

Texts and Monographs in Computer Science

Editor

David Gries

Advisory Board
F.L. Bauer

S.D. Brookes
C.E. Leiserson
F.B. Schneider

M. Sipser

Texts and Monographs in Computer Science

Suad Alagic, Object-Oriented Database Programming

Suad Alagic, Relational Database Technology

Suad Alagic and Michael A Arbib, The Design of Well-Structured
and Correct Programs

S. Thomas Alexander, Adaptive Signal Processing: Theory and Applications

Krzysztof R. Apt and Ernst-Rudiger Olderog, Verification of Sequential and
Concurrent Programs

Michael A Arbib, A.J. Kfoury, and Robert N. Moll, A Basis for Theoretical
Computer Science

Friedrich L. Bauer and Hans Wossner, Algorithmic Language and Program
Development

W. Bischofberger and G. Pomberger, Prototyping-Oriented Software Development:
Concepts and Tools

Ronald V. Book and Friedrich Otto, String-Rewriting Systems

Kaare Christian, A Guide to Modula-2

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective

Edsger W. Dijkstra and Carel S. Scholten, Predicate Calculus and Program
Semantics

W.H.J. Feijen, AJ.M. van Gasteren, D. Gries, and J. Misra, Eds., Beauty Is Our
Business: A Birthday Salute to Edsger W. Dijkstra

PA Fejer and DA Simovici, Mathematical Foundations of Computer Science,
Volume I: Sets, Relations, and Induction

Melvin Fitting, First-Order Logic and Automated Theorem Proving

Nissim Francez, Fairness

R.T. Gregory and E.V. Krishnamurthy, Methods and Applications of Error-Free
Computation

David Gries, Ed., Programming Methodology: A Collection of Articles by Members
of IFIP WG2.3

David Gries, The Science of Programming

David Gries and Fred B. Schneider, A Logical Approach to Discrete Math

(continued after index)

The Design
and Analysis

of Algorithms

Dexter C. Kazen

With 72 Illustrations

, Springer

Dexter C. Kozen
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
USA

Series Editor:
David Gries
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
USA

Library of Congress Cataloging-in-Publication Data
Kozen, Dexter, 1951-

The design and analysis of algorithms / Dexter C. Kozen.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-1-4612-8757-5 e-ISBN-13: 978-1-4612-4400-4
DOl: 10.1007/978-1-4612-4400-4
1. Computer algorithms. I. Title.

QA76.9.A43K69 1991
005.1-dc20

Printed on acid-free paper.

© 1992 Springer-Verlag New York, Inc.

91-38759

Softcover reprint of the hardcover 1 st edition 1992
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or here
after developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication,
even if the former are not especially identified, is not to be taken as a sign that such names,
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used
freely by anyone.

Production managed by Bill Imbornoni; rnanufacturing supervised by Jacqui Ashri.
Photocomposed from a LaTeX file.

9 8 7 6 5

Springer-Verlag New York Berlin Heidelberg
A member of Berte/smannSpringer Science+Business Media GmbH

To my wife Frances
and my sons Alexander, Geoffrey, and Timothy

Preface

These are my lecture notes from CS681: Design and Analysis of Algo
rithms, a one-semester graduate course I taught at Cornell for three consec
utive fall semesters from '88 to '90. The course serves a dual purpose: to
cover core material in algorithms for graduate students in computer science
preparing for their PhD qualifying exams, and to introduce theory students to
some advanced topics in the design and analysis of algorithms. The material
is thus a mixture of core and advanced topics.

At first I meant these notes to supplement and not supplant a textbook,
but over the three years they gradually took on a life of their own. In addition
to the notes, I depended heavily on the texts

• A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1975.

• M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide
to the Theory of NP-Completeness. w. H. Freeman, 1979.

• R. E. Tarjan, Data Structures and Network Algorithms. SIAM Regional
Conference Series in Applied Mathematics 44, 1983.

and still recommend them as excellent references.
The course consists of 40 lectures. The notes from these lectures were

prepared using scribes. At the beginning of each lecture, I would assign a
scribe who would take notes for the entire class and prepare a raw :M\TEiX
source, which I would then doctor and distribute. In addition to the 40 lec
tures, I have included 10 homework sets and several miscellaneous homework
exercises, all with complete solutions. The notes that were distributed are
essentially as they appear here; no major reorganization has been attempted.

There is a wealth of interesting topics, both classical and current, that I
would like to have touched on but could not for lack of time. Many of these,
such as computational geometry and factoring algorithms, could fill an entire
semester. Indeed, one of the most difficult tasks was deciding how best to
spend a scant 40 lectures.

I wish to thank all the students who helped prepare these notes and who
kept me honest: Mark Aagaard, Mary Ann Branch, Karl-Friedrich B6hringer,
Thomas Bressoud, Suresh Chari, Sofoklis Efremidis, Ronen Feldman, Ted

vii

Fischer, Richard Huff, Michael Kalantar, Steve Kautz, Dani Lischinski, Pe
ter Bro Miltersen, Marc Parmet, David Pearson, Dan Proskauer, Uday Rao,
Mike Reiter, Gene Ressler, Alex Russell, Laura Sabel, Aravind Srinivasan,
Sridhar Sundaram, Ida Szafranska, Filippo Tampieri, and Sam Weber. I am
especially indebted to my teaching assistants Mark Novick (fall '88), Alessan
dro Panconesi (fall '89), and Kjartan Stefansson (fall '90) for their help with
proofreading, preparation of solution sets, and occasional lecturing. I am also
indebted to my colleagues Laszlo Babai, Gianfranco Bilardi, Michael Luby,
Keith Marzullo, Erik Meineche Schmidt, Bernd Sturmfels, Eva Tardos, Steve
Vavasis, Sue Whitesides, and Rich Zippel for valuable comments and interest
ing exercises. Finally, I wish to express my sincerest gratitude to my colleague
Vijay Vazirani, who taught the course in fall '87 and who was an invaluable
source of help.

I would be most grateful for any suggestions or criticism from readers.

Cornell University
Ithaca, NY

viii

Dexter Kozen
December 1990

Contents

Preface vii

I Lectures
1 Algorithms and Their Complexity 3
2 Topological Sort and MST 9
3 Matroids and Independence 13
4 Depth-First and Breadth-First Search 19
5 Shortest Paths and Transitive Closure 25
6 Kleene Algebra. 28
7 More on Kleene Algebra. 34
8 Binomial Heaps 40
9 Fibonacci Heaps 44

10 Union-Find 48
11 Analysis of Union-Find 52
12 Splay Trees 58
13 Random Search Trees . 65
14 Planar and Plane Graphs 71
15 The Planar Separator Theorem . 77
16 Max Flow 84
17 More on Max Flow ... 90
18 Still More on Max Flow . 96
19 Matching 101
20 More on Matching 106
21 Reductions and NP-Completeness 111
22 More on Reductions and NP-Completeness 116
23 More NP-Complete Problems. . . 122
24 Still More NP-Complete Problems 128
25 Cook's Theorem 134
26 Counting Problems and #P 138
27 Counting Bipartite Matchings 144
28 Parallel Algorithms and NC 151
29 Hypercubes and the Gray Representation 156
30 Integer Arithmetic in NC 160
31 Csanky's Algorithm 166

ix

32 Chistov's Algorithm
33 Matrix Rank
34 Linear Equations and Polynomial GCDs .
35 The Fast Fourier Transform (FFT) .
36 Luby's Algorithm
37 Analysis of Luby's Algorithm . . .
38 Miller's Primality Test
39 Analysis of Miller's Primality Test
40 Probabilistic Tests with Polynomials .

II Homework Exercises
Homework 1 .
Homework 2.
Homework 3.
Homework 4.
Homework 5.
Homework 6.
Homework 7.
Homework 8.
Homework 9.
Homework 10
Miscellaneous Exercises .

III Homework Solutions
Homework 1 Solutions
Homework 2 Solutions
Homework 3 Solutions
Homework 4 Solutions
Homework 5 Solutions
Homework 6 Solutions
Homework 7 Solutions
Homework 8 Solutions
Homework 9 Solutions
Homework 10 Solutions.
Solutions to Miscellaneous Exercises

Bibliography

Index

x

171
176
181
186
191
197
201
206
211

219
220
221
222
223
224
225
226
227
228
230

239
242
245
250
252
254
257
260
262
268
272

301

309

I Lectures

Lecture 1 Algorithms and Their
Complexity

This is a course on the design and analysis of algorithms intended for first
year graduate students in computer science. Its purposes are mixed: on the
one hand, we wish to cover some fairly advanced topics in order to provide
a glimpse of current research for the benefit of those who might wish to spe
cialize in this area; on the other, we wish to introduce some core results and
techniques which will undoubtedly prove useful to those planning to specialize
in other areas.

We will assume that the student is familiar with the classical material nor
mally taught in upper-level undergraduate courses in the design and analysis
of algorithms. In particular, we will assume familiarity with:

• sequential machine models, including Turing machines and random ac
cess machines (RAMs)

• discrete mathematical structures, including graphs, trees, and dags, and
their common representations (adjacency lists and matrices)

• fundamental data structures, including lists, stacks, queues, arrays, bal
anced trees

• fundamentals of asymptotic analysis, including 0(·), 0(·), and no no
tation, and techniques for the solution of recurrences

• fundamental programming techniques, such as recursion, divide-and
conquer, dynamic programming

• basic sorting and searching algorithms.
These notions are covered in the early chapters of [3, 39, 100].

3

4 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

Familiarity with elementary algebra, number theory, and discrete proba
bility theory will be helpful. In particular, we will be making occasional use of
the following concepts: linear independence, basis, determinant, eigenvalue,
polynomial, prime, modulus, Euclidean algorithm, greatest common divisor,
group, ring, field, random variable, expectation, conditional probability, con
ditional expectation. Some excellent classical references are [69,49, 33J.

The main emphasis will be on asymptotic worst-case complexity. This
measures how the worst-case time or space complexity of a problem grows
with the size of the input. We will also spend some time on probabilistic
algorithms and analysis.

1.1 Asymptotic Complexity

Let f and 9 be functions N -+ N, where N denotes the natural numbers
{O, 1, .. . }. Formally,

• f is O(g) if

00

3c E N 'V n f(n) ~ c· g(n) .

00

The notation 'V means "for almost all" or "for all but finitely many".
Intuitively, f grows no faster asymptotically than 9 to within a constant
multiple.

• f is o(g) if

00 1
'Vc E N 'V n f(n) ~ - . g(n) .

c

This is a stronger statement. Intuitively, f grows strictly more slowly
than any arbitrarily small positive constant multiple of g. For example,
n347 is o(2(IOgn)2).

• f is O(g) if 9 is OU)· In other words, f is O(g) if

00 1
3c E N 'V n f(n) ~ - . g(n) .

c

• f is 8(g) if f is both O(g) and O(g).

There is one cardinal rule:

Always use 0 and 0 for upper bounds and 0 for lower bounds. Never
use 0 for lower bounds.

LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY 5

There is some disagreement about the definition of O. Some authors (such
as [43]) prefer the definition as given above. Others (such as [108]) prefer: f
is O(g) if 9 is not 0(1); in other words, f is O(g) if

00 1
:3c E N :3 n f(n) > - . g(n) .

c

00

(The notation :3 means "there exist infinitely many" .) The latter is weaker and
presumably easier to establish, but the former gives sharper results. We won't
get into the fray here, but just comment that neither definition precludes
algorithms from taking less than the stated bound on certain inputs. For
example, the assertion, "The running time of mergesort is O(nlogn)" says
that there is a c such that for all but finitely many n, there is some input
sequence of length n on which mergesort makes at least ~n log n comparisons.
There is nothing to prevent mergesort from taking less time on some other
input of length n.

The exact interpretation of statements involving 0, 0, and 0 depends on
assumptions about the underlying model of computation, how the input is
presented, how the size of the input is determined, and what constitutes a
single step of the computation. In practice, authors often do not bother to
write these down. For example, "The running time of mergesort is O(n log n)"
means that there is a fixed constant c such that for any n elements drawn from
a totally ordered set, at most en log n comparisons are needed to produce a
sorted array. Here nothing is counted in the running time except the number
of comparisons between individual elements, and each comparison is assumed
to take one step; other operations are ignored. Similarly, nothing is counted
in the input size except the number of elements; the size of each element
(whatever that may mean) is ignored.

It is important to be aware of these unstated assumptions and understand
how to make them explicit and formal when reading papers in the field. When
making such statements yourself, always have your underlying assumptions in
mind. Although many authors don't bother, it is a good habit to state any
assumptions about the model of computation explicitly in any papers you
write.

The question of what assumptions are reasonable is more often than not a
matter of esthetics. You will become familiar with the standard models and
assumptions from reading the literature; beyond that, you must depend on
your own conscience.

1.2 Models of Computation

Our principal model of computation will be the unit-cost random access ma
chine (RAM). Other models, such as uniform circuits and PRAMs, will be
introduced when needed. The RAM model allows random access and the use

6 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

of arrays, as well as unit-cost arithmetic and bit-vector operations on arbi
trarily large integers; see [3].

For graph algorithms, arithmetic is often unnecessary. Of the two main
representations of graphs, namely adjacency matrices and adjacency lists, tl,le
former requires random access and f!(n2) array storage; the latter, only limfar
storage and no random access. (For graphs, linear means O(n + m), where
n is the number of vertices of the graph and m is the number of edges.) The
most esthetically pure graph algorithms are those that use the adjacency list
representation and only manipulate pointers. To express such algorithms one
can formulate a very weak model of computation with primitive operators
equivalent to car, cdr, cons, eq, and nil of pure LISP; see also [99].

1.3 A Grain of Salt

No mathematical model can reflect reality with perfect accuracy. Mathemat
ical models are abstractions; as such, they are necessarily flawed.

For example, it is well known that it is possible to abuse the power of
unit-cost RAMs by encoding horrendously complicated computations in large
integers and solving intractible problems in polynomial time [50]. However,
this violates the unwritten rules of good taste. One possible preventative
measure is to use the log-cost model; but when used as intended, the unit-cost
model reflects experimental observation more accurately for data of moderate
size (since multiplication really does take one unit of time), besides making
the mathematical analysis a lot simpler.

Some theoreticians consider asymptotically optimal results as a kind of
Holy Grail, and pursue them with a relentless frenzy (present company not
necessarily excluded). This often leads to contrived and arcane solutions that
may be superior by the measure of asymptotic complexity, but whose con
stants are so large or whose implementation would be so cumbersome that
no improvement in technology would ever make them feasible. What is the
value of such results? Sometimes they give rise to new data structures or
new techniques of analysis that are useful over a range of problems, but more
often than not they are of strictly mathematical interest. Some practitioners
take this activity as an indictment of asymptotic complexity itself and refuse
to admit that asymptotics have anything at all to say of interest in practical
software engineering.

Nowhere is the argument more vociferous than in the theory of parallel
computation. There are those who argue that many of the models of compu
tation in common use, such as uniform circuits and PRAMs, are so inaccurate
as to render theoretical results useless. We will return to this controversy later
on when we talk about parallel machine models.

Such extreme attitudes on either side are unfortunate and counterproduc
tive. By now asymptotic complexity occupies an unshakable position in our
computer science consciousness, and has probably done more to guide us in

LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY 7

improving technology in the design and analysis of algorithms than any other
mathematical abstraction. On the other hand, one should be aware of its lim
itations and realize that an asymptotically optimal solution is not necessarily
the best one.

A good rule of thumb in the design and analysis of algorithms, as in life, is
to use common sense, exercise good taste, and always listen to your conscience.

1.4 Strassen's Matrix Multiplication Algorithm

Probably the single most important technique in the design of asymptotically
fast algorithms is divide-and-conquer. Just to refresh our understanding of this
technique and the use of recurrences in the analysis of algorithms, let's take a
look at Strassen's classical algorithm for matrix multiplication and some of its
progeny. Some of these examples will also illustrate the questionable lengths
to which asymptotic analysis can sometimes be taken.

The usual method of matrix multiplication takes 8 multiplications and 4
additions to multiply two 2 x 2 matrices, or in general O(n3) arithmetic oper
ations to multiply two n x n matrices. However, the number of multiplications
can be reduced. Strassen [97J published one such algorithm for multiplying
2 x 2 matrices using only 7 multiplications and 18 additions:

= [81 + 82 - 84 + 86 84 + 85]

86 + 87 82 - 83 + 85 - 87

where

81 (b - d) . (9 + h)

82 (a + d) . (e + h)

83 (a - c) . (e + f)
84 h· (a + b)

85 a· (f - h)

86 d· (9 - e)

87 e·(c+d) .

Assume for simplicity that n is a power of 2. (This is not the last time you will
hear that.) Apply the 2 x 2 algorithm recursively on a pair of n x n matrices
by breaking each of them up into four square submatrices of size ~ x ~:

where

81 (B - D) . (G + H)

8 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

82 (A+D)· (E+H)
83 (A - C) . (E + F)
84 H· (A+B)
85 A.(F-H)
86 D·(G-E)
87 E· (C+D).

Everything is the same as in the 2 x 2 case, except now we are manipulat
ing ~ x ~ matrices instead of scalars. (We have to be slightly cautious, since
matrix multiplication is not commutative.) Ultimately, how many scalar oper
ations (+, -, .) does this recursive algorithm perform in multiplying two n x n
matrices? We get the recurrence

with solution

T(n)

which is o(n3). Here d is a fixed constant, and dn2 represents the time for the
matrix additions and subtractions.

This is already a significant asymptotic improvement over the naive algo
rithm, but can we do even better? In general, an algorithm that uses c multi
plications to multiply two d x d matrices, used as the basis of such a recursive
algorithm, will yield an o (n1ogd C) algorithm. To beat Strassen's algorithm, we
must have c < dlog27. For a 3 x 3 matrix, we need c < 31og27 = 21.8 ... , but
the best known algorithm uses 23 multiplications.

In 1978, Victor Pan [83, 84] showed how to mUltiply 70 x 70 matrices using
143640 multiplications. This gives an algorithm of approximately O(n2•795 •••).

The asymptotically best algorithm known to date, which is achieved by en
tirely different methods, is O(n2.376 .•.) [25]. Every algorithm must be O(n2),
since it has to look at all the entries of the matrices; no better lower bound is
known.

Lecture 2 Topological Sort and MST

A recurring theme in asymptotic analysis is that it is often possible to get
better asymptotic performance by maintaining extra information about the
structure. Updating this extra information may slow down each individual
step; this additional cost is sometimes called overhead. However, it is often
the case that a small amount of overhead yields dramatic improvements in the
asymptotic complexity of the algorithm.

To illustrate, let's look at topological sort. Let G = (V, E) be a directed
acyclic graph (dag). The edge set E of the dag G induces a partial order (a
reflexive, antisymmetric, transitive binary relation) on V, which we denote
by E* and define by: uE*v if there exists a directed E-path of length 0 or
greater from u to v. The relation E* is called the reflexive transitive closure
of E.

Proposition 2.1 Every partial order extends to a total order (a partial order
in which every pair of elements is comparable).

Proof. If R is a partial order that is not a total order, then there exist u, v
such that neither uRv nor vRu. Extend R by setting

R := RU {(x,y) I xRu and vRy} .

The new R is a partial order extending the old R, and in addition now uRv.
Repeat until there are no more incomparable pairs. 0

9

10 LECTURE 2 TOPOLOGICAL SORT AND MST

In the case of a dag G = (V, E) with associated partial order E*, to say
that a total order ~ extends E* is the same as saying that if uEv then u ~ v.
Such a total order is called a topological sort of the dag G. A naive O(n3)

algorithm to find a topological sort can be obtained from the proof of the
above proposition.

Here is a faster algorithm, although still not optimal.

Algorithm 2.2 (Topological Sort II)

1. Start from any vertex and follow edges backwards until finding a
vertex u with no incoming edges. Such a u must be encountered
eventually, since there are no cycles and the dag is finite.

2. Make u the next vertex in the total order.

3. Delete u and all adjacent edges and go to step 1.

Using the adjacency list representation, the running time of this algorithm is
O(n) steps per iteration for n iterations, or O(n2).

The bottleneck here is step 1. A minor modification will allow us to perform
this step in constant time. Assume the adjacency list representation of the
graph associates with each vertex two separate lists, one for the incoming
edges and one for the outgoing edges. If the representation is not already of
this form, it can easily be put into this form in linear time. The algorithm
will maintain a queue of vertices with no incoming edges. This will reduce the
cost of finding a vertex with no incoming edges to constant time at a slight
extra overhead for maintaining the queue.

Algorithm 2.3 (Topological Sort III)

1. Initialize the queue by traversing the graph and inserting each v
whose list of incoming edges is empty.

2. Pick a vertex u off the queue and make u the next vertex in the
total order.

3. Delete u and all outgoing edges (u, v). For each such v, if its list
of incoming edges becomes empty, put v on the queue. Go to step
2.

Step 1 takes time O(n). Step 2 takes constant time, thus O(n) time over all
iterations. Step 3 takes time O(m) over all iterations, since each edge can be
deleted at most once. The overall time is O(m + n).

Later we will see a different approach involving depth first search.

LECTURE 2 TOPOLOGICAL SORT AND MST 11

2.1 Minimum Spanning Trees

Let G = (V, E) be a connected undirected graph.

Definition 2.4 A forest in G is a subgraph F = (V, E') with no cycles. Note
that F has the same vertex set as G. A spanning tree in G is a forest with
exactly one connected component. Given weights w : E ~ N (edges are
assigned weights over the natural numbers), a minimum (weight) spanning
tree (MST) in G is a spanning tree T whose total weight (sum of the weights
of the edges in T) is minimum over all spanning trees. 0

Lemma 2.5 Let F = (V, E) be an undirected gmph, c the number of con
nected components of F, m = lEI, and n = IVI. Then F has no cycles iff
c+m=n.

Proof·
(-) By induction on m. If m = 0, then there are n vertices and each

forms a connected component, so c = n. If an edge is added without forming
a cycle, then it must join two components. Thus m is increased by 1 and c is
decreased by 1, so the equation c + m = n is maintained.

(+--) Suppose that F has at least one cycle. Pick an arbitrary cycle and
remove an edge from that cycle. Then m decreases by 1, but c and n remain
the same. Repeat until there are no more cycles. When done, the equation
c + m = n holds, by the preceding paragraph; but then it could not have held
originally. 0

We use a greedy algorithm to produce a minimum weight spanning tree.
This algorithm is originally due to Kruskal [66].

Algorithm 2.6 (Greedy Algorithm for MST)

1. Sort the edges by weight.

2. For each edge on the list in order of increasing weight, include that
edge in the spanning tree if it does not form a cycle with the eages
already taken; otherwise discard it.

The algorithm can be halted as soon as n - 1 edges have been kept, since we
know we have a spanning tree by Lemma 2.5.

Step 1 takes time O(m log m) = O(m log n) using anyone of a number of
general sorting methods, but can be done faster in certain cases, for example
if the weights are small integers so that bucket sort can be used.

Later on, we will give an almost linear time implementation of step 2, but
for now we will settle for O(n log n). We will think of including an edge e in the
spanning tree as taking the union of two disjoint sets of vertices, namely the
vertices in the connected components of the two endpoints of e in the forest

12 LECTURE 2 TOPOLOGICAL SORT AND MST

being built. We represent each connected component as a linked list. Each
list element points to the next element and has a back pointer to the head of
the list. Initially there are no edges, so we have n lists, each containing one
vertex. When a new edge (u, v) is encountered, we check whether it would
form a cycle, i. e. whether u and v are in the same connected component,
by comparing back pointers to see if u and v are on the same list. If not,
we add (u, v) to the spanning tree and take the union of the two connected
components by merging the two lists. Note that the lists are always disjoint,
so we don't have to check for duplicates.

Checking whether u and v are in the same connected component takes
constant time. Each merge of two lists could take as much as linear time,
since we have to traverse one list and change the back pointers, and there
are n - 1 merges; this will give O(n2) if we are not careful. However, if we
maintain counters containing the size of e~h component and always merge
the smaller into the larger, then each vertex can have its back pointer changed
at most log n times, since each time the size of its component at least doubles.
If we charge the change of a back pointer to the vertex itself, then there are at
most log n changes per vertex, or at most n log n in all. Thus the total time
for all list merges is O(nlogn).

2.2 The Blue and Red Rules

Here is a more general approach encompassing most of the known algorithms
for the MST problem. For details and references, see [100, Chapter 6], which
proves the correctness of the greedy algorithm as a special case of this more
general approach. In the next lecture, we will give an even more general
treatment.

Let G = (V, E) be an undirected connected graph with edge weights w :
E --+ N. Consider the following two rules for coloring the edges of G, which
Tarjan [100] calls the blue rule and the red rule:

Blue Rule: Find a cut (a partition of V into two disjoint sets X and
V - X) such that no blue edge crosses the cut. Pick an uncolored edge
of minimum weight between X and V - X and color it blue.
Red Rule: Find a cycle (a path in G starting and ending at the same
vertex) containing no red edge. Pick an uncolored edge of maximum
weight on that cycle and color it red.

The greedy algorithm is just a repeated application of a special case of the
blue rule. We will show next time:

Theorem 2.7 Starting with all edges uncolored, if the blue and red rules are
applied in arbitmry order until neither applies, then the final set of blue edges
forms a minimum spanning tree.

Lecture 3 Matroids and Independence

Before we prove the correctness of the blue and red rules for MST, let's first
discuss an abstract combinatorial structure called a matroid. We will show
that the MST problem is a special case of the more general problem of find
ing a minimum-weight maximal independent set in a matroid. We will then
generalize the blue and red rules to arbitrary matroids and prove their cor
rectness in this more general setting. We will show that every matroid has a
dual matroid, and that the blue and red rules of a matroid are the red and
blue rules, respectively, of its dual. Thus, once we establish the correctness of
the blue rule, we get the red rule for free.

We will also show that a structure is a matroid if and only if the greedy
algorithm always produces a minimum-weight maximal independent set for
any weighting.

Definition 3.1 A matroid is a pair (S,I) where S is a finite set and I is a
family of subsets of S such that

(i) if J E I and I ~ J, then I E Ij

(ii) if I, J E I and III < IJI, then there exists an x E J - I such that
IU {x} EI.

The elements of I are called independent sets and the subsets of S not in I
are called dependent sets. 0

This definition is supposed to capture the notion of independence in a
general way. Here are some examples:

13

14 LECTURE 3 MATROIDS AND INDEPENDENCE

1. Let V be a vector space, let S be a finite subset of V, and let I t;;;; 28 be
the family of linearly independent subsets of S. This example justifies
the term "independent".

2. Let A be a matrix over a field, let S be the set of rows of A, and let
I t;;;; 28 be the family of linearly independent subsets of S. .

3. Let G = (V, E) be a connected undirected graph. Let S = E and let I
be the set of forests in G. This example gives the MST problem of the
previous lecture.

4. Let G = (V, E) be a connected undirected graph. Let S = E and let
I be the set of subsets E' t;;;; E such that the graph (V, E - E') is
connected.

5. Elements aI, ... ,an of a field are said to be algebraically independent
over a subfield k if there is no nontrivial polynomial P(Xl, . .. ,xn) with
coefficients in k such that p(al, . .. ,an) = o. Let S be a finite set of
elements and let I be the set of subsets of S that are algebraically
independent over k.

Definition 3.2 A cycle (or circuit) of a matroid (S,I) is a setwise minimal
(i.e., minimal with respect to set inclusion) dependent set. A cut (or cocircuit)
of (S,I) is a setwise minimal subset of S intersecting all maximal independent
~~ 0

The terms circuit and cocircuit are standard in matroid theory, but we
will continue to use cycle and cut to maintain the intuitive connection with
the special case of MST. However, be advised that cuts in graphs as defined in
the last lecture are unions of cuts as defined here. For example, in the graph

the set {(s, u), (t, un forms a cut in the sense of MST, but not a cut in
the sense of the matroid, because it is not minimal. However, a moment's
thought reveals that this difference is inconsequential as far as the blue rule
is concerned.

Let the elements of S be weighted. We wish to find a setwise maximal
independent set whose total weight is minimum among all setwise maximal
independent sets. In this more general setting, the blue and red rules become:

Blue Rule: Find a cut with no blue element. Pick an uncolored ele
ment of the cut of minimum weight and color it blue.
Red Rule: Find a cycle with no red element. Pick an element of the
cycle of maximum weight and color it red.

LECTURE 3 MATROIDS AND INDEPENDENCE 15

3.1 Matroid Duality

As the astute reader has probably noticed by now, there is some kind of duality
afoot. The similarity between the blue and red rules is just too striking to be
mere coincidence.

Definition 3.3 Let (S,I) be a matroid. The dual matroid of (S,I) is (S,I*),
where

I* = {subsets of S disjoint from some maximal element of I} .

In other words, the maximal elements of I* are the complements in S of the
maximal elements of I. 0

The examples 3 and 4 above are duals. Note that I** = I. Be careful: it
is not the case that a set is independent in a matroid iff it is dependent in its
dual. For example, except in trivial cases, 0 is independent in both matroids.

Theorem 3.4

1. Cuts in (S,I) are cycles in (S,I*).

2. The blue rule in (S,I) is the red rule in (S,I*) with the ordering of the
weights reversed.

3.2 Correctness of the Blue and Red Rules

Now we prove the correctness of the blue and red rules in arbitrary matroids.
A proof for the special case of MST can be found in Tarjan's book [100,
Chapter 6]; Lawler [70] states the blue and red rules for arbitrary matroids
but omits a proof of correctness.

Definition 3.5 Let (S,I) be a matroid with dual (S,I*). An acceptable
coloring is a pair of disjoint sets B E I (the blue elements) and R E I* (the
red elements). An acceptable coloring B, R is total if BUR = S, i. e. if B is a
maximal independent set and R is a maximal independent set in the dual. An
acceptable coloring B', R' extends or is an extension of an acceptable coloring
B, R if B ~ B' and R ~ R'. 0

Lemma 3.6 Any acceptable coloring has a total acceptable extension.

Proof. Let B, R be an acceptable coloring. Let U* be a maximal element
of I* extending R, and let U = S - U*. Then U is a maximal element of
I disjoint from R. As long as IBI < lUI, select elements of U and add them
to B, maintaining independence. This is possible by axiom (ii) of matroids.
Let E be the resulting set. Since all maximal independent sets have the same
cardinality (Exercise la, Homework l), E is a maximal element of I containing
B and disjoint from R. The desired total extension is E, S - E. 0

16 LECTURE 3 MATROIDS AND INDEPENDENCE

Lemma 3.7 A cut and a cycle cannot intersect in exactly one element.

Proof. Let 0 be a cut and D a cycle. Suppose that 0 n D = {x}. Then
D - {x} is independent and 0 - {x} is independent in the dual. Color D - {x}
blue and 0 - {x} red; by Lemma 3.6, this coloring extends to a total acceptable
coloring. But depending on the color of x, either 0 is all red or D is all blue;
this is impossible in an acceptable coloring, since D is dependent and 0 is
dependent in the dual. 0

Suppose B is independent and BU{ x} is dependent. Then BU{ x} contains
a minimal dependent subset or cycle 0, called the fundamental cyclel of x and
B. The cycle 0 must contain x, because 0 - {x} is contained in B and is
therefore independent.

Lemma 3.8 (Exchange Lemma) Let B, R be a total acceptable coloring.

(i) Let x E R and let y lie on the fundamental cycle of x and B. If the
colors of x and y are exchanged, the resulting coloring is acceptable.

(ii) Let y E B and let x lie on the fundamental cut of y and R (the funda
mental cut of y and R is the fundamental cycle of y and R in the dual
matroid). If the colors of x and y are exchanged, the resulting coloring
is acceptable.

Proof. By duality, we need only prove (i). Let 0 be the fundamental cycle
of x and B and let y lie on O. If y = x, there is nothing to prove. Otherwise
y E B. The set 0 - {y} is independent since 0 is minimal. Extend 0 - {y} by
adding elements of IBI as in the proof of Lemma 3.6 until achieving a maximal
independent set B'. Then B' = (B - {y}) U {x}, and the total acceptable
coloring B', S - B' is obtained from B, R by switching the colors of x and y.

o

A total acceptable coloring B, R is called optimal if B is of minimum weight
among all maximal independent sets; equivalently, if R is of maximum weight
among all maximal independent sets in the dual matroid.

Lemma 3.9 If an acceptable coloring has an optimal total extension before
execution of the blue or red rule, then so has the resulting coloring afterwards.

Proof. We prove the case of the blue rule; the red rule follows by duality.
Let B, R be an acceptable coloring with optimal total extension E, it Let A
be a cut containing no blue elements, and let x be an uncolored element of
A of minimum weight. If x E E, we are done, so assume that x E it Let 0
be the fundamental cycle of x and E. By Lemma 3.7, An 0 must contain

lWe say "the" because it is unique (Exercise 1b, Homework 1), although we do not need
to know this for our argument.

LECTURE 3 MATROIDS AND INDEPENDENCE 17

another element besides x, say y. Then y E 8, and y rt. B because there are
no blue elements of A. By Lemma 3.8, the colors of x and y in 8, il can be
exchanged to obtain a total acceptable coloring 8', R' extending B U {x}, R.
Moreover, 8' is of minimum weight, because the weight of x is no more than
that of y. 0

We also need to know

Lemma 3.10 If an acceptable coloring is not total, then either the blue or red
rule applies.

Proof. Let B, R be an acceptable coloring with uncolored element x. By
Lemma 3.6, B, R has a total extension 8, R. By duality, assume without loss
of generality that x E 8. Let C be the fundamental cut of x and R. Since all
elements of C besides x are in il, none of them are blue in B. Thus the blue
rule applies. 0

Combining Lemmas 3.9 and 3.10, we have

Theorem 3.11 If we start with an uncolored weighted matroid and apply the
blue or red rules in any order until neither applies, then the resulting coloring
is an optimal total acceptable coloring.

What is really going on here is that all the subsets of the maximal inde
pendent sets of minimal weight form a submatroid of (S, I), and the blue rule
gives a method for implementing axiom (ii) for this matroid; see Miscellaneous
Exercise 1.

3.3 Matroids and the Greedy Algorithm

We have shown that if (S,I) is a matroid, then the greedy algorithm produces
a maximal independent set of minimum weight. Here we show the converse:
if (S,I) is not a matroid, then the greedy algorithm fails for some choice of
integer weights. Thus the abstract concept of matroid captures exactly when
the greedy algorithm works.

Theorem 3.12 ([32]; see also [70]) A system (S,I) satisfying axiom (i) of
matroids is a matroid (i. e., it satisfies (ii)) if and only if for all weight as
signments w : S --t N, the greedy algorithm gives a minimum-weight maximal
independent set.

Proof. The direction (--t) has already been shown. For (+-), let (S, I)
satisfy (i) but not (ii). There must be A, B such that A, B E I, IAI < IBI,
but for no x E B - A is A U {x} E I.

Assume without loss of generality that B is a maximal independent set.
If it is not, we can add elements to B maintaining the independence of B; for

18 LECTURE 3 MATROIDS AND INDEPENDENCE

any element that we add to B that can also be added to A while preserving
the independence of A, we do so. This process never changes the fact that
IAI < IBI and for no x E B - A is Au {x} E I.

Now we assign weights w : S -+ N. Let a = IA - BI and b = IB - AI.
Then a < b. Let h be a huge number, h:» a, b. (Actually h > l? will do.)

Case 1 If A is a maximal independent set, assign

Thus

w(x) = a + 1
w(x) = b+ 1
w(x) = 0
w(x) = h

for x E B - A
for x E A- B
forxEAnB
for x fj. AuB.

w(A)
w(B)

a(b + 1)
b(a + 1)

ab+a

ab+b.

This weight assignment forces the greedy algorithm to choose B when in fact
A is a maximal independent set of smaller weight.

Case 2 If A is not a maximal independent set, assign

w(x) = 0 for x E A
w(x) = b for x E B - A
w(x) = h for x fj. A u B .

All the elements of A will be chosen first, and then a huge element outside of
Au B must be chosen, since A is not maximal. Thus the minimum-weight
maximal independent set B was not chosen. 0

Lecture 4 Depth-First and Breadth-First
Search

Depth-first search (DFS) and breadth-first search (BFS) are two of the most
useful subroutines in graph algorithms. They allow one to search a graph
in linear time and compile information about the graph. They differ in that
the former uses a stack (LIFO) discipline and the latter uses a queue (FIFO)
discipline to choose the next edge to explore.

Undirected depth-first search produces in linear time a numbering of the
vertices called the depth-first numbering and a particular spanning tree called
the depth-first spanning tree of each connected component. This is done as
follows. Choose an arbitrary vertex u, which will become the root of the tree.
Push all edges (u, v) E E onto the stack. Assign u the DFS number 0 and
set the DFS counter c to 1. Now repeat the following activity until the stack
becomes empty. Let (x, y) be the top element of the stack. This is the next
edge to explore. The vertex x has a DFS number already (this is an invariant
of the loop). If y has no DFS number, assign it the DFS number c, increment
c, push all edges (y, z) E E onto the stack, and make the (directed) edge (x, y)
a tree edge. Otherwise, if y has a DFS number already, just pop (x, y) off the
stack.

The tree edges form a directed spanning tree of the connected component
of u rooted at u. It is a dag rooted at u, since tree edges (x, y) only go from
lower numbered vertices to higher numbered vertices. It is a tree, since no
vertex has indegree greater than one; this is because (x, y) becomes a tree
edge only if y has no DFS number, and thereafter y has a DFS number. It is

19

20 LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH

a spanning tree, since it is easily shown inductively that every vertex in the
connected component of u eventually receives a DFS number. This spanning
tree is called the depth-first spanning tree.

We can repeat the whole process with a new arbitrarily chosen unvisited
vertex to search the other connected components.

The non-tree edges (x, y) are called back edges and are directed from higher
numbered to lower numbered vertices. When we draw a DFS tree, we usually
draw the root at the top, the tree edges pointing down (hence the term depth
first), and the back edges pointing up.

Back edges out of v can only go to ancestors of v in the DFS tree. There
cannot be a back edge to a nonancestor, since that edge would have been
explored earlier from the other direction and would have been a tree edge.

DFS takes time O(m + n) where n is the number of vertices and m is the
number of edges, since each edge is stacked at most once in each direction,
and each edge and vertex requires a constant amount of processing.

See [3, 78] for an alternative treatment.

4.1 Biconnected Components

Let G = (V, E) be a connected undirected graph.

Definition 4.1 A vertex v is an articulation point if its removal disconnects
the graph. D

Definition 4.2 A connected graph is called biconnected if any pair of distinct
vertices u and v lie on a simple cycle (one with no repeated vertices). D

Note that according to this definition, a graph with two vertices connected by
a single edge is biconnected (no one said anything about not repeating edges).

If G is not biconnected, we define the biconnected components of G in terms
of an equivalence relation on edges:

Definition 4.3 For e, e' E E, define e == e' if e and e' lie on a simple cycle.
D

Lemma 4.4 The relation == is an equivalence relation (reflexive, symmetric,
and transitive).

Proof. Reflexivity e == e follows from the fact that the edge e and its two
endpoints constitute a simple cycle. The relation is symmetric, since e and
e' can be interchanged in the definition of ==. The hard one is transitivity.
Suppose (u, v) == (u', v') and (u', v') == (u", v"). Let c and d be the two simple
cycles involved, respectively. Assume u, u', v', v occur in that order around c.
Let x be the first vertex on the segment of c from u to u' that also lies in d;
x must exist since u' E d, at least. Let y be the first vertex on the segment of

LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH 21

c from v to v' that also lies in d j y must exist since v' Ed. Also, x =I- y since
c is simple. Let p be the path from x to y in c containing (u, v) and let p' be
the path from x to y in d containing (u", v"). Then p and p' intersect only in
x and y, and together form a simple cycle containing (u, v) and (u", v"). 0

Definition 4.5 The equivalence classes of == are called biconnected compo
nents. 0

Lemma 4.6 The vertex a is an articulation point iff a is contained in at least
two biconnected components.

Proof. Suppose the removal of a disconnects the graph. Then there exist
u and v adjacent to a such that every path from u to v goes through a. Then
the edges (u, a) and (a, v) cannot lie on a simple cycle, thus are in different
biconnected components.

Conversely, suppose u and v are adjacent to a and (u, a) ¢ (a, v). Then
all paths between u and v must go through a. Thus if a is removed, there is
no path between u and v, so G is disconnected. 0

Below, when using the terms "descendant" and "ancestor" in a depth-first
search tree, we will always consider a vertex u to be a descendant of itself and
an ancestor of itself. In other words, we take the descendant and ancestor
relations to be reflexive. If we want to exclude u, we do so explicitly by using
the terms "proper descendant" and "proper ancestor" .

Lemma 4.7 Let (u, v) and (v, w) be two adjacent tree edges in a depth-first
search tree of G. Then (u, v) == (v, w) if and only if there exists a back edge
from some descendant of w to some ancestor of u.

Proof.
(--+) If there exists a back edge from some descendant w' of w to some

ancestor u' of u, then (u, v) and (v, w) are edges in a simple cycle consisting
of the back edge (w', u') along with the path of tree edges from u' to w'. Thus
(u,v) == (v,w).

(f--) Suppose (u, v) == (v, w). Then there must be a simple cycle containing
them. This cycle must contain the edges (u, v) and (v, w) in this order, since
it may only go through v once. Consider the subtree of the depth-first tree
rooted at w. The simple cycle must contain a back edge (w', u') out of this
subtree, since it must get back to u eventually. (Before coming out, the path
inside the subtree can be quite complicated, since it can traverse tree and back
edges in either direction-don't forget that the graph is undirected.) Then w'
is a descendant of w and u' is an ancestor of w'. Since u' is not in the subtree
rooted at w, it must be an ancestor of v. But it cannot be v because v cannot
be used twice on the cycle. Therefore u' must be an ancestor of u. 0

22 LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH

The biconnected components can be found from a DFS tree as follows.
Assume the vertices are named by their DFS numbers. We compute a value
for each vertex v, called low(v), which gives the DFS number of the lowest
numbered vertex x (i. e. the highest in the tree) such that there is a back edge
from some descendant of v to x. By Lemmas 4.6 and 4.7, a vertex u will be
an articulation point, and the biconnected component of the tree edge (u, v)
will lie entirely in the subtree rooted at u, if low (v) 2:: u. We can inductively
compute low (v) as follows:

x
y

low(v)

.-

.-

.-

min {low(w) I w is an immediate descendant of v}

min{ z I z is reachable by a back edge from v}

min(x,y) .

The values low (v) can be computed simultaneously with the construction of
the DFS tree in linear time. As soon as an articulation point u is discovered
with (u, v) a tree edge such that low (v) 2:: u, the biconnected component
containing the edge (u, v) can be deleted from the graph. See [3, 78] for more
details.

4.2 Directed DFS

The DFS procedure on directed graphs is similar to DFS on undirected graphs,
except that we only follow edges from sources to sinks. Four types of edges
can result:

• tree edges to a vertex not yet visited

• back edges to an ancestor

• forward edges to a descendant previously visited

• cross edges to a vertex previously visited that is neither an ancestor nor
a descendant.

There can be no cross edges to a higher numbered vertex; such an edge would
have been a tree edge. IT we mark the vertex y when the tree edge (x, y) is
popped to indicate that the subtree below y has been completely explored,
we can recognize each of these four cases when we explore the edge (u, v) by
checking marks and comparing DFS numbers:

I (u, v) is a I if
tree edge DFS(v) does not exist
back edge DFS(v) < DFS(u) and v is not marked
forward edge DFS(v) > DFS(u)
cross edge DFS(v) < DFS(u) and v is marked

LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH 23

The directed DFS tree can be constructed in linear time; see [3, 78] for details.
The first application of directed DFS is determining acyclicity:

Theorem 4.8 A directed graph is acyclic iff its DFS forest has no back edges.

Proof. If there is a back edge, the graph is surely cyclic. Conversely, if
there are no back edges, consider the postorder numbering of the DFS forest:
traverse the forest in depth-first order, but number the vertices in the order
they are last seen. Then tree edges, forward edges, and cross edges all go from
higher numbered to lower numbered vertices, so there can be no cycles. 0

4.3 Strong Components

Definition 4.9 Let G = (V, E) be a directed graph. For u, v E V, define
u == v if u and v lie on a directed cycle in G. This is an equivalence relation,
and its equivalence classes are called strongly connected components or just
strong components. A graph G is said to be strongly connected if for any pair
of vertices u, v there is a directed cycle in G containing u and v; i.e., if G has
only one strong component. 0

The strong components of a directed graph can be computed in linear time
using directed depth-first search. The algorithm is similar to the algorithm
for biconnected components in undirected graphs; see [3] for details.

4.4 Strong Components and Partial Orders

Strong components are important in the representation of partial orders. Fi
nite partial orders are often represented as the reflexive transitive closures E*
of dags G = (V,E) (recall (u,v) E E* iff there exists an E-path from u to
v of length 0 or greater). If G is not acyclic, then the relation E* does not
satisfy the antisymmetry law, and is thus not a partial order. However, it is
still reflexive and transitive. Such a relation is called a preorder or sometimes
a quasiorder.

Given an arbitrary preorder (P, ~), define x ~ y if x ~ y and y ~ x.
This is an equivalence relation, and we can collapse its equivalence classes
into single points to get a partial order. This construction is called a quotient
construction. Formally, let [x] denote the ~-class of x and let P I~ denote the
set of all such classes; i.e.,

[x] {yJy~x}

P I~ {[x]J x E P} .

The preorder ~ induces a preorder, also denoted ~, on PI ~ in a natural
way: [x] ~ [y] if x ~ y in P. (The choice of x and y in their respective
equivalence classes doesn't matter.) It is easily shown that the preorder ~ is

24 LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH

actually a partial order on P/~; intuitively, by collapsing equivalence classes,
we identified those elements that caused antisymmetry to fail.

Forming the strong components of a directed (not necessarily acyclic)
graph G = (V, E) allows us to perform this operation effectively on the
preorder (V, E*). We form a quotient graph G/= by collapsing the strong
components of G into single vertices:

[vl {u I u = v} (the strong component of v)
V/= {[vll v E V}

E' {([u], [v]) I (u,v) E E}

G/= (V/=, E') .

It is not hard to show that G/= is acyclic. Moreover,

Theorem 4.10 The partial orders (V/~, E*) and (V/=, (E')*) are isomor
phic.

In other words, the partial order represented by the collapsed graph is the
same as the collapse of the preorder represented by the original graph.

Lecture 5 Shortest Paths and Transitive
Closure

5.1 Single-Source Shortest Paths

Let G = (V, E) be an undirected graph and let f be a function assigning
a nonnegative length to each edge. Extend f to domain V x V by defining
f(v,v) = 0 and f(u,v) = 00 if (u,v) ¢ E. Define the length2 of a path
p = ele2 ... en to be f(P) = L:f=l f(ei). For u, v E V, define the distance
d(u, v) from u to v to be the length of a shortest path from u to v, or 00 if
no such path exists. The single-source shortest path problem is to find, given
s E V, the value of d(s, u) for every other vertex u in the graph.

If the graph is unweighted (i.e., all edge lengths are 1), we can solve the
problem in linear time using BFS. For the more general case, here is an algo
rithm due to Dijkstra [28]. Later on we will give an O(m+nlogn) implemen
tation using Fibonacci heaps. The algorithm is a type of greedy algorithm: it
builds a set X vertex by vertex, always taking vertices closest to X.

2In this context, the terms "length" and "shortest" applied to a path refer to I!, not the
number of edges in the path.

25

26 LECTURE 5 SHORTEST PATHS AND TRANSITIVE CLOSURE

Algorithm 5.1 (Dijkstra's Algorithm)

X:= {s};
D(s) := 0;
for each u E V - {s} do

D(u) := l(s,u);
while X i= V do

let u E V - X such that D(u) is minimum;
X :=XU{u};
for each edge (u, v) with v E V - X do

D(v):= min(D(v),D(u) +l(u,v»
end while

The final value of D(u) is d(s,u). This algorithm can be proved correct by
showing that the following two invariants are maintained by the while loop:

• for any u, D(u) is the distance from s to u along a shortest path through
only vertices in X;

• for any u E X, v (j. X, D(u) ~ D(v).

5.2 Reflexive Transitive Closure

Let E denote the adjacency matrix of the directed graph G = (V, E). Using
Boolean matrix multiplication, the matrix E2 has a 1 in position uv iff there
is a path of length exactly 2 from vertex u to vertex v; i.e., iff there exists a
vertex w such that (u,w), (w,v) E E. Similarly, one can prove by induction
on k that (Ek)uv = 1 iff there is a path of length exactly k from u to v.

The reflexive transitive closure of G is

E* Iv EV E 2v .. ·
= I V E V E2 V ... V En- 1

= (IV Et-1 .

The infinite join is equal to the finite one because if there is a path connecting
u and v, then there is one of length at most n - 1.

Suppose that two n x n Boolean matrices can be multiplied in time M(n).
Then E* = (I V E)n-l can be calculated in time O(M(n) logn) by squaring
E logn times. We will show below how to calculate E* in time O(M(n».
Conversely, if there is an algorithm to compute E* in time T(n), then M(n)
is O(T(n» (under the reasonable assumption that M(3n) is O(M(n))): to
multiply A and B, place them strategically into a 3n x 3n matrix, then take
its reflexive transitive closure:

[~ ~ ~]* = [~ 1 A:].
o 0 0 0 0 I

LECTURE 5 SHORTEST PATHS AND TRANSITIVE CLOSURE

The product AB can be read off from the upper right-hand block.
Here is a divide and conquer algorithm to find E* in time M (n).

Algorithm 5.2 (Reflexive Transitive Closure)

1. Divide E into 4 submatrices A, B, C, D of size roughly ~ x ~ such
that A and D are square.

E = [~I~]
2. Recursively compute D*. Compute

F = A+BD*C.

Recursively compute F*.

3. Set

* [F* I F* B D*]
E = D*CF* D* + D*CF* BD* .

27

Essentially, we are partitioning the set of vertices into two disjoint sets U
and V, where A describes the edges from U to U, B describes edges from U
to V, C describes edges from V to U, and D describes edges from V to V.
We compute reflexive transitive closures on these sets recursively and use this
information to describe the reflexive transitive closure of E. Note that we
compute two reflexive transitive closures, a few matrix multiplications (whose
complexity is given by M) and a few matrix additions (whose complexity is
assumed to be quadratic) of matrices of roughly half the size of E. This gives
the recurrence

where c and d are constants. Under the quite reasonable assumption that
M(2n) ~ 4M(n), the solution to this recurrence is O(M(n)).

5.3 All-Pairs Shortest Paths

Let E denote the adjacency matrix of a directed graph with edge weights.
Replace the l's in E by the edge weights and the O's by 00. Apply Algorithm
5.2 to calculate E*, except use + instead of 1\ and min instead of V. We will
show next time that this solves the all-pairs shortest path problem.

Lecture 6 Kleene Algebra

Consider a binary relation on an n element set represented by an n x n Boolean
matrix E. Recall from the last lecture that we can compute the reflexive
transitive closure of E by divide-and-conquer as follows: partition E into four
submatrices A, B, C, D of size roughly ¥ x ¥ such that A and D are square:

By induction, construct the matrices D*, F = A + BD*C, and F*, then take

* [F* I F* BD*]
E = D*CF* D* + D*CF* BD* . (1)

We will prove that the matrix E* as defined in (1) is indeed the reflexive
transitive closure of E, but the proof will be carried out in a more abstract
setting which will allow us to use the same construction in other applications.
For example, we will be able to compute the lengths of the shortest paths
between all pairs of points in a weighted directed graph using the same general
algorithm, but with a different interpretation of the basic operations.

How did we come up with the expressions in (I)? This is best motivated by
considering a simple finite-state automaton over the alphabet E = {a, b, c, d}

with states s, t and transitions s ~ s, s ~ t, t ~ s, t ~ t:

28

LECTURE 6 KLEENE ALGEBRA 29

b

For each pair of states u, v, consider the set of input strings in ~* taking
state u to state v in this automaton. Each such set is a regular subset of ~*
and is represented by a regular expression corresponding to the expressions
appearing in (1):

S -t S

S -t t

t -t S

t -t t

j*

j*bd*

d*cj*

d* + d*cj*bd* ,

where j = a + bd*c. (See [3, §9.1, pp. 318-319] for more information on finite
automata and regular expressions.)

6.1 Definition of Kleene Algebras

The appropriate level of abstraction we are seeking is Kleene algebm. This
concept goes back to Kleene [61], but received significant impetus from the
work of Conway [21]. The definition here is from [63].

Definition 6.1 A (*-continuous) Kleene algebm is any structure of the form

1C = (8, +, ., *, 0, 1)

where 8 is a set of elements, + and . are binary operations 8 x 8 -+ 8, *
is a unary operation 8 -t 8, and 0 and 1 are distinguished elements of 8,
satisfying the axioms

a + (b + c) (a+b)+c (+ is associative) (2)
a+b b+a (+ is commutative) (3)
a+a a (+ is idempotent) (4)
a+O O+a a (0 is an a identity for +) (5)

a· (b· c) (a· b) . c (. is associative) (6)
a ·1 1· a = a (1 is an a identity for .) (7)
O·a a·O = 0 (0 is an annihilator for .) (8)

a· (b + c) a·b+a·c (. distributes over +) (9)
(b+ c)· a b·a+c·a (10)

plus the following axiom to deal with the * operator, which will require further
explanation:

ab*c = supabnc
n~O

(11)

30 LECTURE 6 KLEENE ALGEBRA

where

o

Axioms (2-5) say that the structure (8, +, 0) is an idempotent commu
tative monoid. Axioms (6-7) say that (8, ., 1) is a monoid. Axioms (8-10)
describe how these two monoid structures interact. Altogether, Axioms (2-10)
say that K., is an idempotent semiring.

The axiom (11) asserts the existence of the supremum or least upper bound
of a certain set with respect to a certain partial order. In any idempotent
semiring, there is a natural partial order defined by

(12)

It follows easily from the axioms (2-5) that ~ is indeed a partial order; i.e.,
it is

• reflexive: a ~ a

• antisyrnmetric: if a ~ b and b ~ a then a = b; and

• transitive: if a ~ band b ~ c then a ~ c.

If A is a set of elements of a partially ordered set, the element y is said to
be the supremum or least upper bound of the set A (notation: y = sup A) if

• y is an upper bound for A; i.e., x ~ y for all x E A;

• y is the least such upper bound; i.e., for any other upper bound z for
A, y ~z.

The supremum of any pair of elements x, y exists and is equal to x + y. It
follows that the supremum of any finite set {al, ... , an} exists and is equal
to al + ... + an (parentheses are not necessary because + is associative). In
general, the supremum of an infinite set need not exist, but if it exists then it
is unique. The axiom (11) asserts that the supremum of the set {abnc I n ~ O}
exists and is equal to ab* c.

The postulate (11) captures axiomatically the behavior ofreflexive transi
tive closure of a binary relation. It also captures the behavior of the Kleene *
operator of formal language theory. In addition, there are many nonstandard
examples of Kleene algebras that are useful in various contexts. We will give
several examples below.

Instead of Kleene algebras, many authors (such as [3, 78]) use so-called
closed semirings. These structures are strongly related to Kleene algebras,

LECTURE 6 KLEENE ALGEBRA 31

but are defined in terms of a countable summation operator E instead of a
supremum. In closed semirings, the * operator is not a primitive operator but
is defined in terms of E by

The countable summation operator E, which sums a count ably infinite se
quence of elements, is postulated not to depend on the order of the elements
in the sequence or their multiplicity, and thus is essentially a supremum. The
operator E is also postulated to satisfy an infinite distributivity property that
we get for free for all suprema of interest by stating the axiom as we did in
(11).

The main drawback with closed semirings is that the suprema of all count
able sets are required to exist, which is too many. Although every closed
semiring is a Kleene algebra, there are definitely Kleene algebras that are not
closed semirings. The most important example of such a Kleene algebra is the
family RegE of regular subsets of ~*, where ~ is a finite alphabet (Example
6.2 below). This example is important because it is the free Kleene algebra
freely generated by ~, which essentially says that an equation between regular
expressions over ~ holds in all Kleene algebras if and only if it holds in RegE.
We will find this fact very useful in reducing arguments about Kleene algebras
in general to arguments about regular subsets of ~* .

Kleene algebras were studied extensively in the monograph of Conway [21].
It is possible to axiomatize the equational theory of Kleene algebras in a purely
finitary way [65]. The precise relationship between Kleene algebras and closed
semirings is drawn in [64].

6.2 Examples of Kleene Algebras

Kleene algebras abound in computer science. Here are some examples.

Example 6.2 Let ~ be a finite alphabet and let RegE denote the family of
regular sets over ~ with the following operations:

A+B AUB

A·B {xylxEA, yEB}
A* {XIX2·· ·Xn In 2: 0 and Xi E A,

UAn

n~O

0 0
1 {f}

where An is defined inductively by

AO

An+!

l:=;i:=;n}

32 LECTURE 6 KLEENE ALGEBRA

and E is the empty string. Under these operations, RegE is a Kleene algebra,
and a very important one indeed: it is the free Kleene algebra on free gen
erators ~, which essentially means that any equation 0: = f3 between regular
expressions holds in all Kleene algebras iff it holds in RegE. 0

Example 6.3 Let X be a set and let 'R, be any family of binary relations on
X closed under the following operations:

R+B
R·B

R*

RuB
{(x,z) 13y E X (x,y) E Rand (y,z) E B}
URn

n;O:O

the reflexive transitive closure of R

o 0
1 {(x, x) I x E X} .

where Rn is defined inductively by

~ {(x, x) I x E X}
Rn+1 R·Rn .

Under these operations, 'R, forms a Kleene algebra. Kleene algebras of binary
relations are used to model programs in Dynamic Logic and other logics of
programs. 0

Example 6.4 The set {O, I} of Boolean truth values forms a Kleene algebra
under the operations

a+b aVb

a·b a/\b

a* 1

and 0 and 1 as named. This is the smallest nontrivial Kleene algebra. 0

Example 6.5 The family of n x n Boolean matrices forms a Kleene algebra
under the operations

A+B
A·B

A*
o
1

AVB
Boolean matrix product

reflexive transitive closure

the zero matrix

the identity matrix.

This is essentially the same as Example 6.3 above for an n-element set X. 0

LECTURE 6 KLEENE ALGEBRA 33

Example 6.6 The following rather bizarre example will be useful in comput
ing all-pairs shortest paths in a weighted graph. We will have to be a little
more explicit with notation than usual to avoid confusion.

Let 'R+ denote the family of nonnegative real numbers, and let 00 be a
new element. Let +'R denote ordinary addition in 'R+ U {oo}, where we define

a +'R 00 = 00 +'R a = 00

for all a E 'R+ U {oo}. Let $'R denote the natural order in 'R+ U {oo}, with
a $'R 00 for all a E 'R+. Let min'R { a, b} denote the minimum of a and b with
respect to this order. Let O'R denote the real number O.

Define the Kleene algebra operations +K:, .K:, *K:, OK:, and 1K: on 'R+ U {oo}
as follows:

a+K: b min'R{a, b}

{ a, if a $'R b
b, otherwise

a·K: b a+'Rb
a*K: O'R

OK: = 00

1K: O'R .

If this appears confusing, don't worry, it really is. To make sense of it, just
keep in mind that the symbols on the left hand side of these equations refer to
the Kleene algebra operations being defined, whereas those on the right hand
side refer to the natural operations of'R+ U {oo}. Note that the zero element
of the Kleene algebra is 00, the identity for min'R, and the multiplicative
identity 1 of the Kleene algebra is the real number 0, the identity for addition
in 'R+ U {oo} (which is multiplication in the Kleene algebra). The worst part
is that the natural partial order $K: in the Kleene algebra as defined by (12)
is the reverse of $'R; that is, a $K: b iff b $'R a.

This algebra is often called the min,+ Kleene algebra. 0

Lecture 7 More on Kleene Algebra

In this lecture we will see how Kleene algebra can be used in a variety of
situations involving * -like operations. The key result that allows these appli
cations is that the n x n matrices over a Kleene algebra again form a Kleene
algebra. Along the way we will establish a central lemma that establishes the
importance of the regular sets RegE over the finite alphabet E in reasoning
about Kleene algebras in general.

Let

be a Kleene algebra. Let E a set and let REXPE denote the family of regular
expressions over E (see [3, §9.1, pp. 318-319]). An interpretation over IC is a
map

/:E -t IC

assigning an element of IC to each element of E. An interpretation can be
extended to domain REXPE inductively as follows:

/(0)
/(1)

/(a+{3)
/(a . (3)

/(a*)

OK:

1K:

/(a) +K: /({3)
/(a) .K: /({3)
/(a)*1C .

34

LECTURE 7 MORE ON KLEENE ALGEBRA 35

At the risk of confusing the operator symbols in regular expressions and the
corresponding operations in /C, we henceforth drop the subscripts /C.

For example, the interpretation

R:E -+ Reg!:

a f-t {a}

over Reg!: extends to the map

in which R(a) is the regular set denoted by the regular expression a in the
usual sense. The interpretation R is called the standard interpretation over
Reg!:.

The following lemma generalizes (11).

Lemma 7.1 Let R : E -+ Reg!: be the standard interpretation over Reg!:
and let I : E -+ /C be any interpretation over any Kleene algebra /C. For any
regular expression a over E,

I(a) sup I(x) .
xER(a)

(13)

Note that since R(a) is a regular set of strings over the alphabet E, the x
in (13) denotes a string. Strings over E are themselves regular expressions
over E, so the expression I(x) makes sense. The equation (13) states that the
supremum of the possibly infinite set

{I(x) I x E R(a)} ~ /C

exists and is equal to I(a). We leave the proof of Lemma 7.1 as an exercise
(Homework 3, Exercise 2).

It follows that for any pair a, {3 of regular expressions over E, the equation
a = {3 is a logical consequence of the axioms of Kleene algebra, i.e. it holds
under all interpretations over all Kleene algebras, if and only if it holds under
the standard interpretation R over Reg!:. A fancy way of saying this is that
Reg!: is the free Kleene algebra on free generators E.

Theorem 7.2 Let a and (3 be regular expressions over E and let R be the
standard interpretation over Reg!:. Then

I(a) = I({3)

for all interpretations lover Kleene algebras if and only if

R(a) = R({3).

36 LECTURE 7 MORE ON KLEENE ALGEBRA

Proof. (--+) This follows immediately from the fact that RegE is a Kleene
algebra and R is an interpretation over RegE.

