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Chapter I. Background

1. Motivation. Many variants of the notion of automaton have appeared

in the literature. We find it convenient here to adopt the notion of E. F.

Moore [7]. Inasmuch as Rabin-Scott [9] adopt this notion, too, it is con-

venient to refer to [9] for various results presumed here. In particular,

Kleene's theorem [5, Theorems 3, 5] is used in the form in which it appears

in [9]. It is often perspicacious to view regular expressions, and this notion

is used in the sense of [3].

In general, we are concerned with the problems of automatically design-

ing an automaton from a specification of a relation which is to hold between

the automaton's input sequences and determined output sequences. These

"design requirements" are given via a formula of some kind. The problems

with which we are concerned have been described in [l]. With respect to

particular formalisms for expressing "design requirements" as well as the

notion of automaton itself, the problems are briefly and informally these:

(1) to produce an algorithm which when it operates on an automaton and a

design requirement produces the correct answer to the question "Does this

automaton satisfy this design requirement?", or else show no such algorithm

exists; (2) to produce an algorithm which operates on a design requirement

and produces the correct answer to the question "Does there exist an auto-

maton which satisfies this design requirement?", or else show no such algo-

rithm exists; (3) to produce an algorithm which operates on a design require-

ment and terminates with an automaton which satisfies the requirement

when one exists and otherwise fails to terminate, or else show no such algo-

rithm exists.

Interrelationships among problems (1), (2), (3) will appear in the paper

[l]. This paper will also indicate the close connection between problem (1)

and decision problems for truth of sentences of certain arithmetics. The paper

[l ] will also make use of certain results concerning weak arithmetics already

obtained in the literature to obtain answers to problems (1) and (3). Thus
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[l], in part, concerns applications of logic to automata theory. In the follow-

ing pages, we shall give some applications of automata theory to logic.

More particularly, we shall use automata theory to produce decision pro-

cedures for the truth of sentences of certain weak arithmetics.

Theorem 5.3 provides a uniform and surprisingly powerful technique for

proving that various operations on sets of finite sequences preserve regular-

ity.

2. Some basic notions.

Definition, (a) An 7-automaton is a quadruple 31= (S, f, d, D) where 7

is a finite nonempty set (the input states or the alphabet), S is a finite non-

empty set (the internal states), fis a function,/: 7X5—>5 (the transition func-

tion), ¿£S (the initial internal state), and DQS (D may be called the output

of 31).

(b) 7(31) is the set of all sequences (io, h, • • • , t'n-i), m^O, such that

there is a sequence (s0, ii, • • • , in) satisfying:

(1) f(ik, Sk) = sk+u   0 è k è n - 1, sk 6 S, û G I,

(2) sn E D,

(3) io = d.

7"(3l) is the set of tapes [9] accepted by 31 or the behavior of 31. The null se-

quence A£7(3l) if and only if ¿£7).

(c) 7(31) may also be described as the set of all functions

i: [0, 1, 2, • • • , m — l}—>7, m^O (the empty function is included) satisfying

the formula: V, [s(0)=dAi(w)e7>AAx<» [(i(x), s(x)) =cOi(*+l) =/(ci)]

A[(*'(*),i(*))-Os(*+l)«/(c*)]A • • ■ A[(i(x), s(x)) = cmDs(x+l)=f(cm)]]
where cit c2, • • • , cm is an enumeration of all the elements of 7x5 (the com-

plete states of the automaton).

3. Two characterizations of automata behavior. Let Vj be the set of all

finite sequences of elements of 7 (including the null sequence A). If a, ßQ Vi,

then a-ß is the subset of Vi obtained by concatenating a sequence from a

with a sequence from ß; a*= {AjVJaWa-aUa-oi-aVJ • • ■ . A subset of Vi

is I-regular if and only if it is obtainable from 0 and the unit sets, jfl},a£7

by a finite number of applications of U, -, *. Otherwise stated: The class of

7-regular sets is the smallest class containing 0, [a], a£7, and closed under

W, •, *. An 7-regular expression is constructed out of symbols denoting each

{c}, a£7, 0 (the empty set), and U, -, *. [Note that 0*= {A}.] A set is

regular if it is 7-regular for some 7. (Cf. [3, p. 182] and [9, p. 17].)

3.1. Kleene's theorem. If 31 is an 7-automaton, then T(3l) is 7-regular

and an 7-regular expression denoting 7X31) may effectively be obtained. Con-

versely, if a is 7-regular, then there exists an 7-automaton such that T(3l) =a

and, furthermore, 31 may be effectively obtained from an 7-regular expression

denoting a.
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The following statement is immediate from the definition of /-regular.

3.2. If a is /-regular and if IQJ, then a is also /-regular.

3.3. The class of /-regular sets is closed with respect to union, intersec-

tion, complementation (with respect to Vi) (cf. [9, p. 17]).

3.4. The class of regular sets is closed with respect to symmetric differ-

ence, intersection. This follows from 3.2 and 3.3.

Let p be a mapping of / onto /. There is a unique homomorphism from

the free semi-group F¡ on / onto the free semi-group Fj on / which extends p.

This homomorphism in turn induces a mapping p on subsets of Fi onto sub-

sets of Fj. If a is a set of /-sequences, then /(a) is a set of /-sequences, / is a

projection, and /(a) is a projection of a.

3.5. If a is regular and p is a projection, then pia) is regular.

Proof. Suppose a is /-regular and p: I—>J. If a<EI, then p{a} = {pia)} is

/-regular. Since pia-ß) = pia) -piß) and pia*) = ipia))*, the result follows.

(Medvedev [6, p. 13] gives a construction which, given an /-automaton

91 and a p: I—>/, yields a /-automaton fflp such that /(3lp) = ^(/(9l)).)

From the point of view of regular expressions: the projection of a regular

set is obtained by replacing each symbol a (denoting {a}) by £(a) (denoting

{Pia)}).
The following theorem strengthens a result of Medvedev [6, p. 11, Theo-

rem 2].

3.6. Theorem. (1) Every regular set is obtainable from a finite number of

sets of the types :

(a) Va : the set of all finite A -sequences iincludmg the null sequence) where

A is any finite set inonempty),

(b) Esia, b) : the set of all sequences uabv where a, ¿>(E-B and u, k£ Vb and

where B is any finite inonempty) set, by a finite number of applications of sym-

metric difference, intersection, and projection.

(2) Each Va, EBia, b) is regular.

Otherwise stated: Given a regular set a there is a Boolean ring polynomial iin

+, C\), an assignment of sets chosen from (a), (b), and a projection p such that

if +, O are interpreted as symmetric difference and intersection respectively

and if ß is the set denoted by this polynomial under this assignment, then piß) = a.

Furthermore, if a regular expression is given which denotes a, then the poly-

nomial, the assignment, and the projection may all effectively be determined.

Proof. (1) (¡) If AC\B = 0, then VAr\VB={A}.

(ii) Fa+U(0,5)s¿xa EAia, b) = {A, au o2, • ■ • , aT) where {ci, o2, ■ • • , aT)

= A and U(a,b)eAxA -E¿(ai b) is equivalent to a polynomial in +, P\ and the

basic sets Va, EAia, b).

(iii) If AC\B= {a), then there is a polynomial in the basic sets equal to

(iv) If R is a binary relation over a finite set A, then a sequence dia2 • • • a„
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is an R-sequence if and only if for each i <n, (ait Oi+i) £i?. (Thus the sequences

of length less than or equal to one are i?-sequences.) The set of all J?-sequences

is equal to

VA - [EA(au bi) U EA(a2, b2) U • • • U EA(ar, br)]

where {(au Z>,), (a2, b2), • • • , (or, ¿>r)} = Ä = (,4 XA)-R.

(v) Let 5.1(a) = {awI a£.,4 A«G ^}. Let i? be a binary relation on

AU \b},b$A,mz.,[(x,y) G R] **[(x = b Ay G A) \/ (x EA Ay EA)]
<^>[yGA A(x = b\JxGA)]. Then the set of i?-sequences intersected with

{b}KJ U  EAuW(a,b)

is the set Af of i?-sequences (of length >0) beginning with the letter ub."

Now if p : A KJ {b} —*A takes b into a and is the identity on A, then

P(M) = SA(a).

(vi) Let TA(a)= {ua\aGA AuGVA). Then 7¿(a) is expressible as the

projection of a polynomial in the basic sets. The argument is analogous to (v).

Now let 31= (S,f, d, D) be an 7-automaton. Let R hold between complete

states (¿1, ii), (i2, i2) if and only if f(i2,Si) =s2. Then the set of i?-sequences be-

ginning with (i, s) where i£7 and s=f(i, d) and terminating with an (i, i)

such that i£7> when projected by p, where p(i, s)=i for all (i, i)G7X5,

yields 7(31)- {A}. (Cf. the definition of 7(31).)
Result (1) now follows from (i) through (vi).

(2) VA = A*; EB(a, b)=B*-{a} ■ {b} B* which shows VA and EB(a, b)

are regular. (Alternatively one may directly construct automata which ac-

cept tapes VA, EB(a, b).)

Corollary. If R is a binary relation over a set A, then the set of all R-

sequences is regular.

Proof. Follows from (iv), (2).

3.7. Theorem. The class of all 7(31), 31 an automaton, is the smallest class

of sets containing VA, EB(a, b) (for every A, B, a, b(E.B) and closed under sym-

metric difference, intersection, and projection.

