L)

Check for

updates

Optimal Scheduling using Priced Timed Automata

Gerd Behrmann

Abstract

This contribution reports on the considerable effort made re-
cently towards extending and applying well-established timed
automata technology to optimal scheduling and planning
problems. The effort of the authors in this direction has to a
large extent been carried out as part of the European projects
VHS [20] and AMETIST [16] and are available in the recently
released UPPAAL CORA [12], a variant of the real-time ver-
ification tool UPPAAL [18, 5] specialized for cost-optimal
reachability for the extended model of so-called priced timed
automata.

1 Introduction and Motivation

Since its introduction by Alur and Dill [2] the model of timed
automata has established itself as a standard modeling for-
malism for describing real-time system behaviour. A number
of mature model checking tools (e.g. KRONOS, UPPAAL, IF
[11, 18, 15]) are by now available and have been applied to
the quantitative analysis of numerous industrial case-studies
[23].

An interesting application of real-time model checking that
has recently been receiving substantial attention is to extend
and retarget the timed automata technology towards optimal
scheduling and planning. The extensions include most impor-
tantly an augmentation of the basic timed automata formalism
allowing for the specification of the acculumation of cost dur-
ing behavior [7, 3]. The state-exploring algorithms have been
modified to allow for “guiding” the (symbolic) state-space
exploration in order that “promising” and “cheap” states are
visited first, and to apply branch-and-bound techniques [6]
to prune parts of the search tree that are guaranteed not to
improve on solutions found so far. Also new symbolic data
structures allowing for efficient symbolic state-space repre-
sentation with additional cost-information have been intro-
duced and implemented in order to efficiently obtain optimal
or near-optimal solutions [17]. Within the VHS and AMETIST
projects successful applications of this technology have been
made to a number of benchmark examples and industrial case
studies. With this new direction, we are entering the area of
Operations Research with a well-established and extensive
list of existing techniques (MILP, constraint programming,
genetic programming, etc.). However, what we put forward is
a completely new and promising technology based on the ef-

IBRICS, Aalborg University, Denmark
2Work partially done within the European IST project AMETIST.

Kim G. Larsen

34

Jacob I. Rasmussen ! 2

ficient algorithms/data structures coming from timed automta
analysis, and allowing for very natural and compositional de-
scriptions of highly non-standard scheduling problems with
timing constraints.

Abstractly, a scheduling or planning problem may be under-
stood in terms of a number of objects (e.g. a number of differ-
ent cars, persons) each associated with various distinguishing
attributes (e.g. speed, position). The possible plans solving
the problem are described by a number of actions, the execu-
tion of which may depend on and affect the values of (some
of) the objects attributes. Solutions, or feasible schedules,
come in (at least) two flavors:

Finite Schedule: a finite sequence of actions that takes the
system from the initial configuration to one of a des-
ignated collection of desired final configurations.

Infinite Schedule: an infinite sequence of actions that — when
starting in the initial configuration — ensures that the
system configuration stays indefinitely within a desig-
nated collection of desired configurations.

In order to reinforce quantitative aspects, actions may addi-
tionally be equipped with constraints on durations and have
associated costs. In this way one may distinguish different
feasible schedules according to their accumulated cost or time
(for finite schedules) or their cost per time ratio in the limit
(for infinite schedules) in identifying optimal schedules. It is
understood that independent actions, in terms of the set ob-
jects the actions depend upon and may affect, may overlap
time-wise.