(+-) Suppose R(a) = R(f3). Then

I(a) sup I(x) by Lemma 7.1
"'ER(",)

sup I (x) by the assumption R(a) = R(f3)
"'ER({3)

I (f3), again by Lemma 7.1.

7.1 Matrix Kleene Algebras

o

The collection M(n, K) of n x n matrices with elements in a Kleene algebra
K again forms a Kleene algebra, provided the Kleene algebra operators on
M(n, K) are defined appropriately. We always define + as ordinary matrix
addition, . as ordinary matrix multiplication, 0 as the zero matrix, 1 as the
identity matrix, and * recursively by equation (1) of the previous lecture. We
must show that all the axioms of Kleene algebra are satisfied by M(n, K)
under these definitions. For example, in M(2, K) the identity elements for +
and· are

respectively, and the operations +, ., and * are given by

[a b]. [e f] = [ae + bg af + bh]
c d 9 h ce + dg cf + dh

[~ : r = [d~~* d* :;::;*bd*]

where f = a+bd*c. Note that A ~ B in the natural order on M(n, K) defined
by (12) if and only if Aij ~ Bij for alII ~ i,j ~ n.

Most of the Kleene algebra axioms are routine to verify for the structure
M(n, K). Let us verify (11) explicitly, assuming all the other axioms have
been verified. First we will show that it is true for a particular choice of
matrices over a particular Kleene algebra of regular sets, using a combinatorial
argument; next we will use Theorem 7.2 to extend the result to all Kleene
algebras.

LECTURE 7 MORE ON KLEENE ALGEBRA 37

Let A, B, and C be n x n symbolic matrices with ilh elements 8.;j, bij ,
and Cij, respectively, where the 8.;j, bij , Cij are distinct letters. Let

~ = {aoj, bij,Cij 11 ~ i,j ~ n} .

Build an automaton Ms with n states and transition from state i to state
j labeled with the letter b ij . The ijth element of Bk, the symbolic kth power
of B, is a regular expression representing the set of strings of length k over ~
taking state i to state j in Ms. Moreover, the ilh element of B* represents
the set of all strings (of any length) taking state i to state j in Ms. This
follows from a purely combinatorial inductive argument, using the definition
of B* as given in (1); the partition in (1) corresponds to a partition of the
states of Ms into two disjoint sets. We thus have

R((B*)ij) = U R((Bk)ij)
k~O

where R is the standard interpretation.
Let MA and Mc consist of n states each. Connect state i of MA with

state j of Ms and label the transition 8.;j. Similarly, connect state i of Ms
with state j of Mc and label the transition Cij. Call this new automaton M.
Then the regular set over ~ denoted by the ilh element of ABkC is the set
of strings of length k + 2 taking state i of MA to state j of Me in M, and the
regular set denoted by the ijth element of AB*C is the set of all strings (of
any length) taking state i of MA to state j of Me in M. Therefore

R((AB*C)ij) = U R((ABkC)ij) .
k~O

Now let A, B, 0 be arbitrary matrices over an arbitrary Kleene algebra /C.
Let aij, bij , C;,j denote the ilh elements of A, B, and 0, respectively. Let 1
be the interpretation

Then

1(8.;j) aij
1 (bij) bij
l(cij) C;,j .

1((AB*C)ij)

sup{l(x) I x E R((AB*C)ij)} by Lemma 7.1

sup{l(x) I x E U R((ABkC)ij)}
k~O

supsup{l(x) I x E R((ABkC)ij)}
k~O

sup 1((ABk C)ij)
k~O

sup(ABkO)ij ,
k~O

38 LECTURE 7 MORE ON KLEENE ALGEBRA

therefore

AB*C

This establishes (11) for M(n,JC).

7.2 Applications

The obvious divide-and-conquer algorithm for computing E* given by (1)
yields the recurrence

n
T(n) = T(2") + O(M(n)) ,

where M(n) is the number of basic operations needed to add or multiply
two n x n matrices over JC. Under the quite reasonable assumption that
M(2n) ~ 4M(n), this recurrence has solution

T(n) = O(M(n)).

For most applications, M(n) = O(n3). Better bounds can be obtained using
Strassen's algorithm or other fast matrix multiplication algorithms when JC is
a ring.

Reflexive Transitive Closure

Using matrix Kleene algebras, we can prove the correctness of the algorithm
for reflexive transitive closure presented in the last lecture. Let B denote the
two-element Kleene algebra described in Example 6.4 above. Let E denote the
adjacency matrix of a directed graph G with n vertices. Then E E M(n, B),
and the ilh element of Ek is 1 if and only if there exists a directed path in G
from vertex i to vertex j of length exactly k. By the result of the last section,
we know that

E* = supEk ,
k~O

so the ilh element of E* is 1 iff there exists a path of some length from i to
j. This is the reflexive transitive closure.

All-Pairs Shortest Paths

Here we· use the same algorithm, but a different underlying Kleene algebra,
namely the min,+ algebra of Example 6.6 above. Supremum in this order is
infimum in the usual order on n+ u {oo}. Thus a* is the real number 0 for
all a.

LECTURE 7 MORE ON KLEENE ALGEBRA 39

We apply this to the all-pairs shortest path problem. Let E be a matrix
over the min, + algebra containing the edge lengths of a weighted directed
graph G. If (i,j) is not an edge in G, set Eij = 00. In E2, the iph element
will be the minimum over all vertices k of the sum of the lengths of (i, k) and
(k,j). That is, it will contain the length of a shortest path of two edges from
i to j. It follows by induction that the ijth element of Ek is the length of a
shortest path of k edges from i to j. Since

E* = supEk

k~O

and supremum in the Kleene algebra is infimum in the natural order, E* gives
the length of a shortest path of any number of edges.

Lecture 8 Binomial Heaps

Binomial heaps were invented in 1978 by J. Vuillemin [106]. They give a
data structure for maintaining a collection of elements, each of which has a
value drawn from an ordered set, such that new elements can be added and
the element of minimum value extracted efficiently. They admit the following
operations:

makeheap(i)
findmin(h)
insert(h, i)
deletemin(h)
meld(h,h')

return a new heap containing only element i
return a pointer to the element of h of minimum value
add element i to heap h
delete the element of minimum value from h
combine heaps h and hi into one heap

Efficient searching for objects is not supported.
In the next lecture we will extend binomial heaps to Fibonacci heaps [35],

which allow two additional operations:

decrement(h, i,~)
delete(h, i)

decrease the value of i by ~
remove i from heap h

We will see that these operations have low amortized costs. This means
that any particular operation may be expensive, but the costs average out so
that over a sequence of operations, the number of steps per operation of each
type is small. The amortized cost per operation of each type is given in the
following table:

40

LECTURE 8 BINOMIAL HEAPS

makeheap
findmin
insert
deletemin
meld

decrement
delete

0(1)
0(1)
0(1)
O(logn)
0(1) for the lazy version
O(log n) for the eager version
0(1)
O(logn)

where n is the number of elements in the heap.

41

Binomial heaps are collections of binomial trees, which are defined induc
tively: the ith binomial tree Bi consists of a root with i children Bo, ... , Bi- 1•

Bo B1 B2 B3
• I

It is easy to prove by induction that IBil = 2i.
If data elements are arranged as vertices in a tree, that tree is said to be

heap-ordered if the minimum value among all vertices of any subtree is found
at the root of that subtree. A binomial heap is a collection of heap-ordered
binomial trees with a pointer min to the tree whose root has minimum value.
We will assume that all children of any vertex are arranged in a circular
doubly-linked list, so that we can link and unlink subtrees in constant time.

Definition 8.1 The rank of an element x, denoted rank (x), is the number
of children of x. For instance, rank (root of Bi) = i. The rank of a tree is the
rank of its root. 0

A basic operation on binomial trees is linking. Given two B/s, we can
combine them into a Bi+1 by making the root of one Bi a child of the root of
the other. We always make the Bi with the larger root value the child so as
to preserve heap order. We never link two trees of different rank.

8.1 Operations on Binomial Heaps

In the "eager meld" version, the trees of the binomial heap are accessed
through an array of pointers, where the ith pointer either points to a Bi or
is nil. The operation meld(h, h'), which creates a new heap by combining h
and h', is reminiscent of binary addition. We start with i = O. If either h or
h' has a Bo and the other does not, we let this Bo be the Bo of meld(h, h').
If neither h nor h' have a Bo, then neither will meld(h, h'). If both h and h'
have a Bo, then meld(h, h') will not; but the two Bo's are linked to form a

42 LECTURE 8 BINOMIAL HEAPS

B1, which is treated like a carry. We then move on to the B1's. At stage i,
we may have 0, 1, or 2 B/s from h and h', plus a possible Bi carried from the
previous stage. If there are at least two B/s, then two of them are linked to
give a Bi+l which is carried to the next stage; the remaining Bi , if it exists,
becomes the Bi of meld(h, h'). The entire operation takes O(log n) time, be
cause the size of the largest tree is exponential in the largest rank. We will
modify the algorithm below to obtain a "lazy meld" version, which will take
constant amortized time.

The operation insert(i, h) is just meld(h, makeheap(i)).
For the operation deletemin(h), we examine the min pointer to x, the

root of some B k • Removing x creates new trees Bo, ... , B k - 1, the children of
x, which are formed into a new heap h'. The tree Bk is removed from the old
heap h. Now h and h' are melded to form a new heap. We also scan the new
heap to determine the new min pointer. All this requires O(1ogn) time.

8.2 Amortization

The O(logn) bound on meld and deletemin is believable, but how on earth
can we do insert operations in constant time? Any particular insert opera
tion can take as much as O(1og n) time because of the links and carries that
must be done. However, intuition tells us that in order for a particular insert
operation to take a long time, there must be a lot of trees already in the heap
that are causing all these carries. We must have spent a lot of time in the
past to create all these trees. We will therefore charge the cost of performing
these links and carries to the past opemtions that created these trees. To the
operations in the past that created the trees, this will appear as a constant
extra overhead.

This type of analysis is known as amortized analysis, since the cost of a
sequence of operations is spread over the entire sequence. Although the cost
of any particular operation may be high, over the long run it averages out so
that the cost per operation is low.

For our amortized analysis of binomial heaps, we will set up a savings
account for each tree in the heap. When a tree is created, we will charge
an extra credit to the instruction that created it and deposit that credit to
the account of the tree for later use. (Another approach is to use a potential
function; see [100].) We will maintain the following credit invariant:

Each tree in the heap has one credit in its account.

Each insert instruction creates one new singleton tree, so it gets charged
one extra credit, and that credit is deposited to the account of the tree that
was created. The amount of extra time charged to the insert instruction is
0(1). The same goes for makeheap. The deletemin instruction exposes up
to log n new trees (the subtrees of the deleted root), so we charge an extra

LECTURE 8 BINOMIAL HEAPS 43

log n credits to this instruction and deposit them to the accounts of these
newly exposed trees. The total time charged to the deletemin instruction is
still O(logn).

We use these saved credits to pay for linking later on. When we link a tree
into another tree, we pay for that operation with the credit associated with
the root of the subordinate tree. The insert operation might cause a cascade
of carries, but the time to perform all these carries is already paid for. We
end up with a credit still on deposit for every exposed tree and only 0(1) time
charged to the insert operation itself.

8.3 Lazy Melds

We can also perform meld operations in constant time with a slight modifica
tion of the data structure. Rather than using an array of pointers to trees, we
use a doubly linked circular list. To meld two heaps, we just concatenate the
two lists into one and update the min pointer, certainly an 0(1) operation.
Then insert(h, i) is just meld(h, makeheap(i)).

The problem now is that unlike before, we may have several trees of the
same rank. This will not bother us until we need to do a deletemin. Since in
a deletemin we will need O(log n) time anyway to find the minimum among
the deleted vertex's children, we will take this opportunity to clean up the
heap so that there will again be at most one tree of each rank. We create an
array of empty pointers and go through the list of trees, inserting them one
by one into the list, linking and carrying if necessary so as to have at most
one tree of each rank. In the process, we search for the minimum.

We perform a constant amount of work for each tree in the list in addition
to the linking. Thus if we start with m trees and do k links, then we spend
O(m + k) time in all. To pay for this, we have k saved credits from the links,
plus an extra log n credits we can charge to the deletemin operation itself,
so we will be in good shape provided m + k is O(k + logn). But each link
decreases the number of trees by one, so we end up with m - k trees, and
these trees all have distinct ranks, so there are at most log n of them; thus

m+k 2k+ (m- k)

< 2k + logn

O(k + logn) .

Lecture 9 Fibonacci Heaps

Fibonacci heaps were developed by Fredman and Tarjan in 1984 [35] as a
generalization of binomial heaps. The main intent was to improve Dijkstra's
single-source shortest path algorithm to O(m + nlogn), but they have many
other applications as well. In addition to the binomial heap operations, Fi
bonacci heaps admit two additional operations:

decrement(h, i,~)
delete(h, i)

decrease the value of i by ~
remove i from heap h

These operations assume that a pointer to the element i in the heap h is given.
In this lecture we describe how to modify binomial heaps to admit delete

and decrement. The resulting data structure is called a Fibonacci heap.
The trees in Fibonacci heaps are no longer binomial trees, because we will be
cutting subtrees out of them in a controlled way. We will still be doing links
and melds as in binomial heaps. The rank of a tree is still defined in the same
way, namely the number of children of the root, and as with binomial heaps
we only link two trees if they have the same rank.

To perform a delete(i), we might cut out the subtree rooted at i, remove
i, and meld in its newly freed subtrees. We must also search these newly
freed subtrees for the minimum root value; this requires o (log n) time. In
decrement(i, ~), we decrement the value of i by~. The new value of i
might violate the heap order, since it might now be less than the value of i's
parent. If so, we might simply cut out the subtree rooted at i and meld it
into the heap.

44

LECTURE 9 FIBONACCI HEAPS 45

The problem here is that the O(logn) time bound on deletemin described
in the last lecture was highly dependent on the fact that the size of Bk is
exponential in k, i. e. the trees are bushy. With delete and decrement as
described above, cutting out a lot of subtrees might make the tree scraggly,
so that the analysis is no longer valid.

9.1 Cascading Cuts

The way around this problem is to limit the number of cuts among the children
of any vertex to two. Although the trees will no longer be binomial trees, they
will still be bushy in that their size will be exponential in their rank.

For this analysis, we will set up a savings account for every vertex. The
first time a child is cut from vertex p, charge to the operation that caused the
cut two extra credits and deposit them to the account of p. Not only does this
give two extra credits to use later, it also marks p as having had one child cut
already. When a second child is cut from p, cut p from its parent p' and meld
p into the heap, paying for it with one of the extra credits that was deposited
to the account of p when its first child was cut. The other credit is left in
the account of p in order to maintain the invariant that each tree in the heap
have a credit on deposit. If p was the second child cut from its parent p', then
p' is cut from its parent; again, this is already paid for by the operation that
cut the first child of p'. These cuts can continue arbitrarily far up the tree;
this is called cascading cuts. However, all these cascading cuts are already
paid for. Thus decrement is 0(1), and delete will still be O(logn) provided
our precautions have guaranteed that the sizes of trees are still exponential in
their rank.

Theorem 9.1 The size of a tree with root r in a Fibonacci heap is exponential
in rank (r).

Proof. Fix a point in time. Let x be any vertex and let Yt, ... ,Ym be the
children of x at that point, arranged in the order in which they were linked
into x. We show that rank (Yi) is at least i - 2. At the time that Yi was linked
into x, x had at least the i-I children Yt, ... ,Yi-l (it may have had more
that have since been cut). Since only trees of equal rank are linked, Yi also
had at least i-I children at that time. Since then, at most one child of Yi
has been cut, or Yi itself would have been cut. Therefore the rank of Yi is at
least i - 2.

We have shown that the ith child of any vertex has rank at least i - 2. Let
Fn be the smallest possible tree of rank n satisfying this property. The first
few Fn are illustrated below.

46 LECTURE 9 FIBONACCI HEAPS

Observe that Fo, F!, F2 , F3 , F4 , F5 , . .• , are of size 1,2,3,5,8,13 ... , respec
tively. This sequence of numbers is called the Fibonacci sequence, in which
each number is obtained by adding the previous two. It therefore suffices to
show that the nth Fibonacci number In = IFni is exponential in n.

Specifically, we show that In ~ <pn, where <p = ¥ ~ 1.618 ... , the
positive root of the quadratic x 2 - x-I. The proof proceeds by induction on
n.

For the basis, 10 = 1 ~ <po and II = 2 ~ <pl. Now assume that In ~ <pn

and In+! ~ <pn+!. Then

In+2 In+! + In
> <pn+! + <pn

<pn(<p + 1)
<pn . <p2 since <p2 = <p + 1
<pn+2 .

o

The real number <p is often called the golden mtio. It was considered the
most perfect proportion for a rectangle by the ancient Greeks because it makes
the ratio of the length of the longer side to the length of the shorter side equal
to the ratio of the sum of the lengths to the length of the longer side.

aD b a+b
<p=-=--

a b

b

(The picture is actually 81pt x 50pt, giving a ratio of 1.62. Apologies to the
ancient Greeks.)

The golden ratio <p is more closely related to the Fibonacci sequence than
is apparent from the proof of Theorem 9.1. Consider the linear system

[0 1] [In] [In+!]
1 1 In+! - In+2

(14)

which generates the Fibonacci sequence:

LECTURE 9 FIBONACCI HEAPS 47

Let F denote the 2 x 2 matrix in (14). The eigenvalues of F are tp and
tp' = 1-2Y5 , the two roots of its characteristic polynomial

det (xl - F) = x2 - X - 1 .

The eigenvectors associated with tp and tp' are

respectively, of which the former is dominant. Successive applications of a
matrix to a vector with a nonzero component in the direction of a dominant
eigenvector, suitably scaled, will generate a sequence of vectors converging to
that dominant eigenvector. Thus

as n --t OOj in other words, the ratio of successive Fibonacci numbers tends to
tp.

9.2 Fibonacci Heaps and Dijkstra's Algorithm

We can use Fibonacci heaps to implement Dijkstra's single-source shortest
path algorithm (Algorithm 5.1) in O(m+nlogn) time. We store the elements
of V - X in a Fibonacci heap. The value of the element v is D(v). The
initialization uses the makeheap operation and takes linear time. We use the
decrement operation to implement the statement

D(v):= min(D(v),D(u) + l(u, v)) .

This requires constant time for each edge, or O(m) time in all. We use the
deletemin operation to remove a vertex from the set of unreached vertices.
This takes O(log n) time for each deletion, or O(n log n) time in all.

Another application of Fibonacci heaps is in Prim's algorithm for minimum
spanning trees. We leave this application as an exercise (Homework 4, Exercise
1).

Lecture 10 Union-Find

The union-find data structure is motivated by Kruskal's minimum spanning
tree algorithm (Algorithm 2.6), in which we needed two operations on disjoint
sets of vertices:

• determine whether vertices u and v are in the same set;

• form the union of disjoint sets A and B.

The data structure provides two operations from which the above two
operations can be implemented:

• find(v), which returns a canonical element of the set containing v. We
ask if u and v are in the same set by asking if find(u) = find(v).

• union(u, v), which merges the sets containing the canonical elements u
and v.

To implement these operations efficiently, we represent each set as a tree
with data elements at the vertices. Each element u has a pointer parent (u)
to its parent in the tree. The root serves as the canonical element of the set.

To effect a union(u, v), we combine the two trees with roots u and v by
making u a child of v or vice-versa. To do a find(u), we start at u and follow
parent pointers, traversing the path up to the root of the tree containing u,
which gives the canonical element.

To improve performance, we will use two heuristics:

48

LECTURE 10 UNION-FIND

• When merging two trees in a union, always make the root of the
smaller tree a child of the root of the larger. We maintain with each
vertex u the size of the subtree rooted at u, and update whenever we
do a union .

• After finding the root v of the tree containing u in a find(u), we
traverse the path from u to v one more time and change the parent
pointers of all vertices along the path to point directly to v. This
process is called path compression. It will payoff in subsequent find
operations, since we will be traversing shorter paths.

49

Let us start with some basic observations about these heuristics. Let a
be a sequence of m union and find operations starting with n singleton sets.
Consider the execution of a- both with and without path compression. In either
case we combine two smaller sets to form a larger in each union operation.
Observe that the collection of sets at time t is the same with or without path
compression, and the trees have the same roots, although the trees will in
general be shorter and bushier with path compression. Observe also that u
becomes a descendant of v at time t with path compression if and only if u
becomes a descendant of v at time t without path compression. However,
without path compression, once u becomes a descendant of v, it remains a
descendant of v forever, but with path compression, it might later become a
non-descendant of v.

10.1 Ackermann's Function

The two heuristics will allow a sequence of union and find operations to be
performed in O((m + n)o:(n)) time, where o:(n) is the inverse of Ackermann's
function. Ackermann's function is a famous function that is known for its
extremely rapid growth. Its inverse o:(n) grows extremely slowly. The texts
[3, 100] give inequivalent definitions of Ackermann's function, and in fact
there does not seem to be any general agreement on the definition of "the"
Ackermann's function; but all these functions grow at roughly the same rate.
Here is yet another definition that grows at roughly the same rate:

x+l

A%(x)

where A~ is the i-fold composition of Ak with itself:

A~ = Ako ... oAk
... ~

or more accurately,

A~ the identity function

50 LECTURE 10 UNION-FIND

In other words, to compute Ak+l{X), start with x and apply Ak x times. It is
not hard to show by induction that Ak is monotone in the sense that

and that for all x, x ~ Ak{x).
As k grows, these functions get extremely huge extremely fast. For x = 0

or 1, the numbers Ak{X) are small. For x ~ 2,

Ao{x) x+l
Al{X) A~{x) 2x
A2 {x) Af{x) x2'" > 2'"

2

A3{X) A~{x) ~
222' = 2jx
"-v-"

'" A4{X) A~{x) > 2 j {2 j ... j (2 j 2) ...) 2jjx , , .
'"

For x = 2, the growth of Ak (2) as a function of k is beyond comprehension.
Already for k = 4, the value of A4(2) is larger than the number of atomic
particles in the known universe or the number of nanoseconds since the Big
Bang.

Ao(2) 3

A1(2) 4

A2(2) 8

A3(2) 211 = 2048

A4(2) > 2 j 2048 = 222'

"-v-"
2048

We define a unary function that majorizes all the Ak (i.e., grows asymp
totically faster than all of them):

and call it Ackermann's function. This function grows asymptotically faster
than any primitive recursive function, since it can be shown that all primitive
recursive functions are bounded almost everywhere by one of the functions Ak .

The primitive recursive functions are those computed by a simple PASCAL-like
programming language over the natural numbers with for loops but no while

LECTURE 10 UNION-FIND 51

loops. The level k corresponds roughly to the depth of nesting of the for loops
[79].

The inverse of Ackermann's function is

a(n) = the least k such that A(k) ~ n

which for all practical purposes is 4. We will show next time that with our
heuristics, any sequence of m union and find operations take at most O((m+
n)a(n)) time, which is not quite linear but might as well be for all practical
purposes. This result is due to Tarjan (see [100]). A corresponding lower
bound for pointer machines with no random access has also been established
[99,87].

Lecture 11 Analysis of Union-Find

Recall from last time the heuristics:

• In a union, always merge the smaller tree into the larger.

• In a find, use path compression.

We made several elementary observations about these heuristics:

• the contents of the trees are the same with or without path compression;

• the roots of the trees are the same with or without path compression;

• a vertex u becomes a descendant of v at time t with path compression if
and only if it does so without path compression. With path compression,
however, u may at some later point become a non-descendant of v.

Recall also the definitions of the functions Ak and 0::

Ao(x)

Ak+l(X)
o:(n)

x+l

A%(x)
least k such that Ak (2) ~ n

and that o:(n) :::; 4 for all practical values of n.

52

(15)

LECTURE 11 ANALYSIS OF UNION-FIND 53

11.1 Rank of a Node

As in the last lecture, let 0' be a sequence of m union and find instructions
starting with n singleton sets. Let Tt(u) denote the subtree rooted at u at
time t in the execution of 0' without path compression, and define the mnk of
u to be

rank (u) = 2 + height (Tm(u)) , (16)

where height (T) is the height of T or length of the longest path in T. In other
words, we execute 0' without path compression, then find the longest path
in the resulting tree below u. The rank of u is defined to be two more than
the length of this path. (Beware that our rank is two more than the rank as
defined in [3, 100]. This is for technical reasons; the 2's in (15) and (16) are
related.)

As long as u has no parent, the height of 1t(u) can still increase, since
other trees can be merged into it; but once u becomes a child of another
vertex, then the tree rooted at u becomes fixed, since no trees will ever again
be merged into it. Also, without path compression, the height of a tree can
never decrease. It follows that if u ever becomes a descendant of v (with or
without path compression), say at time t, then for all s > t the height of Ts(u)
is less than the height of Ts (v), therefore

rank (u) < rank (v) . (17)

The following lemma captures the intuition that if we always merge smaller
trees into larger, the trees will be relatively balanced.

Lemma 11.1

11t(u)1 ~ 2height(T,(u)). (18)

Proof. The proof is by induction on t, using the fact that we always
merge smaller trees into larger. For the basis, we have To(u) = {u}, thus
height (To(u)) = 0 and ITo(u) 1 = 1, so (18) holds at time O. If (18) holds
at time t and the height of the tree does not increase in the next step, i. e.
if height (Tt+1(u)) = height (1t(u)), then (18) still holds at time t + 1, since
ITt+1(u) 1 ~ lTt(u) I· Finally, if height (Tt+1(u)) > height (1t(u)), then the
instruction executed at time t must be a union instruction that merges a tree
Tt(v) into Tt(u), making va child of u in Tt+1(u). Then

height (1t(v)) = height (Tt+1(v)) = height (Tt+1(u)) - 1 .

By the induction hypothesis,

54 LECTURE 11 ANALYSIS OF UNION-FIND

Since we always merge smaller trees into larger,

Therefore

lTt(u)1 + ITt(v)1
> 2height (T.(v)) + 2height (T.(v))

2height (T.(v))+l

2height (T'+l(U)) •

Lemma 11.2 The maximum mnk after executing a is at most llognJ + 2.

Proof. By Lemma 11.1,

so

Lemma 11.3

~ 2height (T",(u)) > 2rank (u)-2

llognJ > rank (u) - 2.

I{u I rank (u) =;; r}1 ~
n

2r - 2 .

,

o

o

Proof. If rank (u) = rank (v), then by (17) Tm(u) and Tm(v) are disjoint.
Thus

rank (u)=r

L ITm(u)1
rank (u)=r

> L 2r - 2 by Lemma 11.1
rank (u)=r

I{u I rank (u) = r}l· 2r - 2 •

o

Now consider the execution of a with path compression. We will focus
on the distance between u and parent (u) as measured by the difference in
their ranks, and how this distance increases due to path compression. Recall
that rank (u) is fixed and independent of time; however, rank (parent (u» can

LECTURE 11 ANALYSIS OF UNION-FIND 55

change with time because the parent of u can change due to path compression.
By (17), this value can only increase.

Specifically, we consider the following conditions, one for each k:

rank (parent (u)) ~ Ak(rank (u)) . (19)

Define

6(u) = the greatest k for which (19) holds.

The value of 6(u) is time-dependent and can increase with time due to path
compression. Note that 6(u) exists if u has a parent, since by (17),

rank (parent (u)) ~ rank (u) + 1 = Ao(rank (u))

at the very least.
For n ~ 5, the maximum value 6(u) can take on is a(n) - 1, since if

6(u) = k,

n > llognJ +2

therefore

11.2 Analysis

> rank (parent (u)) by Lemma 11.2

> Ak(rank (u))
> Ak (2) ,

a(n) > k.

Each union operation requires constant time, thus the time for all union
instructions is O(m).

Each instruction find (u) takes time proportional to the length of the path
from u to v, where v is the root of the tree containing u. The path is traversed
twice, once to find v and then once again to change all the parent pointers
along the path to point to v. This amounts to constant time (say one time
unit) per vertex along the path. We charge the time unit associated such a
vertex x as follows:

• If x has an ancestor y on the path such that 6(y) = 6(x), then charge
x's time unit to x itself .

• If x has no such ancestor, then charge x's time unit to the find instruc
tion.

56 LECTURE 11 ANALYSIS OF UNION-FIND

Let us now tally separately the total number of time units apportioned to
the vertices and to the find instructions and show that in each case the total
is O((m + n)a(n)).

There are at most a(n) time units charged to each find instruction, at
most one for each of the a(n) possible values of 8, since for each such value k
only the last vertex x on the path with 8(x) = k gets its time unit charged to
the find instruction. Since there are at most m find instructions in all, the
total time charged to find instructions is O(ma(n)).

Let us now count all the charges to a particular vertex x over the course
of the entire computation. For such a charge occurring at time t, x must have
an ancestor y such that 8(y) = 8(x) = k for some k. Then at time t,

Suppose that in fact

rank (parent (x)) > Ak(rank (x))
rank (parent (y)) ~ Ak(rank (y)) .

rank (parent (x)) > A~(rank (x)), i ~ 1 .

Let v be the last vertex on the path. Then at time t,

rank (v) > rank (parent (y))
> Ak(rank (y))
> Ak (rank (parent (x)))
> Ak(A(rank (x)))
> A~+l(rank (x)) ,

and since v is the new parent of x at time t + 1, we have at time t + 1 that

rank (parent (x)) ~ A~+l(rank (x)) .

Thus at most rank (x) such charges can be made against x before

rank (parent (x)) > A~ank(x)(rank (x))

Ak+l(rank (x)) ,

and at that point

8(x) ~ k + 1 .

Thus after at most rank (x) such charges against x, 8(x) increases by at least
one. Since 8(x) can increase only a(n) - 1 times, there can be at most
rank (x)a(n) such charges against x in all. By Lemma 11.3, there are at
most

n r
ra(n) 2r- 2 = na(n) 2r - 2

LECTURE 11 ANALYSIS OF UNION-FIND 57

charges against vertices of rank r. Summing over all values of r, we obtain
the following bound on all charges to all vertices:

00 r
Lna{n}2r _ 2
r=O

00 r
= na{n}· L 2r- 2

r=O

= 8na{n}.

We have shown

Theorem 11.4 A sequence of m union and find operations starting with n
singleton sets takes time at most O{{m + n}a{n}}.

Lecture 12 Splay Trees

A splay tree is a data structure invented by Sleator and Tarjan [94, 100] for
maintaining a set of elements drawn from a totally ordered set and allowing
membership testing, insertions, and deletions (among other operations) at an
amortized cost of O(1ogn) per operation. The most interesting aspect of the
structure is that, unlike balanced tree schemes such as 2-3 trees or AVL trees,
it is not necessary to rebalance the tree explicitly after every operation-it
happens automatically.

Splay trees are binary trees, but they need not be balanced. The height of
a splay tree of n elements can be greater than log n; indeed, it can be as great
as n-l. Thus individual operations can take as much as linear time. However,
as operations are performed on the tree, it tends to rebalance itself, and in
the long run the amortized complexity works out to O(1ogn) per operation.

Data is represented at all nodes of a splay tree. The data values are
distinct and drawn from a totally ordered set. The data items will always be
maintained in inorder; that is, for any node x, the elements occupying the left
subtree of x are all less than x, and those occupying the right subtree of x are
all greater than x.

Splay trees support the following operations:

• member(i, S): determine whether element i is in splay tree S

• insert(i, S): insert i into S if it is not already there

• delete(i, S): delete i from S if it is there

58

LECTURE 12 SPLAY TREES 59

• join{S, S'): join Sand S' into a single splay tree, assuming that x < y
forallxESandyES'

• split(i, S): split the splay tree S into two new splay trees S' and S"
such that x ~ i ~ Y for all xES' and yES".

All these operations are implemented in terms of a single basic operation,
called a splay:

• splay(i, S): reorganize the splay tree S so that element i is at the root
if i E S, and otherwise the new root is either

max:{k E S I k < i} or min{k E S I k > i} .

All of the operations mentioned above can be performed with a constant
number of splays in addition to a constant number of other low-level oper
ations such as pointer manipulations and comparisons. For example, to do
join{S, S'), first call splay { +00, S) to reorganize S so that its largest element
is at the root and all other elements are contained in the left subtree of the
root; then make S' the right subtree. To do delete{i, S), call splay{i, S) to
bring i to the root if it is there; then remove i and call join to merge the left
and right subtrees.

12.1 Implementation of Splay

The splay operation can be implemented in terms of the even more elementary
rotate operation. Given a binary tree S and a node x with parent y, the
operation rotate{x) moves x up and y down and changes a few pointers,
according to the following picture:

rotate{x)
I

rotate{y)

A very simple but important observation to make at this point is that the
rotate operation preserves inorder numbering.

To implement splay(x, S), we might rotate x up until it becomes the root.
However, in order to achieve the desired amortized complexity bounds, we
need to be a little more careful. Depending on the relationship of x to its
parent and grandparent, we distinguish three different cases:

60 LECTURE 12 SPLAY TREES

(i) if x has a parent but no grandparent, we just rotate(x)j

(ii) if x has a parent y and a grandparent, and if x and y are either both
left children or both right children, we first rotate(y), then rotate(x)j

(iii) if x has a parent y and a grandparent, and if one of x, y is a left child
and the other is a right child, we first rotate(x) and then rotate(x)
again.

Example 12.1 Apply splay(l, S) to the following tree S:
10 10

case (ii) case (ii)
•

1

1
10

10

case (ii) case (ii)

1

2
2

10 1

10

9 case (i) 9

2 2

LECTURE 12 SPLAY TREES 61

Applying splay to node 2 of the resulting tree yields:

1

10 2

9 10

2 3

Note that the tree appears to become more balanced with each splay. 0

12.2 Analysis

We will now show that the time required to perform m operations on a set
of n elements is O(mlogn). To do this, we use a credit accounting scheme
similar to the one used in our analysis of Fibonacci heaps. Each node x of the
splay tree has a savings account containing a certain number of credits. When
x is created, some number of credits are charged to the insert operation that
created x, and these credits are deposited to x's account. These credits can
be used later to pay for restructuring operations.

For x a node of a splay tree, let 8(x) denote the subtree rooted at x. Let
181 denote the number of nodes in tree 8. Define

p,(8) L(log I 8 I)J
p,(x) p,(8(x)) .

We maintain the following credit invariant:

Node x always has at least p,(x) credits on deposit.

Lemma 12.2 Each operation splay(x, 8) requires no more than

credits to perform the operation and maintain the credit invariant.

Proof. Let y be the parent of x and z be the parent of y, if it exists. Let p,
and p,' be the values of p, before and after the splay operation, respectively.
We consider three cases:

62 LECTURE 12 SPLAY TREES

(i) Node z does not exist. This is the last rotation in the splay; we perform
a single rotate(x). We are willing to pay no more than

credits for this rotation. Note that

JL'(X) JL(Y)
JL'(y) < JL'(x).

In order to maintain the invariant, we need to spend

JL'(x) + JL'(y) - JL(x) -JL(Y) JL'(y) - JL(x)
~ JL'(x) -JL(x)
< 3(JL'(x) - JL(x))

credits. We are left with at least one credit left over to pay for the
constant number of low-level operations such as pointer manipulations
and comparisons.

(ii) Node x is the left child of y and y is the left child of z (or both x and
y are right children). In this case we perform a rotate(y) followed by
a rotate(x). We will show that it costs no more than 3(JL'(x) -JL(x))
credits to perform these two rotate operations and maintain the credit
invariant. Thus if a sequence of these are done to move x up the tree as
in the example above, we will get a telescoping sum, so that the total
amount spent will be no more than 3(JL(S) - JL(x)) + 1 (the +1 comes
from the last rotation as discussed in case (i)).
In order to maintain the invariant, we need

lL'(x) + JL'(y) + JL'(z) -JL(x) -JL(Y) -JL(z) (20)

extra credits. Since JL'(x) = JL(z), we have

JL'(x) + JL'(y) + JL'(z) - JL(x) - JL(y) -JL(z)
JL'(y) + JL'(z) -JL(x) -JL(Y)
(JL'(y) -JL(x)) + (JL'(z) -JL(Y))

< (JL'(x) -JL(x)) + (JL'(x) -JL(x))
2(JL'(x) - JL(x)) .

We can afford to pay for this and have JL'(x) - JL(x) credits left over to
pay for the constant number of low-level operations needed to perform
these two rotations. Unfortunately, it may turn out that JL'(x) = JL(x),
in which case we have nothing left over. We show that in this case the
quantity (20) is in fact strictly negative, thus the invariant is maintained

LECTURE 12 SPLAY TREES 63

for free and we can even afford to spend one of our saved credits to pay
for the low-level operations.
All we need to do is to show that the two assumptions

Il(x)
p,'(x) + p,'(y) + p,'(Z) >

p,(x)
p,(x) + p,(y) + p,(Z)

lead to a contradiction. Since p,(z) = p,'(x) = p,(x) and p, is monotone
in the subterm ordering, we have

therefore

p,(x) = p,(y) = p,(z) ,

p,'(x) + f-L'(y) + p,'(z) > 3p,(z)
3P,'(x)

p,'(y) + p,'(z) > 2p,'(x).

Because p,' is monotone in the subterm ordering,

It follows that

f-L'(y) :::; p,'(x)
f-L'(z) < p,'(x).

p,'(x) = p,'(y) = p,'(z) ,

and since p,(z) = P,'(x), we have

p,(x) = p,(y) = f-L(z) = p,'(x) = p,'(y) = p,'(z) . (21)

Substituting in for the definition of p, and f-L' will quickly show that
this situation is untenable. If a is the size of the subtree rooted at x
before the operation and b is the size of the subtree rooted at z after the
operation, then (21) implies

LlogaJ = Llog(a+b+ l)J = LlogbJ. (22)

Assuming without loss of generality that a :::; b,

Llog(a+b+l)J> Llog2aJ

This contradicts (22).

1 + LlogaJ

> LlogaJ.

64 LECTURE 12 SPLAY TREES

(iii) Node x is a left child of y and y is a right child of z, or vice versa. Here
we do rotate(x) followed by rotate(x) again, and we are willing to pay
no more than 3(I£'(X) - I£(X)) credits for these two rotations. As in the
previous case, we need

I£'(X) + I£'(y) + I£'(Z) - I£(x) - tt(y) - I£(Z)

credits to maintain the invariant, and this quantity is at most 2(I£'(X) -
I£(X)). This leaves at least I£'(X) - I£(X) left over to pay for the low-level
operations, which suffices unless I£'(X) = I£(x). As in case (ii), we prove
by contradiction that in this case

I£'(X) + tt'(y) + I£'(Z) < I£(X) + I£(Y) + I£(Z) ,

thus the credit invariant is maintained for free and we have at least one
extra credit to spend on the low-level operations.

o

Theorem 12.3 A sequence of m operations involving n inserts takes time
O(mlogn).

Proof. First we note that the maximum value of I£(X) is llognJ. It follows
from Lemma 12.2 that at most 3110gnJ + 1 credits are needed for each splay
operation. Since each of the operations member, insert, delete, split, and
join can be performed using a constant number of splays and a constant
number of low-level operations, each of these operations costs O(logn). In
serting a new item requires at most O(logn) credits to be deposited to its
account for future use; we charge these credits to the insert operation. Hence
each operation requires at most O(logn) credits. It follows that the total time
required for a sequence of m such operations is O(mlogn). 0

Lecture 13 Random Search Trees

In this lecture we will describe a very simple probabilistic data structure that
allows inserts, deletes, and membership tests (among other operations) in
expected logarithmic time.

These results were first obtained by Pugh in 1988 (see [88]), who called
his probabilistic data structure skip lists. We will follow the presentation of
Aragon and Seidel [7), whose data structure is somewhat different and more
closely related to the self-adjusting trees presented in the last lecture, and
whose probabilistic analysis is particularly elegant.

13.1 Treaps

Consider a binary tree, not necessarily balanced, with nodes drawn from a
totally ordered set, ordered in inorderj that is, if i is in the left subtree of k
and j is in the right subtree of k, then i < k < j. Recall that the rotate
operation discussed in the previous lecture preserves this order.

Now suppose that each element k has a unique priority p(k) drawn from
some other totally ordered set, and that the elements are ordered in heap
order according to prioritYj that is, an element of maximum priority in any
subtree is found at the root of that subtree.

A tree in which the data values k are ordered in inorder and the priorities
p(k) are ordered in heap order is called a treap (for tree-heap, one supposes).

It may not be obvious at first that treaps always exist for every priority
assignment. They do! Moreover, if the priorities are distinct, then the treap

65

66 LECTURE 13 RANDOM SEARCH TREES

is unique.

Lemma 13.1 Let X and Y be totally ordered sets, and let p be a function
assigning a distinct priority in Y to each element of X. Then there exists a
unique treap with nodes X and priorities p.

Proof. Let k be the unique element of X of maximum priority; this must
be the root. Partition the remaining elements into two sets

{i E X I i < k}, {i E X Ii> k} .

Inductively build the unique treaps out of these two sets and make them the
left and right subtrees of k, respectively. 0

13.2 Random Treaps

A random treap is a treap in which the priorities have been assigned randomly.
This is best done in practice by calling a random number generator each time
a new element m is presented for insertion into the treap to assign a random
priority to m. Under some highly idealized but reasonable assumptions about
the random number generator3 , two elements receive the same priority with
probability zero, and if all elements in the treap are sorted by priority, then
every permutation is equally likely.

When a new element m is presented for insertion or to test membership, we
start at the root and work our way down some path in the treap, comparing
m to elements along the path to see which way to go to find m's appropriate
inorder position. If we see m on the path on the way down, we can answer
the membership query affirmatively. If we make it all the way down without
seeing m, we can answer the membership query negatively.

If m is to be inserted, we attach m as a new leaf in its appropriate inorder
position. At that point we call the random number generator to assign a
random priority p(m), which by Lemma 13.1 specifies a unique position in the
treap. We then rotate m upward as long as its priority is greater than that
of its parent, or until m becomes the root. At that point the tree is in heap
order with respect to the priorities and in inorder with respect to the data
values.

To delete m, we first find m by searching down from the root as described
above, then rotate m down until it is a leaf, taking care to choose the direction

3 A call to the random number generator gives a uniformly distributed random real num
ber in the interval [0,1), and successive calls are statistically independent; i.e. if Xl, ... , Xn

are the results of n successive calls, then

Pr(/\ Xi E Ai)
l:5i:5n

II Pr(xi E Ai) .
l:5i:5n

LECTURE 13 RANDOM SEARCH TREES 67

of rotation so as to maintain heap order. For example, if the children of mare
j and k and p(j) > p(k), then we rotate m down in the direction of j, since
the rotate operation will make j an ancestor of k. When m becomes a leaf,
we prune it off.

The beauty of this approach is that the position of any element in the
treap is determined once and for all at the time it is inserted, and it stays put
at that level until it is deleted; there is not a lot of restructuring going on as
with splay trees. Moreover, as we will show below, the expected number of
rotations for an insertion or deletion is at most two.

13.3 Analysis

We now show that, averaged over all random priority assignments, the ex
pected time for any insert, membership test, or delete is O(logn).

We will do the analysis for deletes only; it is not hard to see that the
time bound for membership tests and inserts is proportionally no worse than
for deletes. Suppose that at the moment, the treap contains n data items
(without loss of generality, say {I, 2, ... ,n}), and we wish to delete m. The
priorities have been chosen randomly, so that if the set {I, 2, ... ,n} is sorted in
decreasing order by priority to obtain a permutation (T of {I, 2, ... ,n}, every
(T is equally likely.

In order to locate m in the treap, we follow the path from the root down
to m. The amount of time to do this is proportional to the length of the path.
Let us calculate the expected length of this path, averaged over all possible
random permutations (T.

Let

m~ {1,2, ... ,m}
m<: {m,m+l, ... ,n}.

Let A be the set of ancestors of m, including m itself. The definitions of m~
and m<: do not depend on (T, but the definition of A does. Let X be the
random variable

X length of the path from the root down to m

Im~ n AI + Im<: n AI - 2 .

The 2 is subtracted because m is counted in both m~ and m<:.
We are interested in eX, the expected value of X; by linearity of expec

tation, we have

£X = £Im~ n AI + £Im<: n AI - 2 .

By symmetry, it will suffice to calculate £Im~ n AI.
Note that if the elements of m~ are sorted in descending order by priority,

then

68 LECTURE 13 RANDOM SEARCH TREES

• every permutation of m~ is equally likely;

• an element of m~ is in A if and only if it is larger than all previous
elements of m~ in sorted order.

In other words, permute m~ randomly, then scan the resulting list from left
to right, checking off those elements k that are larger than anything to the
left of k; the quantity t'lm~ n AI is the expected number of checks.

Example 13.2 Let n = 10 and m = 8. Suppose that when priorities are
assigned randomly to {I, 2, ... , 1O} and these elements are sorted in decreasing
order by priority, we get the permutation

(J' = (4,5,9,2,1,7,3,10,8,6).

This results in the following treap:

1

Then m~ = {I, 2, 3, 4, 5, 6, 7, 8}. If we restrict the random permutation (J' to
this set, we obtain the permutation (4,5,2,1,7,3,8,6). Scanning from left to
right and checking only those elements k that are greater than all elements to
the left of k, we get the sequence (4,5,7,8). This is exactly the sequence of
elements in m~ appearing on the path from the root down to m in the treap.

A symmetric argument using m> gives the sequence (9,8), which is the
sequence of elements in m? appearing on the path from the root down to m.
The length of the path is then the sum of the two lengths of these sequences
less 2. 0

We are thus left with the problem of determining the expected value of the
random variable Hm, the number of checks obtained when scanning a random
permutation of {I, 2, ... , m} from left to right and checking every element
that is greater than anything to its left.

We claim that this number is exactly

m 1
t'Hm = L k '

k=l

(23)

We will obtain this by solving a simple recurrence, using the linearity of ex
pectation.

LECTURE 13 RANDOM SEARCH TREES 69

Suppose we permute {I, ... , m} randomly to get the random permutation
a. Deleting 1 from a, we get a random permutation a' of {2, 3, ... , m}. Note
that an element other than 1 is checked when scanning a if and only if it is
checked when scanning a' ; thus the presence or absence of 1 does not affect
whether 2 is checked (however, the presence or absence of 2 might very well
affect whether 1 is checked). Thus the expected number of checks on elements
other than 1 is the same in a as in ai, or £Hm- 1• The element 1 is checked if
and only if it occurs first in a, and this occurs with probability ~. Thus the
expected number of checks on the element 1, averaged over all permutations,
is ~. By linearity of expectation,

1
£Hm = £Hm- 1 + - .

m

The unique solution to this recurrence with £H1 = 1 is (23).
The quantity (23) is O(logm). This can be verified by approximating the

sum above and below with definite integrals involving the functions ~ and ",!l'
and recalling from calculus that

l mdx - = In m = In 2 . log2 m .
1 X

13.4 Expected time for deletion

A similar analysis allows us to calculate the expected number of rotations
necessary to delete m from its position in the treap. The number of rotations
needed is the sum of the length of the rightmost path in the left subtree of m
and the length of the leftmost path in the right subtree of m. To see this, try
rotating m down; if you rotate to the left (right), the length of the rightmost
(leftmost) path in the left (right) subtree decreases by one and the length of
the leftmost (rightmost) path in the right (left) subtree stays the same.

Let us calculate the expected value of Gm , the length of the rightmost path
of the left subtree of m. By symmetry, the expected length of the leftmost
path of the right subtree of m is £ Gn - mH , and by the linearity of expectation,
the expected number of rotations to remove m is £Gm + £Gn- mH. We will
show below that this number is less than 2!

An analysis similar to the analysis for £Hm above reveals that £Gm is the
expected number of checks obtained when scanning a random permutation of
the set {I, 2, ... , m} from left to right, where we check an element k provided
that

• k occurs strictly to the right of m;

• k is greater than all elements of {I, 2, ... , m - I} occurring to the left
of k and either to the left or to the right of m.

70 LECTURE 13 RANDOM SEARCH TREES

This is the same as the expected number of checks obtained when scanning
a random permutation of the set {I, 2, ... , m - I} from left to right, where
we check element k if it is greater than all elements to its left, then place m
randomly in the list and erase those checks occurring to the left of m.

Example 13.3 For m = 3, we have the following six situations, all occurring
with equal probability:

...; ...; ...;
3 1 2 3 2 1

1 3
...;
2 2 3 1

1 2 3 2 1 3

The expected number of checks is t . 2 + ~ . 1 = l D

It is easy to see that the expected value of Cm is at most that of Hm - l ,

which we would get if the checks to the left of m were not erased; thus ECm :s;
EHm - l = O(logm), and this suffices for our complexity bound.

In fact, it turns out that ECm < 1. As above, the expected number
of checks on elements other than 1 is ECm-I, and the probability that 1 is
checked is m(rr:-l)' since 1 is checked if and only if m occurs leftmost, followed
immediately by 1. Again, by linearity of expectation, ECm is the expected
number of checks on elements other than 1 plus the expected number of checks
on 1:

1
ECm = ECm - l + () mm-l

and ECI = O. The solution to this recurrence is

m-l
ECm =

m

Lecture 14 Planar and Plane Graphs

Planar graphs have many important applications in computer science, for
example in VLSI layout. Many problems that are hard or even NP-complete
for arbitrary graphs are much easier for planar graphs. In the next lecture we
will prove a nice result due to Lipton and Tarjan in 1977 [73] which opens up
planar graphs to divide-and-conquer.

In this lecture, we will define planar and plane graphs and develop some
of their basic properties. Our treatment will have a more combinatorial flavor
than the classical treatment [48, 14]. Edmonds, the same one who showed the
greedy algorithm only works for matroids, was the first to give a combinatorial
definition of graph embeddings [31].

For the purposes of this lecture and the next, we will allow graphs to have
multiple edges and self-loops, but we will prohibit isolated vertices (vertices
with no adjacent edges). This assumption is for technical reasons that will
become clear.

14.1 Planar and Plane Graphs-Traditional Version

According to the traditional definition, a graph is planar if it can be embedded
on the plane or sphere in such a way that no two edges cross. A plane graph
G is a planar graph together with such an embedding.

The complete graph on five vertices K5 and the complete bipartite graph
on two sets of three vertices K 3,3 are not planar:

71

72 LECTURE 14 PLANAR AND PLANE GRAPHS

An amazing result of Kuratowski states that any nonplanar graph must con
tain a subgraph that is topologically equivalent to one of these two graphs.

Theorem 14.1 (Kuratowski) An undirected gmph is nonplanar if and only
if it contains a subgmph homeomorphic to K5 or Ka,a.

Here "homeomorphic to" means the edges can be paths. For more on Kura
towski's Theorem, see [48, 14].

14.2 The Plane Dual-Traditional Version

The plane dual of a plane graph G is a graph G* whose vertices are the faces
of G and whose edges are in one-to-one correspondence with the edges of G.
Traditionally, a face is defined to be a maximal connected region of n,2 - G,
the plane with all vertices and edges of the embedded G removed. The plane
dual of G is obtained by placing a vertex in each face and connecting two faces
adjacent to a common edge e of G with an edge of G* that crosses e once and
crosses no other edges.

Example 14.2 The following picture shows K4 and its plane dual Kt, which
happens to be isomorphic to K 4 :

Note that any G* is connected, and if G is connected, then G** is isomorphic
~a 0

14.3 Plane Graphs-Combinatorial Version

An embedding of a planar graph G on the sphere determines an orientation
function () giving a counterclockwise ordering of edges about each vertex. The
map () determines the embedding uniquely (up to rearrangement of the con
nected components). While we will continue to use the traditional definitions
of plane graph and plane dual as intuitive aids, in computational practice it
is more convenient to forget the actual embedding and work only with ().

LECTURE 14 PLANAR AND PLANE GRAPHS 73

We will therefore start afresh and give a purely combinatorial definition
of plane graphs and duals in terms of (). This is nice because we can deal
with plane graphs purely combinatorially and escape the savage world of real
analysis and topology. In addition, this approach works out more nicely when
G is not connected. Keep in mind that the two approaches coincide when G
is connected, but diverge when G is not.

In our combinatorial formalism, an undirected graph is a tuple

G = (E, (), -)

where E is a set of even cardinality, - is an involution on E (permutation
of order 2) with no fixpoints, and () is a permutation on E. The elements of
E are thought of as directed edges; each undirected edge is represented as a
pair e, e E E of directed edges, one in each direction. The map - reverses
direction.

The map () is supposed to give an orientation of the edges around each
vertex. But, you may well ask, where are the vertices? They are defined to be
the cycles of (). A cycle of the permutation () is a minimal nonempty subset
of E closed under (). It is not to be confused with a cycle of the graph G.
An edge e is considered directed out of vertex u if u is the unique cycle of
() containing e. Correspondingly, e is considered directed into vertex v if v
is the unique cycle of () containing e. Thus () cyclically permutes the edges
out of any vertex. From this definition it becomes clear why isolated vertices
were disallowed: you cannot have empty cycles. The tail and head functions
t : E ~ V and h : E ~ V giving the source and sink, respectively, of each
edge are defined by

t (e) {the unique cycle of () containing e}

h(e) {the unique cycle of () containing e}
t(e) .

With these definitions the tuple

(V, E, h, t, (), -)

gives a more conventional representation of the graph G.

Definition 14.3 Define the function ()* : E ---+ E by:

(}*(e) = (}(e).

A face of G is a cycle of the permutation ()*. The set of faces of G is denoted
~. 0

Note that this definition makes sense even for nonplanar graphs.
According to Definition 14.3, to compute (}*(e), we first reverse the direc

tion of e to get e, then rotate about the tail of e. Intuitively, for plane graphs,
the operation ()* moves an edge clockwise around the face to its right:

74 LECTURE 14 PLANAR AND PLANE GRAPHS

~)
Definition 14.4 A connected component of G is an orbit of E under the
permutation group generated by () and -. That is, it is a minimal nonempty
subset of E closed under () and - . 0

Definition 14.5 Let m = ~ lEI, the number of undirected edges of Gj n = IVI j
n* = 1V*lj and c the number of connected components of G. The chamcter
istic of G is the quantity

x(G) = 2c+m-n-n*.

The graph G is said to be plane if x(G) = O. o

Theorem 14.6 A gmph G is plane according to Definition 14.5 iff it is plane
according to the tmditional definition (i. e., if () corresponds to the counter
clockwise ordering induced by an embedding of G in the plane with no edges
crossing).

Proof. Miscellaneous Exercise 11. o

Definition 14.5 is similar to the traditional definition of the Euler chamc
teristic

c + 1 + m - n - n* .

Euler's Theorem states that plane graphs have Euler characteristic O. Our
Definition 14.5 and Theorem 14.6 agree with the traditional version when
c = 1, i.e. when G is connected. The difference comes from the definition
of the dual-in our version, disconnected graphs have more faces than in the
traditional version.

14.4 The Plane Dual-Combinatorial Version

Definition 14.7 Let G be the graph

G = (E, (), -) .

The dual of G is the graph

G* (E, ()*, -) .

o

LECTURE 14 PLANAR AND PLANE GRAPHS 75

Note that this definition makes sense for graphs that are not plane.
The following theorem is immediate.

Theorem 14.8

(i) If G is plane, then so is G*.

(ii) G** and G are isomorphic (in fact they are equal).

This theorem is where our combinatorial definition wins out: (ii) is false
for disconnected plane graphs under the traditional definition.

For computational purposes, a convenient representation of the undirected
graph

G = (V, E, h, t, 0, -)

consists of a set of list elements, one for each vertex and one for each directed
edge (element of E). The vertices are arranged in a linked list. The vertex
v points to a circular list of edges e such that t(e) = v arranged in the order
O. The edge e points to t(e) and e. This representation can be produced in
linear time from a conventional adjacency list representation (Miscellaneous
Homework 8).

14.5 Triangulation

Definition 14.9 A graph G is triangulated if every face of G is a triangle,
i. e. has degree exactly three. A triangulation of G is a triangulated graph of
which G is a subgraph. 0

Theorem 14.10 Let G be a graph such that all faces have degree at least three.
A triangulation G of G can be produced in linear time such that x(G) = x(G);
in particular, if G is plane then so is its triangulation. If G is plane, then

m:::; 3n-6,

with equality holding when G is triangulated.

Proof. We triangulate G as follows. First find all connected components
and connect them in a treelike fashion by adding edges between components.
Two components can be connected by adding an edge between any vertex u in
one component and any vertex v in the other, and the edge can go anywhere
in the ordered edge lists of u and v without changing the characteristic or
the property that each face is of degree at least three. This takes linear time
using DFS, and at most c - 1 = O(m) new edges are added. Then traverse
each face, adding chords as necessary to break up faces of degree greater than
three into triangles (don't worry about multiple edges). At most O(m) time
is needed since each edge is traversed at most once in each direction.

76 LECTURE 14 PLANAR AND PLANE GRAPHS

Now it will suffice to prove that

m = 3n-6

for triangulated plane graphs. Since the graph is connected, c = 1. Since every
edge is adjacent to exactly two faces and every face is adjacent to exactly three
edges, the number of adjacent face-edge pairs is 3n* = 2m. The result now
follows from Euler's Theorem. 0

Lecture 15 The Planar Separator Theorem

The Planar Separator Theorem of Lipton and Tarjan [73J says that in any
undirected planar graph G there exists a small sepamtor 8 S; V whose re
moval leaves two disjoint sets of vertices A, B S; V with no edge between
them; moreover, each of A and B is at most a constant fraction of the size of
V.

This theorem opens up planar graphs to divide-and-conquer. One can
often solve a problem on a planar graph G recursively by splitting the graph
into two subgraphs of size at most ~ the size of G, recursively solving the
problem on these two subgraphs, and then combining the two solutions into a
solution for G. Because the sizes of the subproblems diminish geometrically,
the depth of the recursion will be O(logn).

Theorem 15.1 (Planar Separator Theorem) Let G be an undirected pla
nar gmph. There exists a partition of V into disjoint sets A, Band 8 such
that:

1. IAI, IBI :::; 2;
2. 181:::; 4JfV1

3. (A x B) n E = 0 (8 is a sepamtor).

Moreover, such a partition can be found in linear time.

77

78 LECTURE 15 THE PLANAR SEPARATOR THEOREM

Proof. Assume the graph is connected. (If not, perform the algorithm on
the connected components and recombine the partitions into a solution for the
whole graph; details omitted.)

First find a plane embedding in linear time using the algorithm of Hopcroft
and Tarjan [52].

Choose an arbitrary vertex s and perform a breadth-first search (BFS)
starting from s. Assign a level to each vertex, so that s is at level 0, any
vertices adjacent to s are at levell, any vertices adjacent to them that have
not already been assigned a level are at level 2, and so forth. For technical
reasons, we include an empty level £ + 1, where £ is the level of the last vertex
encountered. Let L(t) denote the set of vertices at level t.

A property of BFS traversal is that no edge ever crosses two or more
levels-all edges must connect vertices in the same or consecutive levels. This
means that any L(t), 0 < t < £, is a separator.

Let tl be the middle level, i.e. the one such that L(t1) contains vertex n/2
in the breadth-first numbering. The set L(t1) has some of the properties of
the separator we are looking for:

1 U L(t)1 < n/2

1 U L(t)1 < n/2.
t>h

So if IL(t1)1 ::; 4y'n, we are done. The trouble is that L(tt) may be too large.
However, there exist levels with y'n or fewer vertices on either side of tl and
not too far away:

Lemma 15.2 There exist levels to ::; tl and t2 > tl such that IL(to)1 ::; y'n,
IL(t2)1 ::; y'n, and t2 - to ::; y'n.

Proof. Let to be the largest number such that to ::; tl and IL(to)1 ::; y'n.
Such a to exists since IL(O)I = 1. Let t2 be the smallest number such that
t2 > tl and IL(t2)1 ::; y'n. Such a t2 exists since IL(£ + 1)1 = O. Every level
strictly between to and t2 contains more than y'n elements, so there must be
fewer than y'n of them, otherwise there would be more than n vertices. 0

Now let

C U L(t)
t<to

D U L(t)
to<t<t2

E U L(t) .
t2<t

LECTURE 15 THE PLANAR SEPARATOR THEOREM 79

'--v--" '-...---',....

G D E
If IDI ~ ~n then we are done: take S = L(to) UL(t2), A the largest of G, D, E,
and B the union of the other two.

We should be so lucky. If IDI > ~n, then we at least have IDI in a better
shape, and this will make it easier to cut D up. The sets G and E are small:
IGI, lEI ~ ~. If we can find a l-~ separator for D with 2.jii vertices or fewer,
we will combine this with L(to) and L(t2) to get a separator S of size at most
4.jii, combine the larger of G and E with the smaller of the two pieces of D
to get A, and combine the smaller of G and E with the larger piece from D
to get B. Both A and B will have no more than ~n vertices.

To construct a separator for D of size at most 2.jii, we will remove the rest
of the graph, but add back the starting vertex s and connect it to everything
on level to + 1. We can do this maintaining the planarity of the graph because
there were non-crossing paths back from each of those vertices to s in the
original graph. Some paths may have joined on the way back to s, but they
can be separated without violating planarity.

The main property of the new graph D that we will exploit is that it has
a spanning tree T of diameter at most 2.jii. This is because every vertex is
reachable from s by a path of length at most.jii. We can construct T as
follows: start with the vertices at the last level; for each such vertex, choose
one edge back to the next-to-Iast level; repeat for the vertices on the next-to
last level, and so on all the way back to s. The l-~ separator for D will turn
out to be a path in T.

We will need a useful property of plane duals. (Here we revert to the
traditional definition since we need isolated vertices.)

Lemma 15.3 Let G = (V, E) be a connected plane graph with dual G*. For
any E' ~ E, the subgraph (V, E') of G has a cycle iff the subgraph (V* , E - E')
of G* is disconnected.

Proof. (--+) Suppose there is a cycle in (V, E'). Choose any edge e of the
cycle, and let f, 9 E V* be the endpoints of e in G*. One of j, 9 is inside the
cycle and the other is outside. Then there is no path from j to 9 in E - E',
since no such path can cross the boundary of the cycle.

(+-) Suppose (V*, E - E') is disconnected. Let A, B be a partition of V*
such that no edge in E - E' connects A and B in G*. Since G* is connected,
there exists at least one edge in E connecting A and B, and all such edges are
in E'. These edges form a cycle in G. 0

80 LECTURE 15 THE PLANAR SEPARATOR THEOREM

Lemma 15.4 Let G = (V, E) be a connected plane graph with dual G* =
(V* , E), and let E' ~ E. Then (V, E') is a spanning tree in G iff (V* , E - E')
is a spanning tree in G* .

