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Preface

These are my lecture notes from CS681: Design and Analysis of Algo-
rithms, a one-semester graduate course I taught at Cornell for three consec-
utive fall semesters from ’88 to '90. The course serves a dual purpose: to
cover core material in algorithms for graduate students in computer science
preparing for their PhD qualifying exams, and to introduce theory students to
some advanced topics in the design and analysis of algorithms. The material
is thus a mixture of core and advanced topics.

At first I meant these notes to supplement and not supplant a textbook,
but over the three years they gradually took on a life of their own. In addition
to the notes, I depended heavily on the texts

e A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1975.

e M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

e R. E. Tarjan, Data Structures and Network Algorithms. SIAM Regional
Conference Series in Applied Mathematics 44, 1983.

and still recommend them as excellent references.

The course consists of 40 lectures. The notes from these lectures were
prepared using scribes. At the beginning of each lecture, I would assign a
scribe who would take notes for the entire class and prepare a raw IATEX
source, which I would then doctor and distribute. In addition to the 40 lec-
tures, I have included 10 homework sets and several miscellaneous homework
exercises, all with complete solutions. The notes that were distributed are
essentially as they appear here; no major reorganization has been attempted.

There is a wealth of interesting topics, both classical and current, that I
would like to have touched on but could not for lack of time. Many of these,
such as computational geometry and factoring algorithms, could fill an entire
semester. Indeed, one of the most difficult tasks was deciding how best to
spend a scant 40 lectures.

I wish to thank all the students who helped prepare these notes and who
kept me honest: Mark Aagaard, Mary Ann Branch, Karl-Friedrich Bohringer,
Thomas Bressoud, Suresh Chari, Sofoklis Efremidis, Ronen Feldman, Ted
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Fischer, Richard Huff, Michael Kalantar, Steve Kautz, Dani Lischinski, Pe-
ter Bro Miltersen, Marc Parmet, David Pearson, Dan Proskauer, Uday Rao,
Mike Reiter, Gene Ressler, Alex Russell, Laura Sabel, Aravind Srinivasan,
Sridhar Sundaram, Ida Szafranska, Filippo Tampieri, and Sam Weber. I am
especially indebted to my teaching assistants Mark Novick (fall ’88), Alessan-
dro Panconesi (fall ’89), and Kjartan Stefdnsson (fall 90) for their help with
proofreading, preparation of solution sets, and occasional lecturing. I am also
indebted to my colleagues Laszlé Babai, Gianfranco Bilardi, Michael Luby,
Keith Marzullo, Erik Meineche Schmidt, Bernd Sturmfels, Eva Tardos, Steve
Vavasis, Sue Whitesides, and Rich Zippel for valuable comments and interest-
ing exercises. Finally, I wish to express my sincerest gratitude to my colleague
Vijay Vazirani, who taught the course in fall ’87 and who was an invaluable
source of help.
I would be most grateful for any suggestions or criticism from readers.

Cornell University Dexter Kozen
Ithaca, NY December 1990
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I Lectures



Lecture 1 Algorithms and Their

Complexity

This is a course on the design and analysis of algorithms intended for first-
year graduate students in computer science. Its purposes are mixed: on the
one hand, we wish to cover some fairly advanced topics in order to provide
a glimpse of current research for the benefit of those who might wish to spe-
cialize in this area; on the other, we wish to introduce some core results and
techniques which will undoubtedly prove useful to those planning to specialize
in other areas.

We will assume that the student is familiar with the classical material nor-
mally taught in upper-level undergraduate courses in the design and analysis
of algorithms. In particular, we will assume familiarity with:

sequential machine models, including Turing machines and random ac-
cess machines (RAMs)

discrete mathematical structures, including graphs, trees, and dags, and
their common representations (adjacency lists and matrices)
fundamental data structures, including lists, stacks, queues, arrays, bal-
anced trees

fundamentals of asymptotic analysis, including O(-), o(-), and Q(-) no-
tation, and techniques for the solution of recurrences

fundamental programming techniques, such as recursion, divide-and-
conquer, dynamic programming

basic sorting and searching algorithms.

These notions are covered in the early chapters of [3, 39, 100].

3



4 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

Familiarity with elementary algebra, number theory, and discrete proba-
bility theory will be helpful. In particular, we will be making occasional use of
the following concepts: linear independence, basis, determinant, eigenvalue,
polynomial, prime, modulus, Euclidean algorithm, greatest common divisor,
group, ring, field, random variable, expectation, conditional probability, con-
ditional expectation. Some excellent classical references are [69, 49, 33].

The main emphasis will be on asymptotic worst-case complexity. This
measures how the worst-case time or space complexity of a problem grows
with the size of the input. We will also spend some time on probabilistic
algorithms and analysis.

1.1 Asymptotic Complexity

Let f and g be functions N' — N, where A/ denotes the natural numbers
{0,1,...}. Formally,

o fis O(g)if
e N Vn fn)<c-gn).

The notation 0\7(’) means “for almost all” or “for all but finitely many”.
Intuitively, f grows no faster asymptotically than g to within a constant
multiple.

e fiso(g)if

Vee N i‘:’)nf(n)g -g(n) .

ol

This is a stronger statement. Intuitively, f grows strictly more slowly
than any arbitrarily small positive constant multiple of g. For example,
n347 i o(208™)?),

o fis Q(g) if g is O(f). In other words, f is Q(g) if

Jee N O\?nf(n)Z%

-g(n) .

e fis ©(g) if f is both O(g) and Q(g).

There is one cardinal rule:

Always use O and o for upper bounds and 2 for lower bounds. Never
use O for lower bounds.
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There is some disagreement about the definition of 2. Some authors (such
as [43]) prefer the definition as given above. Others (such as [108]) prefer: f
is Q(g) if g is not o(f); in other words, f is Q(g) if

dce N oinf(n)>%g(n)

(The notation 3 means “there exist infinitely many”.) The latter is weaker and
presumably easier to establish, but the former gives sharper results. We won'’t
get into the fray here, but just comment that neither definition precludes
algorithms from taking less than the stated bound on certain inputs. For
example, the assertion, “The running time of mergesort is Q(nlogn)” says
that there is a ¢ such that for all but finitely many n, there is some input
sequence of length n on which mergesort makes at least %n log n comparisons.
There is nothing to prevent mergesort from taking less time on some other
input of length n.

The exact interpretation of statements involving O, o, and {2 depends on
assumptions about the underlying model of computation, how the input is
presented, how the size of the input is determined, and what constitutes a
single step of the computation. In practice, authors often do not bother to
write these down. For example, “The running time of mergesort is O(nlogn)”
means that there is a fixed constant ¢ such that for any n elements drawn from
a totally ordered set, at most cnlogn comparisons are needed to produce a
sorted array. Here nothing is counted in the running time except the number
of comparisons between individual elements, and each comparison is assumed
to take one step; other operations are ignored. Similarly, nothing is counted
in the input size except the number of elements; the size of each element
(whatever that may mean) is ignored.

It is important to be aware of these unstated assumptions and understand
how to make them explicit and formal when reading papers in the field. When
making such statements yourself, always have your underlying assumptions in
mind. Although many authors don’t bother, it is a good habit to state any
assumptions about the model of computation explicitly in any papers you
write.

The question of what assumptions are reasonable is more often than not a
matter of esthetics. You will become familiar with the standard models and
assumptions from reading the literature; beyond that, you must depend on
your own conscience.

1.2 Models of Computation

Our principal model of computation will be the unit-cost random access ma-
chine (RAM). Other models, such as uniform circuits and PRAMs, will be
introduced when needed. The RAM model allows random access and the use
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of arrays, as well as unit-cost arithmetic and bit-vector operations on arbi-
trarily large integers; see [3].

For graph algorithms, arithmetic is often unnecessary. Of the two main
representations of graphs, namely adjacency matrices and adjacency lists, the
former requires random access and §2(n?) array storage; the latter, only linear
storage and no random access. (For graphs, linear means O(n + m), where
n is the number of vertices of the graph and m is the number of edges.) The
most esthetically pure graph algorithms are those that use the adjacency list
representation and only manipulate pointers. To express such algorithms one
can formulate a very weak model of computation with primitive operators
equivalent to car, cdr, cons, eq, and nil of pure LISP; see also [99].

1.3 A Grain of Salt

No mathematical model can reflect reality with perfect accuracy. Mathemat-
ical models are abstractions; as such, they are necessarily flawed.

For example, it is well known that it is possible to abuse the power of
unit-cost RAMs by encoding horrendously complicated computations in large
integers and solving intractible problems in polynomial time [50]. However,
this violates the unwritten rules of good taste. One possible preventative
measure is to use the log-cost model; but when used as intended, the unit-cost
model reflects experimental observation more accurately for data of moderate
size (since multiplication really does take one unit of time), besides making
the mathematical analysis a lot simpler.

Some theoreticians consider asymptotically optimal results as a kind of
Holy Grail, and pursue them with a relentless frenzy (present company not
necessarily excluded). This often leads to contrived and arcane solutions that
may be superior by the measure of asymptotic complexity, but whose con-
stants are so large or whose implementation would be so cumbersome that
no improvement in technology would ever make them feasible. What is the
value of such results? Sometimes they give rise to new data structures or
new techniques of analysis that are useful over a range of problems, but more
often than not they are of strictly mathematical interest. Some practitioners
take this activity as an indictment of asymptotic complexity itself and refuse
to admit that asymptotics have anything at all to say of interest in practical
software engineering.

Nowhere is the argument more vociferous than in the theory of parallel
computation. There are those who argue that many of the models of compu-
tation in common use, such as uniform circuits and PRAMs, are so inaccurate
as to render theoretical results useless. We will return to this controversy later
on when we talk about parallel machine models.

Such extreme attitudes on either side are unfortunate and counterproduc-
tive. By now asymptotic complexity occupies an unshakable position in our
computer science consciousness, and has probably done more to guide us in
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improving technology in the design and analysis of algorithms than any other
mathematical abstraction. On the other hand, one should be aware of its lim-
itations and realize that an asymptotically optimal solution is not necessarily
the best one.

A good rule of thumb in the design and analysis of algorithms, as in life, is
to use common sense, exercise good taste, and always listen to your conscience.

1.4 Strassen’s Matrix Multiplication Algorithm

Probably the single most important technique in the design of asymptotically
fast algorithms is divide-and-conquer. Just to refresh our understanding of this
technique and the use of recurrences in the analysis of algorithms, let’s take a
look at Strassen’s classical algorithm for matrix multiplication and some of its
progeny. Some of these examples will also illustrate the questionable lengths
to which asymptotic analysis can sometimes be taken.

The usual method of matrix multiplication takes 8 multiplications and 4
additions to multiply two 2 x 2 matrices, or in general O(n3) arithmetic oper-
ations to multiply two n X n matrices. However, the number of multiplications
can be reduced. Strassen [97] published one such algorithm for multiplying
2 x 2 matrices using only 7 multiplications and 18 additions:

[a b]l:e f] _ |:81+82-—S4+56 S84+ S5

c d g h S + S7 89 — 83+ S5 — S7
where
s = (b—d)-(g+h)
s = (a+d)-(e+h)
s3 = (a—c)-(e+ )
84 = h-(a+b)
5 = a-(f—h)
se = d-(g—e€)
Sy e-(c+4d).

Assume for simplicity that n is a power of 2. (This is not the last time you will
hear that.) Apply the 2 x 2 algorithm recursively on a pair of n X n matrices
by breaking each of them up into four square submatrices of size § x 3:

AB][E F] _ [S+5—5+5 Si+ S5
cp||egH|T Se+S7 S-S+ S-5

where

S, = (B-D)-(G+H)
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Sy = (A+D)-(E+H)
S; = (A-C)-(E+F)
S¢ = H-(A+B)
Ss = A-(F-H)
Ss = D-(G-E)
S; = E-(C+D).

Everything is the same as in the 2 x 2 case, except now we are manipulat-
ing § x % matrices instead of scalars. (We have to be slightly cautious, since
matrix multiplication is not commutative.) Ultimately, how many scalar oper-
ations (4, —, -) does this recursive algorithm perform in multiplying two n x n
matrices? We get the recurrence

T(n) = 7T(g)+dn2
with solution

T(n) = (1+§d)nl°g27+0(n2)

— O(nlog2 7)
O(n2.81...)

which is o(n®). Here d is a fixed constant, and dn? represents the time for the
matrix additions and subtractions.

This is already a significant asymptotic improvement over the naive algo-
rithm, but can we do even better? In general, an algorithm that uses ¢ multi-
plications to multiply two d X d matrices, used as the basis of such a recursive
algorithm, will yield an O(n!°84°) algorithm. To beat Strassen’s algorithm, we
must have ¢ < d°¢27. For a 3 x 3 matrix, we need ¢ < 3827 = 21.8..., but
the best known algorithm uses 23 multiplications.

In 1978, Victor Pan [83, 84] showed how to multiply 70 x 70 matrices using
143640 multiplications. This gives an algorithm of approximately O(n?5-).
The asymptotically best algorithm known to date, which is achieved by en-
tirely different methods, is O(n2?37%) [25]. Every algorithm must be Q(n?),
since it has to look at all the entries of the matrices; no better lower bound is
known.



Lecture 2 Topological Sort and MST

A recurring theme in asymptotic analysis is that it is often possible to get
better asymptotic performance by maintaining extra information about the
structure. Updating this extra information may slow down each individual
step; this additional cost is sometimes called overhead. However, it is often
the case that a small amount of overhead yields dramatic improvements in the
asymptotic complexity of the algorithm.

To illustrate, let’s look at topological sort. Let G = (V, E) be a directed
acyclic graph (dag). The edge set E of the dag G induces a partial order (a
reflexive, antisymmetric, transitive binary relation) on V, which we denote
by E* and define by: uE™*v if there exists a directed E-path of length 0 or
greater from u to v. The relation E* is called the reflezive transitive closure
of E.

Proposition 2.1 Every partial order extends to a total order (a partial order
in which every pair of elements is comparable).

Proof. If R is a partial order that is not a total order, then there exist u, v
such that neither uRv nor vRu. Extend R by setting

R = RU{(z,y) | zRu and vRy} .

The new R is a partial order extending the old R, and in addition now uRwv.
Repeat until there are no more incomparable pairs. 0



10 LECTURE 2 TOPOLOGICAL SORT AND MST

In the case of a dag G = (V, E) with associated partial order E*, to say
that a total order < extends E* is the same as saying that if uEv then u < v.
Such a total order is called a topological sort of the dag G. A naive O(n3)
algorithm to find a topological sort can be obtained from the proof of the
above proposition.

Here is a faster algorithm, although still not optimal.

Algorithm 2.2 (Topological Sort II)

1. Start from any vertex and follow edges backwards until finding a
vertex u with no incoming edges. Such a u must be encountered
eventually, since there are no cycles and the dag is finite.

2. Make u the next vertex in the total order.

3. Delete u and all adjacent edges and go to step 1.

Using the adjacency list representation, the running time of this algorithm is
O(n) steps per iteration for n iterations, or O(n?).

The bottleneck here is step 1. A minor modification will allow us to perform
this step in constant time. Assume the adjacency list representation of the
graph associates with each vertex two separate lists, one for the incoming
edges and one for the outgoing edges. If the representation is not already of
this form, it can easily be put into this form in linear time. The algorithm
will maintain a queue of vertices with no incoming edges. This will reduce the
cost of finding a vertex with no incoming edges to constant time at a slight
extra overhead for maintaining the queue.

Algorithm 2.3 (Topological Sort III)

1. Initialize the queue by traversing the graph and inserting each v
whose list of incoming edges is empty.

2. Pick a vertex u off the queue and make u the next vertex in the
total order.

3. Delete u and all outgoing edges (u,v). For each such v, if its list
of incoming edges becomes empty, put v on the queue. Go to step
2.

Step 1 takes time O(n). Step 2 takes constant time, thus O(n) time over all
iterations. Step 3 takes time O(m) over all iterations, since each edge can be
deleted at most once. The overall time is O(m + n).

Later we will see a different approach involving depth first search.
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2.1 Minimum Spanning Trees
Let G = (V, E) be a connected undirected graph.

Definition 2.4 A forestin G is a subgraph F = (V, E’') with no cycles. Note
that F' has the same vertex set as G. A spanning tree in G is a forest with
exactly one connected component. Given weights w : E — N (edges are
assigned weights over the natural numbers), a minimum (weight) spanning
tree (MST) in G is a spanning tree T' whose total weight (sum of the weights
of the edges in T') is minimum over all spanning trees. a

Lemma 2.5 Let F = (V,E) be an undirected graph, c¢ the number of con-
nected components of F, m = |E|, and n = |V|. Then F has no cycles iff
ct+tm=n.

Proof.

(—) By induction on m. If m = 0, then there are n vertices and each
forms a connected component, so ¢ = n. If an edge is added without forming
a cycle, then it must join two components. Thus m is increased by 1 and c is
decreased by 1, so the equation ¢ + m = n is maintained.

(«) Suppose that F has at least one cycle. Pick an arbitrary cycle and
remove an edge from that cycle. Then m decreases by 1, but ¢ and n remain
the same. Repeat until there are no more cycles. When done, the equation
c+m = n holds, by the preceding paragraph; but then it could not have held
originally. O

We use a greedy algorithm to produce a minimum weight spanning tree.
This algorithm is originally due to Kruskal [66].

Algorithm 2.6 (Greedy Algorithm for MST)

1. Sort the edges by weight.

2. For each edge on the list in order of increasing weight, include that
edge in the spanning tree if it does not form a cycle with the edges
already taken; otherwise discard it.

The algorithm can be halted as soon as n — 1 edges have been kept, since we
know we have a spanning tree by Lemma 2.5.

Step 1 takes time O(mlogm) = O(mlogn) using any one of a number of
general sorting methods, but can be done faster in certain cases, for example
if the weights are small integers so that bucket sort can be used.

Later on, we will give an almost linear time implementation of step 2, but
for now we will settle for O(nlogn). We will think of including an edge e in the
spanning tree as taking the union of two disjoint sets of vertices, namely the
vertices in the connected components of the two endpoints of e in the forest
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being built. We represent each connected component as a linked list. Each
list element points to the next element and has a back pointer to the head of
the list. Initially there are no edges, so we have n lists, each containing one
vertex. When a new edge (u,v) is encountered, we check whether it would
form a cycle, i.e. whether u and v are in the same connected component,
by comparing back pointers to see if v and v are on the same list. If not,
we add (u,v) to the spanning tree and take the union of the two connected
components by merging the two lists. Note that the lists are always disjoint,
so we don’t have to check for duplicates.

Checking whether v and v are in the same connected component takes
constant time. Each merge of two lists could take as much as linear time,
since we have to traverse one list and change the back pointers, and there
are n — 1 merges; this will give O(n?) if we are not careful. However, if we
maintain counters containing the size of each component and always merge
the smaller into the larger, then each vertex can have its back pointer changed
at most log n times, since each time the size of its component at least doubles.
If we charge the change of a back pointer to the vertex itself, then there are at
most logn changes per vertex, or at most nlogn in all. Thus the total time
for all list merges is O(nlogn).

2.2 The Blue and Red Rules

Here is a more general approach encompassing most of the known algorithms
for the MST problem. For details and references, see [100, Chapter 6], which
proves the correctness of the greedy algorithm as a special case of this more
general approach. In the next lecture, we will give an even more general
treatment.

Let G = (V, E) be an undirected connected graph with edge weights w :
E — N. Consider the following two rules for coloring the edges of G, which
Tarjan [100] calls the blue rule and the red rule:

Blue Rule: Find a cut (a partition of V' into two disjoint sets X and
V — X) such that no blue edge crosses the cut. Pick an uncolored edge
of minimum weight between X and V — X and color it blue.

Red Rule: Find a cycle (a path in G starting and ending at the same
vertex) containing no red edge. Pick an uncolored edge of maximum
weight on that cycle and color it red.

The greedy algorithm is just a repeated application of a special case of the
blue rule. We will show next time:

Theorem 2.7 Starting with all edges uncolored, if the blue and red rules are
applied in arbitrary order until neither applies, then the final set of blue edges
forms a minimum spanning tree.



Lecture 3 Matroids and Independence

Before we prove the correctness of the blue and red rules for MST, let’s first
discuss an abstract combinatorial structure called a matroid. We will show
that the MST problem is a special case of the more general problem of find-
ing a minimum-weight maximal independent set in a matroid. We will then
generalize the blue and red rules to arbitrary matroids and prove their cor-
rectness in this more general setting. We will show that every matroid has a
dual matroid, and that the blue and red rules of a matroid are the red and
blue rules, respectively, of its dual. Thus, once we establish the correctness of
the blue rule, we get the red rule for free.

We will also show that a structure is a matroid if and only if the greedy
algorithm always produces a minimum-weight maximal independent set for
any weighting.

Definition 3.1 A matroid is a pair (S,Z) where S is a finite set and 7 is a
family of subsets of S such that

(i) if JeEZTand I C J, thenI €T,

(i) if I,J € T and |I| < |J|, then there exists an z € J — I such that
Tu{z} e

The elements of 7 are called independent sets and the subsets of S not in 7
are called dependent sets. 0

This definition is supposed to capture the notion of independence in a
general way. Here are some examples:

13
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1. Let V be a vector space, let S be a finite subset of V, and let Z C 25 be
the family of linearly independent subsets of S. This example justifies
the term “independent”.

2. Let A be a matrix over a field, let S be the set of rows of A, and let
Z C 2% be the family of linearly independent subsets of S.

3. Let G = (V, E) be a connected undirected graph. Let S = E and let Z
be the set of forests in G. This example gives the MST problem of the
previous lecture.

4. Let G = (V, E) be a connected undirected graph. Let S = E and let
T be the set of subsets E' C FE such that the graph (V,E — F') is

connected.
5. Elements ay,..., 0, of a field are said to be algebraically independent
over a subfield k if there is no nontrivial polynomial p(z1,...,z,) with

coefficients in k such that p(os,...,a,) = 0. Let S be a finite set of
elements and let Z be the set of subsets of S that are algebraically
independent over k.

Definition 3.2 A cycle (or circuit) of a matroid (S,Z) is a setwise minimal
(i.e., minimal with respect to set inclusion) dependent set. A cut (or cocircuit)
of (S,Z) is a setwise minimal subset of S intersecting all maximal independent
sets. O

The terms circuit and cocircuit are standard in matroid theory, but we
will continue to use cycle and cut to maintain the intuitive connection with
the special case of MST. However, be advised that cuts in graphs as defined in
the last lecture are unions of cuts as defined here. For example, in the graph

t

S

the set {(s,u), (t,u)} forms a cut in the sense of MST, but not a cut in
the sense of the matroid, because it is not minimal. However, a moment’s
thought reveals that this difference is inconsequential as far as the blue rule
is concerned.

Let the elements of S be weighted. We wish to find a setwise maximal
independent set whose total weight is minimum among all setwise maximal
independent sets. In this more general setting, the blue and red rules become:

Blue Rule: Find a cut with no blue element. Pick an uncolored ele-
ment of the cut of minimum weight and color it blue.

Red Rule: Find a cycle with no red element. Pick an element of the
cycle of maximum weight and color it red.
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3.1 Matroid Duality

As the astute reader has probably noticed by now, there is some kind of duality
afoot. The similarity between the blue and red rules is just too striking to be
mere coincidence.

Definition 3.3 Let (S,Z) be a matroid. The dual matroid of (S, ) is (S,T%),
where

T* = {subsets of S disjoint from some maximal element of Z} .

In other words, the maximal elements of Z* are the complements in S of the
maximal elements of Z. m|

The examples 3 and 4 above are duals. Note that Z** = Z. Be careful: it
is not the case that a set is independent in a matroid iff it is dependent in its
dual. For example, except in trivial cases, () is independent in both matroids.

Theorem 3.4
1. Cuts in (S,T) are cycles in (S,T%).

2. The blue rule in (S,T) is the red rule in (S,I*) with the ordering of the
weights reversed.

3.2 Correctness of the Blue and Red Rules

Now we prove the correctness of the blue and red rules in arbitrary matroids.
A proof for the special case of MST can be found in Tarjan’s book [100,
Chapter 6]; Lawler [70] states the blue and red rules for arbitrary matroids
but omits a proof of correctness.

Definition 3.5 Let (S,Z) be a matroid with dual (S,Z*). An acceptable
coloring is a pair of disjoint sets B € T (the blue elements) and R € T* (the
red elements). An acceptable coloring B, R is totalif BUR =S, i.e. if Bisa
maximal independent set and R is a maximal independent set in the dual. An

acceptable coloring B, R’ extends or is an extension of an acceptable coloring
B,Rif BC B and R C R a

Lemma 3.6 Any acceptable coloring has a total acceptable extension.