One concrete scheduling problem is that of optimal task
graph scheduling (TGS) consisting in scheduling a number
of interdependent tasks (e.g. performing some arithmetic op-
erations) onto a number of heterogenous processors. The in-
terdependencies state that a task cannot start executing before
all its predecessors have terminated. Furthermore, each task
can only execute on a subset of the processors. An example
task graph with three tasks is depicted in Figure 1. The task
t3 cannot start executing until both tasks ¢; and ¢, have termi-
nated. The available resources are two processors p1 and ps.
The tasks (nodes) are annotated with the required execution
times on the processors, that is, ¢1 can only execute on py, to
only on p2 while t3 can execute on both p; and ps. Further-
more, the idling costs per time unit of the processors are 2 and
1, respectively, and operations costs per time unit are 5 and 4,
respectively.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F1059816.1059823&domain=pdf&date_stamp=2005-03-01

(3’ "')

(_’5)

(t2)

Processor costs:
Processor 1 - Idle: 2 - InUse: 5
Processor 2 - Idle: 1 - InUse: 4

(2)

(10,7)
Figure 1: Task graph scheduling problem with 3 tasks and 2 pro-
Cessors.

Now, scheduling problems are naturally modeled using net-
works of timed automata. Each object is modelled as a sepa-
rate timed automaton annotated with local, discrete variables
representing the attributes associated with the object. Inter-
action often involves only a few objects and can be modeled
as synchronizing edges in the timed automata models of the
involved objects. Actions involving time durations are natu-
rally modeled using guarded edges over clock variables. Fur-
thermore, operation costs can be associated with states and
edges in the model of priced timed automata (PTA) which
was, independently, introduced in [7] and [3]. The separation
of independent objects into individual processes and repre-
senting interaction between objects as synchronizing actions
allows timed automata to make explicit the control flow of
scheduling problems. In turn, this makes the models intu-
itively understood and easy to communicate. Figure 2 depicts
PTA models for the task graph in Figure 1 and is explained in
detail in Section 4.2.

The outline of the remainder of the paper is as follows: in Sec-
tions 2 and 3 we introduce the model of PTA, the problem of
cost-optimal reachability and sketches the symbolic branch-
and-bound algorithm used by UPPAAL CORA for solving this
problem. Then in Section 4 we show how to model a range of
generic scheduling problems using PTA, provide experimen-
tal evaluation and describe two industrial scheduling case-
studies. Finally, in Section 5, we comment on other PTA-
related optimization problems to be supported in future re-
leases of UPPAAL CORA.

2 Priced Timed Automata

In this section we give a more precise and formal definition of
priced timed automata (PTA) and their semantics!. Let X bea
set of clocks. Intuitively, a clock is a non-negative real valued
variable that can be reset to zero and increments at a fixed rate
with the passage of time. A priced timed automaton over X
is an annotated directed graph with a vertex set L, an edge set
FE and a distinguished vertex lo € L called the initial location.
In the tradition of timed automata, we call vertices locations.
Edges are labelled with guard expressions and a resct set. A
guard is a conjunction of simple constraints = > k, where
is a clock in X, k is a non-negative integer value, and b €
{<,<,=,>,>}. We say that an edge is enabled if the guard
evaluates to true and the source location is active. A reset set

'We ignore the syntactic extensions of discrete variables and parallel com-

position of automata and note that these can be added easily.

35

is a subset of X. The intuition is that the clocks in the reset set
are set to zero whenever the edge is taken. Finally, locations
are labelled with invariants. An invariant is a conjunction of
simple conditions z < k, where x is a clock in X, k is a
non-negative integer-value, and < € {<, <}. Intuitively, an
invariant must evaluate to true whenever its location is active.
The previous definition is in fact that of a timed automaton.
To form a priced timed automaton, we annotate the edges and
the locations with costs and cost rates, respectively. Formally,
this is done by introducing a function P : L U E — Ny,.

The semantics of a PTA is easily defined as a priced transition
system. Transitions of a priced transition system are labelled
with a non-negative real-valued cost p. We skip the formal
definition of a priced transition system and proceed with
the semantics of PTA. A state of a PTA contains the active
location [ € L and a valuation of all clocks v : X — R>g
such that the invariant of [ evaluates to true for v. There
are two types of transitions: edge transitions and delay
transitions. Edge transitions are the result of following an
enabled edge in the PTA. As a result, the destination location
is activated and the clocks in the reset set are set to zero. The
cost of the transition is given by the cost of the edge.