Proof. The subgraph (V, E') forms a spanning tree in G iff it is connected
and has no cycles. By Lemma 15.3, this occurs iff the subgraph (V*, E - E')
of G* is connected and has no cycles, i. e. is a spanning tree. D

Now back to the Planar Separator Theorem. We have a plane graph D
with spanning tree T = (V, ET) of diameter at most 2..jTi. We can assume
without loss of generality that D is triangulated; if not, we can triangulate it
in linear time as described in the last lecture. We then construct the plane
dual D* (Miscellaneous Homework 9). This can also be done in linear time.
Call the edges in E - ET fronds; according to Lemma 15.4, the fronds form a
spanning tree Tt in D*. We arbitrarily pick one face of D for the root of Tt,
say the outside face, and orient all the edges of Tt away from the root.

Let e = (u, v) be a frond. There exists a unique path from u to v in T,
which along with e forms a cycle c(e).

U C --IT..2n<!.! ~ u~ -

c(e) • • • • • •

We now perform a DFS on Tt, calculating the following information for each
frond e inductively from leaves up:

• J(e) = number of vertices strictly inside c(e)

• Ic(e)1 = number of vertices on c(e)

• a list representation of c(e).

There are four cases to consider, the first the base case in which e is a leaf of
Tt, and the remaining three cases induction steps:

LECTURE 15 THE PLANAR SEPARATOR THEOREM 81

u _!~ __ v

e' --u' -

x c(e')

Case 1 Case 2

u ;~~ v u 1< v
;/

......... ./

Y

P

c(e') x c(e")

Case 3 Case 4

Case 1 In this case, we are at a leaf in Tt (this can be detected by counting
adjacencies). Then

• J(e) = 0

• Ic(e)1 = 3 (T is triangulated)

• c(e) = [u, x, v].

Case 2 We have calculated the information for the frond e' = (u', v), e is
a frond in the same triangle as e', and u' is on the cycle c(e); this can be
detected by checking that u is not on the list c(e'). Then

• J(e) = J(e')

• Ic(e)1 = Ic(e')I + 1

• c(e) = [u] . c(e').

Case 3 We have calculated the information for the frond e' = (u', v), e is a
frond in the sarpe triangle as e', and u' is not on the cycle c(e); this can be
detected by checking that u is on the list c(e'). Then

• J(e) = J(e') + 1

• Ic(e)1 = Ic(e')1 - 1

• c(e) is c(e') with u' cut off the front, i.e. c(e') = [u']· c(e).

82 LECTURE 15 THE PLANAR SEPARATOR THEOREM

Case 4 We have calculated the information for the fronds e' = (u, y) and
e" = (y, v), and e is a frond in the same triangle as both e', e". Let p be the
path common to e(e') and e(e") and let x be the other endpoint of p besides
y.

• I(e) = I(e') + I(e") + Ipl- 1 (all vertices of p except x are inside e(e))

• le(e)1 = le(e')1 + le(e")I- 21pl + 1

• e(e) = e'· [xl· e", where c! is e(e') with p removed and c!' is e(e") with p
removed.

We can compute Ipl and construct a list representation of e(e) by scanning
e(e') and e(e") starting at y until we encounter the last common vertex, which
is x. This does not destroy the linear time complexity, since we do this for
the edges on p only once.

It remains to prove that there exists a frond e such that

2n
I(e) <

3
2n

< n - (I(e) + le(e)1)
3

Then we can just take e(e) as the separator, the vertices inside e(e) as A, and
the vertices outside e(e) as B.

Take the first frond e encountered on the way out from the leaves of Tt to
the root such that I(e) + le(e)1 ~ ~. Then the set of vertices outside of e(e) is
of cardinality n - (I(e) + Ic(e)1) :::; 2;, so it remains to show that I(e) :::; ~.
The argument depends on the case 1 through 4 above in which e fell:

1. I(e) =0:::; 2;.
2. I(e)+le(e)1 = I(e')+le(e')1+1 and I(e')+Ic(e')1 < ~,so I(e)+Ic(e)1 :::; 2;

(for n ~ 3).

3. I(e) + le(e)1 = I(e') + le(e')I, so e could not have been the first frond
encountered such that I(e) + le(e)1 ~ ~.

4. Both I(e') + le(e')1 :::; ~ and I(e") + le(e") I :::; ~, so

I(e) + le(e)1
I(e') + I(e") + Ipl- 1 + Ic(e')1 + le(e")I- 21pI + 1

I(e') + I(e") + le(e')1 + le(e")I-lpl
2n

< 3- lpl
2n

<
3

This completes the proof of the Planar Separator Theorem. o

LECTURE 15 THE PLANAR SEPARATOR THEOREM

Here is the entire algorithm:

Algorithm 15.5

1. Embed G in the plane using Hopcroft/Tarjan.

2. Do BFS on G, assigning level numbers.

3. Find to and t2 such that IL(to)1 ~ ..;n, IL(t2)1 ~ ..;n, and t2 - to ~
..;n. Divide the graph into C, D, E. If IDI ~ 2;, we are done.

4. Otherwise, construct the spanning tree T of D of diameter at most
2..;n.

5. Triangulate if necessary.

6. Construct the plane dual D* and spanning tree Tt.

7. Do DFS on Tt to compute I, lei, c.

8. Find the frond e such that e(e) gives a ~-l separator. Let X and
Y be the two sets into which D is separated.

9. Let A be the union of the larger of X, Y and the smaller of C, E,
let B be the union of the smaller of X, Y and the larger of C, E,
and let the separator be the union of e(e), L(to), and L(t2).

83

Lecture 16 Max Flow

Suppose we are given a tuple G = (V, c, s, t), where V is a set of vertices,
s, t E V are distinguished vertices called the source and sink respectively, and
c is a function c : V 2 -+ R+ assigning a nonnegative real capacity to each pair
of vertices. We make G into a directed graph by defining the set of directed
edges

E = {(u,v)lc(u,v»O}.

Intuitively, we can think of the edges as wires or pipes along which electric
current or fluid can flow; the capacity c(e) represents the carrying capacity of
the wire or pipe, say in amps or gallons per minute. The max flow problem
is to determine the maximum possible flow that can be pushed from s to t,
and to find a routing that achieves this maximum. The following definition is
intended to capture the intuitive idea of a flow.

Definition 16.1 A function f : V 2 -+ R is called a flow if the following three
conditions are satisfied:

(a) skew symmetry: for all u, v E V,

f(u,v) = -f(v,u);

(b) conservation of flow at interior vertices: for all vertices u not in {s, t},

Lf(u,v) = 0;
vEV

84

LECTURE 16 MAX FLOW 85

(c) capacity constraints: f :5 c pointwise; i. e., for all u, v,

f(u,v) :5 c(u,v).

We say that (u, v) is saturated if f(u, v) = c(u, v). o

If we think of edges (u,v) for which f(u,v) > 0 as carrying flow out of u,
and edges (u,v) for which f(u,v) < 0 (or equivalently by (a), f(v,u) > 0) as
carrying flow into u, then condition (b) says that the total flow out of any
interior vertex is equal to the total flow into that vertex, or in other words,
the net flow (total flow out minus total flow in) at any interior vertex is O.

It follows from (a) that f(u,u) = 0 for any vertex u.
Figure 1 illustrates a graph with capacities c (ordinary typeface) and a

flow f on that graph (italic). Edges not shown have a capacity of 0 and a flow
that is the negative of the flow in the opposite direction; e.g., c(u, s) = 0 and
f(u, s) = -4. If neither an edge nor its opposite is shown (e.g. (s, t)), then
the capacities and flows in both directions are o.

v

u

Figure 1

Definition 16.2 An s, t-cut (or just cut, when s, t are understood) is a pair
A, B of disjoint subsets of V whose union is V such that sEA, t E B. The
capacity of the cut A, B, denoted c(A, B), is

c(A,B) = L c(u,v),
uEA, vEB

i.e., the total capacity of the edges from A to B. If f is a flow, we define the
flow across the cut A, B to be

f(A,B) L f(u,v).
uEA, vEB

o

Note that by condition (a) of Definition 16.1, f(A, B) gives the net flow across
the cut from A to B; that is, the sum of the positive flow values on edges from
A to B minus the sum of the positive flow values on edges from B to A.

86 LECTURE 16 MAX FLOW

Definition 16.3 The value of a flow f, denoted If I, is defined to be

If I f({s},V-{s})

= L f(s,v) ,
vEV

or in other words the net flow out of s. o

In the example of Figure 1, If I = 6.
Although Definition 16.3 defines the value of the flow f with respect to

the cut {s}, V - {s}, the flow value will be the same no matter where it is
measured:

Lemma 16.4 For any s, t-cut A, B and flow f,

If I = f(A, B) .

Proof. Induction on the cardinality of A, using condition (b) of Definition
16.1. 0

In particular,

f({s},V-{s}) = f(V-{t},{t}),

which says that the net flow out of s equals the net flow into t.
The flow across any cut surely cannot exceed the capacity of the cut. This

is expressed in the following lemma:

Lemma 16.5 For any s, t-cut A, B and flow f,

If I ::; c(A, B) .

Proof. Lemma 16.4 and condition (c). o

The main result of this lecture will be the Max Flow-Min Cut Theorem, which
states that the minimum cut capacity is achieved by some flow; i.e., the in
equality in Lemma 16.5 is an equality for some cut A, B and some flow f*.
The flow f* necessarily has maximum value among all flows on G by Lemma
16.5, and is called a max flow. The flow f* is not unique, but its value is.

16.1 Residual Capacity

Definition 16.6 Given a flow f on G with capacities c, we define the residual
capacity function r : V 2 -+ R to be the pointwise difference

r = c- f .
The residual graph associated with G = (V, E, c) and flow f is the graph
G/ = (V, E/, r), where

E/ = {{u,v)lr(u,v»O}.

o

LECTURE 16 MAX FLOW 87

The residual capacity r(u, v) represents the amount of additional flow that
could be pushed along the edge (u, v) without violating the capacity constraint
(c) of Definition 16.1. In case the flow f (u, v) is negative, this "additional
flow" could involve backing off the positive flow from v to u. For example, if
c(u, v) = 8 and f(u, v) = 6, and (v, u) ¢ G so that c(v, u) = 0, then r(u, v) = 2
and r(v, u) = c(v, u) - f(v, u) = 0- (-6) = 6. The residual graph for the flow
in Figure 1 is given in Figure 2 below.

Note that the residual graph G, can have an edge where there was none
in G. However, G, has no edges (u,v) where neither (u,v) nor (v,u) were
present in G, so IE,I ::=; 2· lEI.

Intuitively, the formation of the residual graph translates the problem by
making f the new origin (zero flow). Solving the residual flow problem is
tantamount to solving the original flow problem; a solution to the residual
flow problem can be added to f to obtain a solution to the original problem.
This observation is formalized in the following lemma.

Lemma 16.7 Let f be a flow in G, and let G, be its residual gmph.

(a) The function f' is a flow in G, iff f + f' is a flow in G.

(b) The function f' is a max flow in G, if f + f' is a max flow in G.

(c) The value function is additive; i.e., If + f'1 = If I + 1f'1 and If - f'l =

Ifl-If'I·
(d) If f is any flow and 1* a max flow in G, then the value of a max flow

in G, is II*I-Ifl.
Proof.

(a) Since f is a flow, it satisfies skew symmetry (f(u,v) = -f(v,u)) and
conservation at interior vertices (~v f (u, v) = 0). Thus f' satisfies these
properties iff f + f' does. To show that the capacity constraints are
satisfied, recall that the capacities of G, are given by r = c - f, where
c is the capacity function of G. Then

f'::=;r iff f'::=;c-f

iff f+f'::=;c.

(b) This follows directly from (a).

(c) By the definition of flow value,

If±f'1 L,(f(s, v) ± f'(s, v))
v

L, f(s, v) ± L, f'(s, v)
v v

If I ± 1f'1 .
(d) This follows directly from (b) and (c).

o

88 LECTURE 16 MAX FLOW

16.2 Augmenting Paths

Definition 16.8 Given G and flow I on G, An augmenting path is a directed
path from s to t in the residual graph G/. 0

An augmenting path represents a sequence of edges on which the capacity
exceeds the flow, i.e., on which the flow can be increased. As observed above,
on some edges this "increase" may actually involve decreasing a positive flow
in the opposite direction.

Figure 2 illustrates the residual graph associated with the flow in the ex
ample of Figure 1 and an augmenting path. The minimum capacity of any
edge in this path is 2, so the flow can be increased on these edges by 2, result
ing in a new flow in the original graph with value 2 greater than that of III.
Note that the "increase" on (u, v) is essentially a decrease of a positive flow
on (v, u).

v

s.K.I·l~. t
~.X

u
Figure 2

We are now ready to state and prove the main theorem of this lecture:

Theorem 16.9 (Max Flow-Min Cut Theorem [34])
three statements are equivalent:

(a) I is a max flow in G = (V, E, c);

(b) there is an s, t-cut A, B with c(A, B) = III;

(c) there does not exist an augmenting path.

Proof
(b) --+ (a) This is immediate from Lemma 16.5.

The lollowing

(a) --+ (c) Suppose there is an augmenting path Uo,Ut, ... ,Un with s = Uo
and t = Un. Let

d = min{r(ui,uHdIO::;i<n} > o.
The quantity d is the smallest residual capacity along the augmenting path
and is called the bottleneck capacity. An edge along the augmenting path with
that capacity is called a bottleneck edge. Define the following flow g in the
residual graph G /:

g(Ui' Ui+l)
g(UHl,Ui)

g(U, v)

d, 0::; i < n
-d, 0::; i < n

0, for all other pairs (u,v).

LECTURE 16 MAX FLOW 89

Then 9 is a flow in G j with value d. By Lemma 16.7, f + 9 is a flow in G and
If + 91 = If I + 191 = If I + d.

(c) --+ (b) Assume there is no augmenting path. Let A consist of all vertices
reachable from s by paths in the residual graph. Let B = V - A. There are
no edges in the residual graph from A to B; thus in G, all edges from A
to B are saturated, i.e. f(u,v) = c(u,v). It follows from Lemma 16.4 that
c(A, B) = If I· 0

Lecture 17 More on Max Flow

The Max Flow-Min Cut Theorem gives an algorithm for finding a flow with
maximum value in a given network as long as the capacities are rational num
bers. This algorithm was first published in 1956 by Ford and Fulkerson [34].

The algorithm works as follows. We begin with the zero flow, then repeat
edly find an augmenting path p and push d additional units of flow along p
from s to t, where d > 0 is the bottleneck capacity of p (minimum edge capac
ity along p). We continue until it is no longer possible to find an augmenting
path, i. e. until the residual graph has no path from s to t. We know at that
point by the Max Flow-Min Cut Theorem that we have a max flow.

If the edge capacities are integers, this algorithm increases the flow value
by at least 1 with each augmentation, hence achieves a maximum flow after
at most 1/*1 augmentations. Moreover, each augmentation increases the flow
by an integral amount, so 11*1 is an integer. Unfortunately, 11*1 can be
exponential in the representation of the problem, and the algorithm can run
for this long if the augmenting paths are not chosen with some care.

Example 17.1 The following diagram illustrates the first few augmentations
in a flow problem with large capacities. The residual graphs are shown on
the left-hand side and the augmenting paths on the right. This sequence of
augmentations will take 2101 steps to converge to a max flow, which has value
2101.

90

LECTURE 17 MORE ON MAX FLOW

s t s t

~
100

sit

2100

91

o

In fact, if the capacities are irrational, the process of repeated augmenta
tion along indiscriminately chosen augmenting paths may not produce a max
flow after a finite time, as the following example shows.

Example 17.2 Let r be the positive root of the quadratic x2 + x-I:

-1+V5
r = 2 ~ .618 ...

Then r2 = 1 - r, and more generally, rn+2 = rn - rn+! for any n ~ o. Also,
since 0 < r < 1,

1> r > r2 > r3 > ... > o.

Note

r+2 =
1

l-r

Consider the following flow network:

1

s~ __ -+~ ______ r ______ ~4-__ ~t

92 LECTURE 17 MORE ON MAX FLOW

The three horizontal interior edges (call them the flumes) have the capacities
shown, and all other edges have capacity r + 2. The max flow value is 1 +
r + r2 = 2, since this is the minimum cut capacity obtained by cutting the
flumes; any other cut has capacity at least r + 2 > 2.

Suppose that in the first augmenting step, we push one unit of flow directly
from s to t along the top flume. This leaves residual capacities of 0, r, and r2
on the flumes.

Now we perform the following loop, which after n iterations will result in
the flumes having residual capacities 0, rn+!, and rn+2 in some order: choose
the flume with minimum nonzero residual capacity, say d, and push d units
of flow from s forward along that flume, back through the saturated flume,
and then forward through the remaining flume to t. Suppose that we start
with residual capacities 0, rn, and rn+! on the flumes. The minimum nonzero
residual capacity is rn+!, and the new residual capacities will be rn+!, rn -
rn+1 = rn+2, and 0, respectively. The situation is the same as before, only
rotated.

The loop can be repeated indefinitely, leaving ever higher powers of r on
the flumes. We always have sufficient residual capacity on the non-flumes.
The residual capacities tend to 0, so the flow value tends to the maximum
flow value 2.

With irrational capacities, the sequence of augmentations need not even
converge to the maximum flow value. An example of this behavior can be
obtained from the graph above by adding an edge (s, t) of weight 1. The
same infinite sequence of augmentations converges to a flow of value 2, but
the maximum flow value is 3. 0

17.1 Edmonds and Karp's First Heuristic

Edmonds and Karp [30J suggested two heuristics to improve this situation.
The first is the following:

Always augment by a path of maximum bottleneck capacity.

Definition 17.3 A path flow in G is a flow f that takes nonzero values only
on some simple path from s to t. In other words, there exist a number d and
a simple path uo, Ul> ..• , Uk with s = uo, t = Uk, and such that

f(ui, Ui+l)
f(ui+l, Ui)

f(u,v)

d, 0 ~ i ~ k-l
-d, 0 ~ i ~ k-l

0, for all other (u, v).

o

Lemma 17.4 Any flow in G can be expressed as a sum of at most m path
flows in G and a flow in G of value 0, where m is the number of edges of G.

LECTURE 17 MORE ON MAX FLOW 93

Proof. Let f be a flow in G. If If I = 0, we are done. Otherwise, assume
If I > 0 (the argument for If I < 0 is symmetric, interchanging the roles of s
and t). Define a new capacity function c'(e) = max{J(e), O} and let G' be the
graph with these capacities. Then f is still a flow in G', and since c' ~ c, any
flow in G' is also a flow in G. By the Max Flow-Min Cut Theorem, the null
flow in G' must have an augmenting path, which is a path from s to t with
positive capacities; by construction of G', every edge on this path is saturated
by f. Take p to be the path flow on that path whose value is the bottleneck
capacity. Then the two flows p and f - p are both flows in G', and at least
one edge on the path (the bottleneck edge) is saturated by p.

Now we repeat the process with f - p to get d' ~ c' and Gil, and so on.
Note that Gil has strictly fewer edges than G', since at least the bottleneck
edge of p has disappeared. This process can therefore be repeated at most m
times before the flow value vanishes. The original f is then the sum of the
remaining flow of value 0 and the path flows found in each step. 0

We now consider the complexity of maximum-capacity augmentation.

Theorem 17.5 If the edge capacities are integers, then the heuristic of aug
mentation by augmenting paths of maximum bottleneck capacity results in a
maximum flow 1* in at most O(mlog 11*1) augmenting steps.

Proof. By Lemma 17.4, f* is a sum of at most m path flows and a flow
of value 0, therefore one of the path flows must be of value 11* 11m or greater.
An augmenting path of maximum bottleneck capacity must have at least this
capacity. Augmenting by such a path therefore increases the flow value by at
least 11*1/m, so by Lemma 16.7(d) of the previous lecture, the max flow in
the residual graph has value at most 11*1-ll*l/m = If*l(m~l). Thus after
k augmenting steps, the max flow in the residual graph has value at most
11*1(m~l)k. Hence the number of augmenting steps required to achieve a max
flow is no more than the least number k such that

Using the estimate

1
logm-log(m-l) = 8(-),

m

we obtain k = 8(mlog 11*1). The estimate (24) follows from the limit

lim (l-'!t
n-+oo n

1

e

(24)

o

Finding a maximum capacity augmenting path can be done efficiently using
a modification of Dijkstra's algorithm (Homework 5).

94 LECTURE 17 MORE ON MAX FLOW

17.2 Edmonds and Karp's Second Heuristic

The method described above is still less than completely satisfactory, since the
complexity depends on the capacities. It would be nice to have an algorithm
whose asymptotic worst-case complexity is a small polynomial in m and n
alone.

The following algorithm produces a max flow in time independent of the
edge capacities. This algorithm is also due to Edmonds and Karp [30]. It uses
the following heuristic to achieve an O(m2n) running time:

Always choose an augmenting path of minimum length.

Definition 17.6 The level gmph La of G is the directed breadth-first search
graph of G with root s with sideways and back edges deleted. The level of a
vertex u is the length of a shortest path from s to u in G. 0

Note that the level graph has no edges from level i to level j for j ~ i + 2.
This says that any shortest path from s to any other vertex is a path in the
level graph. Any path with either a back or sideways edge of the breadth-first
search graph would be strictly longer, since it must contain at least one edge
per level anyway.

Lemma 17.7 (aj Let p be an augmenting path of minimum length in G,
let G' be the residual gmph obtained by augmenting along p, and let q
be an augmenting path of minimum length in G'. Then Iql ~ Ipl. Thus
the length of shortest augmenting paths cannot decrease by applying the
above heuristic.

(b j We can augment along shortest paths of the same length at most m = lEI
times before the length of the shortest augmenting path must increase
strictly.

Proof. Choose any path p from s to t in the level graph and augment along
p by the bottleneck capacity. After this augmentation, at least one edge of
p will be saturated (the bottleneck edge) and will disappear in the residual
graph, and at most Ipi new edges will appear in the residual graph. All these
new edges are back edges and cannot contribute to a shortest path from s to
t as long as t is still reachable from s in the level graph. We continue finding
paths in the level graph and augmenting by them as long as t is reachable from
s. This can occur at most m times, since each time an edge in the level graph
disappears. When t is no longer reachable from s in the level graph, then any
augmenting path must use a back or side edge, hence must be strictly longer.

o

This gives rise to the following algorithm:

LECTURE 17 MORE ON MAX FLOW

Algorithm 17.8 (Edmonds and Karp [30]) Find the level graph La.
Repeatedly augment along paths in La, updating residual capacities and
deleting edges with zero capacity until t is no longer reachable from s.
Then calculate a new level graph from the residual graph at that point
and repeat. Continue as long as t is reachable from s.

95

With each level graph calculation, the distance from s to t increases by at
least 1 by Lemma 17.7(a), so there are at most n level graph calculations. For
each level graph calculation, there are at most m augmentations by Lemma
17.7(b). Thus there are at most mn augmentations in all. Each augmentation
requires time O(m) by DFS or BFS, or O(m2n) in all. It takes time O(m)
to calculate the level graphs by BFS, or O(mn) time in all. Therefore the
running time of the entire algorithm is O(m2n).

Lecture 18 Still More on Max Flow

1B.1 Dinie's Algorithm

We follow Tarjan's presentation [100]. In the Edmonds-Karp algorithm, we
continue to augment by path flows along paths in the level graph LG until
every path from s to t in LG contains at least one saturated edge. The flow at
that point is called a blocking flow. The following modification, which improves
the running time to O(mn2), was given by Dinie in 1970 [29]. Rather than
constructing a blocking flow path by path, the algorithm constructs a blocking
flow all at once by finding a maximal set of minimum-length augmenting paths.
Each such construction is called a phase.

The following algorithm describes one phase. As in Edmonds-Karp, there
are at most n phases, because with each phase the minimum distance from s
to t in the residual graph increases by at least one. We traverse the level graph
from source to sink in a depth-first fashion, advancing whenever possible and
keeping track of the path from s to the current vertex. If we get all the way
to t, we have found an augmenting path, and we augment by that path. If
we get to a vertex with no outgoing edges, we delete that vertex (there is no
path to t through it) and retreat.

In the following, u denotes the vertex currently being visited and p is a
path from s to u.

96

LECTURE 18 STILL MORE ON MAX FLOW

Algorithm 18.1 (Dinic [29])

Initialize. Construct a new level graph La. Set u := 8 and p:= [8]. Go
to Advance.

Advance. If there is no edge out of u, go to Retreat. Otherwise, let
(u, v) be such an edge. Set p:= p. [v] and u:= v. If v =f t then go
to Advance. If v = t then go to Augment.

Retreat. If u = 8 then halt. Otherwise, delete u and all adjacent edges
from La and remove u from the end of p. Set u := the last vertex
on p. Go to Advance.

Augment. Let Ll be the bottleneck capacity along p. Augment by the
path flow along p of value Ll, adjusting residual capacities along p.
Delete newly saturated edges. Set u := the last vertex on the path
p reachable from 8 along unsaturated edges of p; that is, the start
vertex of the first newly saturated edge on p. Set p := the portion
of p up to and including u. Go to Advance.

We now discuss the complexity of these operations.

97

Initialize. This is executed only once per phase and takes O(m) time using
BFS.

Advance. There are at most 2mn advances in each phase, because there
can be at most n advances before an augment or retreat, and there are at
most m augments and m retreats. Each advance takes constant time, so the
total time for all advances is O(mn).

Retreat. There are at most n retreats in each phase, because at least one
vertex is deleted in each retreat. Each retreat takes 0(1) time plus the time
to delete edges, which in all is O(m); thus the time taken by all retreats in a
phase is O(m + n).

Augment. There are at most m augments in each phase, because at least
one edge is deleted each time. Each augment takes O(n) time, or O(mn) time
in all.

Each phase then requires O(mn) time. Because there are at most n phases,
the total running time is 0(mn2).

18.2 The MPM Algorithm

The following algorithm given by Malhotra, Pramodh-Kumar, and Mahesh
wari in 1978 [77] produces a max flow in 0(n3) time. The overall structure is

98 LECTURE 18 STILL MORE ON MAX FLOW

similar to the Edmonds-Karp or Dinic algorithms. Blocking flows are found
for level graphs of increasing depth. The algorithm's superior time bound is
due a faster (O(n2)) method for producing a blocking flow.

For this algorithm, we need to consider the capacity of a vertex as opposed
to the capacity of an edge. Intuitively, the capacity of a vertex is the maximum
amount of commodity that can be pushed through that vertex.

Definition 18.2 The capacity c(v) of a vertex v is the minimum of the total
capacity of its incoming edges and the total capacity of its outgoing edges:

c(v) = min{L c(u,v), L c(v,u)} .
uEV uEV

o

This definition applies as well to residual capacities obtained by subtracting
a nonzero flow.

The MPM algorithm proceeds in phases. In each phase, the residual graph
is computed for the current flow, and the level graph L is computed. If t does
not appear in L, we are done. Otherwise, all vertices not on a path from s to
t in the level graph are deleted.

Now we repeat the following steps until a blocking flow is achieved:

LECTURE 18 STILL MORE ON MAX FLOW

1. Find a vertex v of minimum capacity d according to Definition
18.2. If d = 0, do step 2. If d =F 0, do step 3.

2. Delete v and all incident edges and update the capacities of the
neighboring vertices. Go to 1.

3. Push d units of flow from v to the sink and pull d units of flow
from the source to v to increase the flow through v by d. This is
done as follows:

Push to sink. The outgoing edges of v are saturated in order,
leaving at most one partially saturated edge. All edges that
become saturated during this process are deleted. This pro
cess is then repeated on each vertex that received flow during
the saturation of the edges out of v, and so on all the way to
t. It is always possible to push all d units of flow all the way
to t, since every vertex has capacity at least d.

Pull from source. The incoming edges of v are saturated in or
der, leaving at most one partially saturated edge. All edges
that become saturated by this process are deleted. This pro
cess is then repeated on each vertex from which flow was taken
during the saturation of the edges into v, and so on all the
way back to s. It is always possible to pull all d units of flow
all the way back to s, since every vertex has capacity at least
d.

Either all incoming edges of v or all outgoing edges of v are satu
rated and hence deleted, so v and all its remaining incident edges
can be deleted from the level graph, and the capacities of the neigh
bors updated. Go to 1.

99

It takes O(m) time to compute the residual graph for the current flow
and level graph using BFS. Using Fibonacci heaps, it takes O(nlogn) time
amortized over all iterations of the loop to find and delete a vertex of minimum
capacity. It takes O(m) time over all iterations of the loop to delete all the
fully saturated edges, since we spend 0(1) time for each such edge. It takes
O(n2) time over all iterations of the loop to do the partial saturations, because
it is done at most once in step 3 at each vertex for each choice of v in step 1.

Note that when we delete edges, we must decrement the capacities of
neighboring vertices; this is done using the decrement facility of Fibonacci
heaps.

The loop thus achieves a blocking flow in 0(n2) time. As before, at most
n blocking flows have to be computed, because the distance from s to t in the
level graph increases by at least one each time. This gives an overall worst-case
time bound of 0(n3).

The max flow problem is still an active topic of research. Although 0(n3)

100 LECTURE 18 STILL MORE ON MAX FLOW

remains the best known time bound for general graphs, new approaches to the
max flow problem and better time bounds for sparse graphs have appeared
more recently [38, 98, 4, 41, 95, 37].

18.3 Applications of Max Flow

Bipartite Matching

Definition 18.3 A matching M of a graph G is a subset of edges such that no
two edges in M share a vertex. We denote the size of M by IMI. A maximum
matching is one of maximum size. 0

We can use any max flow algorithm to produce a maximum matching in
a bipartite graph G = (U, V, E) as follows. Add a new source vertex s and a
new sink vertex t, connect s to every vertex in U, and connect every vertex
in V to t. Assign every edge capacity 1. The edges from U to V used by a
maximum integral flow give a maximum matching.

Minimum Connectivity

Let G = (V, E) be a connected undirected graph. What is the least number
of edges we need to remove in order to disconnect G? This is known as the
minimum connectivity problem.

The minimum connectivity problem can be solved by solving n - 1 max
flow problems. Replace each undirected edge with two directed edges, one in
each direction. Assign capacity 1 to each edge. Let s be a fixed vertex in V
and let t range over all other vertices. Find the max flow for each value of t,
and take the minimum over all choices of t. This also gives a minimum cut,
which gives a solution to the minimum connectivity problem.

Lecture 19 Matching

Matching refers to a class of problems with many important applications. As
signing instructors to courses or students to seminars with limited enrollment
are two examples of matching problems.

Formally, matching problems are expressed as problems on graphs. We will
consider four different versions, depending on whether the graph is bipartite
or not and whether the graph is weighted or unweighted. The bipartite case
is considerably easier, so we will concentrate on that case.

Definition 19.1 Given an undirected graph G = (V, E) with edge weights
w, a matching is a subset M ~ E such that no two edges in M share a vertex.
The maximum-weight matching problem is to find a matching M such that the
sum of the weights of the edges in M is maximum over all possible matchings.
If all the weights are 1, then we get the unweighted matching problem, which
just asks for a matching of maximum cardinality. 0

Definition 19.2 Given a matching M in G = (V, E), an edge e E E is
matched if e E M and free if e E E - M. A vertex v is matched if v has an
incident matched edge, free otherwise. 0

Definition 19.3 A perfect matching is a matching in which every vertex is
matched. 0

Definition 19.4 Given a matching M in G = (V, E), a path (cycle) in G is
an alternating path (cycle) with respect to the matching M if it is simple (i. e.,

101

102 LECTURE 19 MATCHING

has no repeated vertices) and consists of alternating matched and free edges.
The length of a path or cycle p is the number of edges in p and is denoted Ipl.
An alternating path is an augmenting path (with respect to M) if its endpoints
are free. 0

For example, consider the following graph.

1~-- 4

2 - - 5

3 6

The solid edges form a maximum matching that is also a perfect matching.
The dashed edges form a maximal matching that is not maximum (it is maxi
mal because it is not a proper subset of any other matching). With respect to
the dashed matching, the edges (1,4) and (2,5) are matched, the edges (1,5),
(2,6), and (3,4) are free, the vertices 1,2,4, and 5 are matched, and the vertices
3 and 6 are free. With respect to the dashed matching, the alternating path
3,4,1,5,2,6 is an augmenting path.

Let EB be the symmetric difference operator on sets:

(AUB) - (AnB)

(A - B) U (B - A) .

In other words, A EB B is the set of elements that are in one of A or B, but not
both. If M is a matching and p an augmenting path with respect to M, then
considering p as its set of edges, the set M EB P is a matching of cardinality
IMI + 1. Note that M EB p agrees with M on edges outside of p, and every
edge in p that is matched in M is unmatched in M EB p and vice-versa.

The following early theorem of Berge [IOJ gives the foundation for an effi
cient matching algorithm.

Theorem 19.5 (Berge [10]) A matching M in a graph G is a maximum
matching if and only if there is no augmenting path in M.

This theorem follows immediately from the following enhanced version due
to Hopcroft and Karp [51J.

Theorem 19.6 (Hopcroft and Karp [51]) If M is a matching in G, M*
is a'maximum matching in G, and k = IM*I-IMI, then with respect to M
there is a set of k vertex-disjoint augmenting paths. Moreover, at least one of
them has length at most ~ - 1, where n is the number of vertices in G.

LECTURE 19 MATCHING 103

Proof. Consider M EElM*. No vertex can have more than one incident edge
from M or more than one incident edge from M* , so no vertex can have more
than two incident edges from M EEl M*. The set M EEl M* therefore consists
of a collection of vertex-disjoint alternating paths and cycles, as illustrated.
Here the solid lines indicate edges of M and the dashed lines indicate edges
of M*.

-I I -
.--------
------.
.---------.

Each odd-length path p has either one more M edge than M* edge or one
more M* edge than M edge. However, the former is impossible, since then
p would be an augmenting path with respect to M*, thus M* would not be
maximum.

Using the assumption that IM*I = IMI + k,

IM* - MI IM*I - IM* n MI

= IMI-IM* nMI +k

= 1M -M*I+k.

In other words there are exactly k more M* edges in M* EEl M than M edges.
The extra k M* edges must come from paths of odd length with one more M*
edge than M edge. Cycles and paths of even length have the same number
of M as M* edges, and as we have observed, there are no odd-length paths
with one more M than M* edge. These k odd-length paths with one more
M* than M edge have endpoints that are free with respect to M, therefore
are augmenting paths in M.

It is impossible for all of these paths to have length greater than ~ - 1,
because then we would have more than n vertices. Therefore at least one of
the paths has length less than or equal to ~ - 1.. 0

19.1 Weighted Matchings

Definition 19.7 Let M be a matching in a graph G with edge weights w.
For any set A of edges, define

w(A) = L w(e) .
eEA

Define the incremental weight 6.(p) of a set B of edges to be the total weight
of the unmatched edges in B minus the total weight of the matched edges in
B:

6.(B) = w(B - M) - w(B n M) .

o

104 LECTURE 19 MATCHING

If p is an augmenting path with respect to M, then b.(p) is the net change in
the weight of the matching after augmenting by p:

w(M fB p) = w(M) + b.(p) . (25)

Here is a good heuristic to use when selecting augmenting paths for max
imum weight matching:

Always use an augmenting path of maximum incremental weight.

Lemma 19.8 If M is a matching of size k that is of maximum weight among
all matchings of size k, and if p is an augmenting path with respect to M of
maximum incremental weight, then M fB p is a matching of size k + 1 that is
of maximum weight among all matchings of size k + 1.

Proof. By (25), it suffices to show that if M' is a matching of maximum
weight among all matchings of size k + 1, then there exists an augmenting
path p with respect to M such that

w(M') w(M fBP)

w(M) + b.(p) .

Consider M fBM'. As before, this is a set of vertex-disjoint cycles, even-length
paths, and odd-length paths. The incremental weight of each cycle must be
0, because otherwise it would be possible to exchange the M and M' edges
on this cycle to increase the weight of either M or M', which by assumption
is impossible. The even-length paths must have incremental weight 0 for the
same reason. Thus only the odd-length paths in M fB M' can have nonzero
weight.

Each odd-length path has either an extra M edge or an extra M' edge.
Since there is one more edge in M' than in M, there must be exactly one more
path with an extra M' edge than there are paths with an extra M edge.

Pair each path with an extra M edge with a path with an extra M' edge.
This will leave all paths paired except for one path p which has an extra M'
edge. The incremental weight of each pair must be 0, because otherwise it
would be possible to increase the weight of either M or M' by switching M
and M' edges in this pair. Therefore

b.(p) b.(M fB M')

w(M') - w(M) .

The path p is an augmenting path with respect to M, and the matching M fB p
has k + 1 edges and weight equal to the weight of M', therefore it too is of
maximum weight among all matchings of size k + 1. D

LECTURE 19 MATCHING 105

In the next lecture we will show

Lemma 19.9 Let M* be a matching of maximum weight among all matchings
and let M be a matching of size k of maximum weight over all matchings of
size at most k. If w(M*) > w(M), then M has an augmenting path with
respect to M of positive incremental weight.

Theorem 19.10 If one always augments by an augmenting path of maximum
incremental weight, then one arrives at a matching of maximum weight after
at most ~ steps.

Lecture 20 More on Matching

Let G be an undirected graph with weight function w. Recall from last lecture
that the weight of a matching M in G, denoted w(M), is the sum of the weights
of the edges in M, and the incremental weight of a set A of edges, denoted
~(A), is the sum of the weights of the unmatched edges in A less the sum of
the weights of the matched edges in A. For an augmenting path p, ~(p) gives
the net change in weight that would be obtained by augmenting by p.

We ended the last lecture by proving the following lemma:

Lemma 20.1 Let M be a matching of size k of maximum weight among all
matchings of size k. If we augment M by an augmenting path of maximum
incremental weight, then we obtain a matching of size k+ 1 of maximum weight
among all matchings of size k + 1.

We also need to know that an augmenting path of positive incremental weight
exists. This is established in the following lemma.

Lemma 20.2 Let M be a matching of size k of maximum weight among all
matchings of size at most k and let M* be a matching of maximum weight
among all matchings in G. If w(M*) > w(M), then M has an augmenting
path of positive incremental weight.

Proof. Again, consider the symmetric difference M* EEl M. As argued in
the last lecture, this is a set of vertex-disjoint cycles and paths of alternating
edges from M and M*. We pair the odd-length paths as we did in the last
lecture, with each pair consisting of one path with one more M than M* edge

106

LECTURE 20 MORE ON MATCHING 107

and the other with one more M* than M edge. We are left with a number of
odd-length paths.

Each cycle and path of even length has incremental weight 0, otherwise
the M and M* edges could be switched to increase the weight of either M
or M*, contradicting the maximality of M or M*. By the same argument,
the incremental weights of the pairs of odd-length paths are O. Thus we are
left with a set of unpaired odd-length paths. Either all these paths have one
more M* edge than M edge or they all have one more M edge than M* edge
(otherwise there would be another pair). The latter is impossible, because then
M* would be a matching of greater weight and smaller cardinality than M,
contradicting our assumptions. Thus all these unpaired paths are augmenting
paths with respect to M. If we augment by all of them simultaneously, we
achieve a maximum matching of weight w(M*) > w(M); therefore, at least
one of them must have positive incremental weight. 0

Thus we can construct a maximum-weight matching by beginning with the
empty matching and repeatedly performing augmentations using augmenting
paths of maximum incremental weight until a maximum matching is achieved.
This takes at most ~ augmentations, since the number of matched vertices
increases by two each time. We will show below how to obtain augmenting
paths efficiently in bipartite graphs.

20.1 Unweighted Bipartite Matching

Now we will see an O(my'n) algorithm of Hopcroft and Karp [51J for un
weighted matching in bipartite graphs. Micali and Vazirani [80, 105J have
given an algorithm of similar complexity for general graphs.

The idea underlying the algorithm of Hopcroft and Karp is similar to
Dinie's idea for maximum flow. The algorithm proceeds in phases. In each
phase, we find a maximal set of vertex-disjoint minimum-length augmenting
paths, and augment by them simultaneously. In other words, we find a set S
of augmenting paths with the following properties:

(i) if the minimum-length augmenting path is of length k, then all paths in
S are of length k;

(ii) no two paths in S share a vertex;

(iii) if p is any augmenting path of length k not in S, then p shares a vertex
with some path in S; i.e., S is a setwise maximal set with the properties
(i) and (ii).

We will need the following three lemmas:

Lemma 20.3 A maximal set S of vertex-disjoint minimum-length augment
ing paths can be found in time O(m).

108 LECTURE 20 MORE ON MATCHING

Lemma 20.4 After each phase, the length of a minimum-length augmenting
path increases by at least two.

Lemma 20.5 There are at most ...;n phases.

Proof of Lemma 20.3. Let G = (U, V, E) be the undirected bipartite graph
we are working in, and let M be a matching in G. We will grow a "Hungarian
tree" from G and M. Calling it a tree is somewhat misleading, since the
Hungarian tree is really a dag. It is obtained in linear time by a procedure
similar to breadth-first search. We start with the free (unmatched) vertices
in U at level o. Starting from an even level 2k, the vertices at level 2k + 1
are obtained by following free (unmatched) edges from vertices at level 2k.
Starting from an odd level 2k + 1, the vertices at level 2k + 2 are obtained
by following matched edges from vertices at level 2k + 1. Since the graph is
bipartite, the even levels contain only vertices in U and the odd levels contain
only vertices in V. We do not expand a vertex that has been seen at an earlier
level.

We continue building the Hungarian tree and adding more levels until all
vertices have been seen at least once before or until we encounter a free vertex
at an odd level (say t). In the latter case, every free vertex at level t is in V
and is the terminus of an augmenting path of minimum length. Note that free
vertices in U can be encountered only at level 0, since vertices at even levels
greater than 0 are matched.

Example 20.6 The following figure illustrates a bipartite graph with a par
tial matching and its Hungarian tree. The solid lines indicate matched edges
and the dashed lines free edges.

U V

Ul~Vl
U2 7-V2

U3 -V3

u4 L - V4

Ul Vl U3 V3

--7 • --
/

~- • • --U4 V4 U2 V2

U V U V

0

Now we find a maximal set S of vertex-disjoint paths in the Hungarian
tree. We will use a technique called topological erase, called so because it

LECTURE 20 MORE ON MATCHING 109

is reminiscent of the topological sort algorithm we saw in Lecture 1. With
each vertex x except those at level 0 we associate an integer counter initially
containing the number of edges entering x from the previous level. Starting
at a free vertex v at the last level t, we trace a path back until arriving at a
free vertex u at level o. This path is an augmenting path, and we include it
in S. We then place all vertices along this path on a deletion queue. As long
as the deletion queue is nonempty, we remove a vertex from the queue and
delete it and all incident edges from the Hungarian tree. Whenever an edge
is deleted, the counter associated with its right endpoint is decremented. If
the counter becomes 0, the vertex is placed on the deletion queue (there can
be no augmenting path in the Hungarian tree through this vertex, since all
incoming edges have been deleted). After the queue becomes empty, if there
is still a free vertex v at level t, then there must be a path from v backwards
through the Hungarian tree to a free vertex on the first level, so we can repeat
the process. We continue as long as there exist free vertices at level t. The
entire process takes linear time, since the amount of work is proportional to
the number of edges deleted. 0

In order to prove Lemma 20.4 we will use the following lemma:

Lemma 20.7 Let p be an augmenting path of minimum length with respect
to some matching M, let M' be the matching obtained by augmenting M by
p, and let q be an augmenting path in M'. Then

(26)

where Iql and Ipi denote the number of edges of q and p, respectively, and p n q
denotes the set of edges common to p and q.

Proof of Lemma 20.7. If q and p are vertex-disjoint, then q is also an
augmenting path with respect to M. Then Iql ~ Ipl, since p is of minimum
length, and (26) holds since the intersection is empty.

Otherwise, consider the symmetric difference p E9 q of the two paths. We
observe the following facts.

(i) All edges in q - p are in M if and only if they are in M'. This is because
augmenting M by p only changes the status of edges on p.

(ii) Each time q joins (leaves) p it is immediately after (before) a free edge.
This is because each vertex in p already has one adjacent edge in pnM' .

(iii) The endpoints of q are not contained in p, since they are free in M'.

lt follows from property (iii) that p E9 q contains exactly four free vertices
with respect to the original matching M, namely the endpoints of p and the
endpoints of q. Thus p E9 q, considered with respect to M, consists of exactly
two augmenting paths and possibly some disjoint cycles as well. Each of the

110 LECTURE 20 MORE ON MATCHING

two paths must be at least as long as P, since P was of minimum length; thus
Ip E9 ql ~ 21pl· But

from which (26) follows. o

Example 20.8 Lemma 20.7 is illustrated in the following picture.

q6 q7 qlO ql1 qI2 qI3 qI4
• • • • - . .--.
I I I

PI P2 P3,q4 I I I . --. • - . • - . • - . .--.
I P4,q5 P5,qS P6,q9 P7 Ps pg PlO

I . --. •
qi q2 q3

In this example, the solid lines represent edges in M and the dashed lines rep
resent edges not in M. The path PI, ... , PlO is an augmenting path w:ith respect
to the matching M, and ql, ... , qI4 is an augmenting path after aUgIl!enting M
by PI, ... ,PlO· The pathsPI,P2,P3,q3,q2,ql and QI4,··· ,Q9,P7,··· ,PlO are also
augmenting paths with respect to M. The path Q5, . .. , Qs forms an alternating
cycle with respect to M. 0

Proof of Lemma 20.4. Suppose that at some phase we augmented M by a
maximal set S of vertex-disjoint paths of minimum length k to obtain a new
matching M'. Consider any augmenting path Q with respect to M'. If Q is
vertex-disjoint from every path in S, then its length must be greater than k,
otherwise S was not maximal. If on the other hand Q shares a vertex with
PES, then P n Q contains at least one edge in M', since every vertex in P is
matched in M'. By Lemma 20.7, IQI exceeds Ipi by at least two. 0

Proof of Lemma 20.5., Let M* be a maximum matching and let M be
the matching obtained after ~y'n phases. The length of any augmenting path
with respect to M is at least y'n. By a lemma from the last lecture, M* E9 M
contains a set T of exactly IM*I-IMI vertex-disjoint augmenting paths, and
augmenting by all of them gives a maximum matching. But there can be
at most y'n elements of T, otherwise they would account for more than n
vertices. Thus IM*I -IMI :s; y'n. Since each phase increases the size of the
matching by at least one, at most y'n more phases are needed. 0

Since each phase requires O(m) time and there are at most O(y'n) phases,
the total running time of the algorithm is O(my'n).

Lecture 21 Reductions and
NP-Completeness

We have seen several problems such as maximum flow and matching that
at first glance appear intractible, but upon closer study admit very efficient
algorithms. Unfortunately, this is the exception rather than the rule. For
every interesting problem with a polynomial-time algorithm, there are dozens
for which all known solutions require exponential time in the worst case. These
problems occur in various fields, to wit:

Logic:

• CNF satisfiability (CNFSat): given a Boolean formula B in conjunctive
normal form (CNF), is there a truth assignment that satisfies B?

Graph Theory:

• Clique: given a graph G = (V, E) and an integer m, does G contain Km
(the complete graph on m vertices) as a subgraph?

• k-Colorability: given a graph G = (V, E) and an integer k, is there a
coloring of G with k or fewer colors? A coloring is a map X : V ---7 C
such that no two adjacent vertices have the same color; i. e., if (u, v) E E
then X{u) =I- X{v).

111

112 LECTURE 21 REDUCTIONS AND NP-COMPLETENESS

Operations Research:

• Any of a number of generalizations of the one-processor scheduling prob
lem of Miscellaneous Exercise 4.

• Integer Progmmming: given a set of linear constraints A and a linear
function f, find an integer point maximizing f subject to the constraints
A.

• The Traveling Salesman Problem (TSP): given a set of cities and dis
tances between them, find a tour of minimum total distance visiting all
cities at least once.

None of these problems are known to have a polynomial time solution. For
example, the best known solutions to the Boolean satisfiability problem are
not much better than essentially evaluating the given formula on all 2n truth
assignments. On the other hand, no one has been able to prove that no
substantially better algorithm exists, either.

However, we can show that all these problems are computationally equiva
lent in the sense that if one of them is solvable by an efficient algorithm, then
they all are. This involves the concept of reduction. Intuitively, a problem A
is said to be reducible to a problem B if there is a way to encode instances
x of problem A as instances O'(x) of problem B. The encoding function 0' is
called a reduction. If 0' is suitably efficient, then any efficient algorithm for B
will yield an efficient algorithm for A by composing it with 0'.

The theory has even deeper implications than this. There is a very gen
eral class of decision problems called NP, which roughly speaking consists of
problems that can be solved efficiently by a nondeterministic guess-and-verify
algorithm. A problem is said to be NP-complete if it is in this class and every
other problem in NP reduces to it. Essentially, it is a hardest problem in the
class NP. If an NP-complete problem has an efficient deterministic solution,
then so do all problems in NP. All of the problems named above are known
to be NP-complete.

The theory of efficient reductions and NP-completeness was initiated in the
early 1970s. The two principal papers that first demonstrated the importance
of these concepts were by Cook [22], who showed that Boolean satisfiability
was NP-complete, and Karp [57, 58] who showed that many interesting com
binatorial problems were interreducible and hence NP-complete. Garey and
Johnson's text [39] provides an excellent introduction to the theory of NP
completeness and contains an extensive list of NP-complete problems. By
now the problems known to be NP-complete number in the thousands.

21.1 Some Efficient Reductions

We have seen examples of reductions in previous lectures. For example,
Boolean matrix multiplication and transitive closure were shown to be re-

LECTURE 21 REDUCTIONS AND NP-COMPLETENESS 113

ducible to each other. To illustrate the concept further, we show that CNFSat,
the satisfiability problem for Boolean formulas in conjunctive normal form, is
reducible to the clique problem.

Definition 21.1 Let B be a Boolean formula. A liteml is either a variable or
the negation of a variable (we write ""x and x interchangeably). A clause is a
disjunction of literals, e.g. 0 = (Xl V ""X2 V X3). The formula B is said to be
in conjunctive normal form (ONF) if it is a conjunction of clauses 0 1 A O2 A
···AOm • 0

Note that to satisfy a formula in CNF, a truth assignment must assign the
value true to at least one literal in each clause, and different occurrences of
the same literal in different clauses must receive the same truth value.

Given a Boolean formula B in CNF, we show how to construct a graph G
and an integer k such that G has a clique of size k iff B is satisfiable. We take
k to be the number of clauses in B. The vertices of G are all the occurrences
of literals in B. There is an edge of G between two such occurrences if they are
in different clauses and the two literals are not complementary. For example,
the formula

0 1 O2 0 3

(Xl V X2) A (Xl V X2) A (Xl V X2)

would yield the graph

The graph G is k-partite and has a k-clique iff B is satisfiable. Essentially,
an edge between two occurrences of literals represents the ability to assign
them both true without a local conflict; a k-clique thus represents the ability
to assign true to at least one literal from each clause without global conflict. In
the example above, k = 3 and there are two 3-cliques (triangles) corresponding
to two ways to satisfy the formula.

Let us prove formally that G has a k-clique iff B is satisfiable. First
assume that B is satisfiable. Let T : {Xl, ... ,Xn } ---+ {true, false} be a truth
assignment satisfying B. At least one literal in each clause must be assigned
true under T. Choose one such literal from each clause. The vertices of G
corresponding to these true literals are all connected to each other because no
pair is complementary, so they form a k-clique. Conversely, suppose G has
a k-clique. Since G is k-partite and the partition elements correspond to the

114 LECTURE 21 REDUCTIONS AND NP-COMPLETENESS

clauses, the k-clique must have exactly one vertex in each clause. Assign true
to the literals corresponding to the vertices in the clique. This can be done
without conflict, since no pair of complementary literals appears in the clique.
Assign truth values to the remaining variables arbitrarily. The resulting truth
assignment assigns true to at least one literal in each clause, thus satisfies B.

We have just shown how to encode a given instance of the CNFSat problem
in an instance of the clique problem, or in the accepted parlance, reduced the
CNFSat problem to the clique problem.

An important caveat: a reduction reduces the problem being encoded to
the problem encoding it. Sometimes you hear it said backwards; for example,
that the construction above reduces Clique to CNFSat. This is incorrect.

Although we do not know how to solve Clique or CNFSat in any less
than exponential time, we do know by the above reduction that if tomorrow
someone were to come up with a polynomial-time algorithm for Clique, we
would immediately be able to derive a polynomial-time algorithm for CNFSat:
given B, just produce the graph G and k as above, and apply the polynomial
time algorithm for Clique. For the same reason, if tomorrow someone were to
show an exponential lower bound for CNFSat, we would automatically have
an exponential lower bound for Clique.

We show for purposes of illustration that there is a simple reduction in
the other direction as well. To reduce Clique to CNFSat, we must show how
to construct from a given undirected graph G = (V, E) and a number k a
Boolean formula B in CNF such that G has a clique of size k if and only if B
is satisfiable.

Given G = (V, E) and k, take as Boolean variables xi for u E V and
1 :s; i :s; k. Intuitively, xi says, "u is the ith element ofthe clique." The formula
B is the conjunction of three subformulas C, D and E, with the following
intuitive meanings and formal definitions:

• C = "For every i, 1 :s; i :s; k, there is at least one u E V such that u is
the ith element of the clique."

k

C = 1\(V xi) .
i=l uEV

• D = "For every i, 1 :s; i :s; k, no two distinct vertices are both the ith
element of the clique."

k

D 1\ 1\ (-,xi V -,xn .
i=l u,v E v

u"ev

• E = "If u and v are in the clique, then (u, v) is an edge of G. Equivalently,
if (u, v) is not an edge, then either u is not in the clique or v is not in

LECTURE 21 REDUCTIONS AND NP-COMPLETENESS 115

the clique."

e /\ /\ (-'Xi V -,xj) .
(u,v)¢E l~i,j~k

We take B = C/\V/\e. Any satisfying assignment r for C/\V picks out a set
of k vertices, namely those U such that r(xi) = true for some i, 1 $ i $ k. If
r also satisfies e, then those k vertices form a clique. Conversely, if Ub ... , Uk

is a k-clique in G, set r(xii) = true, 1 $ i $ k, and set r(y) = false for all
other variables y; this truth assignment satisfies B.

It is perhaps surprising that two problems so apparently different as CN
FSat and Clique should be computationally equivalent. However, this turns
out to be a widespread phenomenon.

Lecture 22 More on Reductions and
NP-Completeness

Before we give a formal definition of reduction, let us clarify the notion of a
decision problem. Informally, a decision problem is a yes-or-no question. A
decision problem is given by a description of the problem domain, i. e. the set
of all possible instances of the problem, along with a description of the set of
"yes" instances.

For example, consider the problem of determining whether a given undi
rected graph G has a k-clique. An instance of the problem is a pair (G, k),
and the problem domain is the set of all such pairs. The "yes" instances are
the pairs (G, k) for which G has a clique of size k.

There are many interesting discrete problems that are not decision prob
lems. For example, many optimization problems like the traveling salesman
problem or the integer programming problem ask for the calculation of an
object that maximizes some objective function. However, many of these prob
lems have closely related decision problems that are no simpler to solve than
the optimization problem. For the purposes of this discussion of reductions
and NP-completeness, we will restrict our attention to decision problems.

Definition 22.1 Let A ~ ~ and B ~ r be decision problems. (Here ~ and
r are the problem domains, and A and B are the "yes" instances.) We write
A ~::, B and say that A reduces to B in polynomial time if there is a function
a : ~ ---t r such that

• a is computable by a deterministic TUring machine in polynomial time;

116

LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS 117

• for all problem instances x E ~,

x E A iff a(x) E B .

We write A =!:, B if both A ~!:, Band B ~!:, A. o

The reducibility relation ~!:, is often called polynomial-time many-one or Karp
reducibility. The superscript p stands for polynomial-time. The subscript m
stands for many-one and describes the function a, and is included to dis
tinguish ~!:, from another popular polynomial-time reducibility relation ~~,
often called polynomial-time Thring or Cook reducibility. The relation ~!:, is
stronger than ~~ in the sense that

The formal definition of ~~ involves oracle 'lUring machines and can be found
in [39, pp. 111ff.].

Intuitively, if A ~!:, B then A is no harder than B. In particular,

Theorem 22.2 If A ~!:, Band B has a polynomial-time algorithm, then so
does A.

Proof. Given an instance x of the problem A, compute a(x) and ask
whether a(x) E B. Note that the algorithm for B runs in polynomial time
in the size of its input a(x), which might be bigger than x; but since a is
computable in polynomial time on a 'lUring machine, the size of a(x) is at
most polynomial in the size of x, and the composition of two polynomials is
still a polynomial, so the overall algorithm is polynomial in the size of x. 0

In the last lecture we showed that CNFSat =!:, Clique. Below we give some
more examples of polynomial-time reductions between problems.

Definition 22.3 (Independent Set) An independent set in an undirected
graph G = (V, E) is a subset U of V such that U2 n E = 0, i.e. no two
vertices in U are connected by an edge in E. The independent set problem is
to determine, given G = (V, E) and k ~ 0, whether G has an independent set
U of cardinality at least k. 0

Note that the use of "independent" here is not in the sense of matroids.
There exist easy polynomial reductions from/to the clique problem. Con

sider the complementary graph G = (V, E), where

E = {(u,v) I u#v, (u,v) ~ E}.

Then G has a clique of size k iff G has an independent set of size k. This
simple one-to-one correspondence gives reductions in both directions, therefore
Independent Set =!:, Clique.

118 LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS

Definition 22.4 (Vertex Cover) A vertex cover in an undirected graph
G = (V, E) is a set of vertices U ~ V such that every edge in E is adjacent to
some vertex in U. The vertex cover problem is to determine, given G = (V, E)
and k ~ 0, whether there exists a vertex cover U iil G of cardinality at most
k. 0

Again, there exist easy polynomial reductions from/to Independent Set:
U ~ V is a vertex cover iff V - U is an independent set. Therefore Vertex
Cover =~ Independent Set.

Definition 22.5 (k-CNFSat) A Boolean formula is in k-conjunctive normal
form (k-CNF) if it is in conjuctive normal form and has at most k literals per
clause. The problem k-CNFSat is just CNFSat with input instances restricted
to formulas in k-CNF. In other words, given a Bool~an formula in k-CNF, does
it have a satisfying assignment? 0

In the general CNFSat problem, the number of literals per clause is not re
stricted and can grow as much as linearly with the size of the formula. In
the k-CNFSat problem, the number of literals per clause is restricted to k,
independent of the size of the formula. The k-CNFSat problem is therefore a
restriction of the CNFSat problem, and could conceivably be easier to solve
than CNFSat. It turns out that 2CNFSat (and hence lCNFSat also) is solv
able in linear time, whereas k-CNFSat is as hard as CNFSat for any k ~ 3. We
prove the latter statement by exhibiting a reduction CNFSat :::;~ 3CNFSat.

Let B be an arbitrary Boolean formula in CNF. For each clause of the form

(27)

with m ~ 4, let Xl, X2, ... ,Xm-3 be new variables and replace the clause (27)
in B with the formula

eel v f2 V Xl) /\ ('Xl V f3 V X2) /\ ('X2 V f4 V X3) /\ ...

/\('Xm -4 V f m - 2 v Xm-3) /\ (,Xm-3 V f m - l v fm) .

Let B' be the resulting formula. Then B' is in 3CNF, and B' is satisfiable iff
B is. This follows from several applications of the following lemma:

Lemma 22.6 For any Boolean formulas C, V, & and variable X not appearing
in C, V, or &, the formula

(X V C) /\ (.x V V) /\ & (28)

is satisfiable if and only if the formula

(CVV)/\& (29)

is satisfiable.

LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS 119

Proof. This is just the resolution rule of propositional logic. Any satisfying
truth assignment for (28) gives a satisfying truth assignment for (29), since
one of x, ...,x is false, so either C or V is true. Conversely, in any satisfying
truth assignment for (29), one of C, V is true. If C, assign x := false. If V,
assign x := true. We can assign x freely since it does not appear in C, V or e.
In either case (28) is satisfied. 0

The formula B' is easily constructed from B in polynomial time. This con
stitutes a polynomial-time reduction from CNFSat to 3CNFSat. Furthermore,
3CNFSat is trivially reducible to k-CNFSat for any k ~ 3, which in turn is
trivially reducible to CNFSat. Since :5~ is transitive, k-CNFSat =~ CNFSat
for k ~ 3.

The problem 2CNFSat is solvable in linear time. In this case the clauses in
B contain at most two literals, and we can assume exactly two without loss of
generality by replacing any clause of the form (i) with (i V i). Now we think
of every two-literal clause (i V i') as a pair of implications

(...,i ---t f') and (...,f' ---t i) . (30)

Construct a directed graph G = (V, E) with a vertex for every literal and
directed edges corresponding to the implications (30).

We claim that B is satisfiable iff no pair of complementary literals both
appear in the same strongly connected component of G. Under any satisfying
truth assignment, all literals in a strong component of G must have the same
truth value. Therefore, if any variable x appears both positively and negatively
in the same strong component of G, B is not satisfiable.

Conversely, suppose that no pair of complementary literals both appear in
the same strong component of G. Consider the quotient graph G' obtained by
collapsing the strong components of G as described in Lecture 4. As proved
in that lecture, the graph G' is acyclic, therefore induces a partial order on its
vertices. This partial order extends to a total order. We assign x := false if the
strong component of x occurs before the strong component of ...,x in this total
order, and x := true if the strong component of...,x occurs before the strong
component of x. It can be shown that this gives a satisfying assignment.

We know how to find the strong components of G in linear time. This gives
a linear-time algorithm test for 2CNF satisfiability. We can also produce a
satisfying assignment in linear time, if one exists, using topological sort to
totally order the strong components.

Definition 22.7 (k-Colorability) Let C a finite set of colors and G = (V, E)
an undirected graph. A coloring is a map X : V ---t C such that X(u) =I- X(v)
for (u, v) E E. Given G and k, the k-colorability problem is to determine
whether there exists a coloring using no more than k colors. 0

For k = 2, the problem is easy: a graph is 2-colorable iff it is bipartite iff
it has no odd cycles. This can be checked by BFS or DFS in linear time. We

120 LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS

show that for k = 3, the problem is as hard as CNFSat by giving a reduction
CNFSat ~~ 3-colorability.

Let B be a Boolean formula in CNF. We will construct a graph G that is
3-colorable iff B is satisfiable.

There will be three special vertices called R, B, and G, which will be
connected in a triangle. In any 3-coloring, they will have to be colored with
different colors, so we assume without loss of generality that they are colored
red, blue, and green, respectively.

