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Preface

Few technical terms have gained such rapid notoriety as the appela-
tion ‘“NP-complete.”” In the short time since its introduction in the early
1970’s, this term has come to symbolize the abyss of inherent intractability
that algorithm designers increasingly face as they seek to solve larger and
more complex problems. A wide variety of commonly encountered prob-
lems from mathematics, computer science, and operations research are now
known to be NP-complete, and the collection of such problems continues (o
grow almost daily. Indeed, the NP-complete problems are now so pervasive
that it is important for anyone concerned with the computational aspects of
these fields to be familiar with the meaning and implications of this concept.

“This book is intended as a detailed guide to the theory of NP-
completeness, emphasizing those concepts and techniques that seem 1o be
most useful for applying the theory to practical problems. [t can be viewed
as consisting of three parts.

The first part, Chapters 1 through 5, covers the basic theory of NP-
completeness. Chapter 1 presents a relatively low-level introduction to
some of the central notions of computational complexity and discusses the
significance of NP-completeness in this context. Chapters 2 through 5 pro-
vide the detailed definitions and proof techniques necessary for thoroughly
understanding and applying the theory.

The second part, Chapters 6 and 7, provides an overview of two al-
ternative directions for further study. Chapter 6 concentrates on the search
for efficient ‘‘approximation’’ algorithms for NP-complete problems, an area
whose development has seen considerable interplay with the theory of NP-
completeness. Chapter 7 surveys a large number of theoretical topics in
computational complexity, many of which have arisen as a consequence of
previous work on NP-completeness. Both of these chapters {especially
Chapter 7) are intended solely as introductions to these areas, with our ex-
pectation being that any reader wishing to pursue particular topics in more
detail will do so by consulting the cited references.

The third and final part of the book is the Appendix, which contains
an extensive list (more than 300 main entries, and several times this many
results in total) of NP-complete and NP-hard problems. Annotations to the
main entries discuss what is known about the complexity of subproblems
and variants of the stated problems.
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The book should be suitable for use as a supplementary text in
courses on algorithm design, computational complexity, operations research,
or combinatorial mathematics. It also can be used as a starting point for
seminars on approximation algorithms or computational complexity at the
-graduate or advanced undergraduate level. The second author has used a
preliminary draft as the basis for a graduate seminar on approximation algo-
rithms, covering Chapters 1 through 5 in about five weeks and then pursu-
ing the topics in Chapter 6, supplementing them extensively with additional
material from the references. A seminar on computational complexity
might proceed similarly, substituting Chapter 7 for Chapter 6 as the initial
access point to the literature. It is also possible to cover both chapters in a
combined seminar.

More generally, the book can serve both as a self-study text for any-
one interested in learning about the subject of NP-completeness and as a
reference book for researchers and practitioners who are concerned with al-
gorithms and their complexity. The list of NP-complete problems in the
Appendix can be used by anyone familiar with the central notions of NP-
completeness, even without having read the material in the main text. The
novice can gain such familiarity by skimming the material in Chapters 1
through 5, concentrating on the informal discussions of definitions and
techniques, and returning to the more formal material only as needed for
clarification. To aid those using the book as a reference, we have included a
substantial number of terms in the Subject Index, and the extensive Refer-
ence and Author Index gives the sections where each reference is men-
tioned in the text.

We are indebted to a large number of people who have helped us
greatly in preparing this book. Hal Gabow, Larry Landweber, and Bob Tar-
jan taught from preliminary versions of the book and provided us with valu-
able suggestions based on their experience. The following people read pre-
liminary drafts of all or part of the book and made constructive comments:
Al Aho, Shimon Even, Ron Graham, Harry Hunt, Victor Klee, Albert
Meyer, Christos Papadimitriou, Henry Pollak, Sartaj Sahni, Ravi Sethi, Lar-
ry Stockmeyer, and Jeff Ullman. A large number of researchers, too
numerous to mention here (but see the Reference and Author Index),
responded to our call for NP-completeness results and contributed toward
making our list of NP-complete problems as extensive as it is. Several of
our colleagues at Bell Laboratories, especially Brian Kernighan, provided in-
valuable assistance with computer typesetting on the UNIX® system. Final-
ly, special thanks go to Jeanette Reinbold, whose facility with translating
our handwritten hieroglyphics into faultless input to the typesetting system
made the task of writing this book so much easier.

Murray Hill, New Jersey MiCHAEL R. GAREY
October, 1978 DAVID S. JOHNSON

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness



Computers, Complexity,
and Intractability

1.1 Introduction

The subject matter of this book is perhaps best introduced through the
following, somewhat whimsical, example.

Suppose that you, like the authors, are employed in the halls of indus-
try. One day your boss calls you into his office and confides that the com-
pany is about to enter the highly competitive ‘‘bandersnatch’ market. For
this reason, a good method is needed for determining whether or not any
given set of specifications for a new bandersnatch component can be met
and, if so, for constructing a design that meets them. Since you are the
company’s chief algorithm designer, your charge is to find an efficient algo-
rithm for doing this.

After consulting with the bandersnatch department to determine exactly
what the problem is, you eagerly hurry back to your office, pull down your
reference books, and plunge into the task with great enthusiasm. Some
weeks later, your office filled with mountains of crumpled-up scratch paper,
your enthusiasm has lessened considerably. So far you have not been able
to come up with any algorithm substantially better than searching through
all possible designs. This would not particularly endear you to your boss,
since it would involve years of computation time for just one set of
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specifications, and the bandersnatch department is already 13 components
behind schedule. You certainly don’t want to return to his office and re-

port:
7
3
@}

I can’t find an efficient algorithm, I guess I'm just too dumb.”

To avoid serious damage to your position within the company, it would
be much better if you could prove that the bandersnatch problem is in-
herently intractable, that no algorithm could possibly solve it quickly. You
then could stride confidently into the boss’s office and proclaim:

‘I can’t find an efficient algorithm, because no such algorithm is possible!”’

Unfortunately, proving inherent intractability can be just as hard as
finding efficient algorithms. Even the best theoreticians have been stymied
in their attempts to obtain such proofs for commonly encountered hard
problems. However, having read this book, you have discovered something

1.1 INTRODUCTION 3

almost as good. The theory of NP-completeness provides many straightfor-
ward techniques for proving that a given problem is “‘just as hard” as a
large number of other problems that are widely recognized as being difficult
and that have been confounding the experts for years. Armed with these
techniques, you might be able to prove that the bandersnatch problem is
NP-complete and, hence, that it is equivalent to all these other hard prob-
lems. Then you could march into your boss’s office and announce:

L L L L

¥
\ @//

I can’t find an efficient algorithm, but neither can all these famous people.”

At the very least, this would inform your boss that it would do no good to
fire you and hire another expert on algorithms.

Of course, our own bosses would frown upon.our writing this book if
its sole purpose was to protect the jobs of algorithm designers. Indeed, dis-
covering that a problem is NP-complete is usually just the beginning of
work on that problem. The needs of the bandersnatch department won’t
disappear overnight simply because their problem is known to be NP-
complete. However, the knowledge that it is NP-complete does provide
valuable information about what lines of approach have the potential of be-
ing most productive. Certainly the search for an efficient, exact algorithm
should be accorded low priority. It is now more appropriate to concentrate
on other, less ambitious, approaches. For example, you might look for
efficient algorithms that solve various special cases of the general problem.
You might look for algorithms that, though not guaranteed to run quickly,
seem likely to do so most of the time. Or you might even relax the prob-
lem somewhat, looking for a’ fast algorithm that merely finds designs that
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meet most of the component specifications. In short, the primary applica-
tion of the theory of NP-completeness is to assist algorithm designers in
directing their problem-solving efforts toward those approaches that have
the greatest likelihood of leading to useful algorithms.

In the first chapter of this ‘‘guide’ to NP-completeness, we introduce
many of the underlying concepts, discuss their applicability (as well as give
some cautions), and outline the remainder of the book.

1.2 Problems, Algorithms, and Complexity

In order to elaborate on what is meant by ‘‘inherently intractable”
problems and problems having ‘‘equivalent’” difficulty, it is important that
we first agree on the meaning of several more basic terms.

Let us begin with the notion of a problem. For our purposes, a problem
will be a general question to be answered, usually possessing several param-
eters, or free variables, whose values are left unspecified. A problem is
described by giving: (1) a general description of all its parameters, and (2)
a statement of what properties the answer, or solution, is required to satisfy.
An instance of a problem is obtained by specifying particular values for all
the problem parameters.

As an example, consider the classical “‘traveling salesman problem.”
The parameters of this problem consist of a finite set C = {¢y,¢5, . . ., ¢y}
of ““cities” and, for each pair of cities ¢;,¢; in C, the “distance” d{¢;,c;)
between them. A solution is an ordering <¢p(1),Cx(@)s - - - » Cx(m) > Of the
given cities that minimizes

m—|
:i d(cﬂ(i)vcv(/+l))] + dlen(m»Ca)
pr
This expression gives the length of the ‘“‘tour’ that starts at ¢, visits
each city in sequence, and then returns directly to ¢, from the last city
Cr(m)-

One instance of the traveling salesman problem, illustrated in Figure
1.1, is given by C =/|c|,ene3c), dle,c) =10, dlepe3) =5,
d(ci,eq) =9, dleyes) =6, dlcyey) =9, and d(cs.cy) = 3. The ordering
<¢1,€63,¢4,¢3> is a solution for this instance, as the corresponding tour has
the minimum possible tour length of 27.

Algorithms are general, step-by-step procedures for solving problems.
For concreteness, we can think of them simply as being computer programs,
written in some precise computer language. An algorithm is said to solve a
problem II if that algorithm can be applied to any instance / of II and is
guaranteed always to produce a solution for that instance /. We emphasize
that the term ‘‘solution’ is intended here strictly in the sense introduced
above, so that, in particular, an algorithm does not ‘‘solve’” the traveling
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Figure 1.1 An instance of the traveling salesman problem and a tour of length 27,
which is the minimum possible in this case.

salesman problem unless it always constructs an ordering that gives a
minimum length tour.

. In general, we are interested in finding the most “‘efficient” algorithm
for solving a problem. In its broadest sense, the notion of efficiency in-
volves all the various computing resources needed for executing an algo-
rithm. However, by the “most efficient’ algorithm one normally means the
fastest. Since time requirements are often a dominant factor determining
whether or not a particular algorithm is efficient enough to be useful in
practice, we shall concentrate primarily on this single resource.

The time requirements of an algorithm are conveniently expressed in
terms of a single variable, the ‘‘size’” of a problem instance, which is in-
tended to reflect the amount of input data needed to describe the instance.
This is convenient because we would expect the relative difficulty of prob-
lem instances to vary roughly with their size. Often the size of a problem
instance is measured in an informal way. For the traveling salesman prob-
lem, for example, the number of cities is commonly used for this purpose.
However, an m-city problem instance includes, in addition to the labels of
the m cities, a collection of m(m—1)/2 numbers defining the inter-city dis-
tances, and the sizes of these numbers also contribute to the amount of in-
put data. If we are to deal with time requirements in a precise, mathemati-
cal manner, we must take care to-define instance size in such a way that all
these factors are taken into account.

To do this, observe that the description of a problem instance that we
provide as input to the computer can be viewed as a single finite string of
symbols chosen from a finite input alphabet. Although there are many
different ways in which instances of a given problem might be described, let
us assume that one particular way has been chosen in advance and that each
problem has associated with it a fixed encoding scheme, which maps problem
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instances into the strings describing them. The input length for an instance
I of a problem II is defined to be the number of symbols in the description
of I obtained from the encoding scheme for I1. It is this number, the input
length, that is used as the formal measure of instance size.

For example, instances of the traveling salesman problem might be
described using the alphabet {c,[,1,/,0,1,2,3,4,5,6,7,8,9}, with our pre-
vious example of a problem instance being encoded by the string
“cl1lcl2lcl31cl4]l//10/5/9//6/9//3.” More complicated instances would be
encoded in analogous fashion. If this were the encoding scheme associated
with the traveling salesman problem, then the input length for our example
would be 32.

The time complexity function for an algorithm expresses its time require-
ments by giving, for each possible input length, the largest amount of time
needed by the algorithm to solve a problem instance of that size. Of
course, this function is not well-defined until one fixes the encoding scheme
to be used for determining input length and the computer or computer
model to be used for determining execution time. However, as we shall
see, the particular choices made for these will have little effect on the broad
distinctions made in the theory of NP-completeness. Hence, in what fol-
lows, the reader is advised merely to fix in mind a particular encoding
scheme for each problem and a particular computer or computer model, and

to think in terms of time complexity as determined from the corresponding .

input lengths and execution times.

1.3 Polynomial Time Algorithms and Intractable Problems

Different algorithms possess a wide variety of different time complexity
functions, and the characterization of which of these are “‘efficient enough”
and which are ““too inefficient”” will always depend on the situation at hand.
However, computer scientists recognize a simple distinction that offers con-
siderable insight into these matters. This is the distinction between polyno-
mial time algorithms and exponential time algorithms.

Let us say that a function f(n) is O(g(n)) whenever there exists a
constant ¢ such that | f(n)| < c-|g(n)] for all values of n>0. A polynomi-
al time algorithm is defined to be one whose time complexity function is
O(p(n)) for some polynomial function p, where n is used to denote the in-
put length. Any algorithm whose time complexity function cannot be so
bounded is called an exponential time algorithm (aithough it should be noted
that this definition includes certain non-polynomial time complexity func-
tions, like n'%"  which are not normally regarded as exponential functions).

The distinction between these two types of algorithms has particular
significance when considering the solution of large problem instances. Fig-
ure 1.2 illustrates the differences in growth rates among several typical com-
plexity functions of each type, where the functions express execution time
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in terms of microseconds. Notice the much more explosive growth rates
for the two exponential complexity functions.

Size n
Time
complexity 10 20 30 40 50 60
function
.00001 .00002 .00003 .00004 .00005 .00006
n
second | second second second second second
n? .0001 .0004 .0009 .0016 .0025 .0036
second | second second second second second
3 .001 .008 .027 .064 125 216
second | second second second second second
e B 3.2 243 1.7 5.2 "13.0
second | seconds | seconds | minutes minutes minutes
om .001 1.0 17.9 12.7 357 366
second | second | minutes days years centuries
30 059 58 6.5 3855 2x108 1.3x1013
second | minutes years centuries | centuries | centuries

Figure 1.2 Comparison of several polynomial and exponential time complexity
functions.

Even more revealing is an examination of the effects of imgroved com-
puter technology on algorithms having these time complexity functions.
Figure 1.3 shows how the largest problem instance solvable in one hour
would change if we had a computer 100 or 1000 times faster than our
present machine. Observe that with the 2” algorithm a thousand-fold in-
crease in computing speed only adds 10 to the size of the largest problem
instance we can solve in an hour, whereas with the »° algorithm this size al-
most quadruples.