More formally, we have (l,v) —, (I',v") if there is an edge
e from1 tol’, such that the guard of e evaluates to true in the
source state (1, v), v’ is derived from v by resetting all clocks
in the reset set of e, and p = P(e) is the cost of the edge.

Delay transitions are the result of the passage of time
and do not cause a change of location. A delay is only
valid if the invariant of the active location is satisfied by all
intermediate states. The cost of a delay transition is given by
the product of the length of the delay and the cost rate of the
active location.

More formally, we have (1,v) —, (I,v") ifp = 6 - P(l), v/
is derived from v by incrementing all clocks by § and the
invariant of | is satisfied by (I,v), (I,v") and all intermediary
states.

Finally, the initial state is so = (lo,v0), Where [ is the
initial location, and vo evaluates to zero for all clocks. For
networks of timed automata we use vectors of locations and
the cost rate of a vector is the sum of cost rates in locations.

3 Optimal Scheduling

We now turn to the definition of the optimal reachability prob-
lem for PTA and provide a brief and intuitive overview of UP-
PAAL CORA’s branch and bound algorithm for cost-optimal
reachability analysis.

Cost-optimal reachability is the problem of finding the mini-
mum cost of reaching a given goal location. More formally,
an execution of a PTA is a path i in’ the prlced transition system

defined by the PTA, i.e., @ = 59 Sp, 51 3, s9-- -3

pn Sne



| Verifier .
: A
i Drag out i [Task1 Task2
: - . PL
. <i Variables
Enabled Transitions “ A ! . Py coor = 2 &S ime V= deadiing
P1.1.P1, Task3.2.Task3) i Idte
; k busy[L] = 2| ctar[L])t buzv[2]) = 5| start(2) g
N N stant{df? donef1ft
UsingPi UsinigPi
" ‘ e ’ G=0 © == busyil P
{1} = 1| done[1] 1[2] = 1| dans{2p "
nlise .
cost’ == 0 8& ¢ <= busyil] bt
Task3
Simulation Trace P2
- e e e e o —r———————— &, i
dniy, Init, Idle, Init, 1die) st s 1 &S time s dencdling
(Task2.0.Task2, P2.0.P2) [k NG T P
Gnit, UsingP1, Idle, Init, Inlse) :
(Task1.0.Task1, P1.0.P1) SoriL} star2) start{Z]? derie(2]
UsingP0, UsingP1, InUse, Init, InUse) usvIL] = 10 Py € s busy(2
:P2.1.P2, Task2.1.Task2) ! busy(2] =7
{singPO, Done, Inlise, Init, Idie) 4 I ; intise
L 1 i fEaj=1 & fi3jel cozt w4 H& ¢ <= busy[Z]
{PL.LP1, Task1.1 Tas_kl) UsingPi bons LizinaPL o
ione, Done, idie, Init, idie) H

BES 2T

i(Task3.0.Task3, PL0.P1)

iQang, Done, nlise, UsinaPl, i

Trace File:

Prev Kgrt Replay
Open Save Random
SN ]
Slow Fast

Taski  Task2 PL

Done

Figure 2: Screen shot of the UPPAAL CORA simulator for the task graph scheduling problem of Figure 1.

COST =00
PASSED := ()
WAITING := {Sp}
while WAITING # () do
select S € WAITING //based on branching strategy
C «— mincost(S)
if PASSED <4om S and C + remain(S) < COST then
PASSED « PASSED U {S}
if S € GOAL then
CosT « C
else
WAITING « {&’| S’ € WAITING or S — &'}
return COST

Figure 3: branch and bound algorithm.

The cost, cost(a), of execution « is the sum of all the costs
along the execution. The minimum cost, mincost(s) of
reaching a state s is the infimum of the costs of all finite ex-
ecutions from sq to s. Given a PTA with location [, the cost-
optimal reachability problem is to find the largest cost &k such
that k£ < mincost((l,v)) for all clock valuations v.