R G

V
B

We include a vertex for each literal, and connect each literal to its complement
and to the vertex B as shown.

x X

V
B

In any 3-coloring, the vertices corresponding to the literals x and x will have
to be colored either red or green, and not both red or both green. Intuitively,
a legal 3-coloring will represent a satisfying truth assignment in which the
green literals are true and the red literals are false.

To complete the graph, we add a subgraph like the one shown below for
each clause in B. The one shown below would be added for the clause (xVyV
Z V u V 'iJ V w). The vertices in the picture labeled G are all the same vertex,
namely the vertex G.

This subgraph has the property that a coloring of the vertices on the top
row with either red or green can be extended to a 3-coloring of the whole
subgraph iff at least one of them is colored green. If all vertices on the top
row are colored red, then all the vertices on the middle row adjacent to vertices
on the top row must be colored blue. Starting from the left, the vertices along
the bottom row must be colored alternately red and green. This will lead to

LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS 121

a conflict with the last vertex in the bottom row. (If the number of literals in
the clause is odd instead of even as pictured, then the rightmost vertex in the
bottom row is R instead of G.)

Conversely, suppose one of the vertices on the top row is colored green.
Pick one such vertex. Color the vertex directly below it in the middle row red
and the vertex directly below that on the bottom row blue. Color all other
vertices on the middle row blue. Starting from the left and right ends, color
the vertices along the bottom row as forced, either red or green. The coloring
can always be completed.

Thus if there is a legal 3-coloring, then the subgraph corresponding to each
clause must have at least one green literal, and truth values can be assigned so
that the green literals are true. This gives a satisfying assignment. Conversely,
if there is a satisfying assignment, color the true variables green and the false
ones red. Then there is a green literal in each clause, so the coloring can be
extended to a 3-coloring of the whole graph.

From this it follows that B is satisfiable iff G is 3-colorable, and the graph G
can be constructed in polynomial time. Therefore CNFSat ~~ 3-colorability.

One can trivially reduce 3-colorability to k-colorability for k > 3 by ap
pending a k - 3 clique and edges from every vertex of the k - 3 clique to every
other vertex.

One may be tempted to conclude that in problems like k-CNFSat and
k-colorability, larger values of k always make the problem harder. On the
contrary, we shall see in the next lecture that the k-colorability problem for
planar graphs is easy for k ~ 2 and k ~ 4, but as hard as CNFSat for k = 3.

Lecture 23 More NP-Complete Problems

23.1 Planar Graph Colorability

Often in problems with a parameter k like k-CNFSat and k-colorability, larger
values of k make the problem harder. This is not always the case. Consider the
problem of determining whether a planar graph has a k-coloring. The problem
is trivial for k = 1, easy for k = 2 (check by DFS or BFS whether the graph is
bipartite, i.e. has no odd cycles), and trivial for k = 4 or greater by the Four
Color Theorem, which says that every planar graph is 4-colorable. This leaves
k = 3. We show below that 3-colorability of planar graphs is no easier than
3-colorability of arbitrary graphs. This result is due to Garey, Johnson, and
Stockmeyer [40]; see also Lichtenstein [72] for some other NP-completeness
results involving planar graphs.

We will reduce 3-colorability of an arbitrary graph to the planar case.
Given an undirected graph G = (V, E), possibly nonplanar, embed the graph
in the plane arbitrarily, letting edges cross if necessary. We will replace each

122

LECTURE 23 MORE NP-COMPLETE PROBLEMS 123

edge crossing with the planar widget W shown below.

W

The widget W is a planar graph with the following interesting properties:

(i) in any legal 3-coloring of W, the opposite corners are forced to have the
same color;

(ii) any assignment of colors to the corners such that opposite corners have
the same color extends to a 3-coloring of all of W.

To see this, color the center of W red; then the vertices adjacent to the center
must be colored blue or green alternately around the center, say

Now the northeast vertex can be colored either red or green. In either case,
the colors of all the remaining vertices are forced (proceed counterclockwise to
obtain the left hand coloring and clockwise to obtain the right hand coloring):

b T

T

T

b T

124 LECTURE 23 MORE NP-COMPLETE PROBLEMS

All other colorings are obtained from these by permuting the colors.
For each edge (u, v) in E, replace each point at which another edge crosses

(u, v) in the embedding with a copy of W. Identify the adjacent corners of
these copies of W and identify the outer corners of the extremal copies with u
and v, all except for one pair, which are connected by an edge. The following
diagram illustrates an edge (u, v) with four crossings before and after this
operation. In this diagram, the copy of W closest to v is cOlmected to v by
an edge, and all other adjacent corners of copies of W are identified.

··1 I I I ~ u v

The resulting graph G' = (V', E') is planar. If

X : V' --+ {red, blue, green}

is a 3-coloring of G', then property (i) of W implies that X restricted to V is
a 3-coloring of G. Conversely, if X: V --+ {red, blue, green} is a 3-coloring of
G, then property (ii) of Wallows X to be extended to a 3-coloring of G'.

We have given a reduction of the 3-colorability problem for an arbitrary
graph to the same problem restricted to planar graphs. Thus the latter prob
lem is as hard as the former.

23.2 NP-Completeness

The following definitions lay the foundations of the theory of NP-complete
ness. More detail can be found in [3, 39].

We fix once and for all a finite alphabet 1: consisting of at least two symbols.
From now on, we take 1: to be the problem domain, and assume that instances
of decision problems are encoded as strings in 1:* in some reasonable way.

Definition 23.1 The complexity class NP consists of all decision problems
A ~ 1:* such that A is the set of input strings accepted by some polynomial
time-bounded nondeterministic 'lUring machine. The complexity class P con
sists of all decision problems A ~ 1:* such that A is the set of input strings
accepted by some polynomial-time-bounded deterministic 'lUring machine. 0

Note that P ~ NP since every deterministic machine is a nondeterministic
one that does not happen to make any choices. It is not known whether
P = NP; this is arguably the most important outstanding open problem in
computer science.

LECTURE 23 MORE NP-COMPLETE PROBLEMS 125

Definition 23.2 The set A is NP-hard (with respect to the reducibility rela
tion ~~) if B ~~ A for all B E NP. 0

Theorem 23.3 If A is NP-hard and A E P, then P = NP.

Proof. For any B E NP, compose the polynomial-time algorithm for A
with the polynomial-time function reducing B to A to get a polynomial time
algorithm for B. 0

Definition 23.4 The set A is NP-complete if A is NP-hard and A E NP. 0

Theorem 23.5 If A is NP-complete, then

A E P +-t P = NP .

Definition 23.6 The complexity class coNP is the class of sets A ~ E*
whose complements II = E* - A are in NP. A set B is coNP -hard if every
problem in coNP reduces in polynomial time to B. It is coNP-complete if in
addition it is in coNP. 0

The following theorem is immediate from the definitions.

Theorem 23.7

1. A ~~ B iff II ~~ B.

2. A is NP -hard iff II is coNP -hard.

3. A is NP-complete iff II is coNP -complete.

4. If A is NP-complete then A E coNP iff NP = coNP.

It is unknown whether NP = coNP.
We will show later that the problems CNFSat, 3CNFSat, Clique, Vertex

Cover, and Independent Set, which we have shown to be =~-equivalent, are
all in fact NP-complete.

23.3 More NP-complete problems

Before we prove the NP-completeness of the problems we have been consider
ing, let us consider some more problems in this class. Some of these problems,
such as Traveling Salesman, Bin Packing, and Integer Programming, are very
natural and important in operations research and industrial engineering. We
start with the exact cover problem.

Definition 23.8 (Exact Cover) Given a finite set X and a family of subsets
S of X, is there a subset S' ~ S such that every element of X lies in exactly
one element of S'? 0

126 LECTURE 23 MORE NP-COMPLETE PROBLEMS

We show that the problem Exact Cover is NP-hard by reduction from
the problem of 3-colorability of undirected graphs. See [39] for a different
approach involving the 3-dimensional matching problem.

Lemma 23.9 3-Colorability $:;' Exact Cover.

Proof. Suppose we are given an undirected graph G = (V, E). We show
how to produce an instance (X, S) of the exact cover problem for which an
exact cover exists iff G has a 3-coloring.

Let C = {red, blue, green}. For each u E V, let N(u) be the set of
neighbors of u in G. Since G is undirected, u E N(v) iff v E N(u).

For each u E V, we include u in X along with 3(1N(u)1 + 1) additional
elements of X. These 3(IN(u)1 + 1) additional elements are arranged in three
disjoint sets of IN(u)1 + 1 elements each, one set corresponding to each color.
Call these three sets S~ed, S~lue, SFn. For each color c E C, pick a special
element p~ from S~ and associate the remaining IN(u)1 elements of S~ with
the elements of N(u) in a one-to-one fashion. Let q~v denote the element of
S~ associated with v E N(u).

The set S will contain all two element sets of the form

{u,p~} (31)

for u E V and c E C, as well as all the sets S~ for u E V and c E C. Here is a
picture of what we have so far for a vertex u of degree 5 with v E N (u). The
ovals represent the three sets S~ and the lines represent the three two-element
sets (31).

u

To complete S, we include all two element sets of the form

{q~v,qtu} (32)

for all (u, v) E E and c, dEC with c =I- d. Here is a picture showing a part
of the construction for two vertices u and v of degrees 5 and 3 respectively,
where (u, v) in E. The six lines in the center represent the two-element sets
(32).

LECTURE 23 MORE NP-COMPLETE PROBLEMS 127

u

v

We now argue that the instance (X,8) of Exact Cover just constructed is
a "yes" instance, i. e. an exact cover 8' ~ 8 of X exists, iff the graph G has
a 3-coloring. Suppose first that G has a 3-coloring X : V -+ C. We construct
an exact cover 8' ~ 8 as follows. For each vertex u, let 8' contain the sets
{u,~(u)} and 8~ for c #- X(u). This covers everything except points of the
form q~~ u), where (u, v) E E. For each edge (u, v), let 8' also contain the set
{q~~u),q~~v)}. This set is in 8 since X(u) #- X(v). This covers all the remaining
points, and each point is covered by exactly one set in 8'.

Conversely, suppose 8' is an exact cover. Each u is covered by exactly one
set in 8', and it must be of the form {u,p~} for some c. Let X(u) be that c;
we claim that X is a valid coloring, i. e. that if (u, v) E E then X(u) #- X(v).
For each u, since {u,~(u)} E 8', we cannot cover p~ for c #- X(u) by any set
of the form (31), since u is already covered; therefore they must be covered
by the sets 8~, which are the only other sets containing the points p~. The
sets {u,~(u)} and 8~, c #- X(u) cover all points except those of the form
q~~u), (u,v) E E. The only way 8' can cover these remaining points is by the
sets (32). By construction of 8, these sets are of the form {q~~u),q~~v)} for
(u, v) E E and X{u) #- X{v). 0

Lecture 24 Still More NP-Complete
Problems

In this lecture we use the basic NP-complete problems given in previous lec
tures, which may have appeared contrived, to show that several very natural
and important decision problems are NP-complete.

We first consider a collection of problems with many applications in oper
ations research and industrial engineering.

Definition 24.1 (Knapsack) Given a finite set 8, integer weight function
w : 8 -+ N, benefit function b : 8 -+ N, weight limit WEN, and desired
benefit BEN, determine whether there exists a subset 8' ~ 8 such that

L w(a) < W
aES'

L b(a) > B.
aES'

o

The name is derived from the problem of trying to decide what you really
need to take with you on your camping trip. For another example: you are
the coach of a crew team, and you wish to select a starting squad of rowers
with a combined weight not exceeding Wand combined strength at least B.

128

LECTURE 24 STILL MORE NP-COMPLETE PROBLEMS 129

Definition 24.2 (Subset Sum) Given a finite set 8, integer weight function
w: 8 --t N, and target integer B, does there exist a subset 8' ~ 8 such that

L w(a) = B?
aES'

o

Definition 24.3 (Partition) Given a finite set 8 and integer weight function
w : 8 --t N, does there exist a subset 8' ~ 8 such that

Lw(a) L w{a)?
aES' aES-S'

Trivially, Partition reduces to Subset Sum by taking

1
B = 2 Lw(a) .

aES

o

Also, Subset Sum reduces to Partition by introducing two new elements of
weight N - Band N - (E - B), respectively, where

E = Lw(a)
aES

and N is a sufficiently large number (actually N > E will do). The number
N is chosen large enough so that both new elements cannot go in the same
partition element, because together they outweigh all the other elements. Now
we ask whether this new set of elements can be partitioned into two sets of
equal weight (which must be N). By leaving out the new elements, this gives
a partition of the original set into two sets of weight B and E - B.

Both Subset Sum and Partition reduce to Knapsack. To reduce Partition
to Knapsack, take b = w and W = B = ~ E.

We show that these three problems are as hard as Exact Cover by reducing
Exact Cover to Subset Sum. Assume that X = {O, 1, ... , m - I} in the given
instance (X, 8) of Exact Cover. For x EX, define

#x = I {A E 8 I x E A}I ,

the number of elements of 8 containing x. Let p be a number exceeding all
#x, 0 ::; x ::; m -1. Encode A E 8 as the number

w(A) = Lpz
zEA

and take
m-l pm-l

B = Lpz
z=o p-l

130 LECTURE 24 STILL MORE NP-COMPLETE PROBLEMS

In p-ary notation, w(A) looks like a string of O's and l's with a 1 in position
x for each x E A and 0 elsewhere. The number B in p-ary notation looks like
a string of l's of length m. Adding the numbers w(A) simulates the union of
the sets A. The number p was chosen big enough so that we do not get into
trouble with carries. Asking whether there is a subset sum that gives B is the
same as asking for an exact cover of X.

The bin packing problem is an important problem that comes up in indus
trial engineering and computer memory management.

Definition 24.4 (Bin Packing) Given a finite set S, volumes w : S -+ N,
and bin size BEN, what is the minimum number of bins needed to contain
all the elements of S? Expressed as a decision problem, given the above data
and a natural number k, does there exist a packing into k or fewer bins? 0

We can easily reduce Partition to Bin Packing by taking B to be half the
total weight of all elements of S and k = 2.

An extremely important and general problem in operations research is the
integer programming problem.

Definition 24.5 (Integer Programming) Given rational numbers aij, Cj,

and bi , 1 :::; i :::; m, 1 :::; j :::; n, find integers Xl, X2, . .. , Xn that maximize the
linear function

subject to the linear constraints

n

L aijXj :::; bi , 1:::; i :::; m .
j=l

(33)

The corresponding decision problem is to test whether there exists a point
with integer coordinates in a region defined by the intersection of half-spaces:
given aij and bi , 1 :::; i :::; m, 1 :::; j :::; n, test whether there exists an integer
point Xl, . .• ,Xn in the region (33). 0

In linear programming, the Xi'S are not constrained to be integers, but may be
real. The linear programming problem was shown to be solvable in polynomial
time in 1980 by Khachian [60J using a method that has become known as the
ellipsoid method. In 1984, a more efficient polynomial time algorithm was
given by Karmarkar [56J; his method has become known as the interior point
method. Since that time, several refinements have appeared [90, 102J. The
older simplex method, originally due to Dantzig (see [19]), is used successfully
in practice but is known to be exponential in the worse case.

The integer programming problem is NP-hard, as the following reduction
from Subset Sum shows: the instance of Subset Sum consisting of a set S with

LECTURE 24 STILL MORE NP-COMPLETE PROBLEMS 131

weights w : S ~ N and threshold B has a positive solution iff the Integer
Programming instance

o :::; Xa :::; 1, a E S

Lw(a)xa B
aES

has an integer solution. It is also possible to show that Integer Programming
is in NP by showing that if there exists an integer solution, then there exists
one with only polynomially many bits as a function of the size of the input
(n, m, and number of bits in the aij, bi , and Cj) [16]. The integer solution can
then be guessed and verified in polynomial time.

Definition 24.6 (Hamiltonian Circuit) A Hamiltonian circuit in a di
rected or undirected graph G = (V, E) is a circuit that visits each vertex
in the graph exactly once. It is like an Euler circuit, except the constraint is
on vertices rather than edges. The Hamiltonian circuit problem is to determine
for a given graph G whether a Hamiltonian circuit exists. 0

We reduce Vertex Cover to Hamiltonian Circuit. Recall that a vertex cover
in an undirected graph G = (V, E) is a set of vertices U ~ V such that every
edge in E is adjacent to some vertex in U. The vertex cover problem is to
determine, given G = (V, E) and k ;:::: 0, whether there exists a vertex cover U
in G of cardinality at most k.

We will build a graph H which will have a Hamiltonian circuit iff G has a
vertex cover of size k. The main building block of H for the directed Hamil
tonian circuit problem is a widget consisting of four vertices connected as
shown.

v
3 4

:~ n:
1 2

u

For the undirected version, we use an undirected widget with twelve vertices:

v
3 4

1 2
u

132 LECTURE 24 STILL MORE NP-COMPLETE PROBLEMS

There is one widget corresponding to each edge (U, v) E E. In the widget
corresponding to the edge (u, v), one side corresponds to the vertex U and the
other to the vertex v.

These widgets have the following interesting property: any Hamiltonian
circuit that enters at vertex 1 must leave at vertex 2, and there are only
two ways to pass through, either straight through or in a zigzag pattern that
crosses to the other side and back. If it goes straight through, then all the
vertices on the u side and none of the vertices on the v side are visited. If
it crosses to the other side and back, then all the vertices on both sides are
visited. Any other path through the widget leaves some vertex stranded, so
the path could not be a part of a Hamiltonian circuit. Thus any Hamiltonian
circuit that enters at 1 either picks up the vertices in the widget all at once
using the zigzag path, or goes straight through and picks up only the vertices
on one side, then re-enters at 3 later on to pick up the vertices on the other
side.

The graph H is formed as follows. For each vertex u, we string together
end-to-end all the u sides of all the widgets corresponding to edges in E inci
dent to u. Call this the u loop. In addition, H has a set K of k extra vertices,
where k is the parameter of the given instance of Vertex Cover denoting the
size of the vertex cover we are looking for. There is an edge from each vertex
in K to the first vertex in the u loop, and an edge from the last vertex in the
u loop to each vertex in K.

from vertices in K to vertices in K

We now show that there is a vertex cover of size k in G iff H has a Hamiltonian
circuit. Suppose there is a vertex cover {Ul. ... ,ud of G of size k. Then H
has a Hamiltonian circuit: starting from the first vertex of K, go through the
Ul loop. When passing through the widget corresponding to an edge (Ul' v)
of G, take the straight path if v is in the vertex cover, i. e. if v = Uj for some j
(the other side of the widget will be picked up later when we traverse the Uj

loop), and take the zigzag path if v is not in the vertex cover. When leaving
the Ul loop, go to the second vertex of K, then through the U2 loop, and so
on, all the way around and back to the first vertex of K.

Conversely, if H has a Hamiltonian circuit, the number of U loops traversed
must be exactly k, and that set of vertices U forms a vertex cover of G.

This argument holds for both the directed and undirected case. Thus,
determining the existence of a Hamiltonian circuit in a directed or undirected

LECTURE 24 STILL MORE NP-COMPLETE PROBLEMS 133

graph is NP-hard. It is also in NP, since a Hamiltonian circuit can be guessed
and verified in polynomial time.

Finally, we consider the Traveling Salesman Problem (TSP). The optimiza
tion version of this problem asks for a tour through a set of cities minimizing
the total distance. There are several versions of TSP, depending on the prop
erties of the graph and distance function and the type of tour desired. We
consider here a quite general formulation.

Definition 24.7 (Traveling Salesman (TSP» Given a number k ~ 0 and
a directed graph G = (V, E) with nonnegative edge weights w : E -t N, does
there exist a tour of total weight at most k visiting every vertex at least once
and returning home? 0

Garey and Johnson [39] use a slightly more restricted version which asks
for a tour visiting each vertex exactly once. We prefer the more general version
above, since to get anywhere from Ithaca and back usually involves at least
two stops in Pittsburgh.

TSP is in NP provided we can argue that optimal tours are short enough
that they can be guessed and verified in polynomial time. Each vertex can be
visited at most n times in an optimal tour, because otherwise we could cut
out a loop and still visit all vertices. We can thus guess a tour of length at
most n2 and verify that its total weight is at most k.

TSP is NP-hard, since there is a straightforward reduction from Hamil
tonian Circuit: give all edges unit weight and ask for a TSP tour of weight
n.

Combining arguments from the last several lectures, we have:

Theorem 24.8 The CNF Satisfiability problem reduces via :::;~ to all the fol
lowing problems: Knapsack, Partition, Subset Sum, Exact Cover, Bin Pack
ing, Integer Programming, directed and undirected Hamiltonian Circuit, and
Traveling Salesman.

Lecture 25 Cook's- Theorem

In this lecture we will prove the NP-hardness of CNFSat by exhibiting a
reduction from an arbitrary problem in NP to CNFSat. We use the standard
definition of one-tape deterministic and nondeterministic Turing machines;
see for example [3, pp. 25ff.J. This landmark result was proved by S. Cook in
1971 [22J. A similar result was proved independently by L. Levin in the Soviet
Union in 1973 [71J.

Theorem 25.1 If A E NP then A:::;::' CNFSat.

Proof Let A ~ I:* be an arbitrary but fixed language in NP. Then A
is accepted by some nondeterministic Turing machine M. We will describe a
function a that from a given x E I:* computes a Boolean formula B = a(x)
that is satisfiable iff M accepts x. The function a must be computable in
polynomial time deterministically, and its description may depend on M.

Here is the main idea. The possible executions of M on input x E I:* form
a branching tree of configurations, where each configuration gives a snapshot of
the current instantaneous state of the computation and includes all relevant
information that can affect the computation, such as tape contents, head
position, and current state of the finite control. Since M is polynomially time
bounded, we can assume that the depth of this tree is at most N = JxJk for
some fixed k. The exponent k may depend on M but does not depend on x.
A valid computation sequence of length N can use no more than N tape cells,
since at the very worst the machine moves right one tape cell in each step.
Thus there are at most N time units and N tape cells we need to consider.

134

LECTURE 25 COOK'S THEOREM 135

We will encode computations of M on input x as truth assignments to various
arrays of Boolean variables, which describe things like where the read head is
at time i, which symbol is occupying cell j at time i, and so forth. We will
write down clauses involving these variables that will describe legal moves of
the machine and legal starting and accepting configurations of M on x. A
truth assignment will simultaneously satisfy all these clauses iff it describes a
valid computation sequence of M on input x. We will then take B = a(x) to
be the conjuction of all these clauses. Then the satisfying truth assignments
to B correspond in a one-to-one fashion to the accepting computations of M
on x, therefore B will be satisfiable iff M has an accepting computation on
input x, i.e. iff x E A.

Here are the Boolean variables, along with their intuitive interpretations.
Let Q denote the set of states of the finite control of M, and let ~ denote the
tape alphabet of M.

• Q?, 0 ::; i ::; N, q E Q; intuitively,

Q? = "At time i, the machine is in state q."

• Hij , 0 ::; i, j ::; N; intuitively,

Hij = "At time i, the machine's read/write head is
scanning tape cell j."

• Sij, 0 ::; i, j ::; N, a E ~; intuitively,

Sij = "At time i, tape cell j contains symbol a."

The machine starts in its start state s scanning the left endmarker I- with
the input x filling the first Ixl spaces on the tape followed by blank characters
Q. This situation is captured by the following formula:

Qg 1\ Hoo 1\ S~o 1\ 1\ S~j 1\ 1\ S~j .
l:5j:5lxl Ixl+1:5j:5N

Assume that M never prints its left endmarker I- anyplace except in the left
most cell of the tape, and that upon seeing I- in any state, it never moves
left. Assume further that if M wants to accept, it first erases its tape and
moves its head all the way to the left before entering the accept state t, and
subsequently does not move its head or change state. These assumptions are
without loss of generality, since if A is accepted by a nondeterministic polyno
mial time machine at all, then it is accepted by another machine that satisfies
these conditions.

The acceptance condition can then be represented by the formula

Q~ 1\ H N,O 1\ st,o 1\ 1\ S~,j.
l:5j:5N

The computation of the machine obeys certain constraints, which are rep
resented by various formulas:

136 LECTURE 25 COOK'S THEOREM

• "At any time, the machine is in exactly one state."

O::;i::;N p,qEQ
r-Fq

• "At any time, each tape cell contains exactly one symbol."

1\ (V S~j) /\
O::;i,j::;N aEE

1\ 1\ (-,Sij V -,Sfj)
O~i,j~N a,bEE

ajlfb

• "At any time, the machine is scanning exactly one cell."

1\ (V Hij) /\ 1\ 1\ (-,Hij V -,Hik)
O::;i~N O::;j::;N O::;i::;N O::;j<k::;N

The last set of conditions we need to write down are the most crucial to
this construction. They say that computation follows the transition relation
of M. There are clauses that specify, based on the state, head position, and
contents of the tape at time i, the possible state, head position, and contents
of the tape at time i + 1.

The transition relation of M is the part of the specification of M that tells
which actions M can take in a given situation. Formally, it is a finite set 8 of
tuples of the form ((P, a), (q, b, d)), where

• p and q are states of the finite control,

• a and b are tape symbols, and

• d is a direction, either -1 (left), 0 (stationary), or +1 (right).

If the tuple ((P, a), (q, b, d)) is in 8, this says that whenever the machine is
in state p scanning symbol a, it can take the following actions: print b on
that tape cell, move the head in direction d, and enter state q. Since 8 is a
relation and not a function, there may be several such actions (q, b, d) possible
for a given (p, a), but it is important to note that the number of such (q, b, d)
depends only on M and is independent of the size of the input x.

The following two formulas express that the configuration at time i + 1
follows from that at time i according to the transition relation 8. Formula
(34) says that for a given p E Q, a E E, and 0 $ i,j $ N, if M at time i is in
state p scanning cell j on which is written the symbol a, then for some tuple
((P, a), (q, b, d)) E 8, at time i + 1 there will be a b occupying cell j and M will
be in state q scanning cell j + d. Formula (35) says that any cell not being
scanned at time i contains the same symbol at time i + 1 as at time i.

Qf /\ Hij /\ Sij ---+ V (Q~+1 /\ Hi+l,i+d /\ Sf+1,j) (34)
(p,a),(q,b,d))EO

(35)

LECTURE 25 COOK'S THEOREM 137

These formulas are not in CNF as they stand, but can be transfonned into
equivalent CNF formulas using the distributive and DeMorgan laws of proposi
tionallogic. Do not worry about (34) and (35) getting too big in this process
their lengths depend only on M and not on the size of the input x, hence are
0(1). We take the conjunction of (34) and (35) over all i and j in the range
Oto N.

The formula B is the conjuction of all these formulas. It is in conjunctive
normal form, and its length is polynomial in Ixl. Moreover, it can be con
structed from x in polynomial time. Every satisfying truth assignment to B
gives rise to an accepting computation of the machine, and vice-versa. 0

Lecture 26 Counting Problems and #P

In this lecture we discuss the complexity of counting problems. Instead of just
determining whether a solution to a given problem exists, we will be interested
in counting the number of different solutions to a given problem. Counting
problems are naturally associated with many of the decision problems we have
already discussed. The notion of a witness function formalizes this association.

Definition 26.1 Let w : ~* ---+ p(r*), where p(r*) denotes the power set
of r*, and let x E ~*. We refer to the elements of w(x) as witnesses for x.
We associate a decision problem Aw ~ ~* with w:

Aw = {x E ~* I w(x) =f. 0} .

In other words, Aw is the set of strings that have witnesses. o

Example 26.2 Let x E ~* be an encoding of a Boolean formula and y E r*
an encoding of a truth assignment. If

w(x) = {truth assignments satisfying x} ,

then

Aw {satisfiable Boolean formulas} .

o

138

LECTURE 26 COUNTING PROBLEMS AND #P 139

It is possible for a counting problem to be harder than the associated
decision problem. In order to characterize the additional difficulty of these
problems, Valiant [103] proposed a new class of problems called #P. His def
inition is essentially equivalent to the following.

Definition 26.3 The class #P is the class of witness functions w such that:

(i) there is a polynomial-time algorithm to determine, for a given x and y,
whether y E w(x);

(ii) there exists a constant kEN such that for all y E w(x), Iyl :::; Ixlk •

(The constant k can depend on w).

o

The following theorem relates counting problems in this new class to their
associated decision problems.

Theorem 26.4 The following relationships hold between witness functions in
#P and decision problems in NP:

(i) ifw E #P then Aw E NP;

(ii) if A E NP, then there exists awE #P such that A = Aw.

Proof.

(i) Guess a witness y E r* in polynomial time using Definition 26.3(ii) and
verify in polynomial time that y is indeed a witness using Definition
26.3(i).

(ii) Let M be a nondeterministic Turing machine accepting A. Take w(x)
to be the set of accepting computation paths of M on input x.

o

It is interesting to observe how counting problems v and ware related
under the process of reduction. For this purpose, we introduce the notion of
counting reductions and parsimonious reductions.

Definition 26.5 Let

w : ~* --+ p(r*)
v : rr* --+ P(A *)

be counting problems. A polynomial-time many-one counting reduction from
w to v consists of a pair of polynomial-time computable functions

a ~* --+ rr*
T N--+N

140 LECTURE 26 COUNTING PROBLEMS AND #P

such that

Iw(x)1 = T(lv(a(x))l).

When such a reduction exists we say that w reduces to v. o

Intuitively, if one can easily count the number of witnesses of v(y), then one
can easily count the number of witnesses of w(x).

Some reductions preserve the number of solutions to a problem exactly.
We call such reductions parsimonious. Formally,

Definition 26.6 A counting reduction a, T is parsimonious if T is the identity
function. 0

Example 26.7 Here are a number of examples of parsimonious and non
parsimonious reductions.

• Cook's Theorem is parsimonious in the sense that the number of satisfy
ing assignments to the Boolean formula constructed in the proof of the
theorem corresponds exactly to the number of accepting computations
of the nondeterministic Turing machine being simulated.

• The reduction Clique ~~ Vertex Cover as presented in a previous lecture
is parsimonious: the number of cliques of G = (V, E) of size k is the same
as the number of vertex covers of G = (V, E) of size n - k.

• The reduction CNFSat ~~ 3CNFSat as presented in a previous lecture
is not parsimonious, but it can easily be made so.

• The reduction 3CNFSat ~~ Clique as presented in a previous lecture is
not parsimonious, but again can easily be made so.

o

Example 26.8 We show how the reduction 3CNFSat ~~ Clique can be made
parsimonious. Recall that we constructed from a given CNF formula B a graph
G with a vertex for each occurrence of a literal in B and edges between oc
currences of literals in different clauses if the literals were not complementary.
The problem with this construction is that one truth assignment might corre
spond to several cliques. For example, the formula

(xVY)I\(xV'fj)

has two satisfying assignments but three 2-cliques.
We can remedy this by first replacing each clause

... 1\ (x V y V z) 1\ ...

LECTURE 26 COUNTING PROBLEMS AND #P

in B by the equivalent subformula

···I\(xyzVxyzVxyzVxyzVxyzVxyz Vxyz)I\···

141

with seven terms. The number of satisfying assignments is the same, since the
formulas are equivalent. Now we construct G with one vertex for each of the
seven terms in each of these subformulas and edges connecting terms xyz and
uvw in different clauses if the two terms contain no complementary literals.
One can show that there is exactly one clique of size k (the number of clauses)
for each satisfying assignment. 0

As with the NP-complete problems, we can define the class of #P-complete
problems that represent the hardest problems in the class #P. All the counting
problems we have mentioned so far are #P-complete.

One #P-complete problem is that of computing the permanent of a matrix.
Intuitively, the permanent of an n x n 0-1 matrix is the number of ways to
place n rooks on the matrix so that every rook sits on a 1 and no rook can
capture another. Officially,

Definition 26.9 Given an nxn matrix A (not necessarily 0-1), the permanent
of A is the quantity

n

perm A = L II Ai,u(i)
uESn i=1

where the a are permutations of the set {1, 2, ... , n} and Sn is the set of all
such permutations. 0

The definition of the permanent of a matrix is very similar to the definition
of determinant:

n

det A = L (_1)sign u II Ai,u(i) .

uESn i=1

The only difference is that the sign4 of the permutation (even or odd) is
included in the determinant. It is thus quite surprising that the permanent
should be #P-complete, since the determinant is computable in polynomial
time by Gaussian elimination.

That the permanent is #P-complete is even more surprising in light of
its relationship to the bipartite matching problem. Given a bipartite graph
G = (U, V, E) with lUI = IVI = n, the permanent of the n x n bipartite
adjacency matrix of G gives the number of perfect matchings. Thus, despite
the fact that a perfect matching can be found in polynomial time, counting the
number of them is as hard as counting the number of satisfying assignments
to a Boolean formula.

4The sign of a permutation of {I, 2, ... , n} is the number (mod 2) of pairs that are out
of order.

142 LECTURE 26 COUNTING PROBLEMS AND #P

Theorem 26.10 (Valiant [103]) The problem of counting the number of
perfect matchings in a bipartite gmph is #P -complete.

Actually, this problem is #P-complete with respect to a slightly more
general reducibility than the one defined in Definition 26.5. We will discuss
this later on.

Example 26.11 Consider the following bipartite graph and its associated
bipartite adjacency matrix.

l~a
2 b

3 c

1

2

3

abc

1 1 0

1 1 1

1 0 1

This graph has exactly three perfect matchings corresponding to the three
possible legal rook placements.

• • >< ~ • •

• • • •

I~H~I H~I~I l~n~1
0

For non-bipartite directed graphs, we might ask what the permanent of the
adjacency matrix represents. Here, a legal rook placement corresponds to a
cycle cover, or a collection of vertex-disjoint cycles containing all vertices. The
permanent thus computes the number of cycle covers. The picture below illus
trates the relationship between cycle covers and permutations corresponding
to nonzero terms in the definition of the permanent.

LECTURE 26 COUNTING PROBLEMS AND #P

1

2

3

4

5

6

1 2 3 4 5 6

5l
5l

5l
5l

5l
5l

{
3

143

~
1 2

•• ~.

4 5 6

Lecture 27 Counting Bipartite Matchings

In this lecture we prove that computing the number of perfect matchings in a
bipartite graph is #P complete, making it at least as difficult as computing
the number of satisfying truth assignments for a Boolean expression.

We noted last time that the number of perfect matchings in a bipartite
graph with the same number of vertices on each side is equal to the permanent
of its 0-1 adjacency matrix, given by

n

perm A = L II Ai,u(i)
uESn i=1

where Sn is the set of permutations of the set {I, 2, ... , n}. For a general
directed graph with n vertices and its n x n (nonbipartite) adjacency matrix,
the permanent gives the number of cycle covers.

Our proof begins using the same construction that we used to reduce Vertex
Cover to Hamiltonian Circuit. Recall that we constructed a graph H from G
built from a set of widgets, one for each edge in G.

v
3 4

:~ n:
1 2

u

144

LECTURE 27 COUNTING BIPARTITE MATCHINGS 145

For each vertex u in G, the sides of the widgets corresponding to u are con
nected end-to-end to form a u loop. The ends of each u loop are connected to
each element of a set K of k new vertices as shown; here k is the size of the
vertex cover in G we are looking for.

from vertices in K to vertices in K

We showed in Lecture 24 that H contains a Hamiltonian circuit if and only
if G contains a vertex cover of size k. However, although every Hamiltonian
circuit in H determines a unique vertex cover in G, there are in general many
different Hamiltonian circuits giving the same vertex cover. How many? For
each vertex cover C, each Hamiltonian circuit corresponding to C is deter
mined by the connections between K and the loops corresponding to C, thus
we are essentially looking at the number of Hamiltonian circuits in a complete
bipartite graph on two sets of k vertices. This number is k!(k - 1)!, since for
each of the (k - 1)! cyclic orderings of the vertices in one of the sets of the
bipartition, there are k! ways to insert the vertices in the other set so that the
two sets alternate.

Similar thinking leads to the conclusion that there are exactly (k!)2 cycle
covers in H corresponding to a given vertex cover C in G. This is the number
of ways to select two perfect matchings in a complete bipartite graph on two
sets of k vertices independently, one to model the edges from K to C and the
other to model the edges from C to K.

It would be nice if these cycle covers corresponding to vertex covers in
cluded all possible cycle covers in H. We could immediately conclude that by
computing the permanent of the adjacency matrix for H and dividing by (k!)2
we could obtain the number of vertex covers in G. Alas, life is not quite this
simple; in fact, we are just warming up to the real task.

The problem is that the widgets contain cycles of length two that are
included in cycle covers counted by the permanent. Such cycle covers do
not correspond to any vertex cover. Let us define a cycle cover to be bad
if it contains a cycle of length two, good otherwise. Good cycle covers must
traverse widgets properly, therefore correspond to vertex covers as described
above. We can conclude

Theorem 27.1 The number of good cycle covers in His (k!)2 times the num
ber of vertex covers of G of size k.

146 LECTURE 27 COUNTING BIPARTITE MATCHINGS

Thus we would like to count only the good cycle covers of H. Unfortu
nately, the permanent counts all cycle covers, good and bad. We need to
figure out how to prevent bad covers from contributing to the value of the
permanent of the adjacency matrix. This leads us to Valiant's Excellent Idea
#1: try to assign weights, possibly negative, to the interior edges of widgets
so that the product of the edge weights in each good cycle cover is 1, but the
product of edge weights in each bad cycle cover is o. The permanent will then
count the number of good cycle covers.

Unfortunately, the task of trying to assign edge weights by trial and error
quickly leads nowhere. Even if we throw in more edges-in fact, we might
as well consider the complete graph with self-loops-the problem of assign
ing weights appears hopeless. This brings us to Valiant's Excellent Idea #2:
forget the widget itself and look at its adjacency matrix instead, and try to
write down the essential properties of the matrix that will give us the desired
behavior.

Consider the 4 x 4 submatrix of the adjacency matrix of H corresponding
to one copy W of the widget. There are columns of H corresponding to the
"input" vertices 1 and 3 of W and rows of H corresponding to the "output"
vertices 2 and 4. In a bad cycle cover involving the two cycles of length two
in W, no edge coming into 1 or 3 or leaving 2 or 4 is part of the cycle cover.
In terms of the associated legal rook placement, this says that the rooks in
columns 1 and 3 and rows 2 and 4 must lie in the submatrix corresponding to
W. Moreover, since there are no edges from vertices 1 or 3 to vertices outside
of W, i. e. all entries in rows 1 and 3 outside of the submatrix W are zero,
the rooks in these rows must lie in the submatrix W. This says that there are
exactly 4 rooks on the submatrix W, and they form a legal rook placement
onW.

When this happens, the remaining rooks must lie in the complementary
subgraph W* of W, i. e. that subgraph of H obtained by deleting the rows
and columns of W. The sum of all terms in the permanent corresponding to
cycle covers containing these two cycles is then given by

perm W . perm W* .

If we could pick weights so that perm W = 0, then the net contribution of all
these cycles to the calculation of the permanent would be o.

With this insight, we proceed to write down all the conditions on the
adjacency matrix that guarantee the desired behavior. The intra-widget con
nections will be as a complete graph with self-loops, and the edges will be
weighted. The inter-widget connections will be the same as in H, with all
edge weights 1.

LECTURE 27 COUNTING BIPARTITE MATCHINGS

~
~

147

Let A denote the 4 x 4 adjacency matrix of this weighted widget (the
weights have yet to be determined). Let A(i;j) denote the submatrix of A
obtained by deleting row(s) i and column(s) j.

The desired behavior can be summarized as follows:

perm A(4; 3) = perm A(2; 1) = perm A(2, 4; 1,3) 1

perm A(4; 1) = perm A(2; 3) = perm A = o.

The first line insures that the net contribution to the permanent of all legal
rook placements corresponding to a good cycle cover in H is 1. The three
permanents correspond to the three acceptable ways of traversing the widget in
a good cycle cover: two zigzag paths and a pair of straight paths. The second
line insures that the net contribution of all legal rook placements corresponding
to a bad cycle cover is O. For example, the equation

perm A(4; 1) = 0

says that the net contribution to the permanent of all cycle covers that have
an edge entering the widget at 1 and leaving 4, and no other connections to
the outside, is O.

We do not need to write down any conditions to rule out different numbers
of entering and leaving edges; these cases are already taken care of by the rules
of rook placement. Essentially, in any cycle cover, the number of edges leaving
a subgraph must equal the number of edges entering it.

One can now look for a 4 x 4 matrix satisfying these constraints. There
are many possibilities. One such is

A

For instance,

permA(4;3)

1
1
2"
o

-1

-1
1
2"
o
o ~ 1

perm ~ ~ 0 [
1 1 0 1
001

1 1
1·_·1+1·-·1

2 2
1

148 LECTURE 27 COUNTING BIPARTITE MATCHINGS

and

permA(4; 1) [
1 -1 0 1

perm ~~O
o 0 1

1 1
1·-·1-1·_·1

2 2
O.

The full adjacency matrix B with submatrices A corresponding to these
four-node widgets counts 1 for each good cycle cover in H and 0 for each bad
cycle cover, thus its permanent is equal to (k!)2 times the number of vertex
covers in G.

We have argued that computing the permanent of a matrix containing
elements in {-I, O,~, I} is #P-hard, but there is still a ways to go. The next
step is to note that

perm 2B = 2n. perm B ,

and this implies that computing the permanent of a matrix with elements
in {-2, 0,1, 2} is hard for #P. We now show that this problem reduces to
computing the permanents of polynomially many matrices over {O, I}. The
reduction we use here is somewhat weaker than the one we have been using in
that it will require several instances of the {O, I} permanent problem to encode
a given instance of the {-2, 0,1, 2} permanent problem, but the reduction still
has the property that any fast algorithm for the {O, I} problem would give a
fast algorithm for the {-2, 0,1, 2} problem.

Let B be an n x n matrix over {-2, 0,1, 2}. A bound on the absolute value
of perm B is given by the case in which each entry of B is 2; then

It thus suffices to compute perm B modulo any N > 2n+1n!, and from this we
will be able to recover the value of perm B.

Let Pl, P2, ... , Pk be the first k primes, where k is the least number such
that

k

N = II Pi > 2n+1n!.
i=l

It is not hard to show that k :5 n + 1. Moreover, since Pm is 6(mlogm)
(see [49, p. 10]), we can generate the first k primes in polynomial time using
the sieve of Eratosthenes. Before proceeding further, we need the following
theorem.

Theorem 27.2 (Chinese Remainder Theorem) Let mt, m2,'" , mk
be pairwise relatively prime positive integers, and let m = Ilf=l mi' Let Zn

LECTURE 27 COUNTING BIPARTITE MATCHINGS 149

denote the ring of integers modulo n. The ring Zm and the direct product of
rings

are isomorphic under the function

given by

This just says that the numbers mod m and the k-tuples of numbers mod mi,
1 ::; i ::; k, are in one-to-one correspondence, and that arithmetic is preserved
under the map f. For example, in the following table, we have compared ZlS

to Z3 X Zs.

Note that each pair in Z3 x Zs occurs exactly once. This is because 3 and
5 are relatively prime. Arithmetic is preserved as well: for example, 4 and
7 correspond to the pairs (1,4) and (1,2), respectively; multiplying these
pairwise gives the pair (1,3) (mod 3 and 5, respectively), which occurs under
13; and 4 x 7 = 28 = 13 (mod 15).

Also, f and f- 1 are computable in polynomial time. To compute f(x),
we just reduce x modulo m1,"" mk. To compute f- 1(X1,"" Xk), we first
compute, for each 1 ::; i ::; k, integers s and t such that

and take

smi + t II mj = 1
l:5j:5k

j t:.i

Ui t II mj.
l:5j:5k

j oF i

The numbers sand t are available as a byproduct of the Euclidean algorithm.
For each 1 ::; i,j ::; k, Ui == 1 mod mi and Ui == 0 mod mj, i =I- j. Take

f- 1(X1,'" ,Xk) = X1U1 + ... + XkUk mod m .

For further details and a proof of the Chinese Remainder Theorem see [3, pp.
289ff.].

150 LECTURE 27 COUNTING BIPARTITE MATCHINGS

Using the Chinese Remainder Theorem, we can compute perm B by com
puting perm B mod Pi, 1 ~ i ~ k. For each i, 1 ~ i ~ k, we replace all
-2 entries in B by Pi - 2; modulo Pi, they are the same. We then compute
the permanent of this matrix and reduce modulo Pi to get perm B mod Pi.
The advantage of this is that we have now reduced the problem to that of
computing the permanents of matrices with small nonnegative entries only.

All that remains is to show how to reduce the computation of the perma
nent of a matrix over {O, 1, 2,p-2} to the problem of computing the permanent
of a matrix over {O, I}.

Recall the equivalence between the permanent of a matrix and the cycle
covers of a directed graph. We must reduce the problem of computing the
number of cycle covers of a weighted directed graph with positive integral
weights to the problem of computing the number of cycle covers of an un
weighted directed graph. This is accomplished by replacing every weighted
edge with a subgraph consisting of several new vertices and edges.

The following figure shows this construction for an edge of weight 3.

3
•

The above process is repeated for each edge in G. The resulting graph G' is
unweighted. Each cycle cover in G involving edges (Ui' Vi) with weights mi,
1 ~ i ~ n, is simulated by ml m2 ... mn cycle covers in G', each of weight 1,
thus the permanents are the same. Also, G' can be constructed in polynomial
time.

This completes the proof that the problem of counting the number of
perfect matchings in a bipartite graph (equivalently, counting the number of
cycle covers in a directed graph) is #P-complete.

Lecture 28 Parallel Algorithms and NC

Parallel computing is a popular current research topic. The successful design
of parallel algorithms requires identifying sources of data independence in a
problem that allow it to be decomposed into independent subproblems, which
can then be solved in parallel. This process often involves looking deeply into
the mathematical structure of the problem.

Aside from specific architectures such as the hypercube, there are many
different general models of parallel computation in use. Among the most
popular are:

• Parallel Random Access Machines (PRAMs). A PRAM consists of a set
of processors that have access to a common shared memory. Each pro
cessor may have registers and local memory of its own. We charge one
time unit for a memory access (which many consider an unreasonable
assumption). PRAMs can be exclusive or concurrent read and exclu
sive or concurrent write, giving four versions, denoted CRCW, CREW,
ERCW, EREW. An EREW PRAM does not allow processors to read
and write simultaneously to the same memory location, and requires the
programmer to insure that this does not happen. A CRCW PRAM does
allow this, and resolves conflicts arbitrarily.

• Vector machines. This model can be SIMD (Single Instruction Multiple
Data) or MIMD (Multiple Instruction Multiple Data). The processors
are arranged in an array and all execute synchronously. The SIMD

151

152 LECTURE 28 PARALLEL ALGORITHMS AND NC

machines all execute the same instruction, but execute it on different
data. Processors communicate by message passing.

• Boolean and arithmetic circuits. These are essentially dags with input
nodes, output nodes, and basic bit operations or arithmetic operations
associated with internal nodes. This model is quite common, especially
in the theory of NC. The size of the circuit (number of nodes) corre
sponds roughly to the number of processors in a PRAM, and the depth
of the circuit (length of the longest path from an input to an output)
corresponds to time. Since each circuit has only a fixed number of input
nodes, there must be a different circuit for each input length.

Many object to these models on the grounds that they do not adequately
capture the "communication bottleneck", since communication complexity is
not usually counted. These arguments do have merit, and one should not
immediately take a parallel complexity bound obtained in one of these models
as an accurate indication of the performance one would expect of a parallel
implementation under current technology. However, independent of whether
or not the complexity bounds are realistic, the important matter is to identify
the fundamental sources of independence in a computational problem that al
low efficient parallelization. These are mathematical properties that transcend
technology; they will be there to exploit in any parallel machine or machine
model now or in the future.

28.1 The Class NC

The complexity class NC plays the same role in parallel computation that P
plays in sequential computation. A problem is considered to be "efficiently
parallelizable" (at least in theory) if it can be shown to be in NC. The name
NC stands for Nick's Class, after Nick Pippenger, who invented it.

Like P, the definition of NC is quite robust in the sense that it is impervi
ous to minor perturbations of the machine model. It is the class of problems
that can be solved on a PRAM in (logn)O(I) or polylogarithmic time using
nO(I) or polynomially many processors. It can also be defined as the class of
problems accepted by a uniform family of Boolean circuits, one for each input
length, of polylogarithmic depth and polynomial size. The uniformity condi
tion says essentially that the nth circuit in this family is easily constructed,
and is a technical condition that allows circuits and PRAMs to simulate each
other efficiently. See the survey paper [23] for details.

The question NC J, P is analogous to the P J, NP question. There is
an NC reducibility relation and a notion of P-completeness with respect to
that reducibility relation. There is a set of problems known to be P-complete,
among them the circuit value problem [67] and max flow [42]. The classes P
and NC are equal if any of these problems turn out to be in NC.

LECTURE 28 PARALLEL ALGORITHMS AND NC 153

28.2 Parallel Matrix Multiplication

To illustrate, we give a simple parallel algorithm to compute the product of
two n x n matrices in time 1 + log n with n3 processors. We use the arithmetic
circuit model.

Let A and B be two n x n matrices. We assume that the entries Aij of A
and Bij of B are available at the n2 input nodes of the circuit. Recall that

n

(AB)ij = L AkBkj . (36)
k=l

In parallel, compute the n3 products AikBkj for each triple i, j, k. This can be
done in one step, since we have n3 processors. Then allocate n processors to
each pair i, j and compute the sums (36) from the data computed in the first
step. This sum can be obtained in log n time in parallel by placing each of the
n summands at the leaves of a complete binary tree, and summing adjacent
pairs. This requires log n stages, since at each stage the number of data items
is halved. The value at the root of the binary tree is the sum of the elements
at the leaves.

28.3 Parallel Prefix

This circuit is a very useful subroutine in many parallel algorithms. Suppose
we have n elements Xo, X!, .•. ,Xn-l and a binary operation· that is associative
but not necessarily commutative. We wish to compute the prefix products Yi,
o ~ i ~ n - 1, where

Consider the following circuit with n input gates and n output gates. The
ith input gate receives Xi and the ith output gate gives Yi. In the first step,
every processor i passes its data to processor i + 1, and the two data items are
multiplied. In the next stage, data is passed from each i to i + 2; in the next
stage, from i to i + 4; and so on for log n stages. The following illustration
gives the circuit for n = 16.

154 LECTURE 28 PARALLEL ALGORITHMS AND NC

Yo Yl Y2 Y3 Y4 Y5 Y6 Y7 Ys Y9 YlO Yn Y12 Y13 Y14 Y15

This construction works even if n is not a power of 2. See [68] for an alternative
construction.

This parallel algorithm has a particularly nice implementation on a hyper
cube. We can embed the circuit of 2n processors on a hypercube of dimension
n in such a way that all message routing can be done with no collisions and
no message travels more than a distance of 2 on the cube.

This embedding will be defined in terms of the Gray representation of
the numbers in the set {O, 1,2, ... ,2n - I}, as opposed to the usual binary
representation. Both representations pair elements of this set with the n-bit
binary strings in a one-to-one fashion. In the natural order

o < 1 < 2 < ... < 2n - 1 ,

the corresponding sequence of strings in the binary representation is obtained
by starting from 0 ... 0 and successively adding 1 in binary. For example, for
n = 4 we get the sequence

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, ... , 1111 .

In the Gray representation, the sequence is

0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, ... , 1000.

Each element is obtained from the last by flipping one bit. If we graph the
sequence of bits that are flipped, the picture looks similar to an English ruler
with demarcations for inches, half inches, quarter inches, and so forth.

time --+

LECTURE 28 PARALLEL ALGORITHMS AND NO 155

Now consider the unit cube in n-dimensional Euclidean space. Its vertices
are points with Euclidean coordinates (ao, ... , an-l) where each ai E {0,1}.
We map the processor that is ith from the left in the parallel prefix circuit to
the point of the cube whose Euclidean coordinates give i in the Gray repre
sentation. For n = 3, the Gray ordering is

000, 001, 011, 010, 110, 111, 101, 100

and this corresponds to the following Hamiltonian circuit in the cube:

101 111

~-+---.lt110

OOOF---....

It is easy to convert back and forth between the binary and Gray rep
resentations. Let bi and gi denote the binary and Gray representations of i
respectively. Then the jth bit of gi (counting from the left and starting at
0) is the exclusive-or of the lh and j - pt bits of bi, and the jth bit of bi is
obtained from gi by taking the exclusive-or of the lh bit of gi and all bits to
its left. Converting bi to gi takes time 0(1) with n processors and converting
gi to bi takes time O(1ogn) with n processors using parallel prefix.

In the next lecture we will see how to characterize these operations alge
braically. This will give a convenient means for proving properties of binary
and Gray representations and of routing on the hypercube. We will then use
these tools to analyze our hypercube implementation of parallel prefix.

Lecture 29 Hypercubes and the Gray
Representation

In this lecture we will take an algebraic approach to routing on the hypercube.
We will develop some algebraic tools, which we will then use to analyze the
hypercube implementation of parallel prefix described in the last lecture.

Let Z2 be the field of integers mod 2. The field Z2 has 2 elements {O, I}. Its
multiplication operation is the same as Boolean 1\, and its addition operation
is the same as Boolean exclusive-or.

Let Z2[X) denote the ring of univariate polynomials with coefficients in Z2.
A typical element of this ring is 1 + x + x2 + x5 + x8 + x9. Note that all
coefficients are either 0 or 1, and + and - are the same thing, since 1 = -1
in Z2'

Now we take the elements of Z2[X) modulo the polynomial xn to get the
quotient ring Z2[X)/Xn. This is just like asserting that xn = O. It implies that
xm = 0 for all m :2:: n, since xm = xn . xm- n = 0 . xm- n = O. Elements of
Z2 [x) / xn are thus polynomials of degree n - 1 or less, and there are exactly 2n
such polynomials, the same number as bit strings of length n. We therefore
identify bit strings of length n and elements of Z2[Xl/Xn under the one-to-one
correspondence

n-l

aOal ... an-l f--t L aixi .
i=O

For example, for n = 5, the bit string 10011 corresponds to the polynomial
1 + x3 + X4. (Warning: the least significant bit in the binary representation

156

LECTURE 29 HYPERCUBES AND THE GRAY REPRESENTATION 157

of a number is the coefficient of the highest degree term in the corresponding
polynomial.)

Under this correspondence, shifting right one bit corresponds to multi
plication by x in Z2[Xl/Xn, and componentwise exclusive-or corresponds to
addition in Z2[X]/Xn. Thus the procedure for converting from binary to Gray
(shift right and exclusive-or with the original) corresponds to multiplying by
1 +x. In other words, if bi and gi are the polynomials in Z2[X]/Xn correspond
ing to the binary and Gray representations of i respectively, then

gi bi + xbi

(1 +x)bi .

As we mentioned in the last lecture, this operation is invertible. Recall that
to convert Gray to binary, we calculate the kth bit of the binary representation
by taking the mod 2 sum of the kth bit of the Gray representation and all bits
to its left. Algebraically, this corresponds to the fact that the polynomial 1 + x
has a multiplicative inverse in Z2[Xl/Xn, namely 1 + x + x2 + ... + xn-l:

(1 + x) . (1 + x + x2 + ... + xn- 1)

(1 + x + ... + xn- 1) + (x + x2 + ... + xn)

1 + (x + x) + (x2 + x2) + ... + (xn- 1 + xn- 1) + xn

1 + xn since q + q = 0

1 since xn = O.

The procedure for converting from Gray to binary then corresponds to mul
tiplication by 1 + x + x2 + ... + xn-l. (In fact, an element of Z2[Xl/Xn is
invertible iff its constant coefficient is 1. The inverse of 1 + xp is ~7~l Xipi.)

In the kth stage of the parallel prefix circuit, we pass messages from node
i to node i + 2k. The distance between these nodes on the hypercube is
the number of bits on which gi and gi+2k differ. This is often called the
Hamming distance. We now show that the Hamming distance between the
Gray representations of i and i + 2k is 2 if k ~ 1 and 1 if k = O.

Let eik be the degree of the highest power of x that divides bi + bi+2k. The
significance of eik is that it measures the distance that the carry propagates
when adding 2k to i in binary. Specifically, the binary representation of 2k has
a 1 in bit position n - k - 1 and 0 elsewhere. A carry is propagated to the
left of the n - k - pt bit position as long as we see a 1 in bi . The carry stops
at the first bit position to the left of n - k at which bi contains a 0, and eik

is that bit position (counting from the left and starting at 0), or 0 if no such
position exists. The exclusive-or of the bit strings bi and bi+2k is of the form
... 00011111000·· ., with 1 in bit positions eik through n - k -1 inclusive and
o elsewhere.

158 LECTURE 29 HYPERCUBES AND THE GRAY REPRESENTATION

In terms of the polynomial representation,

n-k-l

L x3.
j=eik

Converting to Gray, we have

(1 + x)bi + (1 + X)bi+2k

(1 + x) . (bi + bi+2k)
n-k-l

(l+x) L x3
j=eik

Xeik + xn - k •

This says that the Gray representations of i and i + 2k differ only in bits eik

and n - k. In the case k = 0, they differ only in bit eik, since xn = O. For
example,

bi

b2k

bi+2k
bi + bi+2k
gi + gi+2k

1001011101111111100010100111
0000000000000001000000000000
1001011110000000100010100111
0000000011111111000000000000
0000000010000000100000000000

i i
eik n-k

We have shown that the Hamming distance between gi and gi+2k, and hence
the routing distance on the hypercube between processor i and i + 2k, is at
most 2. Thus in each stage of our parallel prefix circuit, messages must be
passed a distance of at most 2. However, we still need to show how to route
the messages so as to avoid collisions.

Let us use the following protocol. At stage 0, processor i passes its value
to processor i + 1. Processor i can compute the Gray representation of the
destination processor by flipping bit eiO of its own Gray representation. There
are no collisions, since i I--t i + 1 is a Hamiltonian circuit.

Subsequently, in stage k, messages are passed from i to i + 2k in two
rounds. In the first round, each processor i of even parity flips bit n - k of
its Gray representation and sends its message to the processor with that Gray
representation. (The parity of i is the low order bit of bi , i. e. the coefficient
of xn-I, or the mod 2 sum of the bits of gd Each processor i of odd parity
flips bit eik of its Gray representation and sends its message to the processor
with that Gray representation. In the second round, those processors receiving
the messages flip the remaining bit and forward the messages to their final
destinations.

There is no collision along wires, i. e. no messages are sent from i to j and
simultaneously from j to i, because any two nodes with a direct connection in

LECTURE 29 HYPERCUBES AND THE GRAY REPRESENTATION 159

the hypercube have different parity, and if i and j are of different parity then
they are flipping different bits in each of the two rounds, so the two messages
cannot be traveling along the same wire at the same time.

However, it is still conceivable that messages might collide at a vertex, i.e.
i and j might both pass to f. in the first round. We show that this cannot
happen either. If i and j are of different parity, then the messages are going
to processors of different parity. If i and j are of the same parity, then either
in round 1 or round 2 the n - kth bit is being flipped in both transmissions,
and this is a one-to-one map.

Hypercube embeddings and message routing are an active topic of research.
For more information and references, see [54, 55, 104].

Lecture 30 Integer Arithmetic in NC

30.1 Integer Addition

Addition of two n-bit binary numbers can be performed in log n depth with
n processors. We will use parallel prefix to calculate the carry string. Once
the carry is computed, the sum is easily computed in constant time with
n processors by taking the exclusive-or of the two summands and the carry
string.

The carry string is defined as follows:

• The lowest order carry bit is always O.

• If the ith bits of the two summands (counting from the right) are both
0, then the i + 1st bit of the carry will be 0, irrespective of the ith bit of
the carry.

• If the ith bits of the two summands are both 1, then the i + pt bit of
the carry will be 1, irrespective of the ith bit of the carry.

• If the ith bits of the two summands are 0 and 1, then the i + pt bit of
the carry will be the same as the ith bit of the carry. In this case we say
that the carry is propagated from i to i + 1.

To compute the carry using parallel prefix, we will use a three element algebra
{O,l,p} with associative binary operation· defined below. Intuitively, the

160

LECTURE 30 INTEGER ARITHMETIC IN NC 161

element 0 means, "carry 0", the element 1 means "carry 1", and the element
p means, "propagate the carry from the previous bit position" .

The binary operation . is defined by the following table:

I· 110111 p I
0 0 0 0
1 1 1 1
p 0 1 P

In other words, for any x E {O,I,p},

O·x 0
1· x = 1

p·x x.

Note that· is associative but not commutative: 0·1 = 0 but 1·0 = 1.
Let u be a string over {O, l,p} with a 0 in position 0, a 0 in position i + 1

if the ith bits of the two summands are both 0, a 1 in position i + 1 if the
ith bits of the two summands are both 1, and a p in position i + 1 if one of
the ith bits of the two summands is 0 and the other is 1. The string u can be
computed in constant time from a and b with n processors. The carry string
is obtained by computing the suffix products of u.

Example 30.1 Let a = 100101011101011 and b = 110101001010001. The
string u over {O, l,p} for these two numbers, the carry string obtained as the
suffixes of u, and the binary sum are as illustrated.

u lpO10 lOplpppOpl0
carry 1001010110000110

a 100101011101011
b 110101001010001

sum 1011010100111100

0

30.2 Integer Multiplication

Consider a multiplication problem involving two n-bit binary numbers. The
grade school algorithm for multiplication gives n partial sums, which then can

162 LECTURE 30 INTEGER ARITHMETIC IN NC

be added to get the product. For example,

101101
x 101011

101101
101101

000000
101101

000000
+ 101101

11110001111

(37)

This can be done in time O((logn)2) with O(n2) processors in a straightfor
ward way. First compute all the bits of the partial sums, then add the partial
sums in pairs in a tree-like fashion. It takes constant time to compute the
partial sums with O(n2) processors, and O((logn)2) to do the additions.

By being slightly more clever, we can reduce the time to O(logn) by reduc
ing the problem of adding three n-bit binary numbers to adding two n + I-bit
binary numbers. Look at the partial sums obtained by adding each 3-bit
column individually:

Rearranging, we get

101100111
101011100

+ 101111101
10

01
11

10
10

10
11

00
+11

10
01

11
10

10 ---+

10
11

00
+11

101111101
+ 101000110

LECTURE 30 INTEGER ARITHMETIC IN NC 163

Thus, in constant time we have reduced the problem of adding three binary
numbers to adding two binary numbers. To apply this to the multiplication
problem (37), we partition the partial sums into sets of three and perform
this step in parallel for all the sets. This reduces the problem of adding n
numbers to the problem of adding 2; numbers. We repeat this step until
we have only two numbers, then we just add them using the O(logn) time
addition algorithm described above. After the first stage, we have ~n numbers;
after the second stage, (~)2n, and so on. The number of numbers decreases
geometrically, thus there are only o (log n) stages. Each stage takes 0(1) time
and 0(n2) processors.