Proof. Let B, R be an acceptable coloring. Let U* be a maximal element
of I* extending R, and let U = S — U*. Then U is a maximal element of
T disjoint from R. As long as |B| < |U|, select elements of U and add them
to B, maintaining independence. This is possible by axiom (ii) of matroids.
Let B be the resulting set. Since all maximal independent sets have the same
cardinality (Exercise 1a, Homework 1), B is a maximal element of T containing
B and disjoint from R. The desired total extension is B, S — B. O
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Lemma 3.7 A cut and a cycle cannot intersect in exactly one element.

Proof. Let C be a cut and D a cycle. Suppose that C N D = {z}. Then
D —{z} is independent and C — {z} is independent in the dual. Color D—{z}
blue and C'—{z} red; by Lemma 3.6, this coloring extends to a total acceptable
coloring. But depending on the color of z, either C' is all red or D is all blue;
this is impossible in an acceptable coloring, since D is dependent and C is
dependent in the dual. a

Suppose B is independent and BU{z} is dependent. Then BU{z} contains
a minimal dependent subset or cycle C, called the fundamental cycle! of x and
B. The cycle C must contain z, because C' — {z} is contained in B and is
therefore independent.

Lemma 3.8 (Exchange Lemma) Let B, R be a total acceptable coloring.

(i) Let £ € R and let y lie on the fundamental cycle of x and B. If the
colors of x and y are exchanged, the resulting coloring is acceptable.

(it) Let y € B and let x lie on the fundamental cut of y and R (the funda-
mental cut of y and R is the fundamental cycle of y and R in the dual
matroid). If the colors of x and y are exchanged, the resulting coloring
is acceptable.

Proof. By duality, we need only prove (i). Let C be the fundamental cycle
of z and B and let y lie on C. If y = z, there is nothing to prove. Otherwise
y € B. The set C —{y} is independent since C' is minimal. Extend C —{y} by
adding elements of | B| as in the proof of Lemma 3.6 until achieving a maximal
independent set B’. Then B’ = (B — {y}) U {z}, and the total acceptable
coloring B’, S — B’ is obtained from B, R by switching the colors of z and y.

O

A total acceptable coloring B, R is called optimal if B is of minimum weight
among all maximal independent sets; equivalently, if R is of maximum weight
among all maximal independent sets in the dual matroid.

Lemma 3.9 If an acceptable coloring has an optimal total extension before
execution of the blue or red rule, then so has the resulting coloring afterwards.

Proof. We prove the case of the blue rule; the red rule follows by duality.
Let B, R be an acceptable coloring with optimal total extension E’, R. Let A
be a cut containing no blue elements, and let z be an uncolored element of
A of minimum weight. If z € B , we are done, so assume that z € R. Let C
be the fundamental cycle of z and B. By Lemma 3.7, AN C must contain

1We say “the” because it is unique (Exercise 1b, Homework 1), although we do not need
to know this for our argument.
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another element besides z, say y. Then y € B, and y ¢ B because there are
no blue elements of A. By Lemma 3.8, the colors of z and y in B, R can be
exchanged to obtain a total acceptable coloring B’, R’ extending B U {z}, R.
Moreover, B’ is of minimum weight, because the weight of z is no more than
that of y. m]

We also need to know

Lemma 3.10 If an acceptable coloring is not total, then either the blue or red
rule applies.

Proof. Let B, R be an acceptable coloring with uncolored element z. By
Lemma 3.6, B, R has a total extension B, R. By duality, assume without loss
of generality that = € B. Let C be the fundamental cut of z and R. Since all
elements of C besides z are in ﬁ, none of them are blue in B. Thus the blue
rule applies. a

Combining Lemmas 3.9 and 3.10, we have

Theorem 3.11 If we start with an uncolored weighted matroid and apply the
blue or red rules in any order until neither applies, then the resulting coloring
is an optimal total acceptable coloring.

What is really going on here is that all the subsets of the maximal inde-
pendent sets of minimal weight form a submatroid of (S, Z), and the blue rule
gives a method for implementing axiom (ii) for this matroid; see Miscellaneous
Exercise 1.

3.3 Matroids and the Greedy Algorithm

We have shown that if (S,7) is a matroid, then the greedy algorithm produces
a maximal independent set of minimum weight. Here we show the converse:
if (S,7) is not a matroid, then the greedy algorithm fails for some choice of
integer weights. Thus the abstract concept of matroid captures exactly when
the greedy algorithm works.

Theorem 3.12 ([32]; see also [70]) A system (S,T) satisfying aziom (i) of
matroids is a matroid (i.e., it satisfies (i1)) if and only if for all weight as-
signments w : S — N, the greedy algorithm gives a minimum-weight mazimal
independent set.

Proof. The direction (—) has already been shown. For (<), let (S,7)
satisfy (i) but not (ii). There must be A, B such that A, B € 7, |A| < |B|,
but fornozr € B—Ais AU{z} eT.

Assume without loss of generality that B is a mazimal independent set.
If it is not, we can add elements to B maintaining the independence of B; for
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any element that we add to B that can also be added to A while preserving
the independence of A, we do so. This process never changes the fact that
|A| < |B| and fornoz € B— Ais AU{z} € T.

Now we assign weights w : S — N. Let a = |A — B| and b = |B — A|.
Then a < b. Let h be a huge number, h > a,b. (Actually h > b? will do.)

Case 1 If A is a maximal independent set, assign

w(z)=a+1 forre B—A

w(z)=b+1 forre A—B

w(z) =0 forxre ANB

w(z) =h forrg AUB .
Thus

w(4) = a(b+1) = ab+a

w(B) = bla+1) = ab+b.

This weight assignment forces the greedy algorithm to choose B when in fact
A is a maximal independent set of smaller weight.

Case 2 If A is not a maximal independent set, assign

w(z)=0 forze A
w(r)=b forreB-A
w(z)=h forcg AUB.

All the elements of A will be chosen first, and then a huge element outside of
A U B must be chosen, since A is not maximal. Thus the minimum-weight
maximal independent set B was not chosen. a



Lecture 4 Depth-First and Breadth-First
Search

Depth-first search (DFS) and breadth-first search (BFS) are two of the most
useful subroutines in graph algorithms. They allow one to search a graph
in linear time and compile information about the graph. They differ in that
the former uses a stack (LIFO) discipline and the latter uses a queue (FIFO)
discipline to choose the next edge to explore.

Undirected depth-first search produces in linear time a numbering of the
vertices called the depth-first numbering and a particular spanning tree called
the depth-first spanning tree of each connected component. This is done as
follows. Choose an arbitrary vertex u, which will become the root of the tree.
Push all edges (u,v) € E onto the stack. Assign u the DFS number 0 and
set the DFS counter c to 1. Now repeat the following activity until the stack
becomes empty. Let (z,y) be the top element of the stack. This is the next
edge to explore. The vertex z has a DFS number already (this is an invariant
of the loop). If y has no DFS number, assign it the DF'S number ¢, increment
¢, push all edges (y, z) € E onto the stack, and make the (directed) edge (z,y)
a tree edge. Otherwise, if y has a DFS number already, just pop (z,y) off the
stack.

The tree edges form a directed spanning tree of the connected component
of u rooted at u. It is a dag rooted at u, since tree edges (z,y) only go from
lower numbered vertices to higher numbered vertices. It is a tree, since no
vertex has indegree greater than one; this is because (z,y) becomes a tree
edge only if y has no DFS number, and thereafter y has a DFS number. It is

19
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a spanning tree, since it is easily shown inductively that every vertex in the
connected component of u eventually receives a DF'S number. This spanning
tree is called the depth-first spanning tree.

We can repeat the whole process with a new arbitrarily chosen unvisited
vertex to search the other connected components.

The non-tree edges (z, y) are called back edges and are directed from higher
numbered to lower numbered vertices. When we draw a DFS tree, we usually
draw the root at the top, the tree edges pointing down (hence the term depth-
first), and the back edges pointing up.

Back edges out of v can only go to ancestors of v in the DFS tree. There
cannot be a back edge to a nonancestor, since that edge would have been
explored earlier from the other direction and would have been a tree edge.

DFS takes time O(m + n) where n is the number of vertices and m is the
number of edges, since each edge is stacked at most once in each direction,
and each edge and vertex requires a constant amount of processing.

See [3, 78] for an alternative treatment.

4.1 Biconnected Components

Let G = (V, E) be a connected undirected graph.

Definition 4.1 A vertex v is an articulation point if its removal disconnects
the graph. O

Definition 4.2 A connected graph is called biconnected if any pair of distinct
vertices u and v lie on a simple cycle (one with no repeated vertices). a

Note that according to this definition, a graph with two vertices connected by
a single edge is biconnected (no one said anything about not repeating edges).

If G is not biconnected, we define the biconnected components of G in terms
of an equivalence relation on edges:

Definition 4.3 For e,e¢’ € E, define e = ¢’ if e and ¢’ lie on a simple cycle.
O

Lemma 4.4 The relation = is an equivalence relation (reflexive, symmetric,
and transitive).

Proof. Reflexivity e = e follows from the fact that the edge e and its two
endpoints constitute a simple cycle. The relation is symmetric, since e and
€’ can be interchanged in the definition of =. The hard one is transitivity.
Suppose (u,v) = (v/,v') and (v/,v’) = (u”,v"). Let ¢ and ¢ be the two simple
cycles involved, respectively. Assume u,u’,v’,v occur in that order around c.
Let z be the first vertex on the segment of ¢ from u to u’ that also lies in ¢/;
z must exist since v’ € ¢/, at least. Let y be the first vertex on the segment of
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¢ from v to v’ that also lies in ¢/; y must exist since v’ € ¢/. Also, = # y since
c is simple. Let p be the path from z to y in ¢ containing (u,v) and let p’ be
the path from z to y in ¢’ containing (u”,v”). Then p and p’ intersect only in
z and y, and together form a simple cycle containing (u,v) and (u”,v”). O

Definition 4.5 The equivalence classes of = are called biconnected compo-
nents. O

Lemma 4.6 The vertez a is an articulation point iff a is contained in at least
two biconnected components.

Proof. Suppose the removal of a disconnects the graph. Then there exist
u and v adjacent to a such that every path from u to v goes through a. Then
the edges (u,a) and (a,v) cannot lie on a simple cycle, thus are in different
biconnected components.

Conversely, suppose u and v are adjacent to a and (u,a) # (a,v). Then
all paths between v and v must go through a. Thus if a is removed, there is
no path between u and v, so G is disconnected. O

Below, when using the terms “descendant” and “ancestor” in a depth-first
search tree, we will always consider a vertex u to be a descendant of itself and
an ancestor of itself. In other words, we take the descendant and ancestor
relations to be reflexive. If we want to exclude u, we do so explicitly by using
the terms “proper descendant” and “proper ancestor”.

Lemma 4.7 Let (u,v) and (v,w) be two adjacent tree edges in a depth-first
search tree of G. Then (u,v) = (v,w) if and only if there exists a back edge
from some descendant of w to some ancestor of u.

Proof.

(—) If there exists a back edge from some descendant w' of w to some
ancestor u’ of u, then (u,v) and (v, w) are edges in a simple cycle consisting
of the back edge (w',u') along with the path of tree edges from ' to w'. Thus
(u,v) = (v,w).

(«) Suppose (u,v) = (v, w). Then there must be a simple cycle containing
them. This cycle must contain the edges (u,v) and (v,w) in this order, since
it may only go through v once. Consider the subtree of the depth-first tree
rooted at w. The simple cycle must contain a back edge (w',u’) out of this
subtree, since it must get back to u eventually. (Before coming out, the path
inside the subtree can be quite complicated, since it can traverse tree and back
edges in either direction—don’t forget that the graph is undirected.) Then v’
is a descendant of w and «’ is an ancestor of w’. Since v’ is not in the subtree
rooted at w, it must be an ancestor of v. But it cannot be v because v cannot
be used twice on the cycle. Therefore u' must be an ancestor of u. |
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The biconnected components can be found from a DFS tree as follows.
Assume the vertices are named by their DF'S numbers. We compute a value
for each vertex v, called low(v), which gives the DFS number of the lowest
numbered vertex z (i.e. the highest in the tree) such that there is a back edge
from some descendant of v to z. By Lemmas 4.6 and 4.7, a vertex u will be
an articulation point, and the biconnected component of the tree edge (u,v)
will lie entirely in the subtree rooted at u, if low(v) > u. We can inductively
compute low(v) as follows:

:= min{low(w) | w is an immediate descendant of v}
y = min{z | z is reachable by a back edge from v}
low(v) := min(z,y) .

The values low(v) can be computed simultaneously with the construction of
the DFS tree in linear time. As soon as an articulation point w is discovered
with (u,v) a tree edge such that low(v) > wu, the biconnected component
containing the edge (u,v) can be deleted from the graph. See [3, 78] for more
details.

4.2 Directed DFS

The DFS procedure on directed graphs is similar to DF'S on undirected graphs,
except that we only follow edges from sources to sinks. Four types of edges
can result:

e tree edges to a vertex not yet visited
e back edges to an ancestor
e forward edges to a descendant previously visited

e cross edges to a vertex previously visited that is neither an ancestor nor
a descendant.

There can be no cross edges to a higher numbered vertex; such an edge would
have been a tree edge. If we mark the vertex y when the tree edge (z,y) is
popped to indicate that the subtree below y has been completely explored,
we can recognize each of these four cases when we explore the edge (u,v) by
checking marks and comparing DFS numbers:

[ (w,v) isa | of |
tree edge DFS(v) does not exist

back edge DFS(v) < DFS(u) and v is not marked
forward edge | DFS(v) > DFS(u)

cross edge DFS(v) < DFS(u) and v is marked




LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH 23

The directed DF'S tree can be constructed in linear time; see [3, 78] for details.
The first application of directed DFS is determining acyclicity:

Theorem 4.8 A directed graph is acyclic iff its DF'S forest has no back edges.

Proof. 1If there is a back edge, the graph is surely cyclic. Conversely, if
there are no back edges, consider the postorder numbering of the DFS forest:
traverse the forest in depth-first order, but number the vertices in the order
they are last seen. Then tree edges, forward edges, and cross edges all go from
higher numbered to lower numbered vertices, so there can be no cycles. O

4.3 Strong Components

Definition 4.9 Let G = (V, E) be a directed graph. For u,v € V, define
u = v if u and v lie on a directed cycle in G. This is an equivalence relation,
and its equivalence classes are called strongly connected components or just
strong components. A graph G is said to be strongly connected if for any pair
of vertices u, v there is a directed cycle in G containing v and v; i.e., if G has
only one strong component. O

The strong components of a directed graph can be computed in linear time
using directed depth-first search. The algorithm is similar to the algorithm
for biconnected components in undirected graphs; see [3] for details.

4.4 Strong Components and Partial Orders

Strong components are important in the representation of partial orders. Fi-
nite partial orders are often represented as the reflexive transitive closures E*
of dags G = (V, E) (recall (u,v) € E* iff there exists an E-path from u to
v of length 0 or greater). If G is not acyclic, then the relation E* does not
satisfy the antisymmetry law, and is thus not a partial order. However, it is
still reflexive and transitive. Such a relation is called a preorder or sometimes
a quastorder.

Given an arbitrary preorder (P, <), define z ~ y if z < y and y =< z.
This is an equivalence relation, and we can collapse its equivalence classes
into single points to get a partial order. This construction is called a quotient
construction. Formally, let [z] denote the ~-class of z and let P/~ denote the
set of all such classes; i.e.,

[z] = {yly~az}
P/~ = {[z]|z € P}.

The preorder < induces a preorder, also denoted =<, on P/~ in a natural
way: [z] X [y] if £ X y in P. (The choice of  and y in their respective
equivalence classes doesn’t matter.) It is easily shown that the preorder < is
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actually a partial order on P/~; intuitively, by collapsing equivalence classes,
we identified those elements that caused antisymmetry to fail.

Forming the strong components of a directed (not necessarily acyclic)
graph G = (V,E) allows us to perform this operation effectively on the
preorder (V, E*). We form a quotient graph G/= by collapsing the strong
components of G into single vertices:

[v] = {u|wu=v} (the strong component of v)
Vi= = {llveV)

E" = {(lu,) | (u,v) € E}
G/l= = (V/=E).

It is not hard to show that G/= is acyclic. Moreover,

Theorem 4.10 The partial orders (V/=, E*) and (V/=,(E')*) are isomor-
phic.

In other words, the partial order represented by the collapsed graph is the
same as the collapse of the preorder represented by the original graph.



Lecture 5 Shortest Paths and Transitive
Closure

5.1 Single-Source Shortest Paths

Let G = (V,E) be an undirected graph and let ¢ be a function assigning
a nonnegative length to each edge. Extend ¢ to domain V X V by defining
{(v,v) = 0 and £(u,v) = oo if (u,v) ¢ E. Define the length® of a path
D = eey...e, to be £(p) = Y1, 4(e;). For u,v € V, define the distance
d(u,v) from u to v to be the length of a shortest path from » to v, or co if
no such path exists. The single-source shortest path problem is to find, given
s € V, the value of d(s,u) for every other vertex u in the graph.

If the graph is unweighted (i.e., all edge lengths are 1), we can solve the
problem in linear time using BF'S. For the more general case, here is an algo-
rithm due to Dijkstra [28]. Later on we will give an O(m+nlogn) implemen-
tation using Fibonacci heaps. The algorithm is a type of greedy algorithm: it
builds a set X vertex by vertex, always taking vertices closest to X.

2In this context, the terms “length” and “shortest” applied to a path refer to £, not the
number of edges in the path.
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Algorithm 5.1 (Dijkstra’s Algorithm)

X :={sh

D(s) :=0;

for each u € V — {s} do
D(u) := £(s,u);

while X # V do
let v € V — X such that D(u) is minimum,;
X =X U{u}
for each edge (u,v) withv € V — X do
D(v) := min(D(v), D(u) + £(u,v))
end while

The final value of D(u) is d(s,u). This algorithm can be proved correct by
showing that the following two invariants are maintained by the while loop:

e for any u, D(u) is the distance from s to u along a shortest path through
only vertices in X

o forany u € X, v ¢ X, D(u) < D(v).

5.2 Reflexive Transitive Closure

Let E denote the adjacency matrix of the directed graph G = (V, E). Using
Boolean matrix multiplication, the matrix E? has a 1 in position uv iff there
is a path of length exactly 2 from vertex u to vertex v; i.e., iff there exists a
vertex w such that (u,w), (w,v) € E. Similarly, one can prove by induction
on k that (E¥),, = 1 iff there is a path of length exactly k from u to v.

The reflexive transitive closure of G is

E*¥ = IVEVE?v...
= IVEVE?Vv...vE*!
(IVE)"!.

The infinite join is equal to the finite one because if there is a path connecting
u and v, then there is one of length at most n — 1.

Suppose that two n x n Boolean matrices can be multiplied in time M(n).
Then E* = (I V E)*! can be calculated in time O(M(n)logn) by squaring
E logn times. We will show below how to calculate E* in time O(M(n)).
Conversely, if there is an algorithm to compute E* in time T'(n), then M (n)
is O(T(n)) (under the reasonable assumption that M(3n) is O(M(n))): to
multiply A and B, place them strategically into a 3n x 3n matrix, then take

its reflexive transitive closure:
%

0 A0 I A AB
0 0 B = |01 B
0 0 O 00 I
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The product AB can be read off from the upper right-hand block.
Here is a divide and conquer algorithm to find E* in time M (n).

Algorithm 5.2 (Reflexive Transitive Closure)

1. Divide E into 4 submatrices A, B, C, D of size roughly  x 7 such
that A and D are square.

: - [t
2. Recursively compute D*. Compute
F = A+BD*C.
Recursively compute F*.

3. Set

F* | F*BD*
D*CF*| D* + D*CF*BD*

E*

Essentially, we are partitioning the set of vertices into two disjoint sets U
and V', where A describes the edges from U to U, B describes edges from U
to V, C describes edges from V to U, and D describes edges from V to V.
‘We compute reflexive transitive closures on these sets recursively and use this
information to describe the reflexive transitive closure of E. Note that we
compute two reflexive transitive closures, a few matrix multiplications (whose
complexity is given by M) and a few matrix additions (whose complexity is
assumed to be quadratic) of matrices of roughly half the size of E. This gives
the recurrence

T(n) = 20(3)+cM(3) +d(3)?

where ¢ and d are constants. Under the quite reasonable assumption that
M (2n) > 4M(n), the solution to this recurrence is O(M (n)).

5.3 All-Pairs Shortest Paths

Let E denote the adjacency matrix of a directed graph with edge weights.
Replace the 1’s in E by the edge weights and the 0’s by co. Apply Algorithm
5.2 to calculate E*, except use + instead of A and min instead of V. We will
show next time that this solves the all-pairs shortest path problem.



Lecture 6 Kleene Algebra

Consider a binary relation on an n element set represented by an n xn Boolean
matrix F. Recall from the last lecture that we can compute the reflexive
transitive closure of F by divide-and-conquer as follows: partition F into four
submatrices A, B, C, D of size roughly 7 x 3 such that A and D are square:

A|B
E - [+C b ] .
By induction, construct the matrices D*, F = A4+ BD*C, and F*, then take

E*

[ F* | F*BD* ] )

D*CF* | D* + D*CF*BD*

We will prove that the matrix E* as defined in (1) is indeed the reflexive
transitive closure of F, but the proof will be carried out in a more abstract
setting which will allow us to use the same construction in other applications.
For example, we will be able to compute the lengths of the shortest paths
between all pairs of points in a weighted directed graph using the same general
algorithm, but with a different interpretation of the basic operations.

How did we come up with the expressions in (1)? This is best motivated by
considering a simple finite-state automaton over the alphabet ¥ = {a, b, ¢, d}

with states s, and transitions s % s, s ¢, t-5 s, t ¢

28
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b
«(K__ KD

C

For each pair of states u,v, consider the set of input strings in ©* taking
state u to state v in this automaton. Each such set is a regular subset of ©*
and is represented by a regular expression corresponding to the expressions
appearing in (1):

s—s @ f*
s—t : f*bd*
t—s : d*cf*

t—t : d*+d*cf*bd*,

where f = a + bd*c. (See [3, §9.1, pp. 318-319] for more information on finite
automata and regular expressions.)

6.1 Definition of Kleene Algebras

The appropriate level of abstraction we are seeking is Kleene algebra. This
concept goes back to Kleene [61], but received significant impetus from the
work of Conway [21]. The definition here is from [63].

Definition 6.1 A (*-continuous) Kleene algebra is any structure of the form
K = (S7 + *a 0, 1)

where S is a set of elements, + and - are binary operations S x § — S, *
is a unary operation S — S, and 0 and 1 are distinguished elements of S,
satisfying the axioms

a+((b+c) = (a+b)+c (+ is associative) (2)
a+b = b+a (+ is commutative) (3)
at+a = a (+ is idempotent) 4)
a+0 = 0+a = a (0 is an a identity for +)  (5)

a-(b-c) = (a-b)-c (- is associative) (6)
a1 = 1l-a = a (1 is an a identity for -) (7
0a = a0 =0 (0 is an annihilator for -)  (8)

a-(b+c) = a-b+a-c (- distributes over +) (9)
(b+c)-a = b-a+c-a (10)

plus the following axiom to deal with the * operator, which will require further
explanation:

ab*c = sup abc (11)
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where

P =1
o= bt

O

Axioms (2-5) say that the structure (S, +, 0) is an idempotent commu-
tative monoid. Axioms (6-7) say that (S, -, 1) is a monoid. Axioms (8-10)
describe how these two monoid structures interact. Altogether, Axioms (2-10)
say that K is an idempotent semiring.

The axiom (11) asserts the existence of the supremum or least upper bound
of a certain set with respect to a certain partial order. In any idempotent
semiring, there is a natural partial order defined by

a<b o a+b=>b. (12)

It follows easily from the axioms (2-5) that < is indeed a partial order; i.e.,
it is

o reflexive: a < a
e antisymmetric: if a < b and b < a then a = b; and
e transitive: if a < band b < c then a <c.

If A is a set of elements of a partially ordered set, the element y is said to
be the supremum or least upper bound of the set A (notation: y = sup A) if

e y is an upper bound for A; i.e., z < y for all x € A;

e y is the least such upper bound; i.e., for any other upper bound z for
Ay<Lz

The supremum of any pair of elements z, y exists and is equal to z + y. It
follows that the supremum of any finite set {a1,...,a,} exists and is equal
to a; + - - - + a, (parentheses are not necessary because + is associative). In
general, the supremum of an infinite set need not exist, but if it exists then it
is unique. The axiom (11) asserts that the supremum of the set {ab"c | n > 0}
exists and is equal to ab*c.