Since clocks are defined over the non-negative reals, the
priced transition system generated by a PTA can be un-
countably infinite, thus an enumerative approach to the cost-
optimal reachability problem is infeasible. Instead, we build
upon the work done for timed automata by using priced sym-

36

bolic states. Priced symbolic states provide symbolic repre-
sentations of possibly infinite sets of actual states and their
association with costs. The idea is that during exploration,
the infimum cost along a symbolic path (a path of symbolic
states) is stored in the symbolic states itself. If the same
state is reached with different costs along different paths, the
symbolic states can be compared, discarding the more expen-
sive state. Analogous to timed automata, the priced symbolic
states we encounter for PTA are representable by simple con-
straint systems over clock differences (often refered to as a
clock-zone in the timed automata literature). The cost is given
by an affine plane over the clock-zone. For a formal descrip-
tion of priced symbolic states and priced zones we refer to
[17,21].

In UPPAAL CORA, cost-optimal reachability analysis is
performed using a standard branch and bound algorithm.
Branching is based on various search strategies implemented
in UPPAAL CORA which, currently, are breadth-first, ordi-
nary, random, or best depth-first with or without random
restart, best-first, and user supplied heuristics. The latter en-
ables the user to annotate locations of the model with a special
variable called heur and the search can be ordered according
to either largest or smallest heur value. Bounding is based on
a user-supplied, lower-bound estimate of the remaining cost
to reach the goal from each location.

The algorithm depicted in Figure 3 is the cost-optimal reach-



ability algorithm used by UPPAAL CORA. It maintains
a PASSED-list of elements that have been explored and a
WAITING-list of elements that need to be explored and is
instantiated with the initial symbolic state Sp. The variable
COST holds the currently best known cost of reaching the
goal location; initially it is infinite. The algorithm iterates
until no more states need to be explored. Inside the while-
loop we select and remove a state, S, from WAITING based
on the branching strategy. If S is dominated? by another state
that has already been explored or it is not possible to reach
the goal with a lower cost than COST, we skip this state. Oth-
erwise, we add S to PASSED and if S is a goal location we
update the best known cost to the best cost in S. If not, we
add all successors of S to WAITING and continue to the next
iteration.

4 Modeling

As mentioned earlier, one of the main strengths of using
priced timed automata for specifying and analyzing schedul-
ing problems is the simplicity of the modeling aspect. In this
section, we show how to model generic scheduling problems,
provide experimental results, and describe two industrial case
studies.

Scheduling problems often consist of a set of passive objects,
called resources, and a set of active objects, called tasks. The
resources are passive in the sense that they provide a service
that tasks can utilize. Traditionally, the scheduling problem
is to complete the tasks as fast as possible using the available
resources under some constraints, e.g. limited availability of
the resource, no two tasks can, simultaneously, use the same
resource, etc. The models we provide in this section are all
cost extensions of the classical scheduling problem.

A generic resource model (see Figure 4a) is a two-location
cyclic process with a single local clock, ¢. The two locations
indicate whether the resource is Idle or InUse. The resource
moves from Idle to InUse, when a task initiates a synchro-
nization over the channel start and in the process, ¢ is re-
set. The resource will maintain InUse until the clock reaches
some usage time, busy, it then initiates synchronization over
the channel done.

A generic task model (see Figure 4b) is an acyclic process
progressing from an initial location, Init, to a final location
Done, indicating that the task is complete. Intermediate loca-
tions describe acquiring resources and releasing them, i.e. the
task will transit to state Using by initiating synchronization
over a start channel and setting the busy variable of the re-
source. The task will remain here until the resource initiates
synchronization using the done channel.

To solve the scheduling problem, we pose the reachability

2A state, S’, dominates another state, S, if S’ contains at least the same
actual states as S, all of which have been reached with a lower cost.

37

done! start? —S%on
= Init Using Done
TR start! done?
¢ <=bugy Obus =x () ~—( )
Guard
I iant
a) AT Variabld update b)

Figure 4: a) Resource template with clock ¢. b) Task template.

question of whether we can reach a state in which all tasks
are in the location Done. In the following three sections we
present some classical scheduling problems, all of which are
slight modifications of the generic templates.