These tables indicate some of the reasons why polynomial time algo-
rithms are generally regarded as being much more desirable than exponen-
tial time algorithms. This view, and the distinction between the two types
of algorithms, is central to our notion of inherent intractability and to the-
theory of NP-completeness.

The fundamental nature of this distinction was first discussed in [Cob-
ham, 1964] and [Edmonds, 1965al. Edmonds, in particular, equated poly-
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Size of Largest Problem Instance
Solvable in 1 Hour

Zci:zlexity With present | With computer With computer
function computer 100 times faster | 1000 times faster
n N, 100 N, 1000 ¥,

n? N, 10 N, 31.6 N,
2N 4.64 N, 10 N,

n’ N, 2.5 N,y 3.98 N,
27 N; Ns+6.64 Ns+9.97
3" N Ng+4.19 Ng+6.29

Figure 1.3 Effect of improved technology on several polynomial and exponential
time algorithms.

nomial time algorithms with “‘good’” algorithms and conjectured that certain
integer programming problems might not be solvable by such ‘‘good” algo-
rithms. This reflects the viewpoint that exponential time algorithms should
not be considered ‘‘good’’ algorithms, and indeed this usually is the case.
Most exponential time algorithms are merely variations on exhaustive
search, whereas polynomial time algorithms generally are made possible
only through the gain of some deeper insight into the structure of a prob-
lem. There is wide agreement that a problem has not been ‘‘well-solved”
until a polynomial time algorithm is known for it. Hence, we .shall refer to
a problem as intractable if it is so hard that no polynomial time algorithm
can possibly solve it.

Of course, this formal use of ‘‘intractable™ should be viewed only as a
rough approximation to its dictionary meaning. The distinction between
“efficient’” polynomial time algorithms and ‘‘inefficient’’ exponential time
algorithms admits of many exceptions when the problem instances of in-
terest have limited size. Even in Figure 1.2, the 2" algorithm is faster than
the n° algorithm for n € 20. More extreme examples can be constructed
easily.

Furthermore, there are some exponential time algorithms that have
been quite useful in practice. Time complexity as defined is a worst-case
measure, and the fact that an algorithm has time complexity 2”7 means only
that at least one problem instance of size n requires that much time. Most
problem instances might actually require far less time than that, a situation
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that appears to hold for several well-known algorithms. The simplex algo-
rithm for linear programming has been shown to have exponential time
complexity [Klee and Minty, 1972], [Zadeh, 19731, but it has an impressive
record of running quickly in practice. Likewise, branch-and-bound algo-
rithms for the knapsack problem have been so successful that many consid-
er it to be a ‘“‘well-solved’’ problem, even though these algorithms, too,
have exponential time complexity.

Unfortunately, examples like these are quite rare. Although exponen-
tial time algorithms are known for many problems, few of them are regard-
ed as being very useful in practice. Even the successful exponential time al-
gorithms mentioned above have not stopped researchers from continuing to
search for polynomial time algorithms for solving those problems. In fact,
the very success of these algorithms has led to the suspicion that they
somehow capture a crucial property of the problems whose refinement could
lead to still better methods. So far, little progress has been made toward
explaining this success, and no methods are known for predicting in ad-
vance that a given exponential time algorithm will run quickly in practice.

On the other hand, the much more stringent bounds on execution time
satisfied by polynomial time algorithms often permit such. predictions to be
made. Even though an algorithm having time complexity n!® or 10942
might not be considered likely to run quickly in practice, the polynomially
solvable problems that arise naturally tend to be solvable within polynomial
time bounds that have degree 2 or 3 at worst and that do not involve ex-
tremely large coefficients. Algorithms satisfying such bounds can be con-
sidered to be “‘provably efficient,”” and it is this much-desired property that
makes polynomial time algorithms the preferred way to solve problems.

QOur definition of “‘intractable’” also provides a theoretical framework of
considerable generality and power. The intractability of a problem turns out
to be essentially independent of the particular encoding scheme and com-
puter model used for determining time complexity.

Let us first consider encoding schemes. Suppose for example that we
are dealing with a problem in which each instance is a graph G = (V,E),
where V is the set of vertices and F is the set of edges, each edge being an
unordered pair of vertices. Such an instance might be described (see Figure
1.4) by simply listing all the vertices and edges, or by listing the rows of the
adjacency matrix for the graph, or by listing for each vertex all the other
vertices sharing a common edge with it (a ‘“‘neighbor’’ list). Each of these
encodings can give a different input length for the same graph. However, it
is easy to verify (see Figure 1.5) that the input lengths they determine
differ at most polynomially from one another, so that any algorithm having
polynomial time complexity under one of these encoding schemes also will
have polynomial time complexity under all the others. In fact, the standard
encoding schemes used in practice for any particular problem always seem
to differ at most polynomially from one another. It would be difficult to
imagine a ‘‘reasonable’” encoding scheme for a problem that differs more
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than polynomially from the standard ones. Although what we mean here by
““reasonable” cannot be formalized, the following two conditions capture
much of the notion:

(1) the encoding of an instance / should be concise and not ‘‘pad-
ded’’ with unnecessary information or symbols, and

(2) numbers occurring in / should be represented in binary (or de-
cimal, or octal, or in any fixed base other than 1).

If we restrict ourselves to encoding schemes satisfying these conditions,
then the particular encoding scheme used should not affect the determina-
tion of whether a given problem is intractable.

Encoding Scheme String Length

Vertex list, Edge list VILIVRIVBIVIAI(vIIIVR2ZD (vi2lvi3]) 36

Neighbor list wRDVIVEBHVERDO) 24

Adjacency matrix rows | 0100/1010/0010/0000 19

Figure 1.4 Descriptions of the graph G = (V,E) where V = {V},V,, V3, V,} and
E = {{y,, 1.} [ V5, V3}}, under three different encoding schemes.

Encoding Scheme Lower Bound Upper Bound

Vertex list, Edge list 4y + 10e 4y + 10e + (v +2¢)-[log;p¥}

Neighbor list 2v + 8e 2v + 8e + 2e-flogiVi

Adjacency matrix vidy —1 vidy —1

Figure 1.5 General bounds on input lengths for the three encoding schemes of
Figure 1.4 for graphs G = (V,E) with |V|=v, |E|=e. Since e < 2,
these show that the input lengths differ at most polynomially from each
other. ([x] denotes the least integer not less than x.)

Similar comments can be made concerning the choice of computer
models. All the realistic models of computers studied so far, such as one-
tape Turing machines, multi-tape Turing machines, and random-access
machines (RAMs), are equivalent with respect to polynomial time complex-
ity (for example, see Figure 1.6). One would expect any other ‘‘reason-
able” model to share in this equivalence. The notion of ‘‘reasonable” in-
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tended here is essentially that there is a polynomial bound on the amount of
work that can be done in a single unit of time. Thus, for example, a model
having the capability of performing arbitrarily many operations in parallel
would not be considered ‘‘reasonable,”” and indeed no existing (or planned)
computer has this capability. At any rate, so long as we restrict ourselves to
the standard models of realistic computers, the class of intractable problems
will be unaffected by the particular model used, and we can make our
choice on the basis of convenience without sacrificing the applicability of
our results.

_ Simulating machine A
Simulated machine B 1™ kTM RAM

1-Tape Turing Machine (1TM) - O(T(n)) | O(T(mlogT(n))

k-Tape Turing Machine (kKTM) o(T*(m) - O(T(n)logT(n))

Random Access Machine (RAM) | O(T*(n)) | O(T%(n)) : -

Figure 1.6 Time required by machine A to simulate the execution of an algorithm
of time complexity 7(n) on Machine B (for example, see [Hopcroft
and Ullman, 1969] and {Aho, Hopcroft, and Ullman, 1974]).

1.4 Provably Intractable Problems

Now that we have discussed the formal meaning of ‘‘intractable prob-
lem,”’ it is appropriate that we briefly survey the current state of knowledge
about the existence of intractable problems.

It is useful to begin by distinguishing between two different causes of
intractability allowed by our definition. The first, which is the one we usu-
ally have in mind, is that the problem is so difficult that an exponential
amount of time is needed to discover a solution. The second is that the
solution itself is required to be so extensive that it cannot be described with
an expression having length bounded by a polynomial function of the input
length.

This second cause occurs, for example, in the variant of the traveling
salesman problem that includes a number B as an additional parameter and
that asks for all tours having total length B or less. It is easy to construct
instances of this problem in which exponentially many tours are shorter
than the given bound, so that no polynomial time algorithm could possibly
list them all.

Intractability of this sort is by no means insignificant, and it is impor-
tant to recognize it when it occurs. However, in most cases its existence is
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apparent from the problem definition. In fact, this type of intractability can
be regarded as a signal that the problem is not defined realistically, because
we are asking for more information than we could ever hope to use. Thus,
from now on we shall restrict our attention to the first type of intractability.
Accordingly, only problems for which the solution length is bounded by a
polynomial function of the input length will be considered.

The earliest intractability results for such problems are the classical un-
decidability results of Alan Turing. Over 40 years ago, Turing demonstrated
that certain problems are so hard that they are ‘‘undecidable,” in the sense
that no algorithm at all can be given for solving them. He proved, for ex-
ample, that it is impossible to specify any algorithm which, given an arbi-
trary computcr program and an arbitrary input to that program, can decide
whether or not the program will eventually halt when applied to that input
[Turing, 1936). A variety of other problems are now known to be undecid-
able, including the triviality problem for finitely presented groups [Rabin,
19581, Hilbert’s tenth problem (solvability of polynomial equations in in-
tegers) [Matijasevic, 1970], and several problems of “‘tiling the plane”
[Berger, 1966). Since these undecidable problems cannot be solved by any
algorithm, much less a polynomial time algorithm, they indeed are intract-
able in an especially strong sense.

The first examples of intractable ‘‘decidable’ problems were obtained
in the early 1960’s, as part of work on complexity ‘hierarchies” by Hart-
manis and Stearns [1965]. However, these results involved only “‘artificial”
problems, specifically construcied to have the appropriate properties. It was
not until the early 1970’s that Meyer and Stockmeyer [1972], Fischer and
Rabin [1974], and others finally succeeded in proving some ‘‘natural’’ de-
cidable problems to be intractable. These include a variety of previously
studied problems from automata theory, formal language theory, and
mathematical logic. In fact, the proofs show that these problems cannot be
solved in polynomial time using even a ‘‘nondeterministic’> computer
model, which has the ability to pursue an unbounded number of indepen-
dent computational sequences in parallel. We shall see that this ‘“‘unreason-
able”” computer model plays an important role in the theory of NP-
completeness, and its capabilities will be specified more fully in Chapter 2.

All the provably intractable problems known to date fall into the two
categories we have just mentioned. They are either undecidable or ‘‘non-
deterministically’’ intractable. However, most of the apparently intractable
problems encountered in practice are decidable and can be solved in poly-
nomial time with the aid of a nondeterministic computer. Thus, none of
the proof techniques developed so far is powerful enough to verify the ap-
parent intractability of these problems.
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1.5 NP-Complete Problems

As theoreticians continue to seek more powerful methods for proving
problems intractable, parallel efforts focus on learning more about the ways
in which various problems are interrelated with respect to their difficulty.
As we suggested earlier, the discovery of such relationships between prob-
lems often can provide information useful to algorithm designers.

The principal technique used for demonstrating that two problems are
related is that of ‘“‘reducing’” one to the other, by giving a constructive
transformation that maps any instance of the first problem into an
equivalent instance of the second. Such a transformation provides the
means for converting any algorithm that solves the second problem into a
corresponding algorithm for solving the first problem.

.Many simple examples of such reductions have been known for some
time. For example, Dantzig [1960] reduced a number of combinatorial op-
timization problems to the general zero-one integer linear programming
problem. Edmonds [1962] reduced the graph theoretic problems of ‘‘cover-
ing all edges with a minimum number of vertices’” and ‘‘finding a max-
imum independent set of vertices’ to the general ‘‘set covering problem.”’
Gimpel [1965] reduced the general set covering problem to the “‘prime im-
plicant covering problem’ of logic design. Dantzig, Blattner, and Rao
[1966] described a ‘‘well-known” reduction from the traveling salesman
problem to the ‘‘shortest path problem’ with negative edge lengths allowed.

These early reductions, although rather isolated and limited in scope,
foreshadow the kind of results proved in the theory of NP-completeness.

The foundations for the theory of NP-completeness were laid in a paper
of Stephen Cook, presented in 1971, entitled ““The Complexity of Theorem
Proving Procedures” [Cook, 1971a]. In this brief but elegant paper Cook
did several important things.

First, he emphasized the significance of ‘‘polynomial time reducibility,”’
that is, reductions for which the required transformation can be executed by
a polynomial time algorithm. If we have a polynomial time reduction from
one problem to another, this ensures that any polynomial time algorithm for
the second problem can be converted into a corresponding polynomial time
algorithm for the first problem.

Second, he focused attention on the class NP of decision problems that
can be solved in polynomial time by a nondeterministic computer. (A deci-
sion problem is one whose solution is either ‘‘yes’” or “no’’.) Most of the
apparently intractable problems encountered in practice, when phrased as
decision problems, belong to this class.

Third, he proved that one particular problem in NP, called the’
“‘satisfiability’’ problem, has the property that every other problem in NP
can be polynomially reduced to it. If the satisfiability problem can be solved
with a polynomial time algorithm, then so can every problem in NP, and if
any problem in NP is intractable, then the satisfiability problem also must
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be intractable. Thus, in a sense, the satisfiability problem is the ‘‘hardest™
problem in NP,

Finally, Cook suggested that other problems in NP might share with
the satisfiability problem this property of being the ‘‘hardest’” member of
NP. He showed this to be the case for the problem “‘Does a given graph G
contain a complete subgraph on a given number k of vertices?”’

Subsequently, Richard Karp presented a collection of results [Karp,
1972} proving that indeed the decision problem versions of many well
known combinatorial problems, including the traveling salesman problem,
are just as ‘‘hard” as the satisfiability problem. Since then a wide variety of
other problems have been proved equivalent in difficulty to these problems,
and this equivalence class, consisting of the ‘‘hardest’ problems in NP, has
been given a name: the class of NP-complete problems.

Cook’s original ideas have turned out to be remarkably powerful. They
have provided the means for combining many individual complexity ques-
tions into the single question: Are the NP-complete problems intractable?
The lists included in the Appendix of this book contain literally hundreds of
different problems now known to be NP-complete. As more and more
problems of independent interest are shown to belong to this equivalence
class, its importance is continually reinforced.

The question of whether or not the NP-complete problems are intract-
able is now considered to be one of the foremost open questions of contem-
porary mathematics and computer science. Despite the willingness of most
researchers to conjecture that the NP-complete problems are all intractable,
little progress has yet been made toward establishing either a proof or a dis-
proof of this far-reaching conjecture. However, even without a proof that
NP-completeness implies intractability, the knowledge that a problem is
NP-complete suggests, at the very least, that a major breakthrough will be
needed to solve it with a polynomial time algorithm.