Proof. Immediate from 3.4, 3.5, 3.6.

3.8. Theorem. Every set obtainable from the sets

VAi, EAi(a, b), SAl(a), TAi(a)

by a finite number of applications of Boolean ring operations and projections is

obtainable from the same sets by Boolean ring operations followed by a single

projection (and these sets are exactly the regularjets).

Proof. Same as proof of 3.6.
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Chapter II. Truth Algorithms for Certain Arithmetics

4. Truncation lemma.

Definition. If m is a finite sequence, b is a letter, and, for some n, u

= vbM, in iterations of b), n^O, and v does not terminate with b, then

uh = v. This is called right truncation of u by b. If a is a set of finite sequences,

then a*= {uh\ «G«) (right truncation of a by ¿>). The meaning of left trunca-

tion is analogous.

Notice that AGcc* if and only if {b} *C\a^-0.

4.1. Lemma, (a) ia-ß)h = a-ißi- {\})Uab-iß»-ißb- {à})).

(b) ia*)» = a*-(a*- {A})U{A}.

Proof, (a) Let /(m) be the length of the finite sequence u. Let pbiu) mean

« terminates with the letter b.

u G ia-ß)b <=* V [ubM Ga^A»^0A~ pbiu)]
n

<=>   V   [ttiMü = ubM A»^0A«iG«A«!GM~ pbiu)]

<=>    V    [(«i«2 = ubM A»^0A«iGaA«¡G|3

A ~ pbiu) A /(«2) > n)

V («i«2 = «*(n) A«èOA«iGaA«2GiSA~ M«)

A í(«2) á n)]

<=> V [(«i-«2 = « A «! ^ A A «i G « A «i G Ä

6 6 ,

V (« = «i A «2 = A A «i G « A «2 G ÄJ

<=> V [(« = «i-«ï A«iGa A«2G |8 A«2G/S -{a})[(« = «i-«2 A«iG«A«2É(3Ai
«it»i

V (« = «î A «2 G iß" - iß" - {A})) A «i G a A «2 G 0)].

(b) m ̂  A A « G (a*)6

<=> V [«i(»> G«*A»HA~ pbiu) A « ^ A]
n

<=* V [)1 ̂   0 A f > 0 A Ml«2  •   •   • «r
»,r,wt ,«2, • • *i«r

= «6(B) A   A   «,• G a A ~pbiu) A « ?* A]
lSi'sr

<=> V Í» > 0 A« = «1«2 ••• Mm-1-Mm A «m 9* A A     A     «.G«
m.tti.tts, ■ • • ,um L l£t'sr -1

<=*« G «*•(«*- {A}).
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4.2. Lemma. The class of regular sets is closed under right truncation. More-

over, from a regular expression denoting a one can obtain effectively a regular ex-

pression denoting ah. Analogous statements hold for left truncation.

Proof. If x is a letter, then {x}6= {x} if b^x and {#}*= {A} if b = x. The

result for right truncation now follows by 4.1. The result for left truncation

follows from this and the fact that the class of regular sets is closed under

conversion (reversing the order of the sequences) (cf. [9, p. 17]).

5. Characterization of automata behavior via a formal arithmetic. Let Lx

be the class of formulas constructed out of

(a) Xi G Fi, x'i GFj, ■ • ■ , x-   GFj, ■ • • ; i,j = 1, 2, 3, • • • ,

(b) x = y, x < y,

by means of propositional connectives and quantifiers VXi, W,. The Xi are

individual variables, the F¡ set variables, and */ is interpreted as the suc-

cessor of Xi.

5.1. Let the individual variables of 7,i range over the natural numbers

and the set variables range over finite sets of natural numbers. Call the sys-

tem consisting of the class of formulas 7,i and this interpretation L\. If

A [Fi, F2, ■ • ■ , FT], r^O, is a formula in which at most the variables

7"i, Fi, ■ • • , Fr (the first r set variables in the alphabet of 7i) occur free, then

associated with A is the class of r-tuples (Fi, F2, • • • , Fr) of finite sets for

which A [Fi, F2, ■ ■ ■ , Fr] is true. Alternatively we may associate with such a

formula a function / on the natural numbers with values which are (column)

r-tuples of zeros and ones (i.e., an rX °° matrix) as follows:

/(») =

ai

ar

if and only if n G Fi = a< = 1.

If x = m3ix(Fi\JF2V) ■ ■ ■ \JFr) and y>x, then/(y) is the r-tuple of all zeros.

Let ov be the restriction of / to the domain {0, 1, 2, • • • , x} ; <rr may be identi-

fied with the rX(x+l) matrix whose i'th column is f(i). Moreover ar is a 1-1

correspondence between all rX °° matrices of zeros and ones whose columns

are ultimately zero and remain zero and all those rXi matrices of zeros and

ones, i 2:0, whose last (rightmost) column is not the all zero r-tuple. Call these

rXi matrices admissible. (The matrix with zero columns is admissible.) Thus

with each formula A of L\ is associated a set Tr(A) of admissible r Xi matrices,

i^O, where A is a formula without free individual variables and the number

of free set variables is less than or equal to r. [If r = 0, let Tr(A) = {a} if A

is true and Tr(A) = 0 if A is false. ] Let Ur be the set of all r-tuples of zeros

and ones, r^O; let U° = Ur — {0r} where 0r is the all zero r-tuple. [If r = 0, let

Ur={0}, f/? = 0. Recall that F* = 0*={A}.]



1961]        FINITE AUTOMATA DESIGN AND RELATED ARITHMETICS 27

5.2. Notice that in L\:

x = y<=*/\ixEF = yEF),
F

x = 0*=*h~y' = x,
v

x<y&V\hiz'eFDzeF)AxeFAy$F\.

5.3. Theorem, (a) // A [Fu F2, • ■ ■ , FT] is a formula of L\, then TriA)

is Ur-regular and one can effectively find a regular expression which denotes

TriA).

(b) For every regular set aÇ Vur of admissible sequences there is a formula

EiA) of L\ such that TriEiA)) =a, where E is a string of existential set quanti-

fiers, A is free of set quantifiers, and the only terms in A are of the form x, x'.

Corollary. Let a be an arbitrary I-regular set. Let p be a 1-1 mapping of

I into U°. Then pia) is a U^-regular set i"isomorphic" to a, i.e., the set is a in

coded form) and so there is a formula A of L\ such that TTiA) = pia).

Remark. It will be convenient to abbreviate formulas of L\ by replacing

an r-tuple of finite set variables by a function variable interpreted as having

as its domain the naturel numbers and range an element of Ur and satisfying

(/(*))<= l^tfG^i as well as the property Vx/(x) = OrAA„ iy>xDfiy) =0r),

where 0r is the r-tuple of all zeros, so that any such function is associated with

a finite sequence of elements of Ur.

If / abbreviates (Fi, F2, ■ • • , Fr), then V/ abbreviates Vf,Vf, • • • Vjv

5.4. Lemma(2). Every formula A [Fu F2, • • • , Fr] of L\ is equivalent to a

formula B\F\, • ■ • , Fr] of L\ in prenex form and such that every individual quan-

tifier occurs to the right of every set quantifier.

Proof. Observe that

V  A C m V   A   A \iGix) DC) A y G(«)l
i       F O      F       z    L »J

(1) = V A A Ci
a    f    i

and

A   VCsA   V  V [ V Giz) D Gix) A c\
x    F a    F    z  L « J

(2) A  V VCi,
a    f    x

(2) This was pointed out to me by J. R. Biichi.
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where G is a set variable not occurring free in C.

Assume A [Fu F2, • ■ ■ , Fr] has the property that every set quantifier

has as its scope the entire formula to the right of it.

Notice that in applying (1) or (2) to A the number of set quantifiers to

the right of the x-quantifier is reduced by one. Thus, if V» [A,] is the right-

most individual quantifier which has set quantifiers to the right of it, by iter-

ating (1) and (2) a finite number of times one obtains a formula A' in which

the ^-quantifier appears to the right of all set quantifiers. Moreover, the

number of individual quantifiers with set quantifiers to the right is one less

in A' than in A. Thus one ultimately obtains a formula B equivalent to A

and having the desired properties.

5.5. A formula of the form

V [x^nFk, A *<M1V*, A • • • A x^nFt,],
X

where each occurrence of r¡ is independently G or G, will be called a principal

formula where O^wio <mi < • • • <mr.

Call a formula normal if it is a disjunction of conjunctions of (1) principal

formulas, (2) atomic formulas, (3) negations of (1) or (2).

Lemma 1. Every formula of L\ is equivalent to a formula of L\ of the form

Q[M\ where Q is a string of set quantifiers and M is a disjunction of conjunc-

tions of principal formulas and negations of principal formulas. [By appropri-

ately permuting Fi, Ft, • • • , F, in the given formula, the variables in Q may be

assumed to appear in alphabetical order terminating with Fr. ]

Proof. In view of 5.2, it may be assumed that the given formula contains

atomic parts 5(a) only. Suppose A is normal.

(a) Then ~A is equivalent to a normal formula (with the same free

variables).

(b) Consider VXA. Vi distributes over the disjuncts of A. Let D be a dis-

junct of the form 7>i(x) AD2 where x does not occur free in D2 and no variable

other than x occurs free in Di. Then VXD =D2AVxDi(x).

Starting with a formula B [Fi, F2, ■ ■ • , Fr] of Lemma 5.4 one makes use of

(a) and (b) until all the individual quantifiers are "moved in." This yields a

formula of the desired form.