30.3 Integer Division

We wish to do integer division with remainder in NC. That is, given binary
numbers s and t, compute the unique quotient q and remainder r such that
s = qt + r and 0 ~ r < t.

Our algorithm is based on Newton's method, a useful technique for approx
imating roots of differentiable functions. Newton's method works as follows.
Starting from an initial guess xo, compute a sequence of approximations

(38)

where l' = df /dx. For real-valued functions of a real variable, this is equiva
lent to finding the line tangent to the curve y = f(x) at Xi and taking Xi+l to
be the point where that line intersects the X axis.

In general, Newton's method is not guaranteed to converge to a root.
However, if the function is well-behaved and the initial guess Xo is close enough
to a root, then the method converges very quickly: the number of bits of
accuracy roughly doubles with each iteration. In this application, although
we are using an approximation technique, we will be using only exact binary
arithmetic (no floating point), and will obtain an exact solution.

We first show how to approximate the reciprocal t of a given number t in
binary. We will do this by approximating the root of the function

using Newton's method.

1
f(x) = t --

x

164 LECTURE 30 INTEGER ARITHMETIC IN NC

o 1 1
t

f(x) = t - ;

In this case, f'(x) = x-2 , and (38) becomes

We take as our first approximation Xo the unique fractional power of 2 in the
interval (tt, t I· This can be found in 0 (log n) time by finding the unique power
of 2 in the interval [t,2t) and taking its reciprocal by reversing the order of
the binary digits and placing a binary point after the first o. We then iterate
Newton's method to get the sequence of approximations xo, Xl, X2, These
approximations blast in toward t quickly: we start with an error of at most
tt, and at each step we roughly square the error, thus doubling the number of
bits of accuracy. This is called quadmtic convergence.

Lemma 30.2 The sequence xo, Xl, ..• obtained from Newton's method is non
decreasing and converges quadmtically to t.

Proof By definition,

or in other words,

For i 2: 0,

1
< Xo <

2t
1

t'

1 o < 1- txo < -
2

1 - t(2Xi - tXi2)

(1- tXi? .

It follows by induction that

(1 - txO)2i

< 2-2;,

LECTURE 30 INTEGER ARITHMETIC IN NC

thus

1 1
t - Xi < 22't·

From these facts we can conclude that

1 1 - < Xo < Xl < X2 < ... < - . 2t - - - -t

After k = flog log n iterations we have

t
1- tXk < -

S

From this and the fact that Xk $; t we have that

S o < - - SXk < 1. - t

165

o

Therefore the desired integer part of i is either L SXkJ or r SXk 1, and the re
mainder can be found by subtracting.

Each Newton iteration took O(logn) time (we did not do enough iterations
to let the numbers get too big) and we needed log log i = O(log n) iterations.

For some interesting ramifications of the division problem, including an
O(log n)-depth circuit for integer division under a slightly weaker uniformity
condition, see [9].

Lecture 31 Csanky's Algorithm

In 1976, Csanky gave a parallel algorithm to invert matrices [26]. This was one
of the very first NO algorithms. It set the stage for a large body of research in
parallel linear algebra that culminated with Mulmuley's 1986 result that the
rank of a matrix over an arbitrary field can be computed in NO [82].

In this lecture we will develop Csanky's algorithm. Along the way, we
give some NO algorithms for problems of independent interest, including the
calculation of the characteristic polynomial and determinant of a matrix and
the solution of linear recurrences. First we recall some basic NO algorithms:

Inner product The inner product of two vectors a = (all"" an) and
b = (bI , ... , bn) can be computed in o (log n) parallel arithmetic steps by
n processors. First, produce in parallel the products aibi, 1 ~ i ~ nj then add
the products in a treelike fashion.

Matrix multiplication If A is an m x n matrix and B is an n x p matrix,
their product AB can be computed by O(mpn) processors in O(logn) time.
AB has mp entries, each obtained as the inner product of a row of A and a
column of B.

Powers of A The powers AI, A2, . .. , An of an nxn matrix A can be obtained
as the products of prefixes of the n-component sequence (A, A, ... , A). This
can be accomplished in O(log2 n) time by O(n4) processors arranged in a

166

LECTURE 31 CSANKY'S ALGORITHM 167

parallel prefix circuit of width n in which the associative operation is n x n
matrix multiplication.

31.1 Inversion of Lower Triangular Matrices

Given an n x n lower triangular matrix A, break it up into submatrices

A = [~I~]
where B is L~J x L~J, C is r~l x L~J, and D is r~l x r~l. Recursively compute
B-1 and D-l in parallel. Then

[B-1 I 0]
A-I = -D lCB 1 D 1 .

The parallel computation time of this algorithm satisfies the relation

n n
T(n) = T("2)+2M("2)

where T(~) is the time needed to invert B and D in parallel and 2M(~) is the
time needed to form the matrix product -D-lCB-l . With O(n3) processors,
we have M(n) = O(logn), whence T(n) = O(log2 n).

31.2 Solution of Linear Recurrences

It may seem surprising that the nth term of a linear recurrence such as the
Fibonacci sequence Fo = 1, Fl = 1, Fn+2 = Fn+1 + Fn should be computable
without first computing the first n - 1 terms. In fact, the nth term of any
linear recurrence can be computed in parallel polylog time.

A general linear recurrence is a system of the form

Xl Cl

X2 a2lXl + C2

X3 a3lXl + a32X2 + C3

where the aij and Ci are given, and we wish to solve for the Xi. For example,
the Fibonacci sequence is given by the system Cl = C2 = 1 and Ci = 0 for
i ~ 3, ai,i-l = ai,i-2 = 1 for i ~ 3, and all other aij = o.

Let aij = 0 for j ~ i, let A be the n x n matrix (aij) , let X be the vector
(Xi), and let C be the vector (Ci). The system above is then equivalent to the
matrix-vector equation

Ax+c = X,

168 LECTURE 31 CSANKY'S ALGORITHM

or equivalently,

c = (I - A)x .

The matrix I - A is lower triangular with 1 's on the diagonal, and thus can be
inverted in NC by the method described in the previous section. This allows
us to solve for x:

31.3 The Characteristic Polynomial of a Matrix

We give a linear recurrence for the coefficients of the characteristic polynomial
of a given matrix A, which can then be solved by the method of the previous
section. This linear recurrence was known to Sir Isaac Newton.

The characteristic polynomial of a matrix A is defined to be

det (xl - A) xn - Sl Xn-1 + S2 Xn-2 - •.. ± Sn

n

IT(X-Ai)
i=l

where x is an indeterminate, A1,' .. ,An are the eigenvalues of A (multiplicities
counted), and det B is the determinant of B. The coefficient Sl is called the
trace of A and is denoted tr A. It is both the sum of the eigenvalues and the
sum of the diagonal elements of A:

i=l
n

Laii'
i=l

so it can be easily computed in NC. It can also be shown that Ai is an
eigenvalue of Am of the same multiplicity as Ai of A, therefore

n

trAm = LAi.
i=l

The constant coefficient Sn is the determinant of A and is the product of the
eigenvalues:

Sn det A
n

IT Ai .
i=l

LECTURE 31 CSANKY'S ALGORITHM 169

The intermediate coefficients are called the elementary symmetric polynomials
in >'1 •...• An and are given by

in other words, the sum of all products of k-element submultisets of the mul
tiset of eigenvalues of A.

Define

If L Ail Ai2 •.. AikAj .
1 :-:; i1 < ... < ik :-:; n

j (l {ii, ... ,ik}

At the extremes,

12 (n - k)Sk

If!' tr Am .

Then

n

L Ail Ai2 ... Aik) • (L Aj)
191 <···<ik:-:;n j=1

L Ail Ai2 ••. Aik Aj + L Ail Ai2 ••. Aik Aj
1 :-:; i1 < ... < ik :-:; n 1 :-:; i1 < ... < ik :-:; n

j (l {i1, ... ,ik} j E {i1, ... ,ik}

If + 1::-11 •

It follows that

Sk • tr AO - Sk-l . tr Al + Sk-2 . tr A2 - •.. ± SI • tr A k - l =F tr Ak

(f2 + Ik _11) - (fLl + 1~-2) + ... ± (ff-l + I~) =F I~

12
(n-k)Sk.

This gives a recurrence for Sk in terms of 81> ••• ,8k-l:

1 (2 k
8k = k Sk-l . tr A - 8k-2 . tr A + ... ± tr A) . (39)

The tr Am can be computed in NO by computing the powers of A using parallel
prefix and summing the diagonal elements. The recurrence (39) can then be
solved using the method of the previous section.

170 LECTURE 31 CSANKY'S ALGORITHM

31.4 Inversion of Arbitrary Nonsingular Matrices

We use the Cayley-Hamilton Theorem, which says that every matrix satisfies
its characteristic equation:

Multiplying by A-1 and rearranging terms, we get

The coefficients Sk of the characteristic polynomial and powers of A are com
puted by the method of the previous section. The matrix polynomial (40)
can be computed in time O(logn) using O(n3) processors. The complete al
gorithm to compute A-l from A runs in O(log2 n) parallel arithmetic steps on
O(n4) processors.

Lecture 32 Chistov's Algorithm

Many important computational problems in algebra (such as the solution of
polynomial equations) depend strongly on basic algorithms in linear algebra.
In turn, many problems in linear algebra reduce to the computation of the
rank of a matrix. This problem thus occupies a central position in computa
tional algebra. NO algorithms for matrix rank were given by Ibarra, Moran,
and Rosier in 1980 for matrices over the complex numbers [53] and over gen
eral fields in 1986 by Mulmuley [82]. We will devote a future lecture to this
topic, but for now we lay the groundwork by showing how to calculate the
characteristic polynomial of a matrix over an arbitrary field in NO.

The major limitation of Csanky's algorithm for computing the characteris
tic polynomial of a matrix is that it does not work in all fields, since it involves
a division by k in (39). This won't be possible for example if the field is Zp and
k is a multiple of p. Berkowitz [11] and Chistov [18] gave the first deterministic
NO algorithms for computing characteristic polynomials over arbitrary fields.
Here we present Chistov's method [18].

Recall that the characteristic polynomial of A, denoted XA(X), is defined
by:

XA(X) = det (xl - A)
xn - SlXn - 1 + S2Xn-2 - •.. ± Sn .

We will compute the polynomial that has the same coefficients, but in reverse

171

172 LECTURE 32 CHISTOV'S ALGORITHM

order:

det (I - xA) .

Define B = I - xA and let Bm denote the m x m submatrix in the lower right
corner of B:

Bn B2B1

Let Am be defined in the same way from A. Then Bm = 1m - xAm. Define
D.m = detBm·

Cramer's rule gives a useful formula for the inverse of a matrix C in terms
of determinants of its submatrices:

C-::1 = (_l)i+ j detCji

'3 det C

where Cji denotes the submatrix obtained from C by removing the lh row
and ith column. Applying Cramer's rule, we get

(B-1) = D.m- 1
m 11 D..

m

But wait, this is all a bit suspicious, since Bm and D.m contain the indeter
minate x. How can we invert a matrix with indeterminates? To make sense
of this, we have to work in the field of rational functions over the base field k.
This will let us divide by polynomials. The rational functions over k are the
formal fractions

k(x) = {~I P, q E k[x], q '" o} ,
or more accurately, the equivalence classes of such fractions obtained by iden
tifying pdq1 and P2/q2 if P1Q2 = P2Q1· This construction is 100% analogous to
the construction of the rational numbers from the integers.

Using the formal power series expansion of rational functions, the inverse
of Bm can be expressed as an infinite formal sum

00

B;;,t = LXi A!n . (41)
i=O

LECTURE 32 CHISTOY'S ALGORITHM 173

To convince yourself that this works, multiply (41) by Bm = 1m - xAm. The
expression (41) denotes a matrix of rational functions, because Bm is invertible
as a linear map over the field k(x): its determinant is D.m =f 0, as can be seen
by evaluating at x = O.

We can express 1/ D.n, the determinant of B;;l, as a telescoping product
like this:

1 D.n - 1 D.n -2 D.o
D.n D.n D.n - 1 D.1

(B;;l)11 . (B;;~l)11 ... (Bl1)11
00 00 00

(LXiA~)11' (LXiA~_l)11'" (LxiAD11 (42)
i=O i=O i=O

1 - xH(x) , (43)

where H is a humongous power series. The last step is justified by observing
that the constant coefficients of all the factors in (42) are 1, therefore the
constant coefficient of (43) is 1. Now recall that the polynomial we were
originally looking for was D.n , which is the inverse of (43). We can therefore
express D.n as a power series in terms of H (x):

00

D.n LXiH(x)i
i=O

1 - SIX + S2x2 + ... ± SnXn

and we know that the power series is a polynomial, so that all coefficients are
zero after a certain point. Thus, despite all the infinite power series we have
been using, all the terms after xn vanish in the result. Therefore if we do all
the calculations mod xn+1, and take only the first n + 1 terms of each series,
we will still get the same answer.

This can be turned into a fast parallel algorithm, and since it involves no
divisions, it will work in arbitrary fields.

32.1 The Characteristic Polynomial and Matrix
Rank

The significance of the characteristic polynomial in matrix rank calculations
is summed up in the following key lemma.

Lemma 32.1 Let B be a square matrix over a field. If rank B = rank B2,
then rank B = n - k, where Xk is the highest power of x that divides the
characteristic polynomial XB (x) .

This lemma allows us to calculate the rank of a matrix by calculating its
characteristic polynomial, provided its square has the same rank. A proper

174 LECTURE 32 CHISTOY'S ALGORITHM

proof of this lemma would span a good portion of a first course in linear
algebra, including Jordan canonical form and the Cayley-Hamilton Theorem,
so it is a bit beyond our scope. Nevertheless, here it is in a nutshell.

When an n x n matrix B acts as a linear map on the vector space kn , some
vectors may be annihilated. These form a linear subspace called the kernel of
B and denoted ker B. The dimension of this subspace is n - rank B. Vectors
that are not annihilated by B get mapped around, and some may be mapped
into the kernel, so that if the space is hit with B a second time, those vectors
will be wiped out. The proviso rank B2 = rank B in Lemma 32.1 says that
this does not happen. In other words, if a vector is ever going to be wiped
out by some power of B, then it is already wiped out by B. For any B, the
degree of the highest power of x that divides the characteristic polynomial of
B is the dimension of the subspace of all vectors that ever get wiped out by
some power of B. Thus if rank B2 = rank B, then this subspace is just the
kernel of B, and its dimension is n - rank B.

The key property here is that the degree of the highest power of x that
divides XB is the dimension of the subspace of all vectors that ever get wiped
out by some power of B. Let's give this subspace a name:

00

Eo U ker Bi
i=O

ker B n .

The last equation follows from the fact that the subspaces ker Bi are ordered
by inclusion, ker Bi = n - dim im Bi (im Bi denotes the image of the whole
space under the map Bi), and the image can only shrink in dimension n times
before it disappears completely.

Another way of stating our key property is that dim Eo is the multiplicity
of 0 as an eigenvalue of B. More generally, for each eigenvalue A of B, we can
define

00

E).. U ker (M - B/
i=O

ker (M - Bt .

The subspace E).. is called the generalized eigenspace of A, and consists of all
vectors of kn that are annihilated by some power of the matrix AI - B. The
kernel of AI - B is called the eigenspace of A.

Two nice things about the subspaces E).. are that

(i) they are setwise invariant under the action of any matrix of the form
1-'1 - Bj and

(ii) every vector can be represented uniquely as a sum of vectors, one from
each generalized eigenspace.

LECTURE 32 CHISTOV'S ALGORITHM 175

Property (i) says that hitting the subspace EA repeatedly with the matrix
AI - B does not move any vector outside of EA, but keeps shrinking it until
it finally disappears; and if 11 =I- A, then III - B is a bijection on EA' Property
(ii) says that kn is the direct sum of the subspaces E A; in symbols,

where ~ denotes isomorphism of vector spaces and EB denotes direct sum.
Now pick a new basis consisting of vectors in the subspaces EA' Under

the change of basis, because of property (i), B becomes block diagonal with
a block for each eigenvalue A. (Judicious choice of these basis elements will
even give us Jordan canonical form, with eigenvalues on the diagonal, 1's
and O's on the off-diagonal just above, and O's elsewhere). The size of the
block corresponding to A is the dimension of EA' The change of basis is
effected by a similarity transformation B I--> U- 1 BU, which does not change
the characteristic polynomial:

det (xl - U- 1 BU) det U-1(xI - B)U

det U-1 . det (xl - B) . det U

det (xl - B) .

But the characteristic polynomial of a block diagonal matrix is the product of
the characteristic polynomials of the blocks, which are (x - A)dimEA. Thus

XB(X) = II(x - A)dimEA . (44)
A

If one of the eigenvalues is 0 (i.e., if B has a nontrivial kernel), then XdimEo
and no higher power of x will divide XB. This is what we wanted to show.

This conclusion also leads to an understanding of the Cayley-Hamilton
Theorem: every matrix satisfies its characteristic equation. From (44) we get

XB(B) II (B - AI)dimEA
A

± II(AI - B)dimEA .
A

Applied to the whole space kn, the factor

wipes out EA and fixes the other generalized eigenspaces setwise. Applying
XB(B) to kn applies these factors for each eigenvalue A in succession, which
successively wipe out all the EA, leaving nothing. Thus XB(B) is the zero
matrix.

Lecture 33 Matrix Rank

Recall that the rank of an m x n matrix A over a field k is the maximum
number of linearly independent rows (or columns) of A. It is the dimension of
the image of the linear map kn -+ km defined by Ai equivalently, it is n minus
the dimension of the kernel (the set of vectors in kn annihilated by the map).

Once we have an NO algorithm to calculate the rank of a matrix, the door
is opened for a wide variety of other NO algorithms in linear algebra. For
example, to compute a basis for the vector space spanned by the columns of
some matrix, we can compute the ranks of all sets of columns {Cl,"" Gi},
1 :5 i :5 n, and add Gi to the basis only if the rank of {Cl' ... , Gi} is one greater
than the rank of {Cl,'" ,Gi-l}.

We will start with the algorithm of Ibarra, Moran, and Rosier [53], which
computes the rank of a matrix over the complex numbers C.

Recall the following lemma from the last lecture:

Lemma 33.1 Let 0 be an n x n matrix over any field. If rank 0 2 = rank C,
then we can compute rank 0 in NO by computing the characteristic polynomial
det (xl - C) and finding the highest power of x that divides it, say xd • Then
rankC =n- d.

Let A be a matrix over C, not necessarily square. The conjugate transpose
of A, denoted AT, is the transpose of A with every entry replaced by its
complex conjugate. Recall that the conjugate z of a complex number z is
obtained by reflecting in the real axis: if z = a + ib, where a and b are real,

176

LECTURE 33 MATRIX RANK 177

then z = a-ib. Note that the product zz is always a nonnegative real number:

-T
Let B = A A. We will prove that A and B have the same rank; moreover,

rank B2 = rank Band B is square, so Lemma 33.1 applies.
The matrix B is of a particularly nice form: it is Hermitian, which means

that B = BT. A Hermitian matrix is the complex analog of a symmetric
matrix.

Lemma 33.2 For any complex vector y E en, yT y = 0 iff Y = O.

yT Y (at, a2, ... ,an) . (at, a2, . .. ,an)
n

Lai·ai.
i=l

Now ai . ai is always a nonnegative real number, and it can only be zero if
ai = o. The sum of nonnegative reals can only be zero if each term, and hence
each ai, is zero. 0

Recall that the kernel of a linear map is the set of vectors that are mapped
to the origin. Thus if the linear map is represented by the matrix A, then

The rank of A is the dimension of the image of A, which is the same as
n - dim ker A. The following lemma shows that it is sufficient to find the
dimension of the kernel of AT A.

Lemma 33.3 ker A = ker AT A.

Proof.
(~) If x E ker A then Ax = 0, which implies that AT Ax = o.

-T
(2) Suppose x E ker A A. Then

ATAx=O --+ -xTATAx=O
--T

--+ (Ax) Ax = 0
--+ Ax = 0 by Lemma 33.2.

Lemma 33.4 If B is Hermitian, then rank B = rank B2.

o

178 LECTURE 33 MATRIX RANK

Proof. It suffices to show that the kernels of Band B2 coincide. Surely
ker B ~ ker B2. Now suppose x E ker B2. Then

B 2x = 0 ---> xTBBx = 0

---> x T BT Bx = 0 because B is Hermitian, so B = BT
--T

---> (Bx) Bx = 0
---> Bx = 0 by Lemma 33.2.

Therefore x E ker B. D

Putting all this together, here is the algorithm for computing the rank of A:
compute the square matrix B = AT A, compute the characteristic polynomial
using Csanky or Chistov, and find the highest power x d of x that divides it.
The rank of A is n - d. As we have seen, all these steps can be performed in
NC.

33.1 Mulmuley's Algorithm

For a complex matrix A, we showed that A, AT A, and (AT A? all have the
same rank, thus we can apply Lemma 33.1 to the square Hermitian matrix
AT A. In the special case of real matrices, this says that A, AT A, and (AT A)2
all have the same rank, and we can apply Lemma 33.1 to the symmetric matrix
ATA.

Unfortunately, this does not work for fields of finite characteristic. For
example, over the field Z5, (1,2) . (1,2) = 0; moreover, the matrix

(45)

is symmetric and of rank 1, but AT A = A2 = o.
This pathological state of affairs was partially resolved by Borodin, von

zur Gathen, and Hopcroft [15], who gave a probabilistic NC algorithm, and
Chistov [18] who gave a nonuniform deterministic algorithm. Mulmuley [82]
gave the first deterministic NC algorithm, which we describe here.

Mulmuley keeps inner products from vanishing by throwing in indetermi
nates. The idea being exploited here is that even over fields of finite charac
teristic, a polynomial expression in the indeterminate x vanishes if and only if
all its coefficients vanish; in other words, the indeterminate x is transcendental
over the field k (it is not the root of any polynomial with coefficients in k).
If not too many indeterminates are used and the degrees of the polynomials
involved are not too big, then the computations can still be done efficiently in
parallel, except that now we work symbolically, using polynomial arithmetic.
This may require another factor of n more processors, but can still be done in
NC.

LECTURE 33 MATRIX RANK 179

Officially, we will be working in the transcendental extension k(x) of k.
This is isomorphic to the field of rational functions over k described in Lecture
32. It is the smallest field that contains k and the single indeterminate x, and
is unique up to isomorphism. The rational function P / q can be represented as
the pair of polynomials (p, q), and the operations + and· in k(x) can be done
using polynomial arithmetic on the numerators and denominators:

PI + P2
ql q2
PI P2

ql q2

PIq2 + P2qI

qIq2
PIP2

qIq2

To test equality, we need to reduce these fractions to lowest terms by factoring
out the gcd of the numerator and denominator, but this can be done in NC,
as will be shown in the next lecture.

To illustrate the technique, consider the matrix A of (45) over Z5. Instead
of working with A, we can work instead with the matrix X A, where x is an
indeterminate and

Then

The matrix X has entries in k(x) and is nonsingular, therefore XA has the
same rank as A. Moreover, the matrix

(XA)2 = [1 2]2 =
2x 4x [1+4x 2+3X]

2x+3x2 4X+X2

also has rank 1 (the second row is 2x times the first). Since (X A)2, X A, and
A all have the same rank, we can apply Lemma 33.1 to X A and the problem
is solved.

This works in general. Let A be an m x n matrix, m :::: n, over an arbitrary
field k. We note that going from k to k(x) does not affect the rank of A, since
the rank of A is r iff A has a nonzero r x r minor (determinant of an r x r
submatrix), and this computation does not care whether we are over k or k(x).

We can assume without loss of generality that A is square and symmetric;
if not, we consider instead the square symmetric matrix

o A

180 LECTURE 33 MATRIX RANK

of size (m + n) x (m + n), whose rank is exactly twice that of A.
Now assume A is n x n and symmetric. Let X be the n x n diagonal matrix

with 1, X, x2 , • .• ,xn - 1 on the diagonal.

Lemma 33.5 (Mulmuley [82]) The matrices A, XA and (XA)2 all have
the same rank.

Proof. Certainly

rankXAXA ~ rankXA ~ rank A .

Since X is nonsingular, rank X AX A = rank AX A, therefore in order to show
that rank A ~ rank X AX A it suffices to show that rank A ~ rank AX A.
Assume for a contradiction that there is a vector u E k(x)n such that Au =f 0
but AX Au = o. By multiplying through by the denominators of the elements
of u, we can assume without loss of generality that u = u(x) E k[x]. Let
v = Au and let u(y) be u(x) with x replaced by a new indeterminate y. Then
v(y) = Au(y) and

v(yfXv(x) = u(yfAXAu(x) = o. (46)

But if d is the maximum degree of any element of v and t is the maximum
index for which Vt is of degree d, then the coefficient of ydxt-lxd is nonzero.
This can be seen by writing out V(y)TXv(X) as a sum

n

V(y)TXV(x) = LV(y)iXi-1V(X)i
i=l

and noting that there is exactly one nonzero term in this expression with the
monomial ydxt-lxd, which cannot be canceled. This contradicts (46). 0

Lecture 34 Linear Equations and
Polynomial GeDs

It is still open whether one can find the greatest common divisor (gcd) of two
integers in NC. In this lecture we will show how to compute the gcd of two
polynomials in NC. We essentially reduce the problem to linear algebra. First
we show how to solve systems of linear equations in NC; then we reduce the
polynomial gcd problem to such a linear system.

34.1 Systems of Linear Equations

We are given a system of m linear equations in n unknowns

anXl + a12 x 2 + ... + alnXn b1

a21 x l + a22x 2 + ... + a2nXn b2

(47)

and wish to find a solution vector Xl, ... , Xn if one exists. This is equivalent
to solving the matrix-vector equation

Ax = b (48)

where A is an m x n matrix whose ilh element is aij, x is a column vector of
n unknowns, and b is an m-vector whose ith element is bi .

We have already seen how to solve the following problems in NC:

181

182 LECTURE 34 LINEAR EQUATIONS AND POLYNOMIAL GCDs

• compute the rank of a matrix;

• find a maximal linearly independent set of columns of a matrix;

• invert a nonsingular square matrix.

The last allows us to solve the system (47) if A is square and nonsingular.
What about cases where the system is not square, or where it is square but A
is singular?

If we just wish to determine whether the system (48) has a solution at all,
we can append b to A as a new column and ask whether this matrix has the
same rank as A. If so, then b can be expressed as a linear combination of the
columns of A; the coefficients of this linear combination provide a solution x
to (48). If not, then b lies outside the subspace spanned by the columns of A
and no such solution exists.

The following NO algorithm will produce a solution to (48) if one exists.
First we can assume without loss of generality that A is of full column rank;
that is, the columns are linearly independent. If not, we can find a maximal
linearly independent set A' of columns of A; if b can be expressed as a linear
combination of columns of A, then it can be expressed as a linear combination
of the columns of A', and any solution to A'x = b gives a solution to (48) by
extending the solution vector with zeros.

Assume now that A is of full column rank. Using the same technique,
we can find a maximal linearly independent set of rows. Since the row rank
and column rank of a matrix are equal, the resulting matrix A" is square
and nonsingular, so the system A"x = b" has a unique solution, where b" is
obtained from b by dropping the same rows as were dropped from A to get
A". Either x is also a solution to (48), or no solution exists.

34.2 Resultants and Polynomial GeDs

Suppose we are given two polynomials

I(x) amxm + am_1xm-1 + ... + ao

g(x) bnxn + bn _ 1xn - 1 + ... + bo

and wish to find their gcd. The usual sequential method is the Euclidean
algorithm, which generates a sequence of polynomials

10, iI,· .. ,In ,

where 10 = I, iI = g, and 1i+1 is the remainder obtained when dividing li-1
by k In other words, 1i+1 is the unique polynomial of degree less than the
degree of Ii for which there exists a quotient qi such that

(49)

LECTURE 34 LINEAR EQUATIONS AND POLYNOMIAL GODs 183

This sequence is called the Euclidean remainder sequence. It must end, since
the degrees of the Ii decrease strictly. The last nonzero polynomial In in the
list is the gcd of I and g. This is proved by showing that a polynomial divides
li-1 and Ii iff it divides Ii and 1i+1' which is immediate from (49). It follows
that all adjacent pairs Ii, 1i+1 in the sequence have the same gcd. Since
In+! = 0, In divides In-l> therefore gcd (fn, In-1) = In and gcd (f, g) = In as
well.

One can obtain an NC algorithm using the classical Sylvester resultant
[17, 15]. This technique is based on the following relationship:

Lemma 34.1

(i) There exist polynomials sand t with deg s < deg 9 and deg t < deg I
such that gcd (f, g) = sl + tg.

(ii) For any polynomials sand t, gcd (f, g) divides sl + tg.

Proof.

(i) The proof is by backwards induction on n. For the basis, take s = 0
and t = 1. Then deg s = -1 < deg In (deg 0 = -1 by convention),
degt = 0 < deg/n-b and Sln-1 + tIn = In. For the induction step,
assume there exist sand t with degs < deg/i+1' degt < deg/;, and
sl; + tli+1 = In. Using (49), we have

In sl; + tli+1
sl; + t(f;-l - q;j;)
tli-l + (s - qi)/i .

Moreover, since degqi = deg/i-1 - deg/i' we have that degt < deg/i
and deg(s - q;) < degli-1.

(ii) Certainly gcd (f, g) divides I and g. It therefore divides any sl + tg.

o

Using Lemma 34.1, we can express the polynomial gcd problem as a prob
lem in linear algebra. Arrange the coefficients of I and 9 in staggered columns
to form a square matrix S as in the following figure, with n = deg 9 columns
of coefficients of I and m = deg I columns of coefficients of g. The figure

184 LECTURE 34 LINEAR EQUATIONS AND POLYNOMIAL GCDs

illustrates the case m = 5 and n = 4.

a5 0 0 0 b4 0 0 0 0
a4 a5 0 0 b3 b4 0 0 0
a3 a4 a5 0 ~ b3 b4 0 0
a2 a3 a4 a5 b1 b2 b3 b4 0

S al a2 a3 a4 bo b1 b2 b3 b4
ao al a2 a3 0 bo b1 ~ b3 (50)

0 ao al a2 0 0 bo b1 b2
0 0 ao al 0 0 0 bo b1

0 0 0 ao 0 0 0 0 bo

'-----v----' ...
n m

The matrix S is called the Sylvester matrix of f and g. If we multiply S on
the right by a column vector

x = (Sn-b Sn-2,·· . ,so, tm - 1, tm -2, ... ,to)T

containing the coefficients of polynomials sand t of degree at most n - 1 and
m-l, respectively, then the product Sx gives the coefficients of the polynomial
sf + tg, which is of degree at most m + n - 1.

Theorem 34.2 The matrix S is nonsingular if and only if the gcd of f and
9 is 1.

Proof.
(-+) Suppose gcd (f,g) =/: 1. Then deggcd (f,g) > O. By Lemma 34.1(ii),

there exist no s and t with sf+tg = 1, therefore the system Sx = (0, ... ,0, If
has no solution.

(+-) Suppose S is singular. Then there exists some nonzero vector x
such that Sx = O. This says there exists some pair of polynomials s, t
such that sf + tg = 0, degs < degg, and degt < degf. Then sf = -tg
and degsf = degtg < degfg. Since f and 9 both divide sf = -tg, so
does their least common multiple (lcm), thus deg lcm (f, g) < deg fg. Since
gcd (f,g) ·lcm (f,g) = fg,

deg gcd (f, g)

therefore gcd (f, g) =/: 1.

deg f 9 - deg lcm (f, g) > 0,

o

By Theorem 34.2, we can determine whether the polynomials f and 9 have
a nontrivial gcd by computing the determinant of S. This quantity is called
the resultant of f and g.

Let us now show how to compute the gcd. Suppose

gcd (f,g) = xd + Cd_1Xd-1 + Cd_2Xd- 2 + ... + CIX + Co ,

LECTURE 34 LINEAR EQUATIONS AND POLYNOMIAL GCDs 185

assuming without loss of generality that the leading coefficient is 1. Let C be
the column vector

C = (0,0, ... ,0,1, Cd-I, Cd-2, ... , CI, eo)T .

By Lemma 34.1(i), Sx = C for some x. For any e, let s(e) be the matrix
obtained by dropping the last e rows of S, and let c(e) be the vector obtained
by dropping the last e elements of c. Let u(e) be the vector of the form
(0,0, ... ,0, I)T of length m + n - e. Note that C(d) = u(d), where d is the
degree of gcd (I, g). Since Sx = c, we have

(51)

Moreover, for no e < d does

(52)

have a solution; if it did, then Sx would give a polynomial sf + tg of degree
strictly less than the degree of gcd (I, g), contradicting Lemma 34.1(ii). We
can thus find the degree d of gcd (I, g) by trying all e in parallel and taking
d to be the least e such that (52) has a solution. Once we have found d and
a solution x for (51), we are done: the solution vector x is also a solution to
Sx = c, thereby giving coefficients of polynomials sand t such that

gcd(l,g) = sf+tg = Sx.

It is interesting to note that the traditional Euclidean algorithm for poly
nomial gcd amounts to triangulation of the Sylvester matrix (50) by Gaussian
elimination.

Lecture 35 The Fast Fourier Transform
(FFT)

Consider two polynomials

I(x) ao + alX + a2x2 + ... + anxn

g(x) bo + blx + b2x2 + ... + bmxm .

We can represent these two polynomials as vectors of some length N ~ n +
m + 1. The ith element of the vector is the coefficient of Xi.

I = (aO,al,a2, ... ,an,0,0, ... ,0)
g = (bo, bI, b2, ... , bm, 0, 0, ... ,0) .

The product of I and g will then be represented by the vector

(aobo, albo + aobI, a2bo + albl + aOb2, . ..) .

This vector is called the convolution of the vectors (53).

(53)

The obvious way to compute the convolution of two vectors takes N 2 pro
cessors and log N time. We would like to reduce the processor bound to N.
To do this, we will use a different representation of polynomials. Recall that
a polynomial of degree N - 1 is uniquely determined by its values on N data
points. Thus if we have N distinct data points ~o, 6, ... , ~N-I, we can repre
sent the polynomial I by the vector

(f(~o), 1(6), 1(6),···, I(~N-l)) . (54)

186

LECTURE 35 THE FAST FOURIER TRANSFORM (FFT) 187

The nice thing about this representation is that since

we can calculate the product of two polynomials by doing a componentwise
product of the two vectors in constant time with N processors, provided the
degree of the product is at most N - 1.

The problem now is to find a way to convert from one representation to
the other. For any choice of ~i' we can convert from (53) to (54) by evaluating
the polynomials on the ~ij this amounts to multiplying (53) by the matrix

1 ~o ~3 ~~-1

1 ~l ~~ ~f" -1

1 6 ~~ ~:-1 (55)

1 ~N-l ~~-1 ~N-1
N-1

called a Vandermonde matrix. We can convert back by interpolation, which
amounts to multiplying (54) by the inverse of the matrix (55).

Judicious choice of the ~i can make this conversion very efficient. If we are
working in a field containing Nth roots of unity (roots of the polynomial xN -1)
and a multiplicative inverse of N (i.e., the characteristic of the field does not
divide N), then we can get very efficient conversion algorithms by taking the
~i to be the ~h roots of unity. For example, in the complex numbers C, let
w = e 2;,i and take ~i = Wi. These points lie uniformly spaced on the complex
unit circle (recall that to multiply two complex numbers, you add their angles
and multiply their lengths).

The Nth roots of unity form a cyclic group under multiplication. An Nth root
of unity ~ is called primitive ([3] uses the term principa~ if it is a generator of
this group, i.e. if every Nth root of unity is some power of~. Not all Nth roots
of unity are primitivej for N = 12 in C, the primitive roots are w, w5 , w7 , and
wH . The root w2 is not primitive, because its powers are all of the form W2k ,

so it is impossible to obtain odd powers of w. In general, if ~ is a primitive
root, then ~k is a primitive root if and only if k and N are relatively prime.

Over any field containing all ~h roots of unity, the polynomial xN - 1
factors into linear factors

N-1

II (x - Wi) ,

i=O

188 LECTURE 35 THE FAST FOURIER TRANSFORM (FFT)

where w is a primitive Nth root of unity. This is because each of the ~h roots
of unity is a root of xN - 1, and there can be at most N of them. Since

xN - 1 = (x - I)(XN- I + XN- 2 + ... + x + 1) ,

every ~h root of unity except wO = 1 is a root of the polynomial

N-I

Lxl .
j=O

This gives the following technical property, which we will find useful:

~I wij = {O, if i ¢ 0 mod N
j=O N, otherwise.

(56)

The N x N Vandermonde matrix (55) for these data points has as its i/h

element wij , 0::::; i,j ::::; N -1. We denote this matrix FN . When applied to a
vector containing the coefficients of a polynomial

f(x) = ao + aIX + ... + aN_IxN- I ,

FN gives the vector of values of f at the N roots of unity.

1 1 1 1 ao f(l)
1 WI w2 WN- I al few)
1 w2 w4 w2N- 2 a2 f(w2)

1 WN- I W2N- 2 w(N-I)2 aN-I f(W N- I)

The linear map represented by the matrix FN is called the discrete Fourier
transform.

The inverse of FN is particularly easy to describe: its i/h element is

Thus Flil is 11 times the Fourier transform matrix of a different primitive Nth

root of unity, namely w-I = WN- I. To show that FN and Flil are indeed
inverses, we just calculate their product, using property (56) at the critical
step:

~I ik w-kj
L....Jw·_-
k=O N
1 N-I - L Wk(i-j)

N k=O

{ I, ifi=j
0, otherwise,

LECTURE 35 THE FAST FOURIER TRANSFORM (FFT) 189

thus F N Fi/ is the identity matrix.
Now we want to find a way to compute FNf quickly, where

is the vector of coefficients of the polynomial f(x). We use a divide-and
conquer approach in which we split f into two polynomials each of size ~
(assume for simplicity that N is a power of 2), apply Fli. to each of them in

2

parallel, then combine the two results to form F N f.
Given

define

Then

f(x) fo(x) + x/I(x)

fo(x) 1o(x)ox2

/I (x) h(x) 0 x2

where 0 represents functional composition (substitute the right polynomial
for the variable in the left polynomial). Both 10 and h have degree at most
N· ~
"2 - 1. We recursIVely apply FIf to the vectors fo = (ao, a2, ... ,aN-2) and

h = (al' a3, . .. ,aN-l) to get Fli.fo and Fli./I. The primitive !!.2 th root of unity
2 2

used in the formation of Fli. is w2.
2

Now we show that the N-vector FNfo is obtained by concatenating two
copies of the ~-vector FIf1o, and similarly for /I. The ith element of FNfo is

(10 0 X2)(W i)

1o(w2i) ,

which is the ith mod ~ element of FIf1o. The argument is similar for /I.
Finally

FNf FN(jO + xiI)

FNfo + FN(X/I)

FNfo + FNx· FN/I ,

190 LECTURE 35 THE FAST FOURIER TRANSFORM (FFT)

where . represents componentwise multiplication. We have already computed
FN 10 and FN h by recursively computing the Fourier transform of two vectors
of size ~; and

so we have all we need to compute FNI.
With N processors, it takes us constant time to split 1 into 10 and it. We

then do two recursive calls in parallel to calculate F N 10 and F N h, each using
~ processors. Finally, it takes constant time to recombine the results to get
FNJ. Therefore, the algorithm uses O(logN) time and N processors.

This gives a very efficient parallel algorithm for multiplying two polynomi
als: compute their Fourier transforms, multiply the resulting vectors compo
nentwise, then take the inverse Fourier transform. The entire algorithm takes
o (log N) time and N processors.

It is interesting to ask what happens when the degrees of the polynomials
are so large that the degree of their product exceeds N - 1. The answer is that
terms that falloff the right side of the vector wrap around; in other words,
the coefficient of the term X N +i in the product is added to the coefficient of Xi.

Mathematically, what is going on is that the product of the two polynomials
is being computed modulo the polynomial xN - 1:

A fancy way of saying this is that the Fourier transform gives an isomorphism

between two N-dimensional algebras over the field k, namely the algebra of
polynomials mod xN - 1 with ordinary polynomial multiplication and the
direct product kN with componentwise multiplication.

The parallel algorithm for the FFT given here is essentially implicit in the
1965 paper of Cooley and Thkey [24], although that was well before anyone
had ever heard of NC.

Lecture 36 Luby's Algorithm

In this lecture and the next we develop a probabilistic NC algorithm of Luby
for finding a maximal independent set in an undirected graph. Recall that
a set of vertices of a graph is independent if the induced subgraph on those
vertices has no edges. A maximal independent set is one contained in no
larger independent set. A maximal independent set need not be of maximum
cardinality among all independent sets in the graph.

There is a simple deterministic polynomial-time algorithm for finding a
maximal independent set in a graph: just start with an arbitrary vertex and
keep adding vertices until all remaining vertices are connected to at least one
vertex already taken. Luby [76] and independently Alon, Babai, and Itai [6]
showed that the problem is in random NC (RNC), which means that there
is a parallel algorithm using polynomially mllllY processors that can make
calls on a random number generator such that the expected running time is
polylogarithmic in the size of the input.

The problem is also in (deterministic) NC. This was first shown by Karp
and Wigderson [59]. Luby [76] also gives a deterministic NC algorithm, but
his approach has a decidedly different flavor: he gives a probabilistic algorithm
first, then develops a general technique for converting probabilistic algorithms
to deterministic ones under certain conditions. We will see how to do this in
the next lecture.

Luby's algorithm is a good vehicle for discussing probabilistic algorithms,
since it illustrates several of the most common concepts used in the analysis
of such algorithms:

191

192 LECTURE 36 LUBY'S ALGORITHM

Law of Sum. The law of sum says that if A is a collection of pairwise
disjoint events, i. e. if An B = 0 for all A, B E A, A f:. B, then the probability
that at least one of the events in A occurs is the sum of the probabilities:

Pr(UA) = L Pr(A) .
AEA

Expectation. The expected value eX of a discrete random variable X is the
weighted sum of its possible values, each weighted by the probability that X
takes on that value:

eX = Ln·Pr(X=n).
n

For example, consider the toss of a coin. Let

X = {1, if the coin turns up heads
0, otherwise.

(57)

Then eX = ~ if the coin is unbiased. This is the expected number of heads
in one flip. Any function f(X) of a discrete random variable X is a random
variable with expectation

ef(X) Ln. Pr(J(X) = n)
n

Lf(m)· Pr(X = m) .
m

It follows immediately from the definition that the expectation function e
is linear. For example, if Xi are the random variables (57) associated with n
coin flips, then

and this gives the expected number of heads in n flips. The Xi need not be
independent; in fact, they might all be the same flip.

Conditional Probability and Conditional Expectation. The condi
tional probability Pr(A I B) is the probability that event A occurs given that
event B occurs. Formally,

Pr(A I B)
Pr(A n B)

Pr(B)

The conditional probability is undefined if Pr(B) = O.
The conditional expectation e(X I B) is the expected value of the random

variable X given that event B occurs. Formally,

e(X I B) = Ln. Pr(X = n I B) .
n

LECTURE 36 LUBY'S ALGORITHM 193

If the event B is that another random variable Y takes on a particular
value m, then we get a real-valued function £(X I Y = m) of m. Composing
this function with the random variable Y itself, we get a new random variable,
denoted £(X I Y), which is a function of the random variable Y. The random
variable £(X I Y) takes on value n with probability

L Pr(Y=m) ,
£(XIY=m)=n

where the sum is over all m such that £(X I Y = m) = n. The expected value
of £(X I Y) is just eX:

£(£(X I Y)) L£(X I Y = m) . Pr(Y = m)
m

LLn. Pr(X = n I Y = m)· Pr(Y = m)
m n

Ln. LPr(X = n/\ Y = m) (58)
n m

Ln. Pr(X = n)
n

£X

(see [33, p. 223]).

Independence and Pairwise Independence. A set of events A are in
dependent if for any subset B ~ A,

Pr(nB) = II Pr(A) .
AE8

They are pairwise independent if for every A, B E A, A i- B,

Pr(A n B) = Pr(A)· Pr(B) .

For example, the probability that two successive flips of a fair coin both come
up heads is ~. Pairwise independent events need not be independent: consider
the three events

• the first flip gives heads

• the second flip gives heads

• of the two flips, one is heads and one is tails.

The probability of each pair is ~, but the three cannot happen simultaneously.
If A and B are independent, then Pr(A I B) = Pr(A).

194 LECTURE 36 LUBY'S ALGORITHM

Inclusion-Exclusion Principle. It follows from the law of sum that for
any events A and B, disjoint or not,

Pr(A U B) = Pr(A) + Pr(B) - Pr(A n B) .

More generally, for any collection A of events,

Pr(UA)

L Pr(A) - L Pr(nB) + L Pr(nB) _ ... ± Pr(nA) .
AEA 8 ~ A 8 ~ A

181 =2 181 =3

This equation is often used to estimate the probability of a join of several
events. The first term alone gives an upper bound and the first two terms give
a lower bound:

Pr(U A) < L Pr(A)
AEA

Pr(U A) > L Pr(A) - L Pr(A n B) .
AEA A,BEA

A#B

36.1 Luby's Maximal Independent Set Algorithm

Luby's algorithm is executed in stages. Each stage finds an independent set
I in parallel, using calls on a random number generator. The set I, the set
N (I) of neighbors of I, and all edges incident to I U N (I) are deleted from the
graph. The process is repeated until the graph is empty. The final maximal
independent set is the union of all the independent sets I found in each stage.
We will show that the expected number of edges deleted in each stage is at least
a constant fraction of the edges remaining; this will imply that the expected
number of stages is O(Iogn) (Homework 10, Exercise 1).

If v is a vertex and A a set of vertices, define

N(v) {u I (u,v) E E} = {neighbors of v}
N(A) U N(u) = {neighbors of A}

uEA

d(v) the degree of v = IN(v)l.

Here is the algorithm to find I in each stage.

Algorithm 36.1

1. Create a set S of candidates for I as follows. For each vertex v in
parallel, include v E S with probability 2d(v)'

2. For each edge in E, if both its endpoints are in S, discard the one of
lower degree; ties are resolved arbitrarily (say by vertex number).
The resulting set is I.

LECTURE 36 LUBY'S ALGORITHM 195

Note that in step 1 we favor vertices with low degree and in step 2 we favor
vertices of high degree.

Define a vertex to be good if

1 1

U~v) 2d(u) > 6

Intuitively, a vertex is good if it has lots of neighbors of low degree. This will
give it a decent chance of making it into N(I). Define an edge to be good if at
least one of its endpoints is good. A vertex or edge is bad if it is not good. We
will show that at least half of the edges are good, and each stands a decent
chance of being deleted, so we will expect to delete a reasonable fraction of
the good edges in each stage.

Lemma 36.2 For all v, Pr(v E I) ~ 4d(v)'

Proof. Let L(v) = {u E N(v) I d(u) ~ d(v)}. If v E S, then v does not
make it into I only if some element of L(v) is also in S. Then

Now

Pr(v ¢ I I v E S) < Pr(3u E L(v) n S I v E S)

< L Pr(u E S I v E S)
UEL(v)

L Pr(u E S) (by pairwise independence)
UEL(v)

< L _1_
UEL(v) 2d(u)

< L _1_ (since d(u) ~ d(v))
UEL(v) 2d(v)

< d(v) !
2d(v) 2

Pr(v E I) Pr(v E I I v E S) . Pr(v E S)
111

> "2' 2d(v) 4d(v) .

Lemma 36.3 If v is good, then Pr(v E N (I)) ~ l6.
Proof. If v has a neighbor u of degree 2 or less, then

Pr(v E N(I)) > Pr(u E I)
1

> 4d(u) (by Lemma 36.2)

1 > -
8

o

196 LECTURE 36 LUBY'S ALGORITHM

Otherwise d(u) ~ 3 for all u E N(v). Then for all u E N(v), 2d(u) :::; ~, and
since v is good,

1 1 L ->-.
UEN(v) 2d(u) - 6

There must exist a subset M(v) ~ N(v) such that

Then

Pr(v E N(I))

~ < L _1_ < ~
6 - UEM(v) 2d(u) - 3

> Pr(3u E M(v) n J)

> L Pr(u E I) - L Pr(u E JAw E I)
UEM(v) u,w E M(v)

ui-w

(by inclusion-exclusion)
1 L 4d(u) - L Pr(u E SAw E S)

UEM(v) u,w E M(v)

>

ui-w

1 L 4d(u) - L Pr(u E S) . Pr(w E S)
UEM(v) u,w E M(v)

>

ui-w

(by pairwise independence)
1 1 1

UE~V) 4d(u) - UE~V)WEt:(V) 2d(u) . 2d(w)

(L _1_). (~_ L _1_)
UEM(v) 2d(u) 2 wEM(v) 2d(w)

1 1 1
~ 6 6 36 by (59).

We will continue the analysis of Luby's algorithm in the next lecture.

(59)

o

Lecture 37 Analysis of Luby's Algorithm

In the previous lecture we proved that for each good vertex v, the probability
that v is deleted in the current stage is at least -h. Recall that a vertex v is
good if

1 1

"E~V) 2d(u) > 6 (60)

(intuitively, if it has lots of neighbors of low degree), and that an edge is good
if it is incident to at least one good vertex. Since the probability that a good
edge is deleted is at least as great as the probability that its good endpoint is
deleted (if both its endpoints are good, so much the better), a good edge is
deleted with probability at least -h.
Lemma 37.1 At least half the edges in the groph are good.

Proof. Direct each edge toward its endpoint of higher degree, breaking ties
arbitrarily. Then each bad vertex has at least twice as many edges going out
as coming in, since if not then at least a third of the vertices adjacent to v
would have degree d(v) or lower, and this would imply (60).

Using this fact, we can assign to each bad edge e directed into a bad
vertex va pair of edges (bad or good) directed out of v so that each bad edge
is assigned a unique pair. This implies that there are at least twice as many
edges in all as bad edges. Equivalently, at least half the edges are good. 0

197

198 LECTURE 37 ANALYSIS OF LUBY'S ALGORITHM

We can now argue that the expected number of edges removed at a given
stage is at least a constant fraction of the number of edges present.

Theorem 37.2 Let the random variable X represent the number of edges
deleted in the current stage. Then

£X > ~.
- 72

Proof Let G denote the set of good edges. For e E E, define the random
variable

X = {I, if e is deleted
eO, otherwise.

Then X = ~eEE X e , and by linearity of expectation,

£X L£Xe
eEE

> L£Xe
eEG

> L~ (by Lemma 36.3)
eEG 36

IGI
36

> lEI (by Lemma 37.1).
72

o

We have shown that we can expect to delete at least a fixed fraction of
the remaining edges at each stage. This implies that the expected number
of stages required until all m edges are deleted is O(logm). We leave this
argument as a homework exercise (Homework 10, Exercise 1).

37.1 Making Luby's Algorithm Deterministic

As described in the last lecture, each stage of Luby's algorithm makes n in
dependent calls on a random number generator, one for each vertex. We can
think of the call for vertex u as a flip of a biased coin with Pr(heads) = 2d(u)

and Pr(tails) = 1 - 2d(u)" It can be shown that !1(n) truly random bits (in
dependent flips of a fair coin) are necessary to generate these n independent
biased coin flips.

However, a quick check reveals that the analysis of Luby's algorithm never
used the independence of the biased coin flips, but only the weaker condition

LECTURE 37 ANALYSIS OF LUBY'S ALGORITHM 199

of pairwise independence. Recall from the last lecture that a collection of
events A are independent if for all subsets B ~ A,

Pr(n B) = n Pr(A) ;
AE8

for pairwise independence, this only has to hold for subsets B of size two.
After observing that only pairwise independence was necessary for the

analysis, Luby made the beautiful observation that only O(log n) truly random
bits are needed to generate the n pairwise independent biased coin flips. This
leads to a deterministic NC algorithm: in parallel, consider all possible bit
strings of length O(logn) representing all possible outcomes of O(logn) flips
of a fair coin (there are only 20 (logn) = nOel) of them). Use each such bit string
to generate the n pairwise independent biased coin flips as if that string were
obtained from a random number generator, and carryon with the algorithm.
Since we expect to delete at least a constant fraction of the edges, one of
the deterministic simulations must delete at least that many edges. Pick the
one that discards the most edges and throw the other parallel computations
out, then repeat the whole process. Everything is deterministic and at least
a constant fraction of the edges are removed at each stage.

Here is how to simulate the n pairwise independent biased coin flips with
O(log n) independent fair coin flips. Let p be a prime number in the range n
to 2n (such a prime exists by Bertrand's postulate; see [49, p. 343]). Assume
the vertices of the graph are elements of the finite field Zp. For each vertex
u, let au be an integer in the range 0 ~ au < p such that the fraction ~ is as

close as possible to the desired bias 2d(u)' (We will not get the exact bias 2d(u) ,

but only the approximation ~. This will be close enough for our analysis.)
Let Au be any subset of Zp of size au. To simulate the biased coin flips,

choose elements x and y uniformly at random from Zp and calculate x + uy in
Zp for each vertex u. Declare the flip for vertex u to be heads if x + uy E Au,
tails otherwise.

Note that the random selection of x and y, since they are chosen with
uniform probability from a set of size p, requires 2logp = O(logn) truly
random bits.

For each z, y E Zp, there is exactly one x E Zp such that x + uy = z,
namely x = z - uy. Using this fact at the critical step, we calculate the
probability of heads for the vertex u:

Pr(x + uy E Au)
1 r I{(x, y) I x + uy E Au}1

1 r L: I{(x,y) I x + uy = z}1
ZEAu

1 - L: p r ZEAu

200 LECTURE 37 ANALYSIS OF LUBY'S ALGORITHM

au
p

Finally, we show pairwise independence. For any u, v, z, w E Zp, u # v,
there is exactly one solution x, y to the linear system

over Zp, since the matrix is nonsingular. Thus

Pr(x + uy E Au /\ x + vy E A,,)
1

p2 I{(x,y) I x +uy E Au /\ x +vy E A,,}I
1

p2 L L I{(x,y) Ix+uy=z/\x+vy=w}1
zEA" wEAv

12 L L 1
P zEAuwEAv

aua"
p2

Pr(x + uy E Au) . Pr(x + vy E A,,)

We have seen how to generate up to p pairwise independent events with only
2logp truly random bits. A generalization of this technique allows us to
generate up to p d-wise independent events with only dlogp truly random
bits: pick xo, ... ,Xd-l E Zp uniformly at random; the uth event is

Xo + XIU + X2U2 + ... + Xd_lUd-1 E Au.

The analysis of this generalization is left as an exercise (Homework 10, Exercise
2).

Lecture 38 Miller's Primality Test

Factoring integers into their prime factors is one of the oldest and most im
portant computational problems. It is a problem that goes back to Euclid and
is still thriving today. It is generally assumed that factoring is computation
ally intractible, and many modern cryptographic protocols are based on this
assumption. If someone discovered an efficient factoring algorithm tomorrow,
there would be a lot of unhappy CIA and KGB agents around.

A simpler related problem is testing whether a given number n is prime.
Primality tests have been given by Miller [81], SchOnhage and Strassen [96],
Rabin [89], and Bach [8] to mention a few. We will develop Miller's primality
test in this and the next lecture. It is a polynomial-time probabilistic test
with the following probabilistic behavior:

• If n is prime, the algorithm answers "prime" with probability 1.

• If n is composite, the algorithm answers "composite" with probability
at least ~.

Thus, if we run Miller's algorithm on input n and it responds "composite",
then we are sure that n is composite, and we can stop. If on the other hand the
algorithm answers "prime" , then we are not sure, but we can run the algorithm
again. Assuming our source of randomness provides truly independent trials,
if we run the algorithm 25 times and it answers "prime" each time, then we
can be 99.99999702% certain that n is indeed prime.

201

202 LECTURE 38 MILLER'S PRIMALITY TEST

Adleman and Huang [1] have given a complementary probabilistic algo
rithm that recognizes composites with probability 1 and primes with proba
bility at least ~. It is still unknown whether primes can be recognized deter
ministically in polynomial time.

Miller's algorithm gives rise to a deterministic polynomial-time algorithm
under the Extended Riemann Hypothesis (ERH), a famous unverified conjec
ture of analytic number theory dealing with the distribution of zeros of certain
analytic functions in the complex plane. The ERH is a stronger version of the
Riemann Hypothesis, which states that the zeros of the Riemann zeta function

00

(s) = L n-s

n=l

all lie on the line ~(s) = ~ (~(.) = "real part of"). We will not treat the
deterministic version here.

Miller's algorithm is quite simple:

Algorithm 38.1 (Miller's Primality Test) Given n ~ 1:

1. Let n - 1 = 2em, m odd.

2. Choose a random number a E {1, 2, ... , n - 1}.

3. Calculate am mod n. If am == l(n), halt and output "prime".

4. Calculate am, a2m , a4m , ... ,a2em = an - 1 modulo n by repeated
squaring. If an - 1 ¢. l(n), halt and output "composite".

5. Find the largest k such that a2km ¢. l(n). If a2km == -l(n), output
"prime" , otherwise output "composite".

Theorem 38.2

(i) If n is prime, then Algorithm 38.1 always outputs ''prime''.

(ii) If n is composite, then Algorithm 38.1 outputs "composite" with proba
bility at least ~.

Proof of (i). Suppose n is prime. If the algorithm halts and outputs
"prime" in step 3, then there is nothing to prove, so suppose the algorithm
gets to step 4. Fermat's Theorem states that if n is prime and a is relatively
prime to n, then an - 1 == l(n) (read "an - 1 is congruent to 1 mod n"), thus the
algorithm does not answer "composite" in step 4, so the algorithm proceeds to
step 5. Now we use the fact that for n prime, the ring Zn of integers modulo
n is a field, so all nonzero elements have a multiplicative inverse. In any field,
a polynomial of degree d has at most d roots; thus in Zn, the polynomial
x2 - 1 has roots 1 and -1 only (note -1 == n - l~n)). Therefore, if k is
the largest number such that a2km ¢. l(n), then (a2 m)2 = a2k+1m == l(n),
therefore a2km == -l(n) and the algorithm answers "prime" in step 5. 0

LECTURE 38 MILLER'S PRIMALITY TEST 203

What happens if n is composite? In order to handle this case, we will need
some elementary number-theoretic machinery. We will break the argument
up into two cases, depending on whether or not n is a Carmichael number. A
Carmichael number is a composite number that looks like a prime as far as
Fermat's Theorem is concerned. We begin with a very basic but important
lemma.

Lemma 38.3 The following are equivalent:

(i) a and n are relatively prime; i.e., (a, n) = 1 (recall (a, n) stands for the
gcd of a and n};

(ii) a is invertible modulo n; i.e., there exists an s such that as == I(n).

Proof.

Let

(a, n) = 1 +-4 3s, t as + nt = 1 by the Euclidean algorithm

+-43snl(I-as)

+-4 3s as == I(n) .

z: = {a E Zn I (a, n) = I} .

o

Under multiplication modulo n, this set forms a group: it is closed under
multiplication, since if two numbers share no common factor with n, then
neither does their product; and Lemma 38.3 implies that any element of Z:
has a multiplicative inverse in Z:.

The group Z: is known as the group of invertible elements modulo n. Its
order, the number of integers between 0 and n that are relatively prime to n,
is denoted cp(n). The function cp is often called the Euler totient function.

If n is prime, then cp(n) = n - 1 and Z: = {I, 2, ... , n - I}, since every
positive number less than n is relatively prime to n. If n is composite, then
cp(n) < n - 1. It can be show without too much difficulty that if the prime
factorization of n is rr~=l p~;, then

k

cp(n) = IIp~;-l(pi - 1) .
i=l

For example, Zi2 = {I, 5, 7, 11} and Zi5 = {I, 2, 4, 7, 8,11,13, I4}. The mul
tiplication table for Zi2 is

I . II 1 I 5 I 7 111 I
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5

11 11 7 5 1

204 LECTURE 38 MILLER'S PRIMALITY TEST

Lemma 38.4 If m and n are relatively prime, then Z';'n and Z,;. x Z: are
isomorphic as groups.

Proof. By the Chinese Remainder Theorem, Zmn and Zm x Zn are iso
morphic as rings under the map

a t-+ (a mod m,a mod n) .

This map specializes to a group isomorphism between Z';'n and its image when
restricted to domain Z';'n. But

a E Z!n - (a,mn) = 1 - (a,m) = 1 - (a-mt,m) = 1 for any t - a modm E Z!,

and similarly,

amodn E Z: .
Thus the image of the map is Zm x Zn. o

Fermat's Theorem says that if n is prime and a E Z:, then an- 1 == l(n).
This is true because for n prime, Z: is a group of order n - 1 under multipli
cation mod n, thus the order of every subgroup must divide n - 1, including
the cyclic subgroup generated by a. Thus if m is the least number such that
am == l(n), then min - 1 and an - 1 == l(n).

If n is composite and a E Zn - Z:, then an- 1 ¢ l(n), since otherwise a
would have an inverse mod n (namely an - 2), which would contradict Lemma
38.3. If n is composite and a E Z:, then it mayor may not be the case that
an - 1 == l(n).

Definition 38.5 A composite number n is called a pseudoprime with respect
to a E Z: if an - 1 == l(n). A composite number n is called a Carmichael
number if n is pseudoprime with respect to all a E Z:. 0

It is unknown whether infinitely many Carmichael numbers exist (see [49,
p. 72]). For the purposes of Algorithm 38.1, Carmichael numbers are bad,
because Fermat's test an - 1 == l(n) is not going to help much in distinguishing
them from primes.

For the remainder of this lecture, we will prove Theorem 38.2(ii) for the
case n not a Carmichael number. We will show that if n is not a Carmichael
number, i.e. ifthere exists an a E Z: such that an - 1 ¢ l(n), then at least half
the elements of Z: satisfy this property, so the probability of the algorithm
hitting one in step 2 and thus answering "composite" in step 4 is pretty good.

LECTURE 38 MILLER'S PRIMALITY TEST 205

Definition 38.6 For fixed n, define

o

Surely lCd ~ Z:, since every element a E lCd is invertible (its inverse is ad-i).
Moreover, lCd forms a subgroup of Z:, since it is the kernel of the group
homomorphism a 1-+ ad.