1.6 An Outline of the Book

Although this book is intended mainly as a primer on how to determine
whether or not any particular problem is NP-complete (either by looking it
up in the lists we present or by proving it yourself), we shall also discuss
some of the options available for dealing with a problem that is known to be
NP-complete. A brief outline of subsequent chapters follows.

In Chapter 2, we present the formal underpinnings of NP-completeness
and prove Cook’s theorem. The central definitions involve certain theoreti-
cal concepts, such as ‘“‘languages” and *Turing machines,”” which we
develop in a straightforward manner, relating them to the notions of prob-
lems and computer models already discussed. This chapter should give the
reader a good understanding of the technical meaning of NP-completeness.
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Chapter 3 is devoted to methods for proving a problem NP-complete.
A number of examples are presented to illustrate the usual structure of
such proofs, and to indicate how one goes about generating one. In
essence, one proves a new problem to be NP-complete by polynomially

reducing a known NP-complete problem to it. We survey the known NP-

complete problems that have been most useful for this purpose and demon-
strate their use.

In Chapter 4, we examine the ways in which the theory of NP-
completeness can be used for conducting a detajled analysis of the complex-
ity of a problem, seeking to determine the “‘boundary’’ between those cases
of the problem that are polynomially solvable and those that are NP-
complete.

In Chapter 5, we show how the techniques used for proving NP-
completeness can be generalized so that problems other than just decision
problems can be proved to be ‘“‘as hard as’ the NP-complete problems. As
an aid to reading the published literature on the theory of NP-completeness,
we also provide a brief historical survey of the development of the main
ideas and the varying terminology that has been used for discussing them.

In Chapter 6, we discuss several approaches for dealing with intractable
problems, especially that of finding near-optimal solutions using fast algo-
rithms. Examples of the successes and failures of each approach are
described, and we illustrate how the theory of NP-completeness can be ap-
plied even here.

Chapter 7 is intended to acquaint the reader with some of the theoreti-
cal issues and ideas that have arisen in parallel with the theory of NP-
completeness. Among other topics we discuss the polynomial hierarchy,
#P-completeness, polynomial space completeness, and the “‘relativization”
of the question of the intractability of the NP-complete problems.

The last third of the book consists of the Appendix, an extensive and
annotated list of problems known to be NP-complete or harder. The list is
divided into sections, each devoted to problems from a particular subject
area, such as graph theory, scheduling, algebra and number theory, covering
and partitioning, mathematical programming, program optimization, auto-
mata and language theory, and, of course, miscellaneous topics. The list in-
cludes references to related problems known to be solvable in polynomial
time and to problems whose status remains open in that neither polynomial
time algorithms nor NP-completeness proofs are known for them.
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The Theory of NP-Completeness

In this chapter we present the formal details of the theory of NP-
completeness. So that the theory can be defined in a mathematically
rigorous way, it will be necessary to introduce formal counterparts for many
of our informal notions, such as ‘‘problems’ and ‘‘algorithms.” Indeed,
one of the main goals of this chapter is to make explicit the connection
between the formal terminology and the more intuitive, informal shorthand
that is commonly used in its place. Once we have this connection well in
hand, it will be possible for us to- pursue our discussions primarily at the
informal level in later chapters, reverting to the formal level only when
necessary for clarity and rigor.

The chapter begins by discussing decision problems and their represen-
tation as ‘‘languages,’” equating ‘‘solving’’ a decision problem with ‘‘recog-
nizing’’ the corresponding language. The one-tape Turing machine is intro-
duced as our basic model for computation and is used to define the class P
of all languages recognizable deterministically in polynomial time. This
model is then augmented with a hypothetical “‘guessing’’ ability, and the
augmented model is used to define the class NP of all languages recogniz-
able ‘‘nondeterministically’’ in polynomial time. After discussing the rela-
tionship between P and NP, we define the notion of a polynomial transfor-
mation from one language to another and use it to define what will be our
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most important class, the class of NP-complete problems. The chapter con-
cludes with the statement and proof of Cook’s fundamental theorem, which
provides us with our first bona fide NP-complete problem.

2.1 Decision Problems, Languages, and Encoding Schemes

As a matter of convenience, the theory of NP-completeness is designed
to be applied only to decision problems. Such problems, as mentioned in
Chapter 1, have only two possible solutions, either the answer ‘“‘yes’” or the
answer ‘‘no.” Abstractly, a decision problem TI consists simply of a set Dy
of instances and a subset Y Dy, of yes-instances. However, most decision
problems of interest possess a considerable amount of additional structure,
and we will describe them in a way that emphasizes this structure. The
standard format we will use for specifying problems consists of two parts,
the first part specifying a generic instance of the problem in terms of various
components, which are sets, graphs, functions, numbers, etc., and the
second part stating a yes-no guestion asked in terms of the generic instance.
The way in which this specifies Dy and Yy; should be apparent. An instance
belongs to Dy if and only if it can be obtained from the generic instance by
substituting particular objects of the specified types for all the generic com-
ponents, and the instance belongs to Y, if and only if the answer for the
stated question, when particularized to that instance, is “‘yes.”

For example, the following describes a well-known decision problem
from graph theory:

SUBGRAPH ISOMORPHISM

INSTANCE: Two graphs, G, = (V,E;) and G,=(V,,E,).

QUESTION: Does G, contain a subgraph isomorphic to G,, that is, a sub-
set V'C V; and a subset E'CE; such that | V'| =|V,]|, |E'| =|E,|, and there
exists a one-to-one function f:V,—V’ satisfying {u,v}€E, if and only if

(FQD,fON}EE?

A decision problem related to the traveling salesman problem can be
described as follows:

TRAVELING SALESMAN

INSTANCE: A finite set C={c;,c;, ..., c,} of “cities,” a “distance”
d(c;,¢;) €Z* for each pair of cities ¢;,c;€C, and a bound B € Z* (where Z*
denotes the positive integers).

QUESTION: Is there a ““tour” of all the cities in C having total length no
more than B, that is, an ordering <c,(), Cr(2), - - - » Cr(m)> Of C such that

m—1
Y, deriysCrnien) | ¥ dCnimyCay) < B ?

i=1
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The reader will find many more examples of the use of this format
throughout the book, but these two should suffice for now to convey the
basic idea. The second example also serves to illustrate an important point
about how a decision problem can be derived from an optimization prob-
lem. If the optimization problem asks for a structure of a certain type that
has minimum ‘‘cost’’ among all such structures (for example, a tour that
has minimum length among all tours), we can associate with that problem
the decision problem that includes a numerical bound B as an additional
parameter and that asks whether there exists a structure of the required type
having cost no more than B (for example, a tour of length no more than
B). Decision problems can be derived from maximization problems in an
analogous way, simply by replacing ‘‘no more than’’ by ‘‘at least.”

The key point to observe about this correspondence is that, so long as
the cost function is relatively easy to evaluate, the decision problem can be
no harder than the corresponding optimization problem. Clearly, if we
could find a minimum length tour for the traveling salesman problem in po-
lynomial time, then we could also solve the associated decision problem in
polynomial time. All we need do is find the minimum length tour, compute
its length, and compare that length to the given bound B. Thus, if we
could demonstrate that TRAVELING SALESMAN is NP-complete (as
indeed it is), we would know that the traveling salesman optimization prob-
lem is at least as hard. In this way, even though the theory of NP-
completeness restricts attention to only decision problems, we can extend
the implications of the theory to optimization problems as well. (We shall
see in Chapter S that decision problems and optimization problems are often
even more closely tied: Many decision problems, including TRAVELING
SALESMAN, can also be shown to be ‘‘no easier’” than their corresponding
optimization problems.)

The reason for the restriction to decision problems is that they have a
very natural, formal counterpart, which is a suitable object to study in a
mathematically precise theory of computation. This counterpart is called a
“language’ and is defined in the following way.

For any finite set I of symbols, we denote by T* the set of all finite
strings of symbols from Z. For example, if Z=1{0,1}, then Z* consists of
the empty string ‘‘e,” the strings 0,1,00,01,10,11,000,001, and all other
finite strings of 0’s and 1’s. If L is a subset of I* we say that L is a
language ovér the alphabet L. Thus {01,001,111,1101010} is a language
over {0,1}, as is the set of all binary representations of integers that are per-
fect squares, as is the set {0,1}* itself.

The correspondence between decision problems and languages is
brought about by the encoding schemes we use for specifying problem in-
stances whenever we intend to compute with them. Recall that an encoding
scheme e for a problem II provides a way of describing each instance of IT
by an appropriate string of symbols over some fixed alphabet £. Thus the
problem II and the encoding scheme e for I partition £* into three classes
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of strings: those that are not encodings of instances of [1, those that encode
instances of I1 for which the answer is ‘‘no,”” and those that encode in-
stances of II for which the answer is “‘yes.”” This third class of strings is
the language we associate with [ and e, setting

T is the alphabet used by e, and x is the

-— *.
LlTe} = xex™ encoding under e of an instance 1€Yy

Our formal theory is applied to decision problems by saying that, if a result
holds for the language LI[[1,el, then it holds for the problem [T under the
encoding scheme e.

In fact, we shall usually follow standard practice and be a bit more in-
formal than this. Each time we introduce a new concept in terms of
languages, we will observe that the property is essentially encoding indepen-
dent, so long as we restrict ourselves to ‘‘reasonable’’ encoding schemes.
That is, if ¢ and e’ are any two reasonable encoding schemes for II, then
the property holds either for both L[I1,e] and L[I1,e] or for neither. This
will allow us to say, informally, that the property holds (or does not hold)
for the problem 11, without actually specifying any encoding scheme. How-
ever, whenever we do so, the implicit assertion will be that we could, if re-
quested, specify a particular reasonable encoding scheme e such that the
property holds for L{II,e]. '

Notice that when we operate in this encoding-independent manner, we
lose contact with any precise notion of “‘input length.”” Since we need some
parameter in terms of which time complexity can be expressed, it is con-
venient to assume that every decision problem IT has an associated,
encoding-independent function Length: Dg— Z*, which is ‘‘polynomially
related” to the input lengths we would obtain from a reasonable encoding
scheme. By polynomially related we mean that, for any reasonable encoding
scheme e for TI, there exist two polynomials p and p' such that if 7 € Dy
and x is a string encoding the instance / under e, then Length [71 < p({x])
and |x| < p'(Length [I]), where |x| denotes the length of the string x. In
the SUBGRAPH ISOMORPHISM problem, for example, we might take

Length [71 = | V| + | V,]

where Gy=(V},E}) and G,=(V,,E,) are the graphs making up an in-
stance. In the TRAVELING SALESMAN decision problem we might take

Length (71 = m + [log, Bl + max {[log,d(c;,c))}: ¢;,c; €C}

Since any two reasonable encoding schemes for a problem IT will yield poly-
nomially related input lengths, a wide variety of Length functions are possi-
ble for TI, and all our results will carry through for any such function that
meets the above conditions.

The usefulness of this informal, enc®ding-independent approach
depends, of course, on there being some agreement as to what constitutes a
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“reasonable’” encoding scheme. The generally accepted meaning of ‘‘rea-
sonable’’ includes both the notion of ““conciseness,’’ as captured by the two
conditions mentioned in Chapter 1, and the notion of ‘‘decodability.”” The
intent of ‘‘conciseness’ is that instances of a problem should be described
with the natural brevity we would use in actually specifying those instances
for a computer, without any unnatural ‘‘padding” of the input. Such pad-
ding could be used, for example, to expand the input length so much that
we artificially convert an exponential time algorithm into a polynomial time
algorithm. The intent of ‘*‘decodability’’ is that, given any particular com-
ponent of a generic instance, one should be able to specify a polynomial
time algorithm that is capable of extracting a description of that component
from any given encoded instance.

Of course, these elaborations do not provide a formal definition of
“‘reasonable encoding scheme,” and we know of no satisfactory way of
making such a definition. Even though most people would agree on wheth-
er or not a particular encoding scheme for a given problem is reasonable,
the absence of a formal definition can be somewhat discomforting. One
way of resolving this difficulty would be to require that generic problem in-
stances always be formed from a fixed collection of basic types of set-
theoretic objects. We will not impose such a constraint here, but, as an in-
dication of our intent when we refer to ‘‘reasonable encoding schemes,”” we
now give a brief description (which first time readers may wish to skip) of
how such a standard encoding scheme could be defined.

Our standard encoding scheme will map instances into ‘‘structured
strings” over the alphabet ¥={0,1,—,1,1.(),,}. We define structured
strings recursively, as follows:

(1) The binary representation of an integer k as a string of 0’s and
1’s (preceded by a minus sign ““—>’ if k is negative) is a struc-
tured string representing the integer k.

(2) If x is a structured string representing the integer k, then [x] is a
structured string that can be used as a ‘“‘name’ (for example, for
a vertex in a graph, a set element, or a city in a traveling sales-
man instance).

(3) If x;,x;, ..., X, are structured strings representing the objects
XXy, ..., X, then (x;,x3,...,x,) is a structured string
representing the sequence <Xy, X,, ..., X,>.

To derive an encoding scheme for a particular decision problem
specified in our standard format, we first note that, once we have built up a
representation for each object in an instance as a structured string, the
representation of the entiresinstance is determined using rule (3) above.
Thus we need only specify how the representation for each type of object is
constructed. For this we shall restrict ourselves to integers, ‘‘unstructured
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elements’” (vertices, elements, cities, etc.), sequences, sets, graphs, finite
functions, and rational numbers.

Rules (1) and (3) already tell us how to represent integers and se-
quences. To represent each of the unstructured elements in an instance, we
merely assign it a distinct “‘name,’’ as constructed by rule (2), in such a
way that if the total number of unstructured elements in an instance is N,
then no name with magnitude exceeding A is used. The representations for
the four other object types are as follows:

A set of objects is represented by ordering its elements as a sequence
<X, 4X,;,...,X,> and taking the structured string corresponding to that
sequence.

A graph with vertex set V and edge set F is represented by a structured
string (x,y), where x is a structured string representing the set ¥, and y is
a structured string representing the set £ (the elements of £ being the
two-element subsets of ¥ that are edges).

A finite function f:{U,,U,, ..., U,}— W is represented by a struc-
tured string ((x;,),(x2,52), . . . ,(X,,,Vm)) where x; is a structured string
representing the object U, and y, is a structured string representing the ob-
ject FU)EeW, 1LiSm.

A rational number g is represented by a structured string (x,y) where x
is a structured string representing an integer @, y is a structured string rep-
resenting an integer b, a/b =g, and the greatest common divisor of a and
bis 1.

Although it might be convenient to have a wider collection of object
types at our disposal, the ones above will suffice for most purposes and are
enough to illustrate our notion of a reasonable encoding scheme. Further-
more, there would be no loss of generality in restricting ourselves to just
these types for specifying generic instances, since other types of objects can
always be expressed in terms of the ones above.