The postulate (11) captures axiomatically the behavior of reflexive transi-
tive closure of a binary relation. It also captures the behavior of the Kleene *
operator of formal language theory. In addition, there are many nonstandard
examples of Kleene algebras that are useful in various contexts. We will give
several examples below.

Instead of Kleene algebras, many authors (such as [3, 78]) use so-called
closed semirings. These structures are strongly related to Kleene algebras,
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but are defined in terms of a countable summation operator Y instead of a
supremum. In closed semirings, the * operator is not a primitive operator but
is defined in terms of }_ by

o= Yoo

n>0

The countable summation operator Y, which sums a countably infinite se-
quence of elements, is postulated not to depend on the order of the elements
in the sequence or their multiplicity, and thus is essentially a supremum. The
operator ) is also postulated to satisfy an infinite distributivity property that
we get for free for all suprema of interest by stating the axiom as we did in
(11).

The main drawback with closed semirings is that the suprema of all count-
able sets are required to exist, which is too many. Although every closed
semiring is a Kleene algebra, there are definitely Kleene algebras that are not
closed semirings. The most important example of such a Kleene algebra is the
family Regs, of regular subsets of ©*, where I is a finite alphabet (Example
6.2 below). This example is important because it is the free Kleene algebra
freely generated by ¥, which essentially says that an equation between regular
expressions over % holds in all Kleene algebras if and only if it holds in Regsy.
We will find this fact very useful in reducing arguments about Kleene algebras
in general to arguments about regular subsets of ©*.

Kleene algebras were studied extensively in the monograph of Conway [21].
It is possible to axiomatize the equational theory of Kleene algebras in a purely
finitary way [65]. The precise relationship between Kleene algebras and closed
semirings is drawn in [64].

6.2 Examples of Kleene Algebras

Kleene algebras abound in computer science. Here are some examples.

Example 6.2 Let X be a finite alphabet and let Regy denote the family of
regular sets over ¥ with the following operations:
A+B = AUB
A-B = {zy|z€ A, ye B}

A* = {z1z9-- 2z |m>0and z; € A, 1 <i<mn}
U4
n>0

0 =0

1 = {¢
where A™ is defined inductively by
A" = {¢
AT — Aogn
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and e is the empty string. Under these operations, Regy is a Kleene algebra,
and a very important one indeed: it is the free Kleene algebra on free gen-
erators ¥, which essentially means that any equation a = [ between regular
expressions holds in all Kleene algebras iff it holds in Regs. O

Example 6.3 Let X be a set and let R be any family of binary relations on
X closed under the following operations:

R+S = RUS
R-S = {(z,2)|3y€ X (z,y) € R and (y,2) € S}

R* — U Rn
n>0
= the reflexive transitive closure of R
0 =0
{(z,z) |z € X} .

where R™ is defined inductively by

R' = {(z,2)|z e X}
R = R-R".
Under these operations, R forms a Kleene algebra. Kleene algebras of binary

relations are used to model programs in Dynamic Logic and other logics of
programs. O

Example 6.4 The set {0,1} of Boolean truth values forms a Kleene algebra
under the operations

a+b = aVvd
a-b = aNbd
a* =1
and 0 and 1 as named. This is the smallest nontrivial Kleene algebra. 0O

Example 6.5 The family of n x n Boolean matrices forms a Kleene algebra
under the operations

A+B = AVB

A-B = Boolean matrix product
A* = reflexive transitive closure
0 = the zero matrix

1 = the identity matrix.

This is essentially the same as Example 6.3 above for an n-element set X. 0O
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Example 6.6 The following rather bizarre example will be useful in comput-
ing all-pairs shortest paths in a weighted graph. We will have to be a little
more explicit with notation than usual to avoid confusion.

Let R, denote the family of nonnegative real numbers, and let co be a
new element. Let +x denote ordinary addition in R, U {oo}, where we define

Aa+R00 = O0O0O+RraA = OO

for all @ € Ry U {oo}. Let <g denote the natural order in R, U {oo}, with
a <p oo for all a € R,. Let ming{a,b} denote the minimum of @ and b with
respect to this order. Let 0z denote the real number 0.

Define the Kleene algebra operations +x, -x, *<, O, and 1x on R, U {oo}
as follows:

a+xb = ming{a,b}
_ { a, ifa<gbd
- b, otherwise
axb = a+grb
a*’c = OR
OIC = 00
1l = 0z.

If this appears confusing, don’t worry, it really is. To make sense of it, just
keep in mind that the symbols on the left hand side of these equations refer to
the Kleene algebra operations being defined, whereas those on the right hand
side refer to the natural operations of R, U {oo}. Note that the zero element
of the Kleene algebra is oo, the identity for ming, and the multiplicative
identity 1 of the Kleene algebra is the real number 0, the identity for addition
in R4 U {oo} (which is multiplication in the Kleene algebra). The worst part
is that the natural partial order < in the Kleene algebra as defined by (12)
is the reverse of <g; that is, a <g b iff b <3 a.

This algebra is often called the min,+ Kleene algebra. a



Lecture 7 More on Kleene Algebra

In this lecture we will see how Kleene algebra can be used in a variety of
situations involving *-like operations. The key result that allows these appli-
cations is that the n x n matrices over a Kleene algebra again form a Kleene
algebra. Along the way we will establish a central lemma that establishes the
importance of the regular sets Regy, over the finite alphabet ¥ in reasoning
about Kleene algebras in general.

Let

K = (K? +K5 K *)C’ 0’C7 lK:)

be a Kleene algebra. Let ¥ a set and let RExpy; denote the family of regular
expressions over X (see [3, §9.1, pp. 318-319]). An interpretation over K is a
map

I:¥ - K

assigning an element of K to each element of ¥. An interpretation can be
extended to domain RExpsy: inductively as follows:

100) = 0Ox

I1) = 1k
Ifa+8) = I(a)+c1(B)
Ia-B) = I(a) x I(B)

I(a™®) I(a)** .
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At the risk of confusing the operator symbols in regular expressions and the
corresponding operations in K, we henceforth drop the subscripts K.
For example, the interpretation

R:¥ — Regy

a — {a}
over Regy: extends to the map
R :RExpy — Regs

in which R(q) is the regular set denoted by the regular expression « in the
usual sense. The interpretation R is called the standard interpretation over
Reg);;.

The following lemma generalizes (11).

Lemma 7.1 Let R : ¥ — Regy be the standard interpretation over Regs,
and let I : ¥ — K be any interpretation over any Kleene algebra K. For any
regular expression o over ¥,

I{(a) = sup I(z). (13)
rER(a)

Note that since R(a) is a regular set of strings over the alphabet ¥, the z
in (13) denotes a string. Strings over ¥ are themselves regular expressions
over X, so the expression I(z) makes sense. The equation (13) states that the
supremum of the possibly infinite set

{I(z) |z € R(a)} € K

exists and is equal to I(a). We leave the proof of Lemma 7.1 as an exercise
(Homework 3, Exercise 2).

It follows that for any pair a, 3 of regular expressions over ¥, the equation
a = [ is a logical consequence of the axioms of Kleene algebra, i.e. it holds
under all interpretations over all Kleene algebras, if and only if it holds under
the standard interpretation R over Regs. A fancy way of saying this is that
Regy is the free Kleene algebra on free generators L.

Theorem 7.2 Let a and 3 be regular expressions over ¥ and let R be the
standard interpretation over Regs. Then

I(a) = 1(B)

for all interpretations I over Kleene algebras if and only if

R(a) = R(B).
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Proof. (—) This follows immediately from the fact that Regy; is a Kleene
algebra and R is an interpretation over Regsy:.
(«) Suppose R(a) = R(B). Then

I(a) = sup I(z) by Lemma 7.1
z€R(a)
= sup I(z) by the assumption R(a) = R(0)
T€R(B)

= I(B), again by Lemma 7.1.

7.1 Matrix Kleene Algebras

The collection M(n,K) of n X n matrices with elements in a Kleene algebra
K again forms a Kleene algebra, provided the Kleene algebra operators on
M (n,K) are defined appropriately. We always define + as ordinary matrix
addition, - as ordinary matrix multiplication, 0 as the zero matrix, 1 as the
identity matrix, and * recursively by equation (1) of the previous lecture. We
must show that all the axioms of Kleene algebra are satisfied by M(n,K)
under these definitions. For example, in M(2,K) the identity elements for +

and - are
00 (10
00 _01

respectively, and the operations +, -, and * are given by

a b e f| _ [a4+e b+ f
cd|Tlgh|] T |ctg dth

a b e f| _ |ae+bg af+bh
cd| |g h| = |ce+dg cf+dh

a 8" [ £ F*bd*

c d = | d¥ef* d* +d*cf*bd*
where f = a+bd*c. Note that A < B in the natural order on M(n, K) defined
by (12) if and only if A;; < B;; forall 1 <4,5 < n.

Most of the Kleene algebra axioms are routine to verify for the structure
M(n,K). Let us verify (11) explicitly, assuming all the other axioms have
been verified. First we will show that it is true for a particular choice of
matrices over a particular Kleene algebra of regular sets, using a combinatorial
argument; next we will use Theorem 7.2 to extend the result to all Kleene
algebras.




LECTURE 7 MORE ON KLEENE ALGEBRA 37

Let A, B, and C be n x n symbolic matrices with i;j** elements a;j, byj,
and c;;, respectively, where the a;;, b;;, c;; are distinct letters. Let

¥ = {ay,by,cii | 1<4,5<n}.

Build an automaton Mg with n states and transition from state i to state
j labeled with the letter b;;. The ij** element of BF, the symbolic k** power
of B, is a regular expression representing the set of strings of length k over &
taking state i to state j in Mp. Moreover, the ij** element of B* represents
the set of all strings (of any length) taking state ¢ to state j in Mp. This
follows from a purely combinatorial inductive argument, using the definition
of B* as given in (1); the partition in (1) corresponds to a partition of the
states of Mp into two disjoint sets. We thus have

R(B%)y) = U R(B")y)
k>0
where R is the standard interpretation.

Let M and Mc consist of n states each. Connect state ¢ of M with
state j of Mp and label the transition a;;. Similarly, connect state i of My
with state j of Mc and label the transition c;;. Call this new automaton M.
Then the regular set over & denoted by the ij** element of AB*C is the set
of strings of length k + 2 taking state ¢ of My to state j of Mc in M, and the
regular set denoted by the ij** element of AB*C is the set of all strings (of
any length) taking state ¢ of Ma to state j of M¢ in M. Therefore

R((AB*C);;) = | R((AB*C)y) .
k>0

Now let A, B, C be arbitrary matrices over an arbitrary Kleene algebra K.
Let a;j, bi;, ci; denote the ij®* elements of A, B, and C, respectively. Let I
be the interpretation

I(a;) = ay
I(b;) = b
I(cij) = cij -
Then
(AB*C);; = I((AB*C)y)

= sup{I(z) | z € R((AB*C);;)} by Lemma 7.1
sup{I(z) | z € kU R((AB*C)y)}
>0
= supsup{l(z) |z € R((AB*C)y)}
= sup I((AB*C)y)

= sup(AB*C),; ,
k>0
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therefore

AB*C = supAB*C .

k>0

This establishes (11) for M (n, K).

7.2 Applications

The obvious divide-and-conquer algorithm for computing E* given by (1)
yields the recurrence

T(n) = T(3)+0(M(n)

where M(n) is the number of basic operations needed to add or multiply
two n X n matrices over K. Under the quite reasonable assumption that
M(2n) > 4M(n), this recurrence has solution

T(n) = O(M(n)) .

For most applications, M (n) = O(n3). Better bounds can be obtained using
Strassen’s algorithm or other fast matrix multiplication algorithms when K is
a ring.

Reflexive Transitive Closure

Using matrix Kleene algebras, we can prove the correctness of the algorithm
for reflexive transitive closure presented in the last lecture. Let B denote the
two-element Kleene algebra described in Example 6.4 above. Let E denote the
adjacency matrix of a directed graph G with n vertices. Then E € M(n, B),
and the ij** element of E* is 1 if and only if there exists a directed path in G
from vertex 7 to vertex j of length exactly k. By the result of the last section,
we know that

E* = supE*,
k>0

so the ij*® element of E* is 1 iff there exists a path of some length from i to
j. This is the reflexive transitive closure.

All-Pairs Shortest Paths

Here we use the same algorithm, but a different underlying Kleene algebra,
namely the min,+ algebra of Example 6.6 above. Supremum in this order is
infimum in the usual order on R, U {oo}. Thus a* is the real number 0 for
all a.
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We apply this to the all-pairs shortest path problem. Let E be a matrix
over the min,+ algebra containing the edge lengths of a weighted directed
graph G. If (4,5) is not an edge in G, set E;; = co. In E?, the ij*" element
will be the minimum over all vertices k of the sum of the lengths of (3, k) and
(k,7). That is, it will contain the length of a shortest path of two edges from
i to j. It follows by induction that the ij® element of E* is the length of a
shortest path of k edges from ¢ to j. Since

E* = supEF
k>0

and supremum in the Kleene algebra is infimum in the natural order, E* gives
the length of a shortest path of any number of edges.



Lecture 8 Binomial Heaps

Binomial heaps were invented in 1978 by J. Vuillemin [106]. They give a
data structure for maintaining a collection of elements, each of which has a
value drawn from an ordered set, such that new elements can be added and
the element of minimum value extracted efficiently. They admit the following
operations:

makeheap(i) return a new heap containing only element i
findmin(h) return a pointer to the element of h of minimum value
insert(h, 1) add element ¢ to heap h

deletemin(h) delete the element of minimum value from h

meld(h, h') combine heaps h and b’ into one heap

Efficient searching for objects is not supported.
In the next lecture we will extend binomial heaps to Fibonacci heaps [35],
which allow two additional operations:

decrement(h,i,A) decrease the value of i by A
delete(h, i) remove i from heap h

We will see that these operations have low amortized costs. This means
that any particular operation may be expensive, but the costs average out so
that over a sequence of operations, the number of steps per operation of each
type is small. The amortized cost per operation of each type is given in the
following table:

40



LECTURE 8 BINOMIAL HEAPS 41

makeheap O(1)

findmin o(1)

insert 0(1)

deletemin  O(logn)

meld O(1) for the lazy version

O(logn) for the eager version

decrement O(1)

delete O(logn)

where n is the number of elements in the heap.
Binomial heaps are collections of binomial trees, which are defined induc-
tively: the i*® binomial tree B; consists of a root with i children By, ..., B;_;.

By B, B, B;

1A,

It is easy to prove by induction that | B;| = 2°.

If data elements are arranged as vertices in a tree, that tree is said to be
heap-ordered if the minimum value among all vertices of any subtree is found
at the root of that subtree. A binomial heap is a collection of heap-ordered
binomial trees with a pointer min to the tree whose root has minimum value.
We will assume that all children of any vertex are arranged in a circular
doubly-linked list, so that we can link and unlink subtrees in constant time.

Definition 8.1 The rank of an element z, denoted rank (z), is the number
of children of z. For instance, rank (root of B;) = i. The rank of a tree is the
rank of its root. a

A basic operation on binomial trees is linking. Given two B;’s, we can
combine them into a B;;; by making the root of one B; a child of the root of
the other. We always make the B; with the larger root value the child so as
to preserve heap order. We never link two trees of different rank.

8.1 Operations on Binomial Heaps

In the “eager meld” version, the trees of the binomial heap are accessed
through an array of pointers, where the i*" pointer either points to a B; or
is nil. The operation meld(h, k'), which creates a new heap by combining h
and A/, is reminiscent of binary addition. We start with 7 = 0. If either h or
h' has a By and the other does not, we let this By be the By of meld(h, k').
If neither h nor b’ have a By, then neither will meld(h,h’). If both h and A’
have a By, then meld(h, k') will not; but the two By’s are linked to form a
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B, which is treated like a carry. We then move on to the Bj’s. At stage 1,
we may have 0, 1, or 2 B;’s from h and A/, plus a possible B; carried from the
previous stage. If there are at least two B;’s, then two of them are linked to
give a B;y; which is carried to the next stage; the remaining B;, if it exists,
becomes the B; of meld(h, k). The entire operation takes O(logn) time, be-
cause the size of the largest tree is exponential in the largest rank. We will
modify the algorithm below to obtain a “lazy meld” version, which will take
constant amortized time.

The operation insert(i, h) is just meld(h, makeheap(z)).

For the operation deletemin(h), we examine the min pointer to z, the
root of some By. Removing = creates new trees By, ..., Bx_1, the children of
x, which are formed into a new heap h’. The tree By is removed from the old
heap h. Now h and h' are melded to form a new heap. We also scan the new
heap to determine the new min pointer. All this requires O(logn) time.

8.2 Amortization

The O(log n) bound on meld and deletemin is believable, but how on earth
can we do insert operations in constant time? Any particular insert opera-
tion can take as much as O(logn) time because of the links and carries that
must be done. However, intuition tells us that in order for a particular insert
operation to take a long time, there must be a lot of trees already in the heap
that are causing all these carries. We must have spent a lot of time in the
past to create all these trees. We will therefore charge the cost of performing
these links and carries to the past operations that created these trees. To the
operations in the past that created the trees, this will appear as a constant
extra overhead.

This type of analysis is known as amortized analysis, since the cost of a
sequence of operations is spread over the entire sequence. Although the cost
of any particular operation may be high, over the long run it averages out so
that the cost per operation is low.

For our amortized analysis of binomial heaps, we will set up a savings
account for each tree in the heap. When a tree is created, we will charge
an extra credit to the instruction that created it and deposit that credit to
the account of the tree for later use. (Another approach is to use a potential
function; see [100].) We will maintain the following credit invariant:

Each tree in the heap has one credit in its account.

Each insert instruction creates one new singleton tree, so it gets charged
one extra credit, and that credit is deposited to the account of the tree that
was created. The amount of extra time charged to the insert instruction is
O(1). The same goes for makeheap. The deletemin instruction exposes up
to logn new trees (the subtrees of the deleted root), so we charge an extra
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logn credits to this instruction and deposit them to the accounts of these
newly exposed trees. The total time charged to the deletemin instruction is
still O(logn).

We use these saved credits to pay for linking later on. When we link a tree
into another tree, we pay for that operation with the credit associated with
the root of the subordinate tree. The insert operation might cause a cascade
of carries, but the time to perform all these carries is already paid for. We
end up with a credit still on deposit for every exposed tree and only O(1) time
charged to the insert operation itself.

8.3 Lazy Melds

We can also perform meld operations in constant time with a slight modifica-
tion of the data structure. Rather than using an array of pointers to trees, we
use a doubly linked circular list. To meld two heaps, we just concatenate the
two lists into one and update the min pointer, certainly an O(1) operation.
Then insert(h, ) is just meld(h, makeheap(7)).

The problem now is that unlike before, we may have several trees of the
same rank. This will not bother us until we need to do a deletemin. Since in
a deletemin we will need O(logn) time anyway to find the minimum among
the deleted vertex’s children, we will take this opportunity to clean up the
heap so that there will again be at most one tree of each rank. We create an
array of empty pointers and go through the list of trees, inserting them one
by one into the list, linking and carrying if necessary so as to have at most
one tree of each rank. In the process, we search for the minimum.

We perform a constant amount of work for each tree in the list in addition
to the linking. Thus if we start with m trees and do £ links, then we spend
O(m + k) time in all. To pay for this, we have k saved credits from the links,
plus an extra logn credits we can charge to the deletemin operation itself,
so we will be in good shape provided m + k is O(k + logn). But each link
decreases the number of trees by one, so we end up with m — k trees, and
these trees all have distinct ranks, so there are at most logn of them; thus

m+k = 2k+(m—k)
< 2k+logn
= O(k+logn) .



Lecture 9 Fibonacci Heaps

Fibonacci heaps were developed by Fredman and Tarjan in 1984 [35] as a
generalization of binomial heaps. The main intent was to improve Dijkstra’s
single-source shortest path algorithm to O(m + nlogn), but they have many
other applications as well. In addition to the binomial heap operations, Fi-
bonacci heaps admit two additional operations:

decrement(h,i, A) decrease the value of i by A
delete(h, 7) remove 3 from heap h

These operations assume that a pointer to the element ¢ in the heap h is given.

In this lecture we describe how to modify binomial heaps to admit delete
and decrement. The resulting data structure is called a Fibonacci heap.
The trees in Fibonacci heaps are no longer binomial trees, because we will be
cutting subtrees out of them in a controlled way. We will still be doing links
and melds as in binomial heaps. The rank of a tree is still defined in the same
way, namely the number of children of the root, and as with binomial heaps
we only link two trees if they have the same rank.

To perform a delete(z), we might cut out the subtree rooted at i, remove
i, and meld in its newly freed subtrees. We must also search these newly
freed subtrees for the minimum root value; this requires O(logn) time. In
decrement (i, A), we decrement the value of i by A. The new value of i
might violate the heap order, since it might now be less than the value of i’s
parent. If so, we might simply cut out the subtree rooted at i and meld it
into the heap.
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The problem here is that the O(logn) time bound on deletemin described
in the last lecture was highly dependent on the fact that the size of By is
exponential in k, i.e. the trees are bushy. With delete and decrement as
described above, cutting out a lot of subtrees might make the tree scraggly,
so that the analysis is no longer valid.

9.1 Cascading Cuts

The way around this problem is to limit the number of cuts among the children
of any vertex to two. Although the trees will no longer be binomial trees, they
will still be bushy in that their size will be exponential in their rank.

For this analysis, we will set up a savings account for every vertex. The
first time a child is cut from vertex p, charge to the operation that caused the
cut two extra credits and deposit them to the account of p. Not only does this
give two extra credits to use later, it also marks p as having had one child cut
already. When a second child is cut from p, cut p from its parent p’ and meld
p into the heap, paying for it with one of the extra credits that was deposited
to the account of p when its first child was cut. The other credit is left in
the account of p in order to maintain the invariant that each tree in the heap
have a credit on deposit. If p was the second child cut from its parent p’, then
P’ is cut from its parent; again, this is already paid for by the operation that
cut the first child of p’. These cuts can continue arbitrarily far up the tree;
this is called cascading cuts. However, all these cascading cuts are already
paid for. Thus decrement is O(1), and delete will still be O(log n) provided
our precautions have guaranteed that the sizes of trees are still exponential in
their rank.

Theorem 9.1 The size of a tree with root r in a Fibonacci heap is exponential
in rank (r).

Proof. Fix a point in time. Let z be any vertex and let y1, ...,y be the
children of x at that point, arranged in the order in which they were linked
into . We show that rank (y;) is at least ¢ — 2. At the time that y; was linked
into z, x had at least the ¢ — 1 children y;,...,%;—1 (it may have had more
that have since been cut). Since only trees of equal rank are linked, y; also
had at least ¢ — 1 children at that time. Since then, at most one child of y;
has been cut, or y; itself would have been cut. Therefore the rank of y; is at
least 1 — 2.

We have shown that the i*" child of any vertex has rank at least i — 2. Let
F, be the smallest possible tree of rank n satisfying this property. The first
few F,, are illustrated below.
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Fo F1 Fg F3 F4

'IAAVMM

Observe that Fy, Fi, F», F3, Fy, Fs, ..., are of size 1,2,3,5,8,13..., respec-
tively. This sequence of numbers is called the Fibonacci sequence, in which
each number is obtained by adding the previous two. It therefore suffices to
show that the nt® Fibonacci number f, = |F,| is exponential in n.

Specifically, we show that f, > ¢, where ¢ = 1325 ~ 1.618..., the
positive root of the quadratic 22 — x — 1. The proof proceeds by induction on
n.

For the basis, fo = 1 > ¢® and f; = 2 > ¢!. Now assume that f, > "
and f,y1 > ¢l Then

fn+1 + fn
(pn+1 +(pn
= ¢"pt+1)

" - p?since 2 = +1
(pn+2 .

f'n+2

v

I

O

The real number ¢ is often called the golden ratio. It was considered the
most perfect proportion for a rectangle by the ancient Greeks because it makes
the ratio of the length of the longer side to the length of the shorter side equal
to the ratio of the sum of the lengths to the length of the longer side.

b a+b

a p=-
a

b

(The picture is actually 81pt x 50pt, giving a ratio of 1.62. Apologies to the
ancient Greeks.)

The golden ratio ¢ is more closely related to the Fibonacci sequence than
is apparent from the proof of Theorem 9.1. Consider the linear system

-0 1- fn _ fn+1
_11J[fn+1] = [fn+2] (14)

which generates the Fibonacci sequence:

[0 1'"[fo] z[fn]
(1 1] | A far1 |
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Let F denote the 2 x 2 matrix in (14). The eigenvalues of F are ¢ and
¢ = -1—325, the two roots of its characteristic polynomial

det(z] - F) = 2z —2-1.