Proof of Theorem 38. 2 (ii) for n not a Carmichael number. If n is composite
but not a Carmichael number, then lCn - i =I Z:. But since lCn - i is a subgroup
of Z:, its order must divide that of Z:, thus

Thus with probability at least ~, the random choice of a in step 2 gives an a
in Zn - lCn- i . In this case, the algorithm will answer "composite" in step 4.

o
We treat the remaining case, n a Carmichael number, in the next lecture.

Lecture 39 Analysis of Miller's Primality
Test

Last time we were engaged in proving the correctness of:

Algorithm 39.1 (Miller's Primality Test) Given n ~ 1:

1. Let n - 1 = 2em, m odd.

2. Choose a random number a E {I, 2, ... ,n - I}.

3. Calculate am mod n. If am == l(n), halt and output "prime".

4. Calculate am, a 2m , a4m , ••. , a2em = an - 1 modulo n by repeated
squaring. If an - 1 ¥= l(n), halt and output "composite".

5. Find the largest k such that a2km ¥= l(n). If a2km == -1(n), output
"prime" , otherwise output "composite".

Theorem 39.2

(i) If n is prime, then Algorithm 39.1 always outputs "prime".

(ii) If n is composite, then Algorithm 39.1 outputs "composite" with proba
bility at least ~.

Recall from last time the definitions of the multiplicative groups

z: {a E Zn I (a, n) = I}
/Cd {a E Z: I ad == l(n)}

206

LECTURE 39 ANALYSIS OF MILLER'S PRIMALITY TEST 207

and that a composite number n is a Carmichael number if Kn - 1 = Z:. Last
time we proved Theorem 39.2(i) and (ii) for the case n not a Carmichael
number. In this lecture we complete the proof of Theorem 39.2.

The idea behind this case is that if n is a Carmichael number, then it
has at least two distinct prime factors, and if it has exactly k distinct prime
factors all different from 2, then Z: contains exactly 2k square roots of unity.
Moreover, the probability of seeing a weird square root of unity (one not equal
to 1 or -1) in step 5 is at least as good as the probability of seeing 1 or -1.

Lemma 39.3 Prime powers pd, d ~ 2, cannot be Carmichael numbers.

Proof. Consider pd-l + 1. Surely pd-l + 1 and pd are relatively prime, and
computing modulo pd,

(pd-l + l)pd-1 ~~l (pd ~ 1) p(d-l)i

1 + (pd _ l)pd-l

1- pd-l

¢ 1.

o

By Lemma 39.3, if n is a Carmichael number, then it has at least two distinct
prime factors. We now wish to show that if n has exactly k distinct prime
factors all different from 2, then Z: contains exactly 2k distinct square roots
of unity.

Example 39.4 Consider n = 15 with prime factors 3 and 5. By the Chinese
Remainder Theorem, Z15 and Z3 x Z5 are isomorphic under the map

X f---> (x mod 3, x mod 5) . (61)

The correspondence between the elements of Z15 and the pairs (i, j) of Z3 x Z5
is given in the table below. Note that every pair (i,j) occurs exactly once.

Certainly 1 and -1 = 14 are square roots of 1 mod 15. Under the isomorphism
(61), these correspond to the pairs (1,1) and (2,4). But note that if we
exchange second components, the pairs (1,4) and (2,1) square to give 1 as
well (recall multiplication in a direct product is componentwise). Looking in
the table above, we see that (1,4) and (2, 1) correspond under the isomorphism
(61) to 4 and 11 respectively, and 42 = 16 == 1(15) and 112 = 121 == 1(15).

o

208 LECTURE 39 ANALYSIS OF MILLER'S PRIMALITY TEST

In general, if n = ptip~2 ... p%k is the prime factorization of n, then

(62)

and (ai,'" ,ak) is a square root of unity in Z di x ... x Z d k iff each ai is a
Pi Pk

square root of unity in Zp~i' Since any Zpd has at least two square roots of

unity 1 and -1 (provided pd i- 2; but if 2 divides n then we already know that
n is composite), Zn has at least 2k square roots of unity, one corresponding
to each vector of the form (Ut, ... , Uk), where Ui E {-1, 1}. In fact, it has
exactly 2k, because Zpd has exactly two, although we do not need to know
this for the purposes of Theorem 39.2.

Fact 39.5 If p is an odd prime, then the ring Zpd has exactly two square roots
of 1, namely 1 and -1.

Proof If a2 == 1(Pd), then (a - 1)(a + 1) = a2 - 1 == O(pd), thus pd I
(a - 1)(a + 1). Since p i- 2, p cannot divide both a - 1 and a + 1. Thus
pd I a - 1 or pd I a + 1, therefore either a == 1(Pd) or a == _1(pd). 0

Recall that n - 1 = 2em where m is odd. We wish to show now that
each element b E K2e is equally likely to be hit by choosing a random element
a E Z: and raising it to the mth power. The following lemma will be useful.

Lemma 39.6 If c and d are relatively prime, then

Proof Consider the map

It is easily shown that this is a group homomorphism Ked --+ Kc X Kd • It is
one-to-one, since if sand t are integers such that sc + td = 1, then

(ad, aC) = (bd, bC) --+ asc+td = bscHd

--+ a=b.

It is onto, since for any a E Kc , b E Kd ,

atbs 1--+ (atdbsd, atcbSC)

(atd , bSC)
(asc+td, bsc+td)

(a, b) .

o

LECTURE 39 ANALYSIS OF MILLER'S PRIMALITY TEST 209

By Lemma 39.6,

ICn - l = IC2em

~ IC2e X ICm ,

with the isomorphism given by a 1--+ (am ,a2e). The image of ICn - l under the
map a 1--+ am is therefore IC2e, and the kernel of this map is ICm. The inverse
image of any b E IC2e is a coset of ICm and is the same size as ICm . Therefore,
by choosing an a E ICn - l at random and raising it to the mth power, we are
equally likely to hit any b E IC2e.

Now arrange the elements of IC2e in a tree with edges (a, a2). The root of
the tree is the element 1, and the elements at level d are all the elements of
IC2d. The elements at level 1 are all the square roots of unity. If w is a square
root of unity, w # 1, let Tw be the set of elements above w in this tree; these
are the b E IC2e such that b2d = w for some d ~ o.

~ w -w -1

1

As shown, if a is a random element of Z:, then am is equally likely to be any
element of this tree. In step 4, we repeatedly square the element, and this
corresponds to moving down in the tree level by level. The algorithm responds
"composite" correctly in step 5 iff this process eventually encounters a weird
square root of unity w (one other than 1 or -1). Thus we will be done if we
can show that the probability that a randomly chosen element of this tree is
in Tw for some weird w is at least as great as the probability that it is in T-l
or 1. This follows immediately from the following lemma and the fact that
there are at least two weird square roots of unity:

Lemma 39.7 Ifw2 = 1, then ITwl ~ IT_11.
Proof. We again make use of the Chinese Remainder Theorem. For any

square root of unity w # 1, let £(w) be the height of the tree Tw; thus £(w)
is the maximum number for which there exists an a such that a2l(W) == w(n).
Then

£(w) ~ £(-1),

since if w, a, and b correspond under the isomorphism (62) to

w 1--+ (-1, -1, ... , -1, 1, 1, ... ,1) -------- j k-j
a 1--+ (al' a2, .. . ,aj, aj+l,· . . , ak)
b 1--+ (al,a2, ... ,aj,a~+1' ... ,a~)

(63)

210 LECTURE 39 ANALYSIS OF MILLER'S PRIMALITY TEST

respectively, and if a2d == -1(n), then b2d == w(n).
Now

l(w)

ITwl I U{aEZ: la2d =w}1
d=O

l(w)

L I{a E Z: I a2d = w}1
d=O
l(w)

LIK2d l;
d=O

the last equation holds because the set

{a E Z: I a2d = w}

is a coset of the subgroup K2d, therefore has the same cardinality: if c2d = w,
then

and the map a f-+ ca gives a one-to-one correspondence.
It follows from (63) that

o

By Lemma 39.7, given that the a selected in step 2 is in Z:, the probability
is at least ~ that the algorithm will encounter a weird square root of unity in
step 4 and thus answer "composite" in step 5. If the a chosen in step 2 is not
in Z:, then the algorithm will answer "composite" in step 4. This completes
the proof of Theorem 39.2.

Lecture 40 Probabilistic Tests with
Polynomials

In this lecture, we give a useful probabilistic technique for testing properties
that are equivalent to the vanishing of some polynomial of low degree. This
technique has many interesting applications, not only in algebraic algorithms,
but also in graph theory and combinatorics. Several examples of its use will
be given later.

Good deterministic algorithms sometimes require considerable effort to
program, whereas "quick and dirty" methods involving random choices are
often just as good in practice. For example, it is quite difficult to test deter
ministically whether a multivariate polynomial given by a straight-line pro
gram is identically zero; however, there is a fast probabilistic test: evaluate
the polynomial on a randomly chosen input and check whether the result is
O. If not, the polynomial is certainly not identically 0; if so, chances are good
that it is.

The technique is based on the following theorem due to Zippel [111] and
independently to Schwartz [92]. It says essentially that the solutions of a
multivariate polynomial equation of low degree are sparse. Intuitively, this
theorem is true over the real numbers for any polynomial, regardless of degree:
the set

211

212 LECTURE 40 PROBABILISTIC TESTS WITH POLYNOMIALS

is a surface of dimension n - 1. For example, a linear equation
n

Laixi = a
i=l

describes a hyperplane; in three dimensions, the quadratic equation

X2 + y2 _ Z2 = 0

describes the surface of a cone. A randomly chosen point with respect to
almost any reasonable probability distribution will almost certainly not lie on
that surface. Under the degree restriction, the theorem is also true over other
fields besides the reals, including finite fields.

Theorem 40.1 Let k be a field and let S ~ k be an arbitrary subset of k.
Let p(x) be a polynomial of n variables x = Xl, ... ,Xn and total degree5 d with
coefficients in k. Then the equation p(x) = 0 has at most d . ISln-1 solutions
in sn.

Proof. The proof is by induction on nand d. For n = 1, the result follows
from the fact that a univariate polynomial of degree d can have no more than
d roots in k. For d = 1, we need to show that a hyperplane

(64)

in kn can intersect sn in at most ISln-1 points. Pick some ai i' 0, say without
loss of generality al i' O. Then for all solutions x of (64),

1 n
Xl = -(a - LaiXi) ,

al i=2

therefore the value of Xl is uniquely determined by the values of X2, . .. ,Xn .

There are exactly ISln-1 assignments to X2, ... ,Xn from S, thus at most ISln-1
solutions to (64).

Now suppose we have a polynomial p of degree d > 1 with n > 1 variables.
If p is not irreducible, i.e. if p has a nontrivial factorization p = qr into two
polynomials q and r of lower total degree, then by the induction hypothesis, q
has no more than degq·ISln-1 zeros in sn and r has no more than degr·ISln-1
zeros in sn. But p(a) = 0 iff q(a)r(a) = 0 iff either q(a) = 0 or r(a) = 0, thus

{zeros of pin sn} = {zeros of q in sn} U {zeros of r in sn} .

It follows that

I{zeros of pin sn}1
I{zeros of q in sn} U {zeros of r in sn}1

< I{zeros of q in sn}1 + I{zeros of r in sn}1
< degq ·ISln-1 + degr ·ISln-1

(degq + degr) ·ISln-1

d ·ISln-1 .

5Maximum degree of any term.

LECTURE 40 PROBABILISTIC TESTS WITH POLYNOMIALS 213

Finally, we are left with the case that p is irreducible of degree d > 1 with
n+l variables Xl, ... ,xn+1. Let x = xI, ... ,xn. Thenp = p(x,Xn+1). For each
s E S, consider the polynomial p(x, s) E k[x]. By the induction hypothesis,
p(x, s) has at most d ·ISln-l zeros in sn (unless p(x, s) is identically zero; but
we show below that this cannot happen if p is irreducible). Since p(x, s) has
at most d ·ISln-l zeros in sn, p has at most lSI· d ·ISln-l = d· ISln zeros in
sn+1.

To show that p(x, s) is not identically zero, we show that if it were, then
the polynomial xn+1 - s would divide p, contradicting the irreducibility of p.
Suppose then that p(x, s) = o. Collect terms of p with like powers of Xn+1 so
that p is expressed as a polynomial in X n +1 with coefficients in the polynomial
ring k[x]. Divide p by the polynomial Xn+1 - s using ordinary polynomial
division with remainder. Then

p(x,Xn+1) = q(x,Xn+1)(xn+1- s)+r

where the degree of the remainder r is less than the degree of the divisor
Xn+1 - S, so r is a constant. Evaluating both sides of the equation at Xn+1 = s,
we get that r = o. Thus

p(x, Xn+1) = q(x, Xn+1) (Xn+1 - s) ,

contradicting the irreducibility of p. o

The following corollary is immediate.

Corollary 40.2 Let P(Xl' X2, . .. ,xn) be a nonzero polynomial of degree d with
coefficients in a field k, and let S ~ k. If p is evaluated on a random element
(SI, ... , sn) E sn, then

d
< lSI·

40.1 Applications

We give three applications of Theorem 40.1 and Corollary 40.2: finding perfect
matchings, testing isomorphism of labeled trees, and computing the rank of a
matrix over a finite field.

Perfect Matchings

We know how to test for the existence of a perfect matching in a bipartite
graph G and find one if it exists in polynomial time. It is unknown whether this
problem is in NC. However, the following approach, based on an observation
of Lovasz [74], gives a random NC algorithm.

Assign to each edge (i, j) of G an indeterminate Xij and consider the n x n
bipartite adjacency matrix X with these indeterminates instead of 1 'so For
example,

214 LECTURE 40 PROBABILISTIC TESTS WITH POLYNOMIALS

1~1
2 2

3 3
The determinant det X is a polynomial of degree n in the indeterminates Xij

with one term for each perfect matching, and none of these terms cancel. For
example, the graph above has two perfect matchings

1~1
2 2

3 3
2X2
3 3

corresponding to the two terms of the determinant

det X = X12X23X31 - XnX23X32 .

Thus G has a perfect matching iff det X is not identically O. This is difficult to
test deterministically, since det X may be quite large. Chistov's or Berkowitz'
algorithm gives a polylog-depth circuit with inputs Xij that computes the value
of det X for any specialization of the indeterminates Xij, but it is difficult to
test deterministically whether all such specializations give O.

However, we can test this in RNC by assigning randomly chosen elements
of a large enough finite field (say Zp, where p is some prime greater than
2n) to the Xij, and then asking whether the determinant evaluated at those
random elements is O. This will happen with probability 1 if det X is indeed
identically 0, and with probability at most 2: = ~ if not, by Corollary 40.2.

Given the ability to test for the existence of a perfect matching, we can
then find one by deleting edges one by one and testing for the existence of a
perfect matching without that edge.

Isomorphism of Unordered Directed Trees

Here is an efficient probabilistic test for deciding whether two unordered6

directed trees of height h and size n are isomorphic. Associate with each
vertex va polynomial fv in the variables xo, Xl, ..• , Xh inductively, as follows.
For each leaf v, set fv = Xo. For each internal node v of height k with children
VI, ... ,vm , set

fv = (Xk - fVl)(Xk - fV2) ... (Xk - fvm) .

The degree of fv is equal to the number of leaves in the subtree rooted at
v. Using the fact that polynomial factorization is unique, it can be shown
that two trees are isomorphic iff the polynomials associated with the roots
of the trees are equal. This gives an efficient probabilistic test for unordered
tree isomorphism: test whether the difference of these two polynomials is
identically zero by evaluating it on a random input.

6 A directed tree is ordered if the left-to-right order of each node's children is given.

LECTURE 40 PROBABILISTIC TESTS WITH POLYNOMIALS 215

Matrix Rank

Mulmuley's algorithm computes the rank of a matrix over an arbitrary field k.
Recall that for a square matrix A, if rank A = rank A2, then rank A is given
by the index of the last nonzero term in the characteristic polynomial of A.
I.e., if

XA(>') = >.n - Sl>.n-l + S2>.n-2 - ... ± sr>.n-r

where Sr f. 0, then rank A = r. If rank A f. rank A2 and we are working
in the complex numbers, then we can take AT A, where AT is the conjugate
transpose of A. As shown in Lecture 33, this matrix has the same rank as
A and the same rank as its square. Over finite fields, however, this does not
work. Mulmuley's algorithm closes this gap, but his construction introduces
an extra indeterminate, and dealing with the resulting symbolic expressions
requires more processors.

Here is a probabilistic approach suggested in [15] that saves a factor of n
in the processor bound over Mulmuley's deterministic algorithm. Multiply A
on the left by a random matrix R. The elements of R are chosen uniformly at
random from a sufficiently large set. By Corollary 40.2, R is nonsingular with
high probability: R is singular if and only if its determinant vanishes, and this
is a polynomial equation of low degree. Therefore, with high probability, RA
has the same rank as A, since the rank of RA is the dimension of the image
of RA as a linear map.

We argue also that with high probability, RA and (RA)2 have the same
rank, allowing us to compute the rank from the characteristic polynomial of
RA as in Lemma 32.1.

Let r = rank A. The condition

rank (RA? = rank RA = rank A (65)

is equivalent to the condition that the subspaces im RA and ker A are of
complementary dimension and intersect in the trivial subspace 0; in other
words, that every vector in kn can be represented uniquely as the sum of a
vector in im RA and one in ker A. In symbols,

kn ~ im RA EB ker A (66)

where EB denotes direct sum and ~ denotes isomorphism of vector spaces.
Now select a basis for im A among the columns of A. These columns

will comprise an n x r matrix B. Let 0 be an n x (n - r) matrix whose
columns span ker A. Then condition (66) is equivalent to the condition that
the n x n matrix [RBIC] formed by juxtaposing the columns of RB and 0
is nonsingular; equivalently, det [RBIO] f. O. By Corollary 40.2, this occurs
with high probability.

The beauty of this approach is that we never need to compute B or 0; we
are happy enough just knowing that they exist.

II Homework Exercises

HOMEWORK 1 219

Homework 1

1. (a) Let (S,I) be a matroid and let A ~ S. Prove that all maximal
independent subsets of A have the same cardinality. (This number is
called the mnk of A. The rank of the matroid is the rank of the set
s.)

(b) Let I be a maximal independent set and let x rf- I. Prove that there
is a unique cycle contained in I U {x}. (This is called the fundamental
cycle of x and I.)

(c) Let G = (V, E) be an undirected graph, not necessarily connected.
Consider the system (E,I), where I consists of all subsets E' ~ E
such that the subgraph (V, E') has no cycles. Show that (E, I) is a
matroid. What is its rank? What are its maximal independent sets?

2. Let G = (V, E) be a directed graph. A tmnsitive reduction or Hasse di
agmm of G is a subgraph GH = (V,EH) with minimum number of edges
such that E and EH have the same transitive closure.

(a) Prove that if G is acyclic, then the transitive reduction of G is unique.

(b) Give an efficient algorithm to find the transitive reduction of G in
case G is acyclic. Your algorithm should have roughly the same com
plexity as transitive closure. (We will see later that the problem is
NP-complete when G is cyclic.)

3. An Euler circuit in a connected undirected graph G = (V, E) is a circuit
that traverses all edges exactly once.

(a) Prove that G has an Euler circuit iff G is connected and the degree of
every vertex is even.

(b) Give an D(IED algorithm to find an Euler circuit if one exists. Give
a proof of correctness and detailed complexity analysis.

220 HOMEWORK 2

Homework 2

1. Give a linear-time algorithm for topological sort based on depth-first search.

2. Let G = (V, E) be an undirected graph, and let (J be a circular ordering of
the edges adjacent to each vertex. The ordering (J is said to be consistent
with an embedding of G in the plane if for each vertex v, the ordering of the
edges adjacent to v given by (J agrees with their counterclockwise ordering
around v in the embedding.

(a) Give a linear-time algorithm that determines whether a given (J is
consistent with some plane embedding.

(b) Consider two embeddings to be the same if one can be transformed
into the other by a smooth motion in the plane without tearing or
cutting. Assume that G is connected. How many distinct plane em
beddings are consistent with a given (J? (Extm credit. Remove the
assumption of connectedness.)

3. A scorpion is an undirected graph G of the following form: there are three
special vertices, called the sting, the tail, and the body, of degree 1, 2,
and n - 2, respectively. The sting is connected only to the tail; the tail is
connected only to the sting and the body; and the body is connected to
all vertices except the sting. The other vertices of G may be connected to
each other arbitrarily.

/sting

tail

Give an algorithm that makes only O(n) probes of the adjacency matrix of
G and determines whether G is a scorpion. (This is a counterexample to an
earlier version of the famous Andema-Rosenberg conjecture, which stated
that any nontrivial graph property that is invariant under graph isomor
phism requires O(n2) probes of the adjacency matrix to test. Anderaa
disproved this version in 1975 using a different counterexample (see [91]),
but conjectured that it held for monotone properties (those that cannot
change from false to true when edges are deleted). This was later verified
by Rivest and Vuillemin [91].)

HOMEWORK 3 221

Homework 3

1. Verify that the family RegE ofregular expressions over an alphabet E with
the operations defined as in Lecture 6, Example 6.2 is a Kleene algebra.

2. Let R be the standard interpretation of regular expressions over RegE.
Prove that for regular expressions a, {3, "(and interpretation J over a
Kleene algebra IC,

J(a{3"() = sup J(ax"() .
:XER(!3)

In other words, the supremum of the set

{J(ax"() I x E R({3)}

exists and is equal to J(a{3"(). (Hint. Try induction on {3, using the axioms
of Kleene algebra.) Note that Lemma 7.1 of Lecture 7 is a special case with
a="(=1.

3. Modify Dijkstra's algorithm to produce the minimum-weight paths them
selves, not just their weights.

222 HOMEWORK 4

Homework 4

1. The following algorithm, known as Prim's algorithm, produces a minimum
spanning tree T in a connected undirected graph with edge weights. Ini
tially, we choose an arbitrary vertex and let T be the tree consisting of that
vertex and no edges. We then repeat the following step n - 1 times: find
an edge of minimum weight with exactly one endpoint in T and include
that edge in T.

(a) Argue that Prim's algorithm is correct.

(b) Give an implementation that runs in time O(m + nlogn).

2. The Planar Separator Theorem gives ~-~ separators of size O(y'n) for ar
bitrary planar graphs. Show that this is the best you can do in general;
i.e., give a family of planar graphs whose smallest ~-~ separators are of size
O(y'n).

HOMEWORK 5 223

Homework 5

1. (a) Given a flow f on a directed graph G with positive edge capacities,
show how to construct the residual graph G, in Oem) time.

(b) Using (a), show how to calculate efficiently an augmenting path of
maximum bottleneck capacity. (Hint. Modify Dijkstra's algorithm.)

2. Give an efficient algorithm for the s, t-connectivity problem: given a directed
or undirected graph G = (V, E) and elements s, t E V, s =1= t, decide
whether there exist k edge-disjoint paths from s to t, and find them if so.
(The vertex-disjoint version of this problem is NP-complete; see Homework
7 Exercise 3.)

3. Give an efficient algorithm for the min cut problem: given an undirected
graph G = (V, E), elements s, t E V, s =1= t, and edge weights w : E -+ 'R,+,
find an s, t-cut of minimum weight; i.e., find a partition A, B of V with
sEA, t E B minimizing

L w(u,v) .
(u,v)EEn(AxB)

(Several minor variants of this problem are NP-complete. For example, the
max cut problem is NP-complete.)

224 HOMEWORK 6

Homework 6

1. (The stable marriage problem.) In a group of n boys and n girls, each girl
ranks the n boys according to her preference, and each boy ranks the n girls
according to his preference. A marriage is a perfect matching between the
boys and the girls. A marriage is unstable if there is a pair who are not
married to each other but who like each other more than they like their
respective spouses, otherwise it is stable. Prove that a stable marriage
always exists, and give an efficient algorithm to find one.

2. Prove the Konig-Egeruary Theorem: in a bipartite graph, the size of a
maximum matching is equal to the size of a minimum vertex cover.

3. Let G = (U, V, E) be a bipartite graph. For 8 ~ U, let N(8) be the set
of neighbors of 8; i.e.,

N (8) = {v E V I 3u E 8 (u, v) E E} .

Prove Hall's Theorem: G has a matching in which every vertex of U is
matched iff for every subset 8 of U,

IN(8)1 > 181·

(Hint. Use 2.)

4. An undirected graph is regular if all vertices have the same degree. Prove
that any nontrivial regular bipartite graph has a perfect matching. (Hint.
Use 2 or 3.)

HOMEWORK 7 225

Homework 7

1. Consider a restricted version of CNFSat in which formulas may contain at
most k occurrences of any variable, either negated or unnegated, where k
is fixed.

(a) Show that the problem is NP-complete if k ~ 3.

(b) Show that the problem is solvable in polynomial time if k ~ 2.

2. Suppose that TSP E P; that is, suppose there is a polynomial-time algo
rithm which, given any directed graph G with integral edge weights and
positive integer k, determines whether there exists a tour of weight at most
k that visits every vertex at least once. Give a polynomial-time algorithm
to find such a tour of minimum weight.

3. In Homework 5 Exercise 2 we gave an efficient algorithm for the s, t
connectivity problem. Formulate a version of this problem in which the
requirement "edge-disjoint" is replaced by "vertex-disjoint" (this problem
is called the disjoint connecting paths problem in [39, p. 217]), and show
that it is NP-complete. (Hint. Use 3CNFSat. Let k be the number of
clauses plus the number of variables.)

226 HOMEWORK 8

Homework 8

1. Let Zp denote the field of integers modulo a fixed prime p. Consider the
problem of determining whether a given expression involving +, -,·,0,1,
and variables ranging over Zp vanishes for all possible values for the vari
ables. Show that this problem is coNP-complete. (Hint. You may want to
use Fermat's Theorem: aP- 1 = 1 for all nonzero a E Zp.)

2. Consider a restricted version of the TSP such that distances are symmetric
and satisfy the triangle inequality:

d(u,v) d(v,u)

d(u,w) < d(u,v) + d(v,w) .

(a) Argue that this restricted version is still NP-complete.

(b) Give a polynomial-time algorithm that finds a tour visiting all cities
exactly once whose total distance is at most twice optimal. (Hint.
Start with a minimum spanning tree.)

3. Recall that a tmnsitive reduction or Hasse diagmm of a directed graph
G is a subgraph with as few edges as possible having the same transitive
closure as G. Show that the problem of determining whether a given G has
a transitive reduction with k or fewer edges is NP-complete.

HOMEWORK 9 227

Homework 9

1. Give an NC algorithm for obtaining a topological sort of a given directed
acyclic graph. (Hint. Use Miscellaneous Exercise 27.)

2. Show that the problem of determining whether a given undirected graph
is bipartite, i.e. does not have an odd cycle, is in NC.

3. A linear recurrence is of order k if it is of the form

Xi Ci, 0 ~ i ~ k - 1

Xn alXn-l + a2Xn-2 + ... + akXn-k + c, n;::: k

where the Ci, ai, and c are constants. For example, the Fibonacci sequence
is of order 2 with Co = Cl = al = a2 = 1 and C = O. Show that the nth term
of a linear recurrence of order k can be computed in time

(a) O(k2 Iogn) with a single processor. (Hint. Use Miscellaneous Exercise
22.)

(b) o (log k logn) with O(kO!) processors, where a = 2.81. .. is the con
stant in Strassen's matrix multiplication algorithm.

(c) O(log k + log n) with O(kn) processors, assuming that the ring we
are working in supports an FFT. (Hint. Work with the generating
function

00

x(y) = LXiyi
i=O

where y is an indeterminate and the coefficients Xi are the solution to
the recurrence.)

228 HOMEWORK 10

Homework 10

1. In Luby's algorithm, we need to show that if we expect to delete at least
a fixed fraction of the remaining edges in each stage, then the expected
number of stages is logarithmic in the number of edges. We can formalize
this as follows.

Proposition Let m ~ 0 and 0 < f < 1. Let Xl, X 2 , ••• and So, Sl,
S2, . .. be nonnegative integer-valued random variables such that

Sn = Xl + ... + Xn ~ m

£(Xn+1 I Sn) ~ f· (m - Sn) .

Then the expected least n such that Sn = m is O(logm).

In our application, m is the number of edges in the original graph, Xn is
the number of edges deleted in stage n, Sn is the total number of edges
deleted so far after stage n, and f = i2.
(a) Show that

(Hint. Using the fact £(£(Xn+l I Sn)) = £Xn+1 shown in class, give
a recurrence for £Sn.)

(b) Using the definition of expectation, show also that

£Sn ~ m - 1 + Pr(Sn = m)

and therefore

Pr(Sn = m) ~ 1 - m(l - ft .

(c) Conclude that the expected least n such that Sn = m is O(logm).
(Hint. Define the function

{ I, ifx<m
f(x) = 0, otherwise

and compute the expectation of the random variable

that counts the number of rounds.)

HOMEWORK 10 229

2. A collection A of events are d-wise independent if for any subset B S;; A of
size d or less, the probability that all events in B occur is the product of their
probabilities. Consider the following generalization of Luby's scheme. For
each u E Zp, let Au be any subset of Zp. Randomly select Xo, ... ,Xd-l E Zp.
Show that the p events

for U E Zp are d-wise independent. (Hint. Consider d x d Vandermonde
matrices over Zp with rows

(1 2 d-l) , u, U, ..• , U

shown in class to be nonsingular.)

3. Consider the following random NO algorithm for finding a maximal (not
maximum) matching in an undirected graph G = (V, E). The algorithm
proceeds in stages. At each stage, a matching M is produced, and the
matched vertices and all adjacent edges are deleted. Each stage proceeds
as follows:

(a) In parallel, each vertex u chooses a neighbor t(u) at random. Set

H := {(u, t(u)) I u E V} .

(b) If there are two or more edges (u, t(u)) in H with t(u) = v, then v
chooses one of them arbitrarily and deletes the rest from H.

(c) Let U be the set of vertices with at least one incident edge in H. Each
vertex in the graph (U, H) has degree 1 or 2. If 2, it randomly selects
one of its two incident edges as its favorite. If 1, it selects its one
incident edge as its favorite.

(d) For each edge e E H, e is included in M if it is the favorite of both
its endpoints.

Show that M is a matching, and the expected number of edges deleted is
at least a constant fraction of the remaining edges. Conclude that the ex
pected number of stages before achieving a maximal matching is o (log m).

230 MISCELLANEOUS EXERCISES

Miscellaneous Exercises

1. Let (S,I,w) be a weighted matroid. Let M be the family of all maximal
independent sets of minimum weight, and let Imax be the family of all
subsets of elements of M. Show that (S,Imax) is a matroid. (Hint. Use the
blue rule to give a procedure for finding an x E J - I such that IU{ x} E Imax
whenever I, J E Imax and III < IJI.)

2. Let T = (V, E) be a connected undirected tree such that each vertex has
degree at most 3. Let n = IVI. Show that T has an edge whose removal
disconnects T into two disjoint subtrees with no more than 2nt vertices
each. Give a linear-time algorithm to find such an edge.

3. Show how to solve the all-pairs shortest path problem on directed graphs
when negative edge weights are allowed. (If there is no lower bound to the
weights of paths from s to t, then we define the distance from s to t to be
-00.)

4. Suppose that we wish to schedule n unit-time jobs on a single processor,
starting at time O. Associated with each job j is a deadline dj 2:: 1 and a
penalty Pj 2:: O. Job j must be completed by time dj or the penalty Pj is
incurred.

(a) Let S be the set of jobs. Call a subset A ~ S independent if all
the jobs in A can be scheduled without violating their deadlines, ir
respective of the jobs not in A. Thus A is independent if, when the
elements of A are sorted by deadline, the ith element in sorted order
has deadline d(i) 2:: i. Let I be the set of independent subsets of S.
Show that (S, I) is a matroid.

(b) Give an efficient algorithm to produce a schedule that minimizes the
total penalty.

5. A pattern is a finite-length string over the alphabet {O, 1, *}. A pattern a
covers a string x of D's and 1 's if x can be obtained from a by replacing
each occurrence of * with either 0 or 1. For example, the pattern 0 * *1
covers the four strings 0001, 0011, 0101, and 0111. A set A of patterns
covers a set B of strings if every string in B is covered by some pattern
in A. Show that the following problem is coNP-complete: given a set of
patterns of length n, do they cover all strings of O's and l's of length n?

6. (The Carpenter's Rule Problem) Prove that the following problem is NP
complete: given a sequence of rigid rods of various integral lengths con
nected end-to-end by hinges, can it be folded so that its overall length is
as most k?

MISCELLANEOUS EXERCISES 231

. /c=::+ ~+ ~+ ~~._
hmge ..

5:.k

7. Give a parsimonious reduction from CNFSat to 3CNFSat.

8. The standard adjacency list representation of an undirected graph G, as de
scribed for example in [3, p. 51]' consists of a linked list of vertices in which
the list element for vertex u contains a pointer to a linked list of pointers
to all vertices adjacent to u. For plane graphs, the counterclockwise order
of the vertices about u is given by the list order.

For our purposes, this representation is inadequate for two reasons. First,
in the representation of Lecture 14, the function - which reverses direction
cannot be computed in constant time. In addition, the representation
does not deal adequately with multiple edges; for example, it does not
distinguish the following two nonisomorphic1 plane graphs:

Describe an enhanced adjacency list representation in which distinct undi
rected graphs with multiple edges and self-loops have distinct representa
tions, each of the functions e, - , h, and t can be computed in constant
time, and single edges or vertices with all adjacent edges can be deleted
in time proportional to the number of objects deleted. In the absence of
multiple edges and self-loops, show how to obtain the new representation
from the old one in linear time. All computations are to be done with pure
pointer manipulation; no random access is allowed.

9. Let G = (E, e, -) be an undirected graph in the formalism described in
Lecture 14. Assume that G is represented by the adjacency list represen
tation constructed in Miscellaneous Exercise 8. Show how to construct the
dual G* of G in linear time.

10. Let G = (E, e, -) be an undirected graph in the formalism described in
Lecture 14. Show that its characteristic x(G) is always a nonnegative even
number.

11. Prove Theorem 14.6 of Lecture 14: agraphG= (E, e, -)hascharacteristic
x(G) = 0 iff e corresponds to the counterclockwise ordering induced by
some plane embedding of G. (Hint. Use Exercise 10.)

IThey are isomorphic as graphs, but not as plane graphs.

232 MISCELLANEOUS EXERCISES

12. The following problem arose recently in Keith Marzullo's META project.
Given an undirected graph with black and red vertices, does there exist
a maximal clique with no red vertices? Show that this problem is NP
complete.

13. Show that the partition problem can be solved in polynomial time if the
weights are restricted to be integers and bounded in absolute value by a
fixed polynomial in the number of items.

14. Given n > 0, prove that there exists a number k such that when the
binary-to-Gray operation is applied k times in succession starting with any
bit string of length n, we get back the original bit string. What is the
smallest such k as a function of n?

15. (a) In the proof given in Lecture 27 of the #P-completeness of the perma
nent, show that the four-node widget can be replaced by a three-node
widget.

(b) Show that no two-node widget exists.

16. Consider the following scheduling problem. You are given positive integers
m and t and an undirected graph G = (V, E) whose vertices specify unit
time jobs and whose edges specify that the two jobs cannot be scheduled
simultaneously. Can the jobs be scheduled on m identical processors so
that all jobs complete within t time units?

(a) Give a polynomial time algorithm for t = 2. (Hint. Use Miscellaneous
Exercise 13.)

(b) Show that the problem is NP-complete for t ~ 3.

17. Let G be a directed graph with positive and negative edge weights and let
sand t be vertices of G. Recall that a path or cycle of G is simple if it has
no repeated vertices.

(a) Give a polynomial-time algorithm to determine whether G contains a
simple cycle of negative weight.

(b) Show that the problem of determining whether G contains a simple
path from s to t of negative weight is NP-complete.

18. Show how matching can be used to give efficient algorithms for the following
two problems.

(a) Given an undirected graph with no isolated vertices, find an edge cover
of minimum cardinality. (An edge cover is a subset of the edges such
that every vertex is an endpoint of some edge in the subset.)

(b) Find a vertex cover in a given undirected graph that is at most twice
the cardinality of the smallest vertex cover.

MISCELLANEOUS EXERCISES 233

19. Give a fast algorithm to determine whether a given directed graph has a
cycle cover.

20. Given a bipartite graph G = (U, V, E), say that D ~ U is deficient if
IDI > IN(D)I, where N(D) denotes the set of neighbors of D; i.e.,

N(D) = {vEVI3uED(u,v)EE}.

Give a polynomial-time algorithm for finding a minimal deficient set if one
exists. (Hint. Use Hall's Theorem; see Exercise 3, Homework 6. Grow a
Hungarian tree.)

21. Let G be a connected undirected graph. We say G is k-connected if the
deletion of any k - 1 vertices leaves G connected. Give a polynomial-time
algorithm (ideally, O(k2mn)) for testing k-connectivity, and for finding a
set of k - 1 disconnecting vertices if G is not k-connected. (Hint. Use
Menger's Theorem, which states that Gis k-connected if and only if any
pair of vertices is connected by at least k vertex-disjoint paths, then use
maximum flow. You need not prove Menger's Theorem.)

22. Let p be a monic univariate polynomial of degree k:

p(x) = Xk + ak_lxk- 1 + ... + alX + ao .

The companion matrix of p is the k x k matrix

0 1 0 0 0 0
0 0 1 0 0 0

Cp
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

-ao -al -a2 -a3 -a4 -a5

here illustrated for the case k = 6. The characteristic polynomial of Cp is
p itself. Show how to compute the nth power of Cp in time O(k2 Iogn).

23. Let k be a finite field with q elements. Let A be an n x n matrix over k of
rank r. Prove that for an n X n matrix R with entries chosen independently
and uniformly at random from k,

r 1
Pr(rank (RA)2 = rank RA = rank A) = II (1 - i) .

i=l q

24. The following problem arose recently in Tim Teitelbaum's synthesizer gen
erator project. Let f be a binary function symbol, a and b constant sym
bols, and X = {x, y, ... } a set of variables. A term is a well-formed expres
sion over f, a, b, and X; for example, the following are terms:

a (1)

234 MISCELLANEOUS EXERCISES

b (2)
x (3)

f(a,b) (4)
f(a,x) (5)
f(b,x) (6)

f(f(x,y),z) (7)

A term is a ground term if it contains no variables; for example, (1), (2)
and (4) above are ground terms. A ground term t is a substitution instance
of a term s if t can be obtained from s by substituting ground terms for the
variables of s; for example, (4) is a substitution instance of (5) obtained by
substituting b for x. A set of terms T is a cover if every ground term is a
substitution instance of some term in T; for example, (1), (2), (5), (6), (7)
form a cover.

(a) Show that determining whether a given set of terms is a cover is
coNP-hard. (Hint. Encode the problem of Miscellaneous Exercise 5.)

(b) Extra credit. Show that the problem is coNP-complete.

25. Give an NC algorithm for finding the preorder numbering of a directed tree.
That is, the algorithm should label each node of the tree with number of
vertices visited before it in a preorder traversal.

26. An outerplanar is a graph that can be embedded in the plane so that every
vertex is on the outer face. An outerplane graph is an outerplanar graph
along with such an embedding.

o
An outerplane graph.

(a) Give a linear-time algorithm for testing whether a graph is outer
planar, and for finding an outerplane embedding if one exists. You
may use for free the Hopcroft-Tarjan linear-time algorithm for finding
a plane embedding of an arbitrary planar graph [52]. Warning: an
arbitrary plane embedding of an outerplanar graph is not necessar
ily an outerplane embedding. Here are two embeddings of the same
outerplanar graph, one outerplane and one not:

MISCELLANEOUS EXERCISES 235

(b) Find the best s(n) possible such that any outerplanar graph has a ~-~
separator of size s(n); i.e., such that there exists a partition A, S, B of
the vertices with IAI, IBI ~ 2;, lSI ~ s(n), and there are no edges be
tween A and B. Give a linear time algorithm for finding the separator.
(Hint. Use Miscellaneous Exercise 2.)

27. Assuming that comparisons between data elements take one unit of time
on one processor, give parallel sorting algorithms that run on a CREW
PRAM in

(a) time O(logn) with O(n2) processors

(b) time O((logn)2) with O(n) processors

where n is the number of inputs. Your algorithm should produce an array
of length n containing the input data in sorted order.

28. An n x n matrix is called a circulant matrix if the ith row is obtained from
the first row by a right rotation of i positions, 0 ~ i ~ n - 1. For example,

[~ ! ~ ~l
c dab
bed a

is a 4 x 4 circulant matrix.

(a) Find an algorithm to multiply two n x n circulant matrices in time
O(logn) with O(n2) processors.

(b) Assuming that the field contains all nth roots of unity and a multi
plicative inverse of n, show that the processor bound in part (a) can
be reduced to O(n). Represent circulant matrices by their first row.
(Hint. See [3, pp. 256-257].)

(c) Under the assumptions of (b), find an algorithm to invert a nonsingu
lar circulant matrix in O(logn) time with O(n) processors.

29. In Lecture 40 we gave an RNC algorithm to test for the existence of a
perfect matching in a given bipartite graph. In this exercise we extend this
technique to arbitrary undirected graphs.

The Thtte matrix of an undirected graph G = (V, E) is an n x n matrix T
with rows and columns indexed by V such that

{
Xuv, if (u,v) E E and u < v

Tuv = -Xvu , if(u,v)EEandu>v
0, if(u,v)¢E

236 MISCELLANEOUS EXERCISES

where the X uv , U < v, are indeterminates.

(a) Show that det T "I- 0 iff G has a perfect matching.

(b) Use this fact to give an RNC test for the existence of a perfect match
ing in G.

(c) If G has a perfect matching, show how to compute one in random
polynomial time.

III Homework Solutions

HOMEWORK 1 SOLUTIONS 239

Homework 1 Solutions

1. (a) Suppose I and J are maximal independent subsets of A, but III < IJI.
By property (ii) of matroids, we can find an x E J - I such that
I U {x} E I. But then I was not a maximal independent subset of A;
this is a contradiction.

Incidentally, it can be shown that for systems (S,I) satisfying axiom
(i) of matroids that the property we have just proved is equivalent to
axiom (ii) of matroids.

(b) The set I U {x} is dependent, since I is a maximal independent set.
It therefore contains a minimal dependent set D. We show that D is
unique. First, xED, since any subset of I is independent. Suppose
there were two such cycles D and D'; assume without loss of generality
that y E D - D'. The set (D U D') - {x} is a subset of I and is
therefore independent. The set D - {y} is also independent, since D
is minimal, and its cardinality is no more than that of (D U D') - {x}.
By property (ii) of matroids, elements of (DUD') - {x} can be added to
D-{y} until the cardinality is the same as (DUD')-{x}, maintaining
independence. Then y is not in the resulting set, since then D would
be a subset, and D is dependent. Therefore the resulting set must
be (D U D') - {y}. But this set contains D' as a subset, which is
dependent; this is a contradiction.

(c) Property (i) holds trivially, since removing an edge from a graph can
not add any cycles. To show (ii), let E', E" ~ E such that (V, E') and
(V, E") have no cycles. Let d and d' be the number of connected com
ponentsof (V,E') and (V, E"), respectively, m' = IE'I, mil = IE"I, and
n = IVI. Suppose that m' < mil. By the equation m+c = n proved in
class, d > d'. Then there must be an edge of E" between two distinct
connected components of (V, E'), otherwise all components of (V, E")
would be contained in components of (V, E'), implying that d' ~ d.
Adding that edge to E' cannot give a cycle.

The rank is n - c and the maximal independent sets are the spanning
forests.

Two good references about matroids in optimization problems are [85, 70].
An excellent reference on matroid theory itself is [107].

2. (a) Since the graph is acyclic, all directed paths are of length at most
n -1. Define

Euv {e EEl e lies on some E-path from u to v
of maximum length}

EH U Euv'
u,VEV

240 HOMEWORK 1 SOLUTIONS

For any (x, y) E EH , the only E-path from x to y is the edge (x, y)
itself; if there were a longer path, then (x,y) would never lie on any
maximal length path and would not be in E H. Thus

EH = {(u,v) EEl the length of the longest (1)
path from u to v is I} .

Let F be an arbitrary subset of E such that F* = E*. For e E EH,
if e ¢ F, then F* would not contain e either, by (1); this contradicts
F* = E*. Thus E H ~ F. Moreover, E; = E*, since any two
vertices connected by a path are connected by a path of maximum
length. Since E; = E* and EH is contained in every subset of E
whose transitive closure is E*, it is the unique minimal such set.

(b) Our algorithm to find E H simply removes all edges (u, v) of E for
which there exists a path of length two or more from u to v. We
use the adjacency matrix representation. Let E denote this matrix.
Using Boolean matrix multiplication (V instead of +, /\ instead of .),
the matrix Ek has a 1 in position (u, v) iff there is a path from u to v
of length exactly k. Compute the transitive closure matrix

E* I V E V E2 V ... V E n- 1 V En V ...

I V E V E2 V ... V E n - 1 (why?)
(I V E)n-l .

This can be done by repeated squaring in time O(M(n) logn), where
M(n) is the time to multiply two n x n matrices. (We can actually
compute E* in time O(M(n)), as we will see later.) Then compute
E2 . E*. This matrix has a nonzero value in position (u, v) iff there is
a path oflength at least 2 from u to v. Finally, the adjacency matrix
of EH is given by E /\ -,(E2 . E*).

In this problem the goal was to minimize the running time. If the goal
were to minimize the amount of extra space used, then an in-place algo
rithm would be better; see [46]. The original paper showing that transitive
reduction is as easy as transitive closure is [2].

3. This solution is from [85].

(a) Suppose the graph is connected and each vertex is of even degree.
Starting from an arbitrary vertex v, trace an arbitrary path, traversing
edges at most once (mark each edge as traversed as we encounter it),
until we return to v. This must happen eventually: because each
vertex is of even degree, is impossible to get stuck. Now delete the
cycle we have found. Deleting a cycle maintains the invariant that all
vertices are of even degree, but the graph may no longer be connected.

HOMEWORK 1 SOLUTIONS 241

However, we can repeat the process on the connected components,
and so on until all edges have been deleted. Now we string the cycles
together to form one long cycle. Two cycles that contain a vertex v can
be combined into one cycle in a figure 8, with v at the intersection
point. Since the graph is connected, it is possible to string all the
cycles together in this way to get one long cycle, an Euler circuit.

Conversely, if there is an Euler circuit, then each vertex v is of even
degree, since each occurrence of v on the circuit accounts for two
incident edges.

(b) We assume an adjacency list representation of the graph. Starting at
vertex vo, trace an arbitrary path until we return to Vo as in part (a),
giving a cycle c = VO, VI, ... ,Vn-b Vo (the vi's need not be distinct).
As we traverse c, we delete each edge from the graph and create a
doubly-linked circular list of these edges in the order they are encoun
tered. Now for each Vi in order, we recursively find an Euler circuit ~
beginning and ending with Vi in the connected component containing
Vi' We link Ci into c at Vi and then go on to Vi+!. In the recursive call
to get an Euler circuit in the connected component of Vi, any Vj, j > i,
in that connected component will have all remaining edges deleted, so
by the time the algorithm gets to vi' the connected component of vi
will consist only of vi and there will be no work to do.

The algorithm runs in O(m) time, because there is only a constant
amount of work done for each edge.

242 HOMEWORK 2 SOLUTIONS

Homework 2 Solutions

1. As shown in Theorem 4.8, a directed graph is a dag iff the DFS tree has no
back edges. It was also shown that if the DFS tree is numbered in postorder,
then all edges go from higher numbered vertices to lower numbered vertices.
Then this numbering gives a topological sort.

2. (a) The graph G has an embedding consistent with (J iff this is true for
every connected component of G, so we can assume without loss of
generality that G is connected.
Assume the adjacency lists are ordered according to (J. Then a depth
first search corresponds to traversing the edges clockwise around each
face. All back edges can be drawn going up the right side of the path
from the root down to the source of the back edge. The very first back
edge encountered can be taken to be on the outer face. We need only
maintain a stack of back edges that we are "inside", and make sure
that any new back edge does not go up higher than the destination
vertex of the innermost back edge that we are inside. The back edges
that we are inside form a chain.
In Lecture 14, Theorem 14.6 and Miscellaneous Exercise 11 we will
see another approach using Euler's Theorem, which states that n +
n* - m = 2 for a connected plane graph G, where n, n*, m are the
number of vertices, faces, and edges of G, respectively. We will use the
theorem in the opposite direction: given (J, we calculate the number
n* of "faces". We will show that n + n* - m = 2 iff (J does indeed
correspond to a plane embedding with n* faces.

(b) If G is not planar then it has no planar embeddings. Otherwise, G
has exactly one embedding on the sphere consistent with (J. We can
choose the North Pole to be in anyone of the faces of the embedding
and then project the graph onto the plane from the North Pole. Each
choice of face for the pole gives a different embedding in the plane.
Thus there are as many different embeddings as faces of G.
Suppose now that G is not connected. Number the connected com
ponents 0,1, ... , c -1 and let Ii be the number of faces of component
i. There are Ii ways to choose the outer face of the component i, so
there are loft·· . Ic-l ways to choose all the outer faces. To get the
number of embeddings, we must multiply this by the number of ways
to place the components inside the inner faces of other components.
For example, when c = 2, there are ft - 1 ways to place component 0
inside an inner face of component 1, 10 - 1 ways to place component
1 inside an inner face of component 0, and one way to place the
components so that neither occurs inside the other. This gives

(fo - 1) + (ft - 1) + 1 .

HOMEWORK 2 SOLUTIONS 243

We claim that with c components this number is

c-l

(1 + '2Jli - l))C-l .
i=O

Each embedding determines a labeled forest whose vertices are the
components. A component i is a child of another component j in
this forest if it occurs inside an inner face of j with no intervening
components. The component i can be placed inside anyone of h - 1
inner faces of j; let us indicate this by labeling the edge (i,j) in the
forest with the factor h - 1. Thus the number we are seeking is the
sum over all labeled forests of the product of the edge labels on that
forest.
We modify an argument of Priifer that there are nn-2 labeled trees on
n nodes (see [62]). We establish a one-to-one correspondence between
labeled forests and sequences of length c - 1 from the set

{T,O, 1, ... ,c -I} (2)

as follows. Given a labeled forest, start with the null sequence and
repeat the following operation until there is only one vertex left. Prune
off the lowest numbered leaf i and append j to the sequence, where j
is the parent of i. If i has no parent, then append T to the sequence.
Then each labeled forest determines a sequence of length c - 1, and it
is not difficult to reconstruct the forest uniquely from the sequence.

For each sequence ao, ab . .. ,ac-2 of length c - lover the set (2), the
product of the edge labels on the labeled forest corresponding to that
sequence is

where g(i) = Ii - 1 and g(T) = 1. The number we are seeking is the
sum of all such products. This number is

c-l

(g(T) + g(O) + g(l) + ... + g(c _1))c-l (1 + LUi - l))c-l .
i=O

The total number of embeddings is this number times the number of
ways of choosing the outer faces of the components, or

c-l c-l

(1 + LUi - 1))c-l II Ii .
i=O i=O

3. Here is an algorithm that takes 5n probes of the adjacency matrix. Let
d(v) be the degree of vertex v. The main difficulty is to locate one of the

244 HOMEWORK 2 SOLUTIONS

interesting vertices (the body, tail, or sting); once we have done that, we
can locate all the other interesting vertices with 3n probes and check that
the graph is a scorpion. For example, if we have found a vertex v with
d(v) = n - 2, then that vertex must be the body if the graph is a scorpion.
By scanning the vth row of the matrix, we can check that d(v) = n - 2 and
determine its unique non-neighbor u, which must be the sting if the graph
is a scorpion. Then by scanning the uth row, we can verify that d(u) = 1
and find its unique neighbor w, which must be the tail; and with n more
probes we can verify that d(w) = 2.

We start with an arbitrary vertex v, and scan the vth row. If d(v) = 0 or
n -1, the graph is not a scorpion. If d(v) = 1, 2, or n - 2, then either v is
interesting itself or one of its 1 or 2 neighbors is, and we can determine all
the interesting vertices as above and check whether the graph is a scorpion
with at most 4n additional probes.

Otherwise, 3 :5 d(v) :5 n - 3, and v is boring. Let B be the set of neighbors
of v and let S = V - (B U {v}). The body must be in B and the sting
and tail must be in S. Choose arbitrary x E Band yES and repeat
the following: if x and y are connected, then delete y from S (y cannot
be the sting) and choose a new yES. If x and y are not connected, then
delete x from B (x is not the body unless y is the sting) and choose a new
x E B. If the graph is indeed a scorpion, then when this process ends, B
will be empty and y will be the sting. To see this, observe that B cannot
be emptied without encountering the sting, because the body cannot be
deleted from B by any vertex in S except the sting; and once the sting is
encountered, all remaining elements of B will be deleted.

Whether or not the graph is a scorpion, the loop terminates after at most
n probes of the adjacency matrix, since after each probe some vertex is
discarded.

If a property is such that we have to look at every entry in the adjacency
matrix, then that property is said to be evasive. Many monotone graph
properties have been conjectured to be evasive. Yao [110] has shown that all
monotone bipartite graph properties are evasive if we are given a bipartite
adjacency matrix representation. The question for general graphs remains
open. BolloMs discusses this issue in his book [13]. He gives a 6n-probe
solution to the scorpion problem there.

HOMEWORK 3 SOLUTIONS 245

Homework 3 Solutions

1. The structure (RegE, U,·, *,0, {t:}) is a Kleene algebra if it satisfies the
axioms of Kleene algebra. We therefore need to show, for any regular sets
A,B and G,

Au (BUG) (AUB) uG
AUB BuA

AuA A

Au0 0uA = A

A· (B·G) (A· B)· G

A· {t:} {t:}·A = A

0·A A·0 = 0
A· (BUG) A·BuA·G

(BUG) ·A B·AuG·A

A·B*·G supA· Bn·G. (3)
n~O

Note that the natural order on RegE is set inclusion ~,since

A~B +-+ AUB=B.

Most of the above properties are obvious. The only one we will verify
explicitly is (3). Recall the definition of the * operator in RegE:

B* = {t:}U{YIY2···Ynln~land YiEB, l~i~n}.

Recall also that, by definition,

B O {t:}
Bn+! B. Bn.

It follows by induction on n that

Bn = {YIY2··· Yn I Yi E B, 1 ~ i ~ n} .

To be in the regular set on the left side of equation (3), a string must be
of the form XYIY2 ... YnZ for some n ~ 0, where x E A, Z E G, and Yi E B,
1 ~ i ~ n. Here we allow the possibility n = 0, in which case the string
would be of the form xz. Thus the left side of (3) is equal to the set

This is the least upper bound of the sets A· Bn. G, n ~ 0, with respect to
set inclusion ~: it is an upper bound, since it includes all the A . Bn . G
as subsets; and it is the least upper bound, since any set that includes all
the A . Bn . G must include their union.

246 HOMEWORK 3 SOLUTIONS

2. Let REXPE = {regular expressions over ~}, let K be an arbitrary Kleene
algebra, and let I be an interpretation

I : REXPE --+ K.

The proof will proceed by induction on the structure of (3. There are three
base cases, corresponding to the regular expressions b E ~, 1, and O. For
b E ~, we have R(b) = {b} and

sup I(ax,) = I(abr).
xER(b)

The case of 1 is similar, since R(l) = {fl. Finally, since R(O) = 0 and
since the element OK: is the least element in K and therefore the supremum
of the empty set,

sup I(ax,) sup 0
XER(O)

There are three cases to the inductive step, one for each of the operators
+, ., *. We give a step-by-step argument for the case +, followed by a
justification of each step.

I(a)· (I((31) + I((32))' I(r) (4)

(I(a) . I((31)' I{-y)) + (I(a) . I((32) . I(r)) (5)
I(a(3n) + I(a(32,) (6)

sup I(ax,) + sup I(an) (7)
XER(th) YER(~2)

sup I(az,) (8)
zER(~1)UR(~2)

sup I(az,). (9)
ZER(~1+~2)

Equation (4) follows from the properties of the map I; (5) follows from the
distributive laws of Kleene algebra satisfied by K; (6) again follows from
the properties of the map I; (7) follows from the induction hypothesis on
(31 and (32; (8) follows from the general property of Kleene algebras that
if A and B are two sets whose suprema sup A and sup B exist, then the
supremum of Au B exists and is equal to sup A + supB (this requires
proof-see beloW); finally, equation (9) follows from the definition of the
map R interpreting regular expressions as regular sets.

The general property used in equation (8) states that if A and B are two
subsets of a Kleene algebra whose suprema sup A and sup B exist, then the
supremum sup A U B of A U B exists and

supAUB = supA+supB.

HOMEWORK 3 SOLUTIONS 247

To prove this, we must show two things:

(i) supA+supB is an upper bound for AUB; that is, for any x E AUB,
x :s; sup A + sup B; and

(ii) sup A + sup B is the least such upper bound; that is, for any other
upper bound y of the set A U B, sup A + sup B :s; y.

To show (i),

x E Au B -+ x E A or x E B

-+ x:S; sup A or x :s; supB

-+ x:S; sup A + sup B .

To show (ii), let y be any other upper bound for Au B. Then

"Ix E Au B x :s; y -+ "Ix E A x :s; y and "Ix E B x :s; y

-+ sup A :s; y and sup B :s; y

-+ sup A + sup B :s; y + y = y.

We give a similar chain of equalities for the case of the operator ., but omit
the justifications.

Finally, for the case *, we have

1(a/3*,)

1(a) ·1(/31) . 1(/32) ·1(r)

1 (a/31 (/32' »
sup 1(ax(/32,»

XER({h)

sup 1((ax)/32,)
xER(!31)

sup sup I(axy,)
XER(!3,) yER({32)

sup I(axy,)
xER({31), yER(!32)

sup I(az,).
ZER(!31!32)

I(a) .1(/3)* ·1(r)

supI(a)· I(/3t· I(r)
n::O:O

supI(a/3n ,)
n::O:O

sup sup I(ax,)
n::O:O xER({3")

sup I(ax,)
n::O:O, xER({3n)

248 HOMEWORK 3 SOLUTIONS

sup I(ax'Y)
XEU,,~O R(P")

SUp I(ax'Y).
XER(P*)

3. Suppose we are given a directed graph G = (V, E, £) with nonnegative edge
weights £. The quantity £(e) is called the length of e E E. Define the length
£(P) of a directed path p to be the sum of the edge lengths along pj thus

n

£(e1 e2··· en) = "L£(ei).
i=l

In the version of Dijkstra's algorithm of Lecture 5, we use the loop invariant
that the variable X contains the set of vertices whose minimal distance from
s has already been determined, and D(y) gives the minimum distance from
s to y through only elements of X. Here we have to keep track of the paths
themselves. To do this we will use pointers P(·). The new invariants are:

• for v E V, the path p(v) = v, P(v), P(P(v)), ... is a shortest path
from v back to s such that all vertices except possibly v lie in X, or
..1 if no such path existsj

• D(v) = £(p(v))j

• for any U E X, v ¢ X, D(u) :::; D(v).

Here is the algorithm:

HOMEWORK 3 SOLUTIONS

X:= {s}j
P(s) := nilj
for each v E V - {s} do

if (s, v) E E then
P(v):= Sj

D(v):= l(s,v)
else

P(v) := 1..j
D(v) := 00

end if
end forj
while X =J V do

let u E V - X such that D(u) is a minimumj
X:=XU{u}j
for each edge (u, v) with v E V - X do

if D(u) +l(u,v) < D(v) then
P(v) := Uj

D(v):= D(u) +l(u,v)
end if

end for
end while

249

250 HOMEWORK 4 SOLUTIONS

Homework 4 Solutions

1. (a) The algorithm is correct because each step is an instance of the blue
rule in the spanning tree matroid.

(b) Prim's algorithm is a variant of Dijkstra's shortest-path algorithm.
The implementation is very similar to the solution to Exercise 3 of
Homework 3. We maintain a Fibonacci heap containing the set V -T,
where V is the set of all vertices and T is the set of vertices in the
portion of the spanning tree chosen up to that point. The value D(v)
for the purposes of findmin, deletemin and decrement is the weight
of the minimum-weight edge connecting v to a vertex in T, or 00 if no
such edge exists. In addition, we maintain with each vertex v in the
heap a pointer P(v) to a vertex in T closest to v; i. e., a u E T such
that d(u,v) = D(v).
We initialize the values D(v) and P(v) after the first vertex u is chosen
by setting D(v) := d(u,v) and P(v) := u for each vertex v adjacent
to u and D(v) := 00 and P(v) := nil for each vertex v not adjacent
to u.
At each step, we find the element w of the heap such that D(w) is
minimum, delete it from the heap, and add it to T. We also add the
edge (w, P(w)) to the spanning tree. Then we update distances as
follows: for each edge (w,v), v rt T, if d(w,v) is less than D(v), we
set D(v) := dew, v) and P(v) := w.
It takes constant time for each edge or Oem) time in all to do the
updates. Using the Fibonacci heap, it takes O(nlogn) time amor
tized over the entire sequence of operations to maintain the heap, find
the minima and delete them, and decrement the values D(v) when
necessary.

2. Let Ok be the k x k checkerboard graph:

010

The number of vertices is n = k 2• We show that the smallest ~-~ separators
of Ok are of size at least ~ - ~ = n(vIn).

Consider an arbitrary partition of the vertices of Ok into A, B, and S such
that IAI, IBI ::; 2n/3 and there are no edges between A and B. If there is

HOMEWORK 4 SOLUTIONS 251

an element of 8 in every row or an element of 8 in every column, we are
done. Otherwise, there must be some row r and some column c with no 8
vertices. The row r must contain all A vertices or all B vertices, since if it
contained some of each, it would have to have an 8 vertex to separate them.
Without loss of generality assume it contains only A vertices. Similarly, c
contains only A vertices or only B vertices, and they must be A vertices,
since c intersects r. Thus there is an A vertex in every column and every
row, since every row intersects c and every column intersects r. If a column
or row has a B vertex, then it must also have an 8 vertex to separate it
from the A vertices. So any column or row containing a B vertex must also
contain an 8 vertex. Thus there are at most 181 columns containing a B
vertex and at most 181 rows containing a B vertex; hence at the very most,

However, since IAI ~ 2n/3,

IBI n - (IAI + 181)
n

> 3- 181 .

Combining these inequalities, we get

and 181 must be at least as big as the positive root of this quadratic:

181 >

>

-1+~
2

-1+/¥
2

k 1
y'3 - 2

252 HOMEWORK 5 SOLUTIONS

Homework 5 Solutions

1. (a) For every edge (u,v) in G, compute the residual capacity from u to v
using the formula r(u, v) = c(u, v) - 1 (u, v), where c is the capacity
function. Also compute the residual capacity r(v, u) in the opposite
direction. If r(u, v) is zero, then do not put the edge (u, v) into Gf .

