... , ak -I) in which ai is true and all others are false, is called the
name of Di. In order to do this, a device is introduced by which exactly one of D<2K. 0),
... , D<2K, K - I) is true in each box:

K-l

6.2. [(0,2K): IDxyJ 1\ [(K, 2K): DxyJ 1\ 1\ {(i.2K):
i=O

[((Dxy == Dx'y) 1\ IDyx) 1\ (IDxy 1\ Dx'yV Dyx)]}.

Thus, it is first required that in each box B, ID<O, 2K) but D<K, 2K). Hence,
there must be some io, 0 ::::; io ::::; K such that I D<i, 2K) but DG', 2K). The last clause
requires that in the grid box which is the mirror image B ofB (cf. reference 8), D <2K,
0), ... , D 2K, K - I) are all false except at <2K, io), when D does apply. In particular, it
excludes the possibility jD<i, 2K) but DG', 2K), 0::::; i ::::; K, in the original box B.

Within each box B, it is possible, with the help of points in B above the diagonal of
B, to convey (see 6.5 below) the assignments to D atthe stripe <2K, 0), ... , <2K, K - I)
to the two stripes <3K, K), ... , < 4K - 1, K) and <3K, 2K), ... , < 4K - 1, 2K). Taking
this for granted, we force to be realized along the stripes Rh = « 4K, K), ... , < 4K, 2K
- 1») and Rv = « 4K, 2K), ... , < 4K, 3K - 1»), only names of Dj and Db respectively,
such that Dj can occur to the right of the domino D. represented by the given box, Dk can
occur above Di: I

3K-l 4K-l

6.3. 1\ {[(3K, j): IDxyJ 1\ 1\ {(i, j): [Dxy == Dx'y)
i=3K

V H(i - 3K, j - K)J}}.

By the first clause of 6.3, j D< 3K, K), ... , I D(3K, 3K - 1). By the second clause,
for each j, K ::::; j ::::; 3K - 1, once D<i, j) is true for some i in the region 3K ::::; i ::::; 4K
- 1, it is true for all greater i in the region. Moreover, we can get D<i, j) after ID <i,
j) only when Dj _ K can occur to the right or Di _ 2 can occur above, by the specification of
H. That we cannot use several different permissible values of D_K or D_2 does not
follow from the specification of H, but is rather a consequence of additional connections
in 6.5 below which tie up the stripes Rh and R, with the names of the neighboring
dominoes.

The diagonal constraint is given by:

6.4. 1\ [(ri' rJ (Dxy::::J IDyx)].

Dominoes and the AEA Case of the Decision Problem 237

Finally, there are various conditions which transmit names of dominoes without
change. Formally, these are the most complex of the conditions and are not easy to grasp
without some graphical illustration:

6.5. SK(SK,O) /\ N(O, 5K) /\ 4K(2K, 4K) /\ (3K - 1)(0, 3K) 1\ B(O, 3K) 1\

B(O, 4K) 1\ B(O, 5K) 1\ B(K, 5K) 1\ B(4K, 2K) 1\
6N-l 3N-l

1\ 1\ [(i, j): (Dxy = Dx'y)].
i~4N j~N

The con junction of 6.1 to 6.5 gives the required formula Fe in which D occurs only
in the contexts Dxy, Dyx, Dx'y.

From an exact proof along the above line, Kahr establishes a theorem which is an
exact analog of the extended main theorem of reference 8 with dyadic predicates
replaced by monadic predicates plus a single dyadic predicate. This further reduction
does not, however, preserve the form of the whole formulas in terms ofW, U, Vas given
in Theorem V.

The above outline is only an inadequate summary of Kahr's oral and written
explanations with drawings to assist. For a more adequate treatment of the above result,
please consult Kahr's paper in this volume.

It is possible to modify the above proof and extend Theorem VIII to Lll (see
reference 9).

The reduction to Lll does not yield automatically Suranyi's result with the prefix
AAAE and a single dyadic predicate, because in reducing (x) (Eu) (y) Mxuy to the
Skolem form, we go through (x) [(u) (y) (Gxu ::::l Mxuy) 1\ (Eu}GxuJ and use a new
dyadic predicate G.

To get Suranyi's result, we have to modify the above proof in such a way that, e.g.,
we can always choose Fe with the property that if Mxuu holds then u = x'. In that case,
we may replace Gxu by Mxuu and obtain a reduction class with a single dyadic predicate
with the prefix AAA 1\ AE.

VII. SOLVABLE AEA SUBCASES

In view of the fact that formulas of the form Mxx'y form a reduction class, it is
natural to study the decision problem of subclasses of this undecidable class. We shall
confine our attention to formulas containing only monadic and dyadic predicates, partly
because in our undecidability results, we use only these predicates, partly because the
following lemma can be established on the basis of a remark by Buchi.

Lemma 3: Given and AEA formula A, there is a corresponding AEA formula B
which contains only dyadic predicates such that A is satisfiable or satisfiable in finite
domains if and only if B is.

Essentially, since x and yare the only independent variables in an AEA formula, we
can replace combinations of x, x', y with a polyadic predicate by suitably related dyadic
predicates.

238 Computation, Logic, Philosophy

Suppose, for example, A contains a triadic predicate H. Since each place can be
filled by x or x' or y, there are 27 possible atomic formulas containing H. We can now
replace in A, Hxx'b, Hxbx' , Hx'xb, Hx'bx, Hbxx', Hbx'x, Haab, Haba, Hbaa,
respectively, by G1xb, G2xb, G3 xb, G4 xb, Gsxb, G6 xb, G7ab, Gsab, G9 ab, and add

conditions: G1xx == G6xx == G8xx', G1xx' == G2xx' == G9x'x, G2xx == Gsxx == G7xx',
G3 xx == G4 xx == G9 xx', G3 xx' == Gsxx' == Gsx'x, G4 xx' == G7x'x == G6 xx',
G7xx == Gsxx == G9 xx.

Since all possible ordered triples which can be obtained by using x, x', yare
included, each occurrence of H must fall into one of the classes shown. When a predicate
contains more than three places, we can make similar replacements. The cardinality of
the models is not affected by these replacements.

Although the lemma is used as a justification of our choosing to confine our
attention to dyadic (and monadic) predicates, it does not mean that we might not get
more useful classifications of AEA formulas by permitting other predicates.

We shall primarily use here a classification according to the forms of occurring
atomic formulas, and give an alternative treatment of the results given in reference 6.
For example, Theorem II suggests a more detailed classification which we do not
consider here.

Since a dyadic predicate may be followed by xx, xx', x'x, x'x', yy, xy, x'y, yx, or yx',
any atomic formula occurring in a given formula Mxx'y is of one of these nine forms. In
terms of these forms we shall specify subclasses of the class U of all formulas of the form
Mxx'y containing only dyadic predicates.

Consider the four forms xy, yx, x'y, yx'. First take any three of them. From
reference 8 or Theorem V, we know that any subclass of U which includes all formulas
whose atomic formulas are in just these three forms is a reduction class and hence is
undecidable. Now take any two of the four forms. Combining them with the other five
forms yields a subcalss ofU. In this way we obtain six subclasses ofU which divide into
three pairs:

J - { , 1 - xy, xyf,
L = {xy, yx},
Q = {xy, yx'},

J* = {yx, yx'},
L* = {x'y, yx'},
Q* = {yx, x'y}.

The results to date may be summarized thus6 :

Theorem IX: With the exception of subsets of Q and those of Q*, a class
determined only by forms of occurring atomic formulas is decidable if and only if it
contains at most two of the four forms xy, yx, x'y, yx'; it contains an axiom of infinity if
and only if it contains three forms including either xy and x'y, or yx and yx'.

The conjecture is that Theorem IX is true exen when the clause on the exception is
removed.

To illustrate our method of approach, we consider first two simple sucbclasses of J
and J*: J 1 containing only atomic formulas of the two forms Gjxy and Gjx'y, for arbitrary
i; J 2 containing only those of the two forms Gjyx and Gjyx'. Since the arguments for J 1

and J 2 are analogous we discuss only J 1.

Dominoes and the AEA Case of the Decision Problem 239

7.1. The classes J 1 andJz contain no axioms of infinity. In fact, a formula with K
predicates either has no model or is satisfiable with 2ZK or fewer objects.

Let Mxx'y, or briefly Mxy, be a member of J i> containing K dyadic predicates.
Then there are at most 2K atomic formulas, d :(22K truth-value assignments (called
matrix vectors) to them which make Mxy true. If we think of (x, y) as the Cartesian
coordinates of a lattice point in the first quadrant, then each matrix vector generally
affects two points, viz. (x, y) and (x', y), and we shall say that each matrix vector contains
two point vectors Bxy, Bx'y. The formula Mxy has a model if and only if we can choose a
simultaneous assignment A of matrix vectors to all points (m, n) such that each point
gets the same point vector in all the relevant matrix vectors. The class J 1 is especially
simple and each point (m', n) is affected only by the two vectors assigned to Mmn and
Mmn.

Take the set of all d matrix vectors (the sign patterns of disjuncts in the developed
disjunctive normalform) of a given formula. Each matrix vector (ab ... , aK; bb ... , bK) is
such that aj is the truth value (t or f) for Gjxy, and bj is that for Gjx'y.

Cross out each matrix vector R = (a1' ... , aK; bi> ... , bK) if there isno matrix vector
in the set which begins with bi> ... , bk • We cannot assign R to any Mmn to get a model,
since we would not be able to find any assignment for Mm'n that gives the same point
vector Bmn as R. We continue this process of reducing the set of matrix vectors until we
have either eliminated all matrix vectors, or else each remaining matrix vector can be
continued by a matrix vector that remains. In the first case, there is no model. In the
second case, there is a model, and indeed there is a finite model.

Define the rank of a matrix vector R in the resulting set as the smallest number of
steps needed, beginning from R, to continue up to a first repetition of a matrix vector
along the path. Then call the smallest rank of all matrix vectors the rank of the formula.
Since there are at nost 2ZK matrix vectors for a formula with K predicates, its rank is at
most 2ZK.

We can assign K -tuples to every row in the quadrant in a uniform manner since
different rows of the quadrant do not interact. Take a matrix vector whose rank r is the
rank of the formula, so that we have r matrix vectors (P 1; P Z), .'., (Pr; P 1)' each Pjbeing
a point vector. Take the path (P I. ' .. , P" P 1). Then we can assign Pj, to (x, y) whenever x
= kr + i, k = 0, 1,2, ... , ° :(i :(r. From this, it is easy to define a model with r objects
for the original formula. In fact, the relations G1, .. ', ~ are defined over {I, . '., r} as
follows: Gjbc is t or f according as the jth term of Pb, is t or f, independently of c. This
completes the proof of 7.1.

The argument, incidentally, illustrates an obvious lemma about finite models:

Lemma 4: An AEA formula with K dyadic predicates has a finite model if and only
if there is an assignment of matrix vectors to all instances ofMxy which assigns a unique
point vector to every lattice point such that the whole assignment is periodic; i.e., there
exist k and j, such that (XI. yd and (xz, Yz) get the same assingment if IX1-xzl is a
multiple of k and Iy 1 -y 21 is a multiple of j.

Given a model over m objects {I, ... , m}, we can clearly assign K-tuples to the
square region ° :(x, y < m, and then assign the value of (c, d) to(am + c, bm + d), a, b

240 Computation, Logic, Philosophy

= 0, 1, 2, ... , 0 ",; c, d < m.
Conversely, given the periodic assignment, we can take the least common multiple

ofk and j, say m, and define a model with m objects, identifying (am + c, bm + d) with
(c, d), 0 ",; c, d < m.

To decide the whole class J or J*, we need more complex considerations because the
diagonal forms xx, x' x, xx', x' x', yy make the interconnection of assigned matrix vectors
more involved.

Given a formula Mxy in J with K dyadic predicates, there are at most 7K atomic
d

formulas, d < 27K matrix vectors, and e = 2 - 1 non--empty subsets of the set of

matrix vectors. We shall show that Mxy has a model if and only if we can find a
consistent set of assignments {Axy; xy} over the region 0 ",; x, Y ",; e. This will yield a
decision procedure because we can check by finite means whether such a (finite) set
exists.

If there is no such set, then there is clearly no model for Mxy. Assume, therefore,
there is such a set S = {AOO; 00, "', Aee; ee} and let T = {AOO, ... , Aee}. Consider now,
for each fixed value c of x, the subset T c of T consisting of all Acy, 0 :(y :(e. By the
pigeon-hole principle, there must be two values, x = a, x = b,O ",; a < b ",; e, such that
Ta = Th. It follows that Aaa = Abb, since, in each Te, every Acy contains the same point
vectors Bcc, Bc'c, Bcc', Bcc', which make up Acc. For each Aay in Ta, there is some Abv
in Th, Aay = Abv; for each Aby in Tb, there is some Aau in Ta, Aby = Aau. Let now:

1J(y) = /1v(v ",; e V Aby = Aav), 0 ",; y ",; e
X(y) = /1u(u ",; e V Aay = Abu), 0 :(y :(e

1J(Aby) = Aa1J(y), 0 ",; y :(e
x(Aay) = AbX(Y), 0 ",; y ",; e

S(y, Axy) = Ax'y, for a ",; x ",; b, 0",; y ",; e
P(y, Ax'y) = Axy, for a ",; x ",; b, 0 ",; y ",; e

b-a=p

From Ta = Tb, it follows that for every y, 0 ",; y :(e, we have an ordered set of p

+ 1 matrix vectors Aay, S(y, Aay) = Aa'y, ... , sP (y, Aay) = S(SP-l (Aay)) = Aby

= 1J(Aby) = Aa1J(y). Similarly, for P, Aby, P(y, Ay), ... , pP (y, Aby) = Aay = AbX(Y).

We now define an assignment A * of matrix vectors to all the instances of Mxy as
follows:

(i) Diagonal region:
A *(kp + i, kp + j) = A(a + i, a + j), k ~ 0, 0 ",; i, j ",; p.

Since Aaa = Abb, the repetition when i = j = p is immaterial. It is clear here that
A*(kp + p, kp + j) = A(b, a + j) = 1J(A(b, a + j», and A*(kp, kp + j) = A(a, a + j)
= x(A(a, a + j)).

Dominoes and the AEA Case of the Decision Problem 241

(ii) For x < y, np < x - y ~ n'p, n ~ 1, we define A* by induction on n. When n
= 1, we see from (i) that A *(kp + p, kp + j) = IJ(A(b, a + j» = AalJ(a + j).

Since a + j and 1J(a + j) are between 0 and e, S(1J(a + j), Aa1J(a + j)), ... , sP (1J(a

+ j), AalJ(a + j» are defined and Sp(1J(a + j), Aa1J(a + j» = Ab1J(a + j)
= Aa1J2(a + j). We define now A *(y + p + i, y + j) = Si(1J(a + j), Aa1J{a + j»
= A(a + i, lJ(a + j» for y = kp. Clearly, we can reiterate the process and define
A * for higher values of n.

(iii) For y < x, np < y - x ~ n' p, n ~ 1, we can similarly define A * by induction on
n.

To prove that we indeed have a model, we remark that any A *xy affects the points
xx, x'x, xx', x'x', YY, xy, x'y, and that consistency is assured on account of the consistency
in the original stripe, a ~ x ~ b, 0 ~ y ~ e. Thus, if (x, y) is in the diagonal region,
consistency is assured locally in each (p + 1) x (p + 1) square. Below the diagonal, x >
y, consistency is assured by repeated applications of Sand IJ, because when Axy occurs
in T , 1J(Axy) is always defined, and (lJ(y), 1J(y» gets the same point vector as (y, y).
Sinn1arly, with P and X above the diagonal.

b

a

o

-- --
2p

r - - -- l
1 -- I

p
p

'1---- - ""1
1

0*' I
I

a

I
1-
1
I

PIP
I

b

,

Figure 4

_J

2p

--

~-

The procedure may become a little clearer if the proof is read in parallel with Fig. 4.
Hence we have proved that J is decidable, and we have:

7.2. The classes J and J* are decidable.

These two decidable classes are of special interest because they contain axioms of
infinity, while previously known decidable infinite classes do not contain axioms of
infinity. We give some examples of axioms of infinity. in J and J*.

242 Computation, Logic, Philosophy

7.3. Any three forms including xy and x'y, or yx and yx' give axioms of infinity.

Let a stand ambiguously for x, x', or y, and be stand ambiguously for xx' or x'x. The
following are axioms of infinity.

7.3.1. IGaa 1\ (Gxy ::::J Gx'y) 1\ Haa 1\ (Hxy == Gx'y)
7.3.2. Gbc 1\ (Gcy ::::J Gby) 1\ iHbc 1\ (Hby == Gcy)
7.3.3. iGaa 1\ (Gyx::::J Gyx') 1\ Haa 1\ (Hyx == Gyx')
7.3.4. Gbc 1\ (Gyb ::::J Gyc) 1\ IHbc 1\ (Hyc == Gyb)

(aa, xy, x'y).
(bc, xy, x'y).
(aa, yx, yx').

(bc, yx, yx').

To verify that these are axioms of infinity, we use the following simple fact.

7.4. If A is an axiom of infinity, B has some model, and B implies A, then B is also an
axiom of infinity.

Thus, if B implies A, then any (finite) model of B is also a (finite) model of A.
Since the considerations in all cases of 7.3 are similar, we illustrate the line of proof

by taking 7.3.1 with a = x. This formula B is satisfied if we take x > y as Gxy, x' > yas
Hxy:

x :} x /\ (x > Y ::::J x' > y) 1\ x' > x 1\ (x' > y == x' > y).

On the other hand, fromHxxandHxy == Gx'y, we can deduce Gx'x. Hence B implies the
axiom of infinity A:

,Gxx 1\ Gx'x 1\ (Gxy ::::J Gx'y).

That A is indeed an axiom of infinity is familiar. Thus G is satisfied by >. If t is an
object, consider all the objects t, 1', t", etc., which are all distinct. Given any of them, say
s, since IGss and Gs's, s =F s'. Since Gxy ::::J Gx'y, Gs"s, Gs'''s, G'''s', etc. But IGss,
IGs' s', etc., hence, s" 1= s, s'" =F s, s'" =F s', etc.

Incidentally, in the unsolvable subclasses of U, we have quite simple axioms of
infinity. For example:

7.5. (Gxy::::J IGyx) /\ (Gxy /\ Gyx');
(Gxy::::J iGyx) /\ (Gyx /\ Gx'y);

(Gx'Y::::J iGyx') 1\ (Gxy /\ Gyx');
(Gx'y::::J iGyx') /\ (Gyx /\ Gx'y).

We turn now to the classes Land L * and prove:

7.6. The classes Land L* are decidable and contain no axioms of infinity.

We consider the class L and assume given a formula F in L with K dyadic
predicates. There are d :::; 22K matrix vectors. Among these, in order that one can be
assigned to Mmm for some m, we must require that for every i, Gixx, Gjxy, Giyx, Giyy get
the same truth value. Any such matrix vector is called a diagonal matrix vector. If there

Dominoes and the AEA Case of the Decision Problem 243

are e such vectors, then clearly e :(24K. Hence, if there is any consistent assigmnent A of
matrix vectors to all instances of Mxy over ° :(x, Y :(e, then, by the pigeon-hole
principle, there must be a and b, ° :(a :(b :(e, such that Maa and Mbb are assigned the
same diagonal matrix vector. It follows that Mbo and Mb'b can be assigned~
respectively, the same matrix vector as Maa' and Ma' a. We shall construct a finite model
on the basis of the assignment A to the instances of Mxy for a ~ x, y ~ h.

Let b - a = p. We define A * as follows.

A *(mp + i, np + j) = A(a + i, a + j), m, n ~ 0, ° :(i, j :(p.

By Lemma 4, if A * determines a model of the given formula, then it gives a finite
model with p objects. We prove that A* indeed gives a model, i.e., the assignments of
matrix vectors give a unique point vector to every lattice point.

We consider first the assigmnents to Mxy, when x = y, x' = y, or x = y'. For a
fixed number k, A * (Mkk) , A * (Mkk') , A * (Mk'k) affect the seven lattice points (k, k), (k,
k'), (k', k), (k', k'), (k", k'), (k', k"),(k", kIf). Hence, the assignments of A* to Mkk, Mkk',
Mk'k, when k = 0, "', p, affect the points on the three central diagonals up to and
including pp', p'p, and p"p". By hypothesis, A is consistent over Mxy, a :(x, y :(b, and
the point vectors Bbb, Bbb', Bb'b, Bb'b' are the same as Aaa, Aaa', Aa' a, Aa' a'. Hence,
A * is consistent over all Mxy, when (x, y) is on one of the three central diagonals.

If x =I- y, x' =I- y, y' =I- x, then the point vectors assigned to (x, y) occur only in the
matrix vectors assigned to Mxy and Myx. Conversely, A * (Mxy) and A * (Myx) are only
constrained by each other and by A *(Mxx) and A * (Myy). It is easy to verify that A * does
indeed satisfy these constraints. In particular, observe that if A *(Mxx) = A * (Myy) , it is
always permissible to choose A*(Mxy) and A*(Myx) such that A*(Mxy) = A*(Mxx)
= A*(Myx).

The class L * is somewhat different but can be treated similarly. The difference is
that, in general, A * (Mx'y) and A * (Myx') are constrained by each other and by A * (Mxx),
A*(Mx'x), A*(Myy), A*(My'y').

We have so far not yet solved the classes Q and Q* . We have the following partial
results.

7.7. We can delete xx' and x'x' from Q, x'x and x'x' from Q* and the resulting classes
can be decided or, further, contain no axioms of infinity if and only if the same is
true of Q and Q*.

Thus, for example, for Q, we can replace Gxx' by Hxx, Gx'x' by Hx'x, and add a
clause Hxy == Gyx'.

7.8. The class Q1 containing only the forms xy, yx' (but not any of the other five
forms of Q) and the class Q2 containing only the forms yx and x'y are decidable,
and contain no axioms of infinity.

Finally, we mention the possibilities of solving subclasses of Kahr's undecidable
class ,11' This is challenging insofar as the class in question is, formally speaking, very

244 Computation, Logic, Philosophy

simple. It is well known that if we delete the single dyadic predicate, the resulting class is
decidable and contains no axioms of infinity. Moreover, if we delete the monadic
predicates, then the remaining class can contain only three atomic formulas, say, Dxy,
Dyx, Dx'y. Hence, we can have at most 23 = 8 matrix vectors and 28 = 256 sets of
matrix vectors. This means we have essentially only 256 formulas in the class. The class
Jloes contain axioms of infinity, and we can actually exhibit a decision procedure for the
class. This, by the way, is not entirely trivial, since, for example, the statement that
Fermat's conjecture can be derived from the Peano axioms could be written as a single
formula in the Predicate calculus. This suggests a new criterion of classification which,
when applied to ~ 1, yields subclasses determined by the matrix vectors of formulas
containing monadic predicates as well as D. Thus, each subclass is determined
independently of the occurring monadic predicates by the partial matrix vector of a
given formula relating to Dxy, Dyx, and Dx'y. C.W. Henson has recently decided some
infinite subclasses of ~ 1, including axioms of infinity. He is investigating how we can get
broader decidable subclasses if we impose on the monadic predicates restrictions which
correspond to the rather weak form in which they are used in the reduction to ~ 1.

We do not have any idea of whether there is some natural undecidable set of
formulas of the predicate calculus with a decision problem that is not of the maximum
recursively enumerable degree.

References

1. W. Ackermann, Solvable Cases of tbe Decisiun Problem (Amsterdam: North-Holland Publishing

Co., 1954).

2. P. Bernays, "Remarques sur Ie Probleme de la Decision en Logique Elementaire," Edition de Centre

Nat. de la Recb. Scient. (Paris), vol. 13, pp. 39-44 (1958).

3. J. R. Buchi, "Turing Machines and the Entscheidungsproblem." Matbematiscbe Ann., vol. 148, pp.

201-213 (1962).

4. J. R. Buchi, Abstract of Ref. 3, Natices Amer. Matb. Suc., vol. 8, p. 354 (1961).

5. B. Dreben, "Solvable Suranyi Subclasses," Ann. Harvard Computation Lab., 1962.

6. B. Dreben, A. S. Kahr, and Hao Wang, "Classification of AEA Formulas by Letter Atoms," Bull.

A mer. Matb. Soc., vol. 68, pp. 528-532 (1962).

7. A. S. Kahr, "A Reduction to a Class of AEA formulas Containing One Dyadic Predicate," Notices

Amer. Matb. Soc., vol. 9, p. 129, 1962.

8. A. S. Kahr, E. F. Moore, and Hao Wang, "Entscheidungsproblem Reduced to the AEA Case," Proc.

Nat. Acad. Sci., U. S. A., vol. 48, pp. 365-377, 1962.

9. A. S. Kahr and Hao Wang, "A Remark on the Reduction Problem with an Application to the AEA

Formulas," Notices Amer. Alatb. Soc., vol. 9, p. 130, 1962.

10. Th. Skolem, "Sur la Portee du Theoreme de Lowenheim-Skolem," Les Entretiens de Zuricb, ed. F.

Gonselh (Zurich: UNESCO, 1941), pp. 25--47.

11. J. Suranyi, Reduktiunstbeorie des Entscbeidungsproblem (Budapest: Verlag der Ungarischen

Akademie, 1959).

12. B. A. Trachtenbrot, "0 Rekursionoj Otdelimosti," Doklady Akademie Nauk SSSR, vol. 88, pp.

953--956 (1953).

lfu. ~.~.1i'lrjrng,·;~~I\,~,Wffu'Yh~ilaf.tiRlht/bthJe1EH~mffrl~f"=Wr'lhllt!fu:;' lJrr&.
leJlfd'J'nllMdlb. %'6c" vV\l!. 4ill,ItfP. ~2l65!(lf9!R)j; ",<HI. 4Rl,ll1P. ~((~).

11\. l1r£h _, ';IJrf'ovJrng mJfmWsqry IPIItrefu ~HRJh, 11(/' ljy/:tt!'!9'jll.1freJb.lj" ,,<HI. 4ro, ItIP.lfdI.lJ.
q~1).

12. TOWARDS FEASIBLE SOLUTIONS OF THE
TAUTOLOGY PROBLEM*

This part studies the problem of testing Boolean validity in polynomial time. A
number of hitherto unnoticed elegant properties of Boolean expressions are
established in Section 12.3 to yield generally more efficient methods for many
expressions. Combinatorial metatheorems concerning the tautology problem are
proved in Section 12.4 Special partial methods are developed in Sections 12.6 and 12.7
which yield efficient solutions to two sets of hard examples which defeat existing
methods in the literature. Finally, two general approaches in terms of size calculations
and composite expressions with symbolic abbreviations which are under investigation
are briefly indicated in Section 12.7

12.1 Computational complexity and Boolean validity

For many purposes, the vague notion of a "feasible" (or"quick") method of
computation has come to be identified with the sharper concept of computability in
polynomial time. A given infinite set of problems is computable in polynomial time if
there is a plynomial f such thar for each problem (whose expression is) of length n, the
problem is answered in :(fin) steps (oor equivalently, there is a fixed N, such that the
problem is answered in :(nN steps). If there is no polynomial bound, then, for every
general method, there are infinitely many n, such that the necision of some problem of

length n requires more than polynomial time (e.g. ~ 2Jn). In that case, it is widely
accepted that the set of problems has no feasible general solution.

When we consider the familiar "tautology problem" of quickly deciding whether
a Boolean or truth-functional expression is valid (or tautologous), we now have a
sharper formulation, viz. can this be done universally in polynomial time or does every
general method require exponential time for an infinite number of special cases? While
in some sense the area of truth-functional expressions has been intensively studied, it
is our opinion that, with regard to the complexity of decision procedures, the area
remains wide open and not enough results have been obtained thus far even to warrant
a conjecture as to the answer to this general question. In what follows, we shall, apart
from briefly surveying familiar techniques, list a number of new results which
illustrate the type of closer examination that can be made.

A rather surprising development is the result of Cook [l J and Karp [8J according
to which many familiar combinatorial problems are demonstrably of the same degree
of complexity as the tautology problem, i.e. they are all P-reducible (polynomial-

* First published in Annals of Mathematical Logic. vol. 10. pp 117-154. @ North-Holland
Publishing Company, 1976. Reproduced by permission.

246

Towards Feasible Solutions of the Tautology Problem 247

reducible) to one another (in particular, if anyone set of problems has a feasible
general solution, then all do). This result naturally broadens the range of people to
whom the tautology problem is of interest.

We digress to clarify a point which is slightly confusing to those who are not
familiar with certain technical terminology. This relates to the use of nondeterministic
Turing machines which playa role in Cook's proofs. While an algorithm gives a string
of steps, a nondeterministic machine gives a tree structure and behaves like a proof
procedure rather than a decision provedure. A set of problems belongs to P if there is a
general algorithm which solves every problem in polynomial time; it belongs to NP if
there is a nondeterministic "method" with a polynomial f such that for each problem
of length n, there is a path in the solution tree (a shortest proof) which is no longer than
j(n}. Cook's theorem says that every set of problems belonging to NP is P-reducible to
the tautology problem. This implies that if any of the P---equivalent combinatorial
problems (centered around the tautology problem) is in P, then P = NP. In fact, it is
currently the common practice to refer to each of the equivalent problems by the
general consequence: Is P = NP?

It is obvious that P is closed under complementation, i.e., if A is in P then its
complement is also in P, since a decision procedure gives a yes or no answer to each
individual question. It is by no means obvious that NP is also closed under
complementation. In fact, whether this is so has been shown (in [2]) to be equivalent to
the existence of a quick proof system for tautologies. This relates to a distinction which
is somewhat complex. The satisfiable Boolean expressions are directly seen to be in
NP, because, given a Boolean expression H, we can eliminate its k (say) variables one
by one and form a binary tree. And H is satisfiable if and only if there is a branch (of
length k) which gets the value true. But it is an open question whether the tautologies
also belong to NP, i.e., whether they possess even a quick proof system. Present
knowledge does not exclude the possiblity that the former is in NP (but not in P) and
the latter is not even in NP. But if the former is in P, so is the latter. Moreover, if the
tautology problem is not in NP (and therefore not in P), then the satisfiablity problem

is not in P and hence P 1= NP. For the purpose of this part which works towards
estabishing P = NP, we shall justifiably disregard the subtle distinction.

Our purpose is to work toward finding a quick decision procedure for Boolean
validity. We shall in this part confine our attention to several partial methods and not
attempt to organize the different methods into an organic whole, but rather leave open
the detailed instructions on the exact order in which they are to be (repeatedly)
applied. In particular, we shall offer quick solutions to a revelatory infinite set of
examples from Tseitin [10], which demonstrably defeats familiar general methods.

The main results in this part include the substitution theorem (12.3.2), the
separation theorem (12.3.3), and the decomposition theorem (12.3.6); the general
combinatorial lemma 12.4.6 and lemma 12.4.8 on size calculations; as well as the
several partial decision procedures in Sections 12. 6 and 12.7 ..

Two more comprehensive and more sophisticated methods are briefly indicated in
Section 12.7, but we are obliged to postpone systematic explorations and expositions of
these methods until a future occasion.

248 Computation, Logic, Philosophy

12.2 A brief overview with some general observations

The general problem is to decide whether an arbitrary truth-functional
expression is valid (or satisfiable of contradictory). The familiar connectives are: not,
and or, only if, exclusive or, if and only if (if±). Of these, "p only if q" is the same as
"not p or q"; "p (exclusive) or q" is the same as "p iff g. Hence, we may confine our
attention to not, and, or,iff. It is sommon to eliminate iff also, but this is not always
desirable because iff has many elegant properties and its elimination gives way to quite
complex expressions in terms of not, and, or. Given the choice of connectives, there is
also the question of the extent to which normal forms are to be used in our
investigation.

The two most familar normal forms are the conjunctive and the disjunctive, in
terms of not, and, or. For example, an expression is in conjunctive normal form if it is a
conjunction of disjunctions of literals (i.e. variables and their negations). A first
observation is that the validity of an expression in conjunctive normal form can always
be tested quickely because it is valid only if every disjunction in it is valid (i.e., there is
some variable p such that both p and p appear in it). Symmetrically, satisfiablity of an
expression in disjunctive normal form can be tested quickly. We recall that an
expression A is valid if and only if its negation A is not satisfiable (i.e. contradictory).
Rather the open problem for expressions in conjunctive (resp. disjunctive) form is to
test quickly whether it is satisfiable or contradictory (resp. valid). This familar
observation illustrates the fact that we cannot assume without additional argument that
expressions are given in any normal form, because, for example, the question of testing
validity quickly of arbitrary expressions is reduced to the question whether converting
an arbitrary expression into the conjunctive normal form can be done in polynomial
time.

It is pointed out in [1OJ that we can, by suitably introducing new variables,
quickly turn an expression A into an expression B in disjunctive form such that A is
valid if and only if B is. Therefore, if we are studying validity, we can confine our
attention to expressions in disjunctive form. Similarly, we can assume expressions
turned into conjunctive normal form when studying satisfiability. In fact, we shall
sometimes make such an assumption, although we use also other forms and even when
we begin with only expressions of a given normal form, we shall not always adhere to
the form in the process of transforming the expressions.

Suppose we are to decide generally whether a given expression is valid. (Similarly,
if we were to decide satisfiability.) For this purpose, we are justified in applying any
rule which preserves validity. This means that we can transform A into B provided the
general rule assures us that either A and B are both valid or neither of them is valid. It
is not necessary that A and B be equivalent in the sense that they contain the same
variables and become true under exactly the same assignment of truth values to the
variables. Clearly this fact permits greater freedom in designing rules to simplify an
expression.

Given an expression in disjunctive normal form, the question of its validity
amounts to asking whether the clauses jointly cover the whole truth table. An
expression is in canonical disjunctive normal form if all the variables in the expression

Towards Feasible Solutions of the Tautology Problem 249

occur exactly once in each clause (a conjunction ofliterals). For such expressions, there
is no difficulty in deciding quickly (i.e. in polynomial time) whether it is valid. Each
clause represents a row in the truth table and we only have to check whether all the
rows are there. A disjunctive normal form that is not canonical is more economical in
that each clause may cover many rows. For example, if Pb ... ,pn are all the variables,
the clause PIPz covers 2n - Z rows in the truth table (viz., all the rows in which Pl gets 1
and pz gets 0, no matter what values are assigned to P3, ... 'Pn). Generally, an
expression in disjunctive normal form is much shorter than its canonical form and may
require exponentiation in the expansion. Hence, the obvious suggestion of expanding
an expression into the canonical form does not help. In fact, the problem is to work
directly with more economical representations and determine, without exponential
explosion, whether they cover the whole truth table.

We review briefly some of the familiar rules and methods for testing Boolean
validity (or, symmetrically, satisfiability or contradictoriness).

12.2.1 The truth table method

Given any expression A in disjunctive form containing the variables Pl, ... 'Pm we
list all the 2n possible ways of assigning 0 or 1 to each variable as rows in a table, and
determine whether each row is covered by some clause in A. A is valid if and only if all
rows are covered. For example, PlPZ cover the 2n - Z rows in which Pl gets 1 and pz gets
o. It is easily seen that when this method is applied mechanically, the test generally
requires exponential time. For instance, if A is PlV ... V pn, this method would still
require the listing of the 2" rows.

12.2.2 Some familiar rules of simplification

12.2.2.1 Subsumption. If A is an expression in disjunctive form, and a clause B
subsumes a clause C (i.e. every literal in C occurs in B), we can drop B. Call the result
A*. If A* is valid, then of course A is. On the other hand, every assignment making A
true also makes A* true, because if it makes B true it also makes C true and otherwise
it makes a clause true which occurs in both A and A*.

12.2.2.2 Factorization Any two clasues pB and pB can be simplified to B.

12.2.2.3 Single literal clauses. When a disjunctive expression A is P V B(p),
reduce it to B(O); when it is pV B(P), reduce it to B(1). Thus, when P gets 1, P V B(P) is
true and can be dropped; when P gets 0, we have 0 V B(O) which is the same as B(O).

12.2.2.4 Variables in partial state. Given an expression in the disjunctive form, if
a variable (p say) occurs only positively or only negatively, we can drop all clauses
containing it (i.e. P or p) without affecting validity. Consider, for example, a formula
A V B such that neither p nor p occurs in A, and each clause in B contains p (but none
contains p) . We see that A V B is valid if and only if A is. Of course, if A is valid, then
A V B is. Suppose now A is not valid. There is then an assignment to all variables in A

250 Computation, Logic, Philosophy

(not includingp since by hypothesis neither p nor p occurs in A) such that A comes out
false (has the value 0). Use the same assignment and in addition assign 0 to p. Then all
the clauses in B get 0, and, therefore, AV B gets o. The variable p is said to be in
partial state and the general rule could be described simply by saying that it can be
eliminated without branching (just replace its occurrences by 0).

This rule and the following method of variable elimination were first observed
independently in [5J and [3]. The first paper also defines variables in partial state for
expressions not in normal form and containing iff.

12.2.3 The method of variable elimination

Given an expression A(P) containing a variable p and its negation p, two new
expressions are formed. In one, p is replaced by 1; in the other, O. The expression A(p)
is valid if and only if the conjuction of A(l) and A(O) is valid. In terms of the truth
table, in elimination splits the table in two. If the expression A is in disjunctive form, it
is generally of the form Bp V Cpv R. And the result of the split is (BV R)(CV R),
or, alternatively, BCV R. When we eliminate the variables one by one, we finally
reach a simple evaluation of an expression with a single variable.

There are different ways of applying this method. First, the order in which the
different variables are eliminated makes a difference to the speed. Second, for each
variable eliminated, the familiar practice is to multiply out the conjunction BC and
return BCV R to an expression in the disjunctive form; in more sophisticated
applications, we may choose to retain the composition clause Be. Third, there is a
choice whether to simplify or consolidate the result at each stage by rules such as those
listed under 12.2.2 above. It should be noted that the immediate advantage of such
simplifications is often deceptive in that other reductions are thereby blocked.

Basically this method involves a successive test with the truth table. When we can
examine an expression only a part at a time (for example, if it derives from an
Herbrand expansion), a technique is developed in [7J which permits successive
elimination of variables without duplicating earlier work done. Variables in partial
state are treated in a special way.

12.2.4 The method of consensus or resolution

This concept of consensus was first introduced in the context of minimizing
representations of a given truth function. The consensus of two clauses contradicting
each other at exactly one variable is the con junction of the two clauses with the variable
and its negation deleted. For example, prs is the consensus of pqr and IXl. The
possiblity of using this operation to test validity is mentioned in [6]. In the most
elementary form, the consensus method is pplied to an expression A in disjunctive
form in the following manner. Form all possible consensi of the clauses in A; add the
new clauses and continue untill either (1) we have obtained two clauses p and p, for
some variable p, or (2) we have not reached (1) but no more new consensi can be
formed. In case (1), A is valid; in case (2), A is not valid.

The dual of forming the consensus of two clauses is the familiar "cut rule": form

Towards Feasible Solutions of the Tautology Problem 251

BV P and pVC, infer BV e. When we begin with an expression A in conjunctive
normal form, we can test whether A is contradictory by making all possible
applications of the cut rule to all clauses at each stage until either we reach two
conclusions p and P for some variable p or, failing that, can no longer apply the cut rule
to get any new clauses. This is commonly referred to as the resolution method and
attributed to Robinson [9J, which introduces the term "resolution principle" to refer

to a related way of testing Herbrand expansions in the predicate calculus. BV C is said

to be the resolvent of p V Band pVc.
The method of variable elimination is related to the method of consensus (or

resolution) in a fairly direct manner. Consider an expression A in disjunctive form
containingpb'" ,pn' Consider first those clauses containing PI or Pl' We can put A in
the form

On the one hand, if we eliminate PI, we get, as noted before, the result BCV R. Let D
be the disjunctive normal form of Be. On the other hand, if we take all the consensi
with regard to PI and PI, the result is also D. Mter adding all the consensi relative to
PI, the whole expanded expression is BpI V CPI V D V R. Later on, we shall prove
the "substitution theorem" according to which BpI and CPI can be deleted after Dis
added. In that case, the parallelism between the methods of consensus and variable
elimination is fairly direct.

12.2.5 The clause elimination theorem [6J

In forming the consensus of P A and pB, if A and B are not consistent (e.g. if they
are qC and qD), the consensus is useless. Therefore, it is natural to restrict the process
to cases where two clauses E and F contradict each other in exactly one variable (p say);
in that case we say that p in E complements pin F. Using this concept, one can state the
clause elimination theorem which specifies a fundamental property of valid
expressions in disjunctive normal form.

12.2.5. 1 TheorellL Given an expression in disjunctive normal form, any clause
which contains a literal nor complemented (by its oppostie in any other clause) can be
dropped, without loss of validity.

When no more clauses can be dropped by this theorem, the result is called a
closed residue in which every literal in every clause is complemented. When all clauses
are dropped by the theorem, we say there is no closed residue and the original
expression is seen to be nonvalid. On the other hand, there are also closed residues
which are not valid. An example is the disjunction of pfj, jjq, pr, pr, qr, qr.

We emphasize that the process of finding the closed residue of any expression in
the disjunctive form can be done quickly by using "registers" which list all the
relations of complementation. Consider, for example, the disjunction of the first five
clauses above. Only a small amount of work is necessary to make the following register.

252

(1)
?{4);q{5)

(2)
~3);q

(3)
?{2);r

(4)
~1);~5)

Computation, Logic, Philosophy

(5)
q(1);~4)

Since q in (2) and r in (3) are not complemented, we can delete (2) and (3). The
remaining three clauses form a closed residue. In general, the deletion of clauses would
entail the deletion of all references of these deleted clauses and there would be repeated
deletions. But it is clear the procedure is not slow.

We note that Theorem 12.2.5.1 generalizes the previous remark about variables in
partial state in a pleasing way and is clearly useful in simplifying expressions in
disjunctive form. Mter such clauses are eliminated, we can try to separate the resulting
expression into parts if the relation of complementation is weak or nonexistent between
parts of the expression. Several separation theorems along such a line can be proved.
Whether such separations are possible or not, we can also begin to add consensi with
the additional method that generally the original clauses can be dropped after
sufficiently many consensi are added. An exact formulation of the possiblities will be
given by the substitution theorem to be proved in the next section.

12.3 Some basic properties of Boolean validity

Over the years, we have developed and on occasion lectured on several theorems
related to the clause elimination theorem and the concept of closed residue. These
theorems often help the speedy decision of validity, reveal certain nice properties of
Boolean expressions, and possess fairly interesting proofs. We use this opportunity to
publish these proofs for the first time.

12.3. 1 TheorellL Every expression in canonical disjunctive form is valid if and
only if it is a closed residue.

Proof. Of course, if the expression is valid, it is a closed residue since every full clause
is in it. If a canonical expression is a closed residue, it must be valid (and contain all
possibilities) by the following argument. Being a closed residue, the expression
contains at least one clause. We wish to-show that it contains all the canonical clauses.
Suppose first that the absolutely positive clause Pl ... pn is missing. Since every clause
contains the .same n variables, every clause Api with an unnegated variable Pi must
interact with a clause Api' Hence, every clause with one negated variable must be
missing. But then every clause with two negated variables must be missing. And so on.
Therefore, all clauses must be missing. Suppose now some arbitrary clause is missing.
In that case there must be one clause with one less negated variable missing, one with
two less negated variables missing, and so on. Hence, the absolutely positive clause
must be missing. But then all clause must be missing. Therefore, the closed canonical
expression must contain all the clauses.

As we noted before, every valid expression in disjunctive from must contain a
(nonempty) closed residue. We do not yet get a generally efficient method because a
nonvalid expression may also contain a closed residue. But it is always equivalent to a
disjunctive expression not containing a closed residue and this can often be seen fairly

Towards Feasible Solutions of the Tautology Problem 253

directly. For example, while pij v qr v p"iis a closed residue, the equivalent expression
with Pi replaced by pq"iv pqr contains no cloSE'd residue. We are currently studying
general ways of finding such equivalent exprf'ssions quickly.