The eigenvectors associated with ¢ and ¢’ are

o] e o]

respectively, of which the former is dominant. Successive applications of a
matrix to a vector with a nonzero component in the direction of a dominant
eigenvector, suitably scaled, will generate a sequence of vectors converging to
that dominant eigenvector. Thus

ol ) = L] - 1)

as n — oo; in other words, the ratio of successive Fibonacci numbers tends to
®.

9.2 Fibonacci Heaps and Dijkstra’s Algorithm

We can use Fibonacci heaps to implement Dijkstra’s single-source shortest-
path algorithm (Algorithm 5.1) in O(m+mnlogn) time. We store the elements
of V — X in a Fibonacci heap. The value of the element v is D(v). The
initialization uses the makeheap operation and takes linear time. We use the
decrement operation to implement the statement

D(v) := min(D(v), D(u) + £(u,v)) .

This requires constant time for each edge, or O(m) time in all. We use the
deletemin operation to remove a vertex from the set of unreached vertices.
This takes O(logn) time for each deletion, or O(nlogn) time in all.

Another application of Fibonacci heaps is in Prim’s algorithm for minimum
spanning trees. We leave this application as an exercise (Homework 4, Exercise

1).



Lecture 10 Union-Find

The union-find data structure is motivated by Kruskal’s minimum spanning
tree algorithm (Algorithm 2.6), in which we needed two operations on disjoint
sets of vertices:

e determine whether vertices u and v are in the same set;
e form the union of disjoint sets A and B.

The data structure provides two operations from which the above two
operations can be implemented:

e find(v), which returns a canonical element of the set containing v. We
ask if v and v are in the same set by asking if find(u) = find(v).

e union(u,v), which merges the sets containing the canonical elements u
and v.

To implement these operations efficiently, we represent each set as a tree
with data elements at the vertices. Each element u has a pointer parent (u)
to its parent in the tree. The root serves as the canonical element of the set.

To effect a union(u,v), we combine the two trees with roots u and v by
making v a child of v or vice-versa. To do a find(u), we start at u and follow
parent pointers, traversing the path up to the root of the tree containing wu,
which gives the canonical element.

To improve performance, we will use two heuristics:
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e When merging two trees in a union, always make the root of the
smaller tree a child of the root of the larger. We maintain with each
vertex u the size of the subtree rooted at u, and update whenever we
do a union.

e After finding the root v of the tree containing v in a find(u), we
traverse the path from u to v one more time and change the parent
pointers of all vertices along the path to point directly to v. This
process is called path compression. It will pay off in subsequent find
operations, since we will be traversing shorter paths.

Let us start with some basic observations about these heuristics. Let o
be a sequence of m union and find operations starting with n singleton sets.
Consider the execution of ¢ both with and without path compression. In either
case we combine two smaller sets to form a larger in each union operation.
Observe that the collection of sets at time ¢ is the same with or without path
compression, and the trees have the same roots, although the trees will in
general be shorter and bushier with path compression. Observe also that u
becomes a descendant of v at time ¢ with path compression if and only if u
becomes a descendant of v at time ¢ without path compression. However,
without path compression, once © becomes a descendant of v, it remains a
descendant of v forever, but with path compression, it might later become a
non-descendant of v.

10.1 Ackermann’s Function

The two heuristics will allow a sequence of union and find operations to be
performed in O((m + n)a(n)) time, where a(n) is the inverse of Ackermann’s
function. Ackermann’s function is a famous function that is known for its
extremely rapid growth. Its inverse a(n) grows extremely slowly. The texts
[3, 100] give inequivalent definitions of Ackermann’s function, and in fact
there does not seem to be any general agreement on the definition of “the”
Ackermann’s function; but all these functions grow at roughly the same rate.
Here is yet another definition that grows at roughly the same rate:

Ao(z) = z+1
Appi(z) = Ax(z)

where A% is the i-fold composition of Ay with itself:

A;c = AkO---OAk

K3

or more accurately,

A} = the identity function
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A = Ao AL

In other words, to compute A1(z), start with = and apply Ay z times. It is
not hard to show by induction that Aj is monotone in the sense that

r<y — A(z) < A(y)

and that for all z, z < Ag(z).
As k grows, these functions get extremely huge extremely fast. For z = 0
or 1, the numbers Ay(z) are small. For z > 2,

Ai(z) Aj(z) = 2z
Ay(z) Af(z) z2° > 2°

2

2 = 21z
——

A3(z) = Aj(z)

A = 4@ 2 2101-1012)) = 2112

%

For z = 2, the growth of A(2) as a function of k is beyond comprehension.
Already for k = 4, the value of A4(2) is larger than the number of atomic
particles in the known universe or the number of nanoseconds since the Big
Bang.

Ao(2) 3

A(2) = 4

Ay(2) = 8

A3(2) 2 = 2048

Ay2) > 212048 = 27
2048

We define a unary function that majorizes all the Ay (i.e., grows asymp-
totically faster than all of them):

A(k) = Ax(2)

and call it Ackermann’s function. This function grows asymptotically faster
than any primitive recursive function, since it can be shown that all primitive
recursive functions are bounded almost everywhere by one of the functions Ay.
The primitive recursive functions are those computed by a simple PASCAL-like
programming language over the natural numbers with for loops but no while
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loops. The level k corresponds roughly to the depth of nesting of the for loops
[79].

The inverse of Ackermann’s function is
a(n) = the least k such that A(k) >n

which for all practical purposes is 4. We will show next time that with our
heuristics, any sequence of m union and find operations take at most O((m+
n)a(n)) time, which is not quite linear but might as well be for all practical
purposes. This result is due to Tarjan (see [100]). A corresponding lower
bound for pointer machines with no random access has also been established
(99, 87].



Lecture 11 Analysis of Union-Find

Recall from last time the heuristics:

e In a union, always merge the smaller tree into the larger.

e In a find, use path compression.

We made several elementary observations about these heuristics:
o the contents of the trees are the same with or without path compression;
e the roots of the trees are the same with or without path compression;

e a vertex u becomes a descendant of v at time ¢ with path compression if
and only if it does so without path compression. With path compression,
however, u may at some later point become a non-descendant of v.

Recall also the definitions of the functions A; and a:

Ap(z) = z+1
Appa(z) = Ai(z)
a(n) = least k such that Ax(2) > n (15)

and that a(n) < 4 for all practical values of n.

52



LECTURE 11 ANALYSIS OF UNION-FIND 53

11.1 Rank of a Node

As in the last lecture, let o be a sequence of m union and find instructions
starting with n singleton sets. Let Ti(u) denote the subtree rooted at u at
time ¢t in the execution of o without path compression, and define the rank of
u to be

rank (u) = 2+ height (T},(u)) , (16)

where height (T') is the height of T or length of the longest path in T'. In other
words, we execute o without path compression, then find the longest path
in the resulting tree below u. The rank of u is defined to be two more than
the length of this path. (Beware that our rank is two more than the rank as
defined in [3, 100]. This is for technical reasons; the 2’s in (15) and (16) are
related.)

As long as u has no parent, the height of T;(u) can still increase, since
other trees can be merged into it; but once u becomes a child of another
vertex, then the tree rooted at u becomes fixed, since no trees will ever again
be merged into it. Also, without path compression, the height of a tree can
never decrease. It follows that if u ever becomes a descendant of v (with or
without path compression), say at time ¢, then for all s > ¢ the height of T;(u)
is less than the height of T(v), therefore

rank (u) < rank (v) . (17

The following lemma captures the intuition that if we always merge smaller
trees into larger, the trees will be relatively balanced.

Lemma 11.1
L) > e @) (18)

Proof. The proof is by induction on %, using the fact that we always
merge smaller trees into larger. For the basis, we have Ty(u) = {u}, thus
height (Tp(u)) = 0 and |Tp(u)| = 1, so (18) holds at time 0. If (18) holds
at time ¢ and the height of the tree does not increase in the next step, i.e.
if height (T;41(u)) = height (T;(u)), then (18) still holds at time t + 1, since
|Tt+1(uw)| > |Ti(u)|. Finally, if height (T;y1(u)) > height (T3(u)), then the
instruction executed at time ¢ must be a union instruction that merges a tree
Ti(v) into Ti(u), making v a child of u in Ti41(u). Then

height (T3(v)) = height (T3+1(v)) = height (Ty41(u)) — 1.
By the induction hypothesis,

|Tt(v)| > 2height(Tt(v))_
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Since we always merge smaller trees into larger,
ITi(w)| > |T:(v)]-
Therefore

ITea(uw)]l = |T(uw)| + T2 (v)|

2height (Tt (v)) + 2height (Tt (v))
Qheight (Tt (v))+1

oheight (Tr41(u))

v

O

Lemma 11.2 The mazimum rank after ezecuting o is at most |logn| + 2.

Proof. By Lemma 11.1,
N> [Tw(u)| > 2heieht@n@) > grank@-2
SO
|logn| > rank (u)—2.

O

Lemma 11.3

[{u|rank (w) =1} < 55

Proof. If rank (u) = rank (v), then by (17) Tp,(u) and T,,(v) are disjoint.
Thus

n>| U Tl

rank (u)=r
= ) |Ta@)
rank (u)=r
> Z or—2 by Lemma 11.1
rank (u)=r

= |{u|rank (u) =7}|-2"72%.
O

Now consider the execution of o with path compression. We will focus
on the distance between u and parent (u) as measured by the difference in
their ranks, and how this distance increases due to path compression. Recall
that rank (u) is fixed and independent of time; however, rank (parent (u)) can
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change with time because the parent of v can change due to path compression.
By (17), this value can only increase.
Specifically, we consider the following conditions, one for each k:

rank (parent (u)) > Ag(rank (u)) . (19)
Define
6(u) = the greatest k for which (19) holds.

The value of §(u) is time-dependent and can increase with time due to path
compression. Note that §(u) exists if u has a parent, since by (17),

rank (parent (u)) > rank (u)+1 = Ap(rank (u))

at the very least.
For n > 5, the maximum value §(u) can take on is a(n) — 1, since if

6(u) =k,

logn| +2

rank (parent (u)) by Lemma 11.2
Ag(rank (u))

Ak(2) )

IV IV IV V

therefore

aln) > k.

11.2 Analysis

Each union operation requires constant time, thus the time for all union
instructions is O(m).

Each instruction find(u) takes time proportional to the length of the path
from u to v, where v is the root of the tree containing u. The path is traversed
twice, once to find v and then once again to change all the parent pointers
along the path to point to v. This amounts to constant time (say one time
unit) per vertex along the path. We charge the time unit associated such a
vertex x as follows:

e If z has an ancestor y on the path such that 6(y) = 6(z), then charge
z’s time unit to z itself.

e If z has no such ancestor, then charge z’s time unit to the find instruc-
tion.
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Let us now tally separately the total number of time units apportioned to
the vertices and to the find instructions and show that in each case the total
is O((m + n)a(n)).

There are at most a(n) time units charged to each find instruction, at
most one for each of the a(n) possible values of §, since for each such value k
only the last vertex = on the path with §(z) = k gets its time unit charged to
the find instruction. Since there are at most m find instructions in all, the
total time charged to find instructions is O(ma(n)).

Let us now count all the charges to a particular vertex x over the course
of the entire computation. For such a charge occurring at time ¢, z must have
an ancestor y such that §(y) = 6(z) = k for some k. Then at time ¢,

rank (parent (z)) > Ag(rank (z))
rank (parent (y)) > Ag(rank (y)) .

Suppose that in fact
rank (parent (z)) > Aj(rank (z)), i>1.
Let v be the last vertex on the path. Then at time ¢,

rank (v)

v

rank (parent (y))
Ag(rank (y))

Ay (rank (parent (z)))
Ay( A} (rank (z)))
A5 (rank (2)

IV IV IV IV

and since v is the new parent of z at time ¢ + 1, we have at time ¢ + 1 that
rank (parent (z)) > Ai"(rank (z)) .
Thus at most rank (z) such charges can be made against z before
rank (parent (z)) > AP™®(rank (z))
— Ay (rank (2))
and at that point
6(z) > k+1.

Thus after at most rank (z) such charges against z, §(z) increases by at least
one. Since §(z) can increase only a(n) — 1 times, there can be at most
rank (z)a(n) such charges against z in all. By Lemma 11.3, there are at
most

n T
or—2 = na(n) F

ra(n)
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charges against vertices of rank r. Summing over all values of r, we obtain
the following bound on all charges to all vertices:

r
-2

Tz:% na(n) o

I
3
2
3
N—r

N
T
[

‘We have shown

Theorem 11.4 A sequence of m union and find operations starting with n
singleton sets takes time at most O((m + n)a(n)).



Lecture 12 Splay Trees

A splay tree is a data structure invented by Sleator and Tarjan [94, 100] for
maintaining a set of elements drawn from a totally ordered set and allowing
membership testing, insertions, and deletions (among other operations) at an
amortized cost of O(logn) per operation. The most interesting aspect of the
structure is that, unlike balanced tree schemes such as 2-3 trees or AVL trees,
it is not necessary to rebalance the tree explicitly after every operation—it
happens automatically.

Splay trees are binary trees, but they need not be balanced. The height of
a splay tree of n elements can be greater than logn; indeed, it can be as great
as n—1. Thus individual operations can take as much as linear time. However,
as operations are performed on the tree, it tends to rebalance itself, and in
the long run the amortized complexity works out to O(logn) per operation.

Data is represented at all nodes of a splay tree. The data values are
distinct and drawn from a totally ordered set. The data items will always be
maintained in inorder; that is, for any node z, the elements occupying the left
subtree of z are all less than z, and those occupying the right subtree of = are
all greater than z.

Splay trees support the following operations:

e member(i, S): determine whether element 7 is in splay tree S
e insert(:,S): insert ¢ into S if it is not already there

o delete(s, S): delete i from S if it is there
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e join(S,S’): join S and S’ into a single splay tree, assuming that z < y
forallz € Sandy € 5’

e split(s, S): split the splay tree S into two new splay trees S’ and S”
suchthat z <i<yforallz € S and y € §".

All these operations are implemented in terms of a single basic operation,
called a splay:

e splay(i, S): reorganize the splay tree S so that element i is at the root
if 4 € S, and otherwise the new root is either

max{k € S|k <i} or min{keS|k>i}.

All of the operations mentioned above can be performed with a constant
number of splays in addition to a constant number of other low-level oper-
ations such as pointer manipulations and comparisons. For example, to do
join(S, S"), first call splay(+o00, S) to reorganize S so that its largest element
is at the root and all other elements are contained in the left subtree of the
root; then make S’ the right subtree. To do delete(i, S), call splay(i, S) to
bring i to the root if it is there; then remove ¢ and call join to merge the left
and right subtrees.

12.1 Implementation of Splay

The splay operation can be implemented in terms of the even more elementary
rotate operation. Given a binary tree S and a node z with parent y, the
operation rotate(z) moves z up and y down and changes a few pointers,
according to the following picture:

x

A very simple but important observation to make at this point is that the
rotate operation preserves inorder numbering.

To implement splay(z, S), we might rotate = up until it becomes the root.
However, in order to achieve the desired amortized complexity bounds, we
need to be a little more careful. Depending on the relationship of = to its
parent and grandparent, we distinguish three different cases:
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(i) if = has a parent but no grandparent, we just rotate(z);

(ii) if z has a parent y and a grandparent, and if z and y are either both
left children or both right children, we first rotate(y), then rotate(z);

(iii) if £ has a parent y and a grandparent, and if one of z, y is a left child
and the other is a right child, we first rotate(z) and then rotate(z)
again.

Example 12.1 Apply splay(1,.S) to the following tree S:
10

10
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Applying splay to node 2 of the resulting tree yields:

Note that the tree appears to become more balanced with each splay. a

12.2 Analysis

We will now show that the time required to perform m operations on a set
of n elements is O(mlogn). To do this, we use a credit accounting scheme
similar to the one used in our analysis of Fibonacci heaps. Each node z of the
splay tree has a savings account containing a certain number of credits. When
z is created, some number of credits are charged to the insert operation that
created x, and these credits are deposited to z’s account. These credits can
be used later to pay for restructuring operations.

For = a node of a splay tree, let S(z) denote the subtree rooted at z. Let
|S| denote the number of nodes in tree S. Define

u(S) = [(og]| S1)]
u() = p(S(z)) .

We maintain the following credit invariant:

Node z always has at least p(z) credits on deposit.

Lemma 12.2 Fach operation splay(z, S) requires no more than

3(u(S) — (=) +1
credits to perform the operation and maintain the credit invariant.

Proof. Let y be the parent of x and z be the parent of y, if it exists. Let p
and y' be the values of u before and after the splay operation, respectively.
We consider three cases:
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(i)

(i)

Node z does not exist. This is the last rotation in the splay; we perform
a single rotate(z). We are willing to pay no more than

3(W(z) — p(z)) +1
credits for this rotation. Note that

w(z) = py)
Ky) < W)

In order to maintain the invariant, we need to spend

I

' (y) — w(z)
< W(z) - p(=)
<

3(W(z) — u(z))

credits. We are left with at least one credit left over to pay for the
constant number of low-level operations such as pointer manipulations
and comparisons.

Node z is the left child of y and y is the left child of z (or both z and
y are right children). In this case we perform a rotate(y) followed by
a rotate(z). We will show that it costs no more than 3(y'(z) — u(z))
credits to perform these two rotate operations and maintain the credit
invariant. Thus if a sequence of these are done to move z up the tree as
in the example above, we will get a telescoping sum, so that the total
amount spent will be no more than 3(u(S) — u(z)) + 1 (the +1 comes
from the last rotation as discussed in case (i)).

In order to maintain the invariant, we need

#(x) + g (y) + 1 (2) — p(x) = ply) — p(z) (20)

extra credits. Since y'(z) = p(z), we have

() + 1 (y) — wlz) — ply)

w () + ¢ (y) + 1 (2) — p(z) — p(y) — p(2)
= p(y) + 4 (2) — u(@) — puy)

= (W(y) — (@) + (W'(2) — u(y)

< (W(2) = p(@) + (1(z) — @)

= 2(4(z) — u(2)) -

We can afford to pay for this and have p'(z) — p(z) credits left over to
pay for the constant number of low-level operations needed to perform
these two rotations. Unfortunately, it may turn out that p'(z) = p(z),
in which case we have nothing left over. We show that in this case the
quantity (20) is in fact strictly negative, thus the invariant is maintained
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for free and we can even afford to spend one of our saved credits to pay
for the low-level operations.
All we need to do is to show that the two assumptions

p(z) = )
W)+ p(@y) +1w(z) > px)+ py) + uz)

lead to a contradiction. Since p(z) = p'(z) = p(z) and p is monotone
in the subterm ordering, we have

w(z) = ply) = p(z) ,
therefore
H(z)+p(y) +u(2) > 3u(2)

3y (2)
Wy +u'(z) = 2p(2) .

Because p’ is monotone in the subterm ordering,
< w(x)
W) < W)
It follows that
p(z)=py) = w2,
and since pu(z) = p/(z), we have
wx) = py) = u(z) = p'(x) = W(y) = w'(2) . (21)

Substituting in for the definition of p and u' will quickly show that
this situation is untenable. If a is the size of the subtree rooted at x
before the operation and b is the size of the subtree rooted at z after the
operation, then (21) implies

loga] = |log(a+b+1)] = |logbd] . (22)
Assuming without loss of generality that a < b,

log(a+b+1)] > [log2a]
= 1+ |loga]
> |logal .

This contradicts (22).
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(i) Node z is a left child of y and y is a right child of z, or vice versa. Here
we do rotate(z) followed by rotate(z) again, and we are willing to pay
no more than 3(u'(z) — u(z)) credits for these two rotations. As in the
previous case, we need

W (@) + p'(y) + 1 (2) — p(zx) — py) — u(2)

credits to maintain the invariant, and this quantity is at most 2(y'(z) —
w(z)). This leaves at least p/(z) — p(z) left over to pay for the low-level
operations, which suffices unless p'(z) = p(z). As in case (ii), we prove
by contradiction that in this case

p(z)+p'(y) + 1 (z) < p@)+ply) +u2),

thus the credit invariant is maintained for free and we have at least one
extra credit to spend on the low-level operations.

O

Theorem 12.3 A sequence of m operations involving n inserts takes time
O(mlogn).

Proof. First we note that the maximum value of u(z) is |logn]. It follows
from Lemma 12.2 that at most 3|logn| + 1 credits are needed for each splay
operation. Since each of the operations member, insert, delete, split, and
join can be performed using a constant number of splays and a constant
number of low-level operations, each of these operations costs O(logn). In-
serting a new item requires at most O(logn) credits to be deposited to its
account for future use; we charge these credits to the insert operation. Hence
each operation requires at most O(logn) credits. It follows that the total time
required for a sequence of m such operations is O(mlogn). a



Lecture 13 Random Search Trees

In this lecture we will describe a very simple probabilistic data structure that
allows inserts, deletes, and membership tests (among other operations) in
expected logarithmic time.

These results were first obtained by Pugh in 1988 (see [88]), who called
his probabilistic data structure skip lists. We will follow the presentation of
Aragon and Seidel [7], whose data structure is somewhat different and more
closely related to the self-adjusting trees presented in the last lecture, and
whose probabilistic analysis is particularly elegant.

13.1 Treaps

Consider a binary tree, not necessarily balanced, with nodes drawn from a
totally ordered set, ordered in inorder; that is, if 4 is in the left subtree of k
and j is in the right subtree of k, then i < k < j. Recall that the rotate
operation discussed in the previous lecture preserves this order.

Now suppose that each element k has a unique priority p(k) drawn from
some other totally ordered set, and that the elements are ordered in heap
order according to priority; that is, an element of maximum priority in any
subtree is found at the root of that subtree.

A tree in which the data values k are ordered in inorder and the priorities
p(k) are ordered in heap order is called a treap (for tree-heap, one supposes).

It may not be obvious at first that treaps always exist for every priority
assignment. They do! Moreover, if the priorities are distinct, then the treap
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is unique.

Lemma 13.1 Let X and Y be totally ordered sets, and let p be a function
assigning a distinct priority in 'Y to each element of X. Then there ezists a
unique treap with nodes X and priorities p.

Proof. Let k be the unique element of X of maximum priority; this must
be the root. Partition the remaining elements into two sets

fieX|i<k}, {ieX|i>k}.

Inductively build the unique treaps out of these two sets and make them the
left and right subtrees of k, respectively. a

13.2 Random Treaps

A random treap is a treap in which the priorities have been assigned randomly.
This is best done in practice by calling a random number generator each time
a new element m is presented for insertion into the treap to assign a random
priority to m. Under some highly idealized but reasonable assumptions about
the random number generator®, two elements receive the same priority with
probability zero, and if all elements in the treap are sorted by priority, then
every permutation is equally likely.

When a new element m is presented for insertion or to test membership, we
start at the root and work our way down some path in the treap, comparing
m to elements along the path to see which way to go to find m’s appropriate
inorder position. If we see m on the path on the way down, we can answer
the membership query affirmatively. If we make it all the way down without
seeing m, we can answer the membership query negatively.

If m is to be inserted, we attach m as a new leaf in its appropriate inorder
position. At that point we call the random number generator to assign a
random priority p(m), which by Lemma 13.1 specifies a unique position in the
treap. We then rotate m upward as long as its priority is greater than that
of its parent, or until m becomes the root. At that point the tree is in heap
order with respect to the priorities and in inorder with respect to the data
values.

To delete m, we first find m by searching down from the root as described
above, then rotate m down until it is a leaf, taking care to choose the direction

3A call to the random number generator gives a uniformly distributed random real num-
ber in the interval [0,1), and successive calls are statistically independent; i.e. if z1,...,T,
are the results of n successive calls, then

Pr( \ mied) = [] Pr(mied).

1<i<n 1<i<n
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of rotation so as to maintain heap order. For example, if the children of m are
j and k and p(j) > p(k), then we rotate m down in the direction of j, since
the rotate operation will make j an ancestor of k. When m becomes a leaf,
we prune it off.

The beauty of this approach is that the position of any element in the
treap is determined once and for all at the time it is inserted, and it stays put
at that level until it is deleted; there is not a lot of restructuring going on as
with splay trees. Moreover, as we will show below, the expected number of
rotations for an insertion or deletion is at most two.

13.3 Analysis

We now show that, averaged over all random priority assignments, the ex-
pected time for any insert, membership test, or delete is O(logn).