Note that our prescriptions are not sufficient to generate a unigue string
for encoding each instance but merely for ensuring that each string that
does encode an instance obeys certain structural restrictions. A different
choice of names for the basic elements or a different choice of order for the
description of a set could lead to different strings that encode the same in-
stance. In fact, it makes no difference how many strings encode an instance
so long as we can decode each to obtain the essential components of the in-
stance. Moreover, our definitions take this into account; for example, in
L, el; the set of all strings that encode ves-instances of II under e, each
instance may be represented many times.

Before going on, we remind the reader that our standard encoding

scheme is intended solely to illustrate how one might define such a standard
scheme, although it also provides a reference point for what we mean by a
*‘reasonable™ encoding scheme. There is no reason why some other gen-
~ eral scheme could not be used, or why we could not merely devise an indi-

vidual encoding scheme for each problem of interest. If the chosen scheme
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is ‘‘equivalent’ to ours, in the sense that there exist polynomial time algo-
rithms for converting an encoding of an instance under either scheme to an
encoding of that instance under the other scheme, then it, 100, will be
called ‘‘reasonable.”” If the chosen scheme is nor equivalent to ours in this
sense, then one can still prove results with respect to that scheme, but the
encoding-independent terminology should not be used for describing them.
Throughout this book we will restrict our attention to reasonable encoding
schemes for problems.

2.2 Deterministic Turing Machines and the Class P

In order to formalize the notion of an algorithm, we will need to fix a
particular model for computation. The model we choose is the dererministic
one-tape Turing machine (abbreviated DTM), which is pictured schematically
in Figure 2.1. It consists of a finite state control, a read-write head, and a tape
made up of a two-way infinite sequence of tape squares, labeled

.,—2,—-1,0,1,2,3, ...

Finite
state
control
Tape Read-write head
. -3~-2-10 1 2 3 4

Figure 2.1 Schematic representation of a deterministic one-tape Turing machine
(DTM).

A program for a DTM specifies the following information:

(1) A finite set T of tape symbols, including a subset TCT of input
symbols and a distinguished blank symbol b€ T —Z;

(2) a finite set Q of states, including a distinguished start-state g, and
two distinguished halt-states gy and gy;

(3) a transition function 8: (Q—{qy,qy}) XTI — O x T x {—1,+1}.
The operation of such a program is straightforward. The input to the

DTM is a string x€ L*. The string x is placed in tape squares 1 through
le, one symbol per square. All other squares initially contain the blank
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symbol. The program starts its operation in state go, with the read-write
head scanning tape square 1. The computation then proceeds in a step-by-
step manner. If the current state g is either gy or gy, then the computa-
tion has ended, with the answer being ‘‘yes’” if ¢ =gy and “‘no” if ¢ =gy.
Otherwise the current state g belongs to Q —{qy,qy}, some symbol s€T is
in the tape square being scanned, and the value of 8(g,s) is defined. Sup-
pose 8(g,s) = (g',s',A). The read-write head then erases s, writes s’ in its
place, and moves one square to the left if A = —1, or one square to the
right if A = +1. At the same time, the finite state control changes its state
from g to ¢g'. This completes one ‘“‘step’” of the computation, and we are
ready to proceed to the next step, if there is one.

r=1{0,1,s}, T=10,1}

Q=190 91,92, 93.9v- an}
q 0 1 b
g0 | (96,0,+D) | (go,1,+1) | (g;.6,—1)
g1 | (g2,6,=D) | (g3,6,—1) | {qn,b,=1)
g2 | {gy,6,=1) | (gn,b,=1) | (gn,b,—1)
a3 | (gn.5,=-1) § (gn,b,—1) | (gy,0,~1)

8(q,s)

Figure 2.2 An example of a DTM program M = (I',Q.5).

An example of a simple DTM program M is shown in Figure 2.2. The
transition function & for M is described in a tabular format, where the entry
in row ¢ and column s is the value of 8(g,s). Figure 2.3 illustrates the
computation of M on the input x=10100, giving the state, head position,
and contents of the non-blank portion of the tape before and after each
step.

Note that this computation halts after eight steps, in state gy, so the
answer for 10100 is “‘yes.”” In general, we say that a DTM program M with
input alphabet ¥ accepts x € L* if and only if M halts in state gy when ap-
plied to input x. The language Ly, recognized by the program M is given by

Ly, = {x€X* M accepts x)

It is not hard to see that the DTM program of Figure 2.2 recognizes the
language

{x € {0,1}*: the rightmost two symbols of x are both 0}
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Figure 2.3 The computation of the program M from Figure 2.2 on input 10100.
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Observe that this definition of language recognition does not require
that M halt for alf input strings in X*, only for those in L. If x belongs
to L*—L,,, then the computation of M on x might halt in state gy, or it
might continue forever without halting. However, for a DTM program to
correspond to our notion of an algorithm, it must halt on all possible strings
over its input alphabet. In this sense, the DTM program of Figure 2.2 is al-
gorithmic, since it will halt for any input string from {0,1}*.

The correspondence between ‘‘recognizing” languages and ‘“‘solving”’
decision problems is straightforward. We say that a DTM program M solves
the decision problem II under encoding scheme e if M halts for all input
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strings over its input alphabet and Ly = L[I,e]. The DTM program'of
Figure 2.2 once more provides an illustration. Consider the following
number-theoretic decision problem:

INTEGER DIVISIBILITY BY FOUR
INSTANCE: A positive integer N.
QUESTION: Is there a positive integer m such that N=4m?

Under our standard encoding scheme, the integer N is represented by the
string of 0’s and 1’s that is its binary representation. Since a positive in-
teger is divisible by four if and only if the last two digits of its binary
representation are 0, this DTM program ‘‘solves” the INTEGER DIVISI-
BILITY BY FOUR problem under our standard encoding scheme.

For future reference, we also point out that a DTM program can be
used to compute functions. Suppose M is a DTM program with input ai-
phabet T and tape alphabet T' that halts for all input strings from Z*. Then
M computes the function fy:Z*—T* where, for each x€ZX*, Sulx) is
defined to be the string obtained by running M on input x until it halts and
then forming a string from the symbols in tape squares 1, 2,3, etc., in se-
quence, up to and including the rightmost non-blank tape square. The pro-
gram M of Figure 2.2 computes the function fy,:{0,1}*—{0,1,6]* that
maps each string x €{0,1}* to the string f,,(x) obtained by deleting the last
two symbols of x (with f,(x) equal to the empty string if |x]<2).

It is well known that DTM programs are capable of performing much
more complicated tasks than those illustrated by our simple example. Even
though a DTM has only a single sequential tape and can perform only a
very limited amount of work in a single step, a DTM program can be
designed to perform any computation that can be performed on an ordinary
computer, albeit more slowly. For the reader interested in how this is done,
there are a number of excellent references, for example [Minsky, 19671 or
[Hoperoft and Ullman, 1969]. For the reader who is not interested in how
this is done, there is the welcome assurance that no expertise at program-
ming DTMs will be required in this book. The reason for our introduction
of the DTM model is to provide us with a formal counterpart of an algo-
rithm upon which to base our definitions.

A formal definition of ‘“‘time complexity’’ is now possible. The time
used in the computation of a DTM program M on an input x is the number
of steps occurring in that computation up until a halt state is entered. For a
DTM program M that halts for all inputs x&X*, its time complexity function
Ty: ZT—Z"* is given by

there is an x€X*, with |x|=n, such that the |

Tyy(n) = max | m: computation of M on input x takes time m
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Such a program M is called a polynomial time DTM program if there exists a
polynomial p such that, for all n€ Z*, Ty, (n) <p(n).

We are now ready to give the formal definition of the first important
class of languages that we will be considering, the class P. It is defined as
follows:

P={L: there is a polynomial time DTM program M for which L = L,,}

We will say that a decision problem IT belongs to P under the encoding
scheme e if L[l e] € P, that is, if there is a polynomial time DTM program
that ‘‘solves’® II under encoding scheme e. In light of the previously men-
tioned equivalence between reasonable encoding schemes, we will usually
omit the specification of a particular reasonable encoding scheme, simply
saying that the decision problem II belongs to P.

We also will be informal in our use of the term “‘polynomial time algo-
rithm.”” Our formal counterpart for a polynomial time algorithm is the po-
lynomial time DTM program. However, because of the equivalence
between ‘‘realistic’’ computer models with respect to polynomial time point-
ed out in Chapter 1, the formal definition of P could have.been rephrased
in terms of programs for any such model and the same class of languages
would have resulted. Thus we need not tie ourselves to the details of the
DTM model when informally demonstrating that certain tasks can be per-
formed by polynomial time algorithms. In fact, we will follow standard
practice and discuss algorithms in an almost model-independent manner,
speaking of them as operating directly on the components of an instance
(the sets, graphs, numbers, etc.) rather than on their encoded descriptions.
Here our implicit assertion is that one could, if one desired and had the pa-
tience, design a polynomial time DTM program corresponding to each poly-
nomial time algorithm we discuss. Our informal demonstrations should be
taken as indicating how this would be done and should be convincing to any
reader familiar with the kinds of basic tasks that can be performed in poly-
nomial time on an ordinary computer.

2.3 Nondeterministic Computation and the Class NP

In this section we introduce our second important class of
languages/decision problems, the class NP. Before we proceed to the for-
mal definitions in terms of languages and Turing machines, however, it will
be useful to provide an intuitive idea of the informal notion this class is in-
tended to capture.

Consider the TRAVELING SALESMAN problem described at the be-
ginning of this chapter: Given a set of cities, the distances between them,
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and a bound B, does there exist a tour of all the cities having total length B
or less? There is no known polynomial time algorithm for solving this
problem. However, suppose someone claimed, for a particular instance of
this problem, that the answer for that instance is “‘yes.”” If we were skepti-
cal, we could demand that they “‘prove’ their claim by providing us with a
tour having the required properties. It would then be a simple matter for us
to verify the truth or falsity of their claim merely by checking that what
they provided us with is actually a tour and, if so, computing its length and
comparing that quantity to the given bound B. Furthermore, we could
specify our ‘‘verification procedure’ as a general algorithm that has time
complexity polynomial in Length [7].

Another example of a problem with this property is the SUBGRAPH
ISOMORPHISM problem of Section 2.1. Given an arbitrary instance / of
this problem, consisting of two graphs G,=(V,E;) and G,=(V,,E)), if
the answer for [ is “‘yes,” then this fact can be “‘proved’’ by giving the re-
quired subsets V'C ¥V, and E'CE; and the required one-to-one function
f:Vo,— V. Again the validity of the claim can be verified easily in time po-
lynomial in Length [/ ], merely by checking that V*, E', and f satisfy all the
stated requirements.

It is this notion of polynomial time *‘verifiability’” that the class NP is
intended to isolate. Notice that polynomial time verifiability does not imply
polynomial time solvability. In saying that one can verify a “‘yes™ answer
for a TRAVELING SALESMAN instance in polynomial time, we are not
counting the time one might have to spend in searching among the ex-
ponentially many possible tours for one of the desired form. We merely as-
sert that, given any tour for an instance /, we can verify in polynomial time
whether or not that tour “‘proves’’ that the answer for [ is ‘‘yes.”

Informally we can define NP in terms of what we shall call a nondeter-
ministic algorithm. We view such an algorithm as being composed of two
separate stages, the first being a guessing stage and the second a checking
stage. Given a problem instance I, the first stage merely ‘“‘guesses’ some
structure S. We then provide both I and S as inputs to the checking stage,
which proceeds to compute in a normal deterministic manner, either even-
tually halting with answer ‘‘yes,” eventually halting with answer ‘‘no,” or
computing forever without halting (as we shall see, the latter two cases
need not be distinguished). A nondeterministic algorithm “‘solves™ a deci-
sion problem II if the following two properties hold for all instances /€ Dy

1. If I¢ Yn', then there exists some structure S that, when guessed for in-
put /, will lead the checking stage to respond ‘“‘yes” for [ and S.

2. If 1¢. Yy, then there exists no structure S that, when guessed for input
I, will lead the checking stage to respond *‘yes’ for [ and S . :
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For example, a nondeterministic algorithm for TRAVELING SALES-
MAN could be constructed using a guessing stage that simply guesses an ar-
bitrary sequence of the given cities and a checking stage that is identical to
the aforementioned polynomial time ‘‘proof verifier’” for TRAVELING
SALESMAN. Clearly, for any instance I, there will exist a guess S that
leads the checking stage to respond “‘yes’ for I and S if and only if there is
a tour of the desired length for 1.

A nondeterministic algorithm that solves a decision problem II is said
to operate in ‘‘polynomial time” if there exists a polynomial p such that,
for every instance I €& Y7y, there is some guess S that leads the deterministic
checking stage to respond ‘‘yes” for I and S within time p(Length [/1]).
Notice that this has the effect of imposing a polynomial bound on the
“size’” of the guessed structure S, since only a polynomially bounded
amount of time can be spent examining that guess.

The class NP is defined informally to be the class of all decision prob-
lems I that, under reasonable encoding schemes, can be solved by polyno-
mial time nondeterministic algorithms. Our example above indicates that
TRAVELING SALESMAN is one member of NP. The reader should have
no difficulty in providing a similar demonstration for SUBGRAPH ISO-
MORPHISM. )

The use of the term ‘‘solve’ in these informal definitions should, of
course, be taken with a grain of salt. It should be evident that a ‘‘polyno-
mial time nondeterministic algorithm’ is basically a definitional device for
capturing the notion of polynomial time verifiability, rather than a realistic
method for solving decision problems. Instead of having just one possible
computation on a given input, it has many different ones, one for each pos-
sible guess.

There is another important way in which the ‘‘solution’ of decision
problems by nondeterministic algorithms differs from that for deterministic
algorithms: the lack of symmetry between ‘‘yes’’ and ‘‘no.”” If the problem
“Given I, is X true for I?” can be solved by a polynomial time (deter-
ministic) algorithm, then so can the complementary problem “‘Given [, is
X false for I ? This is because a deterministic algorithm halts for all in-
puts, so all we need do is interchange the “‘yes’ and ‘‘no’’ responses (inter-
change states gy and gy in a DTM program). It is not at all obvious that
the same holds true for all problems solvable by polynomial time nondeter-
ministic algorithms. Consider, for example, the complement of the TRAV-
ELING SALESMAN problem: Given a set of cities, the intercity distances,
and a bound B, is it true that no tour of all the cities has length B or less?
There is no known way to verify a “‘yes’ answer to this problem short of
examining all possible tours (or a large proportion of them). In other
words, no polynomial time nondeterministic algorithm for this complemen-
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tary problem is known. The same is true of many other problems in NP.
Thus, although membership in P for a problem II implies membership in P
for its complement, the analogous implication is not known to hold for NP.