Lemma 2. The set of all admissible sequences in Vur is U* ■ U^KJ {A} and is,

therefore, regular.

5.6. Proof of 5.3 (a). Consider a formula of L\ of the form Q[Af] of

Lemma 1 of 5.5 with free set variables Fx, F2, ■ • • , Fr. Assume that it is known

that if A is a principal formula then Tr(A) is regular, and that from A, a

regular expression denoting Tr(A) may be effectively obtained. Then since
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TriA AB) = TriA) H TriB),

TriA V B)   =   TriA) U TriB),

Tri~A) = compl TriA)

[complementation is with respect to the set of all admissible sequences in

Vvr (which is regular) ] for A and B any formulas of Lx without free individual

variables, it follows then TTiM) is regular and a regular expression denoting

it is effectively obtainable.

Now if A =A [Fi, Ft, • • • , Fr], r > 1, then /r-i(VFr A) is the set obtain-

able from TV (¿4) by deleting the rth row followed by right truncation of the

all zero (r—l)-tuple, i.e., if r>l

Tr^V   AJ  =   iPriTriA)))»

where pr maps an r-tuple of zeros and ones onto the (r—l)-tuple obtained

by deleting the rth component and b is the all zero (r—l)-tuple. Hence

ZV_i(Vfr A) is regular and from a regular expression for TriA) one may effec-

tively obtain one for Tr-\iS f,A).

It remains only to show that TriA) is regular for A a principal formula. To

simplify the exposition we point out that the principal formulas can, without

loss of generality, be taken to be of the form

(1) V    A   ixvFiAx'nFi),
x    lstsr

where each occurrence of rj is independently G or G- This follows from the

fact that (assuming m>\)

xmvF <=» yx = *' A ys = yi A • ■ • A y«-i = y'm-i A y'm-wF

** A [yi G G = x' G G A y2 G G = yi G G A ■ ■ •
a

A ym-i G G = y'm_2 G G A y'm-njP]

and

xr,F <=> ixvF A x' G F) V ixVF A x' G F),

x'vF <^ (* G F A x'vF) V(ïÎFA x'nF).

Let A be V» [fix) =aAfix') =b] (cf. Remark 5.3).
Case I. aE Ur and 6G t/?. Then

TriA) = U*-{a}-{b}-iiU*-U°r) V{a}).

Case II. aG^ and &=0r. Then

TriA) = (/7*-{<z})U(í/*-{aj-{6}-í/*-C/°).
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Case III. a = 0r = b. Then

Tr(A) = (U*-Ul) V{A}.

5.7. Proof of 5.3 (b). Let aÇZ Vvr be a regular set of admissible sequences.

Then a— {A} is regular and is a projection of a regular set ßQVv*r+,, i>0.

Specifically: there exists a i7r-automaton 31 = (5,/, d, D) such that a= 7\3l).

Without loss of generality, let 5 be a subset of t/° for a suitable i > 0. The com-

plete states UrXS of31 may be identified with a subset of t/r°+, as follows:

(x, y)G UrXS is identified with the (r+s)-tuple whose ith. member, 1 ̂ i^r,

is the ith member of x and whose (r+j)th member, 1 ̂ j^s, is the jth mem-

ber of y. Let3C[/r°+Jbetheset { (x,f(x, d))\xEUr}. Let £= U^XD. Define

RQUr+,XUr+s as follows: ((xi, yi), (x2, y2))GR if and only if/(x2, yi)=y2.

Then ß is the set of finite i?-sequences beginning with an element of B and

ending with an element of E and a= p(ß) where p is the mapping which takes

(x, y)G UrXS into x.

ß is the intersection of the three following sets.

(a) Ua€B Sur+,(a), BQU°+, (those elements of Vur+, beginning with an

element of B).

(b) U„se WuT+,(a), E= UrXD (those elements of VuT+, terminating with

an element of E).

(c) The set of all i?-sequences, RQ U°+,X U°+s.

We now obtain formulas "corresponding" to (a), (b), (c).

a) Let B = {b1, b2, • ■ ■ , bn}. b{ is the &th component of b\ For each ¿>*

the formula A*: i\iSkSr+» 0r¡kFk, where ijk is G if bt= 1 and i)k is G otherwise,

corresponds to 5C/r+,(&i), so that (a) corresponds to Al\JA2\J • • • \JAn.

Then Al\/A2\/ • ■ ■ \/An is an abbreviation of a formula A of L\ and

TT+.(A) =   U  SuM.
aeB

b) Let E= {e1, e2, • • ■ , e"). With each ei associate the formula

A*: V\   A    xrjkFk Ai\ (y>xD(yGFiAyGF2A- ■ ■ AyG Fr+,))~]
x   <-l£ksr+ê y -i

where rjk is G if 4= 1 and otherwise r\ is G• Then Al\J'A2\J • ■ • \/An is an

abbreviation of a formula A of L\ and

Tr+,(A) =   U   WUr+,(a).

c) Let H = RU(Ur+,X{z}) where z is the all zero (r+s)-tuple. Let

{(e\fl), (e2,f2), • • ■ , (en,fn)} =H. With each ^associate A (e*): A iSKST+,xrjkFk

where t]k is G or G depending on whether et = 1 or not. With each/1 associate

B(f') : AiSiSr+, x'r]kFk where r\k is G or G depending on whether ft= 1 or not.

Then if A is the formula abbreviated by A„ Vis,sn A(e') AB(f), then Tr+,(A)

is the set (c).
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If ff is the conjunction of the formulas a), b), c), then rr+,(ff)=/3 and

^(V,^ V,r+, ■ • ■ V,r+1ÍF)=a.
Note that {A} =TiiA,x$F).

5.8. Corollary to 5.3 (a)(3). Ehrenfeucht's theorem iunpublished).

The set of true sentences of L\ is effective.

Proof. It may be assumed (5.4) that the given sentence is of the form

(a) V A[F]
F

or

(b) ~ V A[F]
F

where A is a formula in which at most the set variable F occurs free. Then

(a) is true if and only if TiiA [F]) is nonempty, and (b) is true if and only if

TM [F]) is empty. T^A [F]) is empty if and only if r0(vV A [F]) is empty.

Thus, one can effectively find an automaton 91= (S, /, d, D) with one in-

put state (sometimes called an input-free automaton or autonomous auto-

maton) which represents (a) (or (b)).

If the automaton has n internal states, then the (unique) input sequence

of length n will determine a sequence of internal states starting with d of

length w + 1. At least one internal state must occur more than once in this

sequence so that Zo(9l) is nonempty if and only if an sED occurs in this

sequence.

5.9. For each finite set F of natural numbers let t(F) = J^kef 2". Then r

is a 1-1 correspondence between the class of all finite subsets of the natural

numbers and the natural numbers.

tÍG) = t(Fi) + t(Fi) «=» V [0 G C A (0 G G = 0 G Fx A 0 G F2)
c

AAix'EC^ixEFlAxEF2)VixEF1AxEC)
X

V («€ Ft A xEC)- A -x' G G

= ixEFiAxEF2AxEC))]

where A represents "exclusive or". Thus:

Corollary(4). (1) The first order theory of addition of natural numbers is

decidable. (2) Furthermore, for any relation A [xi, x2, • • • , xr] in the first order

theory of natural numbers there is a formula B [Fi, F2, • • • , FT] such that

A[xi, x%, • • • , xr]<=>ß[r_1Xi, r_1x2, • • • , T-1*r].

(3) This result has been obtained independently by J. R. Biichi.

(4) This was suggested by J. R. Biichi.
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Statement (1) with "natural numbers" replaced by "integers" was estab-

lished by Presburger; statement (1) itself was established by Hubert and

Bernays. The proof of (1) indicated here appears to be simpler than either

of the two proofs mentioned, both of which make use of the theory of con-

gruences.

5.10. For each n, m^I, consider the 22n M-place predicates

V, [xr,Fi A xVF2 A • • • A xvF„ A x'vFi A x'r,F2A • • • A x't)Fn]

where each occurrence of r¡ is independently replaced by G or G• Call the

class of all these predicates (P. Then every first order formula in (P is equivalent

to one in L\ (without free individual variables) and vice versa. Let r(P be the

class of predicates A [tFi, tF2, ■ ■ ■ , tFt\ defined to hold if and only if

A [Fi, F2, ■ ■ ■ , Fr] holds and A [Fu F2, • ■ ■ , Fr] is a predicate of (P. Then:

Corollary. The first order arithmetic theory based upon t(P is decidable

and this theory strictly contains the elementary theory of addition of natural

numbers in the sense that while addition is definable in the theory of t(?, not every

predicate in t(P is definable in the first order theory of addition.

Proof. r{Vx [xGFAx'GFA^yGFD(y = xVy = x')]} is the set 3, 6, 12,
24, • • • , i.e., the set {3X2n}nio- This set is not definable in the first order

theory based upon + because the sets definable in this latter theory are

exactly those whose characteristic function is ultimately periodic while the

set {3X2"}„s0 does not have this property. (Cf. [4, last paragraph, §3].)

The rest of the argument is contained in 5.9.

5.11. Corollary 1. The first order theory of finite sets of natural numbers

based upon C\, ffi (symmetric difference), 0, =, and the unary operation

F—>F' defined by

x G F' if and only ifVx^yAyGF
v

is decidable. Furthermore, the relations on finite sets definable in L\ are exactly

the same as those definable in this theory.