We will do the analysis for deletes only; it is not hard to see that the
time bound for membership tests and inserts is proportionally no worse than
for deletes. Suppose that at the moment, the treap contains n data items
(without loss of generality, say {1,2,...,n}), and we wish to delete m. The
priorities have been chosen randomly, so that if the set {1,2,...,n} is sorted in
decreasing order by priority to obtain a permutation o of {1,2,...,n}, every
o is equally likely.

In order to locate m in the treap, we follow the path from the root down
to m. The amount of time to do this is proportional to the length of the path.
Let us calculate the expected length of this path, averaged over all possible
random permutations o.

Let

m< = {1,2,...,m}
my = {mm+1,...,n}.
Let A be the set of ancestors of m, including m itself. The definitions of m<
and m> do not depend on o, but the definition of A does. Let X be the
random variable
X = length of the path from the root down to m
The 2 is subtracted because m is counted in both m< and m;.

We are interested in £X, the expected value of X; by linearity of expec-
tation, we have

EX = Em<NA|+Em>NA|—-2.

By symmetry, it will suffice to calculate £|m< N A|.
Note that if the elements of m< are sorted in descending order by priority,
then
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e every permutation of m< is equally likely;

e an element of m< is in A if and only if it is larger than all previous
elements of m< in sorted order.

In other words, permute m< randomly, then scan the resulting list from left
to right, checking off those elements k that are larger than anything to the
left of k; the quantity £|m< N A| is the expected number of checks.

Example 13.2 Let n = 10 and m = 8. Suppose that when priorities are
assigned randomly to {1,2,...,10} and these elements are sorted in decreasing
order by priority, we get the permutation

o = (4,5,9,2,1,7,3,10,8,6) .

This results in the following treap:

Then m< = {1,2,3,4,5,6,7,8}. If we restrict the random permutation ¢ to
this set, we obtain the permutation (4,5,2,1,7,3,8,6). Scanning from left to
right and checking only those elements k that are greater than all elements to
the left of k, we get the sequence (4,5,7,8). This is exactly the sequence of
elements in m< appearing on the path from the root down to m in the treap.

A symmetric argument using my gives the sequence (9,8), which is the
sequence of elements in m> appearing on the path from the root down to m.
The length of the path is then the sum of the two lengths of these sequences
less 2. m]

We are thus left with the problem of determining the expected value of the
random variable H,,, the number of checks obtained when scanning a random
permutation of {1,2,...,m} from left to right and checking every element
that is greater than anything to its left.

We claim that this number is exactly

(23)

| =

EH, = Y.
k=1

We will obtain this by solving a simple recurrence, using the linearity of ex-
pectation.
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Suppose we permute {1,...,m} randomly to get the random permutation
o. Deleting 1 from o, we get a random permutation o’ of {2,3,...,m}. Note
that an element other than 1 is checked when scanning o if and only if it is
checked when scanning ¢’; thus the presence or absence of 1 does not affect
whether 2 is checked (however, the presence or absence of 2 might very well
affect whether 1 is checked). Thus the expected number of checks on elements
other than 1 is the same in ¢ as in ¢’, or EH,,,_;. The element 1 is checked if
and only if it occurs first in ¢, and this occurs with probability # Thus the
expected number of checks on the element 1, averaged over all permutations,
is L. By linearity of expectation,

EH, = EHp o+~ .
m

The unique solution to this recurrence with EH; = 1 is (23).

The quantity (23) is O(logm). This can be verified by approximating the
sum above and below with definite integrals involving the functions ; and 17,
and recalling from calculus that

/md_w = Inm = In2-log,m.
1z

13.4 Expected time for deletion

A similar analysis allows us to calculate the expected number of rotations
necessary to delete m from its position in the treap. The number of rotations
needed is the sum of the length of the rightmost path in the left subtree of m
and the length of the leftmost path in the right subtree of m. To see this, try
rotating m down; if you rotate to the left (right), the length of the rightmost
(leftmost) path in the left (right) subtree decreases by one and the length of
the leftmost (rightmost) path in the right (left) subtree stays the same.

Let us calculate the expected value of G,,, the length of the rightmost path
of the left subtree of m. By symmetry, the expected length of the leftmost
path of the right subtree of m is £G,,—_u41, and by the linearity of expectation,
the expected number of rotations to remove m is G, + EGp_pmy1. We will
show below that this number is less than 2!

An analysis similar to the analysis for £ H,,, above reveals that £G,, is the
expected number of checks obtained when scanning a random permutation of
the set {1,2,...,m} from left to right, where we check an element & provided
that

e k occurs strictly to the right of m;

e k is greater than all elements of {1,2,...,m — 1} occurring to the left
of k and either to the left or to the right of m.
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This is the same as the expected number of checks obtained when scanning
a random permutation of the set {1,2,...,m — 1} from left to right, where
we check element k if it is greater than all elements to its left, then place m
randomly in the list and erase those checks occurring to the left of m.

Example 13.3 For m = 3, we have the following six situations, all occurring
with equal probability:

VARV v
31 2 3 21
1 3 % 2 31
1 2 3 21 3
The expected number of checks is § -2+ 3 -1=2. O

It is easy to see that the expected value of G,, is at most that of H,,_q,
which we would get if the checks to the left of m were not erased; thus £G,,, <
EH,,_1 = O(log m), and this suffices for our complexity bound.

In fact, it turns out that £G,, < 1. As above, the expected number
of checks on elements other than 1 is £G,,_;, and the probability that 1 is
checked is ﬁ, since 1 is checked if and only if m occurs leftmost, followed
immediately by 1. Again, by linearity of expectation, £G,, is the expected
number of checks on elements other than 1 plus the expected number of checks
on 1:

1
EG,, = EGp_1+ m

and £G; = 0. The solution to this recurrence is

£G,, = m_—l
m



Lecture 14 Planar and Plane Graphs

Planar graphs have many important applications in computer science, for
example in VLSI layout. Many problems that are hard or even NP-complete
for arbitrary graphs are much easier for planar graphs. In the next lecture we
will prove a nice result due to Lipton and Tarjan in 1977 [73] which opens up
planar graphs to divide-and-conquer.

In this lecture, we will define planar and plane graphs and develop some
of their basic properties. Our treatment will have a more combinatorial flavor
than the classical treatment [48, 14]. Edmonds, the same one who showed the
greedy algorithm only works for matroids, was the first to give a combinatorial
definition of graph embeddings [31].

For the purposes of this lecture and the next, we will allow graphs to have
multiple edges and self-loops, but we will prohibit isolated vertices (vertices
with no adjacent edges). This assumption is for technical reasons that will
become clear.

14.1 Planar and Plane Graphs—Traditional Version

According to the traditional definition, a graph is planar if it can be embedded
on the plane or sphere in such a way that no two edges cross. A plane graph
G is a planar graph together with such an embedding.

The complete graph on five vertices K5 and the complete bipartite graph
on two sets of three vertices K33 are not planar:
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PR =

K3 Ks

An amazing result of Kuratowski states that any nonplanar graph must con-
tain a subgraph that is topologically equivalent to one of these two graphs.

Theorem 14.1 (Kuratowski) An undirected graph is nonplanar if and only
if it contains a subgraph homeomorphic to Ks or K.

Here “homeomorphic to” means the edges can be paths. For more on Kura-
towski’s Theorem, see [48, 14].

14.2 The Plane Dual-—Traditional Version

The plane dual of a plane graph G is a graph G* whose vertices are the faces
of G and whose edges are in one-to-one correspondence with the edges of G.
Traditionally, a face is defined to be a maximal connected region of R? — G,
the plane with all vertices and edges of the embedded G removed. The plane
dual of G is obtained by placing a vertex in each face and connecting two faces
adjacent to a common edge e of G with an edge of G* that crosses e once and
crosses no other edges.

Example 14.2 The following picture shows Ky and its plane dual K, which
happens to be isomorphic to Kj:

Note that any G* is connected, and if G is connected, then G** is isomorphic
to G. (]

14.3 Plane Graphs—Combinatorial Version

An embedding of a planar graph G on the sphere determines an orientation
function 6 giving a counterclockwise ordering of edges about each vertex. The
map 0 determines the embedding uniquely (up to rearrangement of the con-
nected components). While we will continue to use the traditional definitions
of plane graph and plane dual as intuitive aids, in computational practice it
is more convenient to forget the actual embedding and work only with 6.
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We will therefore start afresh and give a purely combinatorial definition
of plane graphs and duals in terms of . This is nice because we can deal
with plane graphs purely combinatorially and escape the savage world of real
analysis and topology. In addition, this approach works out more nicely when
G is not connected. Keep in mind that the two approaches coincide when G
is connected, but diverge when G is not.

In our combinatorial formalism, an undirected graph is a tuple

G = (E, 0, )

where E is a set of even cardinality, ~ is an involution on E (permutation
of order 2) with no fixpoints, and 6 is a permutation on E. The elements of
E are thought of as directed edges; each undirected edge is represented as a
pair e,& € FE of directed edges, one in each direction. The map = reverses
direction.

The map 6 is supposed to give an orientation of the edges around each
vertex. But, you may well ask, where are the vertices? They are defined to be
the cycles of 6. A cycle of the permutation 0 is a minimal nonempty subset
of E closed under 6. It is not to be confused with a cycle of the graph G.
An edge e is considered directed out of vertex u if w is the unique cycle of
0 containing e. Correspondingly, e is considered directed into vertex v if v
is the unique cycle of 6 containing € Thus 6 cyclically permutes the edges
out of any vertex. From this definition it becomes clear why isolated vertices
were disallowed: you cannot have empty cycles. The tail and head functions
t: E— Vand h: E — V giving the source and sink, respectively, of each
edge are defined by

t(e) = {the unique cycle of 6 containing e}
h(e)

{the unique cycle of # containing €}
= t(e).

With these definitions the tuple

(V, E, h, t, 0, )
gives a more conventional representation of the graph G.
Definition 14.3 Define the function §* : E — E by:

0*(e) = 6(e).

A =|Z‘ace of G is a cycle of the permutation 8*. The set of faces of G is denoted
V*. m|

Note that this definition makes sense even for nonplanar graphs.

According to Definition 14.3, to compute §*(e), we first reverse the direc-
tion of e to get €, then rotate about the tail of €. Intuitively, for plane graphs,
the operation #* moves an edge clockwise around the face to its right:
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e 6*(e)

Definition 14.4 A connected component of G is an orbit of E under the
permutation group generated by 6 and ~ . That is, it is a minimal nonempty
subset of E closed under 6 and ~ . m]

Definition 14.5 Let m = %IEI, the number of undirected edges of G; n = |V|;
n* = |V*|; and c the number of connected components of G. The character-
istic of G is the quantity

x(G) = 2c+m—n—-n*.
The graph G is said to be plane if x(G) = 0. o

Theorem 14.6 A graph G is plane according to Definition 14.5 iff it is plane
according to the traditional definition (i.e., if @ corresponds to the counter-
clockwise ordering induced by an embedding of G in the plane with no edges
crossing).

Proof. Miscellaneous Exercise 11. a

Definition 14.5 is similar to the traditional definition of the Euler charac-
teristic

c+1l+m—n—n*.

Euler’s Theorem states that plane graphs have Euler characteristic 0. Our
Definition 14.5 and Theorem 14.6 agree with the traditional version when
¢ = 1, i.e. when G is connected. The difference comes from the definition
of the dual—in our version, disconnected graphs have more faces than in the
traditional version.

14.4 The Plane Dual—Combinatorial Version
Definition 14.7 Let G be the graph

G = (E, 0, ).
The dual of G is the graph

G* = (E, 6% 7).
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Note that this definition makes sense for graphs that are not plane.
The following theorem is immediate.

Theorem 14.8

(i) If G is plane, then so is G*.
(ii) G** and G are isomorphic (in fact they are equal).

This theorem is where our combinatorial definition wins out: (ii) is false
for disconnected plane graphs under the traditional definition.

For computational purposes, a convenient representation of the undirected
graph

G = (V,E,h t, 0, 7)

consists of a set of list elements, one for each vertex and one for each directed
edge (element of E). The vertices are arranged in a linked list. The vertex
v points to a circular list of edges e such that t(e) = v arranged in the order
6. The edge e points to t(e) and €. This representation can be produced in
linear time from a conventional adjacency list representation (Miscellaneous
Homework 8).

14.5 Triangulation

Definition 14.9 A graph G is triangulated if every face of G is a triangle,
i.e. has degree exactly three. A triangulation of G is a triangulated graph of
which G is a subgraph. O

Theorem 14.10 Let G be a graph such that all faces have degree at least three.
A triangulation G of G can be produced in linear time such that x(G) = x(G);
in particular, if G is plane then so is its triangulation. If G is plane, then

m < 3n—6,
with equality holding when G is triangulated.

Proof. We triangulate G as follows. First find all connected components
and connect them in a treelike fashion by adding edges between components.
Two components can be connected by adding an edge between any vertex u in
one component and any vertex v in the other, and the edge can go anywhere
in the ordered edge lists of u and v without changing the characteristic or
the property that each face is of degree at least three. This takes linear time
using DFS, and at most ¢ — 1 = O(m) new edges are added. Then traverse
each face, adding chords as necessary to break up faces of degree greater than
three into triangles (don’t worry about multiple edges). At most O(m) time
is needed since each edge is traversed at most once in each direction.



76 LECTURE 14 PLANAR AND PLANE GRAPHS

Now it will suffice to prove that
m = 3n—=6

for triangulated plane graphs. Since the graph is connected, ¢ = 1. Since every
edge is adjacent to exactly two faces and every face is adjacent to exactly three
edges, the number of adjacent face-edge pairs is 3n* = 2m. The result now
follows from Euler’s Theorem. a



Lecture 15 The Planar Separator Theorem

The Planar Separator Theorem of Lipton and Tarjan [73] says that in any
undirected planar graph G there exists a small separator S C V whose re-
moval leaves two disjoint sets of vertices A,B C V with no edge between
them; moreover, each of A and B is at most a constant fraction of the size of
V.

This theorem opens up planar graphs to divide-and-conquer. One can
often solve a problem on a planar graph G recursively by splitting the graph
into two subgraphs of size at most % the size of G, recursively solving the
problem on these two subgraphs, and then combining the two solutions into a
solution for G. Because the sizes of the subproblems diminish geometrically,

the depth of the recursion will be O(logn).

Theorem 15.1 (Planar Separator Theorem) Let G be an undirected pla-
nar graph. There exists a partition of V' into disjoint sets A, B and S such
that:

1. |Al|B|< %

2. 15 < 4,/|V]

3. (AxB)NE =0 (S is a separator).

Moreover, such a partition can be found in linear time.

7
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Proof. Assume the graph is connected. (If not, perform the algorithm on
the connected components and recombine the partitions into a solution for the
whole graph; details omitted.)

First find a plane embedding in linear time using the algorithm of Hopcroft
and Tarjan [52].

Choose an arbitrary vertex s and perform a breadth-first search (BFS)
starting from s. Assign a level to each vertex, so that s is at level 0, any
vertices adjacent to s are at level 1, any vertices adjacent to them that have
not already been assigned a level are at level 2, and so forth. For technical
reasons, we include an empty level £+ 1, where £ is the level of the last vertex
encountered. Let L(t) denote the set of vertices at level ¢.

A property of BFS traversal is that no edge ever crosses two or more
levels—all edges must connect vertices in the same or consecutive levels. This
means that any L(t), 0 < t < £, is a separator.

Let t; be the middle level, i.e. the one such that L(¢;) contains vertex n/2
in the breadth-first numbering. The set L(t;) has some of the properties of
the separator we are looking for:

IH L) < n/2
IH L) < n/2.

So if |L(t1)| < 44/n, we are done. The trouble is that L(t;) may be too large.
However, there exist levels with y/n or fewer vertices on either side of t; and
not too far away:

Lemma 15.2 There ezist levels to < t; and ta > t; such that |L(t)| < +/n,
|L(t2)| < V/n, and ta —to < /.

Proof. Let ty be the largest number such that ¢y < ¢; and |L(t)| < v/n.
Such a tp exists since |L(0)| = 1. Let ¢, be the smallest number such that
ta > t; and |L(t2)| < v/n. Such a t; exists since |L(£ + 1)| = 0. Every level
strictly between ty and t, contains more than /n elements, so there must be
fewer than /n of them, otherwise there would be more than n vertices. O

Now let
C = U L(t)
t<to
D = | L@
to<t<ta

UL .

ta<t

Il
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If |D| < 2n then we are done: take S = L(to) UL(ts), A the largest of C, D, E,
and B the union of the other two.

We should be so lucky. If |D| > 2n, then we at least have | D| in a better
shape, and this will make it easier to cut D up. The sets C and F are small:
|C|, |E| < %. If we can find a 3-2 separator for D with 24/n vertices or fewer,
we will combine this with L(tp) and L(t;) to get a separator S of size at most
4,/n, combine the larger of C and E with the smaller of the two pieces of D
to get A, and combine the smaller of C and E with the larger piece from D
to get B. Both A and B will have no more than %n vertices.

To construct a separator for D of size at most 24/n, we will remove the rest
of the graph, but add back the starting vertex s and connect it to everything
on level ty+ 1. We can do this maintaining the planarity of the graph because
there were non-crossing paths back from each of those vertices to s in the
original graph. Some paths may have joined on the way back to s, but they
can be separated without violating planarity.

The main property of the new graph D that we will exploit is that it has
a spanning tree T of diameter at most 24/n. This is because every vertex is
reachable from s by a path of length at most /n. We can construct 7' as
follows: start with the vertices at the last level; for each such vertex, choose
one edge back to the next-to-last level; repeat for the vertices on the next-to-
last level, and so on all the way back to s. The 3-2 separator for D will turn
out to be a path in 7.

We will need a useful property of plane duals. (Here we revert to the
traditional definition since we need isolated vertices.)

Lemma 15.3 Let G = (V, E) be a connected plane graph with dual G*. For
any E' C E, the subgraph (V, E') of G has a cycle iff the subgraph (V*, E—E')
of G* is disconnected.

Proof. (—) Suppose there is a cycle in (V, E’). Choose any edge e of the
cycle, and let f,g € V* be the endpoints of e in G*. One of f, g is inside the
cycle and the other is outside. Then there is no path from f to g in £ — E’,
since no such path can cross the boundary of the cycle.

(+) Suppose (V*, E — E') is disconnected. Let A, B be a partition of V*
such that no edge in E — E’ connects A and B in G*. Since G* is connected,
there exists at least one edge in E connecting A and B, and all such edges are
in E'. These edges form a cycle in G. O
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Lemma 15.4 Let G = (V,E) be a connected plane graph with dual G* =
(V*,E), and let E' C E. Then (V, E') is a spanning tree in G iff V¥, E—E')
is a spanning tree in G*.

Proof. The subgraph (V, E') forms a spanning tree in G iff it is connected
and has no cycles. By Lemma 15.3, this occurs iff the subgraph (V*, E — E')
of G* is connected and has no cycles, i.e. is a spanning tree. ]

Now back to the Planar Separator Theorem. We have a plane graph D
with spanning tree T' = (V, Er) of diameter at most 2/n. We can assume
without loss of generality that D is triangulated; if not, we can triangulate it
in linear time as described in the last lecture. We then construct the plane
dual D* (Miscellaneous Homework 9). This can also be done in linear time.
Call the edges in E — Er fronds; according to Lemma 15.4, the fronds form a
spanning tree 7T in D*. We arbitrarily pick one face of D for the root of T',
say the outside face, and orient all the edges of Tt away from the root.

Let e = (u,v) be a frond. There exists a unique path from u to v in T,
which along with e forms a cycle c(e).

We now perform a DFS on T, calculating the following information for each
frond e inductively from leaves up:

e I(e) = number of vertices strictly inside c(e)

e |c(e)| = number of vertices on c(e)

e a list representation of c(e).

There are four cases to consider, the first the base case in which e is a leaf of
T', and the remaining three cases induction steps:
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Case 2

Case 3 Case 4

Case 1 In this case, we are at a leaf in 7" (this can be detected by counting
adjacencies). Then

o I(e)=0
e |c(e)| = 3 (T is triangulated)

o c(e) = [u,z,v].

Case 2 We have calculated the information for the frond ¢ = (uv/,v), e is
a frond in the same triangle as €/, and ' is on the cycle c(e); this can be
detected by checking that u is not on the list ¢(e’). Then

o I(e)=1I(€)
o c(e)] = [e(e)] +1

o c(e) = [u] - c(€).

Case 3 We have calculated the information for the frond ¢’ = (v/,v), e is a
frond in the same triangle as €/, and «’ is not on the cycle c(e); this can be
detected by checking that u is on the list ¢(e’). Then

o I(e)=1I(e)+1
* le(e)] = |e(e)] — 1

e c(e) is c(e') with u’ cut off the front, i.e. c(e’) = [u] - c(e).
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Case 4 We have calculated the information for the fronds ¢/ = (u,y) and
" = (y,v), and e is a frond in the same triangle as both €/, e". Let p be the
path common to c(e’) and c(e”) and let = be the other endpoint of p besides
Y.
o I(e) =1I(e')+ I(e")+ |p| — 1 (all vertices of p except z are inside c(e))
o lc(e)] = le(€)] + le(e")] = 2|p| +1
o c(e) = - [z]- ¢, where ¢ is c(e') with p removed and ¢” is c(e”) with p

removed.

We can compute |p| and construct a list representation of c(e) by scanning
¢(¢’) and c(e”) starting at y until we encounter the last common vertex, which
is . This does not destroy the linear time complexity, since we do this for
the edges on p only once.

It remains to prove that there exists a frond e such that

i) < 2
n- (1) + @) < 5

Then we can just take c(e) as the separator, the vertices inside c(e) as A, and
the vertices outside c(e) as B.

Take the first frond e encountered on the way out from the leaves of T to
the root such that I(e) +|c(e)| > §. Then the set of vertices outside of c(e) is
of cardinality n — (I(e) + |c(e)|) < %, so it remains to show that I(e) < 2.
The argument depends on the case 1 through 4 above in which e fell:

L I(e)=0< 2.

2. I(e)+|c(e)| = I(e')+|c(e')|+1and I(¢)+|c(e)| < 2, 50 I(e)+]c(e)] < &
(for n > 3).

3. I(e) + |c(e)| = I(€') + |c(€')], so e could not have been the first frond
encountered such that I(e) + |c(e)| > 5.

4. Both I(e') + |c(e')| < % and I(e") + |c(e”)| < §, s0
I(e) + |c(e)]

= 1(e)+1(e") + Ipl = 1+ [e(e)] + le(e")] - 2lp| + 1
= I(e) +1(e") + |c(€)] + |e(e")] — Ip|

< 2n_|l
s 3 p
<
- 3

This completes the proof of the Planar Separator Theorem. O
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Here is the entire algorithm:

1.
2.
3.

© N o o

Algorithm 15.5

Embed G in the plane using Hopcroft/Tarjan.

Do BFS on G, assigning level numbers.

Find ¢y and ¢, such that |L(to)| < v/n, |L(t2)] < /1, and t2 — t <
/n. Divide the graph into C, D, E. If |D| < 2, we are done.
Otherwise, construct the spanning tree T" of D of diameter at most
2\/n.

Triangulate if necessary.

Construct the plane dual D* and spanning tree 7.

Do DFS on T" to compute I, |c|, c.

Find the frond e such that c(e) gives a %—% separator. Let X and

Y be the two sets into which D is separated.

Let A be the union of the larger of X,Y and the smaller of C, E,
let B be the union of the smaller of X,Y and the larger of C, E,
and let the separator be the union of ¢(e), L(to), and L(ts).




Lecture 16 Max Flow

Suppose we are given a tuple G = (V,¢, s,t), where V is a set of vertices,
s,t € V are distinguished vertices called the source and sink respectively, and
cis a function ¢ : V? — R, assigning a nonnegative real capacity to each pair
of vertices. We make G into a directed graph by defining the set of directed
edges

E = {(u,v)]c(u,v) >0}.

Intuitively, we can think of the edges as wires or pipes along which electric
current or fluid can flow; the capacity c(e) represents the carrying capacity of
the wire or pipe, say in amps or gallons per minute. The maz flow problem
is to determine the maximum possible flow that can be pushed from s to ¢,
and to find a routing that achieves this maximum. The following definition is
intended to capture the intuitive idea of a flow.

Definition 16.1 A function f : V2 — R is called a flow if the following three
conditions are satisfied:

(a) skew symmetry: for all u,v € V,

f(u,v) = —f(v,u);

(b) conservation of flow at interior vertices: for all vertices u not in {s, ¢},

Ef(u,v) = 0;

veV

84
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(c) capacity constraints: f < c¢ pointwise; i.e., for all u, v,
flu,v) < c(u,v) .
We say that (u,v) is saturated if f(u,v) = c(u,v). m|

If we think of edges (u,v) for which f(u,v) > 0 as carrying flow out of w,
and edges (u,v) for which f(u,v) < 0 (or equivalently by (a), f(v,u) > 0) as
carrying flow into u, then condition (b) says that the total flow out of any
interior vertex is equal to the total flow into that vertex, or in other words,
the net flow (total flow out minus total flow in) at any interior vertex is 0.