We conclude this section by formalizing our definition in terms of
languages and Turing machines. The formal counterpart of a nondeter-
ministic algorithm is a program for a nondeterministic one-tape Turing
machine NDTM). For simplicity, we will be using a slightly non-standard
NDTM model. (More standard versions are described in [Hopcroft and Ull-
man, 1969] and [Aho, Hopcroft, and Ullman, 1974]. The reader may find
it an interesting exercise to verify the equivalence of our model to these
with respect to polynomial time.)

The NDTM model we will be using has exactly the same structure as a
DTM, except that it is augmented with a guessing module having its own
write-only head, as illustrated schematically in Figure 2.4. The guessing
module provides the means for writing down the ‘‘guess’’ and will be used
solely for this purpose.

Guessing Finite
module state
control
Guessing Read-write
Tape head head

-3-2-10 1 2 3 4

Figure 2.4 Schematic representation of a nondeterministic one-tape Turing
machine (NDTM).

An NDTM program is specified in exactly the same way as a DTM pro-
gram, including the tape alphabet I', input alphabet X, blank symbol &, state
set Q, initial state g, halt states gy and gy, and transition function
8: (Q—{gr.gv) XTI — O xT' x{=1,+1]. The computation of an NDTM
program on an input string x€X* differs from that of a DTM in that it takes
place in two distinct stages.

The first stage is the ‘‘guessing’ stage. Initially, the input string x is
written in tape squares 1 through |x| (while all other squares are blank),
the read-write head is scanning square 1, the write-only head is scanning
square —1, and the finite state control is ““inactive.”” The guessing module
then directs the write-only head, one step at a time, either to write some
symbol from I' in the tape square being scanned and move one square to
the left, or to stop, at which point the guessing module becomes inactive
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and the finite state control is activated in state go. The choice of whether to
remain active, and, if so, which symbol from I' to write, is made by the
guessing module in a totally arbitrary manner. Thus the guessing module
can write any string from I'* before it halts and, indeed, need never halt.

The ‘‘checking’ stage begins when the finite state control is activated
in state go. From this point on, the computation proceeds solely under the
direction of the NDTM program according to exactly the same rules as for a
DTM. The guessing module and its write-only head are no longer involved,
having fulfilled their role by writing the guessed string on the tape. Of
course, the guessed string can (and usually will) be examined during the
checking stage. The computation ceases when and if the finite state control
enters one of the two halt states (either gy or gy) and is said to be an ac-
cepting computation if it halts in state gy. All other computations, halting or
not, are classed together simply as non-accepting computations.

Notice that any NDTM program M will have an infinite number of
possible computations for a given input string x, one for each possible

“guessed string from I'*. We say that the NDTM program M accepts x if at

least one of these is an accepting computation. The language recognized by
M is :
Ly = {x€X* M accepts x}

The time required by an NDTM program M to accept the string x€ Ly,
is defined to be the minimum, over all accepting computations of M for x,
of the number of steps occurring in the guessing and checking stages up un-
til the halt state gy is entered. The time complexity function Tyy: Z¥—Z* for
M is

there is an x € Ly, with |x|=n such

{um: that the time to accept x by M is m

Ty (n) = max

Note that the time complexity function for M dependsxggl)l on the number
of steps occurring in accepting computations, and that, by convention,
T, (n) is set equal to 1 whenever no inputs of length n are accepted by M.

The NDTM program M is a polynomial time NDTM program if there ex-
ists a polynomial p such that Ty, (n) < p(n) for all n21. Finally, the class
NP is formally defined as follows:

NP = {L: there is a polynomial time NDTM program M for which Ly, =L}

It is not hard to see how these formal definitions correspond to the in-
formal definitions that preceded them. The only point deserving special
mention is that, whereas we usually envision a nondeterministic algorithm
as guessing a structure S that in some way depends on the given instance /,
the guessing module of an NDTM entirely disregards the given input.
However, since every string from I'* is a possible guess, we can always
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design our NDTM program so that the checking stage begins by checking
whether or not the guessed string corresponds (under the implicit interpre-
tation our program places on strings) to an appropriate guess for the given
input. If not, the program can immediately enter the halt state gy.

A decision problem IT will be said to belong to NP under encoding
scheme e if the language L([I1,e] € NP. As with P, we shall feel free to say
that II is in NP without giving a specific encoding scheme, so long as it is
clear that some reasonable encoding scheme for I will yield a language that
is in NP.

Furthermore, since any realistic computer model can be augmented
with an analogue of our ‘‘guessing module with write-only head,”’ we could
have rephrased our formal definitions in terms of any of the other standard
models of computation. Since all these models are equivalent with respect
to deterministic polynomial time, the resulting versions of NP would all be
identical. Thus we will be on firm ground when, as already proposed, we
identify our formally defined class NP with the class of all decision prob-
lems ‘‘solvable’’ by polynomial time nondeterministic algorithms.

In the next section we discuss the relationship between the two classes
P and NP as a preliminary to introducing our third and, for this book, most
important class, the class of NP-complete problems.

2.1} The Relationship Between P and NP

The relationship between the classes P and NP is fundamental for the
theory of NP-completeness. Qur first observation, which is implicit in our
earlier discussions but which has not been stated explicitly until now, is that
P C NP. Every decision problem solvable by a polynomial time determinis-
tic algorithm is also solvable by a polynomial time nondeterministic algo-
rithm. To see this, one simply needs to observe that any deterministic algo-
rithm can be used as the checking stage of a nondeterministic algorithm. If
Il €P, and A4 is any polynomial time deterministic algorithm for IT, we can
obtain a polynomial time nondeterministic algorithm for II merely by using
A as the checking stage and ignoring the guess. Thus IT €P implies
T € NP.

As we also hinted in our discussions, there are many reasons to believe
that this inclusion is proper, that is, that P does not equal NP. Polynomial
time nondeterministic algorithms certainly appear to be more powerful than
polynomial time deterministic ones, and we know of no general methods for
converting the former into the latter. In fact, the best general result we can
state at present is given by the following:

Theorem 2.1 1f 11 € NP, then there exists a polynomial p such that I can
be solved by a deterministic algorithm having time complexity O (22(").
Proof: Suppose A4 is a polynomial time nondeterministic algorithm for solv-
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ing I1, and let g{n) be a polynomial bound on the time complexity of A.
(Without loss of generality, we can assume that ¢ can be evaluated in poly-
nomial time, for example, by taking ¢ (n) = c;n? for suitably large integer
constants ¢; and ¢;.) Then we know that, for every accepted input of
length n, there must exist some guessed string (over the tape alphabet I')
of length at most g{n) that leads the checking stage of 4 to respond “‘yes”
for that input in no more than ¢(n) steps. Thus the number of possible
guesses that need be considered is at most k?(, where k=|I|, since
guesses shorter than ¢(n) can be regarded as guesses of length exactly ¢(n)
by filling them out with blanks. We can deterministically discover whether
A has an accepting computation for a given input of length n by applying
the deterministic checking stage of A4, until it halts or makes ¢{n) steps, on
each of the k7™ possible guesses. The simulation responds ‘‘yes” if it en-
counters a guessed string that leads to an accepting computation within the
time bound; otherwise it respends “‘no.”” This clearly yields a deterministic
algorithm for solving II. Furthermore, its time complexity is essentially
q(n)-k%™, which, although .exponential, is 0(2?") for an appropriately
chosen polynomial p. ® .

Of course the simulation in the proof of Theorem 2.1 could be speeded
up somewhat by using branch-and-bound techniques or backtrack search
and by carefully enumerating the guesses so that obviously irrelevant strings
are avoided. Nevertheless, despite the considerable savings that might be
achieved, there is no known way to perform this simulation in less than ex-
ponential time.

Thus the ability of a nondeterministic algorithm to check an exponen-
tial number of possibilities in polynomial time might lead one to suspect -
that polynomial time nondeterministic algorithms are strictly more powerful
than polynomial time deterministic algorithms. Indeed, for many individual
problems in NP, such as TRAVELING SALESMAN, SUBGRAPH ISO-
MORPHISM, agd a wide variety of others, no polynomial time solution al-
gorithms have Been found despite the efforts of many knowledgeable and
persistent researchers.

For these reasons, it is not surprising that there is a widespread belief
that P+ NP, even though no proof of this conjecture appears on the hor-
izon. Of course, a skeptic might say that our failure to find a proof that
P#NP is just as strong an argument in favor of P=NP as our failure to
find polynomial time algorithms is an argument for the opposite view.
Problems always appear to be intractable until we discover efficient algo-
rithms for solving them. Even a skeptic would be likely to agree, however,
that, given our current state of knowledge, it seems more reasonable to
operate under the assumption that P#NP than to devote one’s efforts to
proving the contrary. In any case, we shall adopt a tentative picture of the
world of NP as shown in Figure 2.5, with the expectation (but not the cer-
tainty) that the shaded region denoting NP — P is not totally uninhabited.
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NP

—e)

Figure 2.5 A tentative view of the world of NP.

2.5 Polynomial Transformations and NP-Completeness

If P differs from NP, then the distinction between P and NP—P is
meaningful and important. All problems in P can be solved with polynomi-
al time algorithms, whereas all problems in NP—P are intractable. Thus,
given a decision problem II € NP, if P# NP, we would like to know which
of these two possibilities holds for II.

Of course, until we can prove that P #NP, there is no hope of showing
that any particular problem belongs to NP —P. For this reason, the theory
of NP-completeness focuses on proving results of the weaker form “‘if
P#NP, then IT € NP-P.”” We shall see that, although these conditional
results might appear to be almost as difficult to prove as the corresponding
unconditional results, there are techniques available that often enable us to
prove them in a straightforward way, The extent to which such results
should be regarded as evidence for intractability depends on how strongly
one believes that P differs from NP.

The key idea used in this conditional approach is that of a polynomial
transformation. A polynomial transformation from a language L{ S 2} to a
language L, € I} is a function f:Z}— X that satisfies the following two
conditions:

1. There is a polynomial time DTM program that computes f .
2. Forall x €X}, x€ L, ifand only if f(x) € L,.

If there is a polynomial transformation from L; to L,, we write¢”L;« L,
read ““L, transforms to L,” (dropping the modifier “‘polynomial,” which is
to be understood).

The significance of polynomial transformations comes from the follow-
ing lemma:

Lemma 2.1 If L =L, then L,€P implies L, €P (and, equivalently,
LI ﬁP implies LZ §E P)
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Prooft Let %, and X, be the alphabets of L, and L, respectiyely, let
f:Z{—Z} be a polynomial transformation from L, to L,, let M, denote a
polynomial time DTM program that computes f, and let M, be a polynomi-
al time DTM program that recognizes L,. A polynomial time DTM pro-
gram for recognizing L can be constructed by composing M, with M,. For
an input x € Zf, we first apply the portion corresponding to program M, to
construct f(x) € 3. We then apply the portion corresponding to program
M, to determine if f(x) € L,. Since x € L, if and only if f(x) € L,, this
yields a DTM program that recognizes L;. That this program operates in
polynomial time follows immediately from the fact that M, and M, are po-
lynomial time algorithms. To be specific, if p, and p, are polynomial func-
tions bounding the running times of M, and M, then |f(x)| < p,(|x]),
and the running time of the constructed program is easily seen to be
0(p;(|x]) + pa(p,(|x]))), which is bounded by a polynomial in |x|. =

If TI, and II, are decision problems, with associated encoding schemes
e, and e,, we shall write II; «II, (with respect to.the given encoding
schemes) whenever there exists a polynomial transformation from L [IT,e,]
to L[II,,e;). As usual, we will omit the reference to specific encoding
schemes when we are operating under our standard assumption that only
reasonable encoding schemes are used. Thus, at the problem level, we can
regard a polynomial transformation from the decision problem II, to the de-
cision problem II; as a function f: Dn,_‘Dnz that satisfies the two condi-

tions:
1. f is computable by a polynomial time algorithm; and
2. forall / € Dy, I € Yy, if and only if £(1) € Yy,

Let us obtain a more concrete idea of what this definition means by
considering an example. For a graph G = (V,E) with veriex set V and edge
set £, a simple circuitin G is a sequence < vy,v,, . .., v, > of distinct ver-
tices from V such that { v;,v,.;} € E for 1</ <k and such that {v,,v(} € E.
A Hamiltonian circuitin G is a simple circuit that includes all the vertices of
G. The HAMILTONIAN CIRCUIT problem is defined as follows:

HAMILTONIAN CIRCUIT
INSTANCE: A graph G=(V,E).
QUESTION: Does G contain a Hamiltonian circuit?

The reader will no doubt recognize a certain similarity between this
problem and the TRAVELING SALESMAN decision problem. We shall
show that HAMILTONIAN CIRCUIT (HC) transforms to TRAVELING
SALESMAN (TS). This requires that we specify a function f that maps
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each instance of HC to a corresponding instance of TS and that we prove
that this function satisfies the two properties required of a polynomital
transformation.

The function f is defined quite simply. Suppose G=(V E), with
| V| =m, is a given instance of HC. The corresponding instance of TS has a
set C of cities that is identical to V. For any two cities v;,v; € C, the inter-
city distance d(v;,v;) is defined to be 1 if {v,,»;} € E and 2 otherwise. The
bound B on the desired tour length is set equal to m.

It is easy to see (informally) that this transformation f can be comput-
ed by a polynomial time algorithm. For each of the m(m—1)/2 distances
d(v;,v;) that must be specified, it is necessary only to examine G to see
whether or not {v,-,'vj} is an edge in E£. Thus the first required property is
satisfied. To verify that the second requirement is met, we must show that
G contains a Hamiltonian circuit if and only if there is a tour of all the ci-
ties in f(G) that has total length no more than B. First, suppose that
<V,V2,...,V,> is a Hamiltonian circuit for G. Then
<wv,vy,...,V, > is also a tour in f(G), and this tour has total length
m = B because each intercity distance traveled in the tour corresponds to an
edge of G and hence has length 1. Conversely, suppose that
<w,Vy,...,V, > is a tour in £(G) with total length no more than B.
Since any two cities are either distance 1 or distance 2 apart, and since ex-
actly m such distances are summed in computing the tour length, the fact
that B =m implies that each pair of successively visited cities must be ex-
actly distance 1 apart. By the definition of f(G), it follows that { v, v,y ],
1<i<m, and {v,,v,} are all edges of G, and hence < v,v3, ..., v, > is
a Hamiltonian circuit for G.

Thus we have shown that HC«TS. Although this proof is much
simpler than many we will be describing, it contains all the essential ele-
ments of a proof of polynomial transformability and can serve as a model
for how such proofs are constructed at the informal level.

The significance of Lemma 2.1 for decision problems now can be illus-
trated in terms of what it says about HC and TS. In essence, we conclude
that if TRAVELING SALESMAN can be solved by a polynomial time algo-
rithm, then so can HAMILTONIAN CIRCUIT, and if HC is intractable,
then so is TS. Thus Lemma 2.1 allows us to interpret IT, « [1§ as meaning
that II, is “‘at least as hard” as II,.

The “‘polynomial transformability” relation is especially useful because
it is transitive, a fact captured by our next lemma.