A more substantial result is the substitution theorem mentioned before. The
theorem is useful in rendering possible the elimination of variables with only local
expansion or no expansion at all. It combines well with the clause elimination theorem
in that they can often be applied repeatedly one after the other, because a closed

residue often becomes open after applications of the substitution theorem.

12. 3. 2 Substitution theorem. Let A be an expression in the disjunctive normal
form. Ifa literal a in a clause, say Ba, of A is complemented by its opposite a' only in
the clauses CI a', ... , Cka', then we can replace Ba by BCI v ... V BCb without
affecting validity.

Proof. Observe that if a literal a and its opposite a' occur infrequently in A, the
variable a(or a') can be eliminated with little or no expansion by this theorem because
once all occurrences of a are eliminated, the clauses containing a' all drop out by the
clause elimination theorem.

Suppose A satisfies the hypotheses of the theorem. Let A* be the result obtained
from A by substituting BCI V .•• V BCk for Ba. Our goal is to prove that A is valid if
and only if A* is.

It is relatively easy to prove that if A* is valid, then A is valid. Obviously if A* is
valid, then A V BCI V ••. V BCk is valid, since A* is nothing but the last expression with
the clause Ba dropped. We need only show that A is valid if the last expression is. This
follows from the known fact that adding the consensi BCI , ••• ,BCk to A does not affect
validity. The proof of this fact is as follows. Each BCi(i = 1, ... ,k) implies Ba v Cia'
because if BCi gets the value 1 then Ba v Cia' becomes a v a' which always has the value
1. Therefore, it can never happen that BCi gets the value 1 but Ba v Cia' does not get
the value 1. Hence, if A v BCI V ..• BCk is valid, then A is also valid. Therefore, A is
valid if A* is.

We proceed to show that A* is valid if A is. Suppose the clause Ba is b l ... bma, so
that B is b l ... bm. Our strategy is to break up both A and A* into 2m expressions with
the subscripts 1 to 2m, by considering all the 2m possible truth values (0 or 1) which
b l ... ,bm can take. In particular, we take Al and At to be the results obtained when
b l , ... ,bm all get the value 1. Clearly A is valid if and only if the conjunction of
AI. ... ,A2m is; similarly with A* and At, ... ,Ajm' For 2 :::; i :::; 2m, at least one of
bj, ... ,bm gets the value 0, so that B gets the value O. Hence, the clause Ba in A and the
clauses BCI , ••• ,BCk in A* all drop out. As a result, Ai and AT are the same for all i,
2 :::; i :::; 2m. Hence, all we have to establish is that At is valid if Al is. Since bI. ... ,bm
all get the value 1, the clause Bin Al becomes a. Similarly, the clauses BCI , ••• ,BCk in
AT become CI. "', Ck • Hence, AT differs from Al only by containing CI v··· vCk in
place of the clause a.

Suppose Al is a v D(a). Then AT is CI v ... V Ck v D(a). If Al is valid, then D(O) is
valid, because we can transform Al into the conjunction of 1 v D(!) and Ov D(O) which
is simplified to D(O). The remaining task is to prove that AT is valid if D(O) is. For this

254 Computation, Logic, Philosophy

it is sufficient to show that all clauses of D(O) are contained in AT. Of course the only
clauses which would make a difference are those containing a or a'. All clauses in A I
which contain a get dropped in D(O), because a gets the value O. The clauses
C 1 a', ... ,Cka' which, by hypotheses, appear in A and therefore in A 1 become
Cl , ... , Ck in D(O) and, as we see, are contained in AI. At this point, we come to depend
crucially on our original hypothesis that Cia', ... , Cka' are the only clauses in which a'
complements the occurrence of a in the clause Ba in A. This means that while a: may
occur in other clauses of A, it can only occur together with the opposite of at least one
of bl ,···, bm• Hence, any other clauses in A which contain a' get dropped in
Al(because b), ... , bm all get the value 1) and, therefore, do not occur in D(O).
Consequently, there cannot be any clause in D(O) which does not appear in At. Hence,
At is valid if D(O) is; and At is valid if Al is. Therefore, A is valid if A* is.

This completes the proof of the substitution theorem.
We gave some illustrations of applying this theorem together with the clause

elimination theorem.
Consider a dis junction of pq, jjq, pr, pr, qr, qr. This is a closed residue. If we apply

12.3.2 to pq and qr, we can replace pq by pr which is redundant. By the clause
elimination theorem, we can then also drop qr and pr since q and p in them no longer
have any complements. Hence, we get a disjunction of jjq,pr, qr. Using 12.3.2 again on
jjq and pr, we can replace jjq by qr, and then drop pr. Hence, we get qr v qr. By the
clause elimination theorem again, both clauses drop out, and we see that the original
expression is not valid.

It is noted in [lJ that every disjunctive expression can be reduced to one in which
each clause contains at most three literals. Thus, let A be Cl v ... vCrn, and Cl be
al ... at, t> 3. Then A is valid if and only if the following expression A' is (with p a
new variable).

A':pa3 ... ar v PalaZ v C2 v··· V Crn.

Cook does not state his proof of this assertion. One proof is as follows. Thus, if A is
valid, so is pa3 ... ar v Pal az v A. But Cl is the consensus of pa3 ... at and Pal az. It can
be dropped without affecting validity. Therefore, A' is valid. On the other hand, if A' is
valid, we can substitute al ... ar for pa3 ... at by the substitution theorem and then
delete Pal az by the clause elimination theorem. Therefore, A is valid.

It can be seen that the natural tendency in testing validity is to move from A' to A,
while the reduction to short clauses goes in the opposite direction. Of course, the
reduction was not intended for the purpose of helping to test validity quickly.

By the way, it is possible to get short closed residues. But they are generally
unstable. For example, pqr v Pab v qbc v rac is a closed residue. When we substitute
qrab for the first two clauses, the resulting three clauses all drop by the clause
elimination theorem.

The importance of the relation of complementation is further seen from the fact
that when parts of an expression do not interact with one another, they can be detached
from one another:

12.3.3 Separation theorem. Let A v B in the disjunctive normal form be a closed

Towards Feasible Solutions of the Tautology Problem 255

residue. If there is no complementation relation between A and B, then A v B is valid
if and only if either A is valid or B is. Therefore, in order to determine the validity of
A v B, we need only test A and B separately.

Proof. Of course A v B is valid if either A or B is. To prove the other direction, we
shall derive a contradiction from the assumption that neither A nor B is valid but A v B
is valid.

Let Pl, ... ,Pn be all the variables in A V B and let us expand A and B to canonical
forms A' and B with respect to P10 ... ,pno It cannot be ruled out that A' and B will
have clauses in common. We assume that neither A nor B (therefore neither A' nor If)
is valid. By 12.3.1, neither A' nor B can be a closed residue. If A v B (and therefore
A' v B) were valid and, therefore, closed residues, then A' and B must interact. Since
neither A' nor B is valid but A' v If is, there must be some canonical clause C in A' not
in Band Din B not in A'. C and D cannot differ by one negation sign only (say Pi and
pJ, because in that case A and B would interact for the following reason. Thus, C and D
must come from Cl and Dl by expansion and Cl must not be part of D and Dl must
not be part of Cl . But then Cl must contain Pi and Dl must contain Pi, and there is a
relation of complementation between Cl and Dl , contrary to the hypothesis.

We wish to prove generally that if C and D cannot differ by (k - 1) or fewer
negation signs, then they cannot differ by k negation signs either. The conclusion then
is that there cannot be canonical clauses C exclusively in A' and D exclusively in B.
Hence A' v B (and therewith A v B) cannot be valid.

Return now to our assumption that A' v B is valid and that, therefore, there are
such clauses C and D. As induction hypothesis, we assume that C and D cannot differ
by less than k negation signs. We now suppose that they differ by k negation signs.
Since renaming variables and inverting variables (i.e., replace Pi by A and Pi by Pi
throughout the expression) do not affect validity, we can assume that

C is Pl ... AJ4<+ 1 ... Pm
Dis P1 ···PkA+1 ···pn·

Since A' v B includes all canonical clauses, it includes those clauses in which exactly
one of P1,··· ,A is negated and A+ 1··· ,pn are not negated. Call them E10 ... , E k • By
hypothesis, these all belong to both A' and B, because they differ from C and D by less
than k negation signs. Consider E\> viz. P1P2 ... AA+ 1··· pn. Since it is in A', there
must be a part E1 of E1 which is a clause in A. Moreover, E1 must contain Ph because
otherwise E1 would be a part of D and D would be in A'. Since D is in B, there must be
a part [J of D which is in B. But [J must not contain P1, because otherwise P1 in [J

would complement Pl in E1 , contrary to the hypothesis that A and B do not interact.
By analogous argument, E2 , ••• ,Ek must contain parts E2 , .•• ,Ek in A which must
contain P2, ... ,A respectively; moreover, there must be in B a part [J of D which does
not contain any of Pz, ... ,Pk. Consequently, If is a part of D but does not contain any
of PI> ... ,A. But in that case If is also a part of C. Consequently, D must be a clause in
A', which is a contradiction.

This completes the proof of the separation theorem.

256 Computation, Logic, Philosophy

There are different possible generalizations of the theorem. Roughly speaking, if
we cannot quite separate an expression (in disjunctive form) into two noninteracting
parts, we could still adapt the situation to apply the separation theorem. We gave two
generalizations for illustration. For this purpose, we introduce the notion of "giant
term" which is also useful as a means for testing validity.

12.3.4 Defmition. Let A be an expression in disjunctive form. A disjunction G of
literals is called a giant term for A if and only if G contains at least one literal from each
clause of A and does not contain both p and p for any p.

12.3.5 Theorem. An expression A in disjunctive form is valid if and only if there
~s no giant term for it.

Suppose there is a giant term G for A, say p V q V r V s v t. We can clearly make
every literal in G false (say p, s get 1, q, r, t get 0). But every clause (a conjunction) in A
contains a literal from G and is falsified by the assignment. Hence, A is falsifiable and
not valid.

On the other hand, if A is falsifiable, then there is an assignment which makes A
(and therefore all clauses of A) false. But in that case, there is at least one literal in each
clause which gets the value O. When we pick one such literal from each clause and
delete repetitions (if there are any), we get a giant term.

12.3.6 Decomposition theorem. Suppose A v Cv B to be a closed residue, C not
valid, and that A, B do not interact. Suppose G1 , ... , Gm are all the gaint terms for C
and let A 1 V B 1, ... , Am V Bm be the results obtained from A v C v B by falsifying
respectively the giant terms Gb ... , Gm. Then A v Cv B is valid if and only if at least
one member of each pair {Ai, B;} (i = 1, "', m) is valid.

Clearly it is more appropriate to apply this theorem when C is short compared
with the whole expression A v Cv B.

If A v Cv B is valid, then of course, Al v Bb ... , Am V Bm all are valid. By the
separation theorem, at least one member of each pair is valid. Conversely, if one of
each pair is valid, then of course A 1 V B 1, . .. , Am V Bm all are valid. If A v C v B were
not valid, there would, by 12.3.5, be a giant term for it. But by definition, any giant
term G for A v Cv B must contain as part a giant term for C, i.e., one of G1 , ... , Gm •

Suppose now G contains Gi as part. Then the falsifying assignment for G and A v C vB
would also falsify Ai v Bi, contrary to the premiss that Ai v Bi is valid.

In particular, C may be a single clause (i.e., a conjunction ofliterals). When Chas
additional properties, it is possible to achieve further simplifications. We give one
example.

12.3.7 Theorem. Suppose A and Bare nonvalid expressions in the disjunctive
form. A v ab vB is a closed residue in which A and B do not interact, the literal a
interacts only with A, and b only with B. The expression A v ab vB is valid if and
only if both AVa and Bv b are valid.

Towards Feasible Solutions of the Tautology Problem 257

Proof. It is easy to verify that CDv E is equivalent to (Cv E)(Dv E). Hence,
Av ab vB is equivalent to (a V A v B}(bv A vB). If Av abvBis valid, then a v Av Band
b v A v B are valid. By the separation theorem, either a v A or B is valid, and either A or
b v B is valid. By hypothesis, neither A nor B are valid. Therefore, both a v A and b vB
are valid. Conversely, suppose both aV A and bv B are valid. Then avAvB and
b v A v B both are valid. Therefore, A vab v B is valid. 0

We cannot directly generalize 12.3.7. Take A v Cv B, a closed residue such that
neither A nor B is valid, A and B do not interact, and every literal in C interacts with A
or B but not both. Let Ca (respectively Cb) be the result obtained from C by assigning I
to all literals interacting with B (respectively A). Then A v Ca and Bv Cb are both valid
if A v Cv B is, but the converse is not generally true.

Thus, if A v Cv B is valid, so is A vCaCb V B. So are Av Bv Ca and Av BvCb • By
the separation theorem, either A v Ca or B is valid and either A or B V Cb is valid. Since
neither A nor B is valid, A v Ca and B v Cb are both valid.

To give a counterexample to the converse. Let A be pq, B be ab, C be (pa v qb).
AvCvB is not valid, but jjqvpvq and avbvab are valid.

12.4 Some calculations and classifications

There are a number of elementary details concerning the tautology problem
which call for some elaboration. The vague general formulation is to ask whether there
is a general method M for which there is a polynomial Ax} such that, for every Boolean
expression E and every positive integer n, if E is of length n, then the method M can
decide whether E is valid or not with fewer steps or less time than An}. There are
problems in fixing the universe of Boolean expressions, defining the length of an
expression, and defining the time or the number of steps required for carrying out the
general procedure in each case. Fortunately, these concepts are relatively stable so that
we can make relatively simple choices without having to worry about detailed
distinctions.

For example, we can, at least initially, confine our attention to expressions in the
disjunctive normal form; the length of an expression can be identified simply with the
number of literals or clauses in the expression; the time required for reaching a
decision can often be identified with the number of clauses generated on the way. One
reason why it is possible to use such simplified measures of complexity is that
apparently large differences would not turn a polynomial function into an exponential
one or vice versa. For example, multiplying by a constant factor, however large, or
multiplying together a fixed number of polynomials would not lead out of the realm of
polynomials.

A very essential feature of each Boolean expression is the number of variables
which occur in it. Among all Boolean expressions containing n variables, we have the
length ranging from the order of n to the order of 2n. Essentially the time required for
deciding an expression by the truth table method depends only on the number of
variables and not additionally in any substantial wayan the length of the expression.
The method decides any expression with n variables in what is essentially (i.e. within
polynomial transformations) 2n steps so that all expressions whose length is of the

258 Computation, Logic, Philosophy

order of 2" can be decided in polynomial time. This leads to a simple fundamental
observation that for expressions with the same number of variables, the longer ones are
known to be decidable in polynomial time (by the familiar method of truth tables).
Hence, the tautology problem is open only for "short" or "lean" expressions. Let us
look at this observation a little more closely.

For any finite set of Boolean expressions, it makes little sense to ask whether they
can be decided in polynomial time. Since these expressions can be decided in some
finite time, say N, they have also a trivial polynomial bound, viz. the constant N.
Moreover, once they have been decided in whatever way, we can record the (finitely
many) answers and "invent" a new method which consists in looking up the table of
the answers. Therefore, it is only with regard to infinite sets of expressions that we can
meaningfully ask whether a set can be decided in polynomial time. Moreover, for any
reasonable definition of length, there can be no finite bound on the length of an infinite
set of expressions and no finite bound on the number of occurring variables. Hence, in
order to exhibit counterexamples to a given method, we are expected to give an infinite
set S of expressions and an exponential function E{m} such that, for infinitely many
values m, there are expressions is S of length m which the method M cannot decide in
less than E{m} steps.

Strictly speaking, there is a distinction between exponential and larger-than
polynomial functions. One standard definition of exponential function--is one of the

form K'" for some K > 1; it is never bounded by any polynomial. But 2J m and z(logm) 2

are not polynomial bounded and yet not exponential in this sense. We shall
deliberately use the term "exponential" loosely to mean also just larger-than
polynomial.

An exponential function E{m} increases faster than any polynomial function in the
sense that for any polynomial function ~m}, there is some constant mo such that E{m}
> ~m}Jor all m > mo. But there are different kinds of exponential functions: e.g.2m ,

mm, 2Jm, 31m, etc. For our purpose, it seems reasonable to introduce an order of
magnitude in the exponential functions.

12.4.1 Definition. Two exponential functions E1 and E2 are of the same order of
magnitude if there are polynomial functions P1 and P2 such that for all m, P 1{E1{m}}
> E2{m} and P2{E2{m}} > E1{m}.

Using this concept, we can render slightly more exact our observation that fat
expressions (i. e. long expressions with few variables) are known to be decidable in
polynomial time. To each infinite set S of expressions we associate a "density function"
d such that d{n} is the length of the shortest expression in S with n variables, and d{n} is
2n is S contains no expression of length n.

12.4.2 Lemma. Let S be any infinite set of expressions which is truly fat in the
sense that its density function d{n} is of the same order of magnitude as 2n. Then S is
known to be decidable in polynomial time {in fact by the familiar method of truth
tables}.

Towards Feasible Solutions of the Tautology Problem 259

It seems reasonable to call a set 5 of expressions lean if there is a polynomial
function p(n} such that p(n} is an upper bound of the length of the longest expression is
5 with n varialbes. There would then be sets of expressions which are neither lean nor
truly fat, seeing that there are functions 2J(") or hI(") such that j(n) / n ~ 0, log n / j(n}
~ 0. Since these remarks are only meant to elaborate a fairly simple observation, there
is no need to pursue the distinction further at this point.

Consider all expressions in disjunctive form with n variables. We shall assume
that no clause contains the same literal more than once and that no clause contains a
variable and its negation. Moreover, the order in which different literals occur in a

clause is immaterial. Clearly the longest clause would contain n literals and there are 2n

such clauses.
In fact, there are 2" clauses of length one: PI.'" ,P",Pb ... ,Pn; 4n{n - 1) /2

clauses of length 2; 2\ ~) clauses of length k. Hence, if we include also one clause of
length 0, there are, by the binomial theorem, 3" possible clauses:

" (2x + y)n = I 2k(Z) y"-kXk.
k=O

put x = y = 1, 3" = (2 + l)n = IZ=o2k(Z).
Alternatively, we are making a selection from n triples {Pi'P;, O} (i = 1, ... ,n).

The total number of possible selections is of course 3".
Hence, abstractly, we could have an expression D of length 3n - 1, viz. a

disjunction of all the possible clauses. But by the familiar rule of subsumption, one
could delete any clause A which contains another clause as a part. Therefore, if D
contains a clause of length k(k < n), the 2n - k clauses containing it can be excluded.

12.4.3 Lemma. There are 3n - 1 possible clauses with n variables. Therefore,
there are 23n - 1 - 1 possible expressions in the disjunctive form which contain no
more than n variables.

If we think of the truth table, each clause in an expression covers a number of
rows. If the clause contains all n variables, it covers a single row. In general, if it
contains k variables, it covers 2" - k rows. The expression is valid, if all rows are covered
(i.e., the expression is true under all assignments each specified by a row). The
difficulty of deciding validity is to a large extent due to the fact that rows covered by
different clauses overlap in various different ways.

Generally a valid expression cannot be very short relative to the length of the
clauses. Roughly speaking, there must be certain minimal number of clauses to couver
the whole truth table. We make an observation to illustrate this.

12.4.4 Theorem. Let A be a valid expression in disjunctive form such that each
clause contains k literals and there are altogether n variables, k ::;; n, There must be at
least 2k clauses in A.

When k = n, this is obvious, since the only valid expression in the canonical
disjunction with 2k clauses. Suppose n > k. There are 2n rows in the truth table for the
n variables. Since each clause contains k literals, it covers 2n - k rows in the table.
Therefore, there must be at least 2k clauses because even without any overlapping at

260 Computation, Logic, Philosophy

all, we need 2n /2n- k = 2k clauses to cover all the 2n rows.
In unpublished work, S.A. Cook has also obtained 12.4.4 and a generalization as

well:

12.4.4g Let A be a valid expression in disjunctive form with m clauses such that
the lh clause contains k; literals. Then ~7'= 1 2-k; ~ 1.

Generally it is natural to expect better results when n > k, because it is inevitable
that there are overlappings.

A natural question to ask is the maximum length (viz. number of clauses) of an
expression in the disjunctive normal form with n variables when no clause subsumes
any other clause in the expression. This question does have an exact answer.

Consider first the simpler case when all clauses in the expression are of the same
length. Clearly, no clause subsumes any other clause. For any k, 1 :::; k:::; n, the total
number u(n, k) of possible clauses with k literals is easily seen to be 2k(~), which is also
the maximum length for the set Lk of all expressions in which every clause contains k
literals. Elementary calculation shows that, for a fixed n, the function 2k(k) of k
increases as k is roughly below two-thirds of n and then decreases.

12.4.5 If2n - 1 is not a multiple of3, then u(n, k) has the maximum value when
k is [2(n + 1) /3]; otherwise the maximum is attained when k is 2(n + 1) /3 and (2n
- 1) /3. In particular, ifn is a multiple of3, then the maximum is attained when k
= 2n/3, and u(n,2n/3) '" 3n + 1 /2J(nn). In general, u(n,k) '" 2knn /kk(n - kj2n.

Since u(n, k) = T (k), u(n, k + 1) / u(n, k) = 2(n - k) /(k + 1). But 2(n - k) /(k
+ 1~1 when k~(2n - 1)/3. Hence, if 2n - 1 is a multiple of 3, the maximum is
u(n,~2n - 1) /3) = u(n,2{n + 1) /3), otherwise, the maximum is attained when k
= [2(n + 1) /3]. In particular, if n is a multiple of 3, k = [2(n + 1) /3] = 2n /3.

According to Stirling's formula,

m! '" mme -m J2nm.
u(n, 2n /3) = 2Zn/3n! /(2n /3)! (n /3)!

'" 2Zn/3nne -n J2nn /(2n /3)2n/3e - zn/3(2n(2n /3))1/Z(n /3)n/3e -n/3{2n(n /3))1"z
= nn J2nn /(n /3t2n(n /3)J2
= 3n+ 1 /2Jnn.

u(n,k) '" 2knne-nJ2nn/~e-kJ2nk(n - W- kek- n(2n(n - k))l/Z
= TnnJn/~(n - W- k(2nk(n - k))1/z
'" 2knn / ~(n - k)n-kJ2n.

Generally, an expression in the disjunctive form may contain clauses with
different numbers of literals. If, however, no clause is to subsume any other clause, the
longest expression consists of clauses all with the same number ofliterals and therefore
the maximum value of u(n, k) given in 4.5 is the answer sought for. In order to establish
this, we prove a more general theorem about partially ordered sets which is of some
independent interest.

Consider any partially ordered finite set P. We can always define the level of each

Towards Feasible Solutions of the Tautology Problem 261

node in the 5et in a natural manner. If a node is not greater than any node, its level is O.
If a node is greater than certain nodes and the maximal level of these nodes is n, then
its level is n + 1. As usual, a chain is a simply ordered subset of P, and an antichain is a
subset in which no two nodes are comparable. A maximal chain (or antichain) is one to
which no more nodes can be added to get a larger chain (or antichain). A chain is said
to be complete if it includes a node from every level Li • Clearly, every complete chain is
maximal. Our interest is to determine how large a (maximal) antichain could be. In
general, an antichain A contains ° or more nodes from each level. Let bi be the fraction
of Li that belongs to A; in other words, if Li contains ti nodes and ai of them belong to
A, then bi = ad t i •

12.4.6 General Combinatorial Lemma. Let P be a partially ordered set with n
+ 1 levels Lo, '" ,Ln such that (1) every node in every Li is smaller than some node in
Li+ 1 if i < n and greater than some node in Li- 1 if i > 0, and (2) for every i, each
node in Li belongs to a same number of maximal chains. Let A be any antichain in P,
then "zbi ~ 1.

Proof. By condition (1), every maximal chain is complete. Since no chain can
contain two nodes on the same level, any two sets of chains going through any two
nodes on the same level have no common members. Since every maximal chain goes
through all levels, the value of bi is, by (2), the same as the ratio of the number of
maximal chains going through the ai nodes of A and Li to the total number of maximal
chains. Moreover, since no two nodes of an antichain A can belong to a same maximal
chain, the sum of the numbers of maximal chains going through members of A cannot
be larger than the total number of maximal chains. Hence, "zbi cannot be greater than
1. More explicitly, we can consider bo,b1 , ••• successively. Clearly ("Zbi) - bo must be
no greater than 1 - bo and generally, ("zb i) - bo - ... - bj must be no greater than 1
- bo - ... - bj • Therefore 'f.bi ~ 1.

Given 12.4.6, it is easy to derive as a corollary:

12.4.7 CoroUary. Any expression in the disjunctive form with n variables and
without any clause subsumed by another can have at most u(n, k) clauses, where k
= [2(n + 1) /3].

The partially ordered set is the set of all the 3n clauses (including the empty
clause) ordered by the relation of subsumption. These are obviously the n + 1 levels 0,
1, ... ,n. Conditions (1) and (2) are easily seen to be satisfied. Let A be any expression
in the disjunctive form construed as an antichain which is the set of clauses in A.
Clearly, ti = u(n, i). By

12.4.6,

1 ~ Ih = I(adti) = I(adu(n, i)).

By 12 .. 45, u(n, i) ~ u(n, k), where k = [2(n + 1) /3].
Therefore, 1 ~ "Z(ad u(n, i)) ~ 'f.(ad u(n, k)) = 'f.ai / u(n, k).
Hence, u{n, k) ~ Lai'
In other words, A cannot contain more than u(n, k) clauses.

262 Computation, Logic, Philosophy

Incidentally, 12.4.6 yields also as a corollary the familiar result on the largest
antichain in the set of all subsets of {I, ... ,n} partially ordered by the relation of
inclusion. Since the largest level is 4n/2], the largest antichains contain ([n/2]) nodes.

Corollary 12.4.7 shows that among expressions with n variables which cannot be
simplified by subsumption, the largest number of clauses an expression can have is
u(n, k) = 2k(~), where k = [2(n + 1) /3]. Such an expression is of course valid.

If we take away (say) all the absolutely positive clauses from such an expression,
we obtain a nonvalid expression which contains (2k - 1)(Z) clauses.

If we are interested in counting not the number of clauses, but the number of
literals, we would need some addtional calculation. And we would be considering ti(~)
instead of 2i(7).

2i i(7)~ 2i+ l(i + 1) C-:' 1) if and only if i ~ 2n /3.

If 2n /3 is not an integer, then [2n /3J + 1 gives the maximum. Otherwise both 2n /3
and (2n /3) + 1 give the maximum.

Another relevant classification is to subdivide all clauses with i literals, 1 ~ i ~ n,
into subsets according to the number of negated variables. Since there are n variables
and each clause contains i variables, there are (j) (~) clauses with j variables negated,
o ~ j ~ i. It is easily seen that the numbers of members of the i + 1 subsets are the
binomial coefficients of (a + bY. For example, consider the case i = 4, j = 2, leaving
n;::' 4 indefinite. Call the set Kn(4, 2). In terms of the truth table, K"{4, 2) covers all the
rows in which at least two variables get the value 0 and at least two variables get the
value 1. But much smaller subsets of Kn(4, 2) can be found to cover the same rows,
because there are many overlappings among rows covered by the clauses in Kn(4, 2).

Consider any disjunctive expression in n variables. Each clause B with k variables
(1 ~ k ~ n) covers 2n - k canonical clauses (i.e., rows in the truth table with 2" clauses).
We shall call these 2n - k clauses the 'range' of the clause B. Clearly, if we sum up the
size of the ranges of all clauses in an expression A and get a value smaller than 2n , then
A cannot be valid. On the other hand, if the value is 2n or more, A may be valid or not
because the ranges may and generally do overlap.

It is fairly easy to adapt familiar considerations on the combination of events in
probability theory to give a theoretically elegant but practically often inefficient
general method for deciding whether an expression A in the disjunctive form with n

variables is valid.
Suppose the clauses in A are C1 , .•• , Cm. Each clause Ci is associated with a range

ti as just explained. The expression A is valid if and only if the ranges t 1 ,···, tm
together cover all the 2" rows in the truth table. To determine whether the latter is the
case, we can calculate all the possible intersections of the ranges tl,···, tm.

Given any pair of clauses Ci and Cii i= j, 1 ~ i,j ~ m), we can calculate the
intersection tij of their ranges in the following manner.

Case 1. tij = 0, if Ci and Cj are incompatible, i.e., there is at least one literal in Ci

with its opposite in Cj •

Case 2. Ci and Cj are consistent, i.e. Case 1 does not hold. Then they contain 0 or
more common literals. If C contains a literals and Cj contains b literals and there are c
literals in common, then there are 2n -(a+b-c) rows which are covered by both Ci and

Towards Feasible Solutions of the Tautology Problem 263

Cj. In other words, tij = titj /2n - c •

We have to calculate then the intersection tijk of three clauses Cb Cj, and Ck, etc,
up to the intersection of all m clauses. The calculation is generally the same. If there is
any incompatibility, the intersection is O. Otherwise, they are all consistent, and the
intersection is 2n - d, where d is the total number of distinct variables in the clauses. The
following holds.

12.4.8 Lemma. Let 51 = L.t;, 52 = L.t;j, 53 = L.t;jb etc. Then the range faT the
whole expression A, or, in other words, the number of rows covered is given by the
familiar formula:
(1) t(A} = 51 - 52 + 53 - ... - (-I}m5m.

To compute t(A), we should include all rows which are contained in at least one
clause Ci , but each row should be taken only once. Let R be a row which appears in the
ranges of exactly k clauses. Without loss of generality, we may take these to be
C1 , ... , Ck • Clearly R makes k contributions to C1 , .•• , Cb (~) contributions to 52 (the
pairs), etc. Hence, the total contribution in the above calculation is k - (~) + (~)
- ... ± (Z). The value of this is 1, for k :;:: 1, as is seen from the binomial formula

0= (1 - W = 1 + (1) (-1) + (~) (_1)2 + ... + (Z) (-It
= 1 - (k - (~) + (~) - ... + (- W -1 (0).

Therefore, each row is counted exactly once, and the formula (1) is justified.
It may be noted that the number of terms ti, tij, etc. add up to 2m - 1:

(7) + (2') + ... + (:::) = (1 + I)m - 1.

Therefore, in the worst case, this method in its naked form is certainly exponential.
The likely situation is often that for sufficiently large J~ no j clauses have all their ranges
intersect. When that happens, there will be no need to calculate 5k for k > j, since they
will all be o.

If we are only interested in estimates, we can to some extent avoid the complicated
interactions. For example, we may make any partition of all the clauses into disjoint
subsets (e.g. pairs or triples etc.). We can then calculate the local overlapping in each
subset and add up all the possibilities of these ranges. It is then also clear that the value
must be :;:: 2n for an expression with n variables to be valid.

12.5 Hard examples and negative results

We have described previously the consensus method and its dual, the resolution
method. Each method can be used either as a proof procedure or as a decision
procedure. In either case, there is a choice as to whether to add another rule by which a
clause subsuming some other clause is to be deleted. W'e shall, to simplify matters,
confine our attention to the consensus method as a decision procedure and do not
include the rule of subsumption.

More explicitly, we begin with an expression A in the disjunctive form (i.e., a
finite collection of clauses which are conjunctions of literals) and use the single
consensus rule to create new clauses. It is known that A is valid if and only if we can

264 Computation, Logic, Philosophy

generate from A by the consensus rule both p and p for some variable p.A natural
question to ask is whether we can find examples which are hard to decide by this crude
method.

Since the only rule generates AB from Aq and Bq, it is clear that we can often
generate longer clauses from shorter ones. It is therefore highly plausible that, by
suitable choice, we can find expressions which are hard to decide. For example, it
seems likely that we can choose suitable valid expressions Ai so that only by going
through many longer clauses can we reach p and p for some variable p. Similarly, it
seems likely that we can find nonvalid expressions with a large number of possible
consequences by the consensus rule.

Consider for example the class Kn(4, 2) mentioned before. Suppose, for each n, we
have found some small subset An of K.(4, 2) which contains all the n variables and
covers all the rows of the truth table covered by Kn(4, 2). The consensus rule creates,
among other things, all the prime implicants and there are many of them (compare
[4J). Moreover, in the process of arriving at these short clauses, we would generally
generate a lot more longer clauses. Since the possible applications of the consensus rule
are quite uniform and rigid in each case, the problem of finding examples which would
require exponential time to decide by the consensus method appears to be a
manageable combinatorial problem that is highly relevant to a better understanding of
the tautology problem. We plan to look more closely at this problem in continuing our
studies beyond the present paper. S.A. Cook and Imre Simon have obtained certain
results along this general line.

Meanwhile, it is of interest to look at an ingenious set of special examples
constructed by Tseitin [10]. These examples are contradictory expressions in the
conjunctive form. And Tseitin shows that exponential time is necessary in order to
decide them by the resolution method even as a proof (oor rather refutation)
procedure, subject to a restriction of "regularity". In other words, for these examples,
even the shortest paths leading to p and p for some variable p are of exponential length
relative to the length of the original expressions. The notion of regularity is to exclude
the reintroduction in another branch of a literal eliminated by the cut rule in one
branch. More exactly, a resolution refutation is irregular if there is some sequence of
expressions At, ... ,Ak from the refutation such that each Ai is one of the parent
clauses in generating the resolvent Ai + 1> 1 ::::; i ::::; k, and such that there is some literal
which appears in both At and Ak but not in all the expressions between them. The
meaning of the restriction to regular refutations is not well understood.

For our present purpose, it is more perspicuous to describe Tseitin's examples is

I
i

q40

(O,O)Poo

Towards Feasible Solutions of the Tautology Problem 265

terms of biconditionals. His graphic representation defines a rectangular grid for each
pair of integers nand k. Take the simple case when n = 4, k = 3.

The four conerns are at (0,0), (n, 0), (0, k), (n, k). The edges on the grid are associated
with propositional variables in an obvious manner. The two edges starting at (i,}) are
associated with pij (the horizontal) and qij (the vertical). There are, therefore, 2nk + n
+ k variables (edges) and (n + l)(k + 1) nodes. To each node is associated an
expression involving the variables on the edges which meet at the node.

12.5.1 General form of the grid problem

For each pair nand k, 2(n + l)(k + 1) expressions are defined by choosing for each
node one expression from a pair in the following manner:

(1) For the four corners, we choose in each case one clause from the pair {p iff q,p
iff q}, where p, q are the variables meeting at the node;

(2) For the four boundaries, we choose for each node one clause from the pair {p
iff q iff 5, P iff q iff S}, where p, q, 5 meet at the node;

(3) For each internal node, we choose one clause from the pair {P iff q iff 5 iff t,p
iff q iff 5 iff t}, where p, q, 5, t meet at the node. For each total choice of (n + l)(k + 1)
clauses, we take their con junction as one expression.

It turns out that the choices correspond in a simple way with the status of the
resulting expression. Let each choice from a pair get the index 1 or 0 according as
whether it contained a negated variable or not. Then the expression is contradictory if
and only if the sum of the indices is odd.

12.5.2 A special set of grid problems {GJ

It is sufficient to consider the special case when n = k and when all indices except
one (say the one at the origin) are O. These form an infinite set of contradictory
expressions hard to refute by the resolution method. For example, G3 would be the
conjunction of the following 16 clauses:

(1) a iff t~ iff d,p iff q,f iff g;
(2) 5 iff t iff y, a iff u iff b,5 iff z iff q, b iff v iff c,

d iff w iff e, e iff n iff J, g iff j iff h, h iff i iff p;
(3) u iff y iff k iff x, x iff r iff w iff r, riff n iff j iff m,

miff k iff i iff z.
p h g

1 J z m n
f q

s k r y x w
e

t u v d

a b c

266 Computation, Logic, Philosophy

It should be noted that the clauses in each Gi are closely connected together.
When the clauses are written as conjunction of dis junctions of literals and the cut rule
is applied, we keep on getting longer expressions. In terms of the biconditional form,
the cut rule essentially leads from p iff A and p iff B to A iff B. And we get no
simplifications until we come to the end of the whole process. These vague remarks are
of course only meant to suggest plausibility but they could be worked out more exactly
to yield an alternative proof of Tseitin's result. We shall not undertake this task and
the reader is referred to [lOJ for a proof that the evaluation of the set Gi of grid
problems by the "regular" resolution method requires exponential time. In the next
section, we shall give an efficient decision procedure for a natural class of expressions
which includes all of Tseitin's examples.

Another set of interesting examples has been suggested in [8J and [1]. We shall
refer to this class as the "occupancy problems". For each n, the occupancy problem of
level n says intuitively that n objects cannot occupy all of (n + 1) holes. We express
this fact by a Boolean expression in disjunctive form as follows.

12.5.3 The occupancy problems
Let pij say intuitively that hole i contains object,;(1 ~ i ~ n + 1, 1 ~ j ~ n). For

each n, the expression On is a disjunction of the following clauses:
For 1 ~ i ~ j ~ n + 1, 1 ~ k ~ n,pikPjk (hole i and hole j both contain object k). For
1 ~ i ~ n + I,A1 ... An (no object IS m hole i). (Intuitively,
::3 i::3 j::3 kPikPjk v::3 iV nAn).

In other words, either some object occupies two holes or there is an unoccupied
hole. It is easy to calculate that On contains n{n + 1) variables and (n ~ 1 }n + (n + I)
= (n + l}nZ /2 + (n + 1) = (n + 1}(n2 + 2) /2 clauses. It has been calculated [IJ that
by the routine application of the resolution or consensus method, the "length" for
deciding On is exponential: n{n + 3}2n-Z.

12.5.4
The special case 0 3 is, for example, a disjunction of the following twenty-two

clauses:
(1) abC, de], uvw, xYZ;
(3) be, bv, by, ev, ey, vY;

(2) ad, au, ax, du, dx, ux;
(4) cf, cw, cz, jw, jz, wz.

12.6 A feasible decision procedure for biconditional expressions

The main purpose of this section is to give a quick decision procedure for the class
of expressions which are conjunctions of chains of biconditionals that join literals by
the biconditional connective iff.

12. 6. 1 The biconditional is commutative and associative; hence, we can use the
notation A1 iff ... iff An for a chain of biconditionals. Of course, this is analogous to
disjunction and conjunction rather than =; for example, A iff B iff C does not mean
that A iff Band B iff C.

12. 6.2 In any chain of biconditionals, we can move any negation sign governed

Towards Feasible Solutions of the Tautology Problem 267

directly by iff to govtxn the whole chain; hence, any even number of negation signs can
be dropped (for example P iff q iff n is equivalent to P iff q iff n or P iff q iff n or p iff q
iff n) so that at most one term of the chain begins with a negation sign.

12. 6. 3 Whenever a literal occurs twice in a chain of biconditionals, both
occurrences can be dropped; hence, no term has to occur more than once (in a chain of
length ~3).

In view of these and related properties of iff, it is desirable to single out iff in a
given expression. For example, if a disjunctive form contains the clauses pqn, pqn,
P qn, P qn, we can replace them by P iff q iff n. Before considering more general ways of
using biconditionals to speed up decisions, we consider first an elegant special case.

12.6.4 An expression is in (single literal conjunctive) biconditional normal form if
it is a conjunction of clauses each of which is single literal or a chain of biconditionals
in which each term is a literal.

We do not know whether each expression can be turned quickly into such a
normal form, but once an expression is in this form, a general method can be applied to
decide whether it is satisfiable. Take any expression A, in this biconditional form.
Suppose it contains n variables PI, '" ,pn' By 12. 6.2 and 12.6.3, we can simplify A so
that each clause contains no more than n terms with no more than one variable
negated. Let B be the simplified expression. If A or B contains any clause Pi iff pi, it can
be dropped; if A or B is simply Pi iff pi, then B and A are of course satisfiable. If A or B
contains a clause Pi iff Pi' then B (and therewith A) is not satisfiable and we are
through. Therefore, we can assume there are no such clauses and each clause contains
each variable at most once. A or B may also contain clauses of the form Pi' or Pi' If for
some i, A or B contains Pi and pi, we are through because B(and therewith A) is not
satisfiable.

In general, B contains chains of biconditionals and possibly single literal clauses.
Consider all chains containing Ph ifthere are any. They are (say) PI iff AI, ... ,PI iff

Am. 12. 6. 5 The conjunction of P iff AI> ... ,P iff Am is satisfiable if and only if the
conjunction of Al iff A z,"', Am - l iff Am is. . .

Suppose an assignment is given which makes P iff AI, ... ,P iff Am all true. P is
assigned 0 or 1. In either case, A I. ... ,Am all get the same value. On the other hand,
suppose Al iff A z,'" ,Am- l iff Am has a true assignment. Then AI,'" ,Am all get :he
same value. If we give P that value, then P, A b ... ,Am all get the same value. If we glVe
P that value, then P iff A I, ... ,P iff Am are all true.

Hence, we can replace the m clauses PI iff A I, ... ,PI iff Am by the (m - 1) clauses
Al iff A z, ... ,Am- l iff Am, which can again be simplified by applying 12.6.2 and
12.6.3. Observe that the resulting clauses are each at most of length n - 1, and
therefore the increase in length is well under control. In the process, we may generate
single literal clauses or Pi iff Pi or Pi iff Pi' These are treated as befors. Now that we have
elilninated PI. except possibly in a single literal clause, with little expansion, we can
continue with the other variables in the same manner. In the final result (if we have n~t
reached a decision earlier), we can have only clauses of the following four forms: Pi, pi,
pn iff pn, pn iff Pn. If there is a clause of the form pn iff Pn, t~en. the original ~xpressio~ A
is not satisfialbe; silnilarly if there are two clauses Pi and Pi Wlth the same L. OthefWlse,

268 Computation, Logic, Philosophy

we can assign 1 to pj for each clause of the form pj and 0 to PI< for each clause of the
form "A. It is then seen that A is satisfiable. Therefore, we get:

12. 6. 6 Every expression in the biconditional form (as defined) can be decided
quickly for satisfiability.

This simple case can be seen to apply in a natural way to the examples in [lOJ,
including those described under 12.5.1 and 12.5.2.

We tum now to the question of using biconditionals in more general situations.
For this purpose,we shall begin with expressions in disjunctive normal form.

We note first that any valid expression A in disjunctive form with n variables
Pl, ... ,Pn could be turned into a disjunction of Pl iff ... iff pn (call it B) and its negation
by fairly simple rules. Clearly Band B each covers exactly half the truth table. By
expanding A into the canonical normal form, we can easily arrive at a disjunction of B
and B. As a universal method, such a procedure does not assure speedy decisions. The
relevance of the above remark is only that we could try to create biconditionals from
any given expression, if there are suitable reasons for doing so. For example, if all or
nearly all clauses making up a chain of biconditionals are explicitly present.

Analogous to the method of variable elimination, we have also a possibility of
transmuting an expression:

12. 6. 7 The transmutation rule. Given any expression A(P) containing a variable P
and any expression B, A(P) is valid if and only if the conjunction of A(B) and A(E) is
valid, where A(B) or A(E) is obtained from A(P) by substituting B or B for all
occurrences of p.

Suppose A(P) is valid, and qb ... , qn are all the other variables in A(P). Then
A(O) AA(l) is valid, i.e., whatever values the other variables take, A(O) and A(l) are
always true. Consider now any assignment to A(B) and A(E), i.e., a choice of truth
values for qb ... , qn as well as the additional variables, if any, in B. For any such
assignment, B gets the value 0 or 1. If B gets 0, the value of A(B) is the same as A(O)
and that of A(E) is the same as A(l), for that assignment of values to ql,"', qn'
Similarly, if B gets 1.