It follows from (a) that f(u,u) = 0 for any vertex u.

Figure 1 illustrates a graph with capacities ¢ (ordinary typeface) and a
flow f on that graph (italic). Edges not shown have a capacity of 0 and a flow
that is the negative of the flow in the opposite direction; e.g., ¢(u,s) = 0 and
f(u,s) = —4. If neither an edge nor its opposite is shown (e.g. (s,t)), then
the capacities and flows in both directions are 0.

Figure 1

Definition 16.2 An s,t-cut (or just cut, when s,t are understood) is a pair
A, B of disjoint subsets of V whose union is V' such that s € A, t € B. The
capacity of the cut A, B, denoted c(A4, B), is

co(A,B) = > cu,v),

u€A, veB

i.e., the total capacity of the edges from A to B. If f is a flow, we define the
flow across the cut A, B to be

f(4,B) = > fluv).
u€A, véB

O

Note that by condition (a) of Definition 16.1, f(A, B) gives the net flow across
the cut from A to B; that is, the sum of the positive flow values on edges from
A to B minus the sum of the positive flow values on edges from B to A.
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Definition 16.3 The value of a flow f, denoted |f|, is defined to be

Ifl = f{s},V —{s})
= Zf(s,v),

veV

or in other words the net flow out of s. 0O

In the example of Figure 1, |f| = 6.

Although Definition 16.3 defines the value of the flow f with respect to
the cut {s},V — {s}, the flow value will be the same no matter where it is
measured:

Lemma 16.4 For any s,t-cut A, B and flow f,
Ifl = f(A,B).

Proof. Induction on the cardinality of A, using condition (b) of Definition
16.1. a

In particular,
f{shV —={s}) = f(V-{t}{t}),

which says that the net flow out of s equals the net flow into ¢.
The flow across any cut surely cannot exceed the capacity of the cut. This
is expressed in the following lemma:

Lemma 16.5 For any s,t-cut A, B and flow f,
Ifl < c(4,B).
Proof. Lemma 16.4 and condition (c). |

The main result of this lecture will be the Maz Flow-Min Cut Theorem, which
states that the minimum cut capacity is achieved by some flow; i.e., the in-
equality in Lemma 16.5 is an equality for some cut A, B and some flow f*.
The flow f* necessarily has maximum value among all flows on G by Lemma
16.5, and is called a maz flow. The flow f* is not unique, but its value is.

16.1 Residual Capacity

Definition 16.6 Given a flow f on G with capacities ¢, we define the residual
capacity function r : V2 — R to be the pointwise difference

r = c—f.

The residual graph associated with G = (V,E,c) and flow f is the graph
Gy = (V,E¢, 1), where

E; = {(u,v)]|r(u,v) >0} .



LECTURE 16 MAX FLOW 87

The residual capacity r(u,v) represents the amount of additional flow that
could be pushed along the edge (u, v) without violating the capacity constraint
(c) of Definition 16.1. In case the flow f(u,v) is negative, this “additional
flow” could involve backing off the positive flow from v to u. For example, if
c(u,v) = 8 and f(u,v) = 6, and (v,u) ¢ G so that c(v,u) = 0, then r(u,v) = 2
and r(v,u) = c(v,u) — f(v,u) = 0—(—6) = 6. The residual graph for the flow
in Figure 1 is given in Figure 2 below.

Note that the residual graph Gy can have an edge where there was none
in G. However, Gy has no edges (u,v) where neither (u,v) nor (v,u) were
present in G, so |E¢| < 2-|E|.

Intuitively, the formation of the residual graph translates the problem by
making f the new origin (zero flow). Solving the residual flow problem is
tantamount to solving the original flow problem; a solution to the residual
flow problem can be added to f to obtain a solution to the original problem.
This observation is formalized in the following lemma.

Lemma 16.7 Let f be a flow in G, and let Gy be its residual graph.

(a) The function f' is a flow in Gy iff f + f' is a flow in G.

(b) The function f' is a maz flow in Gy if f + f' is a maz flow in G.

(c¢) The value function is additive; i.e., |f + f'| = |f| + |f'| and |f = f'| =
- 171

(d) If f is any flow and f* a maz flow in G, then the value of a max flow
in Gy is | f*] = |f].

Proof.

(a) Since f is a flow, it satisfies skew symmetry (f(u,v) = —f(v,u)) and
conservation at interior vertices (¥, f(u,v) = 0). Thus f’ satisfies these
properties iff f + f' does. To show that the capacity constraints are
satisfied, recall that the capacities of Gy are given by r = ¢ — f, where
c is the capacity function of G. Then

f<r iff fl<c—f
it f+f<ec.
(b) This follows directly from (a).
(c) By the definition of flow value,

IFEf1 = Y _(f(s,0) £ f(s,0))
Zf(s,v):l:Zf’(s,v)

NESVAR
(d) This follows directly from (b) and (c).

Il
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16.2 Augmenting Paths

Definition 16.8 Given G and flow f on G, An augmenting path is a directed
path from s to ¢ in the residual graph Gjy. m]

An augmenting path represents a sequence of edges on which the capacity
exceeds the flow, i.e., on which the flow can be increased. As observed above,
on some edges this “increase” may actually involve decreasing a positive flow
in the opposite direction.

Figure 2 illustrates the residual graph associated with the flow in the ex-
ample of Figure 1 and an augmenting path. The minimum capacity of any
edge in this path is 2, so the flow can be increased on these edges by 2, result-
ing in a new flow in the original graph with value 2 greater than that of |f|.
Note that the “increase” on (u,v) is essentially a decrease of a positive flow
on (v, u).

Figure 2

We are now ready to state and prove the main theorem of this lecture:

Theorem 16.9 (Max Flow-Min Cut Theorem [34]) The following
three statements are equivalent:

(a) f is a maz flow in G = (V, E,c);
(b) there is an s,t-cut A, B with ¢(A, B) = |f|;

(c) there does not exist an augmenting path.

Proof.

(b) — (a) This is immediate from Lemma 16.5.

(a) — (c) Suppose there is an augmenting path ug, u1,. .., u, with s =g
and t = u,. Let

d = min{r(u;,u41)|0<i<n} > 0.

The quantity d is the smallest residual capacity along the augmenting path
and is called the bottleneck capacity. An edge along the augmenting path with
that capacity is called a bottleneck edge. Define the following flow g in the
residual graph Gy:

g(u,-, u,-+1) = d, 0 <i<n
g(uiy, ;) = —d, 0<i<n
g(u,v) = 0, for all other pairs (u,v).
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Then g is a flow in G with value d. By Lemma 16.7, f 4 g is a flow in G and
If +gl=1fI+lgl = 7] +d

(c) — (b) Assume there is no augmenting path. Let A consist of all vertices
reachable from s by paths in the residual graph. Let B = V — A. There are
no edges in the residual graph from A to Bj; thus in G, all edges from A
to B are saturated, i.e. f(u,v) = c(u,v). It follows from Lemma 16.4 that
c(4,B) =|f|. o



Lecture 17 More on Max Flow

The Max Flow-Min Cut Theorem gives an algorithm for finding a flow with
maximum value in a given network as long as the capacities are rational num-
bers. This algorithm was first published in 1956 by Ford and Fulkerson [34].

The algorithm works as follows. We begin with the zero flow, then repeat-
edly find an augmenting path p and push d additional units of flow along p
from s to t, where d > 0 is the bottleneck capacity of p (minimum edge capac-
ity along p). We continue until it is no longer possible to find an augmenting
path, i.e. until the residual graph has no path from s to t. We know at that
point by the Max Flow-Min Cut Theorem that we have a max flow.

If the edge capacities are integers, this algorithm increases the flow value
by at least 1 with each augmentation, hence achieves a maximum flow after
at most | f *I augmentations. Moreover, each augmentation increases the flow
by an integral amount, so |f*| is an integer. Unfortunately, |f*| can be
exponential in the representation of the problem, and the algorithm can run
for this long if the augmenting paths are not chosen with some care.

Example 17.1 The following diagram illustrates the first few augmentations
in a flow problem with large capacities. The residual graphs are shown on
the left-hand side and the augmenting paths on the right. This sequence of

augmentations will take 21°! steps to converge to a max flow, which has value
9101

90
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2100
S 1 t
2100
2100
s 1 t
2100
2100 _
s 1 t
2100 -1

O

In fact, if the capacities are irrational, the process of repeated augmenta-
tion along indiscriminately chosen augmenting paths may not produce a max
flow after a finite time, as the following example shows.

Example 17.2 Let r be the positive root of the quadratic z% + = — 1:

~14++5

~ .618...
2

Then 72 = 1 — r, and more generally, 7"*2 = ™ — ™! for any n > 0. Also,
since 0 <r <1,

1 >7r >7 >7r% > ... > 0.
Note
t2 = Y
r = = .
1—r =
Consider the following flow network:
2 1
s T t
r2
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The three horizontal interior edges (call them the flumes) have the capacities
shown, and all other edges have capacity r + 2. The max flow value is 1 +
r + r? = 2, since this is the minimum cut capacity obtained by cutting the
flumes; any other cut has capacity at least r + 2 > 2.

Suppose that in the first augmenting step, we push one unit of flow directly
from s to t along the top flume. This leaves residual capacities of 0,7, and r?
on the flumes.

Now we perform the following loop, which after n iterations will result in
the flumes having residual capacities 0, r"*!, and r"*? in some order: choose
the flume with minimum nonzero residual capacity, say d, and push d units
of flow from s forward along that flume, back through the saturated flume,
and then forward through the remaining flume to ¢t. Suppose that we start
with residual capacities 0, 7", and r"*! on the flumes. The minimum nonzero
residual capacity is r"*!, and the new residual capacities will be r™*!, " —
"1 = pn+2 and 0, respectively. The situation is the same as before, only
rotated.

The loop can be repeated indefinitely, leaving ever higher powers of r on
the flumes. We always have sufficient residual capacity on the non-flumes.
The residual capacities tend to 0, so the flow value tends to the maximum
flow value 2.

With irrational capacities, the sequence of augmentations need not even
converge to the maximum flow value. An example of this behavior can be
obtained from the graph above by adding an edge (s,t) of weight 1. The
same infinite sequence of augmentations converges to a flow of value 2, but
the maximum flow value is 3. O

17.1 Edmonds and Karp’s First Heuristic

Edmonds and Karp [30] suggested two heuristics to improve this situation.
The first is the following:

Always augment by a path of maximum bottleneck capacity.

Definition 17.3 A path flow in G is a flow f that takes nonzero values only
on some simple path from s to t. In other words, there exist a number d and

a simple path ug, uy, . .., ux With s = uo, ¢t = uy, and such that
flui,uiy)) = d, 0<i<k—1
flu,w) = —d, 0<i<k-—1

f(u,v) = 0, for all other (u,v).

O

Lemma 17.4 Any flow in G can be expressed as a sum of at most m path
flows in G and a flow in G of value 0, where m is the number of edges of G.
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Proof. Let f be a flow in G. If |f| = 0, we are done. Otherwise, assume
|f] > 0 (the argument for |f| < 0 is symmetric, interchanging the roles of s
and t). Define a new capacity function ¢’(e) = max{f(e),0} and let G’ be the
graph with these capacities. Then f is still a flow in G’, and since ¢ < ¢, any
flow in G’ is also a flow in G. By the Max Flow-Min Cut Theorem, the null
flow in G’ must have an augmenting path, which is a path from s to ¢ with
positive capacities; by construction of G’, every edge on this path is saturated
by f. Take p to be the path flow on that path whose value is the bottleneck
capacity. Then the two flows p and f — p are both flows in G’, and at least
one edge on the path (the bottleneck edge) is saturated by p.

Now we repeat the process with f — p to get ¢’ < ¢ and G”, and so on.
Note that G” has strictly fewer edges than G, since at least the bottleneck
edge of p has disappeared. This process can therefore be repeated at most m
times before the flow value vanishes. The original f is then the sum of the
remaining flow of value 0 and the path flows found in each step. O

We now consider the complexity of maximum-capacity augmentation.

Theorem 17.5 If the edge capacities are integers, then the heuristic of aug-
mentation by augmenting paths of mazximum bottleneck capacity results in a
mazimum flow f* in at most O(mlog|f*|) augmenting steps.

Proof. By Lemma 17.4, f* is a sum of at most m path flows and a flow
of value 0, therefore one of the path flows must be of value | f*|/m or greater.
An augmenting path of maximum bottleneck capacity must have at least this
capacity. Augmenting by such a path therefore increases the flow value by at
least |f*|/m, so by Lemma 16.7(d) of the previous lecture, the max flow in
the residual graph has value at most |f*| — |f*|/m = |f*|(®=1). Thus after
k augmenting steps, the max flow in the residual graph has value at most
|/*|(==2)*. Hence the number of augmenting steps required to achieve a max
flow is no more than the least number & such that

m—1

I <1

Using the estimate

1
logm —log(m —1) = @(;1—) , (24)
we obtain k = ©(mlog |f*|). The estimate (24) follows from the limit
1 1
lim(1—=)" = =.
A= =g

O

Finding a maximum capacity augmenting path can be done efficiently using
a modification of Dijkstra’s algorithm (Homework 5).
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17.2 Edmonds and Karp’s Second Heuristic

The method described above is still less than completely satisfactory, since the
complexity depends on the capacities. It would be nice to have an algorithm
whose asymptotic worst-case complexity is a small polynomial in m and n
alone.

The following algorithm produces a max flow in time independent of the
edge capacities. This algorithm is also due to Edmonds and Karp [30]. It uses
the following heuristic to achieve an O(m?n) running time:

Always choose an augmenting path of minimum length.

Definition 17.6 The level graph L of G is the directed breadth-first search
graph of G with root s with sideways and back edges deleted. The level of a
vertex u is the length of a shortest path from s to  in G. ]

Note that the level graph has no edges from level ¢ to level j for j > i+ 2.
This says that any shortest path from s to any other vertex is a path in the
level graph. Any path with either a back or sideways edge of the breadth-first
search graph would be strictly longer, since it must contain at least one edge
per level anyway.

Lemma 17.7 (a) Let p be an augmenting path of minimum length in G,
let G' be the residual graph obtained by augmenting along p, and let q
be an augmenting path of minimum length in G'. Then |q| > |p|. Thus
the length of shortest augmenting paths cannot decrease by applying the
above heuristic.

(b) We can augment along shortest paths of the same length at most m = |E|
times before the length of the shortest augmenting path must increase
strictly.

Proof. Choose any path p from s to ¢ in the level graph and augment along

p by the bottleneck capacity. After this augmentation, at least one edge of
p will be saturated (the bottleneck edge) and will disappear in the residual
graph, and at most |p| new edges will appear in the residual graph. All these
new edges are back edges and cannot contribute to a shortest path from s to
t as long as t is still reachable from s in the level graph. We continue finding
paths in the level graph and augmenting by them as long as t is reachable from
s. This can occur at most m times, since each time an edge in the level graph
disappears. When ¢ is no longer reachable from s in the level graph, then any
augmenting path must use a back or side edge, hence must be strictly longer.
O

This gives rise to the following algorithm:
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Algorithm 17.8 (Edmonds and Karp [30]) Find the level graph Lg.
Repeatedly augment along paths in Lg, updating residual capacities and
deleting edges with zero capacity until ¢ is no longer reachable from s.
Then calculate a new level graph from the residual graph at that point
and repeat. Continue as long as t is reachable from s.

With each level graph calculation, the distance from s to ¢ increases by at
least 1 by Lemma 17.7(a), so there are at most n level graph calculations. For
each level graph calculation, there are at most m augmentations by Lemma
17.7(b). Thus there are at most mn augmentations in all. Each augmentation
requires time O(m) by DFS or BFS, or O(m?n) in all. It takes time O(m)
to calculate the level graphs by BFS, or O(mn) time in all. Therefore the
running time of the entire algorithm is O(m?n).



Lecture 18 Still More on Max Flow

18.1 Dinic’s Algorithm

We follow Tarjan’s presentation [100]. In the Edmonds-Karp algorithm, we
continue to augment by path flows along paths in the level graph Lg until
every path from s to ¢ in Lg contains at least one saturated edge. The flow at
that point is called a blocking flow. The following modification, which improves
the running time to O(mn?), was given by Dinic in 1970 [29]. Rather than
constructing a blocking flow path by path, the algorithm constructs a blocking
flow all at once by finding a maximal set of minimum-length augmenting paths.
Each such construction is called a phase.

The following algorithm describes one phase. As in Edmonds-Karp, there
are at most n phases, because with each phase the minimum distance from s
to ¢ in the residual graph increases by at least one. We traverse the level graph
from source to sink in a depth-first fashion, advancing whenever possible and
keeping track of the path from s to the current vertex. If we get all the way
to t, we have found an augmenting path, and we augment by that path. If
we get to a vertex with no outgoing edges, we delete that vertex (there is no
path to t through it) and retreat.

In the following, u denotes the vertex currently being visited and p is a
path from s to u.

96
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Algorithm 18.1 (Dinic [29])

Initialize. Construct a new level graph Lg. Set u := s and p := [s]. Go
to Advance.

Advance. If there is no edge out of u, go to Retreat. Otherwise, let
(u,v) be such an edge. Set p:=p-[v] and v :=v. If v # ¢ then go
to Advance. If v =t then go to Augment.

Retreat. If u = s then halt. Otherwise, delete u and all adjacent edges
from Lg and remove u from the end of p. Set u := the last vertex
on p. Go to Advance.

Augment. Let A be the bottleneck capacity along p. Augment by the
path flow along p of value A, adjusting residual capacities along p.
Delete newly saturated edges. Set u := the last vertex on the path
p reachable from s along unsaturated edges of p; that is, the start
vertex of the first newly saturated edge on p. Set p := the portion
of p up to and including u. Go to Advance.

We now discuss the complexity of these operations.

Initialize. This is executed only once per phase and takes O(m) time using
BFS.

Advance. There are at most 2mn advances in each phase, because there
can be at most n advances before an augment or retreat, and there are at
most m augments and m retreats. Each advance takes constant time, so the
total time for all advances is O(mn).

Retreat. There are at most n retreats in each phase, because at least one
vertex is deleted in each retreat. Each retreat takes O(1) time plus the time
to delete edges, which in all is O(m); thus the time taken by all retreats in a
phase is O(m + n).

Augment. There are at most m augments in each phase, because at least
one edge is deleted each time. Each augment takes O(n) time, or O(mn) time
in all.

Each phase then requires O(mn) time. Because there are at most n phases,
the total running time is O(mn?).

18.2 The MPM Algorithm

The following algorithm given by Malhotra, Pramodh-Kumar, and Mahesh-
wari in 1978 [77] produces a max flow in O(n?) time. The overall structure is
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similar to the Edmonds-Karp or Dinic algorithms. Blocking flows are found
for level graphs of increasing depth. The algorithm’s superior time bound is
due a faster (O(n?)) method for producing a blocking flow.

For this algorithm, we need to consider the capacity of a vertex as opposed
to the capacity of an edge. Intuitively, the capacity of a vertex is the maximum
amount of commodity that can be pushed through that vertex.

Definition 18.2 The capacity c(v) of a vertex v is the minimum of the total
capacity of its incoming edges and the total capacity of its outgoing edges:

c(v) = min{)_ c(u,v), Y c(v,u)}.

ueV ueV

O

This definition applies as well to residual capacities obtained by subtracting
a nonzero flow.

The MPM algorithm proceeds in phases. In each phase, the residual graph
is computed for the current flow, and the level graph L is computed. If ¢ does
not appear in L, we are done. Otherwise, all vertices not on a path from s to
t in the level graph are deleted.

Now we repeat the following steps until a blocking flow is achieved:
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1. Find a vertex v of minimum capacity d according to Definition
18.2. If d = 0, do step 2. If d # 0, do step 3.

2. Delete v and all incident edges and update the capacities of the
neighboring vertices. Go to 1.

3. Push d units of flow from v to the sink and pull d units of flow
from the source to v to increase the flow through v by d. This is
done as follows:

Push to sink. The outgoing edges of v are saturated in order,
leaving at most one partially saturated edge. All edges that
become saturated during this process are deleted. This pro-
cess is then repeated on each vertex that received flow during
the saturation of the edges out of v, and so on all the way to
t. It is always possible to push all d units of flow all the way
to t, since every vertex has capacity at least d.

Pull from source. The incoming edges of v are saturated in or-
der, leaving at most one partially saturated edge. All edges
that become saturated by this process are deleted. This pro-
cess is then repeated on each vertex from which flow was taken
during the saturation of the edges into v, and so on all the
way back to s. It is always possible to pull all d units of flow

all the way back to s, since every vertex has capacity at least
d.

Either all incoming edges of v or all outgoing edges of v are satu-
rated and hence deleted, so v and all its remaining incident edges
can be deleted from the level graph, and the capacities of the neigh-
bors updated. Go to 1.

It takes O(m) time to compute the residual graph for the current flow
and level graph using BFS. Using Fibonacci heaps, it takes O(nlogn) time
amortized over all iterations of the loop to find and delete a vertex of minimum
capacity. It takes O(m) time over all iterations of the loop to delete all the
fully saturated edges, since we spend O(1) time for each such edge. It takes
O(n?) time over all iterations of the loop to do the partial saturations, because
it is done at most once in step 3 at each vertex for each choice of v in step 1.

Note that when we delete edges, we must decrement the capacities of
neighboring vertices; this is done using the decrement facility of Fibonacci
heaps.

The loop thus achieves a blocking flow in O(n?) time. As before, at most
n blocking flows have to be computed, because the distance from s to ¢ in the
level graph increases by at least one each time. This gives an overall worst-case
time bound of O(n?).

The max flow problem is still an active topic of research. Although O(n3)



100 LECTURE 18 STILL MORE ON MAX FLoOw

remains the best known time bound for general graphs, new approaches to the
max flow problem and better time bounds for sparse graphs have appeared
more recently [38, 98, 4, 41, 95, 37].

18.3 Applications of Max Flow
Bipartite Matching

Definition 18.3 A matching M of a graph G is a subset of edges such that no
two edges in M share a vertex. We denote the size of M by |M|. A mazimum
matching is one of maximum size. O

We can use any max flow algorithm to produce a maximum matching in
a bipartite graph G = (U,V, E) as follows. Add a new source vertex s and a
new sink vertex ¢, connect s to every vertex in U, and connect every vertex
in V to t. Assign every edge capacity 1. The edges from U to V used by a
maximum integral flow give a maximum matching.

Minimum Connectivity

Let G = (V, E) be a connected undirected graph. What is the least number
of edges we need to remove in order to disconnect G?7 This is known as the
minimum connectivity problem.

The minimum connectivity problem can be solved by solving n — 1 max
flow problems. Replace each undirected edge with two directed edges, one in
each direction. Assign capacity 1 to each edge. Let s be a fixed vertex in V'
and let ¢ range over all other vertices. Find the max flow for each value of ¢,
and take the minimum over all choices of ¢. This also gives a minimum cut,
which gives a solution to the minimum connectivity problem.
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Matching refers to a class of problems with many important applications. As-
signing instructors to courses or students to seminars with limited enrollment
are two examples of matching problems.

Formally, matching problems are expressed as problems on graphs. We will
consider four different versions, depending on whether the graph is bipartite
or not and whether the graph is weighted or unweighted. The bipartite case
is considerably easier, so we will concentrate on that case.

Definition 19.1 Given an undirected graph G = (V, E) with edge weights
w, a matching is a subset M C F such that no two edges in M share a vertex.
The mazimum-weight matching problem is to find a matching M such that the
sum of the weights of the edges in M is maximum over all possible matchings.
If all the weights are 1, then we get the unweighted matching problem, which
just asks for a matching of maximum cardinality. O

Definition 19.2 Given a matching M in G = (V,E), an edge e € E is
matched if e € M and free if e € E — M. A vertex v is matched if v has an
incident matched edge, free otherwise. 0

Definition 19.3 A perfect matching is a matching in which every vertex is
matched. O

Definition 19.4 Given a matching M in G = (V| E), a path (cycle) in G is
an alternating path (cycle) with respect to the matching M if it is simple (i.e.,
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has no repeated vertices) and consists of alternating matched and free edges.
The length of a path or cycle p is the number of edges in p and is denoted |p|.
An alternating path is an augmenting path (with respect to M) if its endpoints
are free. ]

For example, consider the following graph.