Lemma 2.2 If Ly« Lyand Ly« L;, then L, L.

Proof: Let L;, L,;, and Z; be the alphabets of languages L,, L,, and L,
respectively, let f: Z{'— X3 be a polynomial transformation from L, to L,,
and let f5:ZF— X} be a polynomial transformation from L, to L;. Then
the function f:Zf— X} defined by f(x)=f,(f,(x)) for all x € L} is the
desired transformation from L, to Lj;. Clearly, f(x) € Ly if and only if
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x € Ly, and the fact that f can be computed by a polynomial time DTM
program follows from an argument analogous to that used in the proof of
Lemma 2.1. =

We can define two languages L, and L, (two decision problems II; and
[1,) to be polynomially equivalent whenever both L« L, and Lyx L (both
[y« and I,«1II}). Lemma 2.2 tells us that this is a legitimate
equivalence relation and, furthermore, that the relation ‘=’ imposes a par-
tial order on the resulting equivalence classes of languages (decision prob-
lems). In fact, the class P forms the ‘“‘least’ equivalence class under this
partial order and hence can be viewed as consisting of the computationally
“easiest’” languages (decision problems). The class of NP-complete
languages (problems) will form another such equivalence class, dis-
tinguished by the property that it contains the ‘‘hardest” languages (deci-
sion problems) in NP.

Formally, a language L is defined to be NP-complete if L € NP and, for
all other languages L' € NP, L'« L. Informally, a decision problem II is
NP-complete if 1€ NP and, for all other decision problems IT' € NP,
[I'ecII. Lemma 2.1 then leads us to our identification of the NP-complete
problems as ‘‘the hardest problems in NP.”> If any single NP-complete
problem can be solved in polynomial time, then a// problems in NP can be
so solved. If any problem in NP is intractable, then so are all NP-complete
problems. An NP-complete problem I, therefore, has the property men-
tioned at the beginning of this section: If P+ NP, then IT € NP—-P. More
precisely, IT € P if and only if P=NP.

Assuming that P#NP, we now can give a more detailed picture of ‘‘the
world of NP, as shown in Figure 2.6. Notice that NP is not simply parti-
tioned into “‘the land of P and “‘the land of NP-complete.”” As we shall
see in Chapter 7, if P differs from NP, then there must exist problems in
NP that are neither solvable in polynomial time nor NP-complete.

NP-complete  }

Figure 2.6 The world of NP, revisited.

Our main interest, however, is in the NP-complete problems them-
selves. Although we suggested at the outset of this section that there are
straightforward techniques for proving that a problem is NP-complete, the
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requirements we have just described would appear to be rather demanding.
One must show that every problem in NP transforms to our prospective
NP-complete problem I1. It is not at all obvious how one might go about
doing this. A priori, it is not even apparent that any NP-complete problems
need exist.

The following lemma, which is an immediate consequence of our
definitions and the transitivity of «, shows that matters would be simplified
considerably if we possessed just one problem that we knew to be NP-
complete.

Lemma 2.3 1f L, and L, belong to NP, L, is NP-complete, and Le L,,
then L, is NP-complete.
Proof: Since L, € NP, all we need to do is show that, for every L' € NP,
L'« L;. Consider any L' € NP. Since L, is NP-complete, it must be the
case that L'« L. The transitivity of « and the fact that L, = L, then imply
that L'ec L,. ®

Translated to the decision problem level, this lemma gives us a
straightforward approach for proving new problems NP-complete, once we
have at least one known NP-complete problem available. To prove that Il
is NP-complete, we merely show that

1. TI€NP, and

2. some known NP-complete problem [T’ transforms to II.

Before we can use this approach, however, we still need some first NP-
complete problem. Such a problem is provided by Cook’s fundamental
theorem, which we state and prove in the next section.

’

2.6 Cook’s Theorem

The honor of being the *“first”” NP-complete problem goes to a decision
problem from Boolean logic, which is usually referred to as the SATISFIA-
BILITY problem (SAT, for short). The terms we shall use in describing it
are defined as follows:

Let U={uyu,, ..., u,) be a set of Boolean variables. A truth assign-
ment for U is a function ¢: U— (T, F}. If 1(u) =T we say that u is “‘true”’
under ¢ if 7(u) = F we say that u is “false.”” If u is a variable in U, then
u and # are literals over U. The literal « is true under ¢ if and only if the
variable u is true under ¢; the literal # is true if and only if the variable u
is false.

A clause over U is a set of literals over U, such as {u,us,ug}. It
represents the disjunction of those literals and is satisfied by a truth assign-
ment if and only if at least one of its members is true under that assign-
ment. The clause above will be satisfied by ¢ unless t(u)) =F, t{u) =T,
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and t(ug) =F. A collection C of clauses over U is satisfiable if and only if
there exists some truth assignment for U that simultaneously satisfies all
the clauses in C. Such a truth assignment is called a satisfying truth assign-
ment for C. The SATISFIABILITY problem is specified as follows:

SATISFIABILITY
INSTANCE: A set U of variables and a collection C of clauses over U.
QUESTION: Is there a satisfying truth assignment for C?

For example, U={uj,u;} and C= {{u,.@,}, {7, u;}} provide an in-
stance of SAT for which the answer is “‘yes.”” A satisfying truth assignment
is given by t(u)=1t(u))=T. On the other hand, replacing C by
C'={{uy,uy}, {u,@), (@)} vields an instance for which the answer is
“no’’; C’is not satisfiable.

The seminal theorem of Cook [1971] can now be stated:

Theorem 2.1 (Cook’s Theorem) SATISFIABILITY is NP-complete.

Proof: SAT is easily seen to be in NP. A nondeterministic algorithm for it
need only guess a truth assignment for the given variables and check to see
whether that assignment satisfies all the clauses in the given collection C.
This is easy to do in (nondeterministic) polynomial time. Thus the first of
the two requirements for NP-completeness is met.

For the second requirement, let us revert to the language level, where
SAT is represented by a language L, = L[SAT,e] for some reasonable
encoding scheme e. We must show that, for all languages L € NP,
L < Lgy7. The languages in NP are a rather diverse lot, and there are
infinitely many of them, so we cannot hope to present a separate transfor-
mation for each one of them. However, each of the languages in NP can be
described in a standard way, simply by giving a polynomial time NDTM
program that recognizes it. This allows us to work with a generic
polynomial time NDTM program and to derive a generic transformation
from the language it recognizes to Lg,r. This generic transformation, when
specialized to a particular NDTM program M recognizing the language L,
will give the desired polynomial transformation from Ly, to Lg,y. Thus, in
essence, we will present a simultaneous proof for all L € NP that L « Lg,r.

To begin, let M denote an arbitrary polynomial time NDTM program,
specified by T', Z, b, Q, 4o, gy, gy, and 3, which recognizes the language
L=1L,. In addition, let p(n) be a polynomial over the integers that
bounds the time complexity function Tj,(n). (Without loss of generality,
we can assume that p(n)>n for all n € Z*.) The generic transformation
f will be derived in terms of M, T, Z, b, @, qq, gy, qy, 5, and p.

It will be convenient to describe f, as if it were a mapping from strings
over X to instances of SAT, rather than to strings over the alphabet of our
encoding scheme for SAT, since the details of the encoding scheme could
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be filled in easily. Thus f; will have the property that for all x € £*, x € L
if and only if f; (x) has a satisfying truth assignment. The key to the con-
struction of f; is to show how a set of clauses can be used to check wheth-
er an input x is accepted by the NDTM program M, that is, whether x € L.

If the input x€X* is accepted by M, then we know that there is an ac-
cepting computation for M on x such that both the number of steps in the
checking stage and the number of symbols in the guessed string are bound-
ed by p(n), where n=|x|. Such a computation cannot involve any tape
squares except for those numbered —p(n) through p(n)+1, since the
read-write head begins at square 1 and moves at most one square in any sin-
gle step. The status of the checking computation at any one time can be
specified completely by giving the contents of thesc squares, the current
state, and the position of the read-write head. Furthermore, since there are
no more than p(n) steps in the checking computation, there are at most
p(n)+1 distinct times that must be considered. This will enable us to
describe such a computation completely using only a limited number of
Boolean variables and a truth assignment to them.

The variable set U that f; constructs is intended for just this purpose.
Label the elements of Q as 4, 4¢=4y,¢92=4d~,93, - - -, 4q,, where
r=|0|-1, and label the elements of [ as so=b, 51, 83, . . ., 5,, where

=|T'|~1. There will be three types of variables, each of which has an in-
tended meaning as specified in Figure 2.7. By the phrase ‘‘at time /i’ we
mean ‘‘upon completion of the i step of the checking computation.”

Variable Range Intended meaning
. 0Ligp(n) . .
oli k] 0<k<r | At time 7, M is in state g.
Hi 0<ig<p(n) At time i, the read-write head
’ —p(n) < j<pln)+1 is scanning tape square J.
0<i<p(n) At time /, the contents of tape
Sli,j.kl  —p(n) <j<p(n)+1 square J/ is symbol s,.
0<k<y

Figure 2.7 Variables in f; (x) and their intended meanings.

A computation of M induces a truth assignment on these variables in
the obvious way, under the convention that, if the program halis before
time p(n), the configuration remains static at all later times, maintaining
the same halt-state, head position, and tape contents. The tape contents at
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time O consists of the input x, written in squares 1 through #, and the
guess w, written in squares ~1 through —|w/|, with all other squares blank.

On the other hand, an arbitrary truth assignment for these variables
need not correspond at all to a computation, much less to an accepting com-
putation. According to an arbitrary truth assignment, a given tape square
might contain many symbols at one time, the machine might be simultane-
ously in several different states, and the read-write head could be in any
subset of the positions —p(n) through p(n)+1. The transformation f;
works by constructing a collection of clauses involving these variables such
that a truth assignment is a satisfying truth assignment if and only if it is the
truth assignment induced by an accepting computation for x whose check-
ing stage takes p(n) or fewer steps and whose guessed string has length at
most p(n). We thus will have

x €L <> thereis an accepting computation of M on x

<> there is an accepting computation of M on x with p(n) or
fewer steps.in its checking stage and with a guessed string
w of length exactly p(n)

<> there is a satisfying truth assignment for the collection of
clauses in f; (x).

This will mean that f; satisfies one of the two conditions required of a
polynomial transformation. The other condition, that f; can be computed
in polynomial time, will be verified easily once we have completed our
description of f7 .

The clauses in f; (x) can be divided into six groups, each imposing a
separate type of restriction on any satisfying truth assignment as given in
Figure 2.8.

It is straightforward to observe that if all six clause groups perform
their intended missions, then a satisfying truth assignment will have to
correspond to the desired accepting computation for x. Thus all we need to
show is how clause groups performing these missions can be constructed.

Group G consists of the following clauses:

{oli,o,oli1l, ..., 0li,rl}, 0<i<p(n)
(OTi.JT, 010,y M), 0<i<p(n), 0K </'<r

The first p(n) +1 of these clauses can be simultaneously satisfied if and
only if, for each time i, M is in at least one state. The remaining
(p(n) +1) (r+1) (r/2) clauses can be simultaneously satisfied if and only if
at no time 7 is M in more than one state. Thus G, performs its mission.
Groups G, and G are constructed similarly, and groups G, and Gs are .
both quite simple, each consisting only of one-literal clauses. Figure 2.9
gives a complete specification of the first five groups. Note that the number
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Clause group Restriction imposed

G, At each time /, M is in exactly one state.
G At each time /, the read-write head is
2 scanning exactly one tape square.
At each time 7, each tape square contains
G;
exactly one symbol from T.
G At time 0, the computation is in the initial
4 configuration of its checking stage for input x.
G By time p(n), M has entered state gy
s
and hence has accepted x.
For each time i, 0<i<p(a), the configuration
G of M at time /+1 follows by a single
6

application of the transition function 8
from the configuration at time ;.

Figure 2.8 Clause groups in f; (x) and the restrictions they impose on satlsfymg
truth assignments.

of clauses in these groups, and the maximum number of literals occurring
in each clause, are both bounded by a polynomial function of »n (since r
and v are constants determined by M and hence by L).

The final clause group G, which ensures that each successive
configuration in the computation follows from the previous one by a single
step of program M, is a bit more complicated. It consists of two subgroups
of clauses.

The first subgroup guarantees that if the read-write head is rnot scanning
tape square j at time i/, then the symbol in square j does not change
between times / and /+1. The clauses in this subgroup are as follows:

{SUi,j, 0, Hlij1, SLi+t 7,1}, 0<i<p(m),—p(n)<j<p(n)+1,0<ILy

For any time /, tape square j, and symbol s,, if the read-write head is not
scanning square j at time j, and square j contains s, at time / but not at
time /+1, then the above clause based on /, j, and / will fail to be satisfied
(otherwise it will be satisfied). Thus the 2(p(n) +1)2 (v +1) clauses in this
subgroup perform their mission.
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Clause group Clauses in group

G, {oli,01,01i.11, ..., 0li,rl}, 0<i<p(n)
oTi 1,01, 0<igp(n), 0K <j'<r
G, {HlU,—p(m,HUi,—p(n)+1], . .., Hli,p(n)+11}, 0<i<pln)
{(HUGTLHLL T, 0<i<p(n),—p(n) <j<j'<p(n)+1
G ($1i,7,08,80i,4,1), . .., ST, j,v]}, 0<igp(n),—p(n) <j<pln)+1
(ST kL, ST,/ kLo i< p (), —p (M) < <pm)+1,0Kk<k'Sy
G, {Q10,01},{H10,11},{S(0,0,0},
{$10,1,k1),{S00,2, &0}, - - - (S0, n, k1), .
{S10,n+1,01},{S10,2+2,01}, . . . ,{S[0,p(m)+1,01},
where X= Sk Sk, Sk,
Gs {Qlp(n), 11}

Figure 2.9 The first five clause groups in f; {x).

The remaining subgroup of Gg guarantees that the changes from one
configuration to the next are in accord with the transition function & for M.
For each quadruple (i,j,k,D, 0<i<p(n), —p(n)<j<p(n) +1, O<k<r
and 0< /< v, this subgroup contains the following three clauses:

{HLi j1, Qli,k1, SUi,j, 01, HLi+1, j+Al)
{HT1i,j1, OLi k1, STi.j, 1T, Qli+1,k')
{H1i 1, oli,k), SLi,j. 11, SLi+1,4,01)

where if g, € Q—{qy,qN}, then the values of A, k', and /' are such that
8(qx,s) = (gy»sp,A), and if g € {qy,qy}), then A=0, K'=k, and I'=/1.

Although it may require a few minutes of thought, it is not difficult to
see that these 6(p(n)) (p(n) +1) (r+1) (v+1) clauses impose the desired
restriction on satisfying truth assignments.