4.1 Job Shop Scheduling

Problem: We are given a number of machines (resources) and
a number jobs (tasks) with corresponding recipes. A recipe
for a job dictates the subset of machines that the job should
be processed by, the order in which the processing should
happen, and the duration of each processing step. Now, the
scheduling problem is to assign to each job a starting time for
every required machine such that no machine is occupied by
two jobs at the same time.

Cost: The model can be extended with costs by assigning to
each machine an idling cost and a operation cost.

Modeling: Figure 5a depicts a job and a machine. The model
of the machine is identical to the resource template, except
that both locations have been extended with cost rates. The
job model is a “serial” composition of the task template, i.e.
the job serially requests the machines described by the recipe,
in this case machines 0, 1, and 2 for 7, 5, and 15 time units,
respectively.

4.2 Task Graph Scheduling

Problem: This problem is described in Section 1.

Cost: We assign to each processor an energy consumption
rate while idle and while executing. Now, the overall
objective is to find the schedule that minimizes the total cost
while respecting a global (or task individual) deadline.
Modeling: The models for a task and a processor are depicted
in Figure 2. Again, the processor model is an exact instance
of the resource template with added cost rates. Tasks 1 and
2 are exact instances of the task template, while task 3 is
not. The reason is that tasks 1 and 2 can only execute on one
processor each, while task 3 can execute on both, thus, task 3
is an extension of the task template with a nondeterministic
choice between the processors. Furthermore, the edges
leaving the initial state have been extended with a guard
specifying the dependencies of the task graph, i.e. task 3
requires tasks | and 2 to be finished, f[1] && f]2].



a) Job:
Init Done
start[0]!
busy[0] =7
busy[2] = 15
9
done(0]? start[2]!
usy[l] =5
start[1]! done[1]?
Done0 UsingM1 Donel
b) Aircraft:
time <= 153
@ Approaching
time >= 129 time == 153
land[A420] !
time <= 153 &&
cost’ == 10

. OnTime Delayed . ::::te’fsl? &&

time == 153 land[A420]!

Done

Machine:

Idle

cost’ =2
done[1]! start(1]?
¢ == busy[1] c=0
¢ <= busy[1]
&& cost’ == 6
InUse
Runway:
Temp
land[A420] ? land[B747] ?
c[1]1=0 c[0]=0

c[0] >=wait[B747][A420] &&
c[1] >= wait[A420][A420]
land[A420] ?
c[l]=0

c[0}>=wait[B747][B747] &&
c[1]>= wait|A420]|B747]
land[B747] ?
c[0]=0

IdleAndInUse

Figure 5: Priced timed automata models for two classical scheduling problems.

4.3 Aircraft Landing

Problem: Given a number of aircrafts (tasks) with designated
type and landing time window, assign a landing time and
runway (resource) to each aircraft such that the aircraft
lands within the designated time window while respecting a
minimum wake turbulence separation delay between aircrafts
of various types landing on the same runway.

Cost: The cost extended problem associates with each
aircraft an additional target landing time corresponding to
approaching the runway at cruise speed. Now, if an aircraft is
assigned a landing time earlier than the target landing time,
a cost per time unit is incurred, corresponding to powering
up the engines. Similarly, if an aircraft is assigned a later
landing time than the target landing time a cost per time unit
is added corresponding to increased fuel consumption while
circling above the airport.