The solid edges form a maximum matching that is also a perfect matching.
The dashed edges form a maximal matching that is not maximum (it is maxi-
mal because it is not a proper subset of any other matching). With respect to
the dashed matching, the edges (1,4) and (2,5) are matched, the edges (1,5),
(2,6), and (3,4) are free, the vertices 1,2,4, and 5 are matched, and the vertices
3 and 6 are free. With respect to the dashed matching, the alternating path
3,4,1,5,2,6 is an augmenting path.
Let @ be the symmetric difference operator on sets:

A®B = (AUB)-(ANB)
= (A-B)U(B-A).

In other words, A® B is the set of elements that are in one of A or B, but not
both. If M is a matching and p an augmenting path with respect to M, then
considering p as its set of edges, the set M @ p is a matching of cardinality
|[M| + 1. Note that M & p agrees with M on edges outside of p, and every
edge in p that is matched in M is unmatched in M @ p and vice-versa.

The following early theorem of Berge [10] gives the foundation for an effi-
cient matching algorithm.

Theorem 19.5 (Berge [10]) A matching M in a graph G is a mazimum
matching if and only if there is no augmenting path in M.

This theorem follows immediately from the following enhanced version due
to Hopcroft and Karp [51].

Theorem 19.6 (Hopcroft and Karp [51]) If M is a matching in G, M*
is a-mazimum matching in G, and k = |M*| — |M|, then with respect to M
there is a set of k vertez-disjoint augmenting paths. Moreover, at least one of
them has length at most 3 — 1, where n is the number of vertices in G.
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Proof. Consider M @& M™. No vertex can have more than one incident edge
from M or more than one incident edge from M™*, so no vertex can have more
than two incident edges from M @ M*. The set M @& M™ therefore consists
of a collection of vertex-disjoint alternating paths and cycles, as illustrated.
Here the solid lines indicate edges of M and the dashed lines indicate edges

of M*. .
/ \. — oo

——o-—-—0—o--0

\/ T

Each odd-length path p has either one more M edge than M* edge or one
more M* edge than M edge. However, the former is impossible, since then
p would be an augmenting path with respect to M*, thus M* would not be
maximum.

Using the assumption that |M*| = |M| + k,

IM* — M| = |M*|—|M*n M|
= |M|-|M*NM|+k
M — M*| +k.

In other words there are exactly k more M* edges in M* & M than M edges.
The extra k M* edges must come from paths of odd length with one more M*
edge than M edge. Cycles and paths of even length have the same number
of M as M™ edges, and as we have observed, there are no odd-length paths
with one more M than M™* edge. These k odd-length paths with one more
M* than M edge have endpoints that are free with respect to M, therefore
are augmenting paths in M.

It is impossible for all of these paths to have length greater than 7 — 1,
because then we would have more than n vertices. Therefore at least one of
the paths has length less than or equal to 7 — 1. O

19.1 Weighted Matchings

Definition 19.7 Let M be a matching in a graph G with edge weights w.
For any set A of edges, define

w(d) = > wle).
e€A

Define the incremental weight A(p) of a set B of edges to be the total weight
of the unmatched edges in B minus the total weight of the matched edges in
B:

A(B) = w(B-M)-w(BNM).
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If p is an augmenting path with respect to M, then A(p) is the net change in
the weight of the matching after augmenting by p:

wMep) = wM)+Ap) . (25)

Here is a good heuristic to use when selecting augmenting paths for max-
imum weight matching:

Always use an augmenting path of maximum incremental weight.

Lemma 19.8 If M is a matching of size k that is of mazximum weight among
all matchings of size k, and if p is an augmenting path with respect to M of
mazimum incremental weight, then M @ p is a matching of size k + 1 that is
of mazimum weight among all matchings of size k + 1.

Proof. By (25), it suffices to show that if M’ is a matching of maximum
weight among all matchings of size k£ + 1, then there exists an augmenting
path p with respect to M such that

w(M') = w(M®p)
w(M)+ A(p) .

Consider M @ M'. As before, this is a set of vertex-disjoint cycles, even-length
paths, and odd-length paths. The incremental weight of each cycle must be
0, because otherwise it would be possible to exchange the M and M’ edges
on this cycle to increase the weight of either M or M’, which by assumption
is impossible. The even-length paths must have incremental weight 0 for the
same reason. Thus only the odd-length paths in M & M’ can have nonzero
weight.

Each odd-length path has either an extra M edge or an extra M’ edge.
Since there is one more edge in M’ than in M, there must be exactly one more
path with an extra M’ edge than there are paths with an extra M edge.

Pair each path with an extra M edge with a path with an extra M’ edge.
This will leave all paths paired except for one path p which has an extra M’
edge. The incremental weight of each pair must be 0, because otherwise it
would be possible to increase the weight of either M or M’ by switching M
and M’ edges in this pair. Therefore

Alp) = AMa M)
w(M') —w(M) .
The path p is an augmenting path with respect to M, and the matching M ®p

has k£ + 1 edges and weight equal to the weight of M’, therefore it too is of
maximum weight among all matchings of size k + 1. a
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In the next lecture we will show

Lemma 19.9 Let M* be a matching of mazimum weight among all matchings
and let M be a matching of size k of mazimum weight over all matchings of
size at most k. If w(M*) > w(M), then M has an augmenting path with
respect to M of positive incremental weight.

Theorem 19.10 If one always augments by an augmenting path of mazimum
incremental weight, then one arrives at a matching of mazimum weight after
at most 5 steps.
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Let G be an undirected graph with weight function w. Recall from last lecture
that the weight of a matching M in G, denoted w(M), is the sum of the weights
of the edges in M, and the incremental weight of a set A of edges, denoted
A(A), is the sum of the weights of the unmatched edges in A less the sum of
the weights of the matched edges in A. For an augmenting path p, A(p) gives
the net change in weight that would be obtained by augmenting by p.

We ended the last lecture by proving the following lemma:

Lemma 20.1 Let M be a matching of size k of mazrimum weight among all
matchings of size k. If we augment M by an augmenting path of mazimum
incremental weight, then we obtain a matching of size k+1 of mazimum weight
among all matchings of size k + 1.

We also need to know that an augmenting path of positive incremental weight
exists. This is established in the following lemma.

Lemma 20.2 Let M be a matching of size k of mazimum weight among all
matchings of size at most k and let M™* be a matching of mazimum weight
among all matchings in G. If w(M™*) > w(M), then M has an augmenting
path of positive incremental weight.

Proof. Again, consider the symmetric difference M* @ M. As argued in
the last lecture, this is a set of vertex-disjoint cycles and paths of alternating
edges from M and M*. We pair the odd-length paths as we did in the last
lecture, with each pair consisting of one path with one more M than M* edge
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and the other with one more M* than M edge. We are left with a number of
odd-length paths.

Each cycle and path of even length has incremental weight 0, otherwise
the M and M* edges could be switched to increase the weight of either M
or M*, contradicting the maximality of M or M*. By the same argument,
the incremental weights of the pairs of odd-length paths are 0. Thus we are
left with a set of unpaired odd-length paths. Either all these paths have one
more M* edge than M edge or they all have one more M edge than M* edge
(otherwise there would be another pair). The latter is impossible, because then
M* would be a matching of greater weight and smaller cardinality than M,
contradicting our assumptions. Thus all these unpaired paths are augmenting
paths with respect to M. If we augment by all of them simultaneously, we
achieve a maximum matching of weight w(M™*) > w(M); therefore, at least
one of them must have positive incremental weight. O

Thus we can construct a maximum-weight matching by beginning with the
empty matching and repeatedly performing augmentations using augmenting
paths of maximum incremental weight until a maximum matching is achieved.
This takes at most § augmentations, since the number of matched vertices
increases by two each time. We will show below how to obtain augmenting
paths efficiently in bipartite graphs.

20.1 Unweighted Bipartite Matching

Now we will see an O(m+/n) algorithm of Hopcroft and Karp [51] for un-
weighted matching in bipartite graphs. Micali and Vazirani [80, 105] have
given an algorithm of similar complexity for general graphs.

The idea underlying the algorithm of Hopcroft and Karp is similar to
Dinic’s idea for maximum flow. The algorithm proceeds in phases. In each
phase, we find a maximal set of vertex-disjoint minimum-length augmenting
paths, and augment by them simultaneously. In other words, we find a set S
of augmenting paths with the following properties:

(i) if the minimum-length augmenting path is of length k, then all paths in
S are of length k;

(ii) no two paths in S share a vertex;

(iii) if p is any augmenting path of length k not in S, then p shares a vertex
with some path in S; i.e., S is a setwise maximal set with the properties
(i) and (ii).

We will need the following three lemmas:

Lemma 20.3 A mazimal set S of vertex-disjoint minimum-length augment-
ing paths can be found in time O(m).
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Lemma 20.4 After each phase, the length of a minimum-length augmenting
path increases by at least two.

Lemma 20.5 There are at most v/n phases.

Proof of Lemma 20.3. Let G = (U, V, E) be the undirected bipartite graph
we are working in, and let M be a matching in G. We will grow a “Hungarian
tree” from G and M. Calling it a tree is somewhat misleading, since the
Hungarian tree is really a dag. It is obtained in linear time by a procedure
similar to breadth-first search. We start with the free (unmatched) vertices
in U at level 0. Starting from an even level 2k, the vertices at level 2k + 1
are obtained by following free (unmatched) edges from vertices at level 2k.
Starting from an odd level 2k + 1, the vertices at level 2k + 2 are obtained
by following matched edges from vertices at level 2k + 1. Since the graph is
bipartite, the even levels contain only vertices in U and the odd levels contain
only vertices in V. We do not expand a vertex that has been seen at an earlier
level.

We continue building the Hungarian tree and adding more levels until all
vertices have been seen at least once before or until we encounter a free vertex
at an odd level (say t). In the latter case, every free vertex at level ¢ is in V'
and is the terminus of an augmenting path of minimum length. Note that free
vertices in U can be encountered only at level 0, since vertices at even levels
greater than 0 are matched.

Example 20.6 The following figure illustrates a bipartite graph with a par-
tial matching and its Hungarian tree. The solid lines indicate matched edges
and the dashed lines free edges.

O

Now we find a maximal set S of vertex-disjoint paths in the Hungarian
tree. We will use a technique called topological erase, called so because it
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is reminiscent of the topological sort algorithm we saw in Lecture 1. With
each vertex = except those at level 0 we associate an integer counter initially
containing the number of edges entering z from the previous level. Starting
at a free vertex v at the last level ¢, we trace a path back until arriving at a
free vertex u at level 0. This path is an augmenting path, and we include it
in S. We then place all vertices along this path on a deletion queue. As long
as the deletion queue is nonempty, we remove a vertex from the queue and
delete it and all incident edges from the Hungarian tree. Whenever an edge
is deleted, the counter associated with its right endpoint is decremented. If
the counter becomes 0, the vertex is placed on the deletion queue (there can
be no augmenting path in the Hungarian tree through this vertex, since all
incoming edges have been deleted). After the queue becomes empty, if there
is still a free vertex v at level ¢, then there must be a path from v backwards
through the Hungarian tree to a free vertex on the first level, so we can repeat
the process. We continue as long as there exist free vertices at level t. The
entire process takes linear time, since the amount of work is proportional to
the number of edges deleted. O
In order to prove Lemma 20.4 we will use the following lemma:

Lemma 20.7 Let p be an augmenting path of minimum length with respect
to some matching M, let M' be the matching obtained by augmenting M by
p, and let q be an augmenting path in M'. Then

lgl > Ipl+2lpngl, (26)

where |q| and |p| denote the number of edges of q and p, respectively, and pNgq
denotes the set of edges common to p and q.

Proof of Lemma 20.7. If ¢ and p are vertex-disjoint, then ¢ is also an
augmenting path with respect to M. Then |g| > |p|, since p is of minimum
length, and (26) holds since the intersection is empty.

Otherwise, consider the symmetric difference p @ ¢q of the two paths. We
observe the following facts.

(i) All edges in ¢—p are in M if and only if they are in M’. This is because
augmenting M by p only changes the status of edges on p.

(ii) Each time ¢ joins (leaves) p it is immediately after (before) a free edge.
This is because each vertex in p already has one adjacent edge in pn M’.

(iii) The endpoints of ¢ are not contained in p, since they are free in M'.

It follows from property (iii) that p @ g contains exactly four free vertices
with respect to the original matching M, namely the endpoints of p and the
endpoints of q. Thus p & ¢, considered with respect to M, consists of exactly
two augmenting paths and possibly some disjoint cycles as well. Each of the
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two paths must be at least as long as p, since p was of minimum length; thus
lp® q| > 2|p|. But

lal +1pl = lp®ql+2lpngl > 2Ip|+2lpNgql,
from which (26) follows. O

Example 20.8 Lemma 20.7 is illustrated in the following picture.

de qr7 q10 qu q12 q13 q14

l I I
41 P2 D344 | | |

| P4, G5 Ps,q; ;qug ;57_ Ps P9 P1o

In this example, the solid lines represent edges in M and the dashed lines rep-
resent edges not in M. The path p,, ..., pio is an augmenting path with respect
to the matching M, and q, . . ., q14 is an augmenting path after augmenting M
by p1,...,p10. The paths p1,p2,ps, 3,92, q1 and qu, ..., 49, P7, - . ., P10 are also
augmenting paths with respect to M. The path gs, . . ., gs forms an alternating
cycle with respect to M. O

Proof of Lemma 20.4. Suppose that at some phase we augmented M by a
maximal set S of vertex-disjoint paths of minimum length & to obtain a new
matching M'. Consider any augmenting path g with respect to M'. If ¢ is
vertex-disjoint from every path in S, then its length must be greater than k,
otherwise S was not maximal. If on the other hand ¢ shares a vertex with
p € S, then pN ¢ contains at least one edge in M’, since every vertex in p is
matched in M’. By Lemma 20.7, |g| exceeds |p| by at least two. O

Proof of Lemma 20.5. Let M* be a maximum matching and let M be
the matching obtained after %\/ﬁ phases. The length of any augmenting path
with respect to M is at least /n. By a lemma from the last lecture, M* & M
contains a set T' of exactly |M*| — | M| vertex-disjoint augmenting paths, and
augmenting by all of them gives a maximum matching. But there can be
at most /n elements of T, otherwise they would account for more than n
vertices. Thus |[M*| — |M| < y/n. Since each phase increases the size of the
matching by at least one, at most y/n more phases are needed. O

Since each phase requires O(m) time and there are at most O(+/n) phases,
the total running time of the algorithm is O(m+/n).



Lecture 21 Reductions and
NP-Completeness

We have seen several problems such as maximum flow and matching that
at first glance appear intractible, but upon closer study admit very efficient
algorithms. Unfortunately, this is the exception rather than the rule. For
every interesting problem with a polynomial-time algorithm, there are dozens
for which all known solutions require exponential time in the worst case. These
problems occur in various fields, to wit:

Logic:

o CNF satisfiability (CNFSat): given a Boolean formula B in conjunctive
normal form (CNF), is there a truth assignment that satisfies B?

Graph Theory:

e Clique: given a graph G = (V, E)) and an integer m, does G contain K,,
(the complete graph on m vertices) as a subgraph?

o k-Colorability: given a graph G = (V, E) and an integer k, is there a
coloring of G with k or fewer colors? A coloringis a map x : V — C
such that no two adjacent vertices have the same color; i.e., if (u,v) € E

then x(u) # x(v)-
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Operations Research:

e Any of a number of generalizations of the one-processor scheduling prob-
lem of Miscellaneous Exercise 4.

e Integer Programming: given a set of linear constraints A and a linear
function f, find an integer point maximizing f subject to the constraints

A.

e The Traveling Salesman Problem (TSP): given a set of cities and dis-
tances between them, find a tour of minimum total distance visiting all
cities at least once.

None of these problems are known to have a polynomial time solution. For
example, the best known solutions to the Boolean satisfiability problem are
not much better than essentially evaluating the given formula on all 2" truth
assignments. On the other hand, no one has been able to prove that no
substantially better algorithm exists, either.

However, we can show that all these problems are computationally equiva-
lent in the sense that if one of them is solvable by an efficient algorithm, then
they all are. This involves the concept of reduction. Intuitively, a problem A
is said to be reducible to a problem B if there is a way to encode instances
z of problem A as instances o(z) of problem B. The encoding function o is
called a reduction. If o is suitably efficient, then any efficient algorithm for B
will yield an efficient algorithm for A by composing it with o.

The theory has even deeper implications than this. There is a very gen-
eral class of decision problems called NP, which roughly speaking consists of
problems that can be solved efficiently by a nondeterministic guess-and-verify
algorithm. A problem is said to be NP-complete if it is in this class and every
other problem in NP reduces to it. Essentially, it is a hardest problem in the
class NP. If an NP-complete problem has an efficient deterministic solution,
then so do all problems in NP. All of the problems named above are known
to be NP-complete.

The theory of efficient reductions and NP-completeness was initiated in the
early 1970s. The two principal papers that first demonstrated the importance
of these concepts were by Cook [22], who showed that Boolean satisfiability
was NP-complete, and Karp [57, 58] who showed that many interesting com-
binatorial problems were interreducible and hence NP-complete. Garey and
Johnson’s text [39] provides an excellent introduction to the theory of NP-
completeness and contains an extensive list of NP-complete problems. By
now the problems known to be NP-complete number in the thousands.

21.1 Some Efficient Reductions

We have seen examples of reductions in previous lectures. For example,
Boolean matrix multiplication and transitive closure were shown to be re-
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ducible to each other. To illustrate the concept further, we show that CNFSat,
the satisfiability problem for Boolean formulas in conjunctive normal form, is
reducible to the clique problem.

Definition 21.1 Let B be a Boolean formula. A literal is either a variable or
the negation of a variable (we write ~z and T interchangeably). A clause is a
disjunction of literals, e.g. C = (21 V =2 V z3). The formula B is said to be
in conjunctive normal form (CNF) if it is a conjunction of clauses C; A Ca A
- A Cp. |

Note that to satisfy a formula in CNF, a truth assignment must assign the
value true to at least one literal in each clause, and different occurrences of
the same literal in different clauses must receive the same truth value.

Given a Boolean formula B in CNF, we show how to construct a graph G
and an integer k such that G has a clique of size k iff B is satisfiable. We take
k to be the number of clauses in B. The vertices of G are all the occurrences
of literals in B. There is an edge of G between two such occurrences if they are
in different clauses and the two literals are not complementary. For example,
the formula

) Cy Cs
(I] V.’Ez) A (fl VTQ) A (131 sz)

would yield the graph

The graph G is k-partite and has a k-clique iff B is satisfiable. Essentially,
an edge between two occurrences of literals represents the ability to assign
them both true without a local conflict; a k-clique thus represents the ability
to assign true to at least one literal from each clause without global conflict. In
the example above, k = 3 and there are two 3-cliques (triangles) corresponding
to two ways to satisfy the formula.

Let us prove formally that G has a k-clique iff B is satisfiable. First
assume that B is satisfiable. Let 7 : {z1,...,z,} — {true, false} be a truth
assignment satisfying B. At least one literal in each clause must be assigned
true under 7. Choose one such literal from each clause. The vertices of G
corresponding to these true literals are all connected to each other because no
pair is complementary, so they form a k-clique. Conversely, suppose G has
a k-clique. Since G is k-partite and the partition elements correspond to the
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clauses, the k-clique must have exactly one vertex in each clause. Assign true
to the literals corresponding to the vertices in the clique. This can be done
without conflict, since no pair of complementary literals appears in the clique.
Assign truth values to the remaining variables arbitrarily. The resulting truth
assignment assigns true to at least one literal in each clause, thus satisfies B.

We have just shown how to encode a given instance of the CNFSat problem
in an instance of the clique problem, or in the accepted parlance, reduced the
CNFSat problem to the clique problem.

An important caveat: a reduction reduces the problem being encoded to
the problem encoding it. Sometimes you hear it said backwards; for example,
that the construction above reduces Clique to CNFSat. This is incorrect.

Although we do not know how to solve Clique or CNFSat in any less
than exponential time, we do know by the above reduction that if tomorrow
someone were to come up with a polynomial-time algorithm for Clique, we
would immediately be able to derive a polynomial-time algorithm for CNFSat:
given B, just produce the graph G and k as above, and apply the polynomial-
time algorithm for Clique. For the same reason, if tomorrow someone were to
show an exponential lower bound for CNFSat, we would automatically have
an exponential lower bound for Clique.

We show for purposes of illustration that there is a simple reduction in
the other direction as well. To reduce Clique to CNFSat, we must show how
to construct from a given undirected graph G = (V| E) and a number k a
Boolean formula B in CNF such that G has a clique of size k if and only if B
is satisfiable.

Given G = (V,E) and k, take as Boolean variables z} for v € V and
1 < i < k. Intuitively, z¥ says, “u is the i*" element of the clique.” The formula
B is the conjunction of three subformulas C, D and &, with the following
intuitive meanings and formal definitions:

e C = “For every i, 1 < i < k, there is at least one u € V such that u is
the ** element of the clique.”

A

e D = “For every i, 1 <1 < k, no two distinct vertices are both the ith
element of the clique.”

D= A A (matv-a).

i=lu,veV
uFv

e &= “Ifu and v are in the clique, then (u, v) is an edge of G. Equivalently,
if (u,v) is not an edge, then either v is not in the clique or v is not in
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the clique.”

E = A A (mziv-zf) .

(u)¢E 1<i,j<k

We take B = CADAE. Any satisfying assignment 7 for CAD picks out a set
of k vertices, namely those u such that 7(z¥) = true for some 3, 1 <4 < k. If
T also satisfies £, then those k vertices form a clique. Conversely, if u;, ..., ug
is a k-clique in G, set 7(z}") = true, 1 <1 < k, and set 7(y) = false for all
other variables y; this truth assignment satisfies B.

It is perhaps surprising that two problems so apparently different as CN-
FSat and Clique should be computationally equivalent. However, this turns
out to be a widespread phenomenon.



Lecture 22 More on Reductions and
NP-Completeness

Before we give a formal definition of reduction, let us clarify the notion of a
decision problem. Informally, a decision problem is a yes-or-no question. A
decision problem is given by a description of the problem domain, i.e. the set
of all possible instances of the problem, along with a description of the set of
“yes” instances.

For example, consider the problem of determining whether a given undi-
rected graph G has a k-clique. An instance of the problem is a pair (G, k),
and the problem domain is the set of all such pairs. The “yes” instances are
the pairs (G, k) for which G has a clique of size k.

There are many interesting discrete problems that are not decision prob-
lems. For example, many optimization problems like the traveling salesman
problem or the integer programming problem ask for the calculation of an
object that maximizes some objective function. However, many of these prob-
lems have closely related decision problems that are no simpler to solve than
the optimization problem. For the purposes of this discussion of reductions
and NP-completeness, we will restrict our attention to decision problems.

Definition 22.1 Let A C ¥ and B C T be decision problems. (Here ¥ and
I" are the problem domains, and A and B are the “yes” instances.) We write
A <P B and say that A reduces to B in polynomial time if there is a function
o : X — T such that

e o is computable by a deterministic Turing machine in polynomial time;
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e for all problem instances z € %,
zeA iff o(z)eB.
We write A =P, B if both A <P B and B <E A. a

The reducibility relation <P is often called polynomial-time many-one or Karp
reducibility. The superscript p stands for polynomial-time. The subscript m
stands for many-one and describes the function o, and is included to dis-
tinguish <P from another popular polynomial-time reducibility relation <%,
often called polynomial-time Turing or Cook reducibility. The relation <P is
stronger than <% in the sense that

A<l B — A<iB.

The formal definition of <% involves oracle Turing machines and can be found
in [39, pp. 111fF].
Intuitively, if A <P B then A is no harder than B. In particular,

Theorem 22.2 If A <P B and B has a polynomial-time algorithm, then so
does A.

Proof. Given an instance z of the problem A, compute o(z) and ask
whether o(z) € B. Note that the algorithm for B runs in polynomial time
in the size of its input o(z), which might be bigger than z; but since o is
computable in polynomial time on a Turing machine, the size of o(z) is at
most polynomial in the size of z, and the composition of two polynomials is
still a polynomial, so the overall algorithm is polynomial in the size of z. O

In the last lecture we showed that CNFSat =P, Clique. Below we give some
more examples of polynomial-time reductions between problems.

Definition 22.3 (Independent Set) An independent set in an undirected
graph G = (V,E) is a subset U of V such that U? N E = (), i.e. no two
vertices in U are connected by an edge in E. The independent set problem is
to determine, given G = (V| E) and k > 0, whether G has an independent set
U of cardinality at least k. O

Note that the use of “independent” here is not in the sense of matroids.
There exist easy polynomial Treductions from/to the clique problem. Con-
sider the complementary graph G = (V, E), where

E = {(wv)|u#v, (u,v)¢E}.