Proof. The operation C\, @, ' and the relations F = G and F = 0 are defin-

able in L\.

The principal formula Vx [xGGiAx'GGiAxGGiAx'GG2\ has as its

counterpart in this new theory the formula (i.e., the set of ordered pairs of

finite sets defined by this formula is the same as that given by the formula

below) :

V     {F1 = F\ A Ft = f\ A F3 = F\ AFiCF2CF3

A A [(G-G'AF^G-D-FiQG) A(G = G'AF2CG-D-F3QG)]

AF3® Fi QGiAF3® F2QGiA (F2 8 Fx) AG2 = 0|.
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Similarly for other principal formulas.

The unary operation F—>F' may be replaced by the property F=F' with-

out changing the strength of the system.

Corollary 2. The first order theory of natural numbers based upon t(P\),

t( ©), =, +, and the property Pin) of being of a power of 2 is decidable where

XTÍ(~\)y = z <=> t~1x C\ r~ly = t~1z,

xri®)y = z <=> t~1x @ r~xy = T'h.

Notice that P(w)<=>t-1m is a unit set and the property of being a unit set

is definable in L\.

Note, too, that we have, in particular, a proper strengthening of Pres-

burger's result, viz., the first order theory of natural numbers based upon

addition and the property of being a power of two is decidable and the prop-

erty of being a power of two is not definable in the Presburger system.

5.12. Let L\ be the system consisting of the formulas ¿i with individual

variables interpreted as ranging over integers rather than natural numbers

and set variables ranging over finite sets of integers.

Lemma. For each formula A [Fi, Ft, • • • , Fr] of L\ and for each integer I,

A[Fi, Ft, • • • , Fr]=A[F[, Fl, • • ■ , F*r] where xEF\**x-lEFi, i.e., the
class of r-tuples of finite sets defined by a formula of L\ is closed under translation

(cf. 5.13).

Lemma 1 of 5.5 is valid for L\. Let Rr be the relation between two r-tuples

of finite sets that one is a translate of the other. Each .^-equivalence class is

included in A [F\, Ft, • • • , Fr] or in ~A [Fi, Ft, ■ ■ • , Fr] for every formula

A for this is true for principal formulas and is preserved by the Boolean

operations and projection.

Analogous to 5.1 and in view of the lemma one may associate with

A [Fi, Ft, • • ■, Fr] of L\ a set TfiA [Fu Ft, • • •, FT]) of admissible-2 matrices,

an admissible-2 matrix being a finite sequence of r-tuples of zeros and ones

which neither begins nor terminates with the all zero r-tuple. Analogous

to the proof of 5.3 one may establish the following theorem.

Theorem, (a) If A[Fi, Ft, • • • , Fr] is a formula of L\, then T2iA) is Ur-

regular and one can effectively find a regular expression which denotes TfiA).

(b) For every regular set a of admissible-2 Ur-sequences there is a formula

EiA) of L\ suchthat TfiEiA)) = a where Eis a string of existential set quantifiers

and the only terms in A are of the form x, x'.

Corollary to (a). There is a decision procedure for the truth of sentences

ofL\.

5.13. In L\:
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x=yai\ (xGF = yGF),
F

x<yttf\ [(zGF Az?¿x-D-z'GF)DyEF].
F,i

However, x = 0 is not definable in L\ by virtue of the lemma of 5.12. Compare

with 5.2.
5.14. Let A be an arbitrary finite set. A sequence of VA is admissible-3 if

and only if (1) it is of length one or (2) it is of length greater than one and

the last two elements of the sequence are distinct.

Lemma 1. The set of all admissible-3 sequences in VA is A -regular.

Proof. Identify elements of A with sequences of length one. The set of all

admissible-3 sequences is:

A W  U   VA-(A - {b})-b.
be A

Definition. If aQVA and bGA, then ah (modified truncation by b) is

defined as follows: vGot'b if and only if

(1) vGot and v does not terminate with b, or

(2) there exists uGoc which terminates with b and if

wbb • ■ ■ b = u and w does not terminate with b, then v = wb.

Lemma 2. If aÇ Va is A-regular and bGA, then ah is A-regular.

Proof. Cf. Corollary 5.3 and remark. Without loss of generality assume

that A = Ur for appropriate r. There is a formula $[/] such that Tr5 = a. It is

sufficient to prove the theorem for A£a. Then f(x) =OrZ)x>0. Let $[g] be

the formula:

V A h\f] Af(y') = Or Af(y) * 0,0: U(y) * O A /(*) = g(*)~|

A U(y) = OA [/X*) = b A ( V z' = x Df(z) * b)\

a(¡\z^x-D-f(x) = b V/(«) = Or)O• A (g(w) = f(w)) A A g(w) = oil} .

Then 7Vg = a'\ By Theorem 5.3 (a), ab is regular.

5.15. By a quasi-finite set of natural numbers (integers) is meant a set

which is finite or whose complement is finite. Let L\ be the system consisting

of the set of formulas Li with individual variables interpreted over the natural

numbers and set variables interpreted over quasi-finite sets of natural num-

bers. Let Fi, F2, ■ ■ ■ , Fr be quasi-finite sets. Let c*(m) = 1<=>mG7*. Let
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e(») =

ciin)'

din)

Crin).

Thus, with each r-tuple of finite sets of natural numbers is associated cE U?

iN is the set of non-negative integers). Because the Fk are quasi-finite, there

exists xEN such that A„y>:Oc(y) = c(x). The function c restricted to the

first x such that this property holds is an element of (Fi, F2, ■ • ■ , Fr) of Vur-

Moreover, c is 1-1. Briefly: of(Fi, F2, • • • , Fr) =/where domain/= {x\ x^y]

and y = iuz)Ai [Ax *S¡0*E^V V -A* * = 0*GF,] and if x^y then (/(*))<
= l«ïGi'i and V, z>yZ)fiy) =/(z)- The image of a? is the set of all admis-

sible-3 elements of VUr. If A [Fi, F2, • • • , FT] is a formula of /?, then 7^(^4)

is the set of all of(Fi, F2, • • • , Fr) such that A [Fu F2, ■ • • , Fr] holds.

Notice that 5.2 holds in L\.

Theorem, (a) // A [Fi, F2, • • • , Fr] is a formula of L\, then T\iA) is

Ur-regular and one can effectively find a regular expression which denotes it.

(b) For every regular set aÇ Vur of admissible-3 sequences there is a formula

EiA) of L\ such that TfiEiA)) =a where E is a string of existential set quanti-

fiers, A is free of set quantifiers, and the only terms in A are of the form x, x'.

Proof, (a) The proof is analogous to 5.6. Lemma 1 of 5.5 holds with

"/.?" in place of "L\". If A, B are formulas of L\ with at most Fu F2, • • ■ , Fr

free, then

t\a ab) = t\a) r\ t\b),

t\a V B) = TliA) \J t\b),

tIí~A) = compl TriA)

where complementation is with respect to the set of all admissible-3 sequences

of Vur (cf. 5.14, Lemma 1).

Ua^TriA), then r?_,(V^r M)) = (•"(((#(«)) •")•*)"■) where £ maps an

element of Ur into the element obtained by deleting the rth component and

a, b, ■ ■ • is an enumeration of the elements of Ur-i- Since regularity is pre-

served by projection and modified right truncation (Lemma 2, 5.14) it follows

that /r3_i(VFri4) is regular.

It remains only to show that if A is Vx [f(ï)=oA/(ï') = &], then TfiA) is

regular, where / abbreviates (Fi, F2, • • ■ , Fr) (cf. 5.3). Let

ß=       U      iiï-{a}-{b\-iï-{c}-{d})U     U      U*-{a}-{b}-{c}.
Cféd-.cdíU, c¡íb;c£Ur
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Then ß is regular. If a*b, then T3r(A)=ß\J(U*■ {a} ■ {b}) while if a = b, then

T*T(A) =ßyJ(U*■ Ur- {a} ■ {a})VJ{a}. Then T?(A) is regular and the proof

is completed.

(b) Let aÇ U* be a regular set of admissible-3 sequences. Thus a= 7(31)

for some automaton 31= (5, /, d, D). We may take 5 as a subset of U, for

some i>0. Identify UrX U, with Ur+„ the complete states of 31. Then a is

a projection of a set j3Ç í/r*+Jand/3isthesetof all i?-sequences [RQ Ur+,X Ur+,]

beginning with an element of B= {(a,f(a, d))\aG UT) and terminating with

an element of UrXD where (wi, Vi)R{u2, v2) if and only if uu u2G UT, i>i, f2G U,

and f(u2, Vi) —v2. Notice that the elements of ß are admissible-3.

Define R and R+ as follows:

(a, c)R(b, d) <=* aRb A c = 1 = d;

(a, c)R+(b, d) <=> (a, c)R(b, d)- y-a = b A (c = 1 V c = 0) A d = 0,

for all a, bG Ur+¡.

Observation. Every finite non-null j?-sequence has a unique extension

to an infinite i?+-sequence in which (a, 0) occurs for some aG Ur+t, and every

infinite i?+-sequence in which (a, 0) appears for some aG Ur+, is an extension

of some finite non-null .R-sequence. If g is an infinite i?+-sequence such that

g(x) = (a, 0), then for all y>x, g(y) = (a, 0).