Otherwise, put the edge (u, v) into G f with capacity r(u, v). Do the
same for (v, u). All the relevant computations can be done in O(m)
time since we spend at most constant time for each edge.

(b) A minor modification of the algorithm of Exercise 3, Homework 3 does
it. The only difference is that we are seeking paths of maximum bot
tleneck capacity instead of minimum length. Here is the algorithm:

X:= {s};
P(s) := nil;
for each x E V - {s} do

D(x) := r(s,x);
P(x):= s

end for;
while X i=- V do

let x E V - X such that D(x) is a maximum;
X:=XU{x};
for each edge (x, y) E E f such that y E V - X do

ifmin(D(x),r(x,y)) > D(y) then
P(y):= x;
D(y) := min(D(x), r(x, y))

end if
end for

end while

2. Let every edge in G have unit capacity and find a maximum flow 1* in G.
Then there exist k edge-disjoint paths from s to t if and only if 11* 1 2': k:
certainly if there exist k edge-disjoint paths, then 11* 1 2': k by pushing
one unit of flow along each path. Conversely, if 11*1 2': k, then we can
repeatedly find a path flow from s to t with unit flow as in the proof of
Lemma 17.4, then remove the edges along this path and repeat. With each
iteration the flow value decreases by one, so at least k paths are found.

3. Make G a directed graph by replacing each undirected edge { u, v} with two
directed edges (u, v) and (v, u). The capacities on these directed edges will
be the same as those on the corresponding original edge. Find a maximum
flow from s to t in this network and compute the residual graph of this
flow. Take A to be the set of vertices reachable from s in the residual
graph, and let B be the rest. By the Max Flow-Min Cut Theorem, this

HOMEWORK 5 SOLUTIONS 253

cut has minimum weight in the network. It is also a minimum cut for the
original undirected graph because any edge between A and B has the same
weight in both graphs.

254 HOMEWORK 6 SOLUTIONS

Homework 6 Solutions

1. Gale and Shapley were the first to investigate the stable marriage problem
and gave this solution in 1962 [36].

Let rg(b) be g's ranking of b, rb(g) be b's ranking of g. Let B be the set of
boys and G be the set of girls, n = IBI = IGI. If M is a partial matching,
let BM = {b 13g (b,g) E M} and GM = {g 13b (b,g) EM}. Let M(b) = 9
if (b,g) E M, undefined if no such 9 exists. Let M(g) = b if (b,g) E M,
undefined if no such b exists. Execute the following program:

M:=0j
while IMI < n do

9 := arbitrary element of G - GM ;

b:= element of B with rg(b) maximum and either
(i) b ¢ BM
(ii) bE BM and rb(g) > rb(M(b));

if (i), set M:= M U {(b,g)};
if (ii), set M := (M - {(b, M(b)}) U {(b, g)}

end while

The following invariants are maintained by the while loop:

• M is stable;

• if rg(b) ~ rg(M(g)) then b E BM .

The algorithm halts in O(n2) iterations of the while loop because the
quantity

increases by at least one each time.

2. Ford and Fulkerson solved this problem by reducing it to a network flow
problem and then applying the Max Flow-Min Cut Theorem [34].

In a bipartite graph G = (U, V, E), the size of any matching is at most the
size of any vertex cover, since all matched edges must have at least one
endpoint in the cover. To show that this bound is attained, we construct
a flow network H with vertices U U V U {s, t} and edges

{(s, u) I u E U} U E U {(v, t) I v E V} .

The edges of E are directed from U to V in H. We give the edges of E
infinite (or sufficiently large finite) capacity, and all other edges capacity
1. Let S, T be a minimum s, t-cut in H. This cut has finite capacity, since

HOMEWORK 6 SOLUTIONS 255

it is bounded by the capacity of the cut {s}, (U u V u {t}) - {s}, which is
lUI. Therefore, no edge in E can cross from S to T, since those edges have
infinite capacity. Thus each edge in E either

• has both endpoints in S,

• has both endpoints in T, or

• crosses from T to S.

In any of these three cases, the edge is incident to an element of the set

(TnU) u (snv) ,

so this set forms a vertex cover of G. Moreover, the capacity of the cut
S, T is the size of this set, which is also the maximum flow value in H by
the Max Flow-Min Cut Theorem. In Lecture 18 we argued that the size of
the maximum matching in G is the value of a maximum flow in H.

3. Suppose first that G has a matching in which every vertex of U is matched.
Let S be a subset of U. For every vertex s E S, the vertex that s is matched
to appears in N (S). Since no two vertices in S are matched to the same
vertex in V, we have IN(S)I ~ lSI.
Conversely, suppose G does not have a matching in which every vertex of
U is matched. By the Konig-Egervary Theorem, there exists a vertex cover
C of G containing fewer than lUI vertices. Let S = U - C. All vertices
adjacent to vertices S must be in V n C, otherwise C would not be a vertex
cover; i.e., N(S) ~ V n C. Then

IN(S)I < IV n CI
ICI-IU n CI since U and V are disjoint

< IUI-iunci
lSI since S is defined to be U - C.

Thus there exists an S ~ U such that IN(S)I < lSI.
Hall's theorem is sometimes called the Marriage Theorem because it tells
us whether all U vertices can be "married" to a V vertex of their own.

4. Let d be the degree of the vertices in the regular bipartite graph G =
(U, V, E). The total number of edges is

d· lUI = d· IVI ,

thus lUI = IVI; therefore any matching that uses all the vertices in U will
be a perfect matching in G. By Hall's Theorem, it suffices to show that
lSI:::; IN(S)I for any S ~ U. For an arbitrary subset S of U, consider the
subgraph of G induced by S U N(S). There are exactly d ·ISI edges in this

256 HOMEWORK 6 SOLUTIONS

subgraph, since every vertex in S has degree d. Similarly, this subgraph
has no more than d· IN(S)I edges, because no vertex in N(S) has degree
larger than d. Thus

d ·ISI < d· IN(S)I .

It follows that lSI ~ IN(S)I·

One of the reasons that matching theory is interesting is because of beauti
ful min-max theorems like the Konig-Egervary Theorem and Hall's Theorem.
Lovasz and Plummer's book [75J provides extensive coverage of matchings for
those who want to learn more about them. Papadimitriou and Steiglitz [85J
and Lawler [70J also discuss important algorithmic and theoretical aspects of
matchings.

HOMEWORK 7 SOLUTIONS 257

Homework 7 Solutions

1. (a) We reduce the general CNFSat problem to the restricted problem in
which variables are allowed at most three occurrences to show that
the restricted problem is NP-hard. Given the CNF formula B, let x
be a variable with exactly m occurrences in B. Let xI, X2, ••. ,Xm be
m new variables. Replace the ith occurrence of x with Xi and append
the CNF formula

which is equivalent to the chain of implications

This will force all the Xi to have the same truth value in any satisfying
assignment, and there are exactly three occurrences of each Xi. Do
this for all variables in the original formula.

The restricted problem is in NP, since it is a special case of the unre
stricted CNFSat problem. Therefore it is NP-complete.

(b) If a variable X appears only positively (only negatively), then we can
satisfy the clauses containing x by assigning x the value true (false),
thus we might as well eliminate those clauses. The new formula is
satisfiable iff the original one is.
Suppose then that the variable x appears both positively and nega
tively. Since there are only two occurrences of x, there is one of each.
If the occurrences are in the same clause, then that clause is true un
der any truth assignment, and we can eliminate it. If not, and if the
two clauses contain no other variables, then we have reached a con
tradiction x 1\ oX and there is no satisfying assignment. Otherwise,
we apply the resolution rule of propositional logic: we combine the
two clauses containing x, but throw out x itself. For example, if one
clause is x V y V z and the other is oX V u V v, then the new clause is
y V z V u V v. Again, the new formula is satisfiable iff the original one
was.
We continue applying these rules until we see a contradiction x 1\ oX

or we eliminate all of the variables. In the latter case, the formula is
satisfiable.

The resolution rule is a widely used proof procedure for propositional
logic. It is known to require exponential time in the worst case when
there are no restrictions on the number of occurrences of variables
[47,101]. Resolution, suitably extended to handle first-order formulas,
forms the basis for many PROLOG implementations.

258 HOMEWORK 7 SOLUTIONS

2. If the graph is not strongly connected, there is no TSP tour. Otherwise,
we calculate the weight w* of an optimal TSP tour as follows. Let w(e)
be the weight of edge e and let d = max.,EE w (e) . There exists a tour of
weight at most n2d consisting of minimum-weight paths between pairs of
vertices (Ul' U2), (U2' U3), ... , (un' Ul) placed end to end. Starting with n2d,
perform a binary search to find w*. This can be done in polynomial time,
because we have to make only O(log(n2d)) = O(logn + log d) calls to our
subroutine that tells whether there exists a TSP tour of weight k, and log d
is the size of the binary representation of d.

Next we wish to determine the number of times each edge is traversed in
some optimal tour. Note that these numbers are not unique; different tours
may traverse an edge different numbers of times. Consider an operation
in which we replace the edge e = (u, v) with the graph Dk pictured below
right, where k is the number of extra vertices. In the example shown, k = 5.

U U

v v

We give each ofthe edges in Dk weight w(e)/2. Any tour in the new graph
gives rise to a tour in the old graph of the same weight. Conversely, any
tour in the old graph that traverses e at least k times gives rise to a tour
in the new graph of the same weight. Thus the weight of an optimal tour
in the new graph is at least w*, and strictly greater than w* if all optimal
tours in the old graph traverse e fewer than k times. Since no optimal tour
of the old graph traverses e more than n times, if k > n then the weight of
the optimal tour in the new graph must be strictly greater than w*.

Now, for each edge e in turn, we replace e with Dk , where k is as large as
possible such that there still exists a tour of weight w*. We discover k by
binary search in the interval 0 ~ k ~ n. When we are done, there is a tour
of weight w* in the resulting graph that traverses each edge exactly once (if
not, some Dk could have been replaced by Dk+l). We find an Euler circuit
in this graph, which will give rise to a TSP tour in the original graph of
optimum weight w*.

3. Let B be a CNF formula. We wish to produce an undirected graph G =
(V, E), integer k, and distinguished vertices Si, ti , 1 ~ i ~ k, such that there
exist k vertex-disjoint paths connecting the Si and ti iff B has a satisfying
truth assignment.

HOMEWORK 7 SOLUTIONS 259

Let 0 be the set of clauses, let X be the set of variables, and let L be the
set of occurrences of literals in B. Let the set of vertices be

v = L U {Se, te ICE O} U {S"" t", I x E X}

and take k = 101 + IXI. For CEO, connect all occurrences of literals in C
to Se and te' For x EX, connect all the positive occurrences of x in B in
a single path, connect the negative occurrences of x in a single path, and
connect one endpoint of each of these two paths to s'" and the other to t",.

For example, consider the formula

B = (x V fj V z) 1\ (x V y V z) 1\ (x V y V z)
'----v----' '----v----' '----v----'

C d e

with variables X = {x, y, z} and clauses 0 = {c, d, e}. The construction
produces the following graph:

/'''' I""r--. I""r--.

.t S'" ~

.t Sy ~

.t ~

'-.,.-1 " "
If B has a satisfying assignment, then for each CEO, take the path from
Se to te of length two through some true literal of c, and for each x EX,
take the path from s'" to t", through the false literals. These k paths are
vertex-disjoint. Conversely, suppose there are k vertex-disjoint paths. The
path from s'" to t"" x E X, must go through either all and only the positive
occurrences of x or all and only the negative occurrences of x; any deviation
would necessarily go through some Se or te' Assign x true if the path from
s'" to t", goes through the negative occurrences of x and false if it goes
through the positive occurrences of x. Since the paths are vertex-disjoint,
the paths from Se to te , CEO, go through only true literals. Thus the
truth assignment satisfies all clauses.

The problem is in NP since the disjoint paths can be guessed and verified
in polynomial time.

260 HOMEWORK 8 SOLUTIONS

Homework 8 Solutions

1. This problem is in coNP because its complement is in NP: we can guess
a value for each variable and verify in polynomial time that the given
expression does not vanish. We show coNP-hardness by showing that its
complement is NP-hard using a reduction from CNFSat. Given a Boolean
formula, we transform it into an algebraic expression that vanishes mod
p for all variable assignments iff the original formula is unsatisfiable. We
simulate the Boolean values true and false with 1 and 0 in Zp, respectively.
If x is a variable of the Boolean formula, replace it with xp - 1 . Replace each
expression -,A by 1 - A, A /\ B by AB, and A V B by A + B - AB.

2. (a) The restricted problem remains in NP, so the difficult part is to show
NP-hardness. We do this by reducing the undirected Hamiltonian
circuit problem to TSP with the triangle inequality. Given an undi
rected graph G = (V, E), we will construct a symmetric distance
function d : V x V --t N satisfying the triangle inequality such that
G has a Hamiltonian circuit iff it has a TSP tour of length n. Let

d(u v) = {I if (u,v) E E,
, 2 if(u,v)¢E.

Then d obeys the triangle inequality trivially. A TSP tour in G that
has length n must contain only edges of length 1. Thus it corresponds
directly to a Hamiltonian tour in G.

(b) Actually, it is possible to find in polynomial time a tour that is no
worse than 3/2 times the optimal tour by using an algorithm known
as Christo fides 'heuristic. Our solution will only be guaranteed to be
no more than twice the optimal solution, but it is important to un
derstand how our solution works before looking at Christofides' algo
rithm, which uses matching. Papadimitriou and Steiglitz [85] discuss
Christofides' heuristic for those interested in finding out more about
it.
We will assume that distances are symmetric. First, we find a mini
mum spanning tree T. Next, we create a directed graph G by using
two copies of each edge of T, one in each direction. Finally, we find
an Euler circuit in G, which gives a TSP tour of weight twice that of
the minimum spanning tree. Since every TSP tour contains a span
ning tree of the original graph, the length of any TSP tour is at least
as large as the weight of the minimum spanning tree. Therefore, the
length of our Euler circuit is no more than twice the length of the
optimal TSP tour.
Since the triangle inequality holds, we can convert the Euler circuit
to a TSP tour of no greater weight in which vertices are visited only
once: we merely skip over vertices previously visited.

HOMEWORK 8 SOLUTIONS 261

3. Recall that if G = (V, E) is not acyclic, its transitive reduction or Hasse
diagram is not necessarily unique. The problem is in NP, since we can
just guess a transitive reduction, verify that it is antitransitive (i. e., that
if (u, v) and (v, w) E E then (u, w) fj. E), take its transitive closure, and
verify that this is the same as the transitive closure of E.

We show that the transitive reduction problem is NP-hard by exhibiting
a reduction from the directed Hamiltonian circuit problem. The reduction
from the vertex cover problem to the directed Hamiltonian circuit problem
given in Lecture 24 produces a strongly connected graph, whether or not
it has a Hamiltonian circuit. Thus the problem of determining whether
a given strongly connected graph has a Hamiltonian circuit is also NP
hard. We now argue that a strongly connected graph H has a Hamiltonian
circuit if and only if it has a transitive reduction with at most n edges.
Note that the transitive closure of such a graph is the complete graph.
If H has a Hamiltonian circuit, then the Hamiltonian circuit itself serves
as a· transitive reduction, and it has exactly n edges. Conversely, any
transitive reduction of H must contain at least n edges, since it must enter
every vertex at least once, since H is strongly connected. If it contains
exactly n edges, then it enters every vertex exactly once, thus it must be a
Hamiltonian circuit.

262 HOMEWORK 9 SOLUTIONS

Homework 9 Solutions

1. We will use the concurrent-read exclusive-write (CREW) PRAM model
with unit cost for integer operations and comparisons.

Represent the dag G as an adjacency matrix A. Compute its reflexive
transitive closure G* either by computing A* = (I V A)n in NC using
parallel prefix, or more efficiently, using the relationship between matrix
multiplication and transitive closure discussed in Lecture 5. Then sort the
vertices by indegree in G* using the algorithm of Miscellaneous Exercise
27. This gives a topological sort, since if there is a path from u to v in G,
then vertex u has smaller indegree than v in G*.

2. If G has an odd cycle, then it must have an odd simple cycle (one with no
repeated vertices), because any odd cycle that is not simple is composed
of two smaller cycles, one of which must be odd. Therefore, to check for
an odd cycle, we need only check for a path of odd length at most n from
a vertex back to itself. The kth power of the adjacency matrix A of G tells
us the paths of length k in G. Using parallel prefix, we can compute all
the odd powers of A up to n in NC and see if any of them contain a 1 on
the main diagonal.

This algorithm is NC, but it is not very efficient in its use of processors.
We can save a factor of n processors by observing that we only have to
check the diagonal of Ak for some odd k greater than n - 1. If there is an
odd cycle of shorter length, we can extend it to one of length k by retracing
an edge backwards and forwards. Thus we can use matrix powering instead
of parallel prefix.

Another approach would compute the * of a matrix A over a Kleene algebra
consisting of four elements 1., 0, 1, and T, where the operations + and·
are given by

We set

I + Ill. I 0 I 1 I T I I " 1. I 0 I 1 I T I
1. 1. 0 1 T
0 0 0 T T
1 1 T 1 T
T T T T T

1. 1. 1.
0 1. 0
1 1. 1
T 1. T

if i = j
if (i,j) E E
otherwise.

1. 1.
1 T
0 T
T T

The element 0 in position ij of A* means that there is an even-length path
between i and j; 1 means there is an odd-length path; T means there are

HOMEWORK 9 SOLUTIONS 263

3.

both (then the graph is not bipartite); and 1- means i and j are in different
connected components.

Here is a method due to Shiloach and Vishkin [93] that is much more
efficient in its use of processors. First, find a spanning tree of G. This can
be done in O(logn) time using O(n + m) processors on a CRCW PRAM.
Assign a parity 0 or 1 to each vertex according to its distance from the
root; this too can be done using O(n + m) processors in parallel, using
the technique of pointer doubling (see Miscellaneous Exercise 25). Finally,
check every edge of G to make sure that an edge does not join two vertices
of the same color.

(a) The system is described by the following matrix-vector equation, il-
lustrated here for the case k = 5.

0 1 0 0 0 0 Xn-5 Xn-4

0 0 1 0 0 0 Xn-4 Xn-3

0 0 0 1 0 0 Xn-3 Xn-2 (10)
0 0 0 0 = 0 1 Xn-2 Xn-l

a5 a4 a3 a2 al 1 Xn-l Xn

0 0 0 0 0 1 C C

Xo Co
Xl CI

X2 C2
(11)

X3 C3

X4 C4

C C

Raising the (k + 1) x (k + 1) matrix on the left hand side of (10) to
the nth power and using (11), we obtain

0 1 0 0 0 0
n

Co Xn

0 0 1 0 0 0 CI Xn+l

0 0 0 1 0 0 C2 Xn+2

0 0 0 0 1 0 C3 Xn+3

a5 a4 a3 a2 al 1 C4 Xn+4

0 0 0 0 0 1 C C

It therefore suffices to compute the nth power of the matrix in (10).
Represent this matrix as the sum C + U, where

0 1 0 0 0 0
0 0 1 0 0 0

C
0 0 0 1 0 0
0 0 0 0 1 0
a5 a4 a3 a2 al 0
0 0 0 0 0 1

Note that UC = U and U2 = 0; from this it follows that

where

(C + u)m em + Cm-1U +Cm- 2U + ... + CU + U

Cm+Dm'

m-l

Dm = O~: Ci)U .
i=O

(12)

The matrix C is a block diagonal matrix consisting of a k x k compan
ion matrix in the upper left and a 1 x 1 identity matrix in the lower
right, thus Miscellaneous Exercise 22 applies.
Given cm and Dm, we can obtain C2m, cm+!, D2m , and Dm+! in time
O(k2). For the first two we use Miscellaneous Exercise 22. For the
last two, we have

The product Cm Dm is essentially a matrix-vector product, since all
columns of Dm except the last are zero.
Thus we can compute Dn and C n with at most log n matrix operations,
each taking time O(k2) (the sequence of operations is determined by
the binary representation of n). The desired power (C + u)n is given
by (12).
For a different approach to this problem, see [109, 86, 45].

(b) With O(kOt) processors, we can multiply two (k+ 1) x (k+ 1) matrices
in time o (log k) using a parallel version of Strassen's matrix multi
plication algorithm. Thus the nth power of the matrix in (10) can be
computed in time o (log k log n) by repeated squaring.
Here is how we parallelize Strassen's algorithm. Recall that Strassen
multiplies 2 x 2 matrices as follows:

HOMEWORK 9 SOLUTIONS 265

where

81 (b-d)·(g+h)

82 (a + d) . (e + h)

83 (a - c) . (e + f)

84 h·(a+b)

85 a· (f - h)

86 d·(g-e)

87 e· (c + d) .

We can first compute the quantities b - d, g + h, a + d, e + h, a - c,
e + f, a + b, f - h, g - e, and c + d in parallel, then compute 81, ... , 87

in parallel from these, and finally the four entries of the product from
the 8i in parallel.
Now we apply this technique inductively. Given a pair of k x k ma
trices, we wish to build an NC circuit to compute their product. We
break each matrix up into four submatrices of size roughly ~ x ~, and
assuming that we have already constructed circuits to compute the
sum and product of ~ x ~ matrices, we can use those circuits in the
calculation of the k x k product exactly as in the 2 x 2 case described
above.
Let P(k) and T(k) be, respectively, the number of processors (size
of the circuit) and the time (depth of the circuit) necessary to to
multiply two k x k matrices by this method. These quantities satisfy
the recurrences

P(k)

T(k)

7P(~) + 0(k2)

k
T("2) + 0(1)

since we need 0(k2) processors and 0(1) time to add two k x k ma
trices. These recurrences give

P(k) 0(k1og7) = 0(k2.81...)

T(k) O(logk) .

For more details, see [44].

(c) Let y be an indeterminate and consider the generating function

00

x(y) = LXiyi
i=O

where the Xi are the solution to the recurrence. Multiplying x(y) by
yi shifts the coefficients i positions; using this trick, we can encode

266 HOMEWORK 9 SOLUTIONS

the linear recurrence as a single equation involving shifts of x(y) as
follows. Let

p(y) al + a2Y + a3y2 + ... + akyk-l

q(y) eo + ClY + ~y2 + ... + Ck_lyk-l
r(y) = (p(y) - akyk-l)(q(y) - Ck_lyk-l) mod yk .

(The coefficients of r(y) can be computed in time O(log k) with 2k
processors using FFT.) Then

x(y) = alY(x(y) - (eo + ClY + ... + Ck_2yk-2))

therefore

where

+ a2y2(X(Y) - (eo + ClY + ... + Ck_3yk-3))

+ a3y3(X(Y) - (eo + ClY + ... + Ck_4yk-4))
+ ...
+ ak_lyk-l(x(y) - eo)
+ akykx(y)
+ cyk(1 + y + y2 + ...)
+ eo + ClY + c2y2 + ... + Ck_lyk-l

cyk
yp(y)x(y) - r(y) + -1 - + q(y) ,

-y

x(y)
(q(y) _ r(y))(1 _ y) + cyk

(1 - y)(1 - yp(y))
u(y)

1- yv(y)

u(y) = (q(y) - r(y))(1 - y) + cyk

v(y) = 1 + p(y) - yp(y) .

Expanding the denominator of (13) in an infinite series, we get

00

x(y) = u(y) Lyiv(y)i ,
i=O

(13)

and since we are only interested in computing the first n terms, we
might as well truncate the series and compute instead

n-l

x(y) = u(y) L yiV(y)i
i=O

u(y)(1 _ynv(y)n)
1- yv(y)

(14)

(15)

HOMEWORK 9 SOLUTIONS 267

We take Fourier transforms and use componentwise operations. In
particular, to get the transform of ynv(y)n, we raise the transform of
yv(y) to the nth power componentwise, and to get the transform of
Ef~Ol yiV(y)i, we divide the transform of 1 - ynv(y)n by the transform
of 1 - yv(y) componentwise. There is one glitch: suppose that at
a root of unity wJ, we find that wiv(wi) = 1, so that we cannot do
the division in (15) at the lh component. In that case, we use (14)
instead, observing that

n-l
:E wiiv(wi)i = n.
i=O

We need tvth roots of unity and a multiplicative inverse of N, where
N exceeds the degrees of all polynomials involved, so that there will
be no wrap; since u(y) and v(y) are each of degree at most k, the
numerator of (15) is of degree at most kn+k+n, thus N > kn+k+n
suffices.

268 HOMEWORK 10 SOLUTIONS

Homework 10 Solutions

1. (a) As shown in Lecture 36, the expected value of the random variable
£(Xn+l I Sn) is

(b)

This yields the recurrence

£SO 0

£Sn+l £(Sn + Xn+l)

£Sn +£Xn+1

whose solution gives

m

£Sn + £(£(Xn+l I Sn))

> £Sn + £(E(m - Sn))

Em + (1 - E)£Sn

£Sn > m(l - (1 - Et) .

£Sn Li· Pr(Sn = i)
i=O

m-l

m· Pr(Sn = m) + L i . Pr(Sn = i)
i=O
m-l

:'5 m· Pr(Sn = m) + L (m - 1) . Pr(Sn = i)
i=O

m· Pr(Sn = m) + (m - 1) . (1 - Pr(Sn = m))
m -1 + Pr(Sn = m) .

Combining this inequality with (a), we obtain

Pr(Sn = m) ;::: 1 - m(l - Et .

(c) Using (b),

1· Pr(Sn < m) + O· Pr(Sn = m)
1- Pr(Sn = m)

< m(l- Et .

Also, by definition of f,

HOMEWORK 10 SOLUTIONS

Then for any l,

00

£R L £f(Sn)
n=O
i-I 00

< L 1 + L m(l - E)n

Taking

gives the desired bound.

n=O n=i
00

l+m(l-E)i L (l- Et
n=O

m i l+ -(1- E) .
10

rlOg m - log 101
-log(l - E)

269

2. Let au = IAul. It will suffice to show that for any subset B of Zp of size
k '5: d,

Pr(1\ Xo + XIU + X2U2 + ... + Xd_lUd- 1 E Au) = II au .
uEB uEB P

But

d-l

Pr(1\ L XiUi E Au)
uEBi=O

1 d-l .

..,d I{(xo, ... , Xd-l) I 1\ L XiU ' E Au}1
IF uEBi=O

1 d-l .

..,d L I {(xo, ... , Xd-l) I 1\ L XiU' = zu}1 .
l' ZuEAu, uEB uEB .=0

Consider the k x d linear system

Xo + XIU + X2u2 + ... + Xd_lUd-1

This can be represented in matrix form as

Ax = z

where A is a k x d submatrix of a d x d Vandermonde consisting of all rows

(1 2 d-l) , u, U, •.. , U , uEB.

Since the Vandermonde is nonsingular, A is of full rank k. Its kernel is
therefore a subspace of Z; of dimension d - k, thus the affine subspace of

270 HOMEWORK 10 SOLUTIONS

solutions to Ax = z also has dimension d - k. In Zp, any such subspace
has pd-k elements. Thus

1 d-l .

...d E I{(xo, ... ,Xd-l) I 1\ ~ XiU' = zu}1
l' z"EA .. , uEB uEB .=0

1 ~ d-k
- ~ P
pi zuEA .. , uEB

pd-k E 1
pel zuEAu1 uEB

1
kIIau .
p uEB

3. The solution to this problem is very similar to the analysis of Luby's algo
rithm given in class. Recall from there that a vertex is good if

1 1 E - >-.
UEN(v) d(u) - 3

Lemma A For all good v, Pr(v E U) ;::: ~.

Proof If v has a neighbor u of degree 2 or less, then

Pr(v E U) > Pr(v = t(u))
1

> 2'
Otherwise d(u) ~ 3 for all u E N(v), and as in the analysis of Luby's
algorithm, there must exist a subset M(v) ~ N(v) such that

~< E_l_<~
3 - UEM(v) d(u) - 3

Then

Pr(v E U)
> Pr(3u E M(v) v = t(u))

> E Pr(v = t(u)) - E Pr(v = t(u) 1\ v = t(w))
UEM(v) u,w E M(v)

U~W

(by inclusion-exclusion)

> E Pr(v = t(u)) - E Pr(v = t(u)) . Pr(v = t(w))
UEM(v) u,w E M(v)

U~W

HOMEWORK 10 SOLUTIONS

(by pairwise independence)
111

;::: UE~V) d(u) - U'W~(V) d(u) . d(w)

(L _1). (1 - L _1_)
uEM(v) d(u) wEM(v) d(w)
1 1 1 > -. - -
3 3 9

Lemma B For all v, Pr(v is matched I v E U) ;::: ~.

271

D

Proof There are several cases, depending on the number of H -neighbors of
v and the number of H-neighbors of each H-neighbor of v. The situation
minimizing the likelihood of v being matched is

• • • • • u v w

There are eight possibilities for the choices of favorites of u, v, w, all equally
likely. Of these, four give matchings for v. Thus

1
Pr(v is matched I v E U) ;::: "2'

D

Combining Lemmas A and B, the probability that any particular good
vertex is matched is at least fs. The remainder of the argument is exactly
like the analysis of Luby's algorithm given in class.

Note that the proof of Lemma A required only pairwise independence and
the proof of Lemma B required only 3-wise independence, thus using Ex
ercise 2 the algorithm can be made deterministic.

272 SOLUTIONS TO MISCELLANEOUS EXERCISES

Solutions to Miscellaneous Exercises

1. The set Imax is closed under subset, so axiom (i) of matroids is satisfied.
To show (ii), let I, J E Imax such that III < IJI; we wish to find x E J - I
such that {x} U I E Imax.

Let i and J be elements of M extending I and J, respectively. Consider
the set

E = (J U (8 - J)) - I .

The cardinality of E is greater than that of 8 - J. By Exercise 1a of
Homework 1, E is dependent in the dual, therefore contains a cut C. Now
C must intersect every maximal independent set including J, so it must
contain an element of J - I. Let x be such an element of minimal weight.

We argue now that for any element y E C - J, the weight of y is at least as
great as that of some element of C n J. This will say that x is of minimal
weight in C, which will allow us to apply the blue rule. Let D be the
fundamental cycle of y and J. By Lemma 3.7, C n D contains an element
z of J, and by Lemma 3.8, the colors of y and z can be exchanged in the
coloring J, 8 - J to obtain an acceptable coloring. But the weight of z
cannot exceed that of y, otherwise J was not of minimal weight.

At this point we have given a cut C disjoint from I such that CnJ contains
an element x of minimal weight among all elements of C. If we color I blue,
then we can apply the blue rule with x and C. Since I ~ i EM, it follows
from Lemma 3.9 that IU {x} is also contained in an element of M, therefore
I U {x} E Imax.

2. Determine for each e E E the sizes of the two connected components ob
tained by deleting e. This can be done in linear time by depth-first search,
computing the values recursively. Orient the edge e in the direction of the
smaller component. The resulting directed graph is a directed tree, since
no vertex has indegree greater than 1: if (8, u) and (t, u) were both oriented
toward u, and if 181, ITI, and lUI were the subtrees pictured,

then

181 > ITI + lUI
ITI > 181 + lUI

SOLUTIONS TO MISCELLANEOUS EXERCISES 273

from which it would follow that lUI = 0, a contradiction.

Since we have a directed tree, there is a unique root r. The desired edge
is the one from r to its largest subtree. To see this, let A, B, and C be the
maximal proper subtrees of r, and let A be the one of maximum size. By
the orientation of the edge from r to A,

IAI < ?:!:. < - 2 -
2n+ 1

3

Now IBI :::; IAI and ICI :::; IAI, therefore IBI + ICI :::; 21AI and

It follows that

n-l

>

IAI + IBI + ICI
IBI + ICI + IBI + ICI

2
3UBI + ICI)

2

2n+ 1
IBI+ICI+l :::; -3-'

3. There are several reasonable approaches to this problem. Here is one in
volving Kleene algebra. Consider the structure

K = (RU{oo,-oo}, min, +, *, 00, 0)

where we extend the usual + on R to R U {oo, -oo} by

oo+a
-oo+a

and define * by

a + 00 = 00, a E R U { 00, -00 }

a + (-(0) = -00, a E R U { -00 }

a* = {O, ~f a ~ 0,
-00, If a < O.

A routine check of the axioms verifies that this structure is a Kleene algebra.

Let G be a directed graph with n vertices and real edge weights w, possibly
negative. Form the n x n matrix A with Auv = w(u, v). If there is no edge
(u, v), set Auv = 00. As shown in Lecture 7, the family ofnxn matrices over
K is again a Kleene algebra, and we can calculate A * in time proportional
to the time needed to multiply two n x n matrices over K.

We claim that A~v is the weight of the minimum-weight path from u to v,
or -00 if there exists a path from u to v but no path is of minimum weight.
As with the min, + algebra discussed in Example 6.6, it can be argued by

274 SOLUTIONS TO MISCELLANEOUS EXERCISES

induction that A:v gives the weight of the minimum-weight path of length
k from u to v. Since A * = infk A k, if there exists a minimum-weight path
from u to v, and that path is of length k, then A:v = A:v.

It remains to argue that if there exists a path from u to v but no minimum
weight path, then the weights of paths between u and v are unbounded be
low, so that A:v = -00. This argument is necessary, since it is conceivable
that the weights of the paths from u to v approach some real lower limit
without ever achieving it. We show that this cannot happen: if there is a
path from u to v but no minimum-weight path, then there is a path from
u to v that traverses some cycle of strictly negative weight, which can be
traversed arbitrarily many times.

Under our assumption, there exists an infinite sequence Po, PI. ... of paths
from u ~to v such that Pi is a shortest (in terms of number of edges) path
of weight strictly less than that of PO,Pl, ... ,Pi-l. The number of edges in
these paths is unbounded, since for each k there are only finitely many paths
with k edges. Let Pi be the first path in the list with at least n edges; then
some vertex x must be repeated on Pi. The cycle that is traversed between
the two occurrences of x on Pi must be of strictly negative weight, otherwise
that cycle could be cut out of Pi to give a path of fewer edges and weight
strictly less than that of Po, Pl, ... ,Pi-l, contradicting the minimality of Pi.

Another approach to this problem is to identify the vertices contained in
negative-weight cycles and treat them separately. The solution to Miscella
neous Exercise 17(a) would presumably be useful in this regard. See [100]
for more details about this approach.

4. (a) Call a schedule for a set of jobs A safe if no deadlines are violated. If
A has a safe schedule, then so does any subset: simply delete the jobs
not in the subset.
Let A and B be two independent sets with IAI < IBI. Consider sep
arate safe schedules for A and B. Assume without loss of generality
that jobs are scheduled as early as possible with no gaps in the sched
ules. Let j be the job occurring latest in the schedule for B that is
not in A. Let C be the set of jobs occurring after j in the schedule for
B. Then C ~ A. Consider the following schedule for AU {j}: first
schedule all the jobs in A - C in the same order as in the schedule
for A, then schedule j, then schedule C in the same order as in the
schedule for B. This schedule is safe, since all elements of A - Care
scheduled no later than they were in A, and all elements in {j} U C
are scheduled no later than they were in B.

(b) We use the greedy algorithm with the jobs sorted by penalty in de
creasing order. The greedy algorithm produces a maximal indepen
dent set of maximum weight; these jobs can be scheduled safely. The
remaining jobs are all scheduled after their deadlines and incur a

SOLUTIONS TO MISCELLANEOUS EXERCISES 275

penalty, but this penalty is a minimum. Since all maximal inde
pendent sets are of the same cardinality, we can do no better than
this.
The sorting phase takes 0 (n log n) in general, or linear time if the
penalties are small enough that bucket or radix sort can be used. The
remainder of the algorithm can be implemented in time O(na(n)),
where a(n) is the inverse of Ackermann's function, as follows.
Suppose that we are at some intermediate stage of the algorithm and
have selected an independent set of jobs A. For dEN, define

J.LA(d) = the maximum number of jobs with
deadline d that could be added to A
without sacrificing independence.

For example, J.L0(d) = d. Then for any A,

o
J.LA(d + 1)

< J.LA(d) + 1 .

(16)

(17)

(18)

The inequality (17) holds because if k jobs with deadline d can be
safely added to A, then k jobs with any later deadline can be safely
added to A. The inequality (18) holds because in any safe schedule
for A and k additional jobs of deadline d + 1, k - 1 of the additional
jobs must finish before time d, thus there is a safe schedule for A and
k - 1 additional jobs of deadline d.
Properties (16), (17), and (18) say that the disjoint sets

J.L7/(k) = {d I J.LA(d) = k}

are intervals (contiguous sequences of natural numbers), and if the set
J.L7/(k) is nonempty, then J.Li(i) is nonempty for any 0:::; i :::; k.
We will use the union-find data structure to maintain the disjoint sets
J.LA1(k). Consider a new job j ¢ A with deadline dj • Then Au {j}
is independent iff J.LA(dj) > 0 iff dj ¢ J.LA1(O). Also, if Au {j} is
independent, then

thus

k < J.LA(dj)-1
k> J.LA(dj)

otherwise.

276 SOLUTIONS TO MISCELLANEOUS EXERCISES

The sets J.lj/(k) will be linked in a list f in order of increasing k.
Initially, J.l7/(k) = {k}, 0 ~ k ~ n. To test for independence of
Au {j}, where A is independent, we ask whether the set find (dj) has
a predecessor on the list f. If not, J.lA(dj) = J.lA(O) = 0 so AU {j} is
not independent. To insert the element j, we form the union of the
set find (dj) and its predecessor on the list f.

5. The problem is in coNP, since its complement is in NP: we can guess a
string of length n and check in polynomial time that it is not covered by
any of the patterns.

The problem is also hard for coNP, as the following reduction from (the
complement of) CNFSat shows. Suppose we have a CNF formula B with
n Boolean variables Xl, ... , X n • Convert each clause c to a pattern O'c of
length n as follows:

• if Xi does not appear in c, put * in position i of O'c.

• if Xi appears positively in c, put a 0 in position i of O'c.

• if Xi appears negatively in c, put a 1 in position i of O'c.

A string of length n over {O, l} represents a truth assignment to the vari
ables Xl, ... , Xn by assigning true to Xi if 1 appears in position i in the
string, false if 0 appears in position i. Then O'c covers exactly those strings
corresponding to truth assignments that do not satisfy c. Therefore every
string is covered by some O'c iff every truth assignment falsifies some clause,
i. e. iff B is unsatisfiable.

6. The problem is in NP, because we can guess a folding and compute its
length in polynomial time. To show NP-hardness, we reduce the partition
problem to it. Given an instance of the partition problem consisting of
the weight function w : {l, 2, ... , n} ~ N, construct a ruler with n + 4
segments of length (in order)

N
N, 2' w(l), w(2),

N
... , w(n), 2' N

where N is very large (actually N ;::: Ei=l w(i) suffices), and let k = N.
In order to fit, the endpoints of the two end segments of length N must
line up vertically, and the two segments next to them of length ~ must be
folded back in. Thus we will get a fit if and only if the remainder of the
ruler can be folded so that the inner endpoints of the ~ segments line up
vertically.

0 : o oJ 0 : •

.
N

SOLUTIONS TO MISCELLANEOUS EXERCISES 277

This can occur if and only if there exists a subset S C {l, 2, ... ,n} such
that

Lw(i) = LW(i);
iES i~S

the sets S and {I, 2, ... ,n} - S correspond to the segments in the ruler
pointing left and right, respectively.

7. Given a Boolean formula in CNF, perform the following operation on long
clauses until every clause has at most three literals. First replace the clause

(19)

with

(20)

where y is a new variable. The two formulas are equisatisfiable, and the
number of satisfying truth assignments is the same, because the truth as
signment to y is forced by the truth assignment to Xl and X2. The rightmost
clause of (20) has one fewer literal than (19).

Next, replace the new clause

with the equivalent formula

This procedure gives a formula with at most three literals per clause.

It is possible to get exactly three distinct literals per clause as follows. Let
X, y, and z be three new variables. Replace each deficient clause (u V v)
with (u V v V x) and each deficient clause (u) with (u V x V y), and add
the clauses (x), (y) and (z). The number of satisfying assignments is the
same, since the new variables have to be true in any satisfying assignment.
All clauses have exactly three literals except the three new ones. It now
suffices to show how to express the conjunction X y z in 3CNF. But

~~y~ - xy~VxyzVxy~VxyzVxy~VxyzVxy~,

and a 3CNF representation of X y z can be obtained by negating the right
hand side and applying DeMorgan's law.

8. In the new representation, there will be a doubly linked list V of vertices.
By "Given u, ... " we will mean, "Given a pointer to the list element for
vertex u on the list V, ... " Each vertex u will point to a circular linked

278 SOLUTIONS TO MISCELLANEOUS EXERCISES

list adj(u) of edges e such that t(e) = u. By "Given e, ... " we will mean,
"Given the list element for e on the list adj(t(e)), ... " The order on the
circular list adj(u) will give the order (). The edge e will point to ()(e),
t(e) and e; that is to say, the list element for e on adj(t(e)) will contain
pointers to the list element for () (e) on adj (t (e)), the list element for t (e)
on V, and the list element for e on adj(t(e)) = adj(h(e)).

Given e, in constant time we can compute ()(e), e or t(e) by following a
single pointer; and we can compute h(e) by following a pointer to e and
then following the pointer there to t(e) = h(e). We can delete a given
edge e in constant time by unlinking its list element from adj(t(e)) and
unlinking the list element of e from adj (h(e)). We can delete a vertex u by
first deleting all the edges on adj (u) as above and then unlinking u from
V.

We now show how to obtain the new representation from the old one in
linear time. The old representation consists essentially of the list V, for
each u on V a pointer to an adjacency list adj(u) containing all edges e
with t(e) = u, and for each e on adj(t(e)) a pointer to h(e) on V. To
calculate the pointers from e to t(e) in linear time, for each u scan the list
adj (u) and append to each list element a pointer back to u.

It remains to calculate the pointers from e to e. First produce for each
vertex u an auxiliary adjacency list aux(u) with a list element for each e
with t(e) = u and a pointer to e. The lists aux(u) will contain the desired
pointers but will not be in the correct order. The lists aux(u) are produced
in linear time by initializing all aux(u) to the empty list, then scanning
through all the lists adj (u) and for each e encountered appending a pointer
to e to the front of the list aux(h(e)).

At this point each u points to two lists, adj(u) and aux(u), each with one
entry for each edge e with t(e) = u. The former list is in the correct order
() and the latter contains the - pointers. We wish to consolidate them into
a single list with both properties. For each u, execute the following two
steps:

(a) Scan the list aux(u). For each e on the list, save the pointer to e in
the list element for h(e) on V. The pointer to h(e) is available as t(e).

(b) Scan the list adj(u). For each e on the list, pick up the pointer to e
from the list element for h(e) on V.

This procedure takes linear time, since each vertex and edge is visited a
constant number of times.

9. Since - and () can be computed in constant time, the permutation ()* = ()o
can be computed in constant time. Construct a doubly linked list L of
pointers to the list elements of all (directed) edges in the adjacency list

SOLUTIONS TO MISCELLANEOUS EXERCISES 279

representation of G. While constructing L, store with each list element in G
corresponding to an edge e a pointer to the list element in L corresponding
to e. Repeat the following loop until L is empty. Let e be an arbitrary
edge on L. Starting from e, successively compute ()*, deleting each edge
in succession from L and inserting it on a circular list C. Stop when we
get back to e. Then C contains all edges in the cycle of ()* containing e.
Create a new vertex u in V*, set t*(e) = u for each edge e in C, and make
C the adjacency list of u. When L is empty, set h*(e) = t*(e) for each
edge e. The pointers giving - are available from G.

10. As in Lecture 14, let nand n* be the number of vertices and faces of
G, respectively; let m = IEI/2, the number of undirected edges; let c
be the number of connected components (orbits of E under the subgroup
generated by () and -); and let ()* = () 0 -. Note that the subgroup
generated by () and - is the same as the subgroup generated by () and ()*,
since - = (}-l 0 ()*.

Write () as a product of disjoint cycles. Multiplying () on the left by an
involution (a b) acts on () as follows: if a and b are in different cycles of
(), then those two cycles are merged, and if a and b are in the same cycle,
then that cycle is split. All cycles of () not containing a or b are left intact.
For example,

(1 5) 0 (1 2 3 4) 0 (5 6 7 8)

(1 5) 0 (1 2 3 4 5 6 7 8)

(1 2 3 4 5 6 7 8)
(1 2 3 4) 0 (5 6 7 8) .

Here (ao al ... an-l) is the permutation that maps ai to a(i+1)modn' 0 :::;
i < n, and fixes all other elements of E.

Let ()' = (a b) 0 (). In terms of the graphs

G (E, (), -)

G' (E, ()', -) ,

if the edges a and b have a common tail in G (i. e., if a and b are in the
same cycle of ()), then that tail is split into two vertices in G' as shown.

If a and b have different tails (i. e., if a and b are contained in different
cycles of ()), then the tails are merged in G'.

280 SOLUTIONS TO MISCELLANEOUS EXERCISES

Note that

(0')* = (0*)' = (a b) 00* ,

so that these comments apply to the duals G* and 0'* as well.

Write 0 as a product of disjoint cycles

o = 00 0 01 0 ••• OOp_l •

Each Oi can be expressed as a product of 10il - 1 transpositions:

Thus 0 can be expressed as a product of

p-l

L:(IOil - 1) = 2m - p
i=O

transpositions. Let O'i denote the product of the rightmost i transpositions
in this list, and let Gi be the graph (E, O'i, -). Then 0'0 is the identity,
which has 2m singleton cycles, and 0'2m-p = 0, which has p cycles, so
multiplication by the ith transposition taking O'i to O'i+l must combine two
cycles into one. Thus Gi+l has one fewer vertex than Gi; i.e., n decreases
by one in each step.

Let the ith transposition be (a b). Either

(i) a and b belong to different connected components of G i ;

(ii) a and b belong to the same component but different cycles of 0';; or

(iii) a and b belong to the same cycle of 0'7-

In case (i), a and b belong to different cycles of 0';, so c and n* each
decrease by one and X(Gi+l) = X(Gi). In case (ii), n* decreases by one
and c remains the same, in which case X(Gi+l) = X(Gi) + 2. In case (iii),
a and b belong to the same component of Gi and n* increases by one. In
this case, we claim that c remains the same, thus X(Gi+l) = X(Gi). To see
that c does not increase, it suffices to show that for any dEE there exists
an ", in the subgroup generated by O'i+1 and - such that ",(d) = O'i(d); thus
each orbit of the subgroup generated by O'i and - is contained in an orbit
of the subgroup generated by O'i+l and - .

SOLUTIONS TO MISCELLANEOUS EXERCISES

If O'i(d) f/. {a,b}, then

(a b) oO'i(d)

O'i(d) ,

281

so in this case we can take 1/ = O'i+1. Suppose now that O'i(d) = aj the case
O'i(d) = b is symmetric. Since a and b are in the same cycle of O'i+l, there
exists a k such that O'f+1(b) = a. Let 1/ = O'f-tr Then

1/(d) O'f+1 (O'i+l (d))
O'f+1 ((a b) (O'i(d)))

0'~t-1 (b)
= a

The reverse inclusion, which implies that c does not decrease, follows from
a dual argument. (It is the dual argument that uses assumption (iii).)

11. We prove the harder direction (-+) j the direction (+-) follows from a
straightforward induction on the number of faces.

Let O'i and Gi be as in the solution to Miscellaneous Exercise 10. In that
solution it was argued that x(Gi+l) ;::: X(Gi) ;::: 0 for all i. Since G2m- p = G
and X(G) = 0, we have X(Gi) = 0 for all i.

We proceed by induction on i. For the basis, 0'0 is the identity map and
Go is the graph consisting of m connected components, each consisting of
two vertices and an undirected edge. This certainly has a plane embedding
consistent with 0'0.

Now suppose Gi has a plane embedding consistent with O'i. Let (a b) be
the ith transposition, so that O'i+1 = (a b) OO'i. The tails of a and b in Gi

are merged in Gi +1. Either

(i) a and b lie in the same face of Gi , or

(ii) a and b lie in different faces of G i .

In case (i), the tails of a and b can be merged across the common face
of a and b. It is easily checked that the resulting embedding of Gi+l is
consistent with O'i+1.

In case (ii), both n and n* decrease by one in passing from Gi to Gi+l> so
c must also decrease by one to maintain X(Gi+l) = o. Thus a and b are
in different connected components of Gi . By embedding on the sphere and
changing the position of the North Pole, we can arrange the embedding of
Gi so that a and b occur on the outer faces of their components, then merge
the tails of a and b to obtain a plane embedding consistent with O'i+l.

282 SOLUTIONS TO MISCELLANEOUS EXERCISES

12. Instead of maximal cliques, take the complement graph and consider the
maximal independent sets. Given a Boolean formula, construct a graph
with a black vertex for each literal and a red vertex for each clause. Con
nect complementary literals and connect each clause to the literals it con
tains. Any maximal independent set M containing no red vertex contains
exactly one of each pair of complementary literals and thus gives a truth
assignment; moreover, it is a satisfying assignment, since every red ver
tex is connected to a vertex in M (otherwise M would not be maximal).
Conversely, any satisfying assignment gives a black maximal independent
set.

13. Given a partition problem (S, w), where S is the set of items, n = lSI, and
W : S -t Z the weight function, let f be an upper bound on the absolute
values of weights of elements of S. Then for any subset R ~ S,

Iw(R)1 = L Iw(a)1 :::; flRI·
aER

Thus, although there are 21RI subsets of R, there are only 2iIRI + 1 weights
these subsets can take on.

The following algorithm is quite reasonable if f is sufficiently small. We
calculate recursively the set of all possible weights of subsets of R ~ S.
If R = {a}, the possible weights are 0 and w(a). If IRI ~ 2, partition R
into two disjoint sets Rl, R2 of roughly equal size and recursively produce
the data for RI and R2 . For each pair of weights WI and W2 in the sets
computed for RI and R2 , respectively, calculate WI + W2 and record it in
the set for R. Since WI is the weight of some subset of RI and W2 is the
weight of some subset of R2 , WI + W2 is the weight of their union, which is
a subset of R; moreover, every subset of R is obtained as such a union.

Since the weights of subsets of ~ lie between -fl~1 and fl~l, the calcula
tion of all the weights WI + W2 requires at most O(fIRII· flR2 1) operations.
This gives rise to the recurrence

with solution

Thus for partition problems with f = fen) a polynomial in n, T(n) is also
a polynomial in n.

14. Try k = 2 [log nl , the smallest power of 2 greater than or equal to n. Re
call that in the representation over Z2[X]/Xn , the binary-to-Gray operation
amounts to multiplication by x + 1. We wish to show that (x + l)k = 1

SOLUTIONS TO MISCELLANEOUS EXERCISES 283

and for all 0 $; f < k, (x+ 1)l =f 1; in other words, the order of x+ 1 in the
group of invertible elements of Z2[X]/Xn is k. This will suffice to prove our
result, since for any p, applying the binary-to-Gray operation k times gives
(x + 1)kp = p, and for any 0 < f < k, (x + 1)l(x + 1)k-l = 1 =f (x + 1)k-l.

To show that (x + 1)k = 1, note that in Z2[Xl/Xn , squaring is a linear
operation:

since 2 = 0 (mod 2). Thus

(x + 1?r10gn l

(... ((x + 1)2)2 ... ?
x2rlOgnl + 1

1 ,

since 2rlognl 2: n and therefore x2POgnl = 0 mod xn. To show that no
smaller power works, we use the fact that the order of x + 1 must divide
k, therefore it must be a power of 2. But for m < flog n 1 we have 2m < n,
therefore

15. (a) Consider the weighted 4-node widget A we used in Lecture 27 with
the following adjacency matrix:

[~ ~
o 0
1 -1

-1 01 1 0
2
o 1
o 0

The input nodes of the widget are 1 and 3 and the output nodes are 2
and 4. Note that A34 = 1 and everything else in the row and column
containing A34 is O. This says that every cycle cover of nonzero weight
must contain the edge from 3 to 4 of weight 1. We might just as well
collapse 3 and 4 into one node. The resulting widget is

[
11
1 1
2 2
1 -1 Tl (21)

with input nodes 1 and 3 and output nodes 2 and 3. The desired be
havior is summarized by the following equations, analogous to those
presented in the lecture for the four-node widget. As before, A(i;j)

284 SOLUTIONS TO MISCELLANEOUS EXERCISES

denotes the submatrix of A obtained by deleting row(s) i and col
umn(s) j.

perm A(3j 3) = perm A(2j 1) = perm A(2, 3j 1,3) = 1

perm A(3j 1) = perm A(2j 3) = perm A = 0 .

A quick calculation shows that all these properties are satisfied by
(21).

(b) To be used in this construction, any widget must have two distinct
input vertices and two distinct output vertices, because there are good
cycle covers containing two input edges and two output edges. Thus
in any two-node widget, both nodes are input nodes and both are
output nodes. The relevant equations are then

perm A(lj 1) = perm A(2j 2) = perm A(l, 2j 1,2) = 1

perm A(2j 1) = perm A(lj 2) = perm A = 0 .

The first line implies that Au = A22 = 1. The first two equations
of the second line imply that A12 = A21 = O. Thus A must be the
identity matrix. But then perm A = 1, so the last equation is violated.

16. (a) We first apply depth- or breadth-first search to determine whether the
graph is 2-colorable (say with cyan and magenta) and find the con
nected components. If it is not 2-colorable, then no schedule exists.
If it is, then we must decide for each connected component whether
to schedule the cyan vertices of that component at time 0 and the
magenta vertices at time 1 or vice versa so that there are at most m
vertices in all scheduled at anyone time. This is a partition prob
lem with small weights and can be solved in polynomial time by the
method of Miscellaneous Exercise 13.

(b) The problem is equivalent to the following graph coloring problem:
given an undirected graph, can the vertices be colored with t col
ors so that no two adjacent vertices receive the same color and each
monochromatic set is of cardinality at most m? The ordinary k
colorability problem discussed in Lecture 21 reduces to this problem
trivially by taking m = n. Therefore the problem is NP-hard. It
is also easily seen to be in NP, since a solution can be guessed and
verified in polynomial time.

17. (a) The problem of detecting negative cycles is made easier by the follow
ing lemma.

Lemma A vertex u is contained in a negative-weight cycle iff some
vertex in the strong component of u is contained in a simple negative
weight cycle.

SOLUTIONS TO MISCELLANEOUS EXERCISES 285

Proof.
(-+) If the negative-weight cycle containing u is simple, we are done.
Otherwise there is a repeated vertex x on the cycle, and x is in the
strong component of u. The cycle can be decomposed into two strictly
smaller cycles containing x, at least one of which must have negative
weight. By induction, there is a simple negative-weight cycle contain
ing an element of the strong component of x, which is also the strong
component of u.
(-) Let x be a vertex in the strong component of u contained in a
simple negative-weight cycle. Combining the cycle through u and x
with sufficiently many trips around the negative-weight cycle through
x, we obtain a negative-weight cycle through u. 0

Every simple cycle of negative weight is of length at most n. Thus we
can test for the existence of such a cycle by testing for the existence
of any negative-weight cycle of length at most n. We can do this
in polynomial time by examining the diagonal elements of (1 + c)n,
where C is the weighted adjacency matrix and 1 is the identity matrix
over the min,+ Kleene algebra.

(b) The problem is in NP, since we can guess a simple path and verify
that it has negative weight in polynomial time.
To show NP-hardness, we reduce the Hamiltonian circuit problem to
this problem. Given a graph G = (V, E) with IVI = n, pick a vertex
u and split it into two vertices v, t with no edge between. Each of
v, t is connected to the other vertices of G in the same way u was.
Let s be a new vertex and add an edge of weight n - 1 from s to v.
Weight the remaining edges -1. The new graph has n + 2 vertices.
Any path from s to t must begin with the edge from s to v of weight
n - 1, therefore must traverse at least n other edges in order to be of
negative weight. In order to be simple, it can traverse at most n other
edges. Thus a simple negative weight path from s to t is of length
exactly n + 1 and contains a simple path from v to t of length n. This
gives rise to a Hamiltonian circuit in the original graph.

18. (a) Every maximal matching M can be extended to an edge cover C by
adding an extra edge for each unmatched vertex. Each such extra
edge must connect the unmatched vertex to a matched one, otherwise
M was not maximal. Thus ICI + IMI = IVI.
Conversely, every minimal edge cover C contains a matching M by
choosing one edge from each connected component of C. Each com
ponent of C consists of a vertex with edges radiating out from it; if a
component had more than one vertex of degree greater than one, we
could remove an edge and still have a cover. The number of compo
nents of C is IMI, and again, ICI + IMI = IVI·

286 SOLUTIONS TO MISCELLANEOUS EXERCISES

We have shown that for every maximal M there is a C with IOI+IMI =
IVI and for every minimal C there is an M with 101 + IMI = IVI. Thus
an edge cover of minimum cardinality can be obtained by extending
a matching of maximum cardinality as described above.

(b) Find a maximum matching and take the vertex cover to be the set of
matched vertices. This is a vertex cover, since any edge not covered
could have been added to the matching. It is at most twice the size
of a minimum vertex cover, since every vertex cover must contain at
least one endpoint of each matched edge.

These algorithms can be implemented in time O(m..fii) using the algorithm
of Micali and Vazirani [80, 105].

19. As shown in Lecture 26, G has a cycle cover iff the permanent of its ad
jacency matrix is nonzero. Let G' be a bipartite graph whose bipartite
adjacency matrix is the same as the (nonbipartite) adjacency matrix of G.
Then G has a cycle cover iff G' has a perfect matching, so we can use any
one of the fast algorithms given in class for maximum matching.

We can also go directly from an adjacency list representation of G to an
adjacency list representation of G' in linear time without constructing the
common adjacency matrix: duplicate the entire adjacency list representa
tion of G and make the pointers in the edge lists in each copy to point to
the other copy.

20. First find a maximum matching M in time O(m..fii) using the Hopcroft and
Karp algorithm. If there is a deficient set, then Hall's Theorem says that
there is at least one free vertex x E U. Starting from x, build a Hungarian
tree of all vertices reachable from x along alternating paths. Cut each path
off when a vertex that has been seen before is encountered. Let R be the
set of vertices reachable from x in the Hungarian tree. Let D = Un R. We
will show that D is a minimal deficient set.

First we claim that every element of R besides x is matched. There are
certainly no free vertices in R n U except x, since each such vertex is first
seen immediately after traversing an edge in M. If there were a free vertex
v in R n V, then the path from v back to x would be an augmenting path,
contradicting the maximality of M. Moreover, for every matched vertex in
R, its mate is also in R. Thus IN(D)I = IDI-1 and D is deficient.

To show that D is minimal, we show that for any element y ED, there is a
matching in which all elements of D except y are matched; thus no proper
subset of D is deficient. If y = x, we can take the matching M. Otherwise,
y is matched in M. Change the status of all edges on the alternating
path from y back to x through the Hungarian tree. This unmatches y and
matches x. All other elements of D remain matched.

21. First we extend Menger's Theorem slightly.

SOLUTIONS TO MISCELLANEOUS EXERCISES 287

Lemma Let S be any set of k vertices of a connected undirected gmph
G = (V, E). The following are equivalent:

(i) G is k-connected;

(ii) any pair of vertices is connected by at least k vertex-disjoint paths;

(iii) for any vertex s E S and any vertex v E V, s and v are connected by
at least k vertex-disjoint paths.

Proof. The implication (i) ---* (ii) is given by Menger's Theorem and (ii) ---*

(iii) is trivial.

To show (iii) ---* (i), let U be any set of k -1 vertices. At least one element
s E S is not in U, and for any other vertex v not in U, by (iii) there is a
path from s to v avoiding U. Thus the removal of U does not disconnect
G. 0

We will show how to test whether a given s and t are connected by k
vertex-disjoint paths in time O(km). By the lemma, we only need to do
this for kn pairs of vertices. This gives an overall time bound of O(k2mn).

To test whether s and t are connected by k vertex-disjoint paths, we adapt
the max flow algorithm of Edmonds and Karp. First we replace each edge
with two directed edges, one in each direction, then give them all capacity
1. Then we split each vertex v into two vertices v' and v" with an edge
from v'to v" of capacity 1. All edges that were directed into v are directed
into v' and all edges that were directed out of v are directed out of v".

before after
The value of an integral max flow from s to t in this graph will be the
maximum number of vertex-disjoint paths from s to t. This follows from
the Max Flow-Min Cut Theorem and the splitting of vertices that prevents
more than one unit of flow to pass through any interior vertex.

However, we do not need to find a max flow, but only to check whether it
is at least k. This can be done by performing k augmenting steps of the
Edmonds-Karp algorithm, calculating new level graphs as necessary. The
time to calculate all the level graphs is at most O(km) and the time to do
all the augmenting steps is at most O(km).

288 SOLUTIONS TO MISCELLANEOUS EXERCISES

22. Let ei be the row vector with a 1 in position i and 0 elsewhere. For
1 :5 i :5 k, the ith row of Cp is the first row of C;; that is,

eiCp = eIC;.

Then for any m ;::: 1, the ith row of C; is the first row of C;+i-l:

em c em - l
eip eip p

e eiem - l
I p P

e em +i - l
I p .

For any row vector x = (Xl, ... ,Xk), xCp can be computed in time O(k):

xCp = (-aoXk' Xl - alXk, X2 - a2Xk, ... ,Xk-l - ak-IXk) . (22)

Thus we can compute any product ACp in time O(k2). Now given a power
C; of Cp , we can square it in time O(k2) as follows. First compute the
row vector

elc;m = (eIC;)C;.

This takes time O(k2) and gives the first row of C'j,m. Compute the remain
ing rows of C'j,m by successively multiplying by Cp on the right. This takes
time O(k2) by (22). We can compute C; with at most logn operations of
squaring and multiplying by Cp ; the sequence of operations is determined
by the binary representation of n.

23. Let r = rank A and let A' be an n x r submatrix of A of full rank r.
Let B be an n x (n - r) matrix spanning ker A. As argued in Lecture
40, rank (RA)2 = rank RA = rank A iff the matrix [RA'IB] formed by
juxtaposing RA' and B is nonsingular. Thus

Pr(rank (RA? = rank RA = rank A) = L Pr(RA' = S) ,
SES

where the sum is over the set S of all n x r matrices of full rank r such
that [SIB] is nonsingular.