Conversely, suppose A(B) A A(E) is valid. Then every assignment to qb'" , qn and
additional variables in B makes A(B) and A(E) true. Each assignment gives B the value
o (and therefore B the value 1) or the value 1 (and therefore B the value 0). Therefore,
for that particular assignment to qb ... ,qn, A(O) and A(l) are both true. Since this is
true of all assignments to qb'" ,qm A(O) A A(l) is valid. Therefore, A(P) is valid.

In particular, it is not excluded that B may contain p.
In the general situation, the transmutation offers little advantage, since the

possible elimination of a variable P is paid by doubling (or worse) the size of the
expression. There are however cases where we could gain by the rule. One example
would be when we have a biconditional p iff B as a clause in an expression A(P) in
dis junctive form, say (p iff B) v R(P). In that case, A(B) becomes (B iff B) v R(B) and can
be dropped, while A(E) becomes (B iff B) v R(E), which can be simplified to R(E).

In particular, if an expression in disjunctive form contains two clauses pq and pq,
say pq v p q v R(P), we can simplify it to (p iff q) v R(P) and then to R((j), which is a
desirable way of eliminating the variable p.

Towards Feasible Solutions of the Tautology Problem 269

12.7 Two partial methods and an indication of two generic methods

We consider in this section a method of inversion and a method of counterterms
that involve parallel eliminations of variables. We shall also briefly indicate two generic
methods which we plan to investigate systematically in a future paper, viz. the method
of size calculations and the method of composite expressions with symbolic
abbreviations.

12.7.1 A method of inversion

We observe that if an expression in disjunctive form does not contain any
absolutely positive clauses (or similarly negative ones), then it cannot be valid. For
example, if there is no clause in which no variable is negated, then by assigning every
variable the value 1, the whole expression must get the value O. In any expression A if
we "invert" any variable by substituting a variable p for p and p for p, then the result is
valid if and only if A is. Hence, we can sometimes try to invert suitable variables to
eliminate absolutely positive clauses (or absolutely negative ones). Of course, if the
expression is valid, we cannot find such inversions. And it is possible to establish that
such inversions do not exist. This yields a decision method which is not efficient in the
general case but is effective for certain interesting special cases.

The inversion method is closely related to the concept of giant terms introduced
in 12.3.4.
12.7.1.1 Let A be an expression in the disjunctive form. There is a giant term for A(i.e.
A is not valid) if and only if there is an inversion of A which contains no absolutely
positive clause.

Suppose there is a giant term G for A, say pv qV s Vt. That means A contains no
clause which makes PJst true. Suppose a, b, c, d are all the other variables in A. Then A
does not cover the row in the truth table which makes abcdPJst true. Therefore, if we
invert q and t, the result obtained can contain no absolutely positive clause, because
any such clause would cover the missing row.

Conversely, suppose there is an inversion of A, say q to q and t to t, which yields a
disjunction B that contains no absolutely positive clauses. Suppose a, b, c, d, p, q, s, t
are the only variables in A. Then a v b v C v J v p v q v S v t must be a giant term for B,
since every clause in B contains at least one negative literal. But then
avbvcvdvpvqvsVt would be a giant term for A.

By taking advantage of certain special features of the occupancy problem, we can
decide all its cases efficiently with the method of inversion and the related concept of
giant terms. Consider, for illustration, the simple case 0 3 mentioned above. A first
mechanically recognizable feature is that the clauses in the expression can be separated
into groups containing different literals:
03' A 1 : ad, au, ax, du, dx, ux;

A 2 : be, bv, by, ev, ey, uY;
A3: cf, cw, ca, jw, jz, wz;
B 1 : (iDe; B 2 : (Fe], B3: uvw; B4 : xyz.

No two clauses in any two different groups have any literal III common.

270 Computation, Logic, Philosophy

We now ask whether there is any giant term for 0 3 • There are altogether 12
variables. Therefore, a giant term must contain no more than 12 literals. Consider A1
first. It is easy to see that at least three variables must occur in a giant term. Similarly
with Az and A 3 • Hence, we need 9 unnegated variables for Aj, A 2 , A 3 • But each of Bj,
B2 , B3 , B4 needs one additional literal since all literals in them are negative. Therefore,
we need at least 12 literals to make a giant term which is impossible. Hence, 0 3 is valid.

Observe that if we delete any clause, say ux, we would have a giant term, viz. the
disjunction of a, d, b, v, y,f, w, z, C, e, ii, x. Therefore, the result obtained from 0 3 by
deleting any single clause is not valid.

It is not hard to convince oneself that the decision procedure can be mechanized
and it applies efficiently to all cases of the occupancy problem. The natural objection is
that the success depends too heavily on the special features of the occupancy problem.
But our motive in including this solution is rather to illustrate a general point that
metalogical arguments can be mechanized. In fact, we are currently developing a
generic metamethod which has a similar flavor.

The basic idea is to find efficient ways of calculating how many rows of the truth
table can be covered by the clauses in a given expression. Such calculations are possible
when speed is not the issue, according to 4.8. But our goal is to find systematic
shortcuts to eliminate repeated calculations which add nothing new.

We give here a few simple examples to illustrate the type of considerations we
intend to study in a systematic way.

12.7.2 Examples of size calculations

12.7.2.1 The disjunction of pq, pr, qr. The three clauses are mutually
inconsistent, and there are three variables. Each clause covers two rows of the truth
table. Hence, exactly six of the eight rows are covered. Hence, the expression is not
valid.

12.7.2.2 Consider the two clauses pqr and pqs. They cover the same rows as pqrs
and pqs because pqrs is subsumed by pqs and gives no new rows. This is a standard way
of eliminating intersections of two ranges.

12.7.2.3 The expression is the disjunction of:
(1) pq, (2) pr, (3) qr, (4) pq, (5) pr, (6) qr.

We replace (1) by pqr, pqr, (2) by prq, since prq is seen to be redundant by the
presence of (6). Replace (3) by qrp, since qrpcontains (5). Replace (4) by nothing, since
pqr and pqr are present (from (2) and (3)). Replace (5) by prq. (6) by qrp. We get
altogether six clauses, and the expression is not valid. Actually, the replacement of (2)
by prq can also be avoided by appealing to (5).

12.7.2.4 The expression is the disjunction of:
(1) rs, (2) Ts, (3) qr, (4) ps, (5) pq, (6) pr.

As we compare (1) with (3), we see their ranges overlap on rsq. Therefore, we can
replace rs by rsq. We then compare it with (5) and see that it can be replaced by rsqjJ.
No other clause is consistent with this, and we get (1') rsqjJ. Next, (2) is consistent only

Towards Feasible Solutions of the Tautology Problem 271

with (6) and (5). Because of (5), we can omit the possibility of including p. We have
therefore:

(2') -;sfl...-;spq dropped by (5), rsJJq by first clause).
The clause (3) is only consistent with (4). It gives way to (3') qrs, qrps.
Now clause (4) is consistent with none of (1'), (2'), (3'), (5), (6). So it remains

unchanged.
Clause (5) is only consistent with (6). It gives way to (5') pqr.
Clause (6) is consistent with none. So we have (1'), (2'), (3'), (4), (5'), (6). The

calculation gives 1 + 2 + 2 + 1 + 4 + 2 + 4 = 16. Hence the expression is valid.
12.7.2.5 The example 0 3 agam.
(1) abc de] uvw xyz
(2) ad au ax du dx ux
(3) be bv by ev ey vy
(4) cJ cw cz Jw .fz wz.
We have 12 variables. In (2), 4 variables occur. Of the 16 possibilities, one leaves

nothing negated, 4 with one negated, 6 with two negated, 1 with all negated. The six
clauses cover all possibilities when at most two are negated. We have, therefore,
(11/16) x 212.

In (3), we would have the same (11 /16) x 212 except for the fact that some of
these rows have already been covered, and we need only include what is left after
11 /16 of the table is covered. Therefore, we have (5/16)(11 /16)212 new rows covered
by (3).

When we come to the clauses in (4), we do the same thing. 1 - (11 /16)
- (5/16)(11 /16) = 25/28 • Hence, the number of new rows covered is:
(11/16)(25/28)212 = 275.

Thus far we have covered (11)28 + (55)24 + 275 = 2816 + 880 + 275 = 3971
rows. 4096 - 3971 = 125.

Consider now the clauses in (1). The clause abc covers only the rows in which at
least three of the four variables in each of (2), (3), (4) are negated. That means dux,
aux, dux aux for (2) and similarly for (3) and (4). Hence, we have 43 = 64.
Alternatively, the only rows not covered by (2), (3), (4) are those in whcih at least three
of a, d, u, x are negated, also three of b, e, v, y, and three of c,j, w, z, Hence, we get 53
= 125. When we come to de], we again have 64 possibilities of which 27 are covered
by a bcbecause ux, vy, wz each with at least one negated is covered. Hence, we have 64
- 27 = 37. Similarly, uv w cover only 64 - 27 - (27 - 8) = 18 rows. The number 8
is the overlapping of abc and de! since we have also uvw, xyz can have any of the 8
possibilities. Finally, xyz covers only 6 rows because of the stringent conditions: (1) at
least one of abc (dej, uvw) must be positive; (2) at least three of adux (bevy, cJwz) must
be negative.

Therefore, since 64 + 37 + 18 + 6 = 125, we get all the 4096 rows and 0 3 is
valid.

The treatment of Tseitin's examples by the use of biconditionals is meant to
illustrate another general point which we plan to pursue extensively in working with
composite expressions with the help of symbolic abbreviations. The biconditionals

272 Computation, Logic, Philosophy

may be thought of as a natural existing method of abbreviation. They deviate from the
familiar normal forms. The approach which we are in the process of developing
refrains from turning intermediate composite expressions into standard normal form
and introduces abbreviations systematically to deal with complex expressions
indirectly through their symbolic representations. We have worked out a few complex
examples which are rather too involved to be included here. Moreover, there are a
number of theoretical points which are not yet sufficiently clear to us.

We give another partial method which is useful for many problems and use it to
suggest another general approach.

12.7.3 The method of counterterms

Assume given an expression in disjunctive form. The method is especially
appropriate when there are many short clauses. We choose a few variables to make up
the "seed". Roughly we take the most frequently occurring variables, but in special
cases we examine whether they occur in many different combinations of pairs, etc. For
example, we may choose six variables a, b, c, d, e, f as the seed.

We try out all 64 possibilities of these variables to find out whether each
possibility implies the original expression. Consider now one possibility, say abcdef
We compare this with each clause of the given expression and take anyone which is
consistent with abcdef or its extension and contains one additional variable. For
example, we may have a clause aep. In that case, we extend abcdq to aocde fft This
counterterm includes certain rows of the truth table not covered by aep. Moreover, all
rows covered by abcdef but not by abcdejp are covered by aep.

Case l:Positive termination. Mter some steps, we arrive at (say) abcdejjjqstn, and
there is a clause (say) aen contained in it. This means that abcdefimplies the original
expression, i.e., it covers no rows not covered by the original expression. To see this,
we argue as follows. Certainly the whole counterterm covers no new rows not covered
by aen. But abcdefPqstn contains no rows not covered by An which caused n to be
added. Continuing thus, we see that abcdef covers no rows not covered by clauses in
the original expression. When we have a positive termination in this sense, we can add
abcdef to the original expression without affecting validity.

Case 2: Negative termination. We have succeeded in expanding the counterterm
so that all clauses of the original expressions are involved either by interaction or by
prior contradiction and yet there is no clause in the original expression contained in the
counterterm. In this case, we can conclude that the original expression is not valid and
stop, because we have found a row of the truth table not covered by the original
expreSSIOn.

Case 3: Undecided case. Neither 1 nor 2 occurs because there are clauses which
are not involved by interaction. In this case, we may separate the original expression
into B v R, so that R is the rest and we can ask the new question whether A ~ R, or
.Ii v R is valid. This is a simpler problem especially since .Ii is a disjunction of single
literals. It can also be treated by the counterterm method.

Generally, we do not work on the undecided cases until we have tried all 64
possibilities because any time we get a negative termination we are through.

Towards Feasible Solutions of the TautologJ Problem 273

Previously in Section 12. 4, we have remarked on the fact that ~~truly fat"
expressions are decidable in polynomial time relative to the length of the expressions
even though in absolute terms the time required is usually long. We wish to remark
here on a related phenomenon about the length of the clauses in an expression. When
the clauses are long, the decision is again relatively easy because a large number of
clauses would then be necessary to make the expression valid. The observation 12. 4. 4
in Section 12. 4 is an illustration of this general point. The method of counterterms is
specially suitable for expressions with short clauses. It does not necessarily work well,
however, for expressions where clauses had been artificially shortened by the
introduction of dummy variables as described earlier in Section 12. 3.

The relevance of such partial methods for the tautology problem is justified by the
following envisaged possibility. We may reach a positive solution by combining a
number of different methods appropriate to different types of expression. The only
essential requirement is that we can determine in polynomial time the type of each
expression and that the appropriate method always terminates in polynomial time.

Moreover, from the efficiency point of view, even if a certain generic method
decides all Boolean expressions in polynomial time, it may handle certain types of
problems much more readily than others. Therefore, a good startegy may be to have a
preliminary examination of a given expression to decide which line of attack is best
suited to the expression in question.

In conclusion, we have thus suggested three possible lines of attack which may on
further study be shown to yield a positive solution to the tautology problem, viz. (1) the
method of symbolic workthrough (dealing directly with composite expressions), (2) the
method of size calculations, (3) a plurality of partial methods which taken together
deals successfully with all possible expressions.

References

[1] S. A. Cook, The complexity of theorem-proving procedures, Proc. Third Annual ACM Symposium

on Theory of Computing, 1971.

[2] S. A. Cook and R. Reckhow, On the length of proofs in the propositional calculus, Proc. Sixth

Annual ACM Symposium on Theory of Computing, 1974135-148 (also 8 pages of corrections).

[3] M. Davis and H. Putnam, A computing procedure for qu~ntification theory, J. Assoc. Compo Mach.

7(1960) 201-215.

[4] B. Dunham and R. Fridshal, The problem of simplifying logical expression, J. Symb. Logic 24(1959)

17-19.

[5] B. Dunham, R. Fridshal, and G, 1. Sward, A. Nonheuristic program for proving elementary logical

theorems, Proc. Int. Conf. on Information Processing (Paris: CNESCO, 1959) 282-284.

[6] B. Dunham and J. H. North, Theorem testing by computer, in: J. Fox, ed., 1962, Proc. Symposium

on Math. Theory of Automata, 173-177.

[7] B. Dunham, R. Fridshal and J. H. North, Exploratory mathematics by machine, in: Recent

developments in information and decision processes (Macmillan, New York, 1962) 149-160.

[8] R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller and J. W. Thatcher, eds.,

Complexity of computer computations, 1972, 85-103.

274 Computation, Logic, Philosophy

[9] J. A. Robinson, A machine oriented logic based on the resolution principle, JACM 12 (1965) 23----41.

[10] G. S. Tseitin, On the complexity of derivations in the propositional calculus, in: A. O. Slisenko, ed.,

Studies in constructive mathematics and mathematical logic, part II, 1968, 115---125.

13. RANKED MATCHING AND HOSPITAL INTERNS*

13.1 Preliminary

Many medical schools and hospitals participate in a national matching program

under which each graduating medical student, besides applying directly to a number of
hospitals in the group, submits to the program agency a ranked list of his preferences,
and each hospital submits to it a ranked list of its preferred applicants. The assignment
is worked out by a computer program on the basis of the information contained in these
lists. Upon inquiry and examination, we find that the algorithm employed is 'hospital
optimal'. In fact, the resulting assignment is anti-optimal for the students, in other
words, every successful student gets into the hospital that is the lowest possible
('possible' in a definite and indisputable sense to be explained below) on his list of
preferences. This fact is apparently not widely known.

The problem of making a judicial assignment under situations like this one is
clearly a general one having many potential applications. For example, colleges could
conceivably use a similar system, an election in which a candidate can run for several
positions but can occupy only one could present a similar problem, the 'ideal marriage'
problem amounts to the special case when each hospital has only a single vacancy. In
looking at the general problem, we come across a number of simple conclusions which
are surprising and have surprisingly simple proofs.

Standard matching theory deals with filling diverse positions by candidates who
are generally only qualified for some of the positions (see, e.g., Liu, Chapter 11). The
problem considered here may be called ranked matching: it arises whenever a
multiplicity of positions or facilities are applied for by many candidates, with definite
orders of preferences on both sides.

Recently we came across by chance a document (NIRMP, see reference) in which
an actual ranked matching program is sketched with a simplified example. The program
is to place graduates from medical schools into hospitals as interns. The sketch and
example are not sufficient to reconstruct a complete algorithm; in fact, for the simple
example given, different algorithms would yield the same result. We, therefore, wrote to
John S. Graettinger, M. D., who is the person responsible for the program, for additional
information. In the reply we were referred to the paper of Gale and Shapley (see
reference) and told that 'the NIRMP algorithm is analogous to the college optimal
assignment' described there.

We find that Gale and Shapley confine their attention to the separate treatments of

* Not published previously.

275

276 Computation, Logic, Philosophy

two extreme assignments which are the hospital (or college) optimal and the student
optimal. Our approach centers around a natural reduction of all the given lists that
preserves all relevant information, and continues 'with a study of all possible
assignments including the two extreme ones considered by them. We are also able to
prove additional results about the two extreme assignments, including the proof of some
facts which they take for granted.

13.2 Deletion of useless names: Operatious I and II

We assume given a finite number of hospitals A, B, C, ... each with a quota for
interns and a fanite number of students 0(, f3, }" ... , together with their preference lists.
Let T be the collection (or table) of these lists. The purpose is to find a judicial
assignment of the students each to at most one hospital.

Gale and Shapley have introduced the basic concept of a stable assignment.
Definition. An assignment of applicants to hospitals is stable if there is no possibility of
an applicant and a hospital making a deal to upset the assignment; more exactly, if the
following situation does not arise. Two students 0(and f3 are assigned respectively to the
hospitals A and B, but f3 prefers A to B and A prefers f3 to 0(.

Clearly any assignment under which the above situation occurs is not satisfactory
to A and f3. It is desirable to prevent such a situation and use only stable assignments.

For each hospital A, we have a ranked list L(A) which consists of two parts: D(A),
the top part of L(A) up to the quota of A, is the list of desired applicants; W(A), the
remainder of L(A), is the waiting list. If the number of names on L(A) is less or equal to
the quota of A, L(A) = D(A). Each applicant 0(has a single ranked list L(O() of his
preferences. Of course, an applicant 0(can appear on a hospital list L(A) only if A occurs
in L(O().

As a first preliminary step, we can delete every ineffective applicant, i. e., one who
appears on no hospital list at all, as well as any hospital with an empty list. As we revise
the lists, such deletions will always be made whenever an applicant or a hospital becomes
ineffective.

For individual names on a list, it is natural that we delete every hospital A from a
list L(O() if 0(does not appear on L(A), and delete every student 0(from a list L(A) if A does
not appear on L(O(). Hence, if A is deleted fromL(O(), then 0(should be deleted fromL(A);
and if 0(is deleted from L(A), A should be deleted from L(O(). For brevity, we speak of
deleting the pair {O(, A} to mean that both deletions are made.

The guiding principle of the systematic reductions is the obvious one: When a
student or a hospital is assured of a higher choice, there is no need to retain the names of
lower choices. To carry out this idea systematically, we shall introduce two (dual)
operations, one for each side.
Operation I, Give a table T of lists, whenever an applicant 0(appears in D(A) of some
hospital A, and A is not O('s last choice, delete all pairs {O(, B} for those hospitals B on
L(O() which appear after A.

In particular, when 0(is deleted from some D(B), the top applicant on W(B), if

Ranked Matching and Hospital Interns 277

W(B) is not empty, moves onto D(B), and Operation I may be applicable again.
Definition 1. Two tables T and T' are equivalent, T ~ 1", if they have the same stable
assignments.
Theorem 1. Let T' be the result obtained by applying Operation I to T. Then T ~ 1".

Proof. By hypothesis, a occurs in D(A). It is sufficient to prove that no stable
assignment assigns a to a hospital B lower than A on L(a). Suppose the contrary. Since B
accepts a and a appears on D(A), A must accept some student P on L(A) who occupies a

lower place than rJ.. But then, since rt prefers A to B, a and A can make a deal. Therefore,

the assignment was unstable.
Given T, there is generally a choice of singling out some student rt to apply

Operation 1. Also, additional applications may be possible. Since, however, T is a finite
collection of finite lists and each application ofI reduces the size ofT, we shall eventually
reach a list T(that is closed under T or a closure of T relative to I, i.e., a list T(to which
Operation I is no longer applicable.

By applying Theorem 1 repeatedly, we have:
Theorem 2. T ~ T(.

A complication is to prove the intuitively obvious fact that we get the same closure
of T under I no matter in what order we repeat Operation 1. Following a suggestion by
William lVIitchell, we rearrange our results to get a direct characterization of TJ and
thereby infer the uniqueness of the closure of T.

Let TJ be a closure of T under 1. We consider the assignment by which to each
hospital A is assigned exactly the applicants on D(A) in T1• Clearly every student
appearing in TJ is assigned to exactly one hospital. The assignment is stable in TI since
each hospital gets the students it prefers most. By Theorem 2, it is also stable in T. (In
fact, this will be the hospital optimal assignment.)

Let T J be a closure (the closure) ofT under 1. Consider all stable assignments for T.
For each student a, there isa lowest hospital Aon L(a) such that a is assigned to A under
some stable assignment (but to no hospital B lower on L(a) under any stable
assignment). Delete from T all pairs {a, B} for each student a and each such hospital B
on L(a). Let T(I) be the result obtained from T by these deletions.
Theorem 3. TI = T(I).

We observe first that T(I) is uniquely defined because the deletions for different
students are made independently of one another. By the stability of the hospital optimal
assignment, clearly T(I) S Tb since all the pairs deleted from T to get TI are certainly
deleted in getting T(I) from T. On the other hand, since T ~ T" TI s T(I) because all
stable assignments ofT are also (stable) assignments for TI and in TI no student can get
assigned to any hospital lower on his original list than the hospital he is assigned to under
the hospital optimal assignment. To see this, recall that Operation I cuts off all lower
hospitals from each student's list and in T each student is assigned to the last hospital on

J
his list.

From this it follows that we get the same T no longer in what order Operation I is
repeatedly applied. Therefore, the closure T of T under I is uniquely defined and the
hospital optimal assignment is uniquely defined.

278 Computation, Logic, Philosophy

We consider now a dual of Operation I:
Operation II. Given a table T oflists, whenever a hospital list L(A) contains at least q(A),
the quota of A, applicants whose first choice is A, delete all pairs {f3, A} for all applicants

f3 who appear after the applicant who is the q(A)--th applicant on L(A) with A as first
choice. (of course this operation is not applicable to any hospital A with L(A) containing
no more than q(A) names.)
Theorem 4. If T is obtained from T by applying II, then T ~ T.

It is sufficient to prove that no stable assignment assigns to A any f3 of the type
specified. Suppose the contrary. Since there are on L(A) q(A) applicants before f3 who
have A as the first choice, at least one of them, say a, must be assigned to another
hospital B. But A prefers a to f3 and a prefers A to B (since A is a's first choice).

Let Til be a closure of T under II. We have:
Theorem 5. Til ~ T.

We can parallel our considerations on I to prove the uniqueness of Til. Consider the
assignment which assigns to each hospital A exactly those applicants who are on L(A)
and have A as first choice in Til. The assignment is stable in Til since each student gets
his first choice in Til" Hence, by Theorem 5, it is also stable in T. (In fact, this is the
student optimal assignment.)
Theorem 6. Let Til be a closure of T under II and T(II) be obtained from T by the
following deletions. Consider all stable assignments T; for each hospital A, take the
student a on its list who is the lowest on L(A) in T who will be assigned to A in some
stable assignment. Delete every pain {f3, A} for each f3 below this a on L(A). Then Til
= T(II).

Clearly T(II) is uniquely defined. By the stability of the student optimal
assignment, T(II) c:; Til. Since Til ~ T, for reasons similar to the situation with T I ,

TIl c:; T(II).
Hence, Til is the uniquely defined closure of T under II, and the student optimal

assignment for T is uniquely defined.
The considerations so far suggest combining the two operations. This has double

advantages: we end up with a simpler collection of lists which still preserves all relevant
information, and we are in a better position to survey all stable assignments in order to
select judicial assignments according to principles we choose to follow.

13.3 The canonical form T* of T

Definition 2. For any table T, its canonical form T* is the result obtained by making all
possible applications of I and II in any order we wish. In other words, T* is the closure of
T under I and II.

To justify this definition, we argue similarly as before to establish that T* is
uniquely defined from T. Let T* be any closure ofT under I and II. By Theorems 2 and
5, we have:
Theorem 7. T* ~ T.

Let T(*) be obtained from T by making both types of deletion, viz. those to get

Ranked Matching and Hospital Interns 279

from T to T(I) and those from T to T(II). The result T(*) is uniquely determined by T,
since the individual deletions have at most trivial interdependence. If two deletions are
both of the first (second) type, they involve two different students (hospitals). If two
deletions are of different types, it is possible that both of them delete a same pair { IX, A}.
But then it does not matter, since {IX, A} is deleted anyhow and it has no effect on other
deletions.
Theorem 8. T* = T(*)

Using the hypothesis that T* is a closure of T under I and II, we can, as before,
make the two extreme assignments (hospital and student optimal) in T*. Hence, as
before, T(*) ~ T*. Moreover, since T* ~ T, T* ~ T(*). Hence T* = T(*).

This shows that T* is the unique canonical form of T and justifies Definition 2.
The canonical table T* has some surprising properties which are, by the way,

proved without using the fact that it is unique. All that is used is merely the property
that T* is indeed a closure of T under 1 and II.

For each hospital list L(A), let f(A) be the number of applicants on L(A) whose first
choice is A, and let d(A) be the number of applicants on D(A).
Theorem 9. In T*, f(A) = d(A), for every hospital A.

Proof. Since Operation II can no longer be applied to T*, we have, for every A,
d(A) ~ f(A). Let d be 1:d(A), over all hospitals, and f = 1:f(A), over all hospitals. Then
d ~ f.

On the other hand, every applicant on some d(A) has a first choice (either A or some
other hospital B) and appears on that hospital's list. Moreover, since Operation I is no
longer applicable, no applicant in some D(A) can appear in any other D(B). Therefore,
f ~ d. Hence, f = d.

Suppose for some A, f(A) =f- d(A). Since, for every B, d(B) ~ f(B), we must have
d(A) > f(A). But then, since f = d, there must be some B, d(B) < f(B), contradicting
d(B) ~ f(B).

Therefore, d(A) = f(A) for every A.
Corollary 1. In T*, every remaining applicant, i.e. one who appears in at least one
hospital list L(B), must appear in some D(A).

If there were a student IX who appears only on waiting lists, IX must have a first
choice A and appear on L(A), because otherwise A would no longer be a choice for IX. But
that would make f > d.

In other words, even though it is quite possible for T to contain lists such that there
is some IX who only appears on waiting lists, this is no longer true for T*.
Corollary 2. In T*, if for a hospital A, L(A) = D(A), i.e., the hospital A has only ~ q(A)
applicants remaining on L(A), then all applicants on L(A) have A as first choice, and
exactly these applicants will be accepted by A in any stable assignment.

Since the proof of Theorem 9 does not assume that D(A) =f- L(A), we have D(A)
= f(A) also for such short lists. Hence, every applicant on A has A as first choice.

Since Operation I is no longer applicable to T*, these applicants do not appear on
any other hospital lists. Since they have A as first choice and make up D(A), it is
impossible for A to accept any other applicant in any stahle assignment.

280 Computation, Logic, Philosophy

It is a little complex to try to see directly why these corollaries are true. For
example, one might make explicit the following argument to show why every applicant
on a short list has the hospital as first choice. If rt. appears on a short list A but does not
have A as a first choice, then rt. must have some hospital B as first choice and appear on
W(B). Then there must be some P on D(B) such that P does not have B as a first choice.
And so on. This would lead to an unending process which is an impossibility since T* is
finite.
Corollary 3. Every stable assignment for T assigns exactly the applicants appearing in
T* to the hospitals appearing in T* in such a way that each student rt. is either assigned to
the hospital A with rt. in D(A) or to a hospital B which rt. prefers to A.

Since T ~ T*, they have the same stable assignments. Suppose rt. is assigned to C
(in particular, to no hospital at all) and rt. prefers A to C. Since rt. appears on D(A), A must
have accepted some applicant plower than rt. on L(A). But then rt. and A can make a deal
to upset the assignment.

13.4 The student and hospital optimal assignments

We make first a few remarks on the relations between T , Til and T*.
13.4.1 For each hospital A, D(A) is the same in T and f*; hence, the hospital

]

optimal assignment is the same in T and T*.
]

Operation II can only affect the waiting lists and affect at most the ranking of A in
L(rt.) for rt. on D(A), but not the fact whether rx is on D(A) or not. Therefore, for each A,
D(A) in T* remains the same as in T . Since the hospital optimal assignment is

I
determined entirely by the desired lists, it is the same in T and in T*.

I
13.4.2 For each hospital A, the students on L(A) with A as first choice are the same

in Til and T*; hence the student optimal assignment is the same in TIl and T*.
Applying I repeatedly to Til does not affect the first choice of any student since I

only eliminates {rx, B} when rx is on D(A) with A a higher choice for ex than B.
13.4.3 (T,)II = (TI,), = T*.
Since T* is the uniquely determined closure of T under I and II, it is sufficient to

prove that (Tj)Il and (TIl)I are closed under I and II. Consider first (Tj)Il' which is the
closure ofT] under II. By 13.4.1, the desired lists of the hospitals in (T)Il are the same as
in T*, and, therefore, I is no longer applicable. On the other hand, by 13.4.2, II is no
longer applicable to (Til)]"

13.4.4 The students remaining on T* are the same as those in T]] and those on the
desired lists of T .

]

Observe that I never eliminates any student altogether. By Theorem 9, all students
remaining on T* appear on desired lists. Hence, by 13.4.1, they are exactly those who
appear on desired lists in T . Since every remaining student has exactly one first choice,

]

the students remaining are, by 13.4.2, the same in T* and T]]"
13.4.5 The hospital optimal assignment is optimal for the hospitals and 'anti

optimal' for the students; the student optimal assignment is optimal for the students and
anti-optimal for the hospitals.

Ranked Matching and Hospital Interns 281

Thus in no stable assignment can the hospital do better than in the hospital optimal
one because T ~ T* and each hospital A gets its top choices in T*. Similarly the
students can do no better than using the student optimal assignment since they all get
their first choices in T* and T ~ T*.

We can now see the sense that every student gets assigned to the worst possible (for
him) hospital. By Corollary 3 above, in no stable assignment can a student get assigned
to any hospital he prefers less.

On the other hand, in the student optimal assignment, the hospitals accept

applicants they prefer least in the following sense. Let f<jl(k) be the position of the k-th
candidate, accepted by a college A, on L(A) in T* in a stable assignment <p. Let t/J be the
student optimal assignment. Then (jJ(k) ? f<jJ(k) for all <jJ and all k '" q(A). Thus, if f",(ko) > f",(ko), then

there is at least one student IX on L(A) before the ko-th applicant accepted by A who has A as first choice. But then IX and A can

make a deal to upset the assignment.

The algorithms used by Gale and Shapley are easy to describe but awkward to carry out, because they assume that, for

example, in the student optimal assignment, each student applies only to his current first choice at each stage. In other words,

a student applies to his next choice only when rejected by his current first choice; this process is repeated until every student is

either accepted or held as a tentative acceptance by some hospital or has been rejected by every hospital to which he is willing

to apply. At this point, each hospital accepts all its tentative acceptances. (See Gale and Shapley, pp. 13-14.)

The actual current algorithm for placing interns gives. as noted above. the hospital optimal assignment. It employs only

Operation I and obtains essentially TI from T. The following advantages are claimed for the
program (NIRMP, p. 7):

'Students advanced up the hospitals' preference lists only when a higher student on
the list was scratched because of getting a higher choice on hier list. In other words, no
student was passed by a student lower on a hospital's preference list. Each student
obtained a position in the hospital highest on hier list which offered hiem a position. An
important corollary is that a student does not jeopardize hier chances in a given program
by ranking another program above it which s /he preferred but thought unattainable.

Of course, that no student was, in the specified sense, passed by a student lower on a
hospital list is a property shared by all stable assignments. It is not a special advantage of
the hospital optimal assignment.

The important point is the ambiguity of the phrase 'a hospital A offering a student
ex a position.' From the hospital's point of view, it would choose to mean by this phrase
that ex is on D(A) in T* or T . And this is the sense implicit in the above quotation. From

I
the student's point of view, this ought to mean that ex is on L(A) in T* or TIl" It is clear
from our discussion so far that the misleading phrase conceals the disadvantage suffered
by the students under the present system of assignment. When a hospital A is willing to
accept a student ex, i. e .. to put ex on L(A), it is perfectly possible to proceed by giving the
student's preference the first consideration, as is seen from the stability of the student
optimal assignment.

We note that the hospital (in contrast to the student) optimal assignment has a
further disadvantage for the students: for a student who gets assigned at the end, listing
safety choices can hurt in preventing him from getting into a hospital higher on his list.

282 Computation, Logic, Philosophy

Let us look more closely at the practical question of adding or dropping choices by
an applicant. Since it is difficult for a student to know how other students would alter
their choices, it is simplest and reasonable to consider the situation when all other

applicants have their lists fixed.
For a student rx who does not get assigned, i. e. does not appear in T*, of course

adding or dropping choices can never hurt and adding choices might help. Dropping
choices cannot help because a same T* would still emerge. The interesting problem is
when rx does appear in T*.

Suppose that in T*, rx has Al as first choice and Bl as last choice. Generally, rx lists
more choices in T so that Al and Bl need not be his first and last choices in T. Also it is
difficult for rx to predict what his first and last choices are in T*. Suppose that initially rx's
first choice and last choice are A and B in T. Theorem 10. If rx appears in T*, then listing
more choices initially below his last choice in T cannot help; but it can hurt under the
hospital optimal assignment, and it cannot hurt under the student optimal assignment.

For definiteness, let U be the same as T except for containing also for a student rx
additional choices C, ... , D after his last choice B in T.

Suppose we apply I and II to T and U in all possible ways except that I is not applied
to rx. When we have done this, we can observe several things about the results T' and U'.
Let E be the hospital such that rx appears on D(E) in T*. Then rx cannot appear on D(El)
in T' or U' for any hospital E' which rx prefers over E. This is true for T' because
otherwise the closure under I (and II which is no longer applicable) obtained from T'
would be different from T*. This is also true for U' because the additional choices, which
are certainly not rx's first choice, can make no difference to II, and can at most occupy
desired places to push other applicants to desired places on rx's higher choices. Iterated
applications of I to U' will preserve this property because otherwise rx would also make a
higher desired list in the closure of T' which is the same as T* by Theorem 8.

The additional lower choices can hurt because it can happen that they will prevent
another applicant f3 from making the desired list of a hospital which f3 prefers over E but
is lower on rx's list. On the other hand, if one uses the student optimal assignment, no
difference is made because rx's first choice in U* and T* remains the same.

This can be illustrated by a simple example in which A and B each have a quota of 1.

Example 1. T rx f3 A B U rx f3 A B
A B f3 rx A B f3 rx

A rx f3 B A rx f3

Clearly, we have U* = U and T* is:

rx f3 A B

A B rx f3

Hence, under T, IJ(gets his first choice (in any stable assignment); under U, the student

Ranked Matching and Hospital Interns 283

optimal assignment is again aA, pB;-while the hospital optimal assignment is PA, aB.
A more general result is:

4.5. Suppose a appears in U* and a has Al as first choice, Bl as last choice in U*. Let T
be obtained from U by revising a's original list to contain only Al . Then a will still
appear in T* and will be sent to A 1 under every stable assignment.

Consider UII first. Since we only apply Operation II to U, none of the choices by rt.
below Al comes into play. Therefore, UII and Til contain the same students. By 4.4, U*
and T* contain the same students. Hence, rt. still appears in T*. Since a has Alas the only
choice now, he is sent to Al under any stable assignment.

This is surprising because in U*, a occurs on the desired list of Bl only. It seems
possible that somebody not appearing in U* might now make D(Bl) in T* (now that Bl
is no longer a choice of a) and drive a out of T* altogether. In fact, 4.5 shows that such a
situation cannot arise, and a is no D(Ad in T*. Here we have another result which is
hard to see directly.

We note that, in general, a's original choices in U may have been A, ... , B among
whichAl, ... , Bl all appear in the same order. Let Vbeobtained from Ubymodifying a's
original list to contain just AI. ... , Bl in that order. Then U* = V*. Hence, if we
compare V with T, we obtain an alternative proof of Theorem 10 which also implies that
deleting lower choices by a can help and cannot burt provided a does make V*.
Theorem 11. Adding unattainable choices by a student can help and cannot hurt.

There remains to consider the question of adding 'unattainable' choices. Of course,
this may possibly help because an 'unattainable' hospital may really be eager to get the
student. The harder question is rather whether this might hurt in certain cases. Suppose
a lists B as first choice but he prefers A to B. A is not listed because it is thought to be
hopeless. Suppose T is the table in which a lists B as first choice and U is the table in
which a adds A above B. If a is on D(A), of course a is helped. Otherwise, we are only
interested in the case that a makes T*.

Since a makes T*, it occurs in some D(C) in T*. Assume all possible applications of
II are made to U. If a does not make L(A), the listing of A is idle. The presence of A could
possibly hurt only if a remains on L(A) but fails to make D(A). In that case, some P
might be driven off L(A). Since P could not have made D(A) anyway, P occupies a
desired place in some other hospital even in T*. Apply I to U I I to get U*. It is seen that if
a belongs to D(C) in T*, it also belongs to D(C) in U* since nobody has taken his place as
a result of his adding A. Similarly if a adds several choices above his original first choice,
he still would not get hurt. Observe that if a makes L(A), he will get into A under the
student optimal assignment.

Generally the result oflisting more choices can have different results in an irregular
way.

Consider the following collection T of tables with A, B, C each having a quota of 1.

Example 2. a PyA B C
CAB a a y
A
B

c f3 y

284 Computation, Logic, Philosophy

When we close under Operation I, B is deleted from L(IX), IX is deleted from L(B), and
then y is deleted from L(C). Hence, the only stable assignment is:

A

f3
B
y

C

If IX has omitted A, B from his initial list, we would have IX again getting his first choice.
On the other hand, if IX has omitted just A, we would have two stable assignments:

ABC A B C
and

f3 IX Y f3 Y IX
The first is the hospital optimal assignment, under which IX fails to get his first

choice C.
Notice also that even though the pair {IX, A} does not occur in any stable

assignment of T, deleting it creates an additional stable assignment.

13.5 Mixed assignments and a characterization of all stable assignments.

With the hospital intern problem, many of us would be inclined to favor the
student optimal assignment as judicial on the ground that a student can be accepted by
only one hospital while a hospital generally accepts more than one intern. When it comes
to the marriage problem, the question of a judicial matching becomes more acute since it
seems quite arbitrary either to favor the men or to favor the women. The question of
finding assignments that would be the best possible (maximal though not maximum) for
both sides is rather intricate. We consider first a characterization of all stable solutions
which suggests a number of mixed (stable) assignments as candidates for the best
possible assignments.

Consider a collection T of lists from students and hospitals given. We apply the *
operation (that is to say, the result of making all possible applications of Operations I
and II) to T to get the equivalent collection T*. We work with T*. We recall that under
T*, every student appears on exactly one hospital's desired list D(A), and every hospital
A has a quota number of students on L(A) with A as first choice. A terminal segment of a
student's list is either empty or any unbroken part of the list including the last hospital
on it but excluding the first hospital on it. Similarly a terminal segment of a hospital list
L(A) is either empty or any unbroken part including the last name on it but excluding
D(A).
Theorem 12. All and only stable assignments in T* are obtained by any sequence of
applications of the following two operations:
(i) Delete a terminal segment from each student's list and close under Operation I; (use

the hospital optimal assignment for the concluding step).
(ii) Delete a terminal segment from each hospital list and close under Operation II; (use

the student optimal assignment for the concluding step).
In fact, each stable assignment in T* can be obtained by a single application of (i);

Ranked Matching and Hospital Interns 285

and similarly with (ii).
Proof. Let <P be a stable assignment in T*. Each pair of student and hospital under

<P must occur in T*. Since every student lI. i~ paired with only one hospital A which of
course appears on L(lI.) in T*, apply (i) by deleting from each L(lI.) all hospitals below his
A. Since no student has deleted his first choice, the collection T' of revised lists remains
closed under II. Use now the hospital optimal assignment in T' of revised lists remains
closed under II. Use now the hospital optimal assignment in T', and we have got <p, since

every student gets his last choice in T' which is, by construction, the hospital assigned to

him under ¢.
Alternatively, given <p, we can apply (ii) by deleting every student from each

hospital list L(A) who is not accepted by A under <p and does not precede any student on
L(A) accepted by A under <p. The student optimal assignment in the collection of revised
lists is <p.

Hence, all stable assignments in T* are obtainable by (i) and by (ii).
For the other direction, we prove that given any T with stable assignments, the

result T' of applying (i) or (ii) has stable assignments and that they are all stable
assignments in T. It will then follow that any sequence of applications of (i) and (ii)
yields only stable assignments in T*.

Consider first T' obtained from T by a single application of Operation (i). Take the
hospital optimal assignment in T', i.e., assign to each hospital the students on D(A) in
T'. The result is a stable assignment. Suppose otherwise so that lI. and f3 are assigned to A
and B, but lI. prefers B to A, B prefers lI. to f3. This is impossible since f3 is on D(B) but lI. is
not on D(B). Hence, T' has some stable assignment. Moreover, any stable assignment <p
in T' remains stable in T since T' results from T by the deletion of terminal segments
and restoring them would not add any hospital A to a student a's list such that a prefers
A to the hospital he is assigned to under <p. In other words, nothing new in T appears to
upset <p which is, by hypothesis, not upsettable in T'.

Similarly, if T' is obtained from T by a single application of (ii), no new stable
assignments are generated and we can take the student optimal assignment in T' and
prove it stable.

The proof above clearly suggests different ways of generating mixed stable
assignments. For example, we could take T* and delete from each student's list all but
his first three choices, close under Operation I, and then use the hospital optimal
assignment relative to the collection of revised lists.

A natural question to ask is whether generally we can further reduce T* to get a
subtable of it which has exactly the same stable assignments as T*. Let a pair {lI., A} be
stable for T or T* if it appears in some stable assignments. A more definite question is:
for any T (or just any T closed under I and II), is the subtable S consisting of all stable
pairs equivalent to T (S - T)?

Consider the following table T which is closed under I and II, with A, B, C each
having quota 1:

286 Computation, Logic, Philosophy

Example 3. a 13 y A B C
A C B y 13 CI.

B -A A -13 a 13
C B a y

The stable assignments are: aA, f3C, yB; aC, f3B, yA; aB, f3C, yA. For T, {f3, A} is the
only unstable pair. Let S be the result obtained from T by deleting {f3, A}. Then S ~ T
and S is stable in the sense that all pairs in it are stable.

13.5.1 Given any table T and an unstable pair { a, A}, let S be the result obtained
from T by deleting {a, A}. Then every stable assignment of T is one of S.

Proof. Let <I> be a stable assignment of T. If it is not stable in S, then there are 13, y,
B, C such that f3B, yC but 13 prefers C to Band B prefers 13 to y. But the pairs {f3, B}, {f3,
C}, {y, B} all appear in Tin the same order, the situation would also make <I> unstable in
T.

13.5.2 A pair {a, A} is unstable in T* if and only if {a, A} is deleted after we delete
all pairs {a, B} with B below A on L(a) and close under Operation I.