Thus we have shown how to construct clause groups G, through Gy
performing the previously stated missions. If x € L, then there is an
accepting computation of M on x of length p(#n) or less, and this computa-
tion, given the interpretation of the variables, imposes a truth assignment
that satisfies all the clauses in C=G U G,UG3;U G,U G5U Gy
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Conversely, the construction of C is such that any satisfying truth assign-
ment for C must correspond to an accepting computation of M on x. It
follows that f; (x) has a satisfying truth assignment if and only if x € L.

All that remains to be shown is that, for any fixed language L, f; (x)
can be constructed from x in time bounded by a polynomial function of
n=|x|. Given L, we choose a particular NDTM M that recognizes L in
time bounded by a polynomial p (we need not find this NDTM itself in
polynomial time, since we are only proving that the desired transformation
fi exists), Once we have a specific NDTM M and a specific polynomial p,
the construction of the set U of variables and collection C of clauses
amounts to little more than filling in the blanks in a standard (though com-
plicated) formula. The polynomial boundedness of this computation wilt
follow immediately once we show that Length [/, (x)] is bounded above by
a polynomial function of n, where Length [/] reflects the length of a string
encoding the instance / under a reasonable encoding scheme, as discussed
in Section 2.1. Such a ‘‘reasonable’ Length function for SAT is given, for
example, by |U|-|C|. No clause can contain more than 2-|U| literals
(that’s all the literals there are), and the number of symbols required to
describe an individual literal need only add an additional log| U] factor,
which can be ignored when all that is at issue is polynomial boundedness.
Since r and v are fixed in advance and can contribute only constant factors
to |U| and |C|, we have |U| = 0(p(n)?) and |C| = O(p(n)?). Hence
Length [f, (x)]1 = |U|-|C| = O(p(n)*), and is bounded by a polynomial
function of n as desired.

Thus the transformation f; can be computed by a polynomial time
algorithm (although the particular polynomial bound it obeys will depend on
L and on our choices for M and pJ, and we conclude that, for every
L €NP, £, is a polynomial transformation from L to SAT (technically, of
course, from L to Lg,r). It follows, as claimed, that SAT is NP-complete.
]

3

Proving NP-Completeness Results

If every NP-completeness proof had to be as complicated as that for
SATISFIABILITY, it is doubtful that the class of known NP-complete prob-
lems would have grown as fast as it has. However, as discussed in Section
2.4, once we have proved a single problem NP-complete, the procedure for
proving additional problems NP-compiete is greatly simplified. Given a
problem II € NP, all we need do is show that some already known NP-
complete problem IT' can be transformed to II. Thus, from now on, the
process of devising an NP-completeness proof for a decision problem IT will
consist of the following four steps:

(1) showing that II is in NP,

(2) selecting a known NP-complete problem IT',

(3) constructing a transformation f from IT' to I1, and
(4) proving that f is a (polynomial) transformation.

In this chapter, we intend not only to acquaint readers with the end
results of this process (the finished NP-completeness proofs) but also to
prepare them for the task of constructing such proofs on their own. In Sec-
tion 3.1 we present six problems that are commonly used as the ‘‘known
NP-complete problem’’ in proofs of NP-completeness, and we prove that
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these six are themselves NP-complete. In Section 3.2 we describe three
general approaches for transforming one problem to another, and we
demonstrate their use by proving a wide variety of problems NP-complete.
A concluding section contains some suggested exercises.

3.1 Six Basic NP-Complete Problems

When seasoned practitioners are confronted with a problem II to be
proved NP-complete, they have the advantage of having a wealth of experi-
ence to draw upon. They may well have proved a similar problem TI' NP-
complete in the past or have seen such a proof. This will suggest that they
try to prove II NP-complete by mimicking the NP-completeness proof for
I or by transforming [T’ itself to II. In many cases this may lead rather
easily to an NP-completeness proof for IL

All too often, however, no known NP-complete problem similar to II
can be found (even using the extensive lists at the end of this book). In
such cases the practitioner may have no direct intuition as to which of the
hundreds of known NP-complete problems is best suited to serve as the
basis for the desired proof. Nevertheless, experience can still narrow the
choices down to a core of basic problems that have been useful in the past.
Even though in theory any known NP-complete problem can serve just as
well as any other for proving a new problem NP-complete, in practice cer-
tain problems do seem to be much better suited for this task. The following
six problems are among those that have been used most frequently, and we

suggest that these six can serve as a ‘“‘basic core” of known NP-complete

problems for the beginner.

3-SATISFIABILITY (3SAT)
INSTANCE: Collection C = {¢y,¢5, . . .
variables such that | ¢;|=3for1 < i< m
QUESTION: Is there a truth assignment for U that satisfies all the clauses
in C?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: A set M C WxXxY, where W, X, and Y are disjoint sets
having the same number g of elements.

QUESTION: Does M contain a matching, that is, a subset M’ C M such
that |M'| = ¢ and no two elements of M’ agree in any coordinate?

VERTEX COVER (VC)

INSTANCE: A graph G = (V,E) and a positive integer X < |V|.
QI’JESTION Is there a vertex cover of size K or less for G, that is, a subset
V'C V such that | V'| € K and, for each edge {u,} € E, at least one of u
and v belongs to V'?

¢} Of clauses on a finite set U of
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CLIQUE

INSTANCE: A graph G = (V,E) and a positive integer J < | V|.
QUESTION: Does G contain a cligue of size J or more, that is, a subset
V' C V such that | V'] > J and every two vertices in ¥’ are joined by an
edge in E7?

HAMILTONIAN CIRCUIT (HO)

INSTANCE: A graph G = (V,E).
QUESTION: Does G contain a Hamiltonian circuit, that is, an ordering

<vi,va,...,v,> of the vertices of G, where n=| V| such that
(v, vil EE and {vvie) €Eforall i, 1<i<n?
PARTITION

INSTANCE: A finite set 4 and a ‘‘size” s(a) € Z* for each a€ 4.
QUESTION: Is there a subset A" C A such that

Ysta) = ¥ sla)?

acA’ ac€A—A'

One reason for the popularity of these six problems is that they all ap-
peared in the original list of 21 NP-complete problems presented in [Karp,
1972]. We shall begin our iliustration of the techniques for proving NP-
completeness by proving that each of these six problems is NP-complete,
noting, whenever appropriate, variants of these problems whose NP-
completeness follows more or less directly from that of the basic problems.

SATISFIABILITY

y

3SAT

N

3DM

PARTITION HC  CLIQUE

Figure 3.1 Diagram of the sequence of transformations used to prove that the six
basic problems are NP-complete.

Our initial transformation will be from SATISFIABILITY, since it is
the only ‘“‘known’ NP-complete problem we have so far. However, as we
proceed through these six proofs, we will be enlarging our collection of
known NP-complete problems, and all problems proved NP-complete before
a problem [I will be available for use in proving that IT is NP-complete.
The diagram of Figure 3.1 shows which problems we will be transforming to
each of our six basic problems, where an arrow is drawn from one problem
to another if the first is transformed to the second. This sequence of
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transformations is not identical to that used by Karp, and, even when his
sequence coincides with ours, we have sometimes modified or replaced the
original transformation in order to illustrate certain general proof tech-
niques.

3.1.1 3-SATISFIABILITY

The 3-SATISFIABILITY problem is just a restricted version of SAT-
ISFIABILITY in which all instances have exactly three literals per clause.
Its simple structure makes it one of the most widely used problems for
proving other NP-completeness results. ‘
Theorem 3.1. 3-SATISFIABILITY is NP-complete.

Prooft 1t is easy to see that 3SAT € NP since a nondeterministic algorithm
need only guess a truth assignment for the variables and check in polynomi-
al time whether that truth setting satisfies all the given three-literal clauses.

We transform SAT to 3SAT. Let U={u,u,, . .. , u,} be a set of vari-
ables and C={c(,c,, ... ,c,) be a set of clauses making up an arbitrary in-
stance of SAT. We shall construct a collection C' of three-literal clauses on
a set U’ of variables such that C' is satisfiable if and only if C is satisfiable.

The construction of C’ will merely replace each individual clause ¢; € C
by an ‘“‘equivalent’ collection C; of three-literal clauses, based on the origi-
nal variables U and some additional variables U/; whose use will be limited
to clauses in C;. These will be combined by setting

0 vl
J=1

U=Uu

and
m
=G
J=1
Thus we only need to show how C; and Uj can be constructed from c;.

Let ¢; be given by {z1,20, ..., zk} where the z’s are all literals derived
from the variables in U. The way in which C; and U} are formed depends
on the value of k.

Case 1. k=1. Uj={y},y}

Cj’= {{Zhyjlayjz}a{Zlayjl»}_ljz}a{213.Eliyj2}’{zla.}7jl,)7j2}}
Case 2. k=2. Uj=U}), C;= {zp.22.0 1 (20,22.5} 1)
Case 3. k=3. Uj=¢,C;={{c]}}

N

3.1 SIX BASIC NP-COMPLETE PROBLEMS 49

1 o Rt

Case 4. k>3. Uj={y:1<i<k-3} —» *
Cj={{z1.22, 1} U {7} 202y} 1< i < k—4)
U {{}7jk_3,2k—1,2k}}

To prove that this is indeed a transformation, we must show that the
set C’' of clauses is satisfiable if and only if C is. Suppose first that
2 U—{T,F} is a truth assignment satisfying C. We show that r can be ex-
tended to a truth assignment ¢: U'—{T,F} satisfying C'. Since the variables
in U'—U are partitioned into sets U} and since the variables in each U; oc-
cur only in clauses belonging to C;, we need only show how ¢ can be ex-
tended to the sets U; one at a time, and in each case we need only verify
that all the clauses in the corresponding ij are satisfied. We can do this as
follows: If U; was constructed under either Case 1 or Case 2, then the
clauses in C; are already satisfied by ¢, so we can extend ¢ arbitrarily to U,
say by setting ¢'(y)=T for all y€ Uj. If U; was constructed under Case 3,
then U; is empty and the single clause in C; is already satisfied by s. The
only remaining case is Case 4, which corresponds to a clause
{zy,23, ..., z) from C with k>3. Since ¢ is a satisfying truth assignment
for C, there must be a least integer / such that the literal z is set true
under ¢. If / is either 1 or 2, then we set r'(y) =F for 1<i<k=3. If [ is
either k—1 or k, then we set t’(y;) =T for 1<ig<k—3. Otherwise we set
(D) =T for 1<i</—2and ¢'(y) =F for I-1<i<k-3. It is easy to veri-
fy that these choices will insure that all the clauses in C; will be satisfied, so
all the clauses in C' will be satisfied by 1. Conversely, if ¢ is a satisfying
truth assignment for C’, it is easy to verify that the restriction of ¢ to the
variables in U must be a satisfying truth assignment for C. Thus C' is
satisfiable if and only if C is.

To see that this transformation can be performed in polynomial time, it
suffices to observe that the number of three-literal clauses in C' is bounded
by a polynomial in mn. Hence the size of the 3SAT instance is bounded
above by a polynomial function of the size of the SAT instance, and, since
all details of the construction itself are straightforward, the reader should
have no difficulty verifying that this is a polynomial transformation. =

The restricted structure of 3SAT makes it much more useful than SAT
for proving NP-completeness results. Any proof based on SAT (except for
the one we have just given) can be converted immediately to one based on
3SAT, without even changing the transformation. In fact, the normaliza-
tion to clauses having the same size often can simplify the transformations
we need to construct and thus make them easier to find. Furthermore, the
very smallness of these clauses permits us to use transformations that would
not work for instances containing larger clauses. This suggests that it would
be still more convenient if we could show that the analogous 2-
SATISFIABILITY problem, in which each clause has exactly mwo literals,
were NP-complete. However, 2SAT can be solved by “‘resolution’ tech-
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niques in time bounded by a polynomial in the product of the number of
clauses and the number of variables in the given instance [Cook, 1971] (see
also [Even, Itai, and Shamir, 1976]), and hence is in P.

3.1.2 3-DIMENSIONAL MATCHING

The 3-DIMENSIONAL MATCHING problem is a generalization of the
classical “‘marriage problem’: Given r unmarried men and » unmarried
women, along with a list of all male-female pairs who would be willing to
marry one another, is it possible to arrange n marriages so that polygamy is
avoided and everyone receives an acceptable spouse? Analogously, in the
3-DIMENSIONAL MATCHING problem, the sets W, X, and Y corre-
spond to three different sexes, and each triple in M corresponds to a 3-way
marriage that would be acceptable to all three participants. Traditionalists
will be pleased to note that, whereas 3DM is NP-complete, the ordinary
marriage problem can be solved in polynomial time (for example, see [Hop-
croft and Karp, 1973]).

Theorem 3.2 3-DIMENSIONAL MATCHING is NP-complete.

Proof: 1t is easy to see that 3DM € NP, since a nondeterministic algorithm
need only guess a subset of g=| W|=|X|=|Y] triples from M and check in
polynomial time that no two of the guessed triples agree in any coordinate.

We will transform 3SAT to 3DM. Let U ={u,u,, ..., u,} be the set
of variables and C={c,,¢c;, ..., ¢} be the set of clauses in an arbitrary in-
stance of 3SAT. We must construct disjoint sets W, X, and Y, with
[W|=1X|=]|Y], and a set M C W x X x Y such that M contains a match-
ing if and only if C is satisfiable.

The set M of ordered triples will be partitioned into three separate
classes, grouped according to their intended function: ‘‘truth-setting and
fan-out,” ‘“‘satisfaction testing,”’ or ‘‘garbage collection.”

Each truth-setting and fan-out component corresponds to a single vari-
able #€ U, and its structure depends on the total number m of clauses in
C. This structure is illustrated for the case of m =4 in Figure 3.2. In gen-
eral, the truth-setting and fan-out component for a variable u, involves
“internal”” elements a;[j1€X and §,[j1€ Y, 1<i<m, which will not occur
in any triples outside of this component, and ‘‘external’”’ elements
uiljl, a1 €W, 1<i<m, which will occur in other triples. The triples
making up this component can be divided into two sets:

I

T = {@),a,Ul,6D: 1< <m)
T/

7 = {1, qli+11,5,D: 1< <m} U {(lml,a,011,5,0mD)}

Since none of the internal elements {a,[/],6,[;]: 1 << m} will appear in any
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Figure 3.2 Truth seiting component 7; when m =4 (subscripts have been deleted
for simplicity). Either all the sets of 77 (the shaded sets) or all the sets
of 7/ (the unshaded sets) must be chosen, leaving uncovered all the
u,1j] or all the {1, respectively.

triples outside of T,=T/U T,f, it is easy to see that any matching M’ will
have to include exactly m triples from T;, either all triples in 77 or all triples
in T;/. Hence we can think of the component T, as forcing a matching to
make a choice between setting u; true and setting u; false. Thus, in gen-
eral, a matching M' C M specifies a truth assignment for U, with the vari-
able u; being set true if and only if M'N T, = T7.