Modeling: Figure 5b depicts a runway that can handle
aircrafts of types B747 and A420, and an aircraft with target
landing time 153, type A420 and time window [129,559].
Unlike the other models, the runway model has only a single
location in its cycle indicating both that the resource is
IdleAndInUse. A single location is used since the duration
that a runway is occupied depends solely on the types of
consecutively landing aircrafts. Thus, the runway maintains
a clock per aircraft type holding the time since the latest
landing of an aircraft of the given type and access to the
runway is controlled by guards on the edges. The nondeter-
minism of the aircraft model does not distinguish between
the runway to use, but whether to land early ([129,153]) or
late ([153,559]). Choosing to land early, the aircraft model
moves to the OnTime location and must remain here until

38

RW || Planes 10 15 20 20 20 30 44
Types 2 2 2 2 2 4 2
1 MILP(s) | 04 | 52| 2.7 | 2204 922.0 331 | 106
MC (s) 08| 56| 28 20.9 49.9 06 | 2.2
Factor 20| 108 | 1.04 10.5 18.5 55.2 | 48.1
MILP(s) | 06| 1.8 | 3.8 (19199 | 115104 |1568.1 | 0.2
2 MC (s) 27| 96| 39| 1385 187.1 60 | 09
Factor 45| 531102 13.9 61.5 | 2613 | 4.5
3 MILP(s) | 0.1 | 0.1 | 0.2 |2299.2 | 16553 0.2 | N/A
MC (s) 0.2 0.3 0.7 | 1765.6 1294.9 0.6
Factor 20| 30| 35 1.30 1.28 3.0
4 MILP (s) | N/A | N/A | N/A 0.2 0.2 N/A | N/A
MC (s) 33 0.7
Factor 16.5 3.5

Figure 6: Computational result for the aircraft landing problem us-
ing PTA and MILP on comparable machines.

the target landing time while incurring a cost rate per time
unit for landing early, similarly, the aircraft can choose to
land late and move to Delayed may remain there until the
latest landing time while paying a cost rate for landing late.

4.4 PTA versus MILP

We only provide experimental results for the aircraft landing
problem comparing the PTA approach to that of MILP. For
performance results of the job shop and task graph scheduling
problems, we refer to [6, 21, 1].

Figure 6 displays experimental results for various instances
of the aircraft landing problem using MILP and PTA. The re-
sults for MILP have been taken from [4] and the results for
PTA have been executed on a comparable computer. Fac-
tors in bold indicate the performance difference in favor of



PTA and similarly for italics and MILP. The experiments
clearly indicate that PTA is a competitive approach to solv-
ing scheduling problems and for one non-trivial instance it is
even more than a factor 250 faster than the MILP approach.
However, the required computation time of the PTA approach
grows exponentially with the number of added runways (and
thus clocks) while no similar statement can be made for the
MILP approach. Thus, PTA is a promising method for solv-
ing scheduling problems, but further experiments need to be
conducted before saying anything more conclusive.

4.5 Industrial Case Study: Steel Production

Problem: Proving schedulability of an industrial plant via
reachability analysis of a timed automaton model was first
applied to the SIDMAR steel plant, which was included as a
case study of the Esprit-L'TR Project 26270 VHS (Verification
of Hybrid Systems). The plant consists of five processing ma-
chines placed along two tracks and a casting machine where
the finished steels leaves the system. The tracks and machines
are connected via two overhead cranes. Each quantity of raw
iron enters the system in a ladle and depending on the desired
final steel quality undergoes treatments in the different ma-
chines for different durations. The planning problem consists
in controlling the movement of the ladles of steel between the
different machines, taking the topology (e.g. conveyor belts
and overhang cranes) into consideration.

Performance: A schedule for three ladles was produced in
[13] for a slightly simplified model using UPPAAL. In [14]
schedules for up to 60 ladles were produced also using UP-
PAAL. However, in order to do this, additional constraints
were included that reduce the size of the state-space dramat-
ically, but also prune possibly sensible behavior. A similar
reduced model was used by Stobbe [22] using constraint pro-
gramming to schedule 30 ladles. All these works only con-
sider ladles with the same quality of steel. In [6], using a
search order based on priorities, a schedule for ten ladles with
varying qualities of steels is computed within 60 seconds cpu-
time on a Pentium II 300MHz. The initial solution found is
improved by 5% within the time limit. Allowing the search to
go on for longer, models with more ladles can be handled.