Proof. If {a, A} is not deleted, then it must be stable because we can use the
hospital optimal assignment as in Theorem 12 under which a is assigned to A. On the
other had, if {a, A} is stable, let a be assigned to A under <1>. Obtain <I> by applying (i) as
in Theorem 12. Since {a, A} is retained in thus applying (i), it is also retained when we
merely delete as in 13.5.2. Hence, {a, A} is not deleted.

Consider the following table T closed under I, II with A, B, C, D each having the
quota 1:

Example 4. a 13 y b A
B A C D a
A B A B y

D C 13

B
13
b
a

C
b

Y

D
y
b

This has three stable assignments: aA, f3B, bC, yD; f3A, aB, yC, bD; aA, f3B, yC, bD. The
unstable pairs are {y, A} and { b. B}. Let S be the result obtained by deleting them from
T:

a
B
A

13 y b ABC
A C D a 13 b
B D C 13 a y

D
y
b

In addition to the three stable assignments for T, we have in S also; f3A, aB, bC, yD. This
is not stable in T because A prefers y to 13, and y prefers A to D.

Hence, we have an example of a table T whose stable subtable is not equivalent to it.

13.6 The marriage problem

The special case of the marriage problem contains many of the essential features of

Ranked Matching and Hospital Interns 287

the more general problem but is more symmetrical. It is customary to make simplifying
assumptions such as there being an equal number of men and women with everybody
ranking everyone of the opposite sex. We shall begin with a more general situation and
some applications of our general results to the marriage problem.

Assume given m men IX, p, .. and k women A, B, ... each with a nonempty ranking
list of some members of the opposite sex. Delete from every list L(a) everybody whose
list does not include a. Clearly anybody not appearing on anyone's list can just as well
have his or her list deleted. Let the given collection of lists be T.

We now apply Operations I and II to get T*. The situation is more symmetrical
than the matching of students with hospitals, so that the two operations are merged into
one. Let a be a male or a female, if a is the first choice of somebody bon L(a), delete all
names below b on L(a) and delete a from their lists. This includes I (for males) and II(for
females). T* is obtained after all possible applications of! and II are made in any order.

In T*, everybody a who remains (i.e. occurs on any list at all) appears as first choice
on exactly one list and has his or her list L(a) containing exactly one name (the last one)
whose first choice is a. In particular, unless a person becomes the first choice of
somebody after all possible applications of I and II, he or she is eliminated. It follows
also that in T* the remaining men and women are equal in number, say n.

It is immediately clear that situations can arise where we have no unique best
matching. Take, for example, two couples making opposite choices:

Example 5. A

p

B
P

IX

B
A

P
A
B

The only two possible solutions are equally good or equally bad. If we match A with IX

(and therefore B with P), thewomen get their first choices; if we match A with p, the men
get their first choices.

In fact, this adverse pattern could occur with any number of couples. The case of
three couples is sufficient to illustrate this fact:

Example 6. A

P
'Y

B
P
'Y
IX

C
'Y
IX

P

IX

B
C
A

p
C
A
B

'Y
A
B
C

Of course these examples apply also to the matching of hospitals and students, since
they are just the special case when each hospital has a quota of l.

An attractive mixed stable matching procedure is suggested by Theorem 12,
beginning with T* closed under I and II. For example, delete the last choices (unless it is
also the first choice) from the women's lists and close under I and II. Next delete the last
choices from the men's lists and close under I and II. The two steps are repeated until
everybody has only his or her (revised) first choice left. Then, by Theorem 12, we get a

288 Computation, Logic, Philosophy

stable matching.
Given T* with n couples remaining, there is a natural idea of decomposing these

couples into "clubs". A club is any k--club for some k, 1 ::::;; k ::::;; n, and a k--club is a
collection ofk couples such that each person has his or her first k choices lying in this
collection. For example, a l--club is simply a couple who have each other as first choice.
In that case, it is obvious that we can match them off and leave them out of further
considerations. More generally, we have:
Lemma. Given T*, if there is any k--club, 1 < k < n, we can consider the k couples in
the k--club separately from the other n-k couples without losing any stable assignments.

Proof. If anybody a in a k--club is matched with somebody b outside the k--club, we
get an unstable assignment. If a is thus matched, there must be a c of opposite sex in the
k--club matched with some d outside the k--club. But a prefers c to band c prefers a to d.
Hence, the assignment was unstable.

Therefore, we can confine our attention to the case where we have n couples and we
do not have any k--clubs, 1 ::::;; k < n. This is indeed the most general case and of course
the n couples form an n--club.

We consider tentatively a way of matching couples according to what seems to be a
natural measure of preference. The measure does not directly apply to the student
hospital situation.

For any man a and any woman A in T*, there is a pair of numbers (p (a), q,.(A»,
briefly m(a, A), wherep (a) is a's place on L(A) and q,.(A) is A's place on 1(0, with 1 for
first choice, 2 for secon~ choice, etc. Thus with n couples, we have at most n2 pairs of
numbers (p, q) with 1 ::::;; p ::::;; n, 1 ::::;; q::::;; n. We define a partial ordering of these pairs:

(p, q) < (pi, q') iff p + q < pi + q', or p + q = pi + q' but Ip - ql < Ip' - q'l, or
p + q = pi + q' and Ip - ql = Ip' - ql but p < p'.

The idea is that the mutual preference of A and a can be measured firstly by p (a)
A + q,.(A), the minimum being 2 when each has the other as first choice, and that, for the

same numerical sum, it is more satisfactory when the preferences for each other are not
too different. The last alternative is arbitrary in putting more weight on p than on q. It is
difficult to give any definite justification for the choice of such a measure.

When this idea is applied to Example 6, it is seen that, for all the nine pairs, p + q
= 4, and that the three pairs with (2, 2) are the lowest in the above partial ordering.

The procedure proposed is the follo-wing. Given a collection T of lists, apply I and
II to get T*, with say, n couples remaining. Decompose them into clubs if possible. And
consider each club T* separately.

Consider first the minimal pairs according to the order defined. Let M(a, A) be a
minimal pair. Then it is not possible that either m(a, B) or m(fJ, A) is also minimal for
some B or fJ. This is important because otherwise we do not know whether to match a
with A or B, to match A with a or fJ.

Proof. Since m(a, A) is minimal and p,.(A) of- p,.(B), m(a, B) cannot be minimal.
Similarly m(fJ, A) cannot be minimal because q (fJ) of- q (a).

The procedure begins by matching up A with IX for ~very case where m(a, A) is
minimal. For example, in the perverse case with two couples, we have:

Ranked Matching and Hospital Interns

m(Ci, A) = (2, 1) = m(p, B),
m(ct, B) = (1, 2) = m(/3, A).

289

By definition, the last line gives the two minimal pairs, and the resulting match is B with
ct and A with /3. Because more weight is given to p, the preference of ct and /3, the men get
their first choices.

Mter the couples with minimal pairs are matched off, we read just T* by deleting
these persons and renumber the choices of the remaining couples in the obvious
manner. In the remaining and revised lists, we again match off those couples with
minimal paris. This process is continued until all couples are matched off.

It is not clear that this procedure indeed gives a 'maximal' or optimal solution in
each case. In fact, it is not even clear that it does give a stable assignment.

References

1. D. Gale and 1. S. Shapley, 'College Admissions and the stability of marriage', Am. math. monthly, vol. 69

(1962), pp. 9-15.

2. C. 1. Liu, Introduction to combinatorial mathematics, New York, 1968.

3. NIRMP. NIRMP directory including hospitals and programs participating in the matching program/or

1977 appointments, National Intern and Resident Matching Program, Evanston, Illinois, October,

1976.

PART FOUR

TOPICS FROM THEORY TO PRACTICE

14. LOGICAL FRAGMENTS RELEVANT TO
COMPTER SCIENCE*

14.1 Logic of many-sorted theories *

1. Introduction

Certain axiomatic systems involve more than one category of fundamental objects;
for example, points, lines, and planes in geometry; individuals, classes of individuals,
etc. in the theory of types or in predicate calculi of orders higher than one. It is natural to
use variables of different kinds with their ranges respectively restricted to different
categories of objects, and to assume as substructure the usual quantification theory (the
restricted predicate calculus) for each of the various kinds of variables together with the
usual theory of truth functions for the formulas of the system. An axiomatic theory set
up in this manner will be called many-sorted 1 • We shall refer to the theory of truth
functions and quantifiers in it as its (many-sorted) elementary logic2 , and call the
primitive symbols and axioms (including axiom schemata) the proper primitive
symbols and proper axioms of the system. Our purpose in this paper is to investigate the
many-sorted systems and their elementary logics.

Among the proper primitive symbols of a many-sorted3 system Tn (n=2, ... , w)
there may be included symbols of some or all of the following kinds: (1) predicates
denoting the properties and relations treated in the system; (2) functors denoting the
functions treated in the system; (3) constant names for certain objects of the system. We
may either take as primitive or define a predicate denoting the identity relation in Tn. In
any case, it is usually desirable to include in Tn the usual theory of identity for the
objects of the system. We shall assume that Tn contains the usual theory of identity4 as a
part. Then we know we can introduce descriptions by contextual definitions such as

* First published in Journal of Symbolic Logic. vol. 17, pp J05-116. ~ Association for Sym
bolic Logic, 1952. Reproduced by permission.

Received March 5, 1951.

1 A term introduced in [2] as a translation of the word mehrsortig used in [1]. I wish to thank Professor

Alonzo Church for first calling my attention to [1].

2 A (one-sorted) elementary logic is the usual complete theory of truth functions and quantifiers (e.g. as it is

formulated on p.88 of [3]) with its formulas as specified in a one-sorted axiomatic system.

3 n refers to the number of kinds of variables in the system. We assume that nmay be2, 3, 4, "', orw. T", will

be a theory with denumerably many kinds of variables.

4 That amounts to the law of reflexivity and the principle of substitutivity for the variables of the system.

293

294 Computation, Logic, Philosophy

- (ix)cpx - /or(3 y)((x) (x= y= cpx). - y -).
But we also know that once we have descriptions at hand, we can make use of additional
predicates to get rid of the primitive names5 and functors. 6 On this ground we shall
assume, for simplicity, that the systems Tn which we shall consider contain neither
names nor functors. In other words, we shall assume that the primitive symbols of Tn are
just the truth-functional connectives, the quantifiers, the brackets, and the predicates.

We can describe each theory Tn as follows. There is at least one predicate. There are
variables of different kinds: Xl. Y1. Z1. ... (variables ofthe first kind); xz, Yz, zz, ... ; ... ; Xn,

Yn, Zn, Each k-placed (k = 1, 2, ...) predicate with its places filled up by variables of the
proper kinds is a formula (an atomic formula); and if cp and if; are any formulas and rx is a
variable of any kind, then (rx)cp and cp 1 if; are formulas 7 • In general, for each place of a
predicate more than one kind of variable may be proper. However, to simplify our
considerations, we shall always assume that each place of every predicate is to be filled
up by one and only one kind of variable. Free and bound variables and occurrences will
be understood as having been defined in the usual manner. A statement is a formula
containing no free variables. A closure of a formula cp is a statement formed from cp by
prefixing distinct general quantifiers to all the free variables of cp in an arbitrary order.
We write 1- cp to mean that the closures of cp are theorems. Then a many-sorted
elementary 10gicLn is determined in the following manner. The formulas of Ln (cp, if;, cp',
etc.) are just those given above and the theorems of Ln are defined by the principles In-
5n:8

In. If cp is a truth-functional tautology, then 1- cp.
2n. 1- (rx) (cp:::>if;):::>((rx)cp:::>(rx)if;).
3n• If rx is not free in cp, then 1- cp:::> (rx)cp.
4n • If rx and rx' are variables of the same kind, and cp' is like cp except for containing

free occurrences of rx' whenever cp contains free occurrences of rx, then 1- (rx)cp:::> cp'.
5n• If cp :::> if; and cp are theorems of Ln, so is if;.

By adding certain proper axioms (or also axiom schemata) to Ln, we obtain a system Tn.
As an alternative way, we may also formulate a system involving several categories

of fundamental objects using merely one kind of variables which have the sum of all the
categories as their range of values. The simplest way to bring in the distinction of
categories is to introduce none-place predicates 51. 5z, "', 5n such that x belongs to the i
th category if and only if 5i(x). We can then set up a one-sorted theory T\n)

5 See [3], pp.149-152.

6 See [4], vol. 1, pp.46(}-462.

7 W" ,hall follow [3] in using Greek letters as syntactical variables for expressions. The letters cp, l/t, X and

their accented and subscripted variants will be used to refer to formulas, and the letters rt., /3, y, ii, and their

variants to variables (cf. [3], p.75). Indeed, in formulating the system Tn' we are following closely the pattern

set up in [3]. We shall omit the corners used in [3].

8 These principles answer to *100, *102-*105 of [3]. A principle answering to *101 can be dropped just as

in L,; see [3], p.89.

Logical Fragments Relevent to Computer Science 295

corresponding to Tn in the following manner. In Tt) the atomic formulas are determined
by the predicates of Tn plus 51, "', 5n with their places all filled up by general variables.
Formulas, etc. can be defined in Tt) in the usual way. And Tt) contains a usual one
sorted elementary logic LI determined bl five principles II-51 which are similar to
1n-5nbut are concerned with formulas and variables of Tt). Then we under-stand by
the elementary logic L\n) the system obtained from LI by adding the following additional
principle:

61 , For every i(i=1, "', n), (3 cx)5i(cx) is a theorem.

And we introduce a rule for translating between statements of Ln and those of L~):
RT. A statement q/ in L~) and a statement <p in Ln are translations of each other if

and only if <p' is the result obtained from <p by substituting simultaneously, for each
expression of the form (Xi) (- Xi-) in <p (i= 1, "', n), an expression of the form (x) (5i (x)
::J (- x-)) (with the understanding that differferent variables in <p are replaced by
different variables in <p').

Using this rule, we see that every statement of Ln has a translation in Lin), and some
(although not all) statements of Lin) have translations in Ln. In particular, the proper
axioms of Tn all have translations in Lin), and TIn) is just Lin) plus the translations of these
proper axioms of Tn.

The main purpose of this part is to investigate the relations between any Tn (or Ln)
and its corresponding TIn) (oor Lin»). By a comparative study of Ln and Lj, we shall also
indicate that many known metamathematical results about a usual elementary logic LI
have counterparts for Ln.

Preparatory to stating the results of this part, we first make a few historical
remarks. In [5J Herbrand states a theorem which amounts to the following (see [5J,
p.64):

(I) A statement of any system Tn is provable in Tn if and only if its translation in the
corresponding system Tt) is provable in TIn).

However, the proof he gives there is inadequate, failing to take into account that
there are certain reasonings which can be carried out in LIt) but not in Ln. In [1 J, Arnold
Schmidt points this out and devotes his paper to giving a careful proof of the theorem.
Then Langford puts forward in [2J (a review of [l J) the problem whether the following
is true in general:

(II) If a system Tn is consistent, then the corresponding system Tt) is also
consistent.

This, as Professor Bernays has communicated to us in conversation, can be
answered positively by the following argument. Obviously there exists a statement <p of
Tt) such that both <p and ~ <p are translatable into Tn. Assume that Tt) is inconsistent.
Then every statement in Tt) is provable, and therefore <p and ~ <p are both provable in
T~). Hence, by (I), their translations 0/ and ~ 0/ according to RT are both provable in
Tn, Hence, Tn is inconsistent.

In this part, we shall first indicate that in Ln we can easily prove counterparts of

9 Compare the preceding footnote. This time 'P, IjJ refer to formulas of T~, and C(, C(' to variables of T~.

296 Computation, Logic, Philosophy

theorems in Ll and that about Ln we can prove counterparts of the metamathematical
theorems of completeness, etc. about L 1 • We shall then show that from these the
theorem (I) (and therewith the theorem (II) follows. We shall also show that, conversely,
given (I) and the metamathematical theorems about L I , we can prove certain similar
theorems about Ln as corollaries. In passing, we may mention here that the following
converse of (II) is obviously true:

(III) If Tt) is consistent, then Tn is.
It would then seem that, merely for the purpose of proving (I), we could dispense

with Schmidt's rather involved arguments. However, Schmidt actually proves in his
paper the following more interesting theorem:

(IV) Given a statement of Tn and a proof for it in Tn, there is an effective way of
finding a proof in Tt) for its translation in Tin); and, conversely, given a statement of Tin)
which has a translation in Tn, and given a proof for it in Tt), there is an effective way of
finding a proof in Tn for its translation in Tn-

Although we can prove (I) by considering the completeness of LI and Ln, it does not
seem possible to prove (IV) similarly, for (IV) depends on syntactical considerations
about the proofs in L\n) and Ln. We shall, following a suggestion of Professor Bernays,
give a simpler alternative prooffor (IV) by application of Herbrand's theorem. (See [4J,
vo1.2, pp.149-163.)

From the results (I), (II), and (III), we see that for purposes of questions concerned
with the consistency of Tn, we may consider Tt) instead which is simpler in that it
contains only one kind of variables. However, Tt) is more complicated than Tn in that it
contains new predicates 51, 52, ... , 5n • We contend that in many cases, given a system Tn.
we can find a corresponding system which contains only one kind of variables and no
new predicates, and which can serve the same purposes both for the study of consistency
questions and for the development of theory. Whether we can find such a corresponding
system depends on whethere we can express membership in the different categories by
the following means: general variables (whose range of value is the sum of all the special
domains), the quantifiers and truth-functional connectives, the brackets, plus the
predicate letters of the given many-sorted theory reconstrued as having their argument
places filled up by general variables. It seems that in most cases we can. The simple
theory of types will afford an example of Tn for which we can give a corresponding theory
relatively consistent to it, with one kind of variable and no new predicates, and
essentially as rich. This example is of special interest if we want to compare the theory of
types with Zermelo's set theory.

2. The many-sorted elementary logics Ln

In this section we shall sketch how theorems in and about Ln can be proved in a
similar manner to theorems in and about L1•

We first observe that in Ln we can prove from In-5n all the usual quantificational
theorems of LI for each kind of variables. For example, we can prove in Ln all theorems
which fall under principles notationally the same as *110-*171 of [3J with nearly the

Logical Fragments Relevent to Computer Science 297

same proofs. 1 0

Thus11 we can define prenex normal form and Skolem normal form for Ln and
prove the laws of them for Ln just as for L1 • We can prove the deduction theorem and the
consistency theorem for Ln just as for L1 •

Likewise we can define valid and satisfiable formulas of Ln just as those of L1 :

2.1. A value assignment for a predicate or its corresponding atomic formula
f x~k11) ... x~~) of Ln over a set of n non-empty domains is a function from the predicate or
its corresponding atomic formula to a j-adic relation whose i-th place takes the
individuals of the ni-th domain.

2.2. A formula qJ of Ln with no free variables is valid in a particular set of n non
empty domains if all value assignments for all the atomic formulas occurring in qJ are
such that, under the normal interpretation of the truth-functional connectives and
quantifiers, qJ becomes true. qJ is valid if it is valid in all sets of n non-empty domains.

2.3. qJ is satisfiable in a particular set of n non-empty domains if ~ qJ is not valid in
it. qJ is satisfiable if it is satisfiable in some set of n non-empty domains.

With these definitions we can prove the following theorems 12 for Ln just as for L1 •

2.4. If 1- qJ in Ln, then the closure of qJ is valid.
2.5. If the closure of qJ is valid in a set of n denumerable domains, then 1- qJ in Ln.
2.6. If the closure of qJ is valid, then 1- qJ in Lno
2.7. If qJ 1l qJ2, ••• are statements of Ln and the system Tn obtained from Ln by adding

qJ 1l qJ2, ..• as proper axioms is consistent, then qJh qJ2, ••. are simultaneously satisfiable in
a set of n denumerable domains.

We merely outline a proof for the following theorem 2.8 from which 2.5 follows
immediately.

2.8. If the statement ~ qJ is not provable in Ln , then qJ is satisfiable in a set of n

denumerable domains.
Suppose that the variables of the p-thkind (p= 1, "', n) inLn arev~l), V~2), .•• and qJ is

the statement (V(k1») ... (V(kt») (3 dh») ... (:3 v(js»)'/'(V(k 1) .,. dkt). dh) ... v(js»). Let ,I,. (i
n1 nt ml ms tp n 1 ' , nt ' m 1 , , ms If'l

= 1 2 ...) be ,I, (V,(i,1) ... V,(i,t). V"(i,1) ... v"(i,S») where (T(i 1) ... T(i t) is the i-th term of
" If' n 1 ' , nt ' m 1 ' ,ms ' , , , ,

10 In 4n and theorems answering to cases of *134 of [3] which are concerned with the relation between free

and bound variables, we need the condition that the variables are of the same kind.

As we come to the proofs, the only places where we need take somewhat seriously into consideration the

different kinds of variables are in the proofs of the generalized modus ponens answering to *111 of [3] and the

principles of generalization answering to * 112 of [3]. But in both cases, proofs for these principles in Ln are

easily obtainable by slightly changing the proofs of *111 and *112 in [3]. In particular, in Ln we can prove

I ~ (IX)(II) cp =' (II)(IX) cp, no matter whether IX, II are of the same kind or not.

11 Cf. [6J, pp.59-61, pp.68-~72, pp.45-46, pp.42---44.

12 The proof for 2.4 is easy and 2.6 follows from 2.5 as an immediate corollary. 2.7 can be proved by using

arguments resembling those for 2.5. (Compare the proof of its counterpart for LIon pp.357-359 of [7].) The

prooffor 2.5 sketched below resembles that for the completeness of Ll (cf.[6], pp.73-79) except for certain

minor complications in connection with the ordering of variables and the assignment of truth values to atomic

formulas.

298 Computation, Logic, Philosophy

the sequence of all the t-tuples of positive integers ordered according to the sum of the t
integers and, for those with the same sum, lexicographically; and the sequence of the s
tuples (O"(i, 1), ... , 0"(i, s» (i = 1, 2, ...) is such that, if among mb ... , m" m'l is identical
with mr2, ... , mrq and with no others, then 0"(1, r 1), ... , 0"(1, rq), 0"(2, r 1), ... , 0"(2, rq), 0"(3, r 1),
... coincide with 1, ... , q, (q+ 1), ... , 2q, (2q+ 1),

In order to prove 2.8, we observe first that we can prove just as in the case of Ll the
following two propositions.

2.8.1. If ~ <p is not provable in Ln , then none of ~ t/J b ~ t/J 1 V ~ t/J 2, ... is a
tautology.

2.8.2. If none of ~ t/J 1> ~ t/J 1 V ~ t/J 2, ... is a tautology, then t/J b t/J 2, ... are
simultaneously satisfiable.

Therefore, by correlating each variable vjk) in t/J 1, t/J 2, ... with the j-th power of the
k-th prime number, we can, similarly as in the case of L 1 , provide a true interpretation
for <p in the set of the domains D1 , D2 , ••• such that Dj is the set of the j-th powers of all
the prime numbers. Hence, 2.8 and 2.5 can be proved.

We note in passing that we can also avoid the complications regarding the
definitions of t/J 1, t/J 2, •.. and prove 2.8 more simply by treating, for any i, j, k, V\k) and vjk)

as the same in our considerations. Then we can use almost completely the arguments for
Ll to give a true interpretation for <p in a set of n identical domains, each being the set of
positive integers.

Since in many cases we want the different categories (e.g., points, lines, and planes,
etc.) to be mutually exclusive, we might think that in such cases there should be no
satisfying assignments with all the domains identical. However, the possibility just
indicated shows that this is not the case. Indeed, it becomes clear that there is no means
to express in Ln explicitly the requirement that the domains of any satisfying assignment
for <p must be different. Such a requirement is merely one of the implicitly understood
conditions which we want a normal interpretation of the theory to fulfill. But there is
nothing in the definitions of the satisfying assignments of values to preclude cases where
such informal conditions are not fulfilled. In a one-sorted theory we can add axioms such
as ~ (::3 x) (Si(X). Six» to make the demand explicit (compare Langford [2J), because
in the value assignments we insist that the truth-functional and quantificational
operators retain their normal interpretations.

3. The theorem (1) and the completeness of Ln

From the completeness of Ln , we can derive the theorem (I) stated in section l.
Let us consider a statement q; in Tn and its translation <p' in 1\n). Suppose that the

variables in <p are all among the ml-th, ... , and the mk-th kinds. If A is a value assignment
for ~ <p in a set D of domains, then there is an associated assignment A' for ~ <p' in the
sum If of all the domains of the set D, such that (::3 x) Sml (::3 x) Smk (x) receives the
value truth and that all the other predicate letters in ~ <p' receive, for those entities of If
which belong to the proper domains of D, the same values as within A and, for all the
other entities of If, receive (say) the value falsehood. Conversely, given an assignment

Logical Fragments Relevent to Computer Science 299

A' for ~ q/ in a domain IY such that (::3 X)Sml (x) (::3 x) Smk(X) receives the value
truth, there is an associated A for ~ <p such that the mi-th (i = 1, "', k) domain consists of
the things x such that Smi(X} receives the value truth in A' and all the predicate letters of
~ <p receive the same values as in A'. Obviously in either case, A satisfies ~ <p if and only
if A' satisfies ~ <p'. Hence, we have: ~ <p is satisfiable if and only if (::3 x) Sml(X),
(::3 x) Smk(X), ~ <p' is. Therefore, we have:

3.1. <p is valid if and only if (::3 x) Sm 1 (X) (::3 x) Smk(X), ~ <p' is.
Therefore, we can prove:
3.2. <p is provable in Ln if and only if <p' is provable in L\n).
Proof If <p is provable inLn, then, by 2.4, it is valid. Hence, by 3.1, (::3 X)Sml(X),

(::3 x) Smk(X}, ::J <p' is valid and therefore, by the completeness of L1 , provable in L1 •

Hence, by 610 <p' is provable in L~n).
Conversely, if <p' is provable in L~n), we can assume that all the (finitely many) cases

of61 used in the proof for <p' in L\n) are among (::3 X)Sml(X), "', (::3 X)Smk(X), for we can
so choose mb ''', mk' Therefore, by the deduction theorem for Lb (::3 X)Sml(X) ... ·.
(::3 X)Smk(X), ~ <p' is provable in Ll and therefore valid. Hence, by 3.1, <p is valid and,
by 2.6, provable in Ln'

From 3.2, the theorem (I) follows immediately by the deduction theorems for Ll
and Ln. Conversely, given (I) we can also derive 3.2. Moreover, as noted in section 1, the
theorem (II) stated there is a corollary of (I). Now we prove that 2.6 and 2.7 can be
inferred, with the help of (I), from their corresponding theorems for L 1 •

Proofof2.6. If <p is valid, then by 3.1, (::3 X)Sm1(X) ... ·. (::3 X)Smk(X), ~ <p' is valid
and therefore, by the completeness of Lb provable in Ll • Hence, by 61. <p' is provable in
Lin). Hence, by 3.2, <p is provable in Ln'

Proof2.7, Assume that the system Tn obtained from Ln by adding the statements
<PI. <P2, ... of Ln as proper axioms is consistent. By (II), the system 1\n) corresponding to
Tn is consistent. Hence, by the theorem for Ll corresponding to the theorem 2.7 for Lm
all the axioms of V;) are simultaneously satisfiable in a denumerable domain. But the
axioms of Vt) are just those of Lb the axioms (::3 X)Sl(X),"', (::3 x)Sn(x), and the
translations <Pb <p~,'" of <Pb <Pz, Hence we can divide the domain into n domains such
that the i-th domain consists of all the individuals x such that Si(X) is true. In this way, we
obtain a set of n non-empty domains each either finite or denumerable in which both <p l'

<P2, ... and the axioms of Ln are satisfiable (compare the arguments in the proof of 3.1).
Consequently, we can find a set of n denumerable domains in which Tn is satisfiable.
And the proof of 2.7 is completed.

4. Proof of the theorem (IV)

We may break up the theorem (IV) into two parts.
4.1. There is an effective process by which, given any proof in Tn for a statement <p

of Tn, we can find a proof in Tt) for the translation <p' of <p in Tt).
4.2. There is an effective process by which, given any proof in Vt) for a statement <p'

of V1n) which has a translation <p in Tn, we can find a proof in Tn for r.

300 Computation, Logic, Philosophy

First, we prove 4.1. In the proof of qJ, we employ only a finite number of the proper
axioms of Tn. Let the con junction of these axioms be <1>. By the deduction theorem, we
have an effective process by which, given the proof of qJ in Tn, we can find a proof of <I>
::::> cp in Ln. And if its translation <1>' ::::> q/ has a proof in Llnl, then we have immediately a
proof in Ttl for qJ' by modus ponens and the proper axioms of TInl, because <1>' is the
translation of the conjunction of certain proper axioms of Tn. Hence, we need only prove
that there is an effective process by which, given a proof in Ln for a formula IjJ of Tn, we
cna find a proof in L\nl for its translation 1jJ' in L<r'l.

By arguments like those used in proving *100', *lO2' -*105' in [8J, we can prove
as metatheorems in L\nl the translations of In -5n for each kind of variables in L\nl. Since
in each proof of Lm we use only a finite number of special cases of In-5n, given any proof
in Ln for a formula IjJ of Lm we have a proof for its translation 1jJ' in Llnl which consists of
the proofs of the translations in L<r'l of these special cases together with a translation in
Llnl of the proof for IjJ in Ln. Hence, 4.1 is proved.

The proof of 4.2 is more complex. We note that it is sufficient to prove the
following theorem.

4.3. There is an effective process by which, given any proof in Llnl for a statement X'
of Ttl which has a translation X in Tn, we can find a proof in Ln for X.

Thus, let qJ' be a statement of TInl with a proof in L<r'l, then, by the deduction
theorem for Lb we have a proof for <1>' ::::> q/ in Llnl, <1>' being the conjunction of the
proper axioms of Ttl used in the given proof of qJ'. Hence, by 4.3, we have a proof in Ln
for the translation <I> ::::> qJ of <1>' ::::> qJ' in Ln, and thereby also a proof for qJ in Tn.

Consequently, given 4.3, we can prove 4.2. We shall prove 4.3.
By hypothesis, a proof /1' in L\nl is given for a statement X' of Ttl which has a

translation X in Tn. Our problem is to find a proof /1 in Ln for the translation X of X' in Tn.
In what follows, we shall assume that X' has been given in such a form that its translation
X is in the prenex normal form. Accordingly, since for each variable a and each formula
IjJ of Ttl we can substitute (::3 a)(S;(a).IjJ) for ~ (a)(Si(a)::::> ~ 1jJ), each quantification in
X' is either of the form (Ci) (Si(!l!) ~ qJ) or of the form (::3 f3)(SAf3). <1>'), where!l! ared f3 are
variables in Ttl, qJ and qJ' are formulas in Tlnl , and i and j are among 1, "', n. Moreover,
every formula Si(a) occurs, if at all in X', in one and only one context either of the form
(a)(Si(a) ~ qJ) or ofthe form (::3 a) (Si(a).qJ); and every variable a occurs, if at all in x', in
one unique part either of the form (a)(Si(a) ~ qJ) or of the form (::3 a)(S;(a).qJ). Such an
assumption as to the form of X' does not restrict our result in any way, because we know
that each statement of Ttl which has a translation in Tn can be converted into such a
form by procedures analogous to those for transforming a statement into the prenex
normal form.

Therefore, if we associate each occurrence of a variable a with the number i when
there is a formula (a) (Si(a) ~ qJ) or a formula (::3 !l!) (S;(a).qJ) occurring in x', we see that
each occurrence of a variable in X' is associated with a unique number, and two
occurrences of the same variable in X' always have the same number.

Consider now the formula X 1 obtained from x' by dropping all parts of the forms
Si(a) ~ and Si(!l!)., or, in other words, by replacing each quantification of the form

Logical Fragments Relevent to Computer Science 301

(IX) (Si(IX)=> </J) by (IX)</J, and each quantification of the form (3 IX)(S(IX).</J) by (3 IX) </J.
We see that X 1 no longer contains occurrences of atomic formulas of the form Si (IX), and
that X 1 is like the translation X of x' in Tn except for containing occurrences of variables
(say) x, y, ... , z which are associated with the numbers i,j;··,k where X contains
occurrences of Xi, Yj, ... , Zk. Moreover, X 1 is also in the prenex normal form. From now on
we understand that each occurrence of any variable in X 1 is associated with the unmber

which was given to its corresponding occurrence in X'.
Let us say that an occurrence of a variable (in a proof of Lt) is associated with the

proper number if its number is exactly the number for the kind of variable which is to fill
up the place in question of the predicate of Tn that occurs with the variable. For example,
an occurrence of IX in a context PIX/J.·'Y is said to be associated with the proper number, if
IX is associated with i and the first argument place of P is to be filled up by the i-th kind of
variable in Tn- From this definition and the way numbers are associated with variable
occurrences, we have, since X' has a translation in Tn, the next theorem.

X1·

4.4. Each occurrence in X 1 of any variable is associated with the proper number.
We prove another theorem.
4.5. Given the proof .il' in Lin) for x', we can actually write out a proof .il 1 in L1 for

Proof In.il' each line is either a case of 11--41 or 61, or a consequence by 51 of two
previous lines. Let us replace throughout .il' all occurrences of all formulas of the form
Si(lX) by those offormulas of the form Si(lX) V ~ SJIX). Then, in the result .il", each line
which was a case of61 becomes an easy consequence of 11-51. If we add the easily
obtainable proofs for these cases of 61 at the top of .il", tnen we obtain a proof in L1 for a
conclusion x" which is like X' except for containing occurrences of formulas of the form
Si(lX) V ~ Si(lX) instead of those of the form Si(IX). But, it is then easy to see that from a
proof for x" in LI> we can obtain a proof in L1 for X1 by 11 and the principle of the
substitutivity of biconditionals. Hence, we obtain a proof .il1 in L1 for X 1.

Now let us apply Herbrand's theorem (see [4J, vo1.2, pp. 149--163, especially p.
158; cf. also bottom of p. 135) which for our purpose can be stated thus:

HT. There is an effective method which, for any given proof of L1 for a statement t/J
in prenex normal form, yields a new proof II for t/J (t/J being therefore the last line of II)
whose first line is a truth-functional tautology and each of whose other lines is obtained
from its immediate predecessor by applying one of the following three rules: (1) Given a
formula of L1 which has the form of an alternation (disjunction), we can replace an
alternation clause </Jf3 by(3 IX)</JIX where IX is an arbitrary variable; (2) Given a formula of
L1 which has the form of an alternation, we can replace an alternation clause </Jf3 by (IX)</JIX
where f3 is a variable not free in any other parts of the formula; (3) Given a formula of L1
which has the form of an alternation, we can omit repetitions of an alternation clause.

It is easy to convince ourselves that the proof II for t/J as specified in HT is again a
proof in L1 or, more exactly, that from II (as given) we can easily construct a proof of L1
with t/J as the last line. Let us refer to proofs for an arbitrary statement t/J which are of the
kind as described in HT, as proofs of L1 in the Herbrand normal form. Then the content
of HT says simply that every proof of L1 for a statement in the prenex normal form can

302 Computation, Logic, Philosophy

be transformed into one in the Herbrand normal form.
By 4.5 and HT, since Xl is in the prenex normal form, we can actually find a proof II

of Ll for X 1 in the Herbrand normal form. Suppose given such a proof II. Our problem is
to construct from II a proof Ll of Ln with X as its last line.

As was mentioned above, each occurrence in X 1 of any variable is associated with a
definite number, which is, more over, according to 4.4, the proper number. Using these
correlations, we can now associate every occurrence in II of any variable with a definite
number in the following manner.

4.6. If the occurrence is in a line cp which is followed by a line cp', then it is associated
with the same number as the corresponding occurrence of the same variable in cp' except
for the following special cases:

4.6.1. If cp' is obtained from cp by substituting (rt.)t/Jrt. for an alternation clause t/Jp
and the occurrence in cp is one of the variable p in the clause t/J p, then it is associated with
the same number as the corresponding occurrence of the variable rt. in the part t/Jrt. of cp'.

4.6.2. Similarly for the case with a particular quantification (::3 rt.)t/Jrt. in cp'.
4.6.3. If cp' is obtained from cp by omitting repetitions of an alternation clause cp 1

and the occurrence in cp is in some occurrence of cp l, then it is associated with the
samenumber as the corresponding occurrence in the alternation clause CPl of cp'.

Let us replace every occurrence in II of a variable associated with the number i by
an occurrence of a corresponding variable of the i-th kind in Tn (for instance, if an
occurrence of x is associated with i in II, replace it by an occurrence of Xi) and refer to
the result as Ll2 • We easily see that the last line of Ll2 is exactly X, the translation of X' in
Tn. Moreover, each line of Ll2 is a formula of Tn which is either a truth-functional
tautology or follows from its immediately preceding line by a quantificationaHy valid
rule of inference (a rule of inference derivable in Ln). Therefore, from Ll2 we can easily
construct a proof Ll of Ln for the conclusion X.

This completes the proof of 4.3. Therefore, 4.2 and theorem (IV) (using 4.1) are all
proved.

5. The simple theory of types

We consider the system P which COdel uses in [9J.
Roughly, P contains as primitives the truth-functional operators, the quantifiers,

the membership predicate E, the symbol 0 for zero, the symbol ffor the successor
function, and infinitely many kinds of variables: Xl. Yl, ... ; X2. Y2, ... ; ..•• The predicate E

occurs only in contexts of the form Xn E Yn+ 10 etc. (n= 1, 2, "'). The axioms and rules of
inference of P may be stated as follows (xn = Yn standing for
(Zn+l) (XnEZn+l =YnEZn+l))'

A. The principles 1", - 5", of elementary logic for the infinitely many kinds of
variables.

B. Axioms for the individuals.
1. f- - fXl = O.
2. f- fXl = fYl => Xl = Yl'

3. f-OEX2'(Xl) (Xl EX2 =>fXlEX2)' => YlEX2'

Logical Fragments Relevent to Computer Science 303

C. Principles of extensionality (n= 1, 2, ...).

f- (Zn) (zn E Xn + 1 == Zn E Yn + 1) ::::> Xn + 1 = Yn + 1·

D. Principles of class existence. Let <p be any formula in which Yn + 1 is not free, then
f- (3 Yn+ 1) (Xn)(Xn E Yn+ 1 == <p) (n= 1,2;··).

We want to show that if P is consistent, then the following system Q is also
consistent. Q contains merely one kind of variable x, y, z, In Q we can introduce
different kinds of variables corresponding to those of P:

x= y for (Z) (XEZ == yEZ).
t1(x) for x=OV (3 y) (x= fy).
t(n+ l)(x) for (y) (yEx ::::> tn(y)). ~ t1(x).

(n= 1,2, ...).
(Xn)<PXn for (x) (tn(x) ::::> <px).

The axioms of Q are:
A'. The principles 11 - 51 of elementary logic for the variables and the formulas of

the system.
B' - D' are notationally the same as B-D of the system P.
We shall not attempt to provide a formal proof. For example, we shall retain the

numeral ° and the functor f instead of replacing them by descriptions and speak of
models for them as well as those for predicates and theories. However, our arguments
below, we hope, will make it clear that there is no difficulty in the way of rendering the
proof more rigorous.

If the system P is consistent then, by theorem 2.7, it is satisfiable in a set of
denumerably many denumerable domains. Assume that such a set M1 = {D1' Dz, ... } is
given, where Di contains the models of the objects of the type i. Obviously D1 must
contain the models 0*, (/0)*, (/fO) * , ... of the terms 0, fO, ffO, Of course D1 may
also contain other things besides them. Let E1 be the subset {O*, (/0)*, (/fO)*, ... } of D1
and F1 be the set consisting of all members of D1 not belonging to E1.

Let Ez be the subset of Dz such that if a belongs to Ez, then every member b of
a(i.e., every b such that in the model bE * a receives the value truth) belongs to E1 and
Fz be its complement in Dz. Similarly let E3 be the subset of D3 consisting of all those
elements of D3 which are subsets of Ez and F3 be its complement in D3 . And so on.

We delete the sets Fb Fz, ... from M1 and keep merely the domains Eb E2 , •••

together with value assignments in M1 which merely relate to these domains. It is not
hard to see that the result M z = {E1' Ez, ... } is again a model for P. For, as we can easily
check, if M1 satisfies the axioms of groups B-D, then Mz also satisfies them.

Moreover, since in the system P, (1 E f3 is meaningful only when f3 is of one type
higher than (1, we may also, for instance so choose E* that aE*b can be true only when a
and b are of two domains Ek and Ek + 1 respectively. For, since the axioms of P only
involve meaningful formulas, a model for P remains one for it when we change the truth
values which aE*b may take for a and b in other domains. Let us assume that we have
given such a model M3 for the system P.

Then, if we take the sum class K of the domains Eb E 2 , ••• of M3 as the range of
values of the variables x, y, Z, ••• of the system Q and use the same relations E* as in M 3 ,

304 Computation, Logic, Philosophy

then we have a model for Q. Thus, the variables XI. YI. "', X2, Y2, .•. of the various types
introduced in Q by the contextual definitions can easily be seen to have the same ranges
of values EI. E2 , .•• as the variables of the system P. Hence, we obtain a model for Q
because all the axioms of Q except those of group A' remain notationally the same as in
the system P, and obviously the axioms A' are satisfied by the model. Therefore, if P is
consistent, then Q is.

We want to thank Professor Bernays whose valuable suggestions have enabled us to
get rid of many of the shortcomings in an earlier version of the paper.

References

[I] Arnold Schmidt, Uber deduk/ive Theorien mit mehreren Sor/en von Grunddingen, lVIathematische

Annalen, vol. 115(1938), pp.435-506.

[2] C.H. Langford, Review of [I], this JOLR;,AL, vol.4 (1939), p.98.

[3] W.V. Quine, Mathematical logic, 2nd printing, Cambridge 1947.

[4] D. Hilbert and P. Bernays, Grundlagen der Mathematik, yoU, Berlin 1934; vol.2, Berlin 1939.

[5] Jacques Herbrand, Recherches sur la theorie de la demons/ration, Dissertation, Paris 1930.

[6] Alonzo Church, Introduction to mathematical logic, Princeton 1944.

[7] Kurt Godel, Die Vollstandigkeit der Axiome des logischen Funktionenkalkuls, Mona/shefte fur

Mathematik und Physik, vol.37 (1930), pp.349--360.

[8] Hao Wang, Existence of classes and value specification of variables, this Jot:R;,AL, vol.15 (1950),

pp.103~112.

[9] Kurt Godel, Uber formal unentsheidbare Sat:se der Principia .l\Ilathma/ica und verwandter Systeme I,

Monatsheftefur Mathematik and Physik, vol.38 (1931), pp.173~198.

14.2 Ackermann's consistency proof *

1. The System Za

Apart from Gentzen's celebrated consistency proof of the system Z with his special
formulation of the predicate calculus (Math. Annalen, 112(1936), 493-565 and
Forschungen zur Logik und etc., no. 4, 1938, 19--44), there are also alternative proofs
by Ackermann (Math. Annalen, 117 (1940),162-194) and Schutte (Math. Annalen,
122 (1951), 369--389). In this chapter, we give an exposition of Ackermann's proof
which has certain interesting applications.

Ackermann's formulation is in many ways very elegant. We quote it in full.
Basic symbols: 0,', -1, +,', =, ~, =>, variables x, y, etc., e-operators eX, ey, etc.
Formulae and terms: ° is a term, a variable is a term, if a and b are terms, so are a',

a-I, a+b, ab, if A(a) is a formula, exA(x), etc. are terms; if a, b are terms, a=b
is a formula, if A, B are formulae, so are ~ A, A=> B.

* First published in A Survey of Mathematical Logic, by H. Wang, pp 362~375. Science Press,
Beijing, 1962. Reproduced by permission.