Let/abbreviate Fu F2, ■ ■ ■ , Fr+,+i. Let 5 = Ax V<0,f,>eff+ [f(x) =aAf(x') = b]

AVK yGFr+a+i- Then sequences in 7,3+,+1(3:) have the property:

(1) if it is of length one, it is of the form (a, 0);

(2) if it is of length two, it is of the form {a, l)(a, 0);

(3) if it is of length greater than two, then its last three members are of

the form (b, l)(a, l)(a, 0), where a, bGUr+, and a^b. It follows that

7r3+s(Vi'r+,+1 (S7)) is the set of all i?-sequences.

Let g[g] be Wr+,+l (ff). Let 3C[g] be:

9[g] A g(0) G B A V g(x) GUrXDA ¡\ (y>xD g(y) = g(x)).
X V

(The second and third conjuncts are abbreviations of disjunctions.) Then

Tr(   V      V     • • •    V   3c] = a.
^ Fr + i    Fr + J Fr+t        '

Corollary 1. There is a decision procedure for the truth of sentences of L\

(and one such procedure is given by the proof of Theorem 5.15 (a) together with

the last paragraph of 5.8).

Corollary 2. The first order theory I? of the Boolean algebra of all quasi-

finite sets of natural numbers (based, say, upon U, f\ ~) with operator F' (cf.

5.11) is decidable. More generally, the relations on quasi-finite sets definable in

U are exactly the same as those definable in L\.
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Proof. Similar to 5.11.

5.16. Let L\ be the system consisting of the formulas Li with individual

variables ranging over all the integers and set variables ranging over quasi-

finite sets of integers.

Theorem. There is a decision procedure for the truth of sentences of L\.

Proof. If Fi, F2, • • • , Fr satisfies a formula of L\, then any translate (cf.

5.12) of this r-tuple satisfies the formula. The function/: A7—>[/r such that

(f(x))i— l<=íaGFt-has the property that \lx,y,a [AISI/(z) =aAAZÈ„/(z) =a and

xúy] because of the quasi-finite character of the F,. If /is not constant, let

xa = (max x) V   A [z ^ x D/(z) = a],
a       z

ya = (min y) V   A [z ^ y 3 /(z) = a].
a       x

Then the finite sequence g = cr*(Fi, F2, • • • , Fr) if domain g= {x\x^y0 — x0|

and Ax [gix)=f ix+xo)]. If/ is constant and equal to b, then let domain

g= {o} and g(0) = o. The mapping o* takes all members of a translation

equivalence class into the same element of Ur and distinct equivalence classes

go into distinct elements. Moreover, if <r*(Fi, F2, • • • , Fr)=g and domain

g = {x|x^y} and y>0, theny>l and g(0)=g(y), g(0)?¿g(l), g(y-l)^g(y).

Via a*, with each formula SF[Fi, F2, • • • , Fr] of L\ is associated a set of

finite sequences Fj(iF) which may be shown to be regular and a regular expres-

sion may effectively be obtained as in the proof of 5.15, Theorem (a). This,

together with the last paragraph of 5.8, yields a decision procedure for truth.

Chapter III. Solvability Algorithms

6. Some operations which preserve regularity. Let o-ç VAXB. A sequence

in AXB will sometimes be indicated thus: \u, v\, where uEVa and vEVB

and u and v have the same length. Thus, the ith member of \u, v\ is the

ordered pair whose first member is the ith member of u and whose second

member is the ith member of z; and \u,v\ is an initial segment of | u, v\ \u',v'\.

Similarly the ith member of | u, v, w\, where u, v, w all have the same length,

is the ordered triple whose first, second and third members are respectively,

the ith member of u, of v and of w. A sequence \u, v\ G<r is A-extendable in o

if and only if AaSA VbeB \u,v\ \a,b\ G<r- A sequence in a is strongly A-extenda-

ble in a if and only if every initial segment of the sequence is in a and is A-

extendable in <r. The set a is strongly A-extendable if and only if every sequence

in a is strongly A -extendable in a. If a is strongly A -extendable, every initial

segment of an element in <r is in a.

6.1. Lemma. If yQ Vaxb is regular, then there is a y a Qy such that

(1) y a is regular,
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(2) y a is strongly A -extendable,

(3) if ßQy and ß is strongly A-extendable, then ßQyA- Furthermore, from

an automaton e such that T(Q)=y one can effectively construct (by the method

given in proof) an automaton QA such that T(Qa) =1a-

Proof. Let 6 be the A X-B-automaton (5, /, d, D). Then y is P(S), where
5 is the union of {A} and the set of all i?-sequences beginning with an element

of E= {(a, f(a, b, d))\ (a, b)GAXB\ and terminating with an element of

(A XB) XD, and R holds between ((ai, bx), Si) and {{a2, b2), s2) if and only if

f((a2, b2), ii)=i2 and p((a, b), s) = {a, b). Let i?0 be the restriction of R to

A XBXD = Mo, i.e., Ro = Ri\(MoXMo). For m^O let Rn+i be the restriction

of Rn to Af„+i where

<ai, ii, ci) G Mn+i => {ai, bi, ci) G M„ A A        V      {au bu ci)Rn(a, b, c).
aeA   (b.e)eBXD

Inasmuch as M0 is finite, there exists m such that Rm = Rm+i = i?m+2 «■ • • • .

Define Ra to be Rm for this m and Ma to be Mm for this m. Then

(ai, h, ci) G Ma <=> A        V     (ai, bi, ci)RÁ{a, b, c).
aeA   (b.e)eBxD

[Of course, Ma may be empty. ] Let a be the set of all i?A-sequences beginning

with an element of E, i.e., beginning with an element of Eí~\S)Ra (£>Ra is the

domain of the binary relation RÄ). Let yA = pc.

(1) y a is regular since it is a projection of a regular set <r.

(2) We shall show y a is strongly A -extendable. Let

I «ij "ij I «2, »21  G y A

where Mi, u2G Va and i»i, 52£ VB; then there exists w\, w2£ Vs such that

| «1, 5i, Wi |   | «2, 52, w2\   G<r.

Then

| «i, 5i, Wi\  G <r   and    | l*i, 5i|  G 7a-

Since the elements in the sequence | Mi, Vi, Wi\ are in Ma, and, in particular,

the last element of this sequence is in Af¿, it follows that

A V       | «i, 5i, wi \ | a, b, c |  G *
aeA    <J,c>€BXD

so that

A     V   I Mi, 5i | | a, b |  G y a.
aeA   beB

(3) Suppose ß is strongly A -extendable and ßQy. Let | m, i»| Gß; then

every initial segment of \u,v\ Gß so that if w is the sequence of internal states

determined by the automaton 6 (i.e., if \u, v\  is Oofli • ■ • a„G^4X7J, then
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w is s0Si ■ ■ • s„ where/(flo, ¿) = So and, for 0<r^»,/(or, sr_i)=sr), then every

initial segment of \u, v, w\ is an element of 5. Thus, every member of the

sequence | u, v, w\ is an element of Ma and | u, v, w\ is A or is an i?0-sequence

beginning with an element of E. Consider an arbitrary initial segment

| «0, Vo, Wo |  | do, bo, Co |      of     | m, v, w |

where aoEA, boEB, CoED, i.e., (aa, bo, c0)EM0. Since

| Uo, vo | ¡ a0) fto |  G ß,

A      V   I uo, vo | | a0, bo | | ai, ¿i | G ß Q y.
axSA    b¡eB

Hence

A V        [|«o,»o, wo\ \a0,bo,co\ | «i, 6i, ci |  G 5 A (ai, bu ci) G Mo].
a^EA   (bi,c¡)eBXD

It follows that (a0, ôo, c0)GAfi. Similarly

A V A V       [ | Mo, vo, wo | | a0, bo, co | | au bu d \ | a2, ô2, c21
a,EA   <6],ci>eBxi>   "26.4   <62.c2>e£Xl>

G S A («2, h, a) G Mo A («i, 6i, ci) G Mi].

It follows that (do, bo, Co)EM2. It should now be clear that (a0, b0, c0)EMa

so that | u, v, w\ is A or is a F^-sequence beginning with an element of E. Thus

| u, v, w\ Go" and \u, v\ EyA- We have shown that: if ßQy and ß is strongly

.4-extendable, then ßQyA-

6.2. If aQVA, define the interior of a (Inta) to be the set of sequences

uEa such that every initial segment of u is in a. A set a is open if and only

if a = Int a. We note incidentally that it is immediate from the definition that

arbitrary unions and arbitrary intersections of open sets are open so that the

class of open sets constitute a topology in the usual sense for VA. Notice that

if a is open, then a¿¿0<=>AEa. Medvedev [6, p. 11, Theorem 2] proves that

if a is regular, then Int a is regular by direct construction of an automaton.

The result is established below by means of 5.3.

Lemma. // a is regular, then Int a is regular.

Proof. Assume A Ç U°for an appropriate r. Suppose that Tr3\f]=a for an

appropriate formula ï of L\. Define g[g] as follows:

A :h ^ g-D-5[k]
A

where h^g abbreviates

A (h(x) *0rD Kx) = gix))
X
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and 0r is the all zero r-tuple. Note that h^g means that the element of Vu°r

represented by h is an initial segment of the element of Vu°r represented by g.

[Each of the r set variables abbreviated by h are distinct from each of the r

set variables abbreviated by g. ]

6.3. Lemma. The intersection aL of all open sets containing a given regular

set a is regular (and open).