We claim that RA' is a random l n x r matrix. To see this, let D be any
nonsingular n x n matrix agreeing with A on the columns A'. Then

RA' = (RD)',

where (RD)' denotes the n x r submatrix of RD obtained by deleting the
same columns that were deleted from A to get A'. Since the map R I--t RD

1 A random matrix is a matrix with each entry chosen independently and uniformly at
random from the field. If the matrix is k x m, then all qkm possible matrices are equally
likely.

SOLUTIONS TO MISCELLANEOUS EXERCISES 289

is a bijection and R is a random matrix, so are RD and (RD)'. Therefore
for any n x r matrix S,

Pr(RA' = S) Pr((RD)' = S) =
1

We now calculate the size of S. Note that a subspace of kn dimension m
has qm elements, since every element is a linear combination of m basis
elements, and there are qm ways to choose the coefficients of the linear
combination. We wish to count the number of ways of choosing an n x r
matrix S of full rank whose columns avoid the subspace of dimension n - r
spanned by the columns of B. There are qn - qn-r ways to choose the first
column of S to avoid this subspace; once that column is chosen, there are
qn _ qn-r+1 ways of choosing the second column to avoid the linear span of
B and the first column already chosen; and so on. After all but one column
are chosen, there are qn - qn-1 ways to choose the last column. Thus there
are in all

r II (qn _ qn-i)
i=l

ways of choosing S, and this number is lSI. Combining all the above
equations, we have

Pr(rank (RA)2 = rank RA = rank A)

L Pr(RA' = S)
SES

lSI
qnr
r 1
II(1- i) .
i=l q

24. (a) To show that the problem is coNP-hard, we give a reduction from
the pattern covering problem of Miscellaneous Exercise 5. Let P be
a given set of patterns p E {O, 1, * In. We show how to construct in
polynomial time a set of terms T such that T is a cover of the ground
terms over {f,a,b} iff P is a cover of {O, l}n.

Let

Fn(X1' ... ,xn) = f(X1' f(X2' ... f(Xn-b xn) ...)) .

Let 0' = a and l' = b. We will encode a string d1d2 ••• dn E {O, l}n
by the term Fn (d~, ... , d~). Let S be the set of all terms of this form;
i.e.,

290 SOLUTIONS TO MISCELLANEOUS EXERCISES

We will take T = To U TI , where To will cover exactly the terms not
in S, and TI will cover all terms in S iff P is a cover of {O, l}n. The
set To consists of all terms of the form

• Fi(xI,'" ,xi-I,a), 1 ~ i ~ n-1
• Fi(XI, ... , Xi-I, b), 1 ~ i ~ n - 1
• Fn(xI, ... , Xi-I, f(y, z), Xi+1," . ,xn), 1 ~ i ~ n.

The terms (a) and (b) cover all ground terms not covered by Fn , and
the terms (c) cover all ground terms covered by Fn that are not in S.
Now, for each pattern P = PIP2 ... Pn E {O, 1, *}n, let tp be the term
Fn(P~" .. ,p~), where

{
a, if Pi = 0,
b, if Pi = 1,
Xi, if Pi = * .

The set of ground terms in S covered by Fn(P~"" ,p~) is exactly the
set of all ground terms Fn(d~, .. . ,d~) such that dId2 .. • dn E {O, l}n
is covered by p. We therefore take

TI = {tp I pEP} .

(b) We would like to guess a ground term and verify in polynomial time
that it is not covered by T. The major difficulty here is that there
are infinitely many ground terms. We need to know that if there
exists a ground term that is not covered by T, then there is one of
polynomial size. This will allow us to guess that term by a sequence
of polynomially many nondeterministic binary choices.
For convenience, we view terms as functions labeling the nodes of the
infinite binary tree with f, a, b, variables in X, or 1... Formally, a term
t is a map

t : {L, R} * -t {J, a, b} U X U {-l}

such that for all 0: E {L, R} *, the following are equivalent:

• t(o:) = f
• t(o:L) f:.1..
• t(o:R) f:. 1..

and such that t(o:) f:. 1.. for at most finitely many 0:. For example, the
term f (J (a, b) , b) is represented by the map

E t-t f
L t-t f

LL t-t a

LR t-t b

R t-t b

everything else t-t 1...

SOLUTIONS TO MISCELLANEOUS EXERCISES 291

Let tja denote the subterm of t rooted at a:

tja«(3) = t(a(3).

Now let T be the given set of terms. Let

At {a I t(a) i: .1}

A UAt
tET

A Au {aL, aR I a E A} .

The set At is a set of paths, but it can be thought of as the binary
tree obtained by ignoring labels on the nodes of t. The set A can be
thought of as the tree obtained by superimposing the trees At, t E T,
on one another. The set A can be thought of as the tree obtained
from A by sprouting two new shoots out of each leaf.

Assume ITI ~ 2 (the only singleton cover is {x}). Let n = L:tET lAd
(a measure of the size of the problem). Then IAI < nand IAI-IAI =

IAI + 1 ::; n. Let M be the set of ground terms t such that At is the
complete binary tree of depth log log 2n. There are at least 2n terms
in M, one for each assignment of a and b to the log 2n leaves, and
each term in M is of size 2 log 2n.

We claim now that if T covers all ground terms of size at most n +
2n log 2n, then it covers all ground terms. To see this, suppose that
T covers all ground terms of size at most n + 2n log 2n, and let t be
an arbitrary ground term. Associate with each a E A - A a unique
term U a E M such that U a i: tj (3 for any (3 E A. Since IMI ~ 2n,
IAI ::; n, and IAI - IAI ::; n, there are enough terms in M to do this.
Let t' be a new term obtained from t by replacing all subterms tja
for a E A - A with Ua . In other words,

• for a E A, set t'(a) = t(a);
• for a E A - A such that t(a) i: .1, set t'(a(3) = ua «(3) for all

1(31 ::; log log 2n;
• for all a not assigned in (a) or (b), set t'(a) =.1.

From the construction of t', it is clear that

IAt,1 ::; IAI + IA - AI· 2log2n ::; n + 2nlog2n ,

so by assumption t! is a substitution instance of some term 8 E T.
We claim that t is a substitution instance of 8 as well. Certainly, if
all the variables of 8 are distinct, then t is a substitution instance
of 8, since t and t' agree on all elements of A. Now suppose for a
contradiction that there exist strings a and (3 such that 8(0.) = 8«(3) E

292 SOLUTIONS TO MISCELLANEOUS EXERCISES

X (thus 0.,(3 E A) and tla #- tl(3. Then there exists a string "I such
that

t(a"l) = tla("f) #- tl(3("f) = t((3"1).

We may assume without loss of generality that neither t(a"l) nor
t((3"1) = .1; otherwise, we can find a prefix of "I such that this is
true, and take "I to be that prefix instead. We have three cases:

• If both 0."1,(3"1 E A, then t'(a"l) #- t'((3"1), since t and t' agree on
A. This contradicts the fact that t' is a substitution instance of
s.

• If 0."1 ¢ A and (3"1 E A, let "I' be a prefix of "I such that 0."1' E A-A.
Then (3"1' E A. Either tl (3"1' is entirely contained in A (in the sense
that for all 8 E At //3"(', (3"1'8 E A), in which case t'I(3'Y' = tl(3"1';
or there exists a 8 such that (3"1'8 E A - A and t((3"1'8) #- .1, in
which case t' 1(3"1'8 = U/3"('6. In either case t'la"l' = u"""(' #- t' I (3"1',
again contradicting the fact that t' is a substitution instance of s.

• If 0."1 ¢ A and (3"1 ¢ A, let "I' be a prefix of "I such that 0."1' E A-A
and (3"1' E A (or vice versa-assume the former). If (3"1' E A, then
we revert to the previous case. Otherwise, both 0."1', (3"1' E A-A.
Then

t' (0."1') = U"""(' #- U/3"(' = t' ((3"1') ,

again contradicting the fact that t' is a substitution instance of s.

Since all three cases lead to a contradiction, we conclude that t is a
substitution instance of s. Since t was arbitrary, T is a cover.

Thus to determine whether there exists a ground term not covered
by T, we need only guess one of size at most n + 2n log 2n and check
that it is not covered by any sET. This can easily be done in
nondeterministic polynomial time.

25. This problem can be solved with n processors in O(logn) time. We asso
ciate a processor with each vertex. The processor associated with vertex
v will calculate a pointer next(v) to the successor of v in the preorder
traversal. If v is not a leaf, then next (v) is its leftmost child. If v is a leaf,
then next(v) is the leftmost right sibling of d(v), where d(v) is the lowest
ancestor of v that is not the rightmost child of its parent. If no such d(v)
exists, then v is the last vertex in preorder and has no successor.

To compute the next pointers of leaves in logarithmic time, we use the
technique of pointer doubling. Initially, each vertex v sets

{
parent (v) if v is the rightmost child of its parent;

d(v):= v if v is not the rightmost child of its par-
ent or v is the root.

SOLUTIONS TO MISCELLANEOUS EXERCISES 293

Each vertex v then iterates the operation d(v) := d(d(v)) log n times. This
must be done synchronously in parallel. At this point d(v) = d(v) if d(v)
exists, or the root if not. If so, the leaf v sets next (v) to the leftmost right
sibling of d(v).

We now have a list next of all vertices in the correct order. It remains
to compute the preorder number of v for each v. This is the number
of vertices appearing on the list next before v. This can be done in log n
stages with parallel prefix addition, using pointer doubling (i. e., next (v) :=
next(next(v))) to calculate the address to send the next message in each
stage.

26. (a) To test whether G is outerplanar and to find an outerplane embed
ding if one exists, we add a new vertex v and an edge from v to all
other vertices, then use the Hopcroft-Tarjan planarity test [52] to test
whether the resulting graph G' is planar and find a plane embedding
if so. This can be done in linear time. If G is outerplanar, then G can
be embedded with all vertices on the outer face, so embedding v in
the outer face allows v to be connected to all other vertices without
crossing; thus G' is planar. Conversely, if G' is planar, then it can be
embedded with v adjacent to the outer face; then deleting v and its
incident edges gives an outerplane embedding of G.

(b) There always exists a l-~ separator of size 2. To find it, we first find
an outerplane embedding as in part (a).

o
We then triangulate the interior faces. This can be done by traversing
each interior face, adding an edge from the first vertex on the face
to every other vertex on the face it is not already connected to. (We
know from part (a) which face is the exterior face: it is the one that
contained v.)

We then compute the plane dual of G using Miscellaneous Exercise
9, but we omit the vertex corresponding to the outer face of G and
all incident edges. The resulting graph is a tree T, because any cycle
would contain a vertex of G not on the outer face.

294 SOLUTIONS TO MISCELLANEOUS EXERCISES

Exercise 2 can then be used to find an edge e in T whose removal dis
connects T into two disjoint subtrees with no more than 2/i1 vertices
each, where f is the number of vertices in T (= number of interior
faces of G). The desired separator consists of the endpoints of the
dual edge of e.

27. (a) Let the data elements be a1, ... , an- Assign n 2 processors to compare
every element with every other element. For all i,j, 1 ~ i,j ~ n, let

A. . = {I if either ai < aj or (ai = aj and i < j)
OJ 0 otherwise.

The n x n matrix A can be produced by the n2 processors in one step.
The matrix A determines the sorted order: for all i, the number of l's
in the ith row of A is the position of i in sorted order. Computing the
ith row sum of A takes 0 (log n) time and 0 (n) processors in parallel, or
o (log n) time and O(n2) processors to compute all the row sums. Once
the position of an element in sorted order is computed, that element
is stored in the proper element of the output array. This takes one
step with n processors, assuming random access to the output array.

(b) We use parallel mergesort. Each of n processors is assigned to a
different input element. The set of elements is split into two sets
of roughly equal size which are then sorted recursively in parallel. We
then merge the two sorted arrays in O(logn) time with n processors
as described below. We obtain the recurrence

T(n)

giving a running time of

T(n) = O((logn)2).

We now show how to merge two sorted arrays in time O(logn). Let
S, T be the two sorted arrays of size m and n, respectively. We have
m + n processors at our disposal, each assigned to a different element.
First we find the medians x and y of Sand T, respectively. This takes
one step. Then compare x and y; say without loss of generality x ~ y.
Split each of Sand T into three arrays

{zESlz~x}
{zESlx<z~y}
{zESly<z}

{zETlz~x}
{zETlx<z~y}
{ZETIY<z}

SOLUTIONS TO MISCELLANEOUS EXERCISES 295

in one step. Note that each 8 i is at most half the size of 8 and each
1'; is at most half the size of T. For each 0 ~ i ~ 2 in parallel,
merge 8i and Ti recursively with the 18i l + 11';1 processors assigned
to 8i and 1';. Let Ui be the array obtained by merging 8i and Ti ,

o ~ i ~ 2. Now store Uo, Ul , and U2 in an array end-to-end. The
processor associated with the ith element of Uo stores its element in
position i of the output array; the processor associated with the ith

element of Ul stores its element in position I Uo I + i of the output
array; and the processor associated with the ith element of U2 stores
its element in position IUol + lUll + i of the output array. This takes
constant time in parallel. We obtain the recurrence

giving a parallel time bound of

T(n) = O(logn)

for the merge.

Parallel sorting is a topic of intense current interest. There are much more
efficient NC algorithms known for sorting than the ones given here. To
mention a few: Ajtai, Komlos, and Szemeredi [5] give a sorting network
of depth O(logn) and O(n) linear width; Cole [20] gives a CREW PRAM
sorting algorithm that runs in time o (log n) on n processors; Bilardi and
Nicolau[12] give an EREW PRAM bitonic sorting algorithm that runs in
time 0 ((log n) 2) on n / log n processors.

28. (a) We first show that the product of two circulant matrices is again a
circulant matrix. A matrix C is circulant iff, when the columns are
rotated one position to the left and then the rows are rotated up, we
get C back; in terms of permutation matrices,

p-1CP = C,

where

0 0 0 1
1 0 0 0

p 0 1 0 0

0 0 1 0

Then AB is circulant if A and B are, since

P-1ABP = P-1APP-1BP AB.

296 SOLUTIONS TO MISCELLANEOUS EXERCISES

While we are at it, let us show that the inverse of a circulant matrix,
if it exists, is circulant:

p-l A-Ip = (p-l AP)-l = A-I.

We can easily compute the first row of AB in O(logn) time with n2

processors, since each element of the first row is an inner product
and can be computed in O(log n) time with n processors. Since AB
is circulant, we need only rotate the- first row to get the other rows.
This takes constant time with n2 processors.

(b) Let a = (ao, al, ... , an-I) and b = (bo, bI, ... , bn- l). Let c(a) denote
the unique circulant matrix with first row a; thus c(a)ij = aj-i. In [3,
pp. 256-257], it is stated that the vector F;;I(Fna·Fnb) is the positive
wmpped convolution of a and b:

F;;I(Fna . Fnb) (23)
n-l n-l n-l n-l

= (L aib-i, L aibl-i, L ai~-i' ... , L aibn-I-i). (24)
;=0 ;=0 i=O i=O

(Subscripts in (24) are taken modulo n.) It can be shown by a direct
calculation that this is the first row of the matrix product c(a} . c(b};
thus

(25)

The vector F;;I(Fna . Fnb) can be computed in time O(logn) with n
processors by doing two Fourier transforms, a componentwise vector
product, and an inverse Fourier transform.

Since the proof of (24) is omitted from [3], we supply one here. Let f
and g be polynomials of degree at most n - 1 with coefficients a and
b, respectively. As shown in Lecture 35, under the Fourier transform,
multiplication of polynomials modulo xn - 1 becomes componentwise
vector product:

(26)

Modulo xn -1, we can equate monomials Xi and Xi mod n. This allows
us to take superscripts as well as subscripts modulo n. Doing so, we
get the following calculation:

fg mod xn-l
n-In-l

L L aibjxi+j
i=O j=O

n-In-l

L L aibk_ixk
i=O k=O

n-l n-l

L(L aibk_i)Xk .
k=O i=O

SOLUTIONS TO MISCELLANEOUS EXERCISES 297

Thus the coefficient of Xk in fg mod xn - 1 is E?~Ol aibk-i, the kth

element of the positive wrapped convolution of a and b. This and (26)
give (24).
Algebraically, what is really going on here is that the circulant matri
ces form an n-dimensional subalgebra of the n2-dimensional algebra
of n x n matrices, and this subalgebra is isomorphic to the subalgebra
of diagonal matrices via the map

C f----' F;:lCFn .

Moreover, if d(a) denotes the diagonal matrix with diagonal a, then

(27)

This can be established by a direct calculation, using the property

L wij = n, 1 Z == mo n n-l {'f' ° d
j=O 0, otherwise

where w is a primitive nth root of unity: the i, gth element of F;:lc(a)Fn
is

1 n-l n-l . - L L w-·(k-m)amwkl

n m=Ok=O

n-l . 1 n-l . L amw·m (- L w(h)k)

m=O n k=O

{ E;;;:}o amwim if i = e
° if i i e

which is also the i, gth element of d(Fna).

(c) The first row of the inverse of c(a) can be calculated by taking the
Fourier transform of a, inverting all the elements of the resulting vec
tor, and transforming back. In other words,

c(a)-l = c(F;:l((Fna)')) ,

where b' is the vector obtained from b by inverting all the elements.
This follows immediately from the isomorphism c(a) f----' d(Fna) dis
cussed in part (b) above, but in case you did not have the patience
to wade through all that, here is a more direct argument. If (Fna)'
exists, then by (25),

c(a) . c(F;:l((Fna)')) c(F;:l(Fna. Fn(F;:l((Fna)'))))

c(F;:l(Fna· (Fna)'))
C(F;:l(l, 1, 1, ... ,1))

c(l,O,O, ... ,0))

I,

298 SOLUTIONS TO MISCELLANEOUS EXERCISES

thus c(a) and c(F;l((Fna)')) are inverses. Conversely, if the inverse
c(a)-l exists and b is its first row, then

C(F;;-l (1,1,1, ... , 1))

by (25). Therefore

c(1,O,O, ... ,O))
I

c(a) . c(b)

c(F;l(Fna. Fnb)) ,

Fna . Fnb = (1,1,1, ... ,1),

so (Fna)' exists and is equal to Fnb. The entire operation can be done
in time O(log n) with n processors using the fast Fourier transform.

Circulant matrices have numerous applications in geometry, differential
equations, and mechanics. To find out more about them, see Davis' book
[27].

29. For permutation a E Sn, define

n

t(a) II Ti,O"(i) .
i=l

Then

detT L (_1)sign(0")t(a) .
O"ESn

Let En be the set of permutations in Sn with only even cycles.

Lemma

detT L (_1)sign(0")t(a) .
O"EEn

Proof. We will show that the contributions of permutations a containing
odd cycles cancel each other out. Suppose a contains an odd cycle p, and
let T = ap-l. Then a = Tp = PT (disjoint cycles commute). Consider the
permutation Tp-l. Then

-t(Tp) ,

SOLUTIONS TO MISCELLANEOUS EXERCISES 299

since rp-l changes the signs of an odd number of factors of t(rp). For
example, if p = (13746) and r = (25), then p-l = (64731), and

t(rp)

t(rp-l)

-t(rp) .

Moreover, sign(rp) = sign(rp-l), since

which is even, thus rp and rp-l are either both even or both odd. Thus
the permutations containing odd cycles p and p-l can be paired up so that
their contributions (-1)sign(u)t(0') to det T cancel. This assignment can be
repeated for other permutations 0' not containing p but containing another
odd cycle. Thus we are left with the permutations containing even cycles
only. 0

(a) If the multivariate polynomial det T is not identically 0, then by the
Lemma there must exist a permutation 0' containing even cycles only
such that t(0') =I- O. But then 0' gives a perfect matching by taking
alternate edges around the cycles. Conversely, let M be a perfect
matching. Assign Xuv = 1 for (u, v) E M and Xuv = 0 otherwise. Un
der this substitution, there is exactly one 0' with t(0') =I- 0, namely the
one corresponding to M, thus det T with this substitution is nonzero.
Therefore det T is not identically O.

(b) Select a random assignment a to the Xuv from a set of size 2n. By
Corollary 40.2, the probability that det T(a) = 0 is 1 if det T is iden
tically 0 and at most 2~ if not. Thus with a probability of error at
most 2~ we can determine whether G has a perfect matching.

(c) For each edge in succession, test whether the graph with edge e re
moved has a perfect matching using the above procedure. If so, then
delete e from G. With high probability, we are left with the edges of
a perfect matching.

Bibliography

[1] L. M. Adleman and M.-D. A. Huang. Primality testing and two
dimensional Abelian varieties over finite fields. preprint, University of
Southern California, February 1988.

[2] A. V. Aho, M. R. Garey, and J.D. Ullman. The transitive reduction of
a directed graph. SIAM J. Comput., 1:131-137, June 1972.

[3] A. V. Aho, J. E Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1975.

[4] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved time bounds for
the maximum flow problem. SIAM J. Comput., 18:939-954, 1989.

[5] M. Ajtai, J. Komlos, , and E. Szemeredi. An O(n log n) sorting network.
Combinatorica, 3:1-9, 1983.

[6] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms,
7:567-583, 1986.

[7] C. R. Aragon and R. G. Seidel. Randomized search trees. In Proc. 30th
Symp. Foundations of Computer Science, pages 540-545. IEEE, 1989.

[8] E. Bach. Analytic methods in the analysis and design of number theoretic
algorithms. MIT Press, Cambridge, Mass., 1985.

[9] P. W. Beame, S. A. Cook, and H. James Hoover. Log depth circuits
for division and related problems. In Pmc. 25th Con! Foundations of
Computer Science, pages 1-6. IEEE, October 1984.

[10] C. Berge. Two theorems in graph theory. Proc. National Acad. Sci.,
43:842-844, 1957.

[11] S. Berkowitz. On computing the determinant in small parallel time
using a small number of processors. Information Processing Letters,
18:147-150, 1984.

301

302 BIBLIOGRAPHY

[12] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: an optimal parallel
algorithm for shared-memory machines. SIAM J. Comput., 18(2):216-
228, April 1989.

[13] Bela Bollobas. Extremal Graph Theory. Academic Press, 1978.

[14] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North
Holland, 1976.

[15] A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast parallel matrix
and gcd computations. Information and Control, 52(3):241-256, 1982.

[16] 1. Borosh and L. B. Treybig. Bounds on positive integral solutions of
linear diophantine equations. Proc. Amer. Math. Soc., 55:299-304, 1976.

[17] W. Brown and J. F. Traub. On Euclid's algorithm and the theory of
subresultants. J. Assoc. Comput. Mach., 18:505-514, 1971.

[18] A. L. Chistov. Fast parallel calculation of the rank of matrices over a
field of arbitrary characteristic. In Proc. ConJ. Foundations of Compu
tation Theory, volume 199 of Lect. Notes in Comput. Sci., pages 63-69.
Springer-Verlag, 1985.

[19] V. Chvatal. Linear Programming. Freeman, 1980.

[20] R. Cole. Parallel merge sort. In Proc. 27th Symp. Foundations of Com
puter Science, pages 511-516. IEEE, October 1986.

[21] J. H. Conway. Regular Algebra and Finite Machines. Chapman and
Hall, London, 1971.

[22] S. A. Cook. The complexity of theorem proving procedures. In Proc.
3rd Symp. Theory of Computing, pages 151-158. ACM, 1971.

[23] S. A. Cook. The classification of problems which have fast parallel algo
rithms. In Karpinski, editor, Proc. 1983 Symp. Foundations of Compu
tation Theory, volume 158 of Lect. Notes in Comput. Sci., pages 78-93.
Springer-Verlag, 1983.

[24] J. M. Cooley and J. W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of Computation, 19:297-301,
1965.

[25] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In Proc. 19th Symp. Theory of Computing, pages 1-6.
ACM, May 1987.

[26] L. Csanky. Fast parallel matrix inversion algorithms. SIAM J. Comput.,
5:618-623, 1976.

BIBLIOGRAPHY 303

[27] Philip J. Davis. Circulant Matrices. Wiley, 1979.

[28] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Math., 1:269-271, 1959.

[29] E. A. Dinie. Algorithm for solution of a problem of maximal flow in a
network with power estimation. Soviet Math. Doklady, 11:1277-1280,
1970.

[30] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network problems. J. Assoc. Comput. Mach., 19:248-264,
1922.

[31] J. R. Edmonds. A combinatorial representation for polyhedral surfaces.
Notices Amer. Math. Soc., 7:646, 1960.

[32] J. R. Edmonds. Matroids and the greedy algorithm. Math. Progmm
ming, 1:127-136, 1971.

[33] W. Feller. An Introduction to Probability Theory and its Applications,
volume 1. Wiley, 1950.

[34] L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network.
Canad. J. Math., 8:399-404, 1956.

[35] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. In Proc. 25th Symp. Foun
dations of Computer Science, pages 338-346. IEEE, 1984.

[36] D. Gale and L. S. Shapley. College admissions and the stability of
marriage. Amer. Math. Monthly, 69:9-14, 1962.

[37] Z. Galil. An O(V5/3 E2/3) algorithm for the maximal flow problem. Acta
Informatica, 14:221-242, 1980.

[38] Z. Galil and E. Tardos. An O(n2 (m + n log n) logn) min-cost flow algo
rithm. J. Assoc. Comput. Mach., 35:374-386, 1988.

[39] M. R. Garey and D. S. Johnson. Computers and Intmctibility: a Guide
to the Theory of NP-Completeness. w. H. Freeman, 1979.

[40] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP
complete graph problems. Theor. Comput. Sci., 1:237-267, 1976.

[41] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum
flow problem. J. Assoc. Comput. Mach., 35:921-940, 1988.

[42] L. M. Goldschlager. The monotone and planar circuit value problems
are logspace complete for P. SIGACT News, 9(2):25-29, 1977.

304 BIBLIOGRAPHY

[43] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics: A
Foundation for Computer Science. Addison Wesley, 1989.

[44] A. C. Greenberg, R. E. Ladner, M. S. Paterson, and Z. GallI. Effi
cient parallel algorithms for linear recurrence computation. Infor. Proc.
Letters, 15(1):31-35, 1982.

[45] D. Gries and G. Levin. Computing Fibonacci numbers (and similarly
defined functions) in log time. Infor. Proc. Letters, 11(2):68-69, 1980.

[46] D. Gries, A. J. Martin, J. L. A. van de Snepscheut, and J. T. Udding.
An algorithm for transitive reduction of an acyclic graph. Science of
Computer Programming, 12(2):151-155, July 1989.

[47] A. Haken. The intractability ofresolution. Theor. Comput. Sci., 39:297-
308,1985.

[48] F. Harary. Graph Theory. Addison-Wesley, 1972.

[49J G. H. Hardy and E. M. Wright. An Introduction to the Theory of Num
bers. Oxford, 1979.

[50] J. Hartmanis and J. Simon. On the power of multiplication in random
access machines. In Proc. 15th Symp. Switching and Automata Theory,
pages 13-23, 1974.

[51] J. E. Hopcroft and R. M. Karp. An n5/ 2 algorithm for maximum match
ing in bipartite graphs. SIAM J. Comput., 2:225-231, 1973.

[52] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. Assoc.
Comput. Mach., 21:549-568, 1974.

[53] O. Ibarra, S. Moran, and L. E. Rosier. A note on the parallel complex
ity of computing the rank of order n matrices. Information Processing
Letters, 11:162, 1980.

[54] S. L. Johnsson. Communication efficient basic linear algebra computa
tions on hypercube architectures. Technical Report YALEU jDCSjRR-
361, Yale University, September 1985.

[55] S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personal
ized communication in hypercubes. IEEE Transactions on Computers,
38(9):1249-1268,1989.

[56] N. Karmarkar. A new polynomial-time algorithm for linear program
ming. Combinatorica, 4:373-395, 1984.

BIBLIOGRAPHY 305

[57] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations,
pages 85-103. Plenum Press, New York, 1972.

[58] R. M. Karp. On the complexity of combinatorial problems. Networks,
5:45-68, 1975.

[59] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal
independent set problem. In Proc. 16th Symp. Theory of Computing,
pages 266-272. ACM, May 1984.

[60] L. G. Khachian. Polynomial algorithms in linear programming. Zhumal
Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 20:53-72, 1980.

[61] S. C. Kleene. Representation of events in nerve nets and finite au
tomata. In Shannon and McCarthy, editors, Automata Studies, pages
3-41. Princeton U. Press, 1956.

[62] D. E. Knuth. The Art of Computer Programming: Fundamental Algo
rithms, volume 2. Addison Wesley, 1973.

[63] D. C. Kozen. On induction vs. *-continuity. In Kozen, editor, Proc.
Workshop on Logics of Programs 1981, volume 131 of Lect. Notes in
Comput. Sci., pages 167-176. Springer-Verlag, 1981.

[64] D. C. Kozen. On Kleene algebras and closed semirings. In Rovan, editor,
Proc. Math. Found. Comput. Sci. 1990, volume 452 of Lect. Notes in
Comput. Sci., pages 26-47. Springer-Verlag, 1990.

[65] D. C. Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events. In Proc. 6th Symp. Logic in Comput. Sci.,
pages 214-225. IEEE, 1991.

[66] J. B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proc. Amer. Math. Soc., 7:48-50, 1956.

[67] R. Ladner. The circuit value problem is logspace complete for P.
SIGACT News, 7(1):18-20, 1975.

[68] R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. Assoc.
Comput. Mach., 27(4):831-838, 1980.

[69] S. Lang. Algebra. Addison Wesley, second edition, 1984.

[70] E. L. Lawler. Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart, Winston, 1976.

[71] L. A. Levin. Universal sorting problems. Problems of Information
Transmission, 9:265-266, 1973.

306 BIBLIOGRAPHY

[72J D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329-343, 1982.

[73J R. Lipton and R. E. Tarjan. Applications of a planar separator theorem.
In Proc. 18th Conf. Foundations of Computer Science, pages 162-170.
IEEE,1977.

[74J L. Lovasz. On determinants, matchings, and random algorithms. In
Budach, editor, Proc. Symp. on Fundamentals of Computing Theory,
pages 565-574, Berlin, 1979. Akademia-Verlag.

[75J L. Lovasz and M. D. Plummer. Matching Theory. North Holland, 1986.

[76J M. Luby. A simple parallel algorithm for the maximal independent set
problem. In Proc. 17th Symp. Theory of Computing, pages 1-10. ACM,
May 1985.

[77J V. M. Malhotra, M. Pramodh-Kumar, and S. N. Maheshwari. An O(V3)
algorithm for finding maximum flows in networks. Information Process
ing Letters, 7:277-278, 1978.

[78J K. Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms
and NP-Completeness. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1984.

[79J A. R. Meyer and R. Ritchie. The complexity of loop programs. In Proc.
National Meeting, pages 465-469. ACM, 1967.

[80J S. Micali and V. Vazirani. An O(y'iVf . lEI) algorithm for finding max
imum matchings in general graphs. In Proc. 21st Symp. Foundations of
Computer Science, pages 17-27. IEEE, 1980.

[81J G. L. Miller. Riemann's hypothesis and tests for primality. J. Comput.
Syst. Sci., 13:300-317, 1976.

[82J K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix
over an arbitrary field. Combinatorica, 7(1):101-104, 1987.

[83J V. Va. Pan. Strassen's algorithm is not optimal. In Proc. 19th Symp.
Foundations of Computer Science, pages 166-176. IEEE, 1978.

[84J V. Va. Pan. How to multiply matrices faster, volume 179 of Lect. Notes
in Comput. Sci. Springer-Verlag, 1984.

[85J C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: AL
gorithms and Complexity. Prentice-Hall, 1982.

BIBLIOGRAPHY 307

[86] A. Pettorossi. Derivation of an O(k2 10gn) algorithm for computing
order-k Fibonacci numbers from the O(k3 10gn) matrix multiplication
method. Infor. Proc. Letters, 11(4):172-179, 1980.

[87] J. A. La Poutre. Lower bounds for the union-find and the split-find
problem on pointer machines. In Proc. 22nd Symp. Theory of Comput
ing, pages 34-44. ACM, 1990.

[88] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Comm. Assoc. Comput. Mach., 33(6):668-676, June 1990.

[89] M. O. Rabin. Probabilistic algorithms for testing primality. J. Number
Theory, 12:128-138, 1980.

[90] J. Renegar. A polynomial-time algorithm based on Newton's method
for linear programming. Math. Programming, 40:59-93, 1988.

[91] R. L. Rivest and J. Vuillemin. On recognizing graph properties from
adjacency matrices. Theor. Comput. Sci., 3:371-384, 1976/77.

[92] J. T. Schwartz. Fast probabilistic algorithms for verification of polyno
mial identities. J. Assoc. Comput. Mach., 27:701-717, 1980.

[93] Y. Shiloach and U. Vishkin. An o (log n) parallel connectivity algorithm.
J. Algorithms, 3:57-67, 1982.

[94] D. Sleator and R. E. Tarjan. Self-adjusting binary trees. In Proc. 15th
Symp. Theory of Computing, pages 235-245. ACM, 1983.

[95] D. D. Sleator. An O(nmlogn) algorithm for maximum network flow.
Technical Report STAN-CS-80-831, Stanford University, 1980.

[96] R. Solovay and V. Strassen. A fast Monte Carlo test for primality. SIAM
J. Comput, 6:84-85, 1977.

[97] V. Strassen. Gaussian elimination is not optimal. Numerische Math.,
13:354-356, 1969.

[98] E. Tardos. A strongly polynomial minimum cost circulation algorithm.
Combinatorica, 5:247-255, 1985.

[99] R. E. Tarjan. A class of algorithms that require nonlinear time to main
tain disjoint sets. J. Comput. Syst. Sci., 18:110-127, 1979.

[100] R. E. Tarjan. Data Structures and Network Algorithms, volume 44 of
Regional Conference Series in Applied Mathematics. SIAM, 1983.

[101] A. Urquhart. Hard examples for resolution. J. Assoc. Comput. Mach.,
34(1):209-219, 1987.

308 BIBLIOGRAPHY

[102] P. M. Vaidya. An algorithm for linear programming which requires
O(((m + n)n2 + (m + n)1.5n)L) arithmetic operations. In Proc. 19th
Symp. Theory of Computing, pages 29-38. ACM, 1987.

[103] L. G. Valiant. The complexity of computing the permanent. Theor.
Comput. Sci., 8:189-201, 1979.

[104] L. G. Valiant and G. J. Brebner. Universal schemes for parallel com
munication. In Proc. 13th Symp. Theory of Computing, pages 263-277.
ACM,1981.

[105] V. V. Vazirani. A theory of alternating paths and blossoms for prov
ing correctness of the O(v'fVf . lEI) general graph matching algorithm.
Technical Report 89-1035, Cornell University, September 1989.

[106] J. Vuillemin. A data structure for manipulating priority queues. Comm.
Assoc. Comput. Mach., 21:309-314, 1978.

[107] D. J. A. Welsh. Matroid Theory. Academic Press, 1976.

[108] H. S. Wilf. Algorithms and Complexity. Prentice-Hall, 1986.

[109] T. C. Wilson and J. Shortt. An O(logn) algorithm for computing gen
eral order-k Fibonacci numbers. Infor. Proc. Letters, 10(2):68-75, 1980.

[110] A. C.-C. Yao. Monotone bipartite graph properties are evasive. SIAM
J. Comput., 17(3):517-520, 1988.

[111] R. E. Zippel. Probabilistic algorithms for sparse polynomials. In Ng,
editor, Proc. EUROSAM 79, volume 72 of Lect. Notes in Comput. Sci.,
pages 216-226. Springer-Verlag, 1979.

Index

o notation, 3, 4
a(n), 49, 51, 275
<p, 46, 203
:::;~, 117
:::;~, 117
=~, 117
* operator, 29
#P, 138, 139

-complete, 141, 142, 232
2-3 tree, 58
2-colorability, 119, 284
2CNFSat, 118
3-colorability, 120, 121, 126
3-dimensional matching, 126
3CNFSat, 125, 140, 225, 231
4-colorability, 122

acceptable
coloring, 15, 272

optimal, 16
total, 15

extension, 15
Ackermann's function, 49, 275
acyclic, 23
addition, 160
adjacency

list, 3, 6, 10, 75, 231, 241, 242,
278, 286

matrix, 3, 6, 26, 27, 38, 142,
146, 240, 243, 262, 283, 286

bipartite, 141, 142, 144, 213,
244, 286

Adleman, Lo Mo, 202
affine subspace, 269
Ajtai, Mo, 295
all-pairs shortest paths, 27, 33, 38,

230

309

Alon, No, 191
alternating

cycle, 101, 110
path, 101, 286

amortization, 40, 42, 58, 99
Anderaa, So 0o, 220
Anderaa-Rosenberg conjecture, 220
annihilator, 29
antisymmetry, 23
Aragon, Co R., 65
arithmetic

circuit, 152
integer, 160

articulation point, 20, 21
associativity, 29, 153
asymptotic complexity, 4
augmenting path, 88, 92, 94, 102,

223, 286
AVL tree, 58

Babai, Lo, 191
Bach, E., 201
back edge, 20, 22, 94, 242
bad

cycle cover, 145
edge, 195
vertex, 195

balanced tree, 58, 65
basis, 4, 175, 176, 215
benefit function, 128
Berge, Co, 102
Berkowitz' algorithm, 214
Berkowitz, So, 171
Bertrand's postulate, 199
BFS, see breadth-first search
biased coin, 198
biconnected

310

component, 20, 21
graph, 20

Big Bang, 50
Bilardi, G., 295
bin packing, 125, 130, 133
binary

addition, 41
relation, 9, 30, 32
representation, 154, 258, 264, 282,

288
tree, 58, 65, 153, 290

complete, 291
binomial

heap, 40-44
tree, 41

bipartite
adjacency matrix, 141, 142, 144,

213, 244, 286
graph, 71, 100, 119, 122, 141,

142,213,224,227,233,235,
244, 254, 262

regular, 255
matching, 100, 107, 141, 144,

213, 224, 235, 254
bitonic sorting, 295
block diagonal matrix, 175, 264
blocking flow, 96, 98
blue rule, 12, 14, 230, 250, 272
Bollobas, B., 244
Boolean

circuit, 152
formula, 111, 113, 134, 138
matrix, 26, 28, 32
satisfiability, 112
variable, 135

Borodin, A., 178
bottleneck

capacity, 88, 90, 92, 93, 97, 223,
252

communication, 152
edge, 88, 93

breadth-first
numbering, 78

INDEX

search, 19, 25, 78, 94, 95, 97,
99, 108, 119, 122, 284

calculus, 69
canonical element, 48
capacity, 84, 85, 94, 252

integer, 90
irrational, 91
rational, 90
vertex, 98

Carmichael number, 203, 204, 207
carpenter's rule problem, 230, 276
carry, 160
cascading cuts, 45
Cayley-Hamilton theorem 170 174 , , ,

175
characteristic, 74, 75

equation, 170, 175
Euler, 74, 231
field, 178, 187
polynomial, 47, 166-176, 178,

215, 233
checkerboard, 250
Chinese remainder theorem 148 204 , , ,

207, 209
Chistov's algorithm, 171-173, 178,

214
Chistov, A. L., 171, 178
chord, 75
Christofides' heuristic, 260
circuit, 14

arithmetic, 152
Boolean, 152
Euler, 131, 219, 240
Hamiltonian, 131
uniform, 5, 152
value problem, 152

circulant matrix, 235, 295-298
clause, 113
clique, 111, 113, 125, 140, 232

maximal, 282
closed semiring, 30
CNF, see conjunctive normal form
CNFSat, 111, 113, 120, 121, 125,

INDEX

133,134,140,225,231,257,
258, 260, 276, 282

cocircuit, 14
Cole, R., 295
colorability, 284
coloring, 111, 119
communication bottleneck, 152
commutativity, 8, 29, 153
companion matrix, 233, 264, 288
complete

binary tree, 291
graph, 71, 111, 232, 261

complex
conjugate, 176
numbers, 176, 187, 215

complexity
amortized, 40, 42, 58, 99
asymptotic, 4
class, 124, 125
communication, 152
parallel, 152

composite, 201
computation sequence, 134
concurrent

read, 151
write, 151

conditional
expectation, 4, 192
probability, 4, 192

configuration, 134
congruent, 202
conjugate, 176

transpose, 176, 215
conjunction, 113
conjunctive normal form, 111, 113,

137, 257, 277
connected component, 11, 19, 74,

75, 78, 263, 272, 279, 284,
285

coNP,125
-complete, 125, 226, 230, 234,

260,276
-hard, 125, 234, 289

conservation of flow, 84, 87

convolution, 186
positive wrapped, 296

Conway, J. H., 29
Cook reducibility, 117
Cook's Theorem, 134, 140
Cook, S., 112, 117, 134
Cooley, J. M., 190
coset, 209, 210
countable summation, 31
counting

problems, 138
reduction, 139

cover

311

cycle, 142, 144, 233, 283, 284,
286

bad, 145
good, 145

edge
minimal, 285
minimum, 232, 286

exact, 125, 129, 133
pattern, 230, 276, 289
term, 234, 289
vertex, 118, 125, 131, 140, 144,

224, 232, 254, 255, 261, 286
minimum, 286

Cramer's rule, 172
CRCW, 151, 263
credit invariant, 42, 61
CREW, 151, 235, 262
crew team, 128
cross edge, 22
Csanky's algorithm, 166-171, 178
Csanky, L., 166
cut, 12, 14, 85

fundamental, 16
maximum, 223
minimum, 86, 100, 223

cycle, 11, 12, 14, 73, 79, 101
alternating, 101
cover, 142, 144, 233, 283, 284,

286
bad, 145
good, 145

312

even, 298
fundamental, 16, 219, 239, 272
negative weight, 232, 274, 284
odd, 119, 122, 227, 262, 298
of a permutation, 279
simple, 20, 101, 232, 262, 284

cyclic subgroup, 204

dag, 3, 9, 19, 108, 152, 227, 262
Dantzig, G. B., 130
deadline, 230, 274
decision problem, 116, 139
decrennent, 40, 44, 99, 250
deficient set, 233

minimal, 286
degree, 211

total,212
delete, 40, 44, 58, 65, 67, 69
deletennin, 40, 250
DeMorgan's laws, 137,277
dependent set, 13
depth, 152
depth-first

numbering, 19
search, 19,75,95,119,122,220,

242, 272, 284
directed, 22

spanning tree, 19, 20
det, see determinant
determinant, 4, 141, 166, 168, 179,

298
DFS, see depth-first search
diagonal matrix, 297
Dijkstra's algorithm, 26, 44, 47, 93,

221, 223, 248, 250, 252
Dijkstra, E. W., 25
Dinie's algorithm, 96-98
Dinie, E. A., 96, 107
direct sum, 175
directed DFS, 22
discrete Fourier transform, see Fourier

transform
disjoint connecting paths, 225, 258
disjunction, 113

INDEX

distance, 25
distributivity, 29, 137, 246
divide-and-conquer, 3, 38, 77, 189
division, 163
dual

matroid, 13, 15, 16, 272
plane, 72, 74, 79, 231, 293

duality, 15
dynamic

logie, 32
programming, 3

eager meld, 41
edge cover

minimal, 285
minimum, 232, 286

Edmonds, J. R., 71, 92, 94-96, 98,
287

eigenspace, 174
generalized, 174

eigenvalue, 4, 47,168,174,175
eigenvector, 47

dominant, 47
elementary symmetrie polynomial,

169
ellipsoid method, 130
embedding

consistent, 220
outerplane, 234, 293
plane, 71, 72,231,234,242,281

equational theory, 31
equivalence

class, 21, 23, 172
relation, 20, 23

Eratosthenes
sieve of, 148

ERCW, 151
EREW, 151, 295
ERH, see extended Riemann hypoth

esis
Euclidean

algorithm, 4, 149, 182, 185, 203
coordinates, 155
remainder sequence, 183

INDEX

space, 155
Euler

characteristic, 74, 231
circuit, 131, 219, 240, 258, 260
totient, 203

Euler's theorem, 74, 76, 242
evasive, 244
exact cover, 125, 129, 133
exclusive

read, 151
write, 151

expectation, 4, 67, 192, 228, 268
conditional, 4, 192
linearity of, 67-70, 192

expected
time, 65, 67, 191, 228
value, 192

extended Riemann hypothesis, 202

face, 72, 73, 242
factoring, 201
factorization

polynomial, 214
prime, 207, 208

Fermat's theorem, 202-204, 226
FFT, see Fourier transform
Fibonacci

heap, 25, 40, 44-47, 61, 99, 250
numbers, 46
sequence, 46, 167, 227

FIFO, 19
find, 48
findmin, 40, 250
finite

automaton, 28, 37
field, 156, 171, 178, 199, 202,

212, 214, 215, 226, 233
flow, 84, 90, 223, 254

across a cut, 85
blocking, 96, 98
conservation of, 84, 87
maximum, 84-100,152,252,255,

287
integral, 90, 287

net, 85
path, 92, 96, 97
value, 86

flume, 92
for loop, 50
Ford, 1. R. Jr., 90, 254
forest, 11, 14
formal power series, 172, 266
forward edge, 22
four color theorem, 122

313

Fourier transform, 186--190, 227, 266,
267, 296

Fredman, M. L., 44
free

edge, 101
vertex, 101, 286

frond, 80
Fulkerson, D. R., 90, 254
full rank, 182, 288
functional composition, 189
fundamental

cut, 16
cycle, 16, 219, 239, 272

Gale, D., 254
Garey, M. R., 112, 122, 133
Gaussian elimination, 141, 185
gcd, see greatest common divisor
generalized eigenspace, 174
generating function, 227, 265
generator, 187
golden ratio, 46
good

cycle cover, 145, 284
edge, 195, 197
vertex, 195, 197, 270

Gray
ordering, 155
representation, 154, 156, 232, 282

greatest common divisor, 4
integer, 181
polynomial, 179, 182-185

greedy algorithm, 11, 17, 25, 274
ground term, 234, 289

314

Hall's theorem, 224, 233, 255, 256,
286

Hamiltonian
circuit, 131, 133, 144, 155, 158,

260, 285
directed, 261

Hamming distance, 157
Hasse diagram, see transitive reduc

tion
heap

binomial, 40-44
Fibonacci, 25, 40, 44-47, 61, 99
order, 41, 44, 65, 66

height, 53
Hermitian, 177
heuristic, 48, 49, 51, 52, 92-94, 104
homeomorphism, 72
homomorphism

group, 208
Hopcroft, J. E., 78, 102, 107, 178,

234, 286, 293
Huang, M.-D. A., 202
Hungarian tree, 108,233,286
hypercube, 151, 154, 156

Ibarra, 0., 171, 176
idempotence, 29, 30
identity, 29
im, see image
image, 174, 215
inclusion-exclusion principle, 194, 196,

270
incremental weight, 103, 106
independence, 13, 152

3-wise,271
algebraic, 14
d-wise, 200, 229, 269
data, 151
linear, 4, 14, 176
pairwise, 193, 196, 199, 271
statistical, 66, 192, 193, 201

independent set, 13, 117, 118, 125,
230,274

INDEX

maximal, 13, 15, 191, 194, 219,
230, 239, 272, 274, 282

induced subgraph, 191
infimum, 38
inner product, 166, 178
inorder, 58, 59, 65, 66
insert, 40, 58, 65-67
integer

addition, 160
arithmetic, 160
division, 163
multiplication, 161
programming, 112, 116, 125, 130,

133
integral, 69

maximum flow, 90, 287
interior

point method, 130
vertex, 84

interpolation, 187
interpretation, 34

standard, 35
invariant, 19, 26, 174, 248, 254

credit, 42, 61
invertible elements

group of, 203, 283
involution, 279
irreducible, 212
isolated vertex, 71, 232
isomorphism

algebra, 190, 297
field, 179
graph, 72, 75, 231
group, 204, 209
ring, 149, 204, 207-209
tree, 214
vector space, 175, 215

Itai, A., 191

Johnson, D. S., 112, 122, 133
join, 59
Jordan canonical form, 174, 175

k-clique, 113

INDEX

k-CNF, 118
k-CNFSat, 118
k-colorability, 111, 119, 121, 122,

284
k-conjunctive normal form, 118
k-connected, 233, 287
k-partite, 113
Konig-Egervary theorem, 224, 255,

256
Karmarkar, N., 130
Karp reducibility, 117
Karp, R. M., 92, 94-96, 98, 102,

107, 112, 117, 191,286,287
ker, see kernel
kernel, 174, 177,209,215,269
Khachian, L. G., 130
Kleene

*,30
algebra, 28-39, 221, 245, 262,

273
free, 31, 32, 35
matrix, 36, 38
min,+, 33, 38, 273

Kleene, S. C., 29
knapsack, 128, 129, 133
Komlos, J., 295
Kruskal's algorithm, 11, 48
Kruskal, J. B., 11
Kuratowski's Theorem, 72

law of sum, 192
Lawler, E. L., 15, 256
lazy meld, 42, 43
icm, see least common multiple
least

common multiple, 184
upper bound, 30, 35, 38, 221,

246, 247
level, 78, 94

graph, 94-98, 287
Levin, L., 134
Lichtenstein, D., 122
LIFO, 19
linear

equations, 181-182
programming, 130
recurrence, 166-168

order k, 227, 263
link, 41
linked list, 12, 41, 75, 231, 277
Lipton, R., 71, 77
literal, 113
log-cost RAM, 6
logical consequence, 35
Lovasz, L., 213, 256

315

Luby's algorithm, 191-200,228,270
Luby, M., 191

Maheshwari, S. N., 97
makeheap, 40
Malhotra, V. M., 97
many-one reducibility, 117
marriage

stable, 224, 254
theorem, 255

Marzullo, K., 232
matched

edge, 101
vertex, 101

matching, 100, 101, 106, 232, 255,
260

3-dimensional, 126
bipartite, 100, 141, 144,213,224,

235,254
maximal, 102, 229, 270, 285
maximum, 100, 102, 107, 255,

286
partial, 254
perfect, 101, 141, 142, 144,213,

224, 235, 255, 286, 299
unweighted, 101
weighted, 101

matrix
adjacency, 3, 6, 26, 27, 38, 142,

146,240,243,262,283,286
bipartite, 141, 142, 144, 213,

244
block diagonal, 175, 264

316

circulant, 235, 295-298
companion, 233, 264, 288
diagonal, 297
Hermitian, 177
inversion, 167, 235
Kleene algebra, 36, 38
lower triangular, 167
multiplication, 7, 153, 166, 227,

235, 262
permutation, 295
polynomial, 170
powering, 166, 262
random, 233, 288
rank, 171, 173-180, 213, 215
Sylvester, 184, 185
symmetric, 177, 179
Tutte,235
Vandermonde, 187, 188,229,269

matroid, 13, 219, 230, 239, 250, 272
dual, 272
duality, 15
rank, 239

max flow-min cut theorem, 86, 88,
90, 93, 252, 254, 255, 287

maximal
clique, 282
independent set, 13, 191, 194,

219, 230, 239, 272, 274, 282
matching, 229, 270, 285

maximum
cut, 223
flow, 84-100, 152, 252, 255, 287

integral, 90, 287
matching, 255, 286

median, 294
meld, 40

eager, 41
lazy, 42, 43

member, 58
membership test, 58, 65, 67
Menger's theorem, 233, 286
META,232
Micali, S., 107, 286
Miller's algorithm, 201-210

Miller, G., 201
MIMD,151
min,+ algebra, 33, 38, 273
minimal

deficient set, 286
edge cover, 285

minimum
connectivity, 100
cut, 86, 100, 223
edge cover, 232, 286

INDEX

spanning tree, 11, 13, 47, 48,
222, 226, 260

vertex cover, 286
minor, 179
modulus, 4
monoid,30

commutative, 30
idempotent, 30

monotone, 63, 220, 244
Moran, S., 171, 176
MPM Algorithm, 97
MST, see minimum spanning tree
Mulmuley's algorithm, 178-180, 215
Mulmuley, K., 166, 171, 178
multiple edges, 71, 231
multiplication, 161

matrix, 166, 235
multiset, 169

NC, 152, 160, 166, 181, 213, 227,
234, 235, 262, 295

negative weight, 230, 273
cycle, 232, 274, 284
path, 232, 285

net flow, 85
Newton's method, 163
Newton, 1., 163, 168
Nicolau, A., 295
nonuniform, 178
NP, 112, 124, 125, 134

-complete, 71, 111, 112, 124, 125,
128,219,223,225,226,230,
232,257,258,260,261,276,
284

INDEX

-hard, 125, 134, 257

odd cycle, 262
oracle, 117
orbit, 279
order

Gray, 155
heap, 41, 44, 65, 66
in-, 58, 59, 65, 66
partial, 9, 23, 30
post-, 23, 242
pre-, 23, 234, 292
quasi-,23
subterm, 63
total, 9, 58, 65, 119

ordered tree, 214
orientation, 72, 73
outerplanar graph, 234, 293
outerplane

embedding, 234, 293
graph, 234

overhead, 9, 42

pairwise independence, 196, 199,271
Papadimitriou, Co Ho, 256, 260
parallel

algorithms, 151
machine models, 151
prefix, 153, 156, 160, 167, 169,

262, 293
parity, 158, 263
parsimonious, 139, 140, 231, 277
partial

matching, 254
order, 9, 23, 30

partition, 77, 129, 130, 133, 232,
276, 282, 284

path
compression, 49, 52
flow, 92, 96, 97

pattern, 230, 276, 289
penalty, 230
perfect matching, 101, 141, 142, 144,

213, 224, 235, 255, 286, 299

317

perm, see permanent, 284
permanent, 141, 142, 144, 232, 286
permutation, 67, 73, 141, 144, 278,

298
matrix, 295
random, 67, 68, 70

phase, 96, 98, 108
Pippenger, No, 152
planar

graph, 71-77, 121, 122, 234
separator theorem, 77-83, 222

planarity test, 234, 293
plane

dual, 72, 74, 79, 231, 293
embedding, 71, 72, 78, 234, 242,

281
graph, 71-76, 231

Plummer, Mo Do, 256
pointer

doubling, 263, 292, 293
machine, 6, 51, 231

polylogarithmic, 152
polynomial, 4, 14, 156, 211, 214,

233, 296, 299
arithmetic, 178, 179
characteristic, 47,166-176,178,

215, 233
factorization, 214
gcd, 182-185
irreducible, 212
matrix, 170
symmetric, 169

postorder, 23, 242
potential function, 42
power series, 172, 266
P,124
Priifer, Ho, 243
PRAM, 5, 151, 235, 262, 263, 295
Pramodh-Kumar, Mo, 97
prefix products, 153
preorder, 23, 234, 292
Prim's algorithm, 47, 222, 250
primality test, 201-210
prime, 4, 199, 201

318

factorization, 207, 208
power, 207
relatively, 187, 208

primitive
recursive function, 50
root of unity, 187, 297

principal root of unity, see primitive
root of unity

priority, 65
random, 66

probabilistic algorithms, 191
probability, 65, 191, 201, 211, 229,

233, 299
conditional, 4, 192

problem domain, 116
PROLOG, 257
propagate, 161
propositional logic, 119, 137
pseudoprime, 204
Pugh, W., 65

quadratic convergence, 164
quasiorder, 23
queue, 19
quotient, 156, 163

construction, 23, 172
graph, 24, 119

Rabin, M. 0., 201
RAM

log-cost, 6
unit-cost, 5, 6

random
access, 5, 51, 231, 294

machine, see RAM
assignment, 299
bits, 198, 199
input, 211, 214
matrix, 215, 233, 288
NC, 191, 213, 214, 229, 235
number generator, 66, 191, 194,

198,201
permutation, 67, 68, 70
priority, 66

search tree, 65
treap,66

INDEX

variable, 4, 192, 228, 268
rank, 219

full, 182, 288
in union-find, 53
matrix, 171, 173-180, 213, 215
matroid, 239
tree, 41

rational
functions, 172, 179
numbers, 90, 130, 172

real numbers, 33, 66, 84, 130, 177,
211

reciprocal, 163
recurrence, 3, 7, 8, 27, 38, 68, 70,

228, 265, 268, 282, 294, 295
linear, 167, 168

order k, 227, 263
red rule, 12, 14
reducibility

Cook, 117
Karp, 117
many-one, 117
relation, 117
Turing, 117

reduction, 111-121, 134, 139
counting, 139
parsimonious, 139, 140,231,277

reflexive transitive closure, 9, 23, 26-
28,38,262

regular
expression, 29, 34, 35, 221, 246
graph, 224

bipartite, 255
set, 29, 31, 34, 245

relation
binary, 9, 30, 32
equivalence, 20, 23

relatively prime, 187, 203, 208
remainder, 163
residual

capacity, 86, 252
graph, 86, 88, 90, 98, 223, 252

INDEX

resolution, 119, 257
resultant, 183, 184
Riemann

hypothesis, 202
zeta function, 202

Rivest, R. L., 220
RNC, see random NC
rook, 141, 142
root, 163, 212

of unity, 187, 267
primitive, 187, 297

Rosenberg, A. L., 220
Rosier, L. E., 171, 176
rotate, 59, 65

s, t-connectivity, 223, 225
s, t-cut, 85, 223, 254
safe schedule, 274
satisfiability, 111, 257
saturated, 85

partially, 99
savings account, 42, 45, 61
Schonhage, A., 201
scheduling, 112, 230, 232, 274, 284
Schwartz, J. T., 211
scorpion, 220, 243
search tree, 65
Seidel, R. G., 65
self-loop, 71
semiring

closed, 30
idempotent, 30

separator, 77-79, 82, 230, 235, 250,
294

Shapley, L. S., 254
Shiloach, Y., 263
shortest paths

all-pairs, 27, 33, 38
single-source, 25

sieve of Eratosthenes, 148
SIMD,151
similarity transformation, 175
simple

cycle, 20, 101, 232, 262, 284

path, 92, 232
simplex method, 130
single-source shortest paths, 25
sink, 84
size, 152
skew symmetry, 84, 87
skip list, 65
Sleator, D., 58
sorting, 235, 294

bitonic, 295
source, 84
spanning

forest, 239
tree, 250, 263

minimum, 260
spanning tree, 11, 79, 80

depth-first, 19, 20

319

minimum, 11, 13, 47, 222, 226
splay, 59
splay tree, 58
split, 59
square root of unity, 207

weird, 207, 209
stable marriage, 224, 254
stack, 19
standard interpretation, 35, 221
Steiglitz, K., 256, 260
Stockmeyer, L., 122
Strassen's algorithm, 7, 38, 227, 264
Strassen, V., 201, 264
string, 35
strong component, see strongly con

nected component
strongly connected

component, 23, 119, 284
graph, 23, 258, 261

subset sum, 129, 130, 133
substitution instance, 234, 291
supremum, see least upper bound
Sylvester matrix, 184, 185
symmetric

difference, 102, 106
matrix, 177, 179
polynomial, 169

320

TSP, 226
synthesizer generator, 233
Szemeredi, E., 295

Tarjan, R E., 12, 15, 44, 51, 58, 71,
77, 78, 96, 234, 293

Teitelbaum, R, 233
telescoping sum, 62
term, 233

cover, 234, 289
ground, 234, 289

topological
erase, 108
sort, 9, 10, 109, 119, 220, 227,

242, 262
total

degree, 212
order, 9, 58, 65, 119

totient, 203
tr, see trace
trace, 168
transcendental, 178

extension, 179
transitive

closure, 219, 226, 240, 261, 262
reduction, 219, 226, 240, 261

transposition, 281
traveling salesman, 112, 116, 125,

133, 225, 226, 258, 260
treap, 65
tree edge, 19, 22
triangle inequality, 226, 260
triangulation, 75, 80, 185, 293
TSP, see traveling salesman
Tukey, J. W., 190
Turing

machine, 116, 124, 134
oracle, 117

reducibility, 117
Tutte matrix, 235

uniform
circuit, 5, 152
distribution, 66, 200, 215

union, 48
union-find, 48-57, 275
unit

-cost RAM, 5, 6
circle, 187

unordered tree, 214
upper bound, 30, 247

INDEX

least, 30, 35, 38, 221, 246, 247

Valiant, L. G., 139, 142, 146
value

flow, 86
Vandermonde matrix, 187, 188, 229,

269
Vazirani, V. V., 107, 286
vector machine, 151
vertex cover, 118, 125, 131, 140, 144,

224, 232, 254, 255, 261, 286
Vishkin, U., 263
VLSI,71
von zur Gathen, J., 178
Vuillemin, J., 40, 220

while loop, 51
widget, 123, 131, 144, 232, 283, 284
Wigderson, A., 191
witness, 138

function, 138, 139

Yao, A. C., 244

Zippel, R E., 211

Texts and Monographs in Computer Science

(continued from page ii)

John V. Guttag and James J. Horning, Larch: Languages and Tools for Formal
Specification

Eric C.R. Hehner, A Practical Theory of Programming

Micha Hofri, Probabilistic Analysis of Algorithms

A.J. Kfoury, Robert N. Moll, and Michael A. Arbib, A Programming Approach to
Computability

Dexter C. Kozen, The Design and Analysis of Algorithms

E.V. Krishnamurthy, Error-Free Polynomial Matrix Computations

Ming Li and Paul Vitanyi, An Introduction to Kolmogorov Complexity
and Its Applications

David Luckham, Programming with Specifications: An Introduction to ANNA,
A Language for Specifying Ada Programs

Ernest G. Manes and Michael A. Arbib, Algebraic Approaches to Program Semantics

Bhubaneswar Mishra, Algorithmic Algebra

Robert N. Moll, Michael A. Arbib, and A.J. Kfoury, An Introduction to Formal
Language Theory

Anil Nerode and Richard A. Shore, Logic for Applications

Helmut A. Partsch, Specification and Transformation of Programs

Franco P. Preparata and Michael Ian Shamos, Computational Geometry:
An Introduction

Brian Randell, Ed., The Origins of Digital Computers: Selected Papers, 3rd Edition

Thomas W. Reps and Tim Teitelbaum, The Synthesizer Generator: A System for
Constructing Language-Based Editors

Thomas W. Reps and Tim Teitelbaum, The SyntheSizer Generator Reference Manual,
3rd Edition

Arto Salomaa and Matti Soittola, Automata-Theoretic Aspects of Formal Power
Series

J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg, Programming with Sets:
An Introduction to SETL

Alan T. Sherman, VLSI Placement and Routing: The PI Project

Texts and Monographs in Computer Science
(continued)

Santosh K. Shrivastava, Ed., Reliable Computer Systems

Jan L.A. van de Snepscheut, What Computing Is All About

William M. Waite and Gerhard Goos, Compiler Construction

Niklaus Wirth, Programming in Modula-2, 4th Edition

Study Edition

Edward Cohen, Programming in the 1990s: An Introduction to the Calculation of
Programs