Logical Fragments Relevent to Computer Science 305

There are three groups of axiom schemata with modus ponens as the single rule of
inference. No free variables are to appear in any axioms or proofs. In particular, in the
rule of modus ponens, viz. B if A and A ::) B, no free variables occur in A and B. We shall
call a term or a formula closed if it contains no free variables, otherwise open.

1. Propositional calculus.
II. p::)(q::) p).

12. (p::l(q::lr)) ::l ((P::lq)::l(p::lr)).
13. ('" p::) '" q) ::) (q::) p).
II. Number theory. If a, b, c are closed terms then

Ill. a=a.
II2. a' = b' ::) a = b.
II3. a#O::) (a-I)' =a.
II4. a+O=a.
lIS. a+ b' =(a+ b)'.
II6. aO=O.
II7. ab' =ab+a.
II8. a = b ::) a' = b' .
II9. a=b::)a-I =b-1.
IIlO. a= b::)a+c=b+c.
IIll. a=b::)c+a=c+b.
IIl2. a = b::) ac = bc.
IIl3. a = b::) ca = cb.
III. The 8-operator.
IIIl. A{a)::) A{ex A{x)).
III2. A (a) ::) ex A{x) # a'.
III3. '" A (8x A(x)) ::) ex A{x) = O.
III4. a = b ::) 8x A(x,a) = 8x A(x,b).
The equivalence of this system with Z holds in the sense that a theorem not

containing the 8--symbol is provable in Z if and only if it is provable in Za. For the "if"
half, it is sufficient to recall the eliminability of the .u-operator in Z, and the possibility
of identifying 8 with.u. For the "only if" half, it is only necessary to derive the principle
of mathematical induction from II3, lIIl, and III2 (Hilbert-Bernays II, p.SS) and
(x)(x' #0) from the definition of (x) in terms of the 8--symbol by III2 and III3.

The consistency proof aims at eliminating the e--symbol to correlate every proof
with a succession of true numerical formulae. For this purpose, a number of concepts
are needed.

1.1. An 8-term is a term which begins with 8.
1.2. The principal variable of an 8-term 8x A(x) is x.
1.3. A term b is said to be subordinate to a term a, if a is an 8-term, b is a proper part

of a, and the principal variable of a occurs in b. It follows that b is an open term.
1.4. A term b is said to reside in a term a, if b is a proper part of a but is not

subordinate to a.
From 1.3 and 1.4, it follows:

306 Computation, Logic, Philosophy

1.5. If a is not an e-term and b is a proper part of a, then b resides in a; if a is an e
term and b is a proper part of a, then b either resides in a or is subordinate to a, but not
both.

1.6. An occurrence of a term b is said to be a direct constituent of an Herm a, if (i) it
resides in a; (ii) it is not subordinate to any e-term contained in a; (iii) it is not a proper
part of any term residing in a.

For example, if a is eY{x+2=eAy+1=z)), then ez(y+1=z) and y+1 do not
satisfy (i), z does not satisfy (ii), x and z do not satisfy (iii). But x+2 satisfies all.

1.7. The e-category of an e-term a, open or closed, is obtained from the term by
substituting distinct free variables which do not occur in a for all direct constituents of
a. When a has no direct constituent, it is its own e-category. An alphabetic variant is
regarded as the same e-category.

For example, ez(z+ ey{y= 3) =z") is its own 8-category; 8y{U= 8z(Y+ 1 = z)) is the 8-
category of the term a given above and also of ey{ew(w=2) +3 =ez(y+8v(v=2)=z)).
One could treat these e-categories as functions of their free variables.

What is wanted in a direct constituent is a maximum complete unit which can be
substituted without affecting other parts of the e-term.

1.8. An 8-substitution of a set of e-categories is an assignment of a number to each
closed 8-category in the set, and a function to each open e-category. The number or
function thus assigned to an e-category is said to be its substituent in the 8-substitution.

The number of arguments of each function is the same as the number of free
variables in the originaI8-category. The functions used are always recursive and indeed
of the simple kind such that each takes the value 0 except for a finite number of
argument values.

1.9. The resolvent of a set of closed formulae relative to an e-substitution of its e
categories is the result obtained from the formulae when alll;.terms are replaced by their
substituents. The resolvent relative to a finite sequence of e-substitutions is the
resolvent relative to the last e-substitution of the sequence.

The final aim is to find, for each proof, a finite sequence of e-substitutions such that
the resolvent of the set of formulae in the proof is true, i.e., all formulae in the resolvent
set are true. That we can speak of true and false of the resolvent formulae follows from
the fact that since the original formulae contain no free variables and since all e-terms are
replaced by their substituents, the results are numerical formulae containing no 8-terms
(i.e., no quantifiers).

To get true resolvents, the main burden is to get substituents for every 8x A{x) or
8x B(x, a) such that the resolvent of A{8xA{x)) or B(exB(x, a), a) is true. That is to say, to
make cases of lIIl true.

Given a finite set of closed formulae, in particular a proof, we consider all the 8-
terms occurring in it and arrange their 8-categories in a sequence such that if an 8-term a
is subordinate to an 8-term b, then the 8-category of a precedes that of b.

1.10. Property P. An e-substitution G of a set of formulae has the property P if for
every 8-category in the sequence, say lOx B(x,y), and for every numeral n, the substituent
of 8xB(x, n) is either 0 or else a positive m such that B(m, n) is true but for no k, k< m, is

Logical Fragments Relevent to Computer Science 307

B(k, n} true.
In other words, if G has P, then the resolvent of A(sxA(x}} can be false only when

the substituent of sxA(x} is O.
Incidentally, each s-substitution gives substituents for all the infinitely many s

tenns falling under an s-category of the set, although only finitely many s-terms occur in
a proof.

l.ll. The substituent of an s-category is null if it is 0 or a function which always
takes the value O. The nulls-substitution assigns the null substituent to every category.

A member of a sequence of e-categories is said to be raw in an e-substitution if both it and
all e-categories following it get null substituents.

Now we are to define by induction a sequence of e-substitutions which all have the
property P in the hope that we can always end up in a finite number of steps with an s
substitution in which all resolvents of the formulae of the original proof are true.

As the initial e-substitution, we take the null substitution. This of course has
trivially the property P.

Suppose an e-substitution G given which has the property P but the resolvent of
some formula in the proof is not true. Since it has the property P, the resolvent of an
axiom can be false only when it is of the form IIIl. Consider the first formula in the proof
whose resolvent is not true, say:

(1) A(a, b}::::J A(exA(x,b}, b}.
Suppose the value of b is n under G, and that of a is k. Then A(k, n} is true, but A(O, n} is
false, 0 being the value of sxA(x, n) under G. Let us determine the earliest m, m~ k, such
that A(m, n} is true.

Now we define the next e-substitution as follows. First change the substituent of the
e-category sxA(x, y} at one place, viz. sxA(x, n} is m instead of 0 now. This does not
necessarily make (1) true since the e-category sxA(x, y} may be subordinate to that of b so
that as a result of the change, b may get a value different from n. But we do not use such a
strong conclusion. We simply assign all e-categories following exA(x, y} in the original
sequence the null substituent; of course this change is unnecessary if they get null
substituent in G already.

The new s-substitution again has the property P. Thus, since sxA{x, y} is not
subordinate to any earlier e-categories, their substituents remain the same. All the later
ones, having null substituents, trivially possess P. With regard to sxA(x, y) itself, if b
gets the value n as before, the resolvent of (1) in the new e-substitution is true.
Otherwise, if, e.g., it has now the value j, then exA{x,}) has the same value as in G, and, is
therefore, either 0 or the smallest number i, such that A(i, i). In either case, the new s
substitution still preserves the property P.

The problem now is to introduce suitable measures of the s-substitutions in order
to show that we are progressing toward the final goal as we continue to modify them.

2. Proof of finiteness

For this purpose we order all the closed e-terms occurring in the original proof or in

308 Computation, Logic, Philosophy

any finite set of formulae in such a way that if a resides in b, then a precedes b. Suppose
there are k+ 1 such terms: ao, at. ... , ak.

2.1. The order of an e-substitution G relative to the original finite set of formulae is
given by 2\p(O) + t-1cp(1) + ... + cp(k), where cp(i) is 1 orO according as ai gets the null
substituent in G or not.

Since the substituents which are not null are good according to property P, it is
generally desirable to have lower orders.

2.2. The degree of an e-substitution G relative to a finite set of formulae is its order
relative to the set of formulae:

(2) A(O, n), A(k, n).
Therein A is from (1) and (1) is the first formula in the original proof which gets a false
resolvent by G, and a gets the value kin G. When all the formulae get true resolvents by
G, the degree of G is taken to be O.

2.3. The index of an e-substitution G relative to a proof is Wm+ n, where m is its
order and n its degree.

2.4. An e-substitution Gi of a finite set of e-categories is no less advanced than Gi if
for every positive (i.e., not zero) substituent of a closed e-term assigned by Gi , the same
(positive) substituent is assigned by Gj • If, in addition, there is some closed e-term which
gets a positive substituent by Gi, but a zero substituent by Gi, Gj is more advanced than
Gi •

Theorem 1. if Gi is no less advanced than Gi, both of a set of e-categories which
includes all those of the e-terms of a finite set of formulae (not necessarily a prooj),
then either the order ofGj relative to the set of formulae is smaller than that ofGj ; or
else the substituents of all the closed e-terms in the formulae of the set are the same in
G; and Gj •

Proof Suppose they are not all the same in Gi and Gj • Let exA(x, b) be the first in
the ordering of closed e-terms defined before in 2.l. Since b precedes it, its substituents
in Gi and Gj are the same, say n. Hence exA(x, n) must get different values by Gi and by
Gj • Since Gj is no less advanced than Gi, this is possible only if it is 0 by Gi but positive by
Gj • But then, by 2.1, the order of Gj must be smaller than that of Gi•

Theorem 2. lfGi is no less advanced than G;, then either the index ofGi relative to
the proofis smaller than that ofGi, or else Gj + 1 (i.e. the next e-substitutionafier Gi by
the construction above) is no less advanced than Gi + 1 and they are obtained .from Gi

and Gi by adding the same positive substituents for the same closed e-terms.
Proof If the order of Gj is smaller, this is proved by 2.3. Other-wise, by Th.l, all

closed e-terms in the proof get the same substituents in Gi and Gj • Consider now the set
of formulae (2) under 2.2 for Gi and Gj • Since Gj is also no less advanced than Gi relative
t~ this set, either the order of Gi relative to this set, i.e., its degree relative to the original
proof, is smaller than that of Gi, or else, by Th.l, ex A(x, n) must get the same positive
value in Gi + 1 and Gj + 1 •

2.5. Given a proof and its finite sequence of e-categories, the rank of an e
substitution G relative to the sequence is the number of raw e-categories in G (cf.l.ll).
When the last e-category is not raw, then the rank is O. If g is the number of e-categories

Logical Fragments Relevent to Computer Science 309

for a proof, then the ranks are always :::;; g.
If it were true that Gi + I is always no less advanced than Gi, so that the rank of Gi + I

is no greater than that of Gi, we would be able to establish the consistency rather simply;
since every new 8-substitution corrects at least one substituent, we would come to an end
soon. But, as we mentioned before, we could spoil the 8-category of a by changing the
substituent of 8x B(X, a}, if 8x B(x, y} happens to be subordinate to the 8-category of a.
Hence, Gi + I may have a higher rank than Gi •

It is, however, true that in any sequence of 8-substitutions defined for a proof in the
manner of 1, either the rank of Gi + I is always no greater than that of Gb or else there
exists some Gi of rank m followed by a finite number of 8-substitutions of rank < m, and
then a Gi +k which is of rank ?'; m again.

2.6. An m-section of 8-substitutions relative to a proof is a finite sequence of 8-
substitutions Gi, ... , Gi+k (k?,;O), such that Gi is of rank?'; m, Gi+ b···, Gi+k are of ranks
< m, and either Gi + k is the last 8-substitution (making all resolvents true), or Gi + k+ I is
of rank ?'; m.

Since we never have an 8-substitution of rank less than 0, a O-section has a single
term only. Since the highest rank is g, the number of 8-categories for the proof, the null
8-substitution has rank g, and all later 8-substitutions have ranks < g. Hence, we need
only consider m-sections for m<g.

Theorem 3. IfG I , ... , Gk and HI, ... , ~ are two consecutive m-sections with indices
ai, ... , ab bl , ... , bi, and HI has the rank m, m<g, then: (i) HI is more advanced than
GI ; (ii) there is some number p, 1 ::S;p::S; k, 1 ::S;p::S;j, such that ap > bp , and for all i, if i
< p, then ai = bi, if 1 < i ::s; p then Gi and If; have the same rank.

Proof Let 8x A(x, y) be the (g- m)--th 8-category, i.e., the (m+ 1)-th from the end,
of the original sequence. Since G2 , ••• , Gk all are of ranks less than m, they retain the
substituents in GI of 8x A(x, y) and all preceding 8-categories. Therefore, since HI is of
rank m, it must be got from Gk by giving a new positive substituent to 8x A{x, n) for some
numeral n. Hence (i) is proved when 1 < k. This, by the way, does not necessarily mean
that HI has a smaller index than G I or a new closed 8-term gets a positive substituent. It
may happen that exactly the same closed 8-term lOx A{x,b) which got a positive
substituent in GI now requires a different positive substituent on account of changes
made in G2 , ••• , Gk •

If, HI follows directly GI , then, since the rank of HI is no greater than that of G I , (i)
is again true. Hence, (i) is proved.

To prove (ii), we note that if al > b l , p= 1. If al = b l , then there must be some p,
ap =1= bp • We assume there is no such p and consider two different cases. Suppose k > j.
First Hj cannot be the last 8-substitution, otherwise since it has the same index as Gj , we
would have stopped at Gj • But ~ is no less advanced than Gj by (i). Hence, by Th.2,
~ + I must be no less advanced than Gj + I. But this is impossible since Gj + I has rank
less than m, while ~+ I has rank no less than m.

Suppose k::S; j. By hypothesis, Gk and Hk have the same index. Hence, HI and Hk + I

must get the same new positive substituent. But this is impossible, since Hk being of
rank less than m still preserves the positive constituent introduced at HI.

310 Computation, Logic, Philosophy

Hence, in either case, there is some p, ap # bp • Take the first such p, then preceding
c-substitutions in both m-sections all yield the same resolvents, and (ii) is proved.

We now extend the definition of index to m-sections.
2.7. The index of a O-section is the same as the index of the single e-substitution

which it contains, the index of an (m+ l)-section is w aj + ... + wak , where aj, "', ak are
the indices of the finitely many m-sections which together make up the (m+ l)-section.

Theorem 4. Given two consecutive m-sections, m<g, such that the first c
substitution 0 fthe second m-section has rank m. Let p be any number 0::::; p::::; m, and aj,
"', ai; bj, "', bk be the indices of the Jrsections out of which the two m-sections are
made, j, k ~ 1. There is then a number q, such that aq > bq and for all i, i < q, ai = bi'

Proof By Th. 3, this theorem is true when pis 0 and m is arbitrary. Assume it true
for all smaller m and all smaller p.

By Th. 3, there are two earliest corresponding c-substitutions in the two m-sections
such that the index of the first is greater than that of the second. Since the index of an e
substitution determines its rank, they must belong to two corresponding p-sections
with indices aq and bq • Now each of the two p-sections is made up of one or more (P-l)
sections. By the induction hypothesis, aq=wCj + ... + wCu, bq = wdj + ... + wdv, and
there is an earliest c, > d,. Hence, aq > bw

From this theorem, the consistency of Za follows because given any proof, we can
write out its e-categories and construct e-substitutions in the manner described before. If
there are g e-categories, then the initial e-substitution Gj has rank g. Since all later e
substitutions, if there are any, have smaller rank, there is one g-section. Since the
second of two consecutive p-sections in a (p+ l)-section always has a smaller index than
the first, there can be only finitely many (g-l)-sections. In each (g-l)-section, there
can be only finitely many (g- 2)-sections. Hence, for every proof, there is a finite
sequence of e-substitutions which gives numerically true resolvents for all formulae in
the proof. Hence, e.g., 0 = 1 is not provable.

To formalize this proof, one would need transfinite induction up to the first Cantor
e-number. Thus, if we consider all proofs each of which contains g e-categories or less,
we would at most need a transfinite induction up to w(g+ 1), where w(O) = w, w(n+ 1)
=ww(n). Since a single e-substitution has an index of the form wm+ n, a O-section has
index less thanw(l), in fact less thanw2 • If ap-section has index less than w(p+ 1), then
a (p+ l)-section has index less than w(p+ 2). Hence, the single g-section has index less
than w(g+ 1). To formalize this, we prove that every decreasing sequence of ordinals
less than w(g+ 1) is finite. If we are concerned with all proofs of Za, then g is not
bounded, and we need induction through all of w(O), w(l), etc., up to the first e-number.
From Godel's second theorem, such induction cannot be formalized in Za. Gentzen gives
a direct proof of this fact in connection with his own consistency proof (see Math.
Annalen, 119 (1943), 140-161).

3. Estimates of the substituents

To reproduce as much of the argument as is possible in Za, one represents ordinals

Logical Fragments Relevent to Computer Science 311

by natural numbers. For each w(n) a well-ordering Rn of natural numbers is defined by
induction. Thus, Ro is the usual natural ordering, R 1(2a(2b+ 1)-1, 2C(2d+ 1)-1) if
and only if either a< cor a= c but b <d. Given R p, p>O, if Rp(bi, bi+ 1), Rp(Ci' Ci+ 1)'
Rp+ 1(2b1 + ... + 2b 1 - I,2C1 + ... + 2ck - 1) if and only if RAbl> Cl) or etc. or b1 = CI>

"', bi=Ci, but j<k.
Now the index of each m-section can be represented by a natural number, if the

index of an m-section is represented by a, then the total number of a-substitutions in the
m-section can be defined by a simple ordinal recursive function f(a, m):

3.1. f(a, 0)= 1, f(2a1 + ... + ~k-1, p+ 1)= f(at. p) + ... + f(ab p).
We have defined degree, order, rank of an a-substitution. Now we define degree,

order, rank of a proof in a different way.
3.2. The order of a proof is the number of closed Herms in it.
3.3. The degree of a closed term is ° if it is ° or an 8-term, it is n + 1 if it is of the form

a', a-I, a + b, or ab in which a has the degree n, or the maximum degree of a and b is n.
The degree of a proof is the maximum degree of the closed terms in it.

3.4. The rank of a proof is the number of a-categories in its associated sequence.
Suppose given a proof of degree d and an a-substitution C. If m is the maximum

value by which a closed a-term can get under C, then b(d, m) is the maximum value by
which any closed term can get:

3.5. b(O, m)=m, b(d+1, m)=(b(d, m))2+1.
This is so because with each increase in degree we only go fromb(d, m) to (b(d, m))',

b(d, m)-I, b(d, m) + b(d, m), b(d, m)' b(d, m) all less than or equal to (b(d, m))2 + 1.
Since for the initial a-substitution C1, m=O, the greatest value is no greater than

b(d, 0). From the way we obtain Ci + 1 given Ci , the maximum value at each substitution
Ci is c(d, i) defined by:

3.6. c(d, 0) = b(d, 0), c(d, i + 1) = b(d, c(d, i)).
It therefore follows that given a bound to the number of a-substitutions, a bound

for numerical values can also be obtained.
If the degree of the proof is k, then the degree of the a-substitution Ci is no greater

than:
3.7. e(d, i, k)=2(C(d,i l +l lk.

This is so because in the sequence A(O, n), "', A(j, n) of2.2,jis no greater than c(d,
i), and each formula contains no more than k terms.

The difficult part is to define a function g(p, i, a) which gives an upper bound to the
ordinal notation less than a which is the index of a p-section beginning with Ci • Assume
the function g is given, then we can define h(p, i, a) which gives an upper bound to the
index of a (p + 1)-section that begins with a p-section whose first term is Ci whose index
IS a:

3.8. h(p, i, a) =2a+h(p, i+ f(a,p), g(p, i+ f(a,p), a)).
Both g and h are also functions of d and k (the degree and the order of the proof),

although we are not writing out these arguments explicitly. In fact, the functions g and h
are defined simultaneously.

(i) g(p, i, 0) =0. (ii) g(O, i, 2b(2c+ 1) -1) is 2b(2c-I) -1, if c#O, and 2b- 1(2e(d, i,

312 Computation, Logic, Philosophy

k)+ 1)-1, ifc=O, bie-O. (iii) whenp> 0, a>O: (iiia) ifaiseven,g(p, i, a)=a-l; (iiib)
if a is odd and of the form 2b -1, g(p, i, a) = h(P-l, i, g(p-l, i, b)); (iiic) if a is 2i + 2b
+ ... + 2"-1, theng(p, i, a)=2i+g(p, i + f(j,p-l), 2b+···+2c -l).

Once h is given, we may forget the function g, and again use the letter g as the rank

of the proof, and rewrite the function h as h(d, k, g, i, a).
Then we can estimate the total number of 8-substitutions from a given proof of Za

whose degree, order, rank are d, k, g. We can effectively find its sequence of 8-
substitutions and therefore calculate the index 2a + ... + 2b - 1 of the only g-section in
the sequence. Hence, the total number of 8-substitutions f(2a + ... + 2b -1, g) is no more
than: f(h(d, k, g-l, 1, a), g).

Now a satisfies Rg(a, t(g-l, k)), where t(O, k)=2k + 1 , t(p+l, k)=2C(P,k)-1.

Hence, the total number of 8-substitutions is no more than:
3.9. m(d, k, g)=f(h(d, k, g-l, 1, t(g-l, k)), g).
By combining this witb 3.7, we see that for any proof with degree, order, rank d, k,

g given, the maximum numerical value used in the final resolvents is:
3.10. c(d, m(d, k, g)).
From this situation, some surprising consequences can be drawn. For this purpose,

it is more direct to state the consequences in the notation of the equivalent system Z.
Theorem5. Given any theorem of the form (Ex)"'(Ey) A(x, "', y) where A contains

no quantifiers, we can calculate .from the proof a number p such that A (j, "', n) holds for
some j, "', n all no greater than p.

This can be directly generalized to systems which contain more recursive functions
as primitive symbols. This shows that in proving a pure existence theorem, we can
obtain actual examples with a finite amount oflabour which has a predetermined bound
yielded by the proof.

A related consequence is:
Theorem 6. If a theorem (x) (Ey) A(x, y), A containing no quantifiers, is given in

Z, we can take a recursive function f(x) of a definite type (viz., the functions actually
used in defining 3.10, the ordinal recursive functions of Ackermann) such that for all x,
R(x, f(x)) is true.

For this purpose, we assume d to be the degree of the proof and consider the proofs
of R(O, 8y R(0, y)), R(I, 8y R(1, y)), Then we see that the following must hold:

(x) (Ey) (y';:; c(x+ d, b(d, k, g))&R(x, y)).
Hence, the theorem follows by eliminating the bounded quantifier y.

One may hope to generalize these to more complex theorems. However, Kreisel has
shown that a direct generalization is impossible and introduces a program of
interpretation (see], Symbolic Logic, 16, 241-267; 17, 43-58; 23, 15~182). We
proceed to summarize some of Kreisel's results in the next section.

4. Interpretation of nonfinitist proofs

Theorem 7. There are theorems of the form (x) (Ey) (z)R(x, y, z), R quantifier-.free,
such that (x) (z)R(x, f(x), z) is not true for any recursive function f(x).

Logical Fragments Relevent to Computer Science 313

Consider the theorem:
(3) (i) (Ey) (z) (B(y, s(i, i)) V ~ B(z, s(i, i))).

Therein Band s are those used previously in proving Codel's theorems.
Since there is a notation in Z for every recursive function, we may take every

proposed recursive function j and prove that there is for it some values of x and z such
that:

(4) B(f(i), s(i, i)) V ~ B(z, s(i, i))
is false. Suppose the Codel number of

(5) ~ B(f(i), s(i, i))
is ji. Then

(6) ~ B (f(P), s(p, p))
is true, because otherwise, j(P) would give a proof of the formula whose number is s(p,
ji), viz. (6) itself. On the other hand, since (6) is a numerical formula, it, being true, is
provable in Z with a proof whose number is le. Hence,

(7) B(Jf, s(p, ji))
is true and provable in Z. Hence (4) is false, if we substitute ji and Jf for i and z.

Another example was used by Specker (j, Symbolic Logic, 14 (1949),145-158).
Classically, if a(m) is a monotone bounded sequence of rational numbers, then for all x,
there exists y, such that for all z and w, 2Xla(z) -a(w)1 < 1, for z, w> y. The usual proof
gives no idea how yis to be determined from x. And Specker gives a monotone bounded
recursive sequence a(m) such that there exists no recursive function j for which the
following holds:

(x) (z))(w) (z, w> j(x):::J 2Xla(z) - a(w)1 < 1).
Kreisel uses a free-variable formalism Fwhich is obtained from Zby dropping all

quantifiers but adding all ordinal recursive functions of order k, for every k. That is to
say, all functions definable from primitive recursive functions by addition of ordinal
recursions of each order k, where

(0, x)=g(x),j(m', x)=h(x, m,j(cp(m'), x)),
g, h, cp are given functions such that Rk(cp(m), m), for all m, according to the ordering Rk
defined in 3. The system F contains also a rule of transfinite induction for each order k,
viz., if there is a function cp, Rk(cp(m), m). Then A(n) follows from A(O), and A(cp(m'))
:::JA(m').

To each formula A of Zis associated effectively a sequence offormulaeA 1 , A 2 , ..• in
F such that:

4.1. From a proof of A in Z, we can read off a proof of some Ai in F.
4.2. From a proof of any Ai in F, we can read off a proof of A in Z; indeed, since Ai

can be expressed in Z, we can prove Ai in Z and derive A from Ai in Z.
We can easily generalize and modify Theorem 6 to get:
4.3. If (x) (Ey) R(x, y) is provable in Z, R primitive recursive, then there is an

ordinal recursive function g of some finite order such that we can prove in F:
(8) R(n, g(n))&(m<g(n):::J ~ R(n, m)).
Let t(n, x) be tn(x), where tn is the n-th function which is 0 except for a finite

number of argument places in some simple enumeration.

314 Computation, Logic, Philosophy

Let the formula A of Z be, e.g., (Ex) (y) (Ez) C(x, y, z).
Enumerate all the proofs of Z which lead up to a conclusion with (Ex)(y)(Ez)

followed by a primitive recursive predicate and let the i-th such proof lead to
(Ex)(y)(Ez)Di(x, y, z).

Then we can also prove in Z:
(n)(Ex)(Ez)Di(x, t(n, x), z).

Hence, by 4.3, there are ordinal recursive functions a;, bi in some enumeration such
that:

can be proved in F.
Now the sequence of formulae associated with A is simply that Ai is, for i = 1,2, ... :
(9) C(ai(n), t(n, ai(n)), bi(n)).
If A can be proved in Z, C must coincide with some Di, and therefore Ai, i.e., (9) is

provable in F for some i.
Conversely, if some Ai is provable in F, it is also provable in Z and we can derive

from it, again in Z, A itself:
In (9), if we choose a suitable term s, as on pp.6--7 of Math. Zeitschriji, 57(1952),

we can make:
ai(s)=.uAy)(Ez)C(x, y, z),

t(s, ai(s))=.uy(z)~C(ai(s), y, z),
bi(s) = .uzC(ai(S), t(s, ai(s)), z).

Then A follows from Ai in Z.

14.3 Partial systems of number theory *

1. Skolem's non-standard model for number theory

In this section we summarize the work ofSkolem in Fund. Math., 23 (1934),157-
159, Mathematical Interpretation of Formal Systems, 1955, 1-14, and the related
results of Ryll~Nardzewski, Fund. Math., 39 (1952), 239--263.

By the famous theorem of Lowenheim, set theory has also an arithmetic model.
Skolem emphasized that this leads to a relativization of the concept of set to each formal
system. If one desires to develop arithmetic as a part of set theory, a definition of natural
numbers in a formal set theory has a relative meaning so that an enumerable (and,
therefore nonstandard) interpretation of the whole system would also yield a
nonstandard interpretation of the natural numbers. From this it is natural to expect if we
try to characterize the sequence of natural numbers directly by a formal system, we
would not obtain a complete characterization. Skolem has succeeded in showing that
this is really so.

Let us use the formal system Z. Every formula is equivalent to a prenex normal
form beginning with a string of quantifiers, followed by truth~functional combinations

* First published in A Survey of Mathematical Logic, by H. Wang, pp 376-382. Science Press,
Beijing, 1962. Reproduced by permission.

Logical Fragments Relevent to Computer Science 315

of equations. In familiar manner, we can delete the truth-functional connectives, e.g.,
by the following relations.

1.1. a of- b by (Ex}((a = x + b}V (b = a + x)).
1.2. (a = b) V (c = d) by ad + bc = ac + bd.
Then we can drop all quantifiers and replace all variables attached to particular

quantifiers by functions or E-terms. The resulting system contains no more quantifiers
but only equations with free variables. Call it ZJ.

We enumerate all the functions of one argument, i.e., all terms containing one free
variable:

(1)

Let M 1 , M 2 , M3 be respectively the subsets of the set N of natural numbers for
which

Let N1 be the U with least subscript which is infinite. Of course, one at least of M 1 ,

M 2 , M3 must be infinite. This defines whether

Jl <J2' J1 = J2' Jl > J2

For the infinitely many members of Nj, there must be at least one infinite subset
for which every member has a same relation betweenJl(t} andJ3(t}, and a same relation
betweenh(t} andJ3(t}. For example, if N1 is M1, then for every t inN1 , at least one of the
following relations holds:

This gives five subsets of Nj, choose the first infinite subset as N 2 •

This process is continued so that we get an infinite sequence of infinite subsets of N
of monotone nonincreasing size. In this wayan ordering of the functions in (1) is
defined.

Let g(i} be the least member of N i, then we have:
Theorem I. For any pair a, b, the same relation <, =, or> holds betweenla(g(t}}

and Jz,(g(t)) Jor all t > max (a, b), this relation is also the ordering relation between.fa
and Jz,. The function g(t} is monotone nondecreasing. In particular, since all constants
occur in (1), viz., functions which always take a same value, g(t} is not bounded.

It is easy to see that the relations = and < thus defined over the sequence (1) have
the usual properties of such relations. We now treat each equivalent class as a
nonstandard number, and the ordering defines a sequence N* of higher order type than
N.

Among these equivalent classes, the constant numbers also occur in distinct
equivalent classes with the correct ordering relation. If we reinterpret all the free
variables of Zb as ranging over N* instead of N, we can see that all theorems of ZJ would

316 Computation, Logic, Philosophy

be true in the new interpretation. In other words, if we replace variables over N by
variables over N* in theorems of Z, the results are true. For example, this can be verified
for 1.2 and for the principle of induction.

Theorem 2. The system has a rrwdel which is not isorrwrphic to the standard
model, and the order type of the nonstandard numbers is greater than w.

It may be noted that the argument applies equally well to partial systems of Z.
While the model defined above is not constructive, the same method can be applied to
weak fragments of number theory to obtain transparent effective nonstandard models.
Skolem himself has given simple examples. Related questions are also studied by
Hasenjaeger, J. Symbolic Logic, 17 (1952), 81---97.

An application in a different direction was made by Ryll-Nardzewski. He takes the
system Z and deletes all but a finite number of special cases of the schema of
mathematical induction. For any such partial system 5, he shows by using Skolem's
model that there is some case of the induction schema not deducible in the system.

Theorem 3. There is no finite set of theorems of Z (indeed, no finite set of
formulae true in the standard rrwdel of Z) from which we can derive by the predicate
calculus all axioms of Z.

Assume given such a partial system S. In order that it be adequate at all, it must
include the various special things we use below from Z. We assume that quantifiers are
taken away as before.

There are only a finite number of axioms beyond the predicate calculus, and only a
finite number of functions fl' ... , h in these axioms. These are taken as the basic
functions.

For the arbitrary terms a and b of 5, we can define in 5 a predicate which says:
1.3. b is of order i relative to a andfl' ... ,h, or, briefly, b is an i-th descendant of a:

a is its own I-descendant; b is an (n + 1)-descendant of a if a is j;(c, ... , d) and some of c,
... , dis an n-descendant of a but none is of order more than n relative to a andh, .. ·,h.

In addition, it is easy to define a relation R such that:
1.4. R(x, y, z) if and only if x is at most of order y relative to z and fl' ... , h.
Let <1>(y) be the formula that for every z there exists t such that for all x, if x is of

order no more than y relative z and h, ... , h, then x ~ t:
1.5. <1>(y) is (z)(Et)(x)(R(x, y, z) :::J X ~ t).
Then it is possible to prove in 5:
1.6. <1>(1),
1.7. <1>(Y):::J <1>(y+ 1).
However, the conclusion
1.8. <1>(y)

is not provable in S.
Assume a Skolem model N* for 5 given. The equivalent classes containing the

standard natural numbers form only an initial segment of N*. Let w be an arbitrary
element of N* not among the above. Then all descendants of w determine a model of S.
Then the equivalent class (n) for each natural number n satisfies the relation:
(n) < w.

If <1>(w) is true, then by 1.5, there is some c,

Logical Fragments Relevent to Computer Science 317

(2) (d)(R(d, w, W) ::J d ~ c).
But the successor c* of c in the model can be obtained from w as a descendant, say a k
descendant. Hence, R(c*, w, w), contradicting (2). Hence, Theorem 2 is proved.

It seems possible to use the same argument to prove a somewhat stronger result,
viz. we cannot derive all axioms of Z from any finite consistent set of formulae in Z.
Thus, given a such set which can be 'written as a single formula A, either not all theorems
of Z are derivable from A, or else we can carry out Ryll-Nardezwski's construction and
get a case of the induction schema which is derivable in Z but not derivable from A,
provided only A is consistent. Hence, if all theorems are derivable from A, A must be
inconsistent.

There appears to be a connection between Skolem's result and Godel's first
theorem. From Godel's theorem, we can get a nonstandard model of Z. Conversely, we
can also extend Ryll-Nardezwski's argument to find an undecidable proposition of Zby
the Skolem model. Thus, the above argument depends on the possibility of enumerating
all terms of 5 in Z. If 5 is Z itself, the enumeration can no longer be made directly in Z,
but we can make an indirect enumeration by the proof predicate. Compare Ch. II, §5
above.

2. Some applications of formalized consistency proofs

In this section we give an explanation of the paper by Kreisel and the writer, Fund.
math., 42 (1955), 10l-ll0; 45 (1958), 334--335.

We consider partial systems F of Z and Za which are obtained from them by
suppressing those proofs which are too "complex". We shall prove the consistency of
such systems Fin Z and Za; Fwould be demonstrably weaker since a formula expressing
its consistency cannot be proved in Fitself. We shall denote such a formula by Con(F); it
is to be understood that the formula chosen satisfies conditions sufficient to ensure the
application of Godel's second theorem.

For the first measure of complexity we use the rank of a proof in Za, viz., the
number of 8--categories.

2.1. The system Zo: a proof of Za of rank ~ n is a proof of Zo.
2.2. For each integer n, Con(Zo) is a theorem of Za.
This is direct from Ackermann's consistency proof since, for each n, transfinite

induction to w(n) can be proved in Za.
A second measure of complexity is obtained from the truth definition of Z given in

Hilbert -Bernays II.
2.3. The system Zn): a proof Z whose formulae are all of type ~ n, i.e., in each

formula if we construct a graph of quantifiers governed by a given quantifier, the
maximum succession is always of length ~ n, is a proof of Zn).

2.4. For each n, Con(zn l) is a theorem of Z.
To prove this, the truth definition has to be modified somewhat.
It is assumed that "natural" definitions of the following syntactical terms and

predicates have been chosen.
Yfim)(n), "', Yf~m)(n) as in Hilbert-Bernays II, p. 235.

318 Computation, Logic, Philosophy

p(m, a, n) is the number of the formula got from A (with number a) by replacing
the variable Vi. i ~ m, in A by '7lm)(o(n») and v;, j > m, by o. It is not assumed that all Vi,

i ~ m, occur in A. All the variables we use in the proofs will be VI, V2, V3, etc. Trivially, if
A is a closed formula, p(m, a, n) = p(O, a, 0). (Vi are free variables.)

p(a, b) if and only if a is a numerical proof of the formula b (i.e., a proof in the
elementary calculus, no variables). We recall that the consistency of numerical
arithmetic can be proved in Z.

If a and b are numbers of A and B, then t(a, b) is the number of A I B.
U(a) if and only if a is the number of a formula of the form (x)B(x), and thens[u{a),

y] is the number of B(O(Y»).
Similarly, Q(a) if and only if a is the number of a formula of the form (Ex)B(x), and

then s[q(a), y] is the number of B(O(Y»).
For each k, a truth definition Tk(b) can be given by means of a formula of Z,

satisfying the following conditions (compare ibid., p. 334):

or

or

or

or

To[p(m, a, n)] if and only if (Ey)P[y, p(m, a, n)]

(Ex)(Ey){x < p(m, a, n) & y < p(m, a, n)&
&p(m, a, n) = t(x, y) & [To(x)1 To(y)]};

Tk+ 1 [p(m, a, n)] if and only if Tk[p(m, a, n)]

{U[p(m, a, n)] & (y) Tk[p(m, s(u(a), y), n)]}

{Q[p(m, a, n)] & (Ey) Tk[p(m, s(q(a), y), n)]}

(Ex)(Ey){x < p(m, a, n) & y < p(m, a, n)&
&p(m, a, n) = t(x, y) & [~+I(x)1 Tk+l(y)]}.

It can be verified in the usual manner that Tk(b) is a normal truth definition, and
hence Con(~k») may be proved in Z. Note that Tn(b) is a truth definition for the system
zn) only, and not for Z; in particular, n is not a free variable.

Observe that the consistency proof of 2.4 is capable of various extensions: e.g., if 3
is an extension of Zby some principle of transfinite induction, we get a consistency proof
of 3(n) in 3.

Let Fbe a system consisting of the predicate calculus with a single closed formula A
as aXIOm.

Theorem 4. IfF is consistent, there is a theorem of Z not provable in F.
Let k be the type of A, roughly the number of distinct quantifiers in it. If ~ Con(F),

there is a proof in the predicate calculus of ~ A. By Herbrand's theorem, ~ A can be
proved with a proof each formula of which is of type ~ k. Thus, ~ A can be proved in
~k). Hence, by the normal truth definition of Z', we can prove in Z: ~ Con(F) ::::J ~ A.
Therefore, the following is a theorem of Z:

(1) A::::J Con(F).

Logical Fragments Relevent to Computer Science 319

Now if F contains all theorems of Z, the deducibility conditions for the application
of Godel's second theorem would be applicable to F, since we are assuming the
"natural" proof predicate of F; further the formula (1) and hence Con.{F) would be
theorems of F, and F would be inconsistent.

It is actually fXJssible to exhibit from the proof, for any given consistent F, a
theorem of Z not provable in F.

This result and the result in the preceding section shows that there are infinitely
many axioms, which cannot be reduced to a finite number. Kleene proves in Memoirs of
Am. Math. Soc., no. 10, 1952, 27-68, that if we introduce auxiliary predicate symbols,
such reduction is always possible.

These considerations can also be applied to deal with Godel' s result on the length of
proofs (Ergebnisse Math. Kolloquiums, 7 (1936), 23-24). Thus since Con.{zn») is
provable in Z but not provable in Zn), there is also some formula (x)c(x) which is
provable in Z but not in Zn), although C(1), C(2), "', all are provable in Zn). Then for
large constants k, we would seem to need a proof of unbounded length to prove c(k) in
zn, although in Z it is always an immediate consequence of (x)ctx).

In view of 2.2. and 2.4, the measure of length or complexity of a proof is for us
more easily given by the rank and typeofa proof, i.e., the numberofe-categories or the
number of distinct quantifiers.

Theorem 5. If the length of a proof of Za is measured by the number of e~
categories in it, and F' is an extension of Za in which Con.{Za) is a theorem, then for
each n, Con(Z;;) can be proved in F' by proofs 0 fbounded length, but its shortest proof in
Za is longer than n. Similarly, if we use the type as a measure of length, an analogous
theorem holds for Z and the theorems Con.{Zn»).

Finally, according to the Bernays' lemma, every Sis translatable into Z., viz. Z plus
a new axiom Con.{s). Now for systems with finitely many axioms, we can prove a
converse to it:

Theorem 6. If a finite axiom system F is translatable into Z, then Con.{F) can be
proved in Z.

Let the translation of the axiom A of Fbe the theorem B of Z. If ~ Con.{F), there
would be a proof of ~ F in the predicate calculus, and hence a proof of ~ Bin Zm) for
some fixed number m, the type of A. Hence, we have inZ, ~ Con.{F) :::::> ~ Tm(b), bbeing
the number of B.

Since Tm(a) is a normal truth definition, ~ Tm(b) :::::> ~ B. Hence, we have in Z: B
:::::> Con.{F). Hence, Con(F) is a theorem of Z.

14.4 The calculus of partial predicates and its extension to set theory 1*

The usual predicate calculus and set theory deal with completely defined
predicates and sets. One natural extension would seem to be a predicate calculus and a

* First published in ZeitschriJtJ Mathematische Logik und Grundlagenforschung, vol, 7, pp 283
-288. (C) VEB Deutscher Verlag, 1961. Reproduced by pennission.

1) Presented at the Logical Colloquium on July 7,1961 at Cambridge, England. Part I deals only with the

predicate calculus, set theory and other related matter will be considered in Part II.

320 Computation, Logic, Philosophy

set theory in which partially defined predicates and sets are also permitted, using,
besides the values t (true) andJ(false), a third value u (undefined). Among other things,
a different interpretation of the paradoxes of set theory would ensue. Various people in
cluding SKOLEM, BEHMA"l"l. BOCHV AR, ACKERMA"l"l, FITOH, SCHUTTE have considered the
set-theoretical paradoxes from such an approach and reached rather diverse results. It
appears that the full implications of such a generalized outlook on logic have not been
fully clarified yet and many avenues remain to be explored. It is, therefore, proposed
here to reexamine some of the alternative sets of underlying assumptions and discuss the
questions of setting up formal systems to correspond.

The two main items of indefiniteness are the interpretation of implication and the
mixing of complete sets with partial sets. On account of the need to give implication a
special place, we cannot reduce our problems to those which have been dealt with by
standard works on many-valued logics such as [10]. If implication is not iterated, it is
easy to set up a natural calculus of partial predicates. This part will be developed quite
thoroughly below. In addition, the questions relevant to set theory will be discussed,
possible interpretations of iterated implications will be suggested, and comments on the
system A * in SCHUTTE'S book [15] will be made. Because of the presence of the third
value u, the general law of excluded middle is not a part of the logic of partial predicates.
While this is a feature in common with the usual constructive theory, the study of partial
predicates can be combined with either a constructive or a classical position. In fact, the
considerations will be based on a classical viewpoint, and the question of a constructive
theory of partial predicates will not be investigated.

1. The basic truth tables

The tables for negation, conjunction, and disjunction are those originally
introduced by LUKASIEWICZ ([8], p. 94):
1.1. Negation, conjunction, and disjunction satisfy the following tables.

r,p

t J
u u

J t

v u J
u J

u u u J
J J J J

v u J

u u u

f u J
Given the intuitive meaning of I, /\ ,V and the values t, u, J, the above choice

seems natural. BOCHV AR and SMILEY use a different set in which, for example, u /\ J and
fI/ u are u rather than f; such tables are suitable when u is taken to mean
"meaningless". Our first assumption is 1.1.