Proof. Let aÇZ Vy\ be regular. The intersection of all open sets containing

a is simply the set of all initial segments of elements in a. Thus if rrï[/] =a

and if g[g] is defined as follows:

V :î[/]A A -g(x)^0rDg(x) =f(x),
t i

the desired set is Trg[g].

6.4. Lemma. Let aQVAxio.i) be regular. Suppose AG«- Let Ki(a), i = 0, 1,

be the set of sequences Oofli ■ • • an, a¡GA, such that there exists bo, bi, • ■ • ,

bn satisfying

(1) ii€{0,l},

(2) | Co, ¿o, | | «i, bi |   • • • | an, bn\  G a,

(3) bn = i.

Then Ki(a) is regular. If AGa, let Ki(a)=Ki(a— {A})U{A} ; then Ki(a) is

regular.

Proof. Let 31 =(5, /, d, D) be an A X {0, l} automaton and suppose

T(3l)=a. Let (B= (S,f, d, Df\A X {i}). Let ß= T((&). Then ß is the set of all
sequences

I a0, bo I I fli, ¿i |   • • • I a„, bn\  G a

such that bn = i. If p(a, b)=a, where aG-4, &G{0, l}, then Ki(a)=p(ß).

6.5. Lemma. Let /3Ç Vaxb be regular. Let ^ be the lexicographical ordering

of Vb induced by a given fixed ordering (<) of B. Define a= £< (ß) as follows:

| M, 5 |    G a <=>   | M, 5 I    G ß A  l\    | M, 5 |    G ßD V  <W.
vi

Then a is regular (and the set of ordered pairs (u, v) of sequences such that

| m, n| Got is a function).

Proof. Suppose (without loss of generality) that AQU?, BQU° for ap-

propriate r, s. Suppose that

7r+,ï[/i,/2] = ß       for an appropriate formula í of Li.

Define S[gi, g2] as follows:
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$[gu g>] A A : i[gi,/2] Ah(x) ft g2ix) A A (y < x DMy) = g2(y))

■D-gzix) <hix),

where gi abbreviates Fi, • • • , Fr, g2 abbreviates Fr+i, • • • , Fr+„ and /2

abbreviates Fr+1+i, • • • , Fr+2l, and g2(x)</2(x) abbreviates a conjunction of

conditionals of the form

gtix) = b-D-Mx) = bi WMx) = b2 V • • • Vf nix) = bm

where {61, • • • , b„} is the set of all elements bi in B such that b < bi.

Then Tr+S% = a, and a is regular (cf. Theorem 5.3 and remark).

7. Characterizations of ^4/F-automata behavior. An A/B-automaton is a

quadruple 91= (5,/, d, g) where/: .4 X5—>5 and g: 5—>£. The finite behavior

3(91) of 91 is defined as follows:

I u, v I   G 3(91) Q VAXB «=> (1)   I «, » I = A or (2)   | w, z> | ?¿ A

and  V    w G Vs A u = a0fli • • • an Av = Wi ■ • ■ bn Aw = sasi ■ • • s„- D • s0
w L

= / (a0, d) A    A   fiam, sm-i) = sr A    A    gism) = Ôm   .
0<msn Ogmán -I

7.1. Theorem. A set aÇ F^xb m ¿Äe behavior of an A/B-automaton if and

only if
(1) a is regular,

(2) a is open,

(3) I (m, v): I m, d| Ga) is a function,

(4) (w: |m, v\ Ea} = Va-
Further, if a satisfies the conditions, the proof gives an effective procedure for

producing an 91 such that 3(91) = a.

Proof. Assume a=3(9l) for some /1/5-automaton 91. Let 91= (S,f, d, g).

Define a binary relation R on A X5X5as follows: (alt b\, Si)R(a2, b2, s2) if and

only if /(a2, sx) =s2Ag(si) =&iAg(s2) =b2. Let uEß if and only if w=A or u

is an F-sequence beginning with an element of {a, fia, d), gfia, d): aEA }. Let

pia, b, s) = (a, b) for aG-4, bEB, sES. Then pß — a. (Cf. the definition of

3(9t).) Hence (1) is satisfied by a.(5)

Conversely, assume aQVAXB and a satisfies (1), (2), (3), (4). Without

loss of generality assume BQUT for an appropriate r. Let ai = piia), l^i^r,

where pi(a, C\, c2, ■ ■ • , c¿, • • • , cr) = (0, Ci), aEA, and, for all j, c,E {0, 1}.

Let 9l, = (5„ fi, di, Di), l=i = r, be A -automata such that F(9l¿) =Ki(aî)

(6) This was pointed out to me by J. B. Wright.
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(cf. 6.4). Let 31 = (S, f, d, g) be an 4/5-automaton where B=UT, 5 = 5i

X52X • • • X5r, (/(î)),=/<(i<), iuiûr, where sGS and the subscript "t"

indicates the ith component of an r-tuple, and d = {di, dt, • • • , dT) and

(g(s))i=l<*SiGDi.

Because of condition (3), for all i, l^i^r, Ki(ai)f}K2(ai) = 0 and be-

cause of (4), Ki(ai)\JK2(ai) = VA. Now, 3(31) satisfies (1), (2), (3), (4) by the

first part of the theorem. Thus it is sufficient to show that for each m G Va, if

Vi is the unique element of VB such that \u,Vi\ Got and 55 is the unique element

of VB such that |m, d2| G3(31), then Vi = v2.

It is obvious that AGa¡n3(3l). Suppose | m, v\ G<*n3(3l) and \u,w\

•\a,b\ Got. Because a is open, | m, w\ Goc, and so by (3),w = v. Let bi be the ith

component of b and let w¿ be the sequence of ith components of its members.

Now,

| m, v | | a, b | G a<=>   A    \ u, Vi\ \ a, bi\  E en <& t\ [bi = 1 sa ua E Ki(cn)].
lS»Sf »

Note that \u,v\ |a, c\ G3(3l)<=>| m, v, w\ \a, c, s\ satisfies conditions given in

7 above, for some (unique) wsGVs- In particular, g(i)=c. For this i, g(i)

= c<=>A< [c<=l =i,G7><] and since (for this i) A< [i<G7>, = MoG^i(a,)], it

follows that A,- [c,= 1 = ua G Ki (a,)], so that b = c.

Remark. Suppose Tr+.^[fi,f2]=aÇ. Váxb, AQU?, BQU°, for appropriate

r, i, and $ is a formula of L\. One can effectively decide whether a is the be-

havior of an ^4/5-automaton as follows:

(1) a is open if and only if "ASl/: s[f]Agèf-D-$[g]" is true, where /

abbreviates (r+s) set variables, cf. 6.2;

(2) 7.1 (4) holds if and only if "AA V/, [fuf2]" is true;
(3) 7.1 (3) holds if and only if ttKMt,H: ff[fi, f2] Aî|/i, g2]0-/2 = g2" is

true.

7.2. We wish to show that none of the conditions of 7.1 can be dropped

without the statement becoming invalid.

7.2.1. Let A = {1} and B={0, 1}. Consider the set a:

Since 0*-lU{A} denotes this set if "0" denotes {(1, 0)} and "1" denotes

{(1, 1)}, a is regular and 7.1 (1) is satisfied. It is obvious that 7.1 (3), (4) are

satisfied and that 7.1 (2) is not satisfied.

7.2.2. Let A, B, a be as in 7.2.1. Then aL (cf. 6.3) satisfies (1), (2), (4) but

not (3).

7.2.3. Let A = JO, l), B= {l}, and let a be the set:

then a satisfies (1), (2), (3), but not (4).
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7.2.4. Let A = {a, b} and let B = {0, 1}. Let ß be the set:

aMba(n), » â 0.

It is known (cf. [9]) that ß is not regular. Let \au ¿>i| \a2, b2\ • • • \ak,bk\ • • •

\a„, bn\ Ga<=>öiö2 • • • akEßL = bk = 1. Since ßL is open, it follows that

| M, »|Ga=>        V | U, v\    =   | Mi, »i|   | «2, »2|    A »1 G F(i) A 52 G V{0\.
«l.»l.«J.»2

Now a satisfies 7.1 (2), (3), (4). We wish to show a is not regular. If a were

regular, then y = ai\VAxM is regular. Further, y is isomorphic to ßL. Hence

to show a is not regular, it is sufficient to show ßL is not regular.

Suppose ßL were regular; then, assuming a, bEU2, for some formula

5[f]ofZ.l:

r2(î) = ßi<

Let 8[g] be the formula:

î[f]AA:^/Ai[/]0'i=/ (cf. 6.2).

Then F2(g)=ß is regular. Contradiction. Thus a is not regular.

7.3. If A is an arbitrary finite nonempty set, AN is the set of all infinite

sequences (functions on natural numbers) of elements of A. If aQVA, then

/Glim a<^{/} lÇa, where ßL, for ßC^tf, means the set of all finite initial seg-

ments of elements in ß.

Theorem. // aQiA"X.B)N, then there exists an A/B-automaton such that

lim 3(91) =a if and only if
(1) aL is regular,

(2) |/i, gi| G«A|/2, g2| EaAfi \ n=f2 f w- D -gi \ n = g2 \ n where f f n is
the restriction of f to the set of natural numbers <n,

(3) {f:\f,g\ea}=A».