4.6 Industrial Case Study: Lacquer Production
Problem:The problem was provided by an industrial partner
of the Furopean AMETIST project as a variation on job shop
scheduling. The task is to schedule lacquer production. Lac-
quer is produced according to a recipe involving the use of
various resources, possibly concurrently, see Figure 7. An or-
der consists of a recipe, a quantity, an earliest starting date
and a delivery date. The problem is then to assign resources
to the order such that the constraints of the recipes and of the
orders are met. Additional constraints are provided by the re-
sources, as they might require cleaning when switching from
one type of lacquer to another, or might require manual labor
and thus are unavailable during the night or in weekends.

Cost: The cost model is similar to that of the aircraft landing

39

disperser

disperging line

- ]' '

mixing vessel uni

dose spinner

lab

=
CJ
|

filling station

wait
I arbitrary,
if not specified

—— synchronize

Figure 7: A lacquer recipe. Each bar represents the use of a re-
source. Horizontal lines indicate synchronization points.
Timing constraints for how long resources are used or
separation times between the use of resources can be pro-

vided either as a fixed time or time window.

problem. Orders finished on the delivery date do not incur any
costs (except regular production costs which are not modeled
as these are fixed). Orders finishing late are subject to de-
lay costs and orders finishing too early are subject to storage
costs. Cleaning resources might generate additional costs.

Modeling: Resources are modeled using the resource tem-
plate. Resources requiring cleaning are extended with ad-
ditional information to keep track of the last type of lac-
quer produced on the resource. Cleaning costs are typically
a fixed amount and are added to the cost when cleaning is
performed. Orders are modeled similarly to tasks in the task
graph scheduling problem, except that multiple resources may
be acquired simultaneously. Storage and delay costs are mod-
eled similarly to costs in the aircraft landing problem.

5 Other Optimization Problems

At present UPPAAL CORA supports cost-optimal location-
reachability for PTAs. However, a number of other optimiza-
tion problems are planned to be included in future releases.

For several planning problems the objective is to repeat a
treatment or process zndeﬁmtely and to do so in a cost-optimal
manner. Now let o = sg —>p1 513, s2- R —3p, Sn - be
an infinite execution of a given PTA, let ¢, (tn) denote the
accumulated cost (time) after n steps (i.e. ¢, = Z?zlpi).
Then the limit of ¢, /t,, when n — oo describes the cost per
time of « in the long run and is the cost of «. The optimiza-
tion problem is to determine the (value of the) optimal such
infinite execution a*. In [8] this problem has been shown
decidable for PTA using an extension of the so-called region-



technique. Though this technique nicely demonstrates decid-
ability of the problem (and many other decision problems for
timed automata) it does not provide a practical implementa-
tion, which is still to be identified. However a method for de-
termining approximate optimal infinite schedules have been
identified and applied to the synthesis of so-called Dynamic
Voltages Scaling scheduling strategies.

Optimization problems may involve multiple cost variables
(e.g. money, energy, pollution, etc.). Currently UPPAAL
CORA is only capable of optimizing with respect to single
costs. However, for scheduling problems with multiple costs,
there might well be several optimal solutions due to “neg-
ative” dependencies between costs: minimizing one cost-
variable (e.g. money) might maximize others (e.g. pollution).
In [19] an extension of the priced zone technology for PTA
has been extended to multi-price TA allowing efficient syn-
thesis of solutions optimal with respect to a chosen primary
cost-variable but subject to user-specified upper bounds on the
remaining secondary cost-variables.

Finally, scheduling problems may involve uncertainties due
to certain actions being under the control of an adversary. In
this case the (optimal) scheduling problem is a game-theoretic
problem consisting of determining a winning and optimal
strategy for how to respond to any action chosen by this ad-
versary. In [9] the problem of synthesizing optimal, winning
strategies for priced timed games has been shown to be com-
putable under certain non-zenoness assumptions. However,
the problem is not solvable using zone-based technology, but
needs general polyhedral support in order to represent the op-
timal strategies (see [10] for a methodology using HYTECH).