The interpretation of implication presents serious dificulties, even if we are willing
to follow PHILO and FREGE to accept material implication when we are only concerned
with complete predicates, using only the two values t and f The minimum requirement
on p ---> q is that if pis t, q must not be J, or that t ---> Jis f If, in the 2-valued case, we
further require that the value of p ---> q is determined uniquely by the values of p and q,
then the only possible choice is to give t to t ---> t, J ---> t, and J ---> fbecause in each case we

Logical Fragments Relevent to Computer Science 321

can find some propositions p and q such that p implies q is intuitively true: if Y u was a
man, then Y u was not a fish; if George Sand was a man, George Sand was a human being;
if Algeria is in France, Algeria is in Europe. It is familiar that this interpretation of
implication does not give the full meaning but is, nonetheless, very useful. If we now try
to extend this interpretation to the 3-valued case, we are led fairly naturally to the
following incomplete tables:
1.1.1.

u f u f
f u f

u t u u

f t f

We may wish to give the value u to u ---* u. In that case, p ---* p is no longer a
universal logical law. Or, we may wish to give the value t to u ---* u. In that case, p ---* ip
gets the value t when p gets the value u. Such consequences do not constitute conclusive
reasons for rejecting either of these choices. But they serve to illustrate that we do not yet
possess either a sharp enough notion of ---* as applied to propositions with the value u, or
any reliable guiding principle to enable us to decide between contrary alternatives. If,
e.g., we try to evaluate (p ---* ip) ---* p) ---* p for the case when p gets the value u, we may
feel that u ---* u gets different values in different contexts. Hence, another course
suggests itself: use more than 3 values, perhaps an infinite number of values.

The alternative of giving the value t to u ---* u is adopted by LUKASL.EWICZ and has the
advantage of preserving the law p ---* p. According to such an interpretation, we of course
can no longer identify p ---* q with ip V q since ip V p is not generally valid although
p ---* p is. The other alternative of giving the value u to u ---* u is suggested, e.g., by
KL.EENE ([7], 64). By this interpretation ip V q is the same as p ---* q and one can
develop a three-valued logic without including ---* as a primitive. However, in either
case, we would have to depend on a notion of ---* that is quite beyond the complete
control of our rather limited intuitive conception.

We are inclined to regard p ---* q as a logical law (which gets the value t) if under all
interpretations of the occurring predicates, whenever p is true, q is also true. If we adopt
this natural interpretation of ---*, the value of p ---* q is no longer a function of the specific
values of p and q in each case but depends on the relations between all possible values of
p and q. As a result, iterated applications of ---* in the antecedent introduce new elements
not taken care of by such an explanation. For example, although we can quite reasonably
regard p ---* (q ---* p) as (P 1\ q) ---* p, we are at a loss with regard to (ip ---* p) ---* p. In order
that it be t, we require that for all evaluations E, if vE(ip ---* p) = t, then VE(P) = t. But
we have given no maening to VE(ip ---* p), because we have only given a value to ip ---* P
relative to all evaluations of p, and have not explained what it means for ip ---* p to be t
under each single evaluation E.

If we are content not to iterate ---*, the present definition of p ---* q, when ---* occurs
neither in p nor in q, is satisfactory. If we are concerned with a two-valued logic, then
such a definition of p ---* q agrees with ip V q, and this is the reason why in GENTZEN'S
formulation, ---* is dispensable, and, for example, SCHUTTE (in [12]) uses

322 Computation, Logic, Philosophy

1plV ···V IPmV glV ···V gninplaceofGENTzEN'SP1'···,Pm~gl,···,gn.lnthe
three-valued case we are interested in here, ~ thus defined is an indispensible high
level connective and we do not define truth of an implication but validity relative to sets
of evaluations. Our second assumption is:

1.2. p ~ q, with P and q free of ~, is valid if and only if for every E, VE(q) = t when
VE(P) = t.

On account of the presence of the third value u, it is also possible to make a more
stringent requirement on ~:

1.2. * P ~ g is valid if and only if for every evaluation E, (a) if VE(P) = t, then VE(q)
= t, and (b) if VE(P) = u, then VE(g) =1= f

In contrast with ~, the quantifiers present no serious problems but can be
explained in the natural manner as generalized conjunctions and disjunctions:

1.3. The value of\1 xFx is (a)t, if all cases get the value t; (b) u, if no cases are }but
at least one case is u; (c) J, if at least one case is.

The value of::3 xFx is (a) t, if at least one case is t; (b) u, if no cases are t but at least
one case is u; (c) J, if all cases are f

On the basis of the interpretations of I, V , 1\ ,~, \1 ::3 as given under 1.1, 1.2,
1.3, we can develop both a partial predicate calculus and the usual predicate calculus.
The presence of a third value enables us to make some distinctions more sharply than in
the ordinary two-valued approach.

2. The partial predicate calculus PP

It is possible to give several different formulations of PP by modifying alternative
formulations of the classical predicate calculus. The following is along the line of
HERBRAND'S system in [6].

2.1. The formal system PP.
2.1.1. The symbols are V , 1\ , I, ~,\1 ::3, parentheses, variables, predicate

letters, proposition letters, possibly certain other terms and constant predicates.
2.1.2. The atomic propositions are the proposition letters, and the predicate letters

or constant predicates followed by suitable numbers of terms (variables or other terms).
2.1.3. The formulae are the smallest set 5 such that (a) all atomic formulae are in 5,

(b) if x is a variable,p, g are in 5 and do not contain~, ip,p V g, p 1\ g,p ~ g, \1 xp,
::3 xp are in 5.

2.1.4. The axioms and rules are of four kinds.
2.1.4.1. p ~ q is an axiom if p, q are quantifier-free and for every E, VE(q) = t if

VE(P) = t. In particular, ~q or q is an axiom if for every E, VE(q) = t. Clearly, given any
quantifier-free formula p ~ q, we can decide whether it is an axiom by testing all
possible truth distributions, i.e., assignments of the truth values t, u, f to all the
occurring atomic propositions.

2.1.4.2. If x is a variable, y, is a variable not free in p, and t is a term, then:

Logical Fragments Relevent to Computer Science 323

2.1.4.3. Contraction rules:

pApAq~r p~qAqAr

pAq~r p~qAr

2.1.4.4. Rules for shifting quantifiers. If x is not free in p and q == r means within
each theorem, replacing a part q by r or a part r by q, we again get a theorem; then:
1::3 xFx == V x I Fx, IV xFx == ::3 x I Fx, V ~Fx A p) == ('V xFxV p),
::3 ~Fx V p) == (::3 xFx V p), V ~Fx A p) == ('V xFx 1\ p), ::3 ~Fx 1\ p) == (3 xFx 1\ p).

2.2. Definition of completeness.
A formula free of ~ is true under a given interpretation of the occurring predicate

and proposition letters (and the constant predicates and terms) with a domain as the
range of variables, if and only if it comes out true according to the interpretation of 1\ ,
V , I, ~, V ,::3 in 1.1, 1.2 and 1.3. A system is complete if and only if every valid
formula p ~ q is a theorem.

2.3. Proof of completeness of PP.
It is easy to verify in familiar manner, that all theorems of PP are valid by the above

definition:
2.3.1. Every theorem in PP is valid.
Conversely, we can also adapt familiar arguments for the classical predicate

calculus to prove that every valid formula of PP is a theorem of PP.
Theorem 1. The system PP is complete; in other words, if for every E, VE(P) = t

implies VE(q) = t, then p ~ q is a theorem ofPP.
Thus, given any formula p ~ q, by 2.1.4.4, we can assume that p and q are both in

the prenex form, e.g.:

V x::3 yV zFaxyz ~ V u::3 vV w Gauvw. (1)

This is not valid if and only if there is some interpretation E such that, for suitable a:
VE(P) = VE('V x 3 yV zFaxyz) = t, vE(lq) = VE(::3 uV v::3 wlGauvw) = tor u.

(2)

We can adapt familiar methods of SKOLEM and HERBRAO\ID to associate with p, q two
sequences of quantifier-free formulae Plo P2, ... , ql, q2, ... so that if for some n,
Pl A ... A pn ~ q 1 V ... V qn is a theorem, then p ~ q (in particular, (1)) is; and if this
is true for no n, p ~ q is not valid (in particular, (2) is true). In the example (1), the
sequence Pb P2, ... is, if we write (h, i, j, k) for XhXiXjXk:

(1, 1, 2, 1), (1, 1, 3, 2), (1, 2, 4, 1), (1, 2, 5, 2), (1 1 6 3)··· , , ,

Similarly, the sequence ql, q2, ... is

(1, 2, 1, 3), (1, 2, 2, 4), (1, 2, 3, 5), (1, 2, 4,6)""

From Theorem 1, it follows that if we add standard rules governing ~ (i.e., rules

324 Computation, Logic, Philosophy

which can be seen to be correct from the meaning of --->) to PP, we do not change the
body of theorems. In particular, the cut rule is permissible:

2.4. The generalized cut rule. IfplA ···A pm ---> ql, ···,PlA ···A Pm ---> qn, and
qlA ... A qn ---> r are theorems ofPP, then Pl A··· A Pm ---> r is a theorem too. Thus, if
PIA ... A pm is t, then qb qn are t, hence qI A ... A qn is t, and r is also t.

It is also possible to parallel familiar arguments to give finitist proofs of the
eliminability of cuts.

Such results can be extended to systems obtained from PP by adding new axioms of
the form P V I P with atomic formulae p, or also of the form p or the form Ip with
atomic formulae containing only constants.

If we replace 2.1.4.1 by:
2.1.4.1. * P ---> q is a theorem if for all E, VE(P) = t implies VE(q) = t, and VE(P) = u

implies VE(q) =I- j,
we obtain a system EP that is complete relative to the interpretation 1.2* (instead

of 1.2) of --->. In particular, p A Ip ---> q is always a theorem in PP, but not always one in
EP.

3. Relation of PP to the classical predicate calculus

If we add the law of excluded middle to PP, we get the classical predicate calculus.
Alternatively, we can give a system KP which differs from PP only in having a
quantifier-free rule stronger than 2.1.4.1:

3.1. P ---> q is a theorem if for all E, VE(P) = t implies VE(q) =I- f; in particular, when p
is empty, if for all E, VE(q) =I- f Hence, if r is quantifier-free ---> rV Ir is a theorem.

We can prove the completeness of KP relative to either the classical definition of
validity, or equivalently:

3.2.p ---> q is valid if and only if for all E, VE(P) = t implies VE(q) =I- f; in particular, q
or ---> q is valid if and only if for all E, VE(q) =I- f

3.3. KP is complete; in fact f- KPP ---> q if and only if p ---> q is valid by 3.2.
Hence, it follows that:
3.4. The cut rule is permissible in KP.
3.5. f-KP ---> P V Ip, for every formula p.
Theorem 2. f-KP P---> q if and only if~ppp A (q V I q) ---> q; in particular, h p

---> q if and only if hp q V Iq ---> q.
Since every theorem of PP is one of KP, if f-pppV (qV Iq) --->q, then, f

KPP A (q V Iq) ---> q. Hence, by 3.5 and 3.4, f-KPP ---> q.
Conversely, if hpP ---> q, then for all E, VE(q) =I- fif VE(P) = t. If VE(q V Iq) = t,

then VE(q) = t or j, but not u. Hence, for all E, if VE(q V Iq) = t and VE(P) = t, then
VE(q) = t. Hence, by the completeness of PP (Theorem 1), f-ppp A (q V Iq) ---> q.

A lternativel y, we can also prove Theorem 2 directly without appeal to Theorem 1
and deduce Theorem 1 .from Theorem 2 and 3.3.

Corresponding to EP, we have also a complete system CP such that p ---> q is valid if
and only iffor all E, VE(P) =I- fimplies VE(q) =I- f Here again, we need only modify the
quantifier-free rule, and we have:

Logical Fragments Relevent to Computer Science 325

~cpp----*q iJand only iJhpp/\ (qV Iq)----*q.

In the classical approach, there is no sharp distinction between KP and CP since
they would contain the same theorems (not containing ----*).

References
[1] ACKERMANN, W., Widerspruchsfreier Aufbau einer typenfreien Logik II, Math. Z. 57 (1953), pp.

155-166.

[2] BEHMANN, H., Zu den Widerspriichen der Logik und der Mengenlehre, Jahresber. d. Dt. Math.-Ver.

40 (1931), pp. 37-48.

[3] BOCHVAR, D. A., On a Three-valued Logical Calculus and its Application to the Analysis of

Contradictions (Russian), Recueil Mathematique, N.S. 4 (1939), pp. 287-308.

[4] -, On the Consistency of a Three~valued Logical Calculus (Russian), ibid, 12 (1943), pp. 353-369.

[6] HERBRAND, J., Recherches sur la Theorie de la Demonstration, Warsaw, 1930.

[7] KLEENE, S. C., Introduction to Metamathematics, New York, 1952.

[8] LUKASIEWICZ, J., Die Logik und das Grundlagenproblem, Les Entretiens de Zurich (1941), pp. 82-

108.

[9] MOH SHAW-KwEI, About the Rules of Procedure (Chinese), Journal of Nanking University, 1 (1953),

pp. 801---809.

[10] ROSSER, 1. B. and TURQUETTE, A. R., Many-valued Logics, Amsterdam, 1952.

[11] SCHMIDT, H. ARNOLD, Mathematische Gesetze der Logik I, Berlin, 1960.

[12] SCHOTTE, K., Schlut/weisen-Kalkiile der Priidikatenlogik, Math. Annalen 122 (1950), pp. 47---65.

[13] -, Ein System des verkniipfenden Schliet/ens, Archiv f. Math. Logik u. Grundlagenfor-schung 2

(1956), pp. 55---67.

[14] -, Aussagenlogische Grundeigenschaften formaler Systeme, Dialectica 12 (1958), pp. 422--442.

[15] -, Beweistheorie, Berlin, 1960.

[16] SKOLEM, TH., Dber einige Grundlagenfragen der Mathematik, Oslo (1929), 49 pp.

14.5 Model theory *

A. Background and typical problems.
Model theory studies the interpretations (models) of theories formalized in the

framework of formal logic, especially that of the (first-order) predicate calculus with
equality (briefly, elementary logic). A (first-order) language is given by a collection S of
symbols for relations, functions and constants which, in combination with the symbols
of elementary logic, single out certain combinations of symbols as sentences. Thus, for
example, in the case of the system N, the formation rules give the language which is
determined in accordance with a uniform procedure by the set of (uninterpreted)
extralogical symbols:

5 = { +, " 0, I}.

* Reproduced with permission from " Metalogic· ,in Encyclopedia Britannica, 15th edition, ~
1974 by Encyclopedia Britannica, Inc.

326 Computation, Logic, Philosophy

A (first-order) theory is determined by a language and a set of sentences of the language
(the distinguished or "true" sentences of the theory). In the particular case of the system
N, one theory Ta is determined by the language and the set of theorems of N, and
another theory T b is determined by the true sentences of N according to the natural
interpretation. In general, we can use the language of N and any set of sentences of the
language to make up a theory.

A realization of a language (for example, the one based on S) is a structure a of the
form

a = < A, +a, ·a, Oa, la,

where A is a nonempty set (called the domain of a), 0 a and la are members of A, +
and· are functions from AxA (i.e. the set of ordered pairs <a, b> such that a,b belong to
A) into A. The structure a satisfies or is a model of the theory Ta (or Tb) if all the
distinguished sentences of Ta (or T b) are true in a (or satisfied by a). Thus, if a is the
structure of the ordinary nonnegative integers < W, +, 0, 1) then it is not only a
realization of the language based on S but also a model of both Ta and Tb • Godel's
incompleteness result permits nonstandard models of Ta which contain more objects
than W but in which all the distinguished sentences of To (viz. the theorems of the system
N) are true. Skolem's constructions (related to ultraproducts, see below) yield
nonstandard models for both To and Tb •

The use of the relation of satisfaction or model-ofbetween a structure and a theory
(or a sentence) can be traced back to the book Wissenschafislehre (published in 1837)
by B. Bolzano (1781-1848), and, in a more concrete context, to the introduction of
models of non-Euclidean geometries around that time. In the mathematical treatment
of logic, these concepts can be found in works of E. Schroder (1841-1902) and L.
Lowenheim (in particular, his paper of 1915). Basic tools and results in model theory
such as the Lowenheim-Skolem theorem, the completeness theorem of elementary
logic, and Skolem's construction of nonstandard models of arithmetic were developed
during the period 1915--1933. A more general and abstract study of model theory
began after 1950 by Tarski and others.

One group of new results may be classified as refinements and extensions of the
Lowenheim-Skolem Theorem. A rather direct generalization says that if a theory has
any infinite model, then for any infinite cardinal number e, it has a model of cardinality
e. It follows that no theory with any infinite model can be categorical (i.e., such that any
two models of the theory are isomorphic), since models of different cardinalities can
obviously not be isomorphic. A natural question is whether a theory T can be categorical
in certain (infinite) cardinalities, i.e., whether there are cardinal numbers e such that
any two models ofT of cardinality. e are isomorphic. A central result due to M. Morley
(1963) says that if a theory is categorical in any uncountable e, then it is categorical in
every uncountable cardinality. On the other hand, examples are known for all four
combinations of countable and uncountable cardinalities: there are theories which are
categorical (1) in every infinite cardinality, (2) in the countable cardinality but in no
uncountable cardinality, (3) in every uncountable cardinality but not in the countable,
(4) in no infinite cardinality. In another direction, there are "twocardinal problems"

Logical Fragments Relevent to Computer Science 327

which ask about the possibilities of changing, from one model to another, the
cardinality, not only of the domain of the first model, but also of some chosen property

(5uch a5 being a prime number). There are various results on these questions including
independence results (pom. ordinany axioms of set theory) and conditional nesultos
proved under the assumption of certain faniliar hypotheses of set theory.

An area of perhaps more philosophical interest is concerned with the nature of
elementary logic itself. On the one hand, the completeness result seems to show in some
sense that elementary logic is what we naturally wish to have. On the other hand, one is
still inclined to ask whether there might be some uniqueness result to the effect that
elementary logic is the only solution to satisfy certain natural requirements on what a
logic should be. The development of model theory has led to a more general outlook that
enabled P. Lindstrom to prove a general result along this direction (1969): roughly
speaking, within a broad class of possible logics, elementary logic is the only one which
satisfies the requirements ofaxiomatizability and the Lowenheim-Skolem theorem.
While this theorem does not settle satisfactorily whether elementary logic is the right
logic, it does seem to suggest that mathematical results can help us to clarify our concept
of logic and logical truth.

A particularly useful tool for getting new models from given models of a theory is
the construction of the ultraproduct of a family of structures (in particular, the
ultrapower when the structures all are copies of the same, just as the product of al, ... , an
is the same as the power an if Clj = a, for each i). The intuitive idea is to establish that a
sentence is true in the ultraproduct if and only if it is true in "almost all" ("almost
everywhere") the given structures: an idea which was present in a different form in
Skolem's construction of a nonstandard model of arithmetic in 1933. It then follows that
if the given structures are models of a theory T, then their ultraproduct is one also since
every sentence in T is true everywhere (which is a special case of" almost everywhere" in
the technical sense employed). For example, ultraproducts have been applied to
providing a foundation for nonstandard analysis which yields an unambiguous
interpretation of the classical concept of infinitesimals. They have also been applied by
Ax and Kochen to problems in the field of algebra (oon p-adic fields).

There are also studies developing model theory of nonelementary logic: such as
second order logic and infinitary logics. Second order logic contains a second kind of
variable ranging over sets of objects so that the model a of a second order sentence or
theory involves, beyond the basic domain A, also (the set of) all subsets of A. Infinitary
logics may include functions or relations with infinitely many arguments, infinitely long
conjunctions and dis junctions, infinite strings of quantifiers. From studies on infinitary
logics, Hanf was able to define certain cardinals some of which have been studied in
connection with large cardinals in set theory. Yet another direction is the development
of model theory for modal logics and the intuitionistic logic.

There is a big gap between the general theory of models and the construction of
interesting particular models such as those which are employed in the proofs of
independence (and consistency) of special axioms and hypotheses in set theory. It is
natural to look for further developments of model theory which will yield more
systematic methods of constructing models of axioms with interesting particular
properties, especially along the line of deciding whether certain given sentences are

328 Computation, Logic, Philosophy

derivable from the axioms. Relative to the present state of our knowledge, such goals
appear fairly remote. The gap is not unlike that between the abstract theory of
computers and the basic properties of actual computers.

B. Characterizations of (the first order) logic.
We have outlined above a proof of the completeness of elementary logic without

including equality. The proof can be extended to the full elementary logic in a fairly
direct manner. Thus, ifF is a sentence containing equality, we can adjoin a sentence G
which embodies the special properties of = relevant to the sentence F. Then we can
treatthe conjunction C ofF and G as a sentence not containing = (i.e., = is treated as an
arbitrary relation symbol). Hence, C has a model in the sense oflogic without equality, if
and only if F has a model in the sense of logic with equality, and we can infer the
completeness of elementary logic (with equality).

A concept more general than validity is the relation oflogical entailment between a
(possibly infinite) set X of sentences and a single sentence P, which holds if and only if p
is true in every model of X, or, for all M, M 1= p ifM 1= X. In particular, p is valid if the
emty set logically entails P. This suggests a stronger requirement on a formal system of
logic: X f-p (p is derivable from X by the system) whenever X logically entails P.
Theusual systems oflogic do satisfy this requirement because, besides the completeness
theorem. there is also a compactness theorem: A theory X has a model if every finite
subset of X has a model.
Roughly speaking, this enables us to reduce an infinite set X to a finite subset Xl in each
individual case, and the case of entailment when Xl is finite is taken care of by the
completeness result.

These results show that the ordinary systems of elementary logic are the correct
formulation, provided we assume that the actual choice of the truth functions (say
negation and disjunction), the quantifiers and equality as the "logical constants" is the
correct one. There remains the question of justifying the particular choice of logical
constants. For example, one might ask whether "for most x" or "for finitely many x"
should not be counted as a logical constant. Lindstrom gives a general concept of logic
and shows that logics which apparently extend the first order logic all end up being the
same as it, provided they satisfy the Lowenheim-Skolem theorem and they either have
the compactness property or are formally axiomatizable. There remains the question
whether or why these requirements (especially the one on the Lowenheim-Skolem
theorem) are intrinsic to the nature of logic.

C. Generalizations and extensions of the Lowenheim-Skolem theorem.
A generalized theorem can be proved using basically the same ideas as in the more

special case discussed above:
Generalized Lowenheim-Skolem Theorem. If a theory T has any infinite model,

then, for any infinite cardinality a, T has a model of cardinality a. More explicitly, this
contains two parts. (a) If a theory T has a model of infinite cardinality [3, then, for each
cardinal a > [3, T has a model of cardinality a, (b) If a theory T has a model of infinite
cardinality [3, then, for each infinite cardinal a < [3, T has a model of cardinality a.

It follows immediately that any theory having an infinite model has two

Logical Fragments Relevent to Computer Science 329

nonisomorphic models, and is, therefore, not categorical. This applies, in particular, to
the theories Ta and Tb of arithmetic (based on the language of N) mentioned before,
whose natural models are countable, as well as theories dealing with real numbers and
arbitrary sets whose natural models are uncountable. Both kinds of theory have both
countable and uncountable models. There is much philosophical discussion about this
phenomenon.

It is not excluded that a theory may be categorical in some infinite cardinality. For
example, the theory Td of dense linear ordering is categorical in the countable
cardinality. One application of the Lowenheim-Skolem theorem is: If a theory T has no
finite models and is categorical in some infinite cardinality rx, then T is complete (i.e., for
every closed sentence p in the language of T, either p or its negation belongs to T). An
immediate consequence of this is that the theory Td is complete.

A result which is generally regarded as one of the hardest to prove in model theory
IS:

Morley's Theorem. A theory, which is categorical in one uncountable cardinality, is
categorical in every uncountable cardinality.

The two--cardinal theorems deal with languages with some distinguished preducate
U. We say that a theory T admits the pair <rx, fJ> of cardinals ifT has a model (with its
domain) of cardinality rx in which the value ofU is a set of cardinality fJ. The central two
cardinal theorem says:

If a theory T admits the pair < rx, fJ> of infinite cardinals with fJ < rx, then, for each
regular cardinal 'Y, T admits < 'Y + , 'Y> where 'Y + is the next larger cardinal after 'Y. The
most interesting case is when 'Y is the least infinite cardinal (The general theorem is
established only under the assumption of the "generalized continuum hypothesis").

D. Ultraproducts and ultrapowers.
An ultrafilter on a nonempty set I is a set D of subsets of I such that (1) the empty

set does not belong to D; (2) if A, B are in D, so is An B; (3) if A s; B and A is in D, then
B is in D; (4) for every subset A of I, either A is in D or I-A is in D. To use a rough
terminology, each ultrafllter of a set I gives a notion of large subsets of I so that any
property applying to all members of a member of D applies to I "almost everywhere".

Let {a i }, ie! be a family of structures indexed by I, and D be an ultrafilter on I. We
can pass from the direct product B of this family to a new structure U, with the help ofD.
We consider the equivalence relation == (relative to D) on B such that fora, beB, a == bif
and only if {ila. = b.}eD. This structure U, viz. the quotient set ofB by the relation ==, is
the ultraprodu'ct of'the original family of structures. For example, RDabc if and only if
{iIRabeJED. We get the ultrapower of a structure a (relative to I and D) when every a,
ie!, c~ih~ides with a. 1

The central theorems are the following:
(1) If a;, iel are realizations of the same language, then a sentence p is true in the

ultraproduct U, if and only if the set of i, such that p is true in ai, belongs to D. In
particular, if each ai is a model of a theory T, then U is also a model of T.

(2) Two realizations of the same language are elementarily equivalent if they have
the same set of true sentences. A necessary and sufficient condition for two realizations
to be elementarily equivalent is that they admit ultrapowers which are isomorphic.

330 Computation, Logic, Philosophy

One application is to the introduction of nonstandard analysis, which was initially
set up by corpactness considerations. By using a suitable ultrapower of the structure of
the field JR of real numbers, we get a nonarchimedean (i.e., permitting numbers a and b,
such that no n can make na greater than b) real closed field which is elementarily
equivalent to JR. This supplies an unexpected exact foundation of the classical
differential calculus using infinitesimals. The result has considerable historical,
pedagogical, and philosophical interest.

A widely known application to the area of algebra deals with the fields Qp (p-adic
completion of the rational numbers). A famous conjecture says that every form of
degree dover Q)' in which the number of variables exceeds d 2 , has a nontrivial zero in
Q . Ax and Kochen showed, using ultraproducts, that the conjecture is true for arbitrary
d ~th the possible exception of a finite set of primes p (depending on d). Subsequently,
it was found that the original conjecture is not true in full generality.

Another useful tool in model theory is the pigeon hole principles. The basic
principle is that if a set oflarge cardinality is partitioned into a small number of classes,
some one class will have large cardinality. Those elements of the set which lie in the same
class cannot be distinguished by the property defining that class. A related idea is that of
"indiscernibles" which also has rather extensive applications in set theory.

An ordered subset X of the domain of a model a of a theory is a (homogeneous set
or) set of indiscernibles for a, if a cannot distinguish members of X from one another.
More exactly, given any Xl < ... < Xn, Y 1 < ... < Yn in X, for any sentence F(al. "', an) of
the language of the theory, a F 1= (Xl. "', Xn) if and only if a 1= F(yl. "', Yn). A first
theorem on this notion says that given a theory T with an infinite model and a linearly
ordered set X, there is a model a of T such that X is a set of indiscernibles for a.

15. COMPUTERS AND MATHEMATICAL ACTIVITY*

15.1 Remarks on machines, sets and the decision prohlem1)

1. Machines and production systems

1.1 The basic distinction between monogenic and polygenic systems corresponds
to the contrast of calculations with proofs, functions with relations, and machines with
production systems. In calculations, we generally have a fixed procedure such that the
answer is completely determined by the question. In looking for a proof of a given
statement in a given formal system, we have in general an unbounded number of choices
at each stage since, for example, there are infinitely many p's such that p :::::> q together
with p would yield q. If there is a fixed number n such that at each node, there are only n
or less choices, then clearly we can get a monogenic system in the search for proofs. A
monogenic proof procedure, such as the Herbrand expansion procedure for the
predicate calculus, need not give a decision procedure. On the other hand, a monotone
system, such that by some criterion the conclusion is always longer or more complex
than the premisses, is always decidable when there are finitely many rules only. Thus,
given a statement p, the total number of statements which can enter in a proof of p is
finite since every rule has a fixed number of premisses.

Hence, it is of interest to inquire when a polygenic system is equivalent to a
monogenic one, and when either is equivalent to a monotone one.

1.2. A machine which halts on every finite input corresponds to a function from the
input to the output. If, on the other hand, we allow, e.g., that the machine can do either
of two things at each moment, then for each input we can get many outputs, and we get,
in general, a relation Rxysuch that yis an output of the machine for the input x. It seems
somewhat unnatural to speak of a polygenic machine, but with a Post production
system, the distinction between monogenic and polygenic is perfectly natural.

In Turing machines, we are usually interested in tapes which are blank for all but a
finite number of squares. The consecutive minimum portion containing all marked
squares and the square presently under scan could be taken as the string of symbols in a
production system. In that case, a machine corresponds to a monogenic production
system except for the fact that the former has a scanned square at each moment and has
different states.

* First published in Formal Systems and Recursive Functions, by Crossley et al. Gl 1963,
North-Holland Publishing Company. Reproduced by permission.

1) Work for this paper was supported in part by NSF grant GP-228 and in part by Bell Telephone

Laboratories, Inc., Murray Hill, New Jersey.

331

332 Computation, Logic, Philosophy

Definition 1: A labeled rewriting system is a finite set of rules Pi --+ Qi such that in
each Pi and Qi exactly one symbol has an arrow above it (the label indicating the square
under scan).

Theorem 1: There is an effective method by which, given any Turing machine,
we get a corresponding monogenic labeled rewriting system in which each Pi (also
each Qi) contains exactly two symbols, one of which is labeled.

To prove this, we use a Turing machine formulation such that in each state, a
machine prints, shifts, and changes state according to the symbol newly under scan. In
other words, if there are m states ql, ... , qm, n symbols S1> ... , Sn, a machine is given by
qaSi ± lSj qb (a = 1, ... , m; i, j = 1, ... , n), so that if the machine is in state qa scanning
symbol Si' it shifts right (+ 1, or left, - 1) and then scans the next square, ending up in
a state qb determined by the newly scanned symbol Sj. It is not hard to verify that this
formulation is equivalent to the usual one in the sense that they can simulate each other.

With this formulation, we can always use an alphabet with (m + l)n symbols and
one state only. Thus, instead of the given state qa and the symbol Si' we have the symbol
(a, i). This is changed to (0, i). After the shift, the scanned symbol is (0, J) which is now
changed into (b, J). In other words, for c = 1, ... , m and d = 1, ... , n, (c, d) is a symbol
indicating state c and symbol d, when the square is under scan; a symbol d in other
squares is represented by (0, d). This makes it easy to give a l-state universal machine
and yields a measure of the complexity of Turing machines solely by the size of the
alphabet (using always 1 state only). This also gives Theorem 1 immediately, since the
rules are simply of the forms

(a~ i)(O, J) --+ (0, i)(b~ j) for right shift,

(0, J) (a~ i) --+ (b~ J) (0, i) for left shift.

1.3. Multiple tapes naturally make it possible to simulate each m x nk one-tape
machine by an (m, n, k) (m states, n symbols, k tapes) machine; but the full force is not
used in the simulation and it is desirable to find more accurate measures than these.

Recently, P. K. Hooper [7J proved:

Theorem 2: There is a (2,3,2) universal Turing machine; there is a (1, 2, 4)
UTM, having a fixed loop for one of its four tapes.

In the realm of "real time computation," Michael Rabin has recently proved that
there are calculations which can be performed by two tapes but not by one tape. The
whole area of efficient calculations (as against theoretical computability) is wide open
and promises much interesting work.

Although there are various elegant formulations of Turing machines, they are still
radically different from existing computers. To approach the latter, we should use fixed
word lengths, random access addresses, accumulator, and permit internal modification

Computers and Mathematical Activity 333

of the programs. Alternatively, we could, for example, modify computers to allow more
flexibility in word lengths. Too much energy has been spent on oversimplified models so
that a theory of machines and a theory of computation which have extensive practical
applications have not been born yet.

1.4. There are a number of conceptually neat results on the theoretical side. We
mention a few recent ones at random.

The most elegant formulation of Turing machines is perhaps the SS-machines of
Shepherdson and Sturgis [16]. An SS-machine is a finite sequence of instructions, each
of which is of the following two types.
Po, Pl.print O(or 1) at the right end of the string S and go to the next instruction.
SD(k) :scan and delete the leftmost symbol of S; if it is 0, go to the next instruction,

otherwise, go to instruction k; if S is null, halt.

They have proved:
Theorem 3: Every Turing nwchine (in particular, a UTM) can be simulated by

an SS-machine.

It is particularly easy to simulate these machines by Post production systems (see
[22]).

1.5. A combinatorial system in the most general sense would be any finite set of
rules, each of which effectively produces a finite set of conclusions from a finite set of
premisses. The most intensively studied case is the one in which each rule has a single
premiss and a single conclusion. Such a system is called monogenic if the rules are such
that for any string at most one rule is applicable.

From this broad class of monogenic systems, Post chooses to consider the tag
systems. A tag system is determined by a finite set of rules:

i = 1, ... , p,

such that if the first symbol of a string is Si, then the first P symbols are removed and the
string Ei is appended at the end. Since the system is monogenic, Si of- S j when i of- j. If the
alphabet contains (J symbols, then p = (J.

Another natural class is, for want of a better name, the lag systems. A lag system is a
set of (JP rules:

L i: Sil •.• Si P(---> E;,

such that if the first P symbols of a string are Si I ... Sip, the first symbol, viz, Si I, is deleted
and Ei is appended at the end of the string.

In either case, Ei may be the null string. If Si is the length of Ei and S is the
maximum among Si, then each system has a prefix number P and a suffix number S.

In [llJ and [12J, Minsky has proved the following remarkable result:

334 Computation, Logic, Philosophy

Theorem 4: There is a tag system with prefix number P = 2 and suffix number
5 = 4, whose halting problem is unsolvable.

This is improved slightly in [22J to get the suffix number down to 5 = 3, and then
the result is shown to be best possible because every tag system with P = I or P ~ Sis
always decidable (i. e., both its halting problem and its derivability problem). More
recently, Cocke and Minsky gave an improved proof of Theorem 4, from which the
simplification to 5 = 3 follows directly. In these considerations, attempts to use the 55-
machines have not been possible.

A similar result for lag systems is proved in [22J by using 55-machines:
Theorem 5: There is a lag system with P = 5 = 2, whose halting problem is

unsolvable; moreover, when P = 1 or 5 ~ 1, every lag system is decidable.

The tag systems are a subset of Post's monogenic normal systems, each of which
has rules of the form

such that a given string BiQ becomes QEi by the rule. It is quite easy to use 55-machines
to get a normal system with P = 5 = 2 (P the maximum of the lengths of Bi) whose
halting problem is unsolvable (see [22J).

A specially interesting subcase of the normal systems is the I-normal systems in
which B; is always a single symbol. The I-normal systems include all tag and lag systems
with P = 1. It is obvious from [22J that the halting problem for every I-normal system
is decidable. S. Cook and S. Greibach have strengthened the result, with two radically
different proofs, to get also:

Theorem 6: The derivability problem (i.e., whether one string is deducible .from
another) of every I-normal system is decidable.

1.6. It has been known for quite some time that for Turing machines erasing is
dispensible (see [19]). In theory, this result has the practical application that, e.g., paper
tapes can be used in place of magnetic tapes.

The dispensibility of erasing is understood in the sense that every calculation can in
theory be done without erasing. Recently, the consequence problem is considered and it
is proved [15]:

Theorem 7: If T ranges over nonerasing T. M., W ranges over words in their
history, J ranges over (finite) inputs, then the relation P(W, T, J) (i.e., Wbelongs to
the history 0 fTwith input J) is recursive; on the other hand,for a fixed initial (finite)
input, we can find a T. M with erasing permitted such that the set of words in its
history is not recursive.

2. The decision problem and its reduction problem

2.1. In this part, we consider recent results on the decision and reduction problems

Computers and Mathematical Activity 335

of the (restricted) predicate calculus.
Since all mathematical theories can be formulated within the framework of the

predicate calculus (quantification theory, elementary logic), Hilbert spoke of the
decision problem when he was referring to the problem of finding a general algorithm to
decide, for each given formula of the predicate calculus, whether it is satisfiable in some
nonempty domain (or, has a model). He called this the main problem of mathematical
logic. It is familiar today that this problem in its general form is unsolvable in a technical
sense which is widely accepted as implying unsolvability according to the intuitive
meaning. An ipteresting problem is to investigate the limits of decidable subdomains
and the underlying reasons for the phenomenon of undecidability.

Recently, the general problem has been reduced to the formally simple case of
formulas ofthe form AxEx' Ay Mxx' y, where Mis quantifier-free and contains neither
the equality sign nor function symbols. In fact, one can further restrict the class to those
AEA formulas in which all predicates are dyadic, and each dyadic predicate Ci occurs
only in some of the nine possible forms Cixx, Cixx', Cix' x, Cix x, CSY, Cixy, Ciyx,
Cd y, Ciyx'. The following is proved in [9].

Theorem 8: Any AEA class including all formulas which contain only atomic
formulas in three of the four forms (xy, yx, x'y, yx') is undecidable; the class of all
AEAformulas of the form Wxx A U(xy, x'y) A V(yx, yx'), that of the form U(xy, x'y)
A V(xy,yx), that oftheform U(yx,yx') A V(xy,yx), are all undecidable, where W, U,
V are truth-functional expressions. Moreover, all these classes are reduction classes.

This completely settles the question of decidable and undecidable prefix subclasses
of the predicate calculus. This is true even if we allow formulas in the extended prenex
forms, i.e., formulas which are conjunctions of formulas in the prenex normal form.
(Compare [9J and [21J).

Theorem 9: An extended prefix form class is a reduction type (and
undecidable) if and only if either the prefix of at least one conjunct contains AEA or
AAAE as an (oorder-preserving but not necessarily consecutive) substring, or there
are two conjuncts of which the prefixes contain AAA and AE respectively. Moreover, it
is decidable ifand only if it contains no axioms of infinity. i.e.,formulas which have
only infinite models.

2.2. In [21J, a simpler alternative proof of Theorem 8 is given which has two
additional properties: (a) only a small fixed finite number of dyadic predicates are
needed, together with arbitrarily many monadic predicates; (b) finite models are
preserved in the reduction procedure so that a formula has a finite model if and only if its
corresponding AEA formula has a finite model.

Definition 2: Consider classes of formulas of the predicate calculus. For any class
X, let N(X), J(X), F(X) be the subclasses of X which contain all formulas in X which

336 Computation, Logic, Philosophy

have respectively no model, only infinite models, finite models. If R is a reduction
procedure which reduces a given class Y to y* and every subclass Z of Y to Z*, then R is
said to be a conservative reduction procedure for Y, if (F(Y))* = F(y*).

The following two theorems are proved in [21]:

Theorem 10: If K is the class of all formulas 0 fthe predicate calculus and R is a
conservative reduction procedure for K, then no two of the three classes N (K*), I (K*),
F(K*) are recursively separable.

Theorem ll: If Z is the class of AEA formulas (or some suitable subclass of
this, such as A1 given below), then no two of the three classes N(Z), I(Z), F(Z) are
recursively separable.

In another direction, Kahr (see [8J) extends Theorem 8 to the following:

Theorem 12: A reduction class for the predicate calculus is the set A1 of
formulas with prefix AEA such that each formula of the set contains only monadic
predicates and a single dyadic predicate.

This proof can be modified as in [21J to get theorem 11 for A1 and to give a
corresponding result for the prefix AAA A AE, and therewith an alternative proof of
Suranyi's similar result [18J for the more complex prefix AAA A AAE.

2.3. In studying the AEA case, "dominoes" were first introduced in [20J, and are
found to be useful for the study. They are also of some independent interest and are
reviewed here mainly for the remaining open problems.

We assume there are infinitely many square plates (the domino types) of the same
size (say, all of the unit area) 'with edges colored, one color on each edge but different
edges may have the same color. The type of a domino is determined by the colors on its
edges and we are not permitted to rotate or reflect any domino. There are infinitely
many pieces of every type. The game is simply to take a finite set of types and try to cover
up the whole first quadrant of the infinite plane with dominoes of these types so that all
corners fall on the lattice points and any two ad joining edges have the same color.

Definition 3: A (finite) set of domino types is said to be solvable if and only if there
is some way of covering the whole first quadrant by dominoes of these types.

It is natural to use ordinary Cartesian coordinates and identify each unit square
with the point at its lower left hand corner. Then we can speak of the origin (0, 0), the
main diagonal x = y, etc.

The following general questions on these games have been considered:

Definition 4: The (unrestricted) domino problem. To find an algorithm to decide,

Computers and Mathematical Activity 337

for any given (finite) set of domino types, whether it is solvable.
The origin-(diagonal-, row-, colunm-) constrained domino problem. To decide,

for any given set P of domino types and a subset Q thereof, whether P has a solution with
the origin (the main diagonal, the first row, the first colunm) occupied by dominoes of
types in Q.

Theorem 13: All the constrained domino problems are unsolvable (see [9J and
[21J).

The unrestricted domino problem remains open. In fact, as discussed in [20J, there
are two related open questions. l)

Problem 1. Is the unrestricted domino problem solvable?
Problem 2. Does every solvable domino set have a periodic solution?
A positive solution of the second problem would yield also a positive solution of the

first problem, but not conversely.
The unrestricted domino problem is related to a special subclass of the AEA

formulas with dyadic predicates only, viz., those of the form

(1)

or briefly,

(1)

U(Glxy, ... , Gkxy; Glx'y, ... , Gkx'y) A

V(Glyx, ... , Gkyx;

Glyx', ... , ~yx'),

U(xy, x'y) A V(yx, yx'),

where U and V are truth-functional combinations of the components.

Theorem 14: Given a domino set P we can find a formula Fp of the form (1)
such that P has a solution ifand only ifFp has a model; conversely, given aformula F
of the form (1), we can find a domino set PF such that Fhasa model ifandonly PF has
a solution. Hence, the unrestricted domino problem is undecidable if and only if the
decision problem of the class of all formulas of the form (1) is unsolvable. (See [21J.)

2.4. Results on the degree of complexity of AEA formulas are announced in the
preliminary report [10]. The whole paper has not been completed because of the
unwieldy construction of the simulation. An outline with proofs of the less
combinatorial part is reproduced here.

The method of simulating Turing machines by domino sets with diagonal
constraints, as developed in [9J, can be extended to obtain a simulation of each Turing
machine X with all its numerical inputs by a single domino set Px such that when X is
viewed as a function from inputs to outputs, every diagonal. constrained solution of Px

1) Recently (May 1964) Robert Berger has settled both questions in the negative.

338 Computation, Logic, Philosophy

satisfies the condition: if X(n) = 1, then K occurs at the point (IX(n), IX(n»; and if X(n)
= 0, then K does not occut at (IX(n), IX(n», where K is a domino type, IX is a fixed
monotone increasing recursive function. Expressing the solvability condition for Px by
an AEA formula, we can establish the following:

Lemma 1: For every Turing machine X, there is an AEA formula Fx
= (x)(Eu)(y) lxuywhich contains a monadic predicate M, such that every model ofFx
in the domain of natural numbers has the property that the rrwdel M* of M separates
the sets n(X(n) = 0) and n(X(n) = 1), and any such set can be used as M*, with rrwdels
of other predicates being recursive.

More specifically, identify M*(a(n», with K* (a(n), IX(n», and, for all k, if for non,
a(n) = k, NJ*(k) is true. In this way, we shall be able to choose M* which is recursive in
n(X(n) = 0).