Proof. Assume (1), (2), (3) hold. From (2), it follows that 7.1 (3) holds for

aL\ 7.1 (2) is obvious from the definition of aL; and 7.1 (4) follows from condi-

tion (3). Hence, there exists an ^4/J5-automaton 91 such that 3(91) =aL.

Claim: lim aL = a. If \f, g\ Ea, then {|/, g\ } LQaL so that |/, g\ Glim aL and

aÇlim aL. Suppose |/, g\ Glim aL. Because of (3), |/, h\ Ea for some h. Con-

sider an arbitrary n, \f, g\ \ n= \f, g'\ \ n for some \f, g'\ Ea. Since / \ n

=/' \n, it follows that h \n = g' \n = g \n (using condition (2)). Thus, g = h

and our claim is established (based only upon conditions (2) and (3)).

Let 91 be an .¿4/.B-automaton. It is obvious that lim 3(91) satisfies (2)

and (3). Hence, the "claim" of the previous argument establishes that

(lim 3(91)) L = 3(91) so that (1) is satisfied.

8. Solvability-synthesis algorithms. The fundamental solvability-syn-

thesis theorem that we have obtained is given in 8.1. A reformulation is given
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in 8.3. In 8.6 we obtain a result closely related to results obtained by A.

Church [2].

8.1. Theorem. Suppose yQ Vaxb- There exists an A/B-automaton 31 ímcA

that 3(31) C'Y if and only if yA (cf. 6.1) ii nonempty. If y a is nonempty, then

one may effectively obtain an automaton 31 such that 3(31) = £< (yA) where ^ t'i

an arbitrary ordering of B (cf. 6.5.).

Proof. Suppose 3(31) Qy for some 31. Then, since 3(31) is strongly A-

extendable, 3(31) QyA and 7x^0-

If yAJe0, then because it is open, AGta and because it is A -extendable,

the set {m: \u,v\ GtaJ = Va- By Lemma 6.1, yA is regular. Let &<(yA)z=ot.

From the definition of <£-<, it follows that { (m, v): |m, v\ Get} is íT function

and, since {u: \u,v\ G7x} = Va, so, too, [m: |m, v\ Ect} = Va- By Lemma 6.5,

a is regular. It remains only to show that a is open and then the result follows

from 7.1.

Suppose | Mi, 5i| | m2, v2\ Got. For some v, \ui, v\ Eoc. Since | Mi, Vi\ |mi,k|

GyA, it follows v <vi. Because \ui,v\ is A -extendable in yA,

| Mi, 51 | m2) w | G yA, for some w G VB.

Thus ViVi^vw, so that Vi<v (since ^ is a lexicographical ordering). It follows

that v = Vi and a is open, and the theorem is proved.

8.2. Corollary. Given yQA XB, one can effectively decide (by the method

indicated by the proof) whether: 3(3li) Çy and 3(3l2) Qy implies 3(3li) = 3(3l2).

Proof. If 7a = 0, then the condition is vacuously satisfied (cf. 8.1). Sup-

pose 7x5^0. If 3li is the automaton picked out by 8.1 and S(îSl2)Ç.y and

3(3li)?*3(3l2), then there exists \u, v\ G3(3li), \u, w\ G3(3l2), and v <w.

Hence, if 31 is the automaton picked out by 8.1 when the ordering of B is

reversed, 3(3li)^3(3l).

Thus, the conditional of the corollary holds if and only if (1) 7^ = 0 or

(2) y a 5^0 and if 3li is the automaton picked out via 8.1 by an ordering <^ of

B and 3l2 is the automaton picked out via 8.1 by the reverse ordering _>_ of

B, then the symmetric difference of 3(3li) and 3(3l2) is 0.

8.3. An .á/U-automaton, iÇ{/°, BQU„', may be identified, it will be

shown, with a formula of L\ of a certain form. Let 31= (5, /, d, g) be such an

automaton. Consider the formula

ffgrja, *] of ¿Î: V[^0D *(0) = f(a(0), d) A A (s(x') = f(a(x'), s(x))
l.t x<t

A b(x) = gs(x) A A a(x) = 0m A b(x) = 0m,],

where "a," "b" are function symbols interpreted as taking values respectively
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in A, B and, respectively, abbreviating finite sequences of set variables. It is

obvious that Fm+m-(ff) = 3(91). Thus the formula above may be identified

with 91. Given an arbitrary formula g[a, b] of L\, let Fm+m<(g) =yÇ Vaxb-

Then 3i9l)ÇZy<&Aa,f$[a, b]DÇj[a, b].
8.4. If p maps the finite set A onto B, p maps elements (and sets of ele-

ments) of Va onto elements (and sets of elements) of Vb- We wish to extend

further the meaning of p. If fEAN, then ipf)in)=pifin)). If aQAN, then

pa={pf:fEa}.

Lemma. (1) // aÇ VA is open, then \imipa) = £(lim a).

(2)  For arbitrary ¿3Ç VA, lim /3 = lim(Int ß).

Proof. Let /Glim a. For all n^O, / \ nEa and pif \n)Epa. Now pf

Ep lim a and {pf}L = {pif \ n): w^O}. Hence pfEtimipa). Thus, ^(lim a)

Qlimipa).
We shall now show lim(^a)ç:^(lim o¡)(6). Suppose gGlim(^a). Let

a' =ar\\Jnso P~lig \ n). Note that a' is open because a is. Then a' contains

an infinite number of elements. For uEa', let pa> (w) be the number of elements

in a' of which u is an initial segment. Now AGa'Ap«'(A)= <». We define

agQa' inductively. Let AEag. Suppose uEae as well as every initial segment

of m and suppose pa>iu) = «>. Let ai, a2, ■ ■ ■ , o„ be an enumeration of the ele-

ments of A. If m is an initial segment of v but ut*v, then, because a' is open,

v is an initial segment of either uai, ua2, • • • , ua„. Since pa'(«) = », for some

i, Pa'iuüi) = oo. Let k be the first such i and place uak in aa. Thus asç F¿ is

an infinite set simply ordered by the relation "initial segment of". It is thus

unambiguous to define/(w) = w(n), where uEag has n in its domain. It fol-

lows, for all m, f \ mEa0Qa and pif \ m)=g \ m. Thus /Glim a, pf=g and

gEp lim a.

The proof of (2) is immediate from the definition of lim and Int.

8.5. Lemma. Let ßQAN be the set of all infinite R-sequences f such that

f \ n is an element of a given set E of sequences of length n, where R is an n-ary

relation over A. Then (1) \\mißL)=ß, and if p is a projection, (2) ipß)L = pißL),

(3) \imiipß)L) = pß, (4) ßL and pißL) are regular sets and a regular expression

denoting them may effectively be obtained.

Proof. (1) Let/G/3. Then {f}LQßL. Hence /G lim ißL) and /ÎÇlimGS*).
Suppose /G Hm ißL). Then/ \ nE {g \ n: gEß] QE and, for all m, f \ m is an

F-sequence. Hence / is an F-sequence and fEß-

(2) uEipß)L^yg.m gEßAiipg) [m) = ««V(,m gEßAPig \m) = u
^uEpiß1).

(3) limiipß)L)=\\mipißL)) by (2) and by 8.4, lim pißL) = p lim(/3L), since

ß is open and by (1) the result follows.

(') The proof is closely related to König's infinity lemma. Theorie der endlichen und unend-

lichen Graphen, Leipzig, Akademische Verlagsgesellschaft M. B. H., 1936, p. 81, Satz 6.
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(4) K(w)=A*- {ai} ■ {a2} ■ ■ • {an} -A*, aiGA, is the set of sequences in

Va in which the sequence w = OiOj • • • o„ occurs and this set is regular. The

set compl U„íb K(w) is regular and is the set of all i?-sequences. The set EL

is regular, as is any finite set. The set ßL is: compl U„íb K(w)r\EL and is,

therefore, regular. Since projection preserves regularity, P(ßL) is regular.

8.6. Let L\ be the system consisting of the formulas of Li, with individual

variables interpreted over natural numbers and the set variables interpreted

over arbitrary sets of natural numbers. With a formula -&[Fi, F2, • • • , Fr] of

7i we associate a set T?$ defined as follows:

fGTÏZ if and only if fGU? and (f(x))i=fi(x), l^i^r, where /< is the
characteristic function of 7", and &[Fi, Ft, • ■ • , Fr] holds. Abbreviations

introduced for L\ in Remark 5.3 will be used in L\ as well.

8.6.1. Let 31 = {S,f, d, g) be an -4/5-automaton. The following formula

831 [a> b] of L\ (abbreviated) below may be identified with 31:

V |~i(0) =f(a(0),d) A A -(ii*') =/(a(*'),i(*))) A b(x) = gs(x)
•  L x

If a¡= 7^+m'(9gi,) (assuming range aQ Z7£ and range bQ U„'), then comparison

with 3:3j[a, b] shows that aL = 3(3l) = Tm+m>5yi (cf. 8.3) and by Lemma 8.5

(3), lim 3(31) = a.

8.6.2. Consider arbitrary formulas of L\ of the form V, A, Jli[o, 6, i, »],

where range aQA, range bQB, and where Af : is free of quantifiers, contains

only i, a, b, x free (a, b, s, respectively, abbreviate finite sequences of set

variables), may contain numerals but not " = " nor " <". Assume Af to be in

disjunctive normal form and let n be the maximum of those w's such that

x(m) or no») appears in M. Then TZ+mr+,(i\x M), range iÇSÇ Ur, is the set of

all/G(-4 XBXS)1* which are i?-sequences, for some M-ary R, and such that

/ \ nGE, for some finite set E (of elements of Vaxbxs of length m). Both R

and E are effectively, indeed readily, obtained from Af in expanded disjunc-

tive normal form. If ß= T~+m>+r(Az Af), then pß = T*+m>(V, Àx M), where p

maps an (m+m' +r)-tuple into the appropriate (m+m')-tuple.