Then G has a clique of size k iff G has an independent set of size k. This
simple one-to-one correspondence gives reductions in both directions, therefore
Independent Set =B, Clique.
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Definition 22.4 (Vertex Cover) A verter cover in an undirected graph
G = (V, E) is a set of vertices U C V such that every edge in F is adjacent to
some vertex in U. The vertex cover problem is to determine, given G = (V, E)
and k > 0, whether there exists a vertex cover U in G of cardinality at most
k. a

Again, there exist easy polynomial reductions from/to Independent Set:
U C V is a vertex cover iff V — U is an independent set. Therefore Vertex
Cover =P Independent Set.

Definition 22.5 (k-CNFSat) A Boolean formula is in k-conjunctive normal
form (k-CNF) if it is in conjuctive normal form and has at most k literals per
clause. The problem k-CNFSat is just CNFSat with input instances restricted
to formulas in k-CNF. In other words, given a Boolean formula in k-CNF, does
it have a satisfying assignment? O

In the general CNFSat problem, the number of literals per clause is not re-
stricted and can grow as much as linearly with the size of the formula. In
the k-CNFSat problem, the number of literals per clause is restricted to k,
independent of the size of the formula. The k-CNFSat problem is therefore a
restriction of the CNFSat problem, and could conceivably be easier to solve
than CNFSat. It turns out that 2CNFSat (and hence 1CNFSat also) is solv-
able in linear time, whereas k-CNFSat is as hard as CNFSat for any k > 3. We
prove the latter statement by exhibiting a reduction CNFSat <P 3CNFSat.
Let B be an arbitrary Boolean formula in CNF. For each clause of the form

(GV&LV---NLly Ve, (27)

with m > 4, let zq,%s,...,Tn_3 be new variables and replace the clause (27)
in B with the formula

(€1V€2Vw1)/\(—xw1 V€3Va:2)/\(ﬂm2V€4Vz3)/\---
/\(_l.’1}m_4 Vilyp oV .’IIm_3) A (—'.Z‘m_3 Vln a1V em) .

Let B’ be the resulting formula. Then B’ is in 3CNF, and B’ is satisfiable iff
B is. This follows from several applications of the following lemma:

Lemma 22.6 For any Boolean formulasC, D, £ and variable x not appearing
in C,D, or &, the formula

(zVC)A(—rzVD)AE (28)
is satisfiable if and only if the formula
(CVD)AE (29)

is satisfiable.
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Proof. This is just the resolution rule of propositional logic. Any satisfying
truth assignment for (28) gives a satisfying truth assignment for (29), since
one of z, ~z is false, so either C or D is true. Conversely, in any satisfying
truth assignment for (29), one of C,D is true. If C, assign z := false. If D,
assign x := true. We can assign z freely since it does not appear in C,D or €.
In either case (28) is satisfied. o

The formula B’ is easily constructed from B in polynomial time. This con-
stitutes a polynomial-time reduction from CNFSat to 3CNFSat. Furthermore,
3CNFSat is trivially reducible to k-CNFSat for any k£ > 3, which in turn is
trivially reducible to CNFSat. Since <P is transitive, k-CNFSat =P CNFSat
for k > 3.

The problem 2CNFSat is solvable in linear time. In this case the clauses in
B contain at most two literals, and we can assume exactly two without loss of
generality by replacing any clause of the form (¢) with (£V £). Now we think
of every two-literal clause (¢ V ¢') as a pair of implications

(~¢—2¢) and (€ —¥). (30)

Construct a directed graph G = (V, E) with a vertex for every literal and
directed edges corresponding to the implications (30).

We claim that B is satisfiable iff no pair of complementary literals both
appear in the same strongly connected component of G. Under any satisfying
truth assignment, all literals in a strong component of G must have the same
truth value. Therefore, if any variable x appears both positively and negatively
in the same strong component of G, B is not satisfiable.

Conversely, suppose that no pair of complementary literals both appear in
the same strong component of G. Consider the quotient graph G’ obtained by
collapsing the strong components of G as described in Lecture 4. As proved
in that lecture, the graph G’ is acyclic, therefore induces a partial order on its
vertices. This partial order extends to a total order. We assign x := false if the
strong component of z occurs before the strong component of —z in this total
order, and z := true if the strong component of ~z occurs before the strong
component of z. It can be shown that this gives a satisfying assignment.

We know how to find the strong components of G in linear time. This gives
a linear-time algorithm test for 2CNF satisfiability. We can also produce a
satisfying assignment in linear time, if one exists, using topological sort to
totally order the strong components.

Definition 22.7 (k-Colorability) Let C a finite set of colors and G = (V, E)
an undirected graph. A coloring is'a map x : V' — C such that x(u) # x(v)
for (u,v) € E. Given G and k, the k-colorability problem is to determine
whether there exists a coloring using no more than k colors. 0O

For k = 2, the problem is easy: a graph is 2-colorable iff it is bipartite iff
it has no odd cycles. This can be checked by BFS or DFS in linear time. We
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show that for £ = 3, the problem is as hard as CNFSat by giving a reduction
CNFSat <P 3-colorability.

Let B be a Boolean formula in CNF. We will construct a graph G that is
3-colorable iff B is satisfiable.

There will be three special vertices called R, B, and G, which will be
connected in a triangle. In any 3-coloring, they will have to be colored with
different colors, so we assume without loss of generality that they are colored
red, blue, and green, respectively.

R G

B

We include a vertex for each literal, and connect each literal to its complement
and to the vertex B as shown.

8
8|

B

In any 3-coloring, the vertices corresponding to the literals z and T will have
to be colored either red or green, and not both red or both green. Intuitively,
a legal 3-coloring will represent a satisfying truth assignment in which the
green literals are true and the red literals are false.

To complete the graph, we add a subgraph like the one shown below for
each clause in B. The one shown below would be added for the clause (zVyV
ZVu VTV w). The vertices in the picture labeled G are all the same vertex,
namely the vertex G.

|
IS
<

w
[}

T y

L ]

G e G

This subgraph has the property that a coloring of the vertices on the top
row with either red or green can be extended to a 3-coloring of the whole
subgraph iff at least one of them is colored green. If all vertices on the top
row are colored red, then all the vertices on the middle row adjacent to vertices
on the top row must be colored blue. Starting from the left, the vertices along
the bottom row must be colored alternately red and green. This will lead to
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a conflict with the last vertex in the bottom row. (If the number of literals in
the clause is odd instead of even as pictured, then the rightmost vertex in the
bottom row is R instead of G.)

Conversely, suppose one of the vertices on the top row is colored green.
Pick one such vertex. Color the vertex directly below it in the middle row red
and the vertex directly below that on the bottom row blue. Color all other
vertices on the middle row blue. Starting from the left and right ends, color
the vertices along the bottom row as forced, either red or green. The coloring
can always be completed.

Thus if there is a legal 3-coloring, then the subgraph corresponding to each
clause must have at least one green literal, and truth values can be assigned so
that the green literals are true. This gives a satisfying assignment. Conversely,
if there is a satisfying assignment, color the true variables green and the false
ones red. Then there is a green literal in each clause, so the coloring can be
extended to a 3-coloring of the whole graph.

From this it follows that B is satisfiable iff G is 3-colorable, and the graph G
can be constructed in polynomial time. Therefore CNFSat <P 3-colorability.

One can trivially reduce 3-colorability to k-colorability for £ > 3 by ap-
pending a k — 3 clique and edges from every vertex of the k — 3 clique to every
other vertex.

One may be tempted to conclude that in problems like k-CNFSat and
k-colorability, larger values of k always make the problem harder. On the
contrary, we shall see in the next lecture that the k-colorability problem for
planar graphs is easy for k¥ < 2 and k > 4, but as hard as CNFSat for k = 3.



Lecture 23 More NP-Complete Problems

23.1 Planar Graph Colorability

Often in problems with a parameter k like k-CNFSat and k-colorability, larger
values of £ make the problem harder. This is not always the case. Consider the
problem of determining whether a planar graph has a k-coloring. The problem
is trivial for k = 1, easy for k = 2 (check by DFS or BFS whether the graph is
bipartite, i.e. has no odd cycles), and trivial for kK = 4 or greater by the Four
Color Theorem, which says that every planar graph is 4-colorable. This leaves
= 3. We show below that 3-colorability of planar graphs is no easier than
3-colorability of arbitrary graphs. This result is due to Garey, Johnson, and
Stockmeyer [40]; see also Lichtenstein [72] for some other NP-completeness
results involving planar graphs.
We will reduce 3-colorability of an arbitrary graph to the planar case.
Given an undirected graph G = (V, E)), possibly nonplanar, embed the graph
in the plane arbitrarily, letting edges cross if necessary. We will replace each
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edge crossing with the planar widget W shown below.

>

The widget W is a planar graph with the following interesting properties:

S
[

(i) in any legal 3-coloring of W, the opposite corners are forced to have the
same color;

(ii) any assignment of colors to the corners such that opposite corners have
the same color extends to a 3-coloring of all of W.

To see this, color the center of W red; then the vertices adjacent to the center
must be colored blue or green alternately around the center, say

g
T
g

Now the northeast vertex can be colored either red or green. In either case,
the colors of all the remaining vertices are forced (proceed counterclockwise to
obtain the left hand coloring and clockwise to obtain the right hand coloring):

b
r
g
g 9
r

T
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All other colorings are obtained from these by permuting the colors.

For each edge (u,v) in E, replace each point at which another edge crosses
(u,v) in the embedding with a copy of W. Identify the adjacent corners of
these copies of W and identify the outer corners of the extremal copies with u
and v, all except for one pair, which are connected by an edge. The following
diagram illustrates an edge (u,v) with four crossings before and after this
operation. In this diagram, the copy of W closest to v is connected to v by
an edge, and all other adjacent corners of copies of W are identified.

- -

The resulting graph G’ = (V’, E) is planar. If

x:V' — {red, blue, green}

is a 3-coloring of G', then property (i) of W implies that x restricted to V is
a 3-coloring of G. Conversely, if x : V — {red, blue, green} is a 3-coloring of
G, then property (ii) of W allows x to be extended to a 3-coloring of G'.

We have given a reduction of the 3-colorability problem for an arbitrary
graph to the same problem restricted to planar graphs. Thus the latter prob-
lem is as hard as the former.

23.2 NP-Completeness

The following definitions lay the foundations of the theory of NP-complete-
ness. More detail can be found in [3, 39].

We fix once and for all a finite alphabet X consisting of at least two symbols.
From now on, we take ¥ to be the problem domain, and assume that instances
of decision problems are encoded as strings in £* in some reasonable way.

Definition 23.1 The complexity class NP consists of all decision problems
A C X* such that A is the set of input strings accepted by some polynomial-
time-bounded nondeterministic Turing machine. The complexity class P con-
sists of all decision problems A C ¥* such that A is the set of input strings
accepted by some polynomial-time-bounded deterministic Turing machine. O

Note that P C NP since every deterministic machine is a nondeterministic
one that does not happen to make any choices. It is not known whether
P = NP; this is arguably the most important outstanding open problem in
computer science.
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Definition 23.2 The set A is NP-hard (with respect to the reducibility rela-
tion <P ) if B <P A for all B € NP. a

Theorem 23.3 If A is NP-hard and A € P, then P = NP.

Proof. For any B € NP, compose the polynomial-time algorithm for A
with the polynomial-time function reducing B to A to get a polynomial time
algorithm for B. ]

Definition 23.4 The set A is NP-complete if A is NP-hard and A € NP. O
Theorem 23.5 If A is NP-complete, then
AeP < P=NP.

Definition 23.6 The complexity class coNP is the class of sets A C ¥*
whose complements A = £* — A are in NP. A set B is coNP-hard if every
problem in coNP reduces in polynomial time to B. It is coNP-complete if in
addition it is in coNP. O

The following theorem is immediate from the definitions.

Theorem 23.7
1. A<P Biff A<P B.
2. A is NP-hard iff A is coNP-hard.
3. A is NP-complete iff A is coNP-complete.
4. If A is NP-complete then A € coNP iff NP = coNP.

It is unknown whether NP = coNP.

We will show later that the problems CNFSat, 3CNFSat, Clique, Vertex
Cover, and Independent Set, which we have shown to be =P -equivalent, are
all in fact NP-complete.

23.3 More NP-complete problems

Before we prove the NP-completeness of the problems we have been consider-
ing, let us consider some more problems in this class. Some of these problems,
such as Traveling Salesman, Bin Packing, and Integer Programming, are very
natural and important in operations research and industrial engineering. We
start with the exact cover problem.

Definition 23.8 (Exact Cover) Given a finite set X and a family of subsets
S of X, is there a subset S’ C S such that every element of X lies in exactly
one element of S'? |
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We show that the problem Exact Cover is NP-hard by reduction from
the problem of 3-colorability of undirected graphs. See [39] for a different
approach involving the 3-dimensional matching problem.

Lemma 23.9 3-Colorability <P Ezact Cover.

Proof. Suppose we are given an undirected graph G = (V, E). We show
how to produce an instance (X, S) of the exact cover problem for which an
exact cover exists iff G has a 3-coloring.

Let C = {red, blue, green}. For each u € V, let N(u) be the set of
neighbors of u in G. Since G is undirected, u € N(v) iff v € N(u).

For each u € V, we include u in X along with 3(|N(u)| + 1) additional
elements of X. These 3(|N(u)| + 1) additional elements are arranged in three
disjoint sets of |N(u)| + 1 elements each, one set corresponding to each color.
Call these three sets Sred, SPlue Gereen  For each color ¢ € C, pick a special
element p¢ from S¢ and associate the remaining |V (u)| elements of S¢ with
the elements of N(u) in a one-to-one fashion. Let gZ, denote the element of
S¢ associated with v € N(u).

The set S will contain all two element sets of the form

{u, P} (31)

for u € V and c € C, as well as all the sets S_ for u € V and c € C. Here is a
picture of what we have so far for a vertex u of degree 5 with v € N(u). The
ovals represent the three sets St and the lines represent the three two-element
sets (31).

reen
S5

To complete S, we include all two element sets of the form

{50, 45u) (32)

for all (u,v) € E and ¢, € C with ¢ # ¢. Here is a picture showing a part
of the construction for two vertices u and v of degrees 5 and 3 respectively,
where (u,v) in E. The six lines in the center represent the two-element sets

(32).
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We now argue that the instance (X, .S) of Exact Cover just constructed is
a “yes” instance, i.e. an exact cover S’ C S of X exists, iff the graph G has
a 3-coloring. Suppose first that G has a 3-coloring x : V. — C. We construct
an exact cover S’ C S as follows. For each vertex u, let S’ contain the sets
{u,pX™} and S¢ for ¢ # x(u). This covers everything except points of the
form gX(*), where (u,v) € E. For each edge (u,v), let S’ also contain the set
{@®) ] gX(")}. This set is in S since x(u) # x(v). This covers all the remaining
points, and each point is covered by exactly one set in S’

Conversely, suppose S’ is an exact cover. Each u is covered by exactly one
set in S’, and it must be of the form {u,pS} for some c. Let x(u) be that c;
we claim that x is a valid coloring, i.e. that if (u,v) € E then x(u) # x(v).
For each u, since {u,pX(} € S, we cannot cover p¢ for ¢ # x(u) by any set
of the form (31), since u is already covered; therefore they must be covered
by the sets S;, which are the only other sets containing the points pg. The
sets {u,pX™} and S, ¢ # x(u) cover all points except those of the form

X(w) (u,v) € E. The only way S’ can cover these remaining points is by the
sets (32). By construction of S, these sets are of the form {gX*),gX")} for

uv )

(u,v) € E and x(u) # x(v). m}



Lecture 24 Still More NP-Complete
Problems

In this lecture we use the basic NP-complete problems given in previous lec-
tures, which may have appeared contrived, to show that several very natural
and important decision problems are NP-complete.

We first consider a collection of problems with many applications in oper-
ations research and industrial engineering.

Definition 24.1 (Knapsack) Given a finite set .S, integer weight function
w: S — N, benefit function b : S — N, weight limit W € N, and desired
benefit B € N, determine whether there exists a subset S’ C S such that

Y ow() < W

aeS’

> ba) > B.

acsS’
O

The name is derived from the problem of trying to decide what you really
need to take with you on your camping trip. For another example: you are
the coach of a crew team, and you wish to select a starting squad of rowers
with a combined weight not exceeding W and combined strength at least B.
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Definition 24.2 (Subset Sum) Given a finite set S, integer weight function
w: S — N, and target integer B, does there exist a subset S’ C S such that

> w(@ = B?
a€s’
[m]

Definition 24.3 (Partition) Given a finite set S and integer weight function
w: S — N, does there exist a subset S’ C S such that

Sw@) = Y w(a)?

acs’ aeS-S'

Trivially, Partition reduces to Subset Sum by taking

1
B = =Y w(a).
2 a€sS
Also, Subset Sum reduces to Partition by introducing two new elements of
weight N — B and N — (X — B), respectively, where

T = Y wla)
a€eS

and N is a sufficiently large number (actually N > ¥ will do). The number
N is chosen large enough so that both new elements cannot go in the same
partition element, because together they outweigh all the other elements. Now
we ask whether this new set of elements can be partitioned into two sets of
equal weight (which must be N). By leaving out the new elements, this gives
a partition of the original set into two sets of weight B and ¥ — B.

Both Subset Sum and Partition reduce to Knapsack. To reduce Partition
to Knapsack, take b=w and W = B = }%.

We show that these three problems are as hard as Exact Cover by reducing
Exact Cover to Subset Sum. Assume that X = {0,1,...,m — 1} in the given
instance (X, S) of Exact Cover. For z € X, define

#r = |{AeS|ze A},

the number of elements of S containing z. Let p be a number exceeding all
#zr,0 <z <m-—1. Encode A € § as the number

w(d) = Y p°

T€EA

and take

m—1
B = * =
xgp p—1
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In p-ary notation, w(A) looks like a string of 0’s and 1’s with a 1 in position
z for each z € A and 0 elsewhere. The number B in p-ary notation looks like
a string of 1’s of length m. Adding the numbers w(A) simulates the union of
the sets A. The number p was chosen big enough so that we do not get into
trouble with carries. Asking whether there is a subset sum that gives B is the
same as asking for an exact cover of X.

The bin packing problem is an important problem that comes up in indus-
trial engineering and computer memory management.

Definition 24.4 (Bin Packing) Given a finite set .S, volumes w : S — N/,
and bin size B € N, what is the minimum number of bins needed to contain
all the elements of S?7 Expressed as a decision problem, given the above data
and a natural number k, does there exist a packing into k or fewer bins? O

We can easily reduce Partition to Bin Packing by taking B to be half the
total weight of all elements of S and k = 2.

An extremely important and general problem in operations research is the
integer programming problem.

Definition 24.5 (Integer Programming) Given rational numbers a;;, c;,
and b;, 1 <i<m, 1< j<n, find integers z1, s, ..., T, that maximize the
linear function

n
Z CiT5
j=1
subject to the linear constraints

Zaijx]- S b,’, ISZS’ITL (33)
j=1

The corresponding decision problem is to test whether there exists a point
with integer coordinates in a region defined by the intersection of half-spaces:
given a;; and b;, 1 <3 < m, 1 < j < n, test whether there exists an integer
point zy,...,x, in the region (33). a

In linear programming, the z;’s are not constrained to be integers, but may be
real. The linear programming problem was shown to be solvable in polynomial
time in 1980 by Khachian [60] using a method that has become known as the
ellipsoid method. In 1984, a more efficient polynomial time algorithm was
given by Karmarkar [56]; his method has become known as the interior point
method. Since that time, several refinements have appeared [90, 102]. The
older simplex method, originally due to Dantzig (see [19]), is used successfully
in practice but is known to be exponential in the worse case.

The integer programming problem is NP-hard, as the following reduction
from Subset Sum shows: the instance of Subset Sum consisting of a set S with
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weights w : S — N and threshold B has a positive solution iff the Integer
Programming instance

0 <z, <1, a€sf

> w(a)z, = B

a€S

has an integer solution. It is also possible to show that Integer Programming
is in NP by showing that if there exists an integer solution, then there exists
one with only polynomially many bits as a function of the size of the input
(n, m, and number of bits in the a;;, b;, and ¢;) [16]. The integer solution can
then be guessed and verified in polynomial time.

Definition 24.6 (Hamiltonian Circuit) A Hamiltonian circuit in a di-
rected or undirected graph G = (V,E) is a circuit that visits each vertex
in the graph exactly once. It is like an Euler circuit, except the constraint is
on vertices rather than edges. The Hamiltonian circuit problem is to determine
for a given graph G whether a Hamiltonian circuit exists. a

We reduce Vertex Cover to Hamiltonian Circuit. Recall that a vertez cover
in an undirected graph G = (V, E) is a set of vertices U C V such that every
edge in E is adjacent to some vertex in U. The vertex cover problem is to
determine, given G = (V, E) and k > 0, whether there exists a vertex cover U
in G of cardinality at most k.

We will build a graph H which will have a Hamiltonian circuit iff G has a
vertex cover of size k. The main building block of H for the directed Hamil-
tonian circuit problem is a widget consisting of four vertices connected as
shown.

v
3 4
1 2
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There is one widget corresponding to each edge (u,v) € E. In the widget
corresponding to the edge (u,v), one side corresponds to the vertex u and the
other to the vertex v.

These widgets have the following interesting property: any Hamiltonian
circuit that enters at vertex 1 must leave at vertex 2, and there are only
two ways to pass through, either straight through or in a zigzag pattern that
crosses to the other side and back. If it goes straight through, then all the
vertices on the u side and none of the vertices on the v side are visited. If
it crosses to the other side and back, then all the vertices on both sides are
visited. Any other path through the widget leaves some vertex stranded, so
the path could not be a part of a Hamiltonian circuit. Thus any Hamiltonian
circuit that enters at 1 either picks up the vertices in the widget all at once
using the zigzag path, or goes straight through and picks up only the vertices
on one side, then re-enters at 3 later on to pick up the vertices on the other
side.

The graph H is formed as follows. For each vertex u, we string together
end-to-end all the u sides of all the widgets corresponding to edges in F inci-
dent to u. Call this the u loop. In addition, H has a set K of k extra vertices,
where k is the parameter of the given instance of Vertex Cover denoting the
size of the vertex cover we are looking for. There is an edge from each vertex
in K to the first vertex in the u loop, and an edge from the last vertex in the
u loop to each vertex in K.

N U1 U2 U3 Uy A
[ A 4
y y N y
U n u U
from vertices in K to vertices in K

We now show that there is a vertex cover of size k in G iff H has a Hamiltonian
circuit. Suppose there is a vertex cover {uy,...,ux} of G of size k. Then H
has a Hamiltonian circuit: starting from the first vertex of K, go through the
uy loop. When passing through the widget corresponding to an edge (u1,v)
of G, take the straight path if v is in the vertex cover, i.e. if v = u; for some j
(the other side of the widget will be picked up later when we traverse the u;
loop), and take the zigzag path if v is not in the vertex cover. When leaving
the u; loop, go to the second vertex of K, then through the uy loop, and so
on, all the way around and back to the first vertex of K.

Conversely, if H has a Hamiltonian circuit, the number of u loops traversed
must be exactly k, and that set of vertices u forms a vertex cover of G.

This argument holds for both the directed and undirected case. Thus,
determining the existence of a Hamiltonian circuit in a directed or undirected
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graph is NP-hard. It is also in NP, since a Hamiltonian circuit can be guessed
and verified in polynomial time.

Finally, we consider the Traveling Salesman Problem (TSP). The optimiza-
tion version of this problem asks for a tour through a set of cities minimizing
the total distance. There are several versions of TSP, depending on the prop-
erties of the graph and distance function and the type of tour desired. We
consider here a quite general formulation.

Definition 24.7 (Traveling Salesman (TSP)) Given a number k > 0 and
a directed graph G = (V, E) with nonnegative edge weights w : E — N, does
there exist a tour of total weight at most k visiting every vertex at least once
and returning home? O

Garey and Johnson [39] use a slightly more restricted version which asks
for a tour visiting each vertex exactly once. We prefer the more general version
above, since to get anywhere from Ithaca and back usually involves at least
two stops in Pittsburgh.

TSP is in NP provided we can argue that optimal tours are short enough
that they can be guessed and verified in polynomial time. Each vertex can be
visited at most n times in an optimal tour, because otherwise we could cut
out a loop and still visit all vertices. We can thus guess a tour of length at
most n? and verify that its total weight is at most .

TSP is NP-hard, since there is a straightforward reduction from Hamil-
tonian Circuit: give all edges unit weight and ask for a T