We shall leave the proof of the lemma out and discuss what consequences we can
derive from it.

In the intended model, all other predicates of Fx are recursive. We use the fact that
if F has a model, then lxx'y, x' being short for x + 1, has a model in the domain of
natural numbers. It can be shown that the formula has no finite models. A nonstandard
model must also contain all the natural numbers. This seems sufficient for showing that
any RE (recursively enumerable) predicate A is recursive in every model of M when
x(X(x) = 0) and x(X(x) = 1) are suitably chosen (see below). "Recursive in" is defined
for natural numbers, but if M* also includes other objects, we seem to require a
generalization of the concept, which can be done in the natural manner. In any case, it is
true that A is recursive in M* because A is recursive in the standard part ofM* already.
Further, the restriction to RE models also requires a definition for M* to be RE, one
possibility is that its standard part is RE.

It may be pointed out, incidentally, that if we require that Fx has a unique model
relative to the domain of natural numbers and the successor function, then all the
predicates must have recursive models by the infinity lemma.

Alternatively, we may also wish to relativize the definition of the given RE
predicate A. Then we have to define A by a quantificational schema. Hence, we have to
begin with all possible models.

Another way of proceeding is to confine our attention to models in the domain of
natural numbers since otherwise recursive and RE are not defined. This last alternative
seems the most natural way.

In other words, we are only concerned with models of Fx in which the domain is the
set of natural numbers and the existential quantifier is replaced by the successor
function. This is not regarded as a weakened condition because otherwise we cannot talk
about recursive and RE models. This is indeed the practice followed by earlier authors.

Lemma 2: If A is RE, then there are disjoint REsets B, C, which are ~ TA, i.e.,
recursive in A, such that if an RE set D separates Band C, i.e., BcD, CeD, then

Computers and Mathematical Activity 339

A:::.; TD, i.e., A is recursive in D; in particular, A:::.; TB, and, hence, A = TB.
This follows from the proof (though not the statement) of Theorem 1 in [17].
Observe that unlike recursive separability, we cannot infer from the existence of an

RE set D separating Band C, that there is an RE set E separating C and B, i.e., C c E
and BeE, since D is not RE unless D is recursive.

The condition that Dis an REset is essential. Thus, if A is of degree 0', then Dmust
be of degree 0' too. In an unpublished work, Dana Scott shows that there is a degree d
< TO' such that any two disjoint RE sets are separable by a set (not necessarily RE) of
degree < d.

Theorem 15: For every RE set A, there is an AEA formula FA which contains a
monadic predicate M among its predicates such that (1) the rrwdel M* of M = J'A and
all other predicates have recursive rrwdels, and that (2) in every RE rrwdel of FA,
M*? TA.

Proof. Given the set A, take the sets Band Cas given in Lemma 2. It is familiar that
for any disjoint RE sets Band C, there is a corresponding Turing machine X such that
Xf.B == X (x) = 0, Xf. C == X (x) = 1. Use the machine X corresponding to the given sets
Band C, and apply Lemma 1. Hence, in every model of Fx , M* ? TA. If now we choose
M* = B, we have M* = TA.

It appears likely that if we do not want the stronger result with the restriction to
AEA formulas, we can combine Lemma 2 with familiar considerations to get a weaker
form of Theorem 15. Thus, for example, we can write a more complex formula
characterizing the machine X in Lemma 1.

Proof. of Lemma 2. By definition of RE, there exists g:

Xf.A == (Eu)(Ey) [x = U(y) i\ T(g, u, y)] == (Eu)(Ey) R(x, u, y).

Hence, there is f

Let
Xf.A == (Ey) T(f, x, y).

Xf. B == (Ey) [T(f, (x)o, y) i\ I (Ez)z,,;y T((x)J, x, z)]

X f. C == (Ey) [T(f, (x)o, y) i\ (Ez)z,,;y T((x}J, x, z)].

Clearly Band C are disjoint. Since

[(Ey) (Fy AD Gy) V (Fy)(Ey A Gy)] == (Ey) Fy,

(xf.BV Xf. C) == {x)of.A.

It is easy to see that Band Care recursive in A. Thus, if (x)o 4 A, then x r B, x 1 C. If
(x)of. A, we can determine the unique y such that T(f, (x)o, y). Hence,

xf.B=="I (Ez)z,cyT((x)J,x,z)
'"

Computation, Logic, Philosophy

xs C == (Ez}z ~/ T((x}j, x, z).

Suppose now BcD, C c D, and Dis RE. Choose e so that D = x(Ey} T(e, x, y).
To determine whether w I: A, we ask just whether x = 2w3e belongs to D. i.e., whether
(Ey) [y < ",J(e, x, z)A T(f, w, y)].

Case 1. x~D. We have then
Hence, w~ A, because otherwise, if ws A, thenxsB. But xl: BimpliesxsD, contrary to
hypothesis.

Case 2. xE D. We can then find unique z, 7{(X)b x, z). Since xE D implies x1= C,

wsA==xeBUC

== XEB.
But then,

xsB == (Ey)y<z T(f, (x)o, y),

because otherwise, i.e., if z !(y, then the second half of the condition for x e B cannot be
satisfied.

Since B can serve as a D, A = TB.

2.5. Since the class U of AEA formulas with dyadic predicates only is unsolvable
and a reduction type, it is of interest to consider what subclasses are solvable. The
following is proved in [5J and a more "geometrical" alternative proof is given in [21].

Consider the four forms xy, yx, x' y, yx'. First take any three of them. From
Theorem 8 above we know that any suhclass of U which includes all formulas whose
atomic formulas are in just these three forms is a reduction class and hence is
undecidable. Now take any two of the four forms. Combining them with the other five
forms yields a subclass of U. In this way we obtain six subclasses of U which divide into
three pairs:

] = {xy, x'y},
L = {xy, yx},
Q = {xy, yx'},

J* = {yx, yx'},
L* = {x'y, yx'},
Q* = {yx, x'y}.

Theorem 16: With the exception of subsets of Q and those of Q*, a class,
determined by the forms of atomic formulas occurring, is decidable if and only if it
contains at most two of the four forms xy, yx, x y, yx; it contains an axiom of infinity if
and only if it contains three forms including either xy and x' y, or yx and yx'.

Problem 3. Is the class of AEA formulas with dyadic predicates only which occur
only in contexts with xy, yx', xx, xx', x' x, x' x', yy decidable? Is the class decidable when
dyadic predicates occur only in the contexts with xy, yx', xx?

Problem 4. Does either case contain an axiom of infinity, i.e., a formula that has
only infinite models?

If the answer to the latter question is no for either class, then, by familiar

Computers and Mathematical Activity

arguments, that class is solvable.

341

2.6. Suninyi has applied his reduction classes with the prefix AAA A AAE to
obtain reduction classes with more complex prefixes but fewer predicates. Denton has
undertaken to study similar consequences of the AEA reduction:

Theorem 17: The following classes are reduction classes
(a) EY1'" EYnAxEyAzM(n = 1,2, ...) with one predicate only which is dyadic;
(b)AxEy(Pxy A (pxx ¥= Pyy)) A Az 1" .AznM (and therewith AxEyAz 1 •• • AznM)

with only the predicate P.
Part (a) follows from Theorem 12 in exactly the same way as Suninyi's Theorem IV

follows from his reduction class with prefix AAA A AAE. Part (b) was announced in
[3J and afterwards also proved by another argument using only Theorem 8.

In [6J, Gegalkine claims that the class of formulas AxEyFxy A AZ1 ... AznM with M
containing any number of monadic and dyadic predicates is decidable for finite
satisfiability. Denton shows in [4] that this would contradict Theorem 11 for.1 1. and
singles out the mistake in Gegalkine's paper. Further, he proves, by extending
Ackermann's work [lJ, the following:

Theorem 18: The class AxEyPxy A Az1 ... AZnM, where M contains only the
dyadic P and monadic predicates, is decidable for finite satisfiability.

Problem 5. Is the class AxEY1 ... EYnAzM, with only a single predicate (dyadic), a
reduction class?

Problem 6. Is the class in Theorem 18 (or even without the monadic predicates) a
reduction class?

3. Sets

3.1. The basic axioms of the system ZF of set theory are extensionality, infinity
(unconditional existence) and four axioms of conditional existence: (a) pairs, (b) sum
set, (c) power set, (d) replacement (a schema). It is noted in [23J that these axioms (a)
(d) are equivalent to a single axiom (schema): if A is a one-many correlation, x is a set,
and A"t = u(Ev) (tevA Auv), then there is a set y, y= L.A"nx (L. is sum set, n is
power set).

Thus, if Auv is v = {u}, then L.X = L.A "nx. If Auv is u = {v}, then nx = L.A "nx.
If Auv is (Ez) (Ew) (Gzw A u= {z}Av= {w}), then G"x= L.A"nx. If 0 is (u
= vAv =I- v) "x, Guv is (u = aAv = O)V (u = bAy = {O}), then {a, b} = G"nnO.
The part about {a, b} is familiar from the literature.

Previously, Bernays ([2J, p. 65) had employed a similar schema y = L.A "x to get
(b) and (d). Ono ([13J) had introduced a schema which would yield (a), (b), (c), (d) if we

342 Computation, Logic, Philosophy

add another axiom: (x) (Ey) (y = {x}). As it turns out, in a less explicit way, the same
axiom is also needed for the result stated in [23], although Ono's schema is different.

3.2. A different procedure is followed in [24] to get a schema which would yield all
the axioms including infinity and extensionality.

A partial hull is a transitive set closed with respect to power sets, i.e., PH(x) if (1)
LX s: x, (2) yc x c nyc x. A natural hull is closed also with respect to sum sets, i.e.,
NH(x) ifPH(x) and (3) ye x C Lye x. The natural holl1]a (or paritla hull ~a) of a set a is
the intersetion of all natural (partial) hulls x such that a e x.

Theorem 19: In ZF, 1]a can be shown to exist for each a, and to satisfy the
conditions (1)-(4), as well as that of being the minimum; similarly for ~a with the
conditions (1), (2), (4).

Let SE be obtained from the usual axiom of replacement by substituting 1]X or ~x
for the given set x, viz., the schema: If Huv is many-one, then (Ey) (y = H"l1x) (or
(Ey)(y = H"~x)). Let UE be obtained from SE by adding uniqueness, i.e., by
substituting (E!y) for (Ey). Both SE and UE can be expressed in the primitive notation
of ZF.

Theorem 20: In the predicate calculus with equality, SE yields all existence
axioms of ZF, UE is equivalent to all these axioms plus extensionality.

For some purposes, it is also useful to define other closures, e.g., ca, the transitive
closure of a, would be the smallest x, a s: x and LX s: x.

3.3. The usual definitions of the class On of the Zermelo-Neumann ordinals do not
reveal the intuitive picture of how the ordinals are obtained successively. It is possible to
use a "genetic" definition roughly in the tradition of Frege and Dedekind. This
approach has the advantage that we can also use different successor functions, e.g., x'
= nx rather than x' = x U {x}. Such differnt successor functions are useful, e.g., in
studying the natural models of von Neumann and Bernays.

Two definitions of the Zermelo-Neumann ordinals are found to be adequate:

DI. Onl (x) when x belongs to every set u such that (1) v'l: u, if v8 u and v' I: x' ; and (2)
LWI: u, if w s: u and LW8x'.

DI*. On2(x) when for every set u, there is w, LW E U, W s: x, and u n w = 0; if x E u and
for all v, v c u if v' 8 u.

In fact, a general theorem on these ordinals is proved:

Theorem 21: If for a predicate On(x) we can prove that for every F, Fy if (1)
On(y), (2) (v)(Fv :::J Fv'), and (3) (w)(w s: F:::J F(Lw)); then every x which satisfies
On(x) is a genuine ordinal. Hence, if On (x) is a property known to hold for all
ordinals, then the definition is adequate.

Computetsand Mathematical Activity 343

When specialized to finite ordinals, we get:
DF. Nnl (x) when x belongs to every set u such that (1) 0 B u ifOB x'; (2) v' B u, if vB u

and v' BX'.

DF*. Nn2(x) when for every u, OBU, if (1) XBU, (2) vB u if v' B u.
These are also adequate definitions. In fact, DF* is one which had previously been

studied by W. V. Quine and K. R. Brown.
In all these developments, weak axioms are enough, viz., extensionality,

Aussonderung, and self-adjunction (x)(Ey)(y = x U {x}). To get also recursive
definitions or transfinite recursions, some strengthening of the axioms in the standard
manner is necessary.

References

[1 J W.Ackermann, Beitrage zum Entscheidungsproblem der mathematischen Logik. Math. An-

nalen 112 (1936) 418-432.

[2 J P. Bernays and A. Fraenkel, Axiomatic Set Theory. (Amsterdam 1958).
[3 J J. S. Denton, A Reduction Class with a Single Dyadic Predicate. Notices AMS 10 (1963) 124-125.
[4 J J. S. Denton, A False Decision Procedure for the Halting Problem. Notices AMS 10 (1963) 125.
[5 J B.Dreben, A. S. Kahr, and Hao Wang, Classification of AEA Formulas by Letter Atoms, Bulletin

AMS 68 (1962) 528--532.
[6 J I. Gegalkine, Problema razresimosti na konecnik klassah. Ucenye Zapiski Mosk. Gos. Univ. ioo

(1946) 155---212.
[7 J P. K. Hooper, Some Small Multi-tape Universal Turing Machines. Notices AMS 10 (1963) 584.
[8] A. S. Kahr, Improved Reductions of the Entscheidungsproblem to Subclasses of AEA Formulas,

Symposium on the Mathematical Theory of Machines, Brooklyn Polytechnic Institute (April
1962); Proceedings (New York 1963) 57-70.

[9 J A. S. Kahr, Edward F. Moore, and Hao Wang, Entscheidungsproblem reduced to the AEA Cace.
Proc. Nat. Acad. Sci., U.S.A. 48 (1962) 365---377.

[lOJ A. S. Kahrand Hao Wang, Degrees ofRE Models of AEA Formulas. Notices AMS 10 (1963) 192-
193.

[llJ M. 1. Minsky, Recursive Unsolvability of Post's Problem of Tag. Annals of Mathematics 74 (1961)
437---455.

[12J M. 1. Minsky, Universality of (p = 2) Tag Systems. A. 1. Memo No. 33 (Cambridge, Mass. 1962).
[13J K. Ono, A Set Theory founded on Unique Generating Principle. Nagoya Mathematical Journal 12

(1957) 151-159.
[14J E. 1. Post, Formal Reduction of the General Combinatorial Decision Problem. American Journal

of Mathematics 65 (1943) 197-215.
[I5J M. O. Rabin and Hao Wang, Words in the History of a Turing Machine with a Fixed Input. Journal

ACM 10 (1963) 526--527.
[16J J. C. Shepherdson and H. E. Sturgis, Computability of Recursive Functions. Journal ACM 10

(1963) 217-255.
[17J J. R. Shoenfield, Degrees of Formal Systems. Jorunal of Symbolic Logic 23 (1958) 389--392.
[18J J. Suranyi, Reduktionstheorie des Entscheidungsproblem (Budapest 1959).
[19J Hao Wang, A Variant to Turing's Theory of Computing Machines. Journal ACM 4 (1957) 53-92.
[20J Hao Wang, Proving Theorems by Pattern Recognition, II. Bell Systems Technical Journal 40

(1961) 1---41.
[21J Hao Wang. Dominoes and the AEA Case of the Decision Problem. Symposium on the

Mathematical Theory of Machines, Brooklyn Polytechnic Institute (April 1962); Proceedings
(New York 1963) 23-55.

344 Computation, Logic, PlUlosopl,ly
[22J Hao Wang, Tag systems and Lag Svstems. Math. Annalen (1963) 65--7 ...

[23J Hao Wang, A Universal Axiom of Conditional Set Existence. "atice5 .~\lS 10 (1963) 588.
[24J Hao Wang, Natural Hulls and Set Existence. Nitices AMS 10 (1963) 59 ...

15.2 Logic and computers *

1. Historical and philosophical background

Familiar connections between mathematical logic and automatic computers are the
possibility of representing basic building blocks of computers by (sequential) Boolean
functions and the close resemblance between programming languages and symbolisms
of logic. As a result, both for the construction and for the use of computers, a certain
degree of acquaintance with logic becomes indispensable. As early as 1656, Leibniz
dreamed of a universal scientific language in his first published work; and many people
today are actively seeking for a universal language for computers. Gottlob Frege wished
to reduce arithmetic to logic from 1879 on, and in an oblique way the performance of
arithmetic operations in computers by means of electronic circuits which are essentially
logical functions may be said to accomplish the task in a particularly down-to-earth
manner.

A more basic link between logic and computers is perhaps the common interest in
algorithms. Although Charles Babbage conceived of and started to build in the 1830's
the Analytical Engine which possessed most of the basic characteristics of modern
computers, it was only in the 1940's that automatic computers began to appear througn
the efforts of Howard Aiken, John von Neumann, and others. The logicians had, on the
other hand, made not only a highly successful abstract study of algorithms but even
clarified the relation between machines and algorithms, largely through A. M. Turing's
theory of idealized machines, all in the 1930's.

Traditionally the study of algorithms falls outside the domain oflogic. The deepest
source of the affinity of logic and computers is the preoccupation of logicians with
formalization. The long evolution of attempts to formalize mathematical proofs, from
Euclid to Principia, finally led to mechanizability as the ultimate criterion of complete
success. This desire to make arguments formally precise and exact is concerned more
with the product rather than with the theory of formalization. Only in the 1920's, D.
Hilbert, P. Bernays and others began to study metamathematics: the theory of proofs,
the theory of formal systems. The distinction may be illustrated by the method of
"discarding 9's" for checking multiplications. It is a metamathematical result on the
usual technique of multiplying particular integers that a number is divisible by 9 if the
sum of its digits is. This example also brings out the fact that the distinction between
mathematics and metamathematics is not sharp. For we can easily state and prove the
above result as a simple theorem in number theory by the easy relation 10" == 1 (mod 9).

* First published in American Mathematical Monthly, vol, 72, pp 135-140. @ Mathematical
Society of America, 1965. Reproduced by permission.

Computers and Mathematical Activity 345

It was the concern with a theory of proofs which at first led J. Herbrand to an
abstract definition of calculation processes, as a particularly simple type of proofs.
Although Turing was said to have had formulated his theory of machines before he was
familiar with much of the achievements in logic, he certainly did his homework quickly
and soon put his work in the main stream. The surprisingly simple solutions to the
question of giving a general definition of algorithms were undoubtedly an important
cause of the rapid developments in the area of abstract studies of calculations.

2. Between engineering and mathematics

Logic was a bastard of mathematics and philosophy; while actual computers first
came into being as a great feat of engineering. This divergence in their ancestry presents
serious sociological and scientific difficulties for those who are interested in the vaguely
defined region referred to as "logic and computers." This is not the place to digress into
sociology.

The trouble on the scientific side is that most ambitious people find dreary
piecemeal engineering and idle intellectual gyrrmastics equally repulsive. And it seems
as though there is little else to offer at the present stage, except it be irresponsible
speculations. The origin of the problem goes further back. Every branch of applied
mathematics embodies an intrinsic dilemma: each piece of work is either not sufficiently
applied or not sufficiently mathematical. We have to present a patient defense in each
case.

As Turing machines and actual computers werer studied more or less
independently of one another, there slowly developed a desire to bring about a marriage
of theory and practice. This has proved to be an exceedingly difficult task. True, there
are a number of basic results in very general terms. Turing machines are equivalent to
actual computers if we disregard speed and the question of a potentially infinite supply
of tape. In fact, there are alternative formulations of Turing machines which are more
similar to actual computers, e.g., a representation of Turing machines by programs with
a small number of basic instructions. Hence, since there are problems (e.g., the halting
problem) which are unsolvable on Turing machines, the corresponding problems are
unsolvable on actual computers. Another example is the result that in theory erasing is
dispensable on Turing machines. Hence, magnetic tapes (in contrast with, say, paper
tapes) are in theory not necessary for building computers.

Along with Turing machines, a simpler model of computers under the name "finite
automata" has been extensively investigated and sometimes compared, in an expansive
and speculative mood, to the human brain. This elegant model has also given rise to a
number of amusing mathematical results.

In both cases, however, decisive steps remain to be taken before more significant
applications can be made, probably with more realistic and less neat models. One basic
difficulty is the transition from theoretical possibility to practical feasibility. For
example, even though finite automata are closer to actual computers in being finite, the
large size needed to represent an actual computer makes it seem likely that Turing

346 Computation, Logic, Philosophy

machines will be a more useful model than finite automata even for practical purposes.
It must be emphasized that the mathematical theory of machines is a young

discipline and, as such, it is doing very well so far. Moreover, it has the important
advantages that little equipment beyond native wits is required for its pursuit and that it
promises great things to come. But great things are rare. What is needed at present is not
quantity but rather pursuers of good quality.

On the more theoretical level, the study of impractical algorithms and abstract
machines, not as isolated idealizations, but in relation to other parts of logic and
mathematics, has led to many significant mathematical results. Moreover, these results,
although not often their proofs, can usually be stated in quite simple terms. In terms
both of their intrinsic intellectual merit and of their potential applications, they would
seem to have as wide an appeal as, say, molecular biology.

3. Unsolvable problems

While engineering is primarily the study of how to make things, mathematics is
more often concerned with showing that under certain general conditions, certain things
can or cannot be done. There is a special appeal to show that certain things cannot be
done, because such results involve, in a negative way, all the available resources of a
given method. For example, in bisecting an angle, we use only a small part of the
resources of ruler and compass; while in proving the impossibility of trisecting an
arbitrary angle, we have to possess a clear conception of all the possible constructions
which we can make with ruler and compass. It is in this area of demonstrating
unsolvability that the abstract study of idealized machines has produced results of the
greatest mathematical interest. In particular, the interplay of logic and the theory of
computers is striking.

It is familiar to logicians that all mathematical theories can be formulated in the
framework of elementary logic. Hence, if we could decide whether in general a statement
is a theorem of logic, we would also be able to decide whether a statement is provable in
any given mathematical theory. This situation explains why the Hilbert School regarded
the Entscheidungsproblem, i. e., the problem of deciding whether a statement in logic is
a theorem, as the main problem of logic.

From 1920 on, Post tackled this problem by formulating a more general one that
deals with derivability in arbitrary production systems, of which the system of
elementary logic is a special case. This turned out to yield a general concept of formal
systems, and indirectly, one of calculation processes. Moreover, the abstract
formulation renders possible experimentations on apparently simple cases, with a view
to discovering some common pattern useful for the handling of the general case.

Unfortunately, as a means to get positive results, this attractive approach is, on the
whole, quite powerless. One of the very first examples which Post studied in 1920-21,
and reported publicly in 1943, remains unsettled today. Consider all (finite) strings
made out ofO's and l's and use two very simple rules: if a string begins with 0, delete the
three symbols at the beginning and add 00 at the end; if it begins with 1, delete the three

Computers and Mathematical Activity 347

initial symbols and append nOI at the end; (stop if a string contains less than three
symbols). The problem is simply: do we have a general method of deciding, for any two
strings, whether the second can be obtained from the first by the above two rules?

On the other hand, Post's approach can be employed to establish negative results,
once the step is taken to identify solvability with that by a production system or some
other equivalent method, say by a Turing machine. In fact, in 1936 Turing proposed and
argued for such an identification, and applied results on Turing machines to prove the
unsolvability of the Entscheidungsproblem. Quite recently, this result has been sharply
refined to a certain degree of finality, with the help of a picturesque auxiliary tool of
"dominoes." This type of work exemplifies the rich possibilities of applying the theory
of machines to establish basic results about logic.

Applications in other branches of mathematics include P. S. Novikov's proof
(1955) that the word problem for groups is unsolvable, a result which has been applied
by A. A. Markov to prove (1958) that the 4-dimensional homeomorphy problem is
unsolvable. The 3-dimensional homeomorphy problem remains open. Impressive
partial results have been obtained on Hilbert's tenth problem: whether tere is a general
method of deciding the question of solvability in integers of every polynomial equation
with integer coefficients. To establish the unsolvability of this problem would be
considered a major mathematical result.

The (formally) simplest example of an unsolvable problem is probably the
following word problem formulated by G. S. Tsentin and D. Scott in 1955. Consider
strings (words) made out of the five symbols, a, b, c, d, e and the following seven rules
for mutual substitution: ac<->ca, ad<->da, bc<->cb, bd<->db, adac<->abac, eca<->ae,
edb<->be. It is an unsolvable problem to decide whether any two words are equivalent by
these rules.

4. Formalization

From the rich domain of mathematical logic, we have selected two aspects as
specially relevent to computers, viz. the theory and the practice of formalization. The
unsolvability results belong to the theory side, while formalizing individual
mathematical proofs or "deriving mathematics from logic" belongs to the practice side.
In this latter aspect the interplay oflogic and computers is significant on a more concrete
level: developments oflogic combined with the great power of actual computers give rise
to the hope of mechanizing mathematical arguments, not just in principle, but in
practice as well.

As in engineering, there is little likelihood of general results in this positive
enterprise. But, unlike an engineer, we are not concerned with actually making things
and we do get exact results in each individual case.

The interest in mechanization implies a reorientation of formal logic with a view
toward greater efficiency. In particular, this means that the need for economy of axioms
and primitive concepts is to be supplemented with an exact formulation of a large body
of concepts and rules, which make up the average mathematician's stock of trade.

This can best be illustrated by an example from elementary number theory.

348 Computation, Logic, Philosophy

Suppose we wish to prove:

(I) x> 1 -4 (Ey) [Py A (yl x)],

i.e., every integer greater than 1 has a prime divisor.
We assume given an organized stock of information SF with properties of +, "

< listed first, and then properties of P and I, which may involve the more basic concepts
+ , " <. The list SF is organized so that not too much searching is necessary to look up
required properties.

The basic strategy is to assume the theorem false and try to derive a contra-diction
from the least counterexample, which embodies a mechanically convenient form of the
principle of mathematical induction. The imagined least counterexample provides an
"ambiguous constant" which possesses not only general properties true of all integers
but also unusual properties arising from the assumption that it is a counterexample. In
simple cases such as (I), after we draw on SF and use simple truth-functional
deductions, we quickly get an ambiguous constant with contradictory properties. It
should be emphasized that the proof below is merely a sketch of an illustration. More
elaborate strategies of roughly the same type are necessary in order to prove more
complex theorems.

To prove (I), we first assume it false and let m be the least counterexample:

(1)

(2)

(3)

m>l

Pb -4 Mm
1 < a < m -4 PYa 1\ (Ya I a).

The only ambiguous constant thus far is m. Substitute m for a and b above in order
to get further properties of m.

(4)

(5)

Pm-4 m{m

1 < m < m -4 pYm /\ (Ym 1m).

Look up SFand try to derive simple consequences from (1), (4), (5) with the help of
SF. Find m i m in SF and delete the trivially true (5). Find m I m in SF and infer from
(4):

(6) ~Pm.

Now (4) may be deleted since it is a direct consequence of (6). We have now (1), (2),
(3), (6). Look up SF and get the defining property of P as applied to m:

By (6), we get:

(7)

(8)

~ Pm +--7 (Ex) [1 < x < m /\ (x1'm)].

l<xm <m

xmlm.

Computers and Mathematical Activity 349

Since Xm is a new ambiguous constant, it is desirable to substitute it for the free
variables in the general statments obtained so far, viz. (2) and (3) only.

(9)

(10)

PXm ~xml m

1 < Xm < m ~ Pyxm /\ (yxml xm).

Derive truth-functional consequences (first without appealing to SF) from (1), (2),
(3), (6)-{10).

(11)

(12)

(13)

~ Pxm, by (8) and (9).

pYxm, by (7) and (10).

Yxm I X m , by (7) and (10).

Now appeal to the list SF and use: (a I b) /\ (b I c) ~ (a I c).
(14) Yxm I m, by (8) and (13).

(15)

(16)

Substitute the ambiguous constant YXm for the free variables in (2) and (3):

PYxm ~ YXm I m.

1 < Yxm < m ~ PYYXm /\ (YYXm I Yxm).

By (14) and (15), we get:

(17) ~ PYxm, contradicting (12).

Obviously we have not listed all the blind alleys and the method has to be specified
much more exactly before a machine program can be written. But, it is thought, the
above outline makes it plausible that a fairly natural program can be written on existing
machines to prove theorems like (1) and, for example, also 2X2 =1-1 (x, Y range over
positive integers).

A Short Reading List
1. B. A. Trakhtenbrot, Algorithms and automatic computing machines, D. C. Heath, Boston, 1963.
2. Marthin Davis, Computability and unsolvability, McGraw-Hill, New York, 1963.
3. American Mathematical Society, Experimental arithmetic, high speed computing and mathematics,

Proc. Symposia in App!. Math., 15 (1963).
4. Brooklyn Poly tech. Inst., Mathematical theory of automata (Proe. of Symposium held April, 1962),

1963.

15.3 Remarks on mathematics and computers *

1. Introduction

The main body of this paper is devoted to suggestions on mechanical mathematics

* First published in Theoretical Approaches to Nonumerical Problem Solving (Lecture Notes
Oper. Res. & Math Systems 28), pp. 152-160. <D Springer Verlag, New York, 1970. Repro·
duced by permission.

350 Computation, Logic, Philosophy

(sections 3 and 4) and an analysis of the relations between mathematics and physically
executable procedures (section 5). The more general comments in the first two sections
are to round off the picture.

2. New uses of computers

The eventual goal of studying new uses of computers must be practical in a broad
sense. They may be used to do familiar things in order to eliminate drudgery, to reduce
cost, to increase reliability, or to speed up operations. The greater accuracy and speed
alone may also make possible hitherto unachievable aids such as space projects or
weather forecasting. The practical goal could also be the advance of knoweledge and
understanding. Much of the unorthodox experiments and speculations on new uses of
computers has to be justified in such terms. And it can be frustrating to remind oneself
that much of the theoretical work on computers may turn out to be pointless in the long
run.

There is a sort of conservation law. The immediately practicable applications such
as airline reservations or recognition of characters typed by a given kind of machine are,
though financially profitable, intellectually less challenging. While the more exciting
problems are, almost by definition, much harder.

For example, computers are useful as a model of "thinking machines" in that we
can now experiment with hardware models of program simulations there of which will
perform certain mental acts. It is not so much (not in the foreseeable future anyway) that
we aim at duplicating the brain but rather, we can try to ioprove existing computers,
both in their use and in their structure, to perform zore and more sophisticated tasks. On
account, however, of the radical novelty of qualitatively new applications, we are mostly
at a loss as to how to proceed. In fact, this area shares with many new things serious and
interrelated drawbacks: no solid foundation (such as Newtonian mechanics) to rely
upon, no heritage to fall back on, cumulative advance not easy, standard of evaluating
results less objective, vulnerability to exaggeration and deception.

There are also safer uses which are not practical in the narrow sense. For example,
the very concept of computers lends a new dimension to discussions on Philosopnical
problems such as mind and body, the nature of consciousness. In the area of
mathematics, we can also list a few rather noncontroversial examples. Computers have
been used as heuristic aids to deal with nonlinear problems. The complex data are not
only useful in themselves but may suggest solutions to abstract mathematical problems
in more general cases. There have also been work to prove general theorems in number
theory by reducing them to some special numerical cases manageable on large
computers. In numerical analysis, it is desirable to mechanize the sequencing of
connecting steps between different procedures in order to take advantage of the
automatic aspect of computers.

3. Influence of mathematics on the development of computers

Rather surprisingly, the influence of specific mathematical theories and results on

Computers and Mathematical Activity 351

the development of computers is quite limited. Perhaps we can mention only the two
elementary things: Boolean algebra for circuit design and the binary notation of
numbers. The abstract theory of idealized computers has had little practical impact.

In a more general way, the abstract theory has a course of good deal of educational
value for users of computers. Moreover, however pure mathematicians may say,
programming is quite typically a mathematical activity in so far as it involves a lot of
"thought experiments" with characters and numerals. On the whole, a sort of

mathematical spirit is crucial to the use of computers. In fact, with the current shift of
emphasis from hardwares to softwares, one would expect the influence of mathematics
to increase.

The mathematical study of computers is attractive but not easy since it often calls
for new conceptual tools to achieve the correct formulations of right theorems to be
proved. Some of the directions under development are: (1) to find more realistic
idealized models of computers and programs; (2) to relate computer programs to more
standard logical and mathematical formulas in order to assist simplification and
debugging of programs; (3) to establish a natural framework for proving that
multiplication is in general more complex than addition; (4) to formulate the
appropriate notion of effective method and prove that the travelling salesman problem
is unsolvable; (5) to develop a mathematical theory of pattern recognition.

Of course, it is possible that a higher level of abstraction may impose some order
and uniformity on how to use computers. One might think of the examples familiary
from high school mathematics: clever word problems in arithmetic become a matter of
routine in algebra, and ingenious proofs in elementary geometry can be treated
systematically in analytic geometry.

4. Logical mathematics

In general, formalization or rendering exact and explicit vague procedures is of
practical interest in extending the range of application of computers. This is perhaps the
most basic link between logic and computers. It is in this direction that a large scale
revolution of mathematics is likely to be achieved in the long run. As more and more of
our mathematical arguments get mechanized, the human contribution to the
mathematical activity will have to be less and less routine and more and more
imaginative or creative.

The initial experiment with and limited success at automatic demonstration came
from an appreciation of the fairly advanced state which mathematical logic had arrived
at with respect to formalization. Further attempts at progress revealed the limitations of
the achievements of logic as a formal and systematic treatment of mathematics. Very
roughly speaking, what one needs is not just formalization in principle of mathematical
textbooks but rather formalization in practice of mathematical activities. The goal is to
enrich logic (or mathematics) so that computers can aid pure mathematicians at least as
much as they assist the applied scientists at present. It calls for the mechanization of two
related aspects: the formalization of proofs after discovery, and the abstraction of

352 Computation, Logic, Philosophy

general methods to guide the search for proofs of new theorems. There seems to be a
need to develop a sort of "logical mathematics", the idea of which must be quite
repulsive to pure mathematicians who would think of a hybrid of mathematicians and
librarians. It is most likely that such a discipline will be more relevant to automatic
demonstration than "mathematical linguistics" is to mechanical translation. Moreover,
it may even be the most promising avenue in the near future that will lead to general
progress on the study of the potentialities and limitations of "artificial intelligence".

Formalization is obviously central to all uses of computers. The very existence of
computers depends on the basic fact that we have exact rules for numerical calculations.
Arguing by analogy, we may contend that the great expansion of the uses of computers
for mental acts will be achieved first in the area of mechanizing mathematical
arguments. Compared with game-playing, this area is much richer and more central to
all works of the intellect.

5. Reductionism, reflectionism, and the dialectic method

Typically the reductionist is struck by the power or beauty of certain modes to
proceed and wish to build up everything on them. Logical positivism is the most recent
historical example. A reflectionist takes the data of existing human knowledge more
seriously and often is not able to come up with as sweeping answers. In its extreme form.
we arrive at phenomenology which is serious philosophy but hardly of immediate
relevance to technical advances. For example, inconclusive arguments have been put
forward to contend that it is intrinsically impossible to use computers to perform mental
tasks such as making perspicuous grouping, tolerating ambiguities, distinguishing
essence from accident, and appealing to fringe consciousness. While these discussions
help to focus certain long-renge issues, we do not at present possess sharp enough
concepts of realizable computers and feasible algorithms to prove, or even to conjecture,
such impossibility results.

Although such extreme positions do not seem promising, it does seem highly
desirable to coordinate reduction (synthesis) with reflection (analysis) in the area of
automatic demonstration, and, in particular, at the present stage. The preoccupation
with Herbrand's theorem illustrates for me a reductionist tendency, and should, in my
opinion, be balanced by more reflections on the data (viz. existing mathematics). For
example, in number theory, we should obviously make use of least counterexamples
rather than just counterexamples. In each branch of mathematics, we should bring in,
besides general features common to all branches, also distinguishing characteristics of
the particular branch. In addition, we are no longer interested in the economy of axioms
but rather lean heavily on derived rules (metatheorems). As we progress, what is known
at each stage has to be more carefully digested and organized in order that mechanical
retrieval be feasible. More concretely, I feel that an extensive and systematic
examination of a large body of existing proofs is of value at the present stage.

If we reflect on the mathematical activity, one striking feature is man's ability to
operate simultaneously on different levels. It is not necessary to perfect the lower levels

Computers and Mathematical Activity 353

in a hierarchy in order to be able to act on a higher level. And it is hard to see how

machines can be made to do the same. As a result, one often finds it easier to adapt
oneself to take advantage of what machines can currently do (such as checking
numerical instances after the man himself has reduced a general theorem to these crucial
special cases). But the primary objective of automatic demonstration is certainly to
extend the general power of computers to take over new types of work.

6. Finite computations and infinite mathematics

Physical Limitations
It seems unquestionable that we cannot have arbitrarily small or arbitrarily fast

computer components (say for switching). Physics should be capable of calculating
lower or upper bounds to these quantities. This kind oflimitation does not affect in any
inevitable way the meaning of infinite mathematical procedures. Of course, if there were
no such bounds, we might be able to justify mathematical infinity simply by physically
actual infinity. I see no reason to delay over, this unrealistic assumption.

The problem of noise and the nonexistence of infallible components can to some
extent be treated by means of redundancy. For example, von Neumann asserted that if
the probability of basic units to malfunction is no more than E: = .005 (half of one per
cent), then one can arbitrarily improve the reliability by majority organs (fiduciary
levels Ll = 0.07 is favored). There are other complications not considered in von
Neumann's scheme, but it seems reasonable to accept that for moderately long
computations, we can, with enough efforts, improve reliability to as high a degree as we
wish.

In short, we wish to distinguish two kinds of problem: the scientific problems of
physical limitations of speed, reliability, size, and length of computation on the one
hand; the epistemological problem of arbitrarily long computations on the other. The
scientific problems are important and contain different interrelated aspects each calling
for careful attention. But, for the purpose of our present discussion at least, the
epistemological problem is essentially one, viz. the apparent fact that there can be no
physical machinery to carry out arbitrarily long computations, either without error or
just without appreciable probability of error. For this epistemological problem, I do not
view the distinction between certainty snd high probability as the central issue. I shall
leave aside the challenging problem of a theory of physical computations and confine
myself to considering the philosophical implications of the finite nature of actual
computations. The main features of the basic problem are fully present in the simple
matters of adding or multiplying large integers.

There is indeed a distinction between one machine to do arbitrarily long
computations and each long computation to be done by some machine. It is logically
possible that there is no machine M which deals with all lengths n, yet for each length n
there is a machine M to do it. But we shall not speculate on whether such a logical
possibility is actual. Rather we shall take for granted that neither is physically possible;
therefore, in particular, that there is some large N such that we can never do a

354 Computation, Logic, Philosophy

computation of length N with reasonable accuracy. For those who do not like the
assumption, we may base our discussion on the weaker postulate:
(*) There can be no physical machine which does correctly arbitrarily long
computations.

Does it follow from this that there exists no procedure for calculating the digits of
1[? The problem of mathematical existence is notoriously controversial. We are
accustomed to saying that there exist infinitely many prime numbers, that there exists
(indeed, we have) an effective method by which we can, for each n, calculate the n-th
digit of 1[, that there exists a relatively simple effective function f such that f(n) gives the
n-th digit of 1[. To say that there exists no such procedure invokes not only the postulate
(*), but also, more seriously, the stipulation:
(#) Existence of a mathematical procedure can only be established by the existence of a
physically constructable automaton to carry out the procedure arbitrarily far.

Even in applying infinite mathematics, physics possess a closer contact with reality
and executable procedures. Experimental confirmation of a physical theory has to go
through performable measurements and calculations. Mathematics supplies a detour
through the nonexecutable. If applications of nonexecutable mathematics are to be
accepted at all, the physical scientist can also, no less than the mathematician,
legitimately work on such material in order to help complete the detour.

Mathematics and application

The stipulation (#) presents serious problems to both mathematics and physics. It
may be thought that mathematics could go on as "purely formal systems", but physics
cannot hide behind such formalities. This can at best serve to evade the issue. It is
certainly not an arbitrary matter that we choose to emphasize the "formal systems" of
natural numbers and real numbers. Why do we favour some formal systems over others?

Application is a distinguishing characteristic of mathematics, in contrast with mere
games. One does not justify the study of pure mathematics exclusively or primarily in
terms of applicability. Mathematics in its advanced stage also lives a life of its own. For
example, the criterion of beauty and elegance, that of depth, all are commonly employed
in judging works in mathematics.

But it is an undeniable fact that infinite mathematics has been applied in a most
spectacular way in the study of natural phenomena. In terms of applications, infinity has
thus far proven to be a highly useful detour. One might ask whether it may not fmther
improve matters if we eliminate this detour altogether. We have no guide line as to how
to accomplish this. In fact, the mathematical way of thinking in terms of infinities is so
deeply rooted, it is hard to see why we should wish to give up such a powerful tool.

Less drastic new directions would be to retain what we have but look more closely at
infinities as detours and try to extract as much executable content as we can, as well as to
justify infinite mathematics in terms of experiencible facts and more concrete
intuitions.

Attempts along these directions are not unfamiliar, but usually less drastic than

Computers and Mathematical Activity 355

eliminating infinities altogether. Rather they represent a domestic affair for
mathematicians who wish to eliminate or justify higher infinities (the actual infinite) in
favor of or in terms of simple infinities (the potential infinite). Thus we have
intuitionism, finitism, as well as various efforts to rebuild classical analysis in terms of
recursive functions or constructive sets in some suitable sense of "constructive" . On the
whole, there has been no definitive success in the sense of actually changing the common
practice in mathematics. But a suitable rough-edged recursive approach may turn out
to be a wholesome way of looking at mathematics.

There are also a few scattered discussions of strict finitism and ultraintuitionism,
which reject numbers which are not "executable". In particular, A. S. Esenine-Volpine
("Le programme ultra--intuitioniste des fondements des mathematiques", Infinitistic
Methods, Pergamon Press, 1961, pp. 201-233.) attempts to prove the consistency of
current set theory on this basis. (Compare also D. van Dantzig, "Is 10 1010 a finite
number?" Dialectica, vol. 9 (1956) pp. 273-277).
The proposed proof is rather obscure and some people regard it as an elaborate joke.
There is, however, no doubt that the author is quite serious about his program.

Mathematical activity

Mathematical activity is a phenomenon in nature and is, as such, like all mechanical
and mental activities, finite. This undeniable fact does not in itself exclude infinite
mathematics. Rather, it excludes, for example, any alleged proof that is too complex to
be digestable. For example, even though whether "the billionth digit of n is 7" is a
problem decidable in principle, we do not possess at present a digestable proof either of
this proposition or of its negation.

What we have here is not something controversial but rather an aspect of
mathematics grossly neglected in foundational discussions. One can accept mathematics
as is commonly practiced or choose some different outlook on mathematics. But in any
case, a mathematical theorem is established only if it is somehow accepted by the
relevant mathematical community and somebody must have understood the proof.
Execution is central to mathematics, but not in the restricted sense of exhibiting the
billionth digit of n, rather more in the extended sense of actual understanding (a mental
activity) by some human mind. Attention to this aspect of mathematics can even resolve
the deep-rooted conflict on the question of how central applications are for
mathematics. The pursuit of elegance is central to mathematics perhaps for the reason
that mathematics, as a mental activity, has to be perspicuous and surveyable. And
elegance generally extends the range of complexities which we can command.

15.4 On the long-range prospects of automatic theorem-proving *

There is a false contrast between the algorithmic and the heuristic approaches.

* First published in Synposium on Automatic Demonstration (Lecture Notes Math 125), pp. 101
-III. 0 Springer Verlag, New York, 1970. Reproduced by permission.