8.6.3. Theorem. Given a formula V, A* Af [a, b, s, x], M as in 8.6.2, of L\,

there exists an A/B-automaton 31 such that lim 3(31) Qß= 7£+m'(V, Ax Af) if

and only if 7a^0 (cf. 8.1) where y=ßL. Whether or not 7^ = 0 can be effec-

tively decided (by the method given in proof) and if y a 7*0, one can effectively

produce an automaton satisfying the condition (by the method below).

Proof. From 8.6.1 and 8.6.2, it follows that

lim 3(31) Ç ß «=> 3(31) Q ßL.

The set ßL may be effectively obtained (8.5 (4)). The problem is now reduced

to 8.1.



1961]        FINITE AUTOMATA DESIGN AND RELATED ARITHMETICS 47

8.6.4. In connection with 8.6.3, it should be noted that:

lim 3(91) Ç ß <=> A -ggja, b] D V   A M [a, b, s, x\
a.b $       z

where g^, 91 are as in 8.6.1.

9. Remark. We give a metamathematical proof that the set

ß = {a(»>6a(»)| »a 0}

is not regular. Let a, bEUî- If the set were regular, then there would be a

formula i(/] of L\ such that F2ÍF = /3. Then y = 2x<=>V/•/(*) = bAfiy)^0
A As iz>yDfi¿) = 0) Aï[/]- Thus regularity of ß implies that doubling is defin-
able in /} and by results of R. M. Robinson [lO] it would follow that the set of

true sentences of L\ is not effective, contradicting 5.8.

Chapter IV. Nonexistence of Certain Algorithms

10. Let L2 be the class of well-formed formulas constructed out of indi-

vidual variables and monadic predicate variables, by means of the successor

operation ('), addition (+), =, propositional connectives, and first order

quantification.

Let L\ be the system consisting of L2 with the individual variables ranging

over natural numbers and the monadic predicates range over properties of

natural numbers which are ultimately false and remain false (we could have

used finite set variables instead, as in 5) and the unary and binary (non-

logical) operations interpreted as indicated and the logical operators and =

interpreted in standard fashion.

It will be convenient, as a device for abbreviation similar to 5.3 remark,

to employ unary function symbols (we shall use "i") in formulas such as

i(x)=a where aEA and i is a finite set of symbols. By coding A, i.e.,

putting A into 1-1 correspondence with a set of r-tuples of zeros and ones,

for appropriate r, the function symbol "i" may be replaced by a sequence of

r distinct monadic predicate variables. To say i is free means that the associ-

ated r monadic predicate variables are free. If a = abc is a word (finite se-

quence) , a, b, cEA, then i(x)i(x + l)i(x+2) = awill abbreviate i(x) = a Ai(x + 1)

= bAiix+2)=c.

Notice that in L\:

x = 0t=>x + x = x,

x<y**Vx + u = yAu?*0,
u

so that as further abbreviations, we shall employ 0, <.

Given a formula G = G[i, m] in which only i, m occur free where i is a

unary function (interpreted as a function on the natural numbers with values

in a finite set B) and misa monadic predicate. With each i, m such that
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G[i, m] is true and m(0) holds associate the finite sequence Tg(i, m) of words

(in B) whose first m words are i(l)i(2) • ■ ■ i(xi), i(xi + l)i(xi + 2) ■ • • i(x2),

• ■ • , i(xn-i+l)i(xn-i+2) • • ■ i(xn) where 0<xi<x2< ■ ■ ■ <xn are the first

m+1 numbers for which m holds. Let T(G) be the set of all Tg(i, m) such that

G[i, m] is true and wi(0) holds.

10.1. Lemma. For every Post normal system P there is a formula F=F(P)

in L\ such that T(F) is the set of all proofs of P.

Proof. Let Cm(x, y) abbreviate:

m(x)m(y)(x < y) A (x < z < y D ~m(z)),
z

i.e.,

m(x) A m(y) A V^ + « = )/A~m + « = «

**[( V:k+m = zA~m+m=m
u

A Vz + M = yA~M + M=MlD~m(z)   .

With each production of P

associate the formula

. k      k k
(ai, <Ti) : o-iß —» ß(T2

5,*.„*(w>, x, y) : i(w + \)i(w + 2) • ■ • i(w + /(en)) = <n A V m + l(a2) = y

A i(u + i)i(u + 2) • • • i(u + l(o-k)) = <72

A V U + w + /(<r*i) = a; A z + » + l(a\) = y

A A ( ~u + m = m A V„m + j = 0 i(w + l((Ti) + m) = i'(a; + m)) 1

where 1(a) represents the length of a. This formula expresses the condition

thati(w+l)i(w + 2) • • • i(x) = a\ß 3.XVÚ. i(x + í)i(x + 2) ■ • • i(y) =ßo\ for some

ß. Let (cri, ctí)1, (<ti, cr2)2, • • • , (<Ti, cr2)n be the productions of P and let a be

the axiom of P and define

Sp(i, m) :   A    [(Cm(w, x)Cm(x, y) D 5„i,,,i(w, x, y) V • • • V 5,»,„»(w, x, y))
12 11

A (a, = 0 D x = /(a) A i(l)*(2) • • • t(/(«)) = a)].

Then 7" is
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\sp(i, m) A m(0) AV^OAy^OA^yA m(x) A w(y)l V «(0)

A V |* ^ 0 A m(x) A ( A y * 0 A m(y) 3y = xjDx = 1(a)

A*'(D*"(2) • • •*(/(«)) -«].

10.2. Theorem. 77ie ie/ of satisfiable formulas of L\ is effectively enumerable

but not effective. Indeed, the degree of unsolvability of this set is maximum among

all effectively enumerable sets. If P is a Post normal system with 2 letters (see

M. Davis, Computability and unsolvability, New York, McGraw-Hill, 1958, p.

100, Theorem 5.3) which generates the complete (Post, 1944) set of natural num-

bersandif Fn = F(P) AV*Cm(x, x+m + 1) A¿(x+1) = 1 A¿(*+2) = 1A • • 'A
j(o:+M + l) = l, then every recursively enumerable set is recursive in the set of

Gbdel numbers of the satisfiable formulas Fn.

Proof. mG5p (see Davis, p. 85, Definition l.ii) if and only if V,-,OT Fn is true,

i.e., if and only if F„ is satisfiable.

The fact that the satisfiable formulas are effectively enumerable follows

readily from the Presburger result.

10.3. It is clear that the results of 10.1 and 10.2 hold if the individual

variables are interpreted over positive integers rather than non-negative

integers. Hence, one obtains for either the non-negative integers or the posi-

tive integers:

Corollary. If L\ is the system consisting of the formulas L2 but with the

interpretation of the predicates unrestricted, then the set of satisfiable formulas of

L\ is not effective.

Proof. The property of a predicate that it becomes ultimately false and re-

mains so is definable in L\.

This (for positive integers) is Putnam's Theorem 4 [8, p. 50]. Putnam's

argument can, however, be adapted to give the stronger result: The set of

satisfiable formulas of L\ is not arithmetic.

10.4. Let L\ be the system consisting of the class of formulas L2 with in-

dividual variables interpreted as ranging over all the integers and with the

predicates ranging over finite sets of integers.

Analogues of the lemma of 10.1 and the theorem of 10.2 hold for L\. T(G)

is defined exactly as before.

Notice that in L\:

j; = 0«Vj;+ï = i,   x=l<¿>Vy = 0Ay' = x,
x y

OOoV A [p(y) Ay*lDp(y-l)]A P(x)
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and

tiy- 1)<=» V«* = y Ap(z).
a

To establish the analogues for L\, we show that "Vp" can be moved all the

way to the left.

Let Dip) stand for A„ [piy) Ay^O/>(y-l)]. Notice that Dip) holds for
p if and only if p is a consecutive set of positive integers beginning with 1.

Then F=Fii, m) is modified by conjoining Axmix)Z)Dip)Ap(x) and

prefixing the conjunction by Vp. In the formula F, wherever one wishes to

express x<y, one writes Vu x-\-u = yApiu).

10.5. Let L\ be the system consisting of the class of formulas L2 with in-

dividual variables interpreted over natural numbers and predicates inter-

preted over ultimately periodic sets (a set of natural numbers is ultimately

periodic if its characteristic function is).

Corollary. The set of satisfiable formulas of L\ is effectively enumerable

but not effective. The degree of unsolvability of this set is maximum among all

recursively enumerable sets.

Proof. That the set of satisfiable formulas is effectively enumerable follows

from the Presburger result. The rest of the statement follows from the fact

that the property of a predicate of being finite is definable in L\ and from 10.2.

A similar result holds for "integers" in place of "natural numbers".

10.6. Corollary. Given an input-free automaton 91 and a formula B of L\

in which the predicates are interpreted as outputs : the problem of deciding whether

91 satisfies B is effectively decidable while the question "does there exist an 91 such

that 91 satisfies F>?" is undecidable. See Biichi, Elgot and Wright [l ] and Elgot

and Wright [4, p. 68, last paragraph].
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