References

[1] Y. Abdeddaim, A. Kerbaa, and O. Maler. Task graph
scheduling using timed automata. Proc. of IPDPS’03,2003.

[2] R. Alurand D. Dill. A theory of timed automata. The-
oretical Computer Science, 126(2):183-235, 1994.

[3]1 R. Alur, S. La Torre, and G. Pappas. Optimal paths in
weighted timed automata. Lecture Notes in Computer Sci-
ence, 2034:pp. 49-62, 2001.

[4] J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and
D. Abramson. Scheduling aircraft landings - the static case.
Transportation Science, 34(2):pp. 180-197, 2000.

[5] G. Behrmann, A. David, and K. Larsen. A tutorial on
Uppaal. In Formal Methods for the Design of Real-Time Sys-
tems, number 3185 in Lecture Notes in Computer Science,
pages 200-236. Springer Verlag, 2004.

[6] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pet-
tersson, and J. Romijn.  Efficient guiding towards cost-
optimality in Uppaal. In Proc. of TACAS 01, number 2031
in Lecture Notes in Computer Science, pages 174-188.
Springer—Verlag, 2001.

[7] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pet-
tersson, J. Romijn, and F. Vaandrager. Minimum-cost reach-

40

ability for priced timed automata. Lecture Notes in Computer
Science, 2034:pp. 147+, 2001.

[8] P. Bouyer, E. Brinksma, and K. Larsen. Staying
alive as cheaply as possible. In Proc. of HSCC’04, volume
2993 of Lecture Notes in Computer Science, pages 203-218.
Springer—Verlag, 2004.

[9]1 P. Bouyer, F. Cassez, E. Fleury, and K. Larsen. Op-
timal strategies in priced timed game automata. In Proc. of
FSTTCS’04, volume 3328 of Lecture Notes in Computer Sci-
ence, pages 148-160. Springer—Verlag, 2004.

[10] P. Bouyer, F. Cassez, E. Fleury, and K. Larsen. Syn-
thesis of optimal strategies using HyTech. In Proc. GDV’04,
Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers, 2004. To appear.

[11] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis,
and S. Yovine. Kronos: A model-checking tool for real-time
systems. In Proc. of CAV’98, volume 1427, pages 546-550.
Springer-Verlag, 1998.

[12] UPPAAL CORA. http://www.cs.aau.dk/
“behrmann/cora, Jan. 2005.

[13] A. Fehnker. Scheduling a steel plant with timed au-
tomata. In Proc. of RTCSA °99., page 280. IEEE Computer
Society, 1999.

[14] T.Hune, K. Larsen, and P. Pettersson. Guided synthesis

of control programs using Uppaal. Nordic J. of Computing,
8(1):43-64, 2001.

[15] IF http://www-verimag.imag.fr/ async/
IF, Jan. 2005.

[16] Advanced Methods in Timed Systems (AMETIST).
http://ametist.cs.utwente.nl, Jan. 2005.

[17] K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker,
T. Hune, P. Pettersson, and J. Romijn. As cheap as possible:
Efficient cost-optimal reachability for priced timed automata.
Lecture Notes in Computer Science, 2102:pp. 493+, 2001.

[18] K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nut-
shell. Int. Journal on Software Tools for Technology Transfer,
1(1-2):134-152,1997.

[19] K. Larsen and J. Rasmussen. Optimal conditional
reachability for multi-priced timed automata. To appear in
proceedings of FOSSACS’05, 2005.

[20] Verification of Hybrid Systems (VHS).
www-verimag.imag.fr/VHS/, Jan. 2005.

http://

[21} J. Rasmussen, K. Larsen, and K. Subramani. Resource-
optimal scheduling using priced timed automata. In Proc. of
TACAS’04, volume 2988 of Lecture Notes in Computer Sci-
ence, pages pp. 220-235. Springer Verlag, 2004.

[22] M. Stobbe. Results on scheduling the sidmar steel plant
using constraint programming. Internal report, 2000.

[23] UPPAAL. http://www.uppaal.com,Jan. 2005.