356 Computation, Logic, Philosophy

Every program has to embody some algorithm and for serious advances, partial
strategies or heuristic methods are indispensible. Hence, no serious program could
avoid either component. Perhaps the contrast is more between anthropomorphic and
logicist, as typified by the general problem solver on the one hand and elaborate
refinements of the Herbrand theorem on the other. This polarization appears to me to be
undersirable and to represent what I would call the reductionist symptom.

Typically the reductionist is struck by the power or beauty of certain modes to
proceed and wish to build up everything on them. The two extremes seem to share, in
practice if not in theory, this reductionist preoccupation. In my opinion, there should be
more reflective examination of the data, viz. the existing mathematical proofs and
methods of proof. It is true that what is natural for man need not be natural or
convenient for machine. Hence, it will not be fruitful to attempt to imitate man
slavishly. Nevertheless, the existing body of mathematics contains a great wealth of
material and constitutes the major source of our understanding of mathematical
reasoning. The reasonable course would be to distill from this great reservoir whatever is
mechanizable. In other words, we should strive for an interplay between reduction and
reflection which, for lack of a better name, may be called the dialectic method.

In a previous survey ([8J, 1965), I have set forth a few vague suggestions which are
buried in the examples. I should like now to list these suggestions explicitly and use
them to make a few remarks on the current scene. (1) It is recommended that powerful
methods with restricted ranges of application be explored. (2) Crude strategies are
sketched for selecting lemmas in proving theorems of number theory. (3) An example in
the predicate calculus is given to illustrate possibilities of directly exploiting special
properties of == and local quantifiers (to reduce 3 x(Fx 1\ x = y) to Fy). (4) The need
for an adequate treatment of equality is emphasized for both proof procedures and
decision procedures in the predicate calculus.

With regard to (4), there have been several proposals during the last few years for
adjoining equality to proof procedures of the predicate calculus. In connection with
decision procedures, it has turned out that there is a major open theoretical problem,
viz. no proof exists in the literature for the belief that there is a decision procedure for
the Godel case with equality. More exactly, the belief is that there is a decision procedure
for satisfiability for the class of prencx formulas with equality whose prefix is
'\! Xl ••• '\! Xm 3 y13 Y2'\! Zl •• V Zm and, more, that any formula in the class, if satisfiable
at all, has a finite model.

With regard to (2), there have been work to carry out the examples from number
theory on computers, but only in a weakened form. No strategies are included to select
lemmas. Rather, the lemmas are taken as given and a conditional theorem to the effect
that the theorem follows from the lemmas is proved as a theorem of the predicate
calculus. It is clear that this is not making use of special properties of particular branches
in mathematics but rather continuing to "logicize mathematics".

In connection with (3), the second proof of ExQI ([8J, p.SS) is intended to give
examples of mechanizable special strategies which are suggested by human deductions.
The following features are present in the example. (a) Substitute given constants for

Computers and Mathematical Activity 357

variables to get stronger conclusions. (b) To eliminate local. quantifiers when possible,
i.e. strive to introduce a condition x = y to yield ::3 x(x = y 1\ Fx) or V x(x = Y ::::l Fx)
in order to reduce the quantified expression to Fy. (c) Substitute equivalences freely (if
Al == A2 , ••• , An-I == An, then Ai can be substituted for AJ (d) Apply implication
chains: Al ::::l An if Al ::::l A2 , ••• , An-I ::::l An- The features (a) and (d) can be
incorporated into Herbrand type proofs fairly directly. But features (b) and (c), though
mechanizable and familiar, seem to be destroyed when the problem is transformed into a

normal form suitable for obtaining proofs of the Herbrand type. It is thought that by
studying examples of human proofs, one may come up with a fair number of useful
special strategies such as (b) and (c).

In connection with (1), we may mention the use of least counterexamples in
number theory and strategies like (b) and (c) above. In general, it seems desirable to
consider directly, besides Skolem functions obtained from dropping quantifiers, also
descriptive functions with predetermined meaning such as addition and multiplication
in number theory, pair and power set in set theory. It seems desirable to be miserly in the
use of quantifiers. In dealing with set theory, it seems desirable to view every axiom of
relative existence

::3 yV x (xey == Fxu .. v)

as defining a function fF(u, ... , v) = xFxu .. v. In this way, we may operate with constants
(such as 0 and w), functions, and extensionality in form:

If one reviews the literature on automatic demonstration during the last few years,
one gets the impression that the whole field consists of variations on Herbrand's
theorem. Often a slight modification is given with full details in a somewhat new dress,
accompanied by an elaborate completeness proof. Alternative procedures are offered for
alternative advantages. It is hard either to compare the relative efficiency or to
accumulate different advantages into one procedure. Hence, some people are looking
for a theoretical criterion of relative efficiency.

In the direction of formalization, there are two major successes in modern logic.
First, the fairly well established conclusion that all of mathematics is reducible to
axiomatic set theory and that, if one takes enough trouble, mathematical proofs can be
reproduced in this system completely formally in the sense of mechanical checkability.
Second, the results of Skolem and Herbrand according to which we can, by construing
mathematical theorems as conditional theorems (viz. that the axioms imply the
theorem) in the predicate calculus, search for each mathematical proof in a mechanical
(in principle) way to determine whether a related Herbrand expansion contains a
contradiction. Impressive as these results are, and encouraging as they are for the
project of mechanizing mathematical arguments, they are only theoretical results which

358 Computation, Logic, Philosophy

do not establish the strong conclusion that mathematical reasoning (or even a major part
of it) is mechanical in nature.

What is exciting in the unestablished strong conclusion is that we are facing an
altogether new kind of problem which crys out for a totally new discipline and which has
wide implications on the perennial problem about mind and machine. We are invited to
deal with mathematical activity in a systematic way. Even though what is demanded is
not mechanical simulation, the task requires a close examination of how mathematics is
done in order to determine how informal methods can be replaced by mechanizable
procedures and how the speed of computers can be employed to compensate for its
inflexibility. The field is wide open, and like all good things, it is not easy. But one does
expect and look for pleasant surprises in this requirement of a novel combination of
psychology, logic, mathematics and technology.

It is highly likely that there are different levels of mathematical activity which can
be measured by the ease of mechanization. For example, Euler told of how his theorems
were often first discovered by empirical and formalistic experimentations. While these
experimentations are probably easy to mechanize, the steps of deciding what
experimentations to make and of finding afterwards the correct statement and proof of
the theorems suggested, are of a higher level and much harder to mechanize. Ramanu jan
is reported to have commented on the taxicab number 1724 that it is the smallest
number expressible as a sum of two cubes in two different ways. The memory and
powers of calculation exemplified in this anecdote are probably not hard for a computer,
but it would be less easy to have a computer prove most of his theorems. One suspects,
however, it would be easier for a computer to prove his theorems than many of the more
famous theorems in number theory which are more "conceptual" and further removed
from calculations. Axiomatic set theory has in more recent years become much more
mathematical, and one gets the impression that long formal proofs of relatively simple
results are much easier to discover mechanically than advanced neat proofs which can be
communicated succinctly between experts.

On the highest level, Poincare compares Weierstrass and Riemann. Riemann is
typically intuitive while Weierstrass is typically logical. In this case, it is natural to
believe that it is easier to reach results of Weierstrass mechanically. Hadamard contrasts
his impression of the great works of Poincare and Hermite and states that he finds
Hermite's discoveries more mysterious ([4J, p. nO). By stretching greatly one's
imagination, one might wish to claim that Hadamard would have found it easier to
design a program to discover Poincare's results than to get one for Hermites.

G. Wallas (Art of Thought , 1926, pp. 79--107) suggests that there be four stages in
the process of bringing about a single achievement of thought: (1) preparation, (2)
incubation, (3) illumination, (4) verification. This fits in well with Poincare lecture on
mathematical discoveries (Science and Method} Hadamard ([4J) and Littlewood ([5J)
discuss these four stages at great length. The first and the last stages are done
consciously. The preparation stage contains two parts: the long-range education of the
individual, and the immediate task of learning and digesting what is known about the
problem under study. The verification stage consisting of making vague ideas precise

Computers and Mathematical Activity 359

and filling in gaps (in particular, carrying out calculations). To mechanize these stages
appear formidable enough, but incubation leading to illumination would seem in
principle a different kind of process from the operation of existing computers. Since
incubation implies an element of rest (an abstention from conscious thought on the
initial problem), we may perhaps claim that the importance of this stage comes from a
weakness on the part of man, and that machines do not need the period of rest or
abstention.

To come back to the current scene, I venture to make some general comments on a

few specific aspects. It is appealing to think of an interaction between man and machine,
so that computers may become research assistants. In fact, an example of man-machine
programs has been written by Guard and others ([3J). It seems that human
interventions would be able to improve more substantially the end results if we move
from Herbrand proofs to programs with more varied data and strategies.

Practical applications of computers are mainly concerned with repetitions of
simple steps rather than individualized long sequences of simple steps such as
mathematical proofs. It is natural to think of applying mechanical inference to cases
where a lot of short deductions are made. For example, it has been suggested that we can
retrieve simple consequences of stored information on individual persons (e. g.,
Darlington, [2]).

Suggestions have been made to extend automatic demonstration to higher-order
logic. It is, however, not clear to me why this could be considered more promising than
looking directly at, say, number theory or axiomatic set theory which, in my opinion, is
more suggestive and closer to real life. Usable examples in set theory can be found in [8J,
1967.

The central idea of automatic demonstration during the last few years appears to be
the observation that in order to derive a contradiction from the Herbrand expansion of a
formula, it is sufficient to examine mechanically all possible substitutions to obtain
potential contradictions. It was noted by Prawitz ([6]) that we can devise an algorithm to
a decide whether, given a con junction C of finitely many clauses and a recursive set of
terms, there exists a substitution of terms for variables in C such that the result contains
a contradiction. Moreover, given any partition of all terms in C into equivalence classes,
there is a least or most general substitution, if there is any, that yields the partition: :x is
the least if for any f3 yielding the same partition, we can find y, y f3C = :xc. This idea was
applied independently by Robinson ([7]) and Aanderaa ([1]) to introducing what is
called resolution (by Robinson) or generalized cut (by Aanderaa). Various
generalizations and refinements of the "resolution method" have been proposed.

Elsewhere, I have stressed the advantage of "miniscope" form. In this way, the
Skolem functions resulting from existential quantifiers in general get fewer argument
variables than in the usual prenex form (compare reference number 10 of [8]). This is
adopted in Aanderaa's algorithm. Aanderaa also uses "generalized contraction" and a
priority function to govern the order in which different clauses are "confronted" to
yield generalized cuts. Unfortunately, I am not able to follow all his intricate steps to
give a reasonable sketch of his detailed methods.

360 Computation, Logic, Philosophy

References

[1] S. Aanderaa, A deterministic proofprocedure (manuscript of a term paper), 61 pp., Harvard, May,

1964.

[2] 1. L. Darlington, "Theorem proving and information retrieval", Machine intelligence, vol. 4
(1969), Edinburgh.

[3] J. R. Guard, J. H. Bennett, W. B. Easton, L. G. Settle, "CRT-aided semi-automated
mathematics", AFCRL-67-0167, 1967.

[4] J. Hadamard, Psychology of invention in the mathematical field, Princeton, 1945.
[5] J. E. Littlewood, "The mathematician's art of work", The Rockefeller University Review,

September-October, 1967, New York.
[6] D. Prawitz, "An improved proof procedure", Theoria, vol. 26 (1960), pp.102-139.
[7] J. A. Robinson, "A machine-oriented logic based on the resolution principle", J. A CM, vol. 12

(1965), pp. 23--41.
[8] H. Wang, "Formalization and automatic theorem-proving" Proc. IFIP Congress, 1965, vol. 1, pp.

51-58; "Examples in set theory", Z.j. Logik u. Grundl. d. Math., vol. 13 (1967), pp. 175-188,
241-250.

16. ON INFORMATION PROCESSING OF THE
CHINESE LANGUAGE*

The development of science and technology has changed our way of life and work
in many respects. Some people are always looking for whatever is novel. They collect
and use varieties of newlyinvented gadgets. In their minds, technology can take the
place of thought and therefore, their work is often flashy and superficial. Others are
conservative by nature. They decline to make use of the new "bizarre technology and
excessive ingeniousness", and prefer to ignore the tools that can improve efficiency,
which results in diminished potential. But more offen there are few opportunities or
suitable conditions in which to apply the technology which saves both time and effort.
For instance, xerox machines and telephones are much more popular in the United
States than in China.

Let us take writing as an example. In the West, people usually use a word processor
to write articles. What's more, in recent years, some people write with the help of a tape
recorder. It was said that when Churchill wrote, he used to typeset and print it out first
before he polished it, then typeset it again, polished it again, until it was finalized. This
convenient method, formally avaible only to the privileged, is nowadays enjoyed by a
larger number of people due to the development of computer technology. Mter
necessary deletions and modifications have been programmed with appropriate
instructions, the computer could be used to provide a new printed proof sheet.

For different modes of mechanical manipulation of information, there are a certain
number of problems in common and others which are specific to particular languages.
For instance, even now a Chinese word processor is not as convenient as an English one.
One of the basic reasons lies in the fact that the structure of Chinese characters is not so
evidently regular as that of English words. Each English word is composed of a sequence
of letters of the same size -- a linear structure. The development of computer and
mimeograph technology means that the complicated structure of Chinese characters is
no longer an insurmountable barrier, and in addition, it facilitates the development of a
more efficient and easy-to-Iearn Chinese word processor. The most important concept is
that it is possible to type out simultaneously several parts of a character, such as its
letters, strokes, radicals or phonetic symbols. This sort of scheme has been put forward
several times since 1973, although word processors built according to this design are not

* First published in Chinese in The State of the Art Report of Computer Technology, no. 98
(June 1979), pp 1-4. Reproduced by permission of the author.

* This is the English version of an article written by Wang, Hao and published in "Dian Zi Ji Suan Ji Dong

Tai" ("The State of Art Report of Computer Technology") June issue of 1979. This English version is done by

Fan, Lanying of Beijing Institute of Computing Technology.

361

362 Computation, Logic, Philosophy

available yet. It might be the case that there are still misunderstandings about them.
Thus, further explanation of a few ideas, which are actually very simple, is given here in
passing along with a digression on the significance and prospects of mechanical
manipulation of information.

A survey of information processing

The modes of information processing can be divided into two catagories:
replication and transformation. Strictly speaking, transformation includes replication,
because the mechanical process cannot produce something genuinely novel. It can only
preserve and transmit the original information or, at most, transform the original
information into a more proper form. For instance, in computing, what is put in is the
question and what comes out, the answer. The essential content has been preserved.

Information processing in the replication form consists of the telephone (in other
words, an ear that hears voices a long way off), television (that is to say, an eye that sees a
long way off), photolithograph, video, optical plate-making and so on. In general, the
above mentioned forms of information processing are mainly concerned with the
traditional engineering field based on applied physics, in which people do not
participate in the transformation of information and there is, essentially, no problem of
"coding" .

Information processing in the form of transformation consists of telegraph,
computing, editing, word processing, recording etc. By comparing word processing
with photolithograph, we can distingquish between the two types. The difference
between a xeroxed document and a retypewritten one is negligible. To re-type one takes
a little bit more effort but it can be done by using a computer, yet the conceptual
procedure is far more complicated than that of xeroxing. If the original document is
handwritten, it then, relates to the problem of "pattern recognition" in a deeper way.
This is a question in the field of artificial intelligence. To transform a document written
by hand into a printed proof sheet still remains a difficult problem.

Recently, computer development has made amazing progress in terms of increased
speed. reduction of size, reduced cost and increased reliability. On the other hand,
computer applications have lagged behind the leap in hardware technology. Therefore,
the full utilization of these technological advances leads to a lot of new questions. Here, I
will not tackle such a large area but try to deal with the most simple question -- the
reduction of size. Microfiche can store a very large book on a tiny film, bu it needs a
machine specially make to read it. A pocket computer can be as small as input and
output permit. If it is too small, human hands can no longer accomplish the work of
input and human eyes can no longer see the answer clearly either. The major difficulty of
using a computer is the fact that programs need to be worked out beforehand. In order to
do that, one needs to learn one or more artificial languages, a fact which proves to be a
sheer nuisance. A type of computer graphics has recently been developed which could
help communication between people and the computer through the use of pictures.

Language is a very important tool in communication among people. The

On Information Processing of the Chinese Language 363

development of the written language from the oral one has made possible the
preservation of information free from the limitations imposed by space and time. The
invention of printing has extended this possibility one step further. The widespread use
of the taperecorder has raised an interesting question: in terms of storage and the speed
transmission only, tape-recorders can fulfill the function of writing and printing. Then
what is the basic distinction in effectiveness between the two different transmiting
modes? First, there is naturally the distinction derived from the difference between the
sense of vision and the sense of hearing. To people who are used to reading and writing,
they are more at ease with printed matter or wTitten material. It is hard to grasp
mathematical formulae, chemical notation and concise classical Chinese through the
sense of hearing only. Here is a hypothetical question: If tape-recorders had been
invented before writing, then would writing have been invented at all? Another question
is: Will writing become obsolete in the future? Since the widespread use of the
telephone, letter writing has become less popular. Many youngsters spend much more
time on watching TV than on reading. There are peculiar cases in which tapes have
served as substitutes for books in recent years. Will this become more common in the
future? TV teaching has already replaced part of the function of both text books and
teachers. To what extent will this develop?

To determine numerical codes for chinese characters

We will neither deal with the questions of how to transform speech into printed
words, or vice versa, nor the topic of recognition of characters by machine. These are
still problems beset with difficulties and no noticeable progress has been made. What we
will discuss here are several simple, yet necessary, tasks of writing and printing, and
input and output on a computer. Conceptually, the process of dictionary-consulting,
which is familiar to everybody, is to be analysed to compare and ascertain the similarities
and differences between these methods and to serve as an example of the common
phenomenon outlined below: certain simple ideas, however, usually turn out to be
crucial questions and difficult to deal with in the development of the technology
concerned.

In achieving these tasks, Chinese and other languages (English for instance) have
their common problems and specific difficulties. The peculiar properties of Chinese,
which appear as either barriers or conveniences in the course of mechanical processing,
are the main topics to be discussed here. By and large, because several selected tasks in
the mechanical processing of English have been fulfilled, a brief discussion of the
common problems will be enough.

There are some evident differences between Chinese and English. In English, the
ingredients of words are letters, whereas the ingredients of Chinese characters are
strokes and radicals. Each English word is a sequence of letters of similar size and fixed
position in a linear sequence, while the composition of each Chinese character from its
components is a two-dimensional graph, with variety in size and position of the strokes
and radicals of different characters. Even ordering is not always definitely standard. In

364 Computation, Logic, Philosophy

Chinese homonyms are more frequent than in English, so if one wants to recognize a
character by listening to its sound, it can be recognized only in context or by knowing its
composition of radicals. The pronunciation is much more complicated in Chinese than
in English which is, in turn, considered to be more difficult in terms of pronunciation
than German.

Since English words are composed of a sequence of letters, there is a natural
solution -- the general method of dictionary-consulting and word processing. What one
needs is only the ability to recognize individual letters. So long as individual letters are
represented in forms recognizable by machine, the machine will be able to perform the
work of dictionary-consulting and word processing. However this is rather complicated
in the case of Chinese characters. An appropriate means of classification for complex
Chinese characters should be chosen to create a kind of systematic numerical coding
which is applicable to mechanical processing. For the computer, it can compute only if
the individual steps are definite. Due to the high speed, a large number of steps matters
little.

To start with dictionary-consulting, first of all one has to pick out the numerical
code to find the exact character in turn. Thousands of characters are catalogued in a
dictionary and the numerical code is the coordinate of these categories. I remember that
when in secondary school, a lot of time was spent in consulting the dictionary by means
of radicals. In doing so, strokes should be counted twice and then looking up the
character should be done among the characters with the same number of strokes and
certain radicals. Sometimes a wrong radical was selected. I did not learn the fourcorner
coding system method of consulting the dictionary very well either, though some of my
classmates claimed to be able to use the method easily. Later when I came abroad, the
Romanization system was used. There were still difficulties though it proved to be
generally faster. Characters which were unknown could not be pronounced.
Homophones are good, for there are certain different pinyin systems. If using the latter
two methods of dictionary consulting, there are many characters with the same codes,
while if using the first method -- radical -- to the question of what the code of a certain
word is there are various explanations: If the numbers of strokes of the radicals, or the
strokes of a whole character are used as the numerical code, there will be many
characters with the same code. If the original character is used as the numerical code,
there will not be many characters with the same code of course.

The problem concerning the word processing of Chinese text can be stated as
below. A dictionary is stored in a word processor in a suitable way. (This point will be
discussed later.) When the character wanted is found from the dictionary, there will be
no technical problem in printing that character out. So in theory, in order to create a
high speed and easily-monitored word processor of Chinese text, the key point lies in
selecting the appropriate numerical code to shorten and simplify the procedure of
consulting. Leaving aside the basically solved step of immediate-print-by-character
instruction stored inside, the differences between word processing and dictionary
consulting are as follows:

The step of selecting a character from the code is executed by a computer in the

On Information Processing of the Chinese Language 365

process of typewriting. So there might be some complex computation if only the steps
are explicit. The step of selecting the code from a character is executed by man both in
word processing and dictionary-consulting. The distinctive point is that when
consulting a dictionary, the code is often borne in mind, while in word processing, the
code is external -- printed on the keyboard. The criteria for determining whether a code
for word processing and dictionary-consulting is good or poor are not all the same
because of the distinction mentioned above. Now, let us focus specially on the topic of
selecting codes for making word processors.

The following four standards are quite precise:
(1) It is better that the number of characters and codes are the same. The main idea

of this is that it is hoped that different characters would have different codes. It does not
matter if there is more than one code for a single character.

(2) It is hoped that the step of selecting a code from the character should be easy for
the human subject to use. This means two points: First, it should be easy to learn.
Secondly, as the method is mastered initially, increased experience should lead to the
procedure in externalizing the code being increased.

(3) It is hoped that the typist can externalize the codes of the characters speedily
since this step determines essentially the speed of word processing. Other steps that are
much faster and are based on existing technology, are operated by machines.

(4) The process of selecting the character from the code must be explicit though the
steps may be tedious.

When these four standards are recognized, many people will be able to get involved
in researching, discussing and experimenting in the search for better codes. It is clear
that NOs.(1) and (3) might be in conflict. Usually an increase in the content of the codes
and selection of more information from the characters are needed to avoid the free quent
occurence of the different characters with the same code, then the speed of the
externalization of the codes would be reduced. When this sort of conflict occurs, a choice
might be made. For instance, if there are a few characters with the same code included in
a kind of codes then the number of the codes should be increased to eliminate this case.
Therefore the speed of keypressing is greatly affected. So a display such as a screen
could be adopted. When characters with the same code occur, a bell rings and these
characters are shown on the display. The typist could choose a proper key, for instance,
1, 2 or 3 to get the character required.

Three types of codes --radicals, phonetical symbols and the four-corner coding
system are mentioned above. There is another type that ought to be mentioned, that is,
the use of the strokes of a character by standard ordering or canonical ordering. Other
suggestions, such as a three-corner coding system have also been Put forward. In fact,
different coding systems could be combined to generate a new one. It depends on
whether the way of combining is appropriate. The four standards mentioned above are
also applicable to the determination of whether these compound systems are good or
not. Take the following as an example: Radicals and strokes can be combined naturally.
It is said that there are 200-odd different radicals, which, if all were exploited, would
make the keyboard too large. As to the strokes, there are about 20. Some people

366 Computation, Logic, Philosophy

complain that stroke-counting is a method too tedious to be desirable. The answer could
be found only through experiment. However, if 20--30 commom radicals are provided,
then only the left strokes need to be typed when the radicals have been eliminated. To
decide what radicals should be chosen, it is necessary to check the structure of
commonly used characters in every detail.

A recipe for chinese word processors

Mr.B.Dunham and I put forward in 1973 a recipe which was published in "Dousou
Magazine" (a magazine published in Hong Kong) March 1979. In recent years, we have
had discussions with specialists concerned, and found that some passages of that article
were not explicit or clear enough. So here in this article, we hope to elaborate and
supplement it in the hope that this type of word processor, which would be fast and
efficient, or at least a type that partially adopts the idea will be built soon.

There is a new idea that seems not to have been mentioned before. Whatever the
codes used might be, there are two ways of looking at them. In one way the sequencial
order of occurence of the ingredients of each code is taken into consideration, while in
the other this is not the case. When the strokes contained in a character are used as
codes, if the stroke occurrences are condidered, the code could be the sequence of
strokes in the order as indicated, otherwise, the code would be a set of strokes. The new
idea is to adopt the latter one -- to use a set of strokes as the code instead of a sequence of
strokes. The great advantage of this lies in the fact that several keys can be pressed
simultaneously -- a feature which improves the speed tremendously. This idea can be
considered and used to speed up whatever type of code is chosen. Let us take the
character" IY'I" as an example: If the selected radicals are" B " and" Jl " then, both of
them can be pressed at the same time. Word processing is similar to piano playing and a
;;killful typist can do it by using several of her fingers simultaneously.

We suggest calling them unordered and ordered codes. Note that the unordered
form should be extensively used no matter which type of coding is to be adopted. It is
certain that if the codes of two characters are two different sequences of the same class of
ingredients then the use of the unordered coding would increase the number of
characters with the same code. But since the method of simultaneous key pressing
greatly improves the speed, it is worthwhile paying the price of increasing the number of
characters with the same code and the ingredients of the codes. Generally speaking,
gains prevail over losses.

The original suggestion is to use unordered strokes mainly and radicals as a
subsidiary means. Now I think multiple-varient compound codes should be investigated
and what is important is the preservation of the advantage of the unordered coding.
Probably, by choosing the advantages from various codes mentioned above, the best
codes satisfying the above four standards can be devised. There is one thing worth
mentioning here, that is, the existing simple unordered coding is adequate for the
production of Chinese word processors which are much faster than English ones by

On Information Processing of the Chinese Language 367

using existing technology.
In the following we present a specified recipe that is similar to the original

suggestion and consists of unordered coding of radicals primarily and strokes
subsidiarily.

The original idea of using the radicals as the basis of classification is to indicate each
Chinese character as a combination of strokes which should satisfy certain constraints
(such as the positions of the strokes and radicals) but we would not impose the
constraints concerned here. Therefore once a radical commonly in use is selected, each
time the stroke combination of this radical occurs in a character, it can be processed as a
unit, that is to say, it can be processed on the keyboard by a single key. One of the tasks is
to analyse and choose the stroke combinations --which most frequently occur-
they are called radicals for simplification. So there exists a problem of how many radicals
should be chosen. The keyboard would become unwieldy if the number of distinct
radicals is unnecessarily large, whereas efficiency would be compromised if that number
is too small. At first, it was thought that without using radicals, it was already fast
enough, especially if several keys could be pressed at one time. But, it was said that the
average number of strokes of a commonly used character is just over nine. So now it is
thought that if two to three dozen radicals are added, the average number of strokes can
be reduced by half and usually several strokes can be pressed simultaneously.

With characters being coded into a word processor, the idea of storing a complete
dictionary therein would not be prohibitively expensive nor prohibitively large because
of the availability of IC which have been developed to a new level characterized by high
speed, small size and low cost. To find a character by using codes is much faster than
people using a keyboard. Characters can be stored in different ways. Our idea is to store
each character in the word processor by using a short program by means of which the
selected character is printed or written out through the included instruction -- the
controlling printing part of the word processor.

Specifically, an unordered code for a character is entered through the keyboard,
and the controlling part of the word processor changes the code into a form with
canonical order.
Example, change:

(N, 7, A, 3, C, N)
into 3 7 A C N N.

The Arabic numerals represent radicals and the letters represent strokes. Then for the
code concerned the corresponding chain of "branches" should be looked for on the
"tree" composed of canonical ordered codes of all characters. This is called "TREE
SEARCH" in the technical jargon. First, to find out the lowest branch that corresponds
to 3, then the branch of this sub-branch -- 7, continue in this way until the whole chain of
branches corresponding to the six symbols is found, that is, the subprogram or short
program which repressents the original character is found. The controlling part will -
start to execute the instructions included and finally prints out the required character.

Different alternatives of printing techniques might be considered. For example, a
"matrix of dots" can be used to output a character either by punching small holes or

368 Computation, Logic, Philosophy

dotting with small spots. The size of the matrix of dots can be variable. The larger size is
more accurate because of the concentrated dots, but it costs more. There is another new
technique called ink jet printing which has the advantage of both high speed and

flexibility, but the cost is high at present. By using this technique, characters in different
sizes and styles (such as running style, typeface of imitation Song-Dynasty-style or seal
style) can be printed. It is said that the ink jet printing technology is quite simple. A
sprinkler head sprays out drops of ink at a fixed speed successively and it moves in a
topdown way like writing out lines of crowded dots. The paper moves at a fixed speed
from left to right. The main point is that there should be a program controlling the
magnetic field or electric field, to make each ink drop either fall on the paper or drop
down into a storage bottle for later use as required. Since each character has its
corresponding sub-program, when the controlling part of the word processor has chosen
the character or corresponding subprogram through the code, the subprogram starts the
sprinkler head and controls the acceptance or rejection of the ink, thus writing the
relevant character.

To sum up, the procedure of word processing can be divided into the following
steps:

(1) The character is coded and typewritten on the keyboard by human agent.
(2) The code is put into canonical order by machine and the character located, i.e.

corresponding subprogram, through the "Tree Search".
(3) The subprogram obtained by (2) is executed by the machine and the character

required is printed on the paper.
The speed of typewriting roughly equals the speed of step (1), because the other

two steps are so fast that they will have already been finished before step (2) for the next
character is carried out.

The printing of books and newspapers and the input/output of a computer pose no
extra problems conceptually and the author neither intends nor is he able to discuss the
concrete technical questions here. As to the typesetting, two points should be noted.
Firstly, once the word processor works out a satisfactory original document, the
techniques oflaser and optics can be utilized to make a photographic plate for printing.
Of course, direct replication from the original document is also feasible. Secondly, the
construction of the word processor can be adjusted a bit to make it into a typesetting
machine. Compared with word processing the required speed of printing is lower and it
does not matter if the machine is heavy. The only difference between a word processor
and a typesetting machine lies in the fact that changes in the subprogram representing
the character are needed. The subprogram of a typesetting machine links up directly
with the typeface corresponding to the character and is moved to the required position
by instructions. Usually there are several spare parts for the typeface of each character.

Usually tens or hundreds of characters are used to input and output on a computer,
so the codes mentioned can still be in use or be simplified in accordance with the
characters less frequently in use. If a great number of characters are to be input and
output later, all the methods of input and output by a word processor discussed above
can be applied. Generally speaking, to process the characters on a computer, numerical

On Information Processing of the Chinese Language 369

codes are used, while for output a separated machine is often used to translate the codes
into the characters to be printed out.

These are the main points I wanted to talk about. But to express my ideas more
explicitly herewith is a concrete proposal to serve as an example. The example might not
be the most ideal recipe since I have not analysed carefully the construction of the
characters commonly in use. However, it might be a stimulus to experienced research
workers in this field to make further studies.

The Example of the Recipe and Other Questions

The following concrete recipe must be rather sketchy because of my lack of
knowledge in philology.

As was said before, the so-called radicals indicate the ingredients. It is feasible for
any characters that contain one of these ingredients:
1 i,7./(10 }j
2 ::t,,¥- 11 ,
3 ± 12 i...,L
4 Cl, 0 13 l, :&

5 t, JL', 'J-\ 14 E
6*,;!!- 15f,:3iZ,~

7 f:., -* 16 :11
8 ;f,* 17 ft,"""
9 S 18 i, j§

The list of 24 atoms (strokes):

A
B
C ,
DI
E J,/
F , /, /, \.
G 1,1,--'
H \., \.
I),>,j

J 7,7
KJ
L <

Examples of Strokes
I,L,Cl,~tl,5i M {, /
=,±,£ N L
~,I'±,T 0 ~
+, *, >:j:I P L, l.
,~,A,,~,~,7./(,W,~ Q
JL" 3:, -t, ~, tt, ~ R \..
E" 00, EL p, foU, E§ S '-:J

A, A, *, *
}j ,JJ,I!P,1J,~, JfiJ,Q,
x, Jj(, JE., !y

n, flJ, y, •
l~, 1%, ~, ~

T L, L , ~

u
V L,z:.
W J,.,
X ~

rt, la, :fL, ~q, ~

4;;. ~, ~

~, m. tr, tit, K, iQl
;flo ~, ~, JL', ;!;
1C, ~, 7, ~
::It, A
1:3, ~, Q" ~
~, /!I!I, IlJ, tf:l, ~q, :tt
fE, }E,Jl:, i!J., Q,:, *
tIL, tJt:, G, fl., ~
}E, ~, !~, ~, IIlf
it, lA, it, ijj:

370 Computation, Logic, Philosophy

Strokes resembling each other are grouped together to alleviate difficulty in
recognition. The horizontal and vertical strokes occur most frequently, being 33 percent
and 18 percent respectively according to some scholors. Let us divide the two strokes
respectively into two cases -- the long ones and the short ones. The long ones are those
which have both ends unbound.

There are six-four keys altogether in which forty-two are radicals and strokes, ten
are Arabic numerals and about twelve are punctuation marks. Besides these, a few extra
keys might be added, such as: one key for the input of two horizontal strokes
simultaneously and another one, for three at a time. Therefore if these three keys are
pressed at the same time, six horizontal strokes can be input.

The numerical codes mentioned above are in unordered form. It is desirable to
investigate the following questions: How to introduce the four-corner coding system and
pronunciation codes, how to choose the more appropriate radicals and how to further
distinguish the strokes. The critical problem is that there are many different characters
with the same code according to the above recipe, for example: Band @j; m, m, If! and
ffl; $ is not included, since it possesses a long vertical stroke. The original suggestion
was touse a display unit. When characters 'with the same code occur, the Arabic numeral
keys are used for the purpose of selecting the proper character. Though in this case no
special technique is needed, and the display unit helps to increase the efficiency of word
processing in other ways. I think it is completely possible to have an unordered code
with no characters with the same code, which is easy to learn and command. It is also
good for the speed.

On word processors for both Chinese and Western languages you are not able to
press more than one key at a time, so some people hold that to press more
simultaneously must be a difficult technique. As a matter of fact, it is quite easy. For
instance, the board can leave a fixed position for each key, supply electricity for the
corresponding position when several keys are pressed, so those positions are open and
others closed.

When a character is entered into a typewriter by using an unordered code, it is easy
to turn it into a canonical ordered code with numbers preceding the letters, and in which
both numbers and letters are arranged according to their size and order. As for using this
code to search for the subprogram corresponding to the character to execute Tree
Search. it is easy to experiment on a computer. I have heard that some people have
already exprimentedwith this.

To sum up: I hope people with adequate training in philology do some further
research to find appropriate unordered codes, especially those which would not result in
producing the same code for distinct characters. And I also hope hardware and software
engineers will give more thorough consideration and discuss the techniques concerned.

THE LIST OF THE PUBLICATIONS OF THE AUTHOR

Hao Wang
1952(50). Logic of many-sorted theories, JSL (i.e., Journal of symbolic logic), voLl7, pp. 105-116.

1953(52). Quelque notions d'axiomatique, Revue philosophique de Louvain, vo1.51, pp. 409-443.

English version entitled 'The axiomatic method' is included in Survey [1962(59)J as chapter 1.

1955(53). On formalization, Mind, vol. 64, pp. 226--238. Reprinted in Contemporary readings in

logical theory, edited by 1. Copi and J. Gould, 1967, pp. 29-39; also included as the opening

essay in their Contemporary philosophical logic, 1978, pp. 2-13.

(1953). The concept of computability. This essay was first written in 1953. It was then revised in 1954; but

it has not been published before.

1962(53). Ackermann's consistency proof. These notes were written in 1953 and first published in Survey

(pp. 362-375).

1955(54). On denumerable bases of formal systems. Invited hour lecture at the International Congress of

Mathematicians, Amsterdam, 1954; published in Mathematical interpretation of formal

systems, pp. 57-84.

1957(54). A variant to Turing's theory of computing machines, Journal A CM (i.e., of the Association for

Computing Machinery), vol.4, pp. 63-92. The paper was presented to the meeting of ACM in

June, 1954.

1974(55). On formalizing mathematical concepts. Six essays delivered as the second series of John Locke

Lectures at the University of Oxford in spring 1955; parts were published in revised form in

1974(72), chapters 1 and 2.

(1956). Elementary philosophy of mathematics. An uncompleted typescript of 450 pages written during

1955--56; only some fragments have been published.

1957(56). (With A. W. Burks). The logic of automata, JACM, vol.4, pp. 193-218 and pp. 279-297.

Reprin ted in Survey as chapter 8.

1957(57). Universal Turing machines: an exercise in coding, ZMLGM (i.e., Zeitshrift fur Mathematische

Logik und Grundlagen der Mathematik), yol. 3, pp. 69-80. Reprinted in Survey as chapter 7.

1958(57). Eighty years of foundational studies, Dialectica, vol. 12, pp. 466--497. Reprinted in Survey as

chapter 2.

1960(58). Toward mechanical mathematics, IBMjournal of research and development, vol. 4, pp. 2-22.

Reprinted in Survey as chapter 9; also reprinted in The modelling of mind, edited by K. Sayre

and F. Crosson, 1963; Russian translation in Problems of cybernetics.

1959(59). Circuit synthesis by solving sequential Boolean equations, ZMLGM, vol.5, pp. 216--239.

Reprinted in Survey as chapter 10.

1962(59). A survey of mathematical logic (Survey), Science Press, 1962,652 pp. + x; also distributed by

North-Holland Publishing Company, 1963. Reprinted by Chelsea, New York, 1970 under the

title Logic, computers and sets. The manuscript was completed and submitted in June 1959 (at

Oxford).

1960(59). Proving theorems by pattern recognition, I, Communications A CM, vol.3, pp. 220----234.

Inited lecture at the ACM meeting in May 1960.

371

372 Computation, Logic, Philosophy

1961(60). Process and existence in mathematics, Essays on the foundations of mathematics, pp. 323~

~351. This was read to the Philosophical Club of Harvard University in spring 1960; a Russian

translation came out in 1965.

1961(60)a. Proving theorems by pattern recognition, II, Bell System technical journal, vol. 40, pp.l~

41.

1961(60)b. An unsolvable problem on dominoes, The Computation Laboratory, Harvard University,

Report BL-30, J, July 1961,5 pp.

1975(60). Notes on a class of tiling problems, Fundamenta mathematicae, vol. 32, pp. 295~305.

1961(61). The calculus of partial predicates and its extension to set theory, I, ZMLGM, vol. 7, pp. 233~

233. It was read to the Logic Society in England in spring 1961; the second part (extension to set

theory) has not been written.

1963(61). Mechanical mathematics and inferential analysis, Computer programmingandformal systems,

edited by P. Braffort and H. Hirschberg, pp. 1~20. This is a revised version of an invited lecture

at a seminar, spring 1961, sponsored by IBM in Holland.

1962(61). (With A.S. Kahr and E. F. Moore). Entscheidungsproblem reduced to the AEA case,

Proceedings of the National Academy of Science, U. S. A., vol. 63, pp. 523----532.

1963(62). Dominoes and the AEA case of the decision problem, Mathematical theory of automata, pp.

23~55. Invited lecture given April 1962 in New York.

1963(62)a. The mechanization of mathematical arguments, Experimental arithmetic, high speed

computing and mathematics, pp. 31--40. This was an invited lecture at a meeting of the

American Mathematical Society in 1962.

1963. Tag systems and lag systems, Mathematische Annalen (MA), vol. 152, pp. 65~74. This was

included in Popular lectures [1931(73)] as appendix C5.

1963a. (With M. O. Rabin). Words in the history of a Turing machine with a fixed input, 10urnal ACM,

vol. 10, pp. 526-527.

1964(63). Remarks on machines, sets and the decision problem, Formal systems and recursive functions,

pp. 304--320. An invited lecturp given at Oxford, England in summer 1963.

1964. Critique of logic for the computer sciences, Communications ACM. vol. 7, p. 213.

1964a. (with W. V. Quine). On ordinals, Bulletin of American Mathematical Society, vol. 70, pp. 297~

293.

1965(64). Formalization and automated theorem proving, Proceedings of the IFIP Congress 65, pp. 51~

53. This was an invited lecture to the Congress; Russian translation, Problems of cybernetics, vol.

7 (1970), pp. 130-193.

1965. Logic and computers, American mathematical monthly, vol. 72, pp. 135~140.

1965a. Games, logic and computers, Scientific American, vol. 213, no.5 (November), pp. 93----106. There

is a Swedish translation in Modern Datateknik.

1965b. Note on rules of inference, ZMLGM, vol.ll, pp. 193~196.

1966. (With S. A. Cook). Characterizations of ordinal numbers in set theory, MA, vol. 164, pp. 1~25.

1966a. (With K. R. Brown). Filllte set theory, number theory and axioms oflimitation, ibid., pp. 26-29.

1966b. (With K. R. Brown). Short definitions of ordinals, lSL, vol. 31, pp. 409--414.

1971(66). Logic, computation and philosophy, L'dge de la science, vol.3, pp. 101~1l5.

1967(66). On axioms of conditional set existence, ZMLGM, vol.l3, pp. 133~133.

1967(66)a. Natural hulls and set existence, ibid., pp. 175~ 132.

The List of the Publications of the Author

1967(66)b. A theorem on definitions of the Zermelo·Neumann ordinals, ibid., pp. 241-250.

1970(67). Remarks on mathematics and computers, Theoretical approaches to nonnumerical problem

solving, pp. 152-160. An invited lecture given at Cleveland, Ohio in 1967.

1970(68). A survey of Skolem's work in logic, Selected logical works of Th.

Skolem, pp. 17-52.

1970(68)a. On the long· range prospects of automated theorem·proving, Symposium on automatic

demonstration, pp. 101-111. Invited lecture given at Versailles, France in December 1968.

1974(71). Metalogic, Encyclopaedia Britannica, vol. 11, pp. 1078-~1O86. All except the part on model

theory is reprinted in 1974(72) as chapter 5.

1974(72). From mathematics to philosophy, Routledge and Kegan Paul, 413 pp. +xiv. Italian

translation Dalla mathematica alia filosofia, Boringhieri, 1984, by Alberto Giacomelli.

1976(73). (With B. Dunham). A recipe for Chinese typewriters, IBM report RC4521, September 5,1973.

Chinese translation appeared in Dousau bimonthly. no. 14, March 1976, pp. 56----62.

1976(74). (With B. Dunham). Toward feasible solutions of the tautology problem, Annals of

mathematical logic, vol. 10, pp. 117-154. (Originally issued as IBM report RC4924 on July 9,

1974).

(1977). (With D. A. Martin). Ranked matching and hospital interns. Some of the results are mentioned in

1981(78) under chapter 3.6.

1981(78). Popular lectures on mathematicallagic. Science Press and van Nostrand Reinhold. 273 pp. +

x. Chinese translation appeared about the same time, Science Press, 257 pp. + vii.

1979. On information processing of the Chinese language (in Chinese), The state of the art report of

computer technology. no:98 (June 1979), pp. 1--4.

1981(80). Specker's mathematical work from 1949 to 1979, L'enseignement mathematique, vol. 27, pp.

85--98.

1984(82) Computer theorem proving and ar'ificial intelligence, Automated theorem proving: after 25

years, pp. 47-70. Lecture to accept the first Miletone Prize in automated theorem proving,

awarded January 1983 at the annual meeting of the American Mathematical Society.

1984(83). The formal and the intuitive in the biological sciences, Perspectives in biology and medicine,

vol. 27, pp.525-542. Opening lecture at the Ninth International Congress of Thrombosis and

Haemoslasis, Sweden, on July 3, 1983.

373

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