Each satisfaction testing component in M corresponds to a single clause
c;€C. It involves only two “internal’” elements, s;[j]€X and s,[j1€Y,
and external elements from {u[;],4,[/1:1<i<n}, determined by which
literals occur in clause c;. The set of triples making up this component is
defined as follows:

C = {5, 1, sz[j]):u-Gc-} u @1, s, L1, sz[j]):ﬂ,»Ec-}

Thus any matching M’ & M will have to contain exactly one triple from C;.

This can only be done, however, if some u;[j] (or @ {;1) for a literal u, Ec
(4, Gc,) does not occur in the triples in 7, N M', whlch will be the case 1f
and only if the truth setting determined by M’ satlsﬁes clause c;.
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The construction is completed by means of one large ‘‘garbage coliec-
tion” component G, involving internal elements g, [k1€X and g,[kl€Y,
1< k< m(n-1), and external elements of the form (] and &[] from W.
It consists of the following set of triples:

G = {(u g (k) g, kD), (711, [k1.g,1KkD):
1<k<mn=1),1<i< n,1<ji<m)
Thus each pair g,[k], g,[k] must be matched with a unique «{j1 or #[/]
that does not occur in any triples of M'— G. There are exactly m(n—1)
such ‘““‘uncovercd’ external elements, and the structure of G insures that
they can always be covered by choosing M'NG appropriately. Thus G
merely guarantees that, whenever a subset of M — G satisfies all the con-
straints imposed by the truth-setting and fan-out components, then that

subset can be extended to a matching for M.
To summarize, we set

W= {uiLzjl1<i<nl1<j<m)
X = A US; U Gl

where
A= {aqjl1<i<n1<,;<m)

Sl = {sl[j]l<j<m}
G = (gl 1< i< m(n-1)}

Y*BU52UG2

where
B = {pljl1<i<n,1<;<m}

Sy = (s 1</<m}
Gy = g1 1< i< m(n-1)}

and

Ucluc

j=1

M=|T

i=]

U

Notice that every triple in M is an element of WXx XX Y as required.
Furthermore, since M contains only

2mn + 3m + 2m*n(n—1)

triples and since its definition in terms of the given 3SAT instance is quite
direct, it is easy to see that M can be constructed in polynomial time.
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From the comments made during the description of M, it follows
immediately that M cannot contain a matching unless C is satisfiable. We
now must show that the existence of a satisfying truth assignment for C
implies that M contains a matching.

Let +: U—{T,F} be any satisfying truth assignment for C. We con-
struct a matching M C M as follows: For each clause g€eC, let
z; € {u,u:1<i<n} N ¢; be a literal that is set true by ¢ (one must exist
since ¢ satisfies ¢;). We then set

= | e W

U U

O {ZUlsiUls DY U G
=1

1(u)=T tu)=F

where G’ is an appropriately chosen subcollection of G that includes all the
g1[kl,g,[k], and remaining (/] and % (/1. It is easy to verify that such a
G' can always be chosen and that the resulting set M’ is a matching. ®

In proving NP-completeness results, the following slightly simpler and
more general version of 3DM can often be used in its place:

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X|=3¢ and a collection C of 3-element
subsets of X.

QUESTION: Does C contain an exact cover for X, that is, a subcollection
C' € C such that every element of X occurs in exactly one member of C'?

Note that every instance of 3DM can be viewed as an instance of X3C, sim-
ply by regarding it as an unordered subset of WU XU Y, and the maichings
for that 3DM instance will be in one-to-one correspondence with the exact
covers for the X3C instance. Thus 3DM is just a restricted version of X3C,
and the NP-completeness of X3C follows by a trivial transformation from
3DM.

3.1.3 VERTEX COVER and CLIQUE

Despite the fact that VERTEX COVER and CLIQUE are independently
useful for proving NP-completeness results, they are really just different
ways of looking at the same problem. To see this, it iS convenient to con-
sider them in conjunction with a third problem, called INDEPENDENT
SET.

An independent set in a graph G=(V,E) is a subset ¥'C V such that,
for all u,ve V', the edge {u,v} is notr in E. The INDEPENDENT SET
problem asks, for a given graph G =(V,E) and a positive integer J<| V]|,
whether G contains an independent set V' having | V'| > J. The following
relationships between independent sets, cliques, and vertex covers are easy
to verify.
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Lemma 3.1 For any graph G=(V,E) and subset V'CV, the following
statements are equivalent:

(a) V'is a vertex cover for G.

(b) V-V’ is an independent set for G.

(c) V—V'is a clique in the complement G¢ of G, where G¢=(V, E°)
with €= {{u,v}:u,ve ¥V and {u,v} ¢ E}.

Thus we see that, in a rather strong sense, these three problems might
be regarded simply as ‘‘different versions’’ of one another. Furthermore,
the relationships displayed in the lemma make it a trivial matter to
transform any one of the problems to either of the others.

For example, to transform VERTEX COVER to CLIQUE, Ilet
G =(V,E) and K<|V| constitute any instance of VC. The corresponding
instzlincle of CLIQUE is provided simply by the graph G¢ and the integer
J=|V|-K.

This implies that the NP-completeness of all three problems will follow
as an immediate consequence of proving that any one of them is NP-
complete. We choose to prove this for VERTEX COVER.

Theorem 3.3 VERTEX COVER is NP-complete.

Proofi 1t is easy to see that VC € NP since a nondeterministic algorithm
need only guess a subset of vertices and check in polynomial time whether
that subset contains at least one endpoint of every edge and has the ap-
propriate size.

We transform 3SAT to VERTEX COVER. Let U={u,,uy,...,u,}
and C={cy,c5,...,c,} be any instance of 3SAT. We must construct a
graph G =(V,E) and a positive integer X < | V| such that G has a vertex
cover of size K or less if and only if C is satisfiable.

As in the previous proof, the construction will be made up of several
components. In this case, however, we will have only truth-setting com-
ponents and satisfaction testing components, augmented by some additional
edges for communicating between the various components.

For each wvariable u,€U, there is a truth-setting component
T,=(V,,E}), with V;={u;,7;} and E,={{u;,7}}, that is, two vertices joined
by a single edge. Note that any vertex cover will have to contain at least
one of u; and #; in order to cover the single edge in E;.

For each clause ¢;€C, there is a satisfaction testing component
S;=(V},E)), consisting of three vertices and three edges joining them to
form a triangle:

Vi = la Ul aslil, s}
Ej = {{a U asljl), {ay U as L), (as i a5 L))
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Note that any vertex cover will have to contain at least two vertices from V/f
in order to cover the edges in E}.

The only part of the construction that depends on which literals occur
in which clauses is the collection of communication edges. These are best
viewed from the vantage point of the satisfaction testing components. For
each clause ¢;€C, let the three literals in ¢; be denoted by X, yj» and z;.
Then the communication edges emanating from §; are given by:

£ = {{a,[j1x) @iy a3l 2]
The construction of our instance of VC is completed by setting
K= n+2mand G=(V,E), where
n m
=~y viuy)
i=l j=1

and
E=(UJE) U (UE) u((JED
i=1 j=1 j=1

Figure 3.3 shows an example of the graph obtained when U = {uy,uy ,u3,u4)
and C= {{Hl,ﬁyﬁ‘t),{ﬁhuz,m}}-

uy i Uy Uy Us us Uy Uy
02[1] 02[2]

a1l as[1] a,[2] a;12]

Figure 3.3 VERTEX COVER instance resulting from 3SAT instance in which
U={up,uz usug), €=, 3.8}, (7,12, 3)}. Here K =n+2m=8.

It is easy to see how the construction can be accomplished in polyno-
mial time. All that remains to be shown is that C is satisfiable if and only if
G has a vertex cover of size K or less.

First, suppose that V'CV is a vertex cover for G with |V'|<K. By
our previous remarks, ¥’ must contain at least one vertex from each T; and
at least two vertices from each §;. Since this gives a total of at least
n+2m=K vertices, V' must in fact contain exactly one vertex from each
T; and exactly two vertices from each §;. Thus we can use the way in
which V' intersects each truth-setting component to obtain a truth assign-
ment - U—{T,F}. We merely set t(u)=T if w€V' and t(u)=F if
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u,€V'. To see that this truth assignment satisfies each of the clauses ¢;€C,
consider the three edges in E;'. Only two of those edges can be covered by
vertices from ¥; N V', so one of them must be covered by a vertex from
some V; that belongs to ¥’. But that implies that the corresponding literal,
either u; or u;, from clause ¢; is true under the truth assignment ¢, and
hence clause ¢; is satisfied by ¢. Because this holds for every ¢;€C, it fol-
lows that ¢ is a satisfying truth assignment for C.

Conversely, suppose that r: U—{7,F} is a satisfying truth assignment
for C. The corresponding vertex cover V' includes one vertex from each
T, and two vertices from each S;. The vertex from T; in V' is u if
t{u) =T and is &, if () =F. This ensures that at least one of the three
edges from each set Ej" is covered, because ¢ satisfies each clause c;.
Therefore we need only include in V' the endpoints from S; of the other
two edges in E;' (which may or may not also be covered by vertices from
truth-setting components), and this gives the desired vertex cover. ®

3.1.4 HAMILTONIAN CIRCUIT

In Chapter 2, we saw that the HAMILTONIAN CIRCUIT problem can
be transformed to the TRAVELING SALESMAN decision problem, so the
NP-completeness of the latter problem will follow immediately once HC has
been proved NP-complete. At the end of the proof we note several variants
of HC whose NP-completeness also follows more or less directly from that
of HC.

For convenience in what follows, whenever <vp,v,,...,¥,> is a
Hamiltonian circuit, we shall refer to {v;,v.y,}, 1<i<n, and {v,,v,} as the
edges “‘in” that circuit. Our transformation is a combination of two
transformations from [Karp, 1972], also described in [Liu and Geldmacher,

1978].

Theorem 3.4 HAMILTONIAN CIRCUIT is NP-complete

Proof: 1t is easy to see that HC € NP, because a nondeterministic algorithm
need only guess an ordering of the vertices and check in polynomial time
that all the required edges belong to the edge set of the given graph.

We transform VERTEX COVER to HC. Let an arbitrary instance of
VC be given by the graph G = (V,E) and the positive integer K < {V]|. We
must construct a graph G'=(V',E") such that G’ has a Hamiltonian circuit
if and only if G has a vertex cover of size K or less.

Once more our construction can be viewed in terms of components
connected together by communication links. First, the graph G' has K
“‘selector’’ vertices ay,a;, . . ., ax, which will be used to select K vertices
from the vertex set V for G. Second, for each edge in £, G' contains a
““cover-testing’® component that will be used to ensure that at least one
endpoint of that edge iS among the selected X vertices. The component for
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e=1{u,v} € E is illustrated in Figure 3.4. It has 12 vertices,
v, = {(u,e,0),(v,e,):1<i<6}
and 14 edges,
E' = {{(u,e,),(u,e,i+D}, ((v,e,1),(v,e,i+1)}: 1<i<5)
U {{u,e,3),(v,e,D}, {(v,e,3),(u,e,1)}}
U {{(u,e,6),(v,e,8)},{(,e,6),(u,e,0)}}

(u,e,1)
(u,e,2)
(u,e,3)
(u,e,4) (v,e,4)
(u,e,5) (v,e,5)

(u,e.6) ¥ ﬁ (v,e.6)

1 (v,e,1)
(v,e,2)
(v,e,3)

Figure 3.4 Cover-testing component for edge e ={u,v} used in transforming
VERTEX COVER to HAMILTONIAN CIRCUIT.

In the completed construction, the only vertices from this cover-testing
component that will be involved in any additional edges are
(u,e,1), (v,e,1), (u,e,6), and (v,e,6). This will-imply, as the reader may
readily verify, that any Hamiltonian circuit of G' will have to meet the
edges in E, in exactly one of the three configurations shown in Figure 3.5.
Thus, for example, if the circuit ‘‘enters’ this component at (u,e,1), it will
have to “‘exit> at (u,e,6) and visit either all 12 vertices in the component
or just the 6 vertices (u, e, /), 1 <i<6.

Additional edges in our overall construction will serve to join pairs of
cover-testing components or to join a cover-testing component to a selector
vertex. For each vertex v € ¥, let the edges incident on v be ordered (arbi-
trarily) as e, (21, - + - » Eulaeg ()1 » Where deg(v) denotes the degree of v in
G, that is, the number of edges incident on v. All the cover-testing com-
ponents corresponding to these edges (having v as endpoint) are joined
together by the following connecting edges:

E; = {,e,:6), ey D 1< i< deg (v) }

As shown in Figure 3.6, this creates a single path in G’ that includes exactly
those vertices (x,y,z) having x=v.
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‘~\ -~\‘ I'- "-
(u,e,1) 3 (u,e,1) ¢ (v,e,1) e (v,e,1)
(u,e,6) § (u,e,6) § ' (v,e.6) t (v,e,6)

4 " \~- \~-

@ ) ©

Figure 3.5 The three possible configurations of a Hamiltonian circuit within the
cover-testing component for edge e ={u,v}, corresponding to the cases
in which (a) u belongs to the cover but v does not, (b) both u and v
belong to the cover, and (c) v belongs to the cover but u does not.

The final connecting edges in G’ join the first and last vertices from
each of these paths to every one of the selector vertices aj,a;, ... ,ax.
These edges are specified as follows:

E"= {{a;,(v,evm,1)},{a,-,(v,eu[.jeg(v)]ﬁ)}i1<i.<K, vev)
The completed graph G’ = (V',E’) has

V' ={a:1<i<Klu (Y V)
eeE
and
E=(JEIU(YE)UE"

eEE VeV

It is not hard to see that G' can be constructed from G and K in polyno-
mial time.

We claim that G’ has a Hamiltonian circuit if and only if G has a ver-
tex cover of size K or less. Suppose <v,,v, ..., v,>, where n = | V'], is
a Hamiltonian circuit for G'. Consider any portion of this circuit that
begins at a vertex in the set {a;,a,,...,ax}, ends at a vertex in
{aj,ay, . .., ak}, and that encounters no such vertex internally. Because of
the previously mentioned restrictions on the way in which a Hamiltonian
circuit can pass through a cover-testing component, this portion of the cir-
cuit must pass through a set of cover-testing components corresponding to
exactly those edges from £ that are incident on some one particular vertex
vEV, Each of the cover-testing components is traversed in one of the
modes (a), (b), or (¢) of Figure 3.5, and no vertex from any other cover-
testing component is encountered. Thus the K vertices from
laj,a,, ..., ax} divide the Hamiltonian circuit into K paths, each path
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(v,ev[”,l)

(V’ev[l]’6)
(v7ev[2]’1)

(V,ev[3],6)

(v.e,3,1) ~
(vvev[deg(v)]’l)

(v, (deg()]1:6)

Figure 3.6 Path joining all the cover-testing components for edges from E having
vertex v as an endpoint.

‘corresponding to a distinct vertex v€ V. Since the Hamiltonian circuit must

include all vertices from every one of the cover-testing components, and
since” vertices from the cover-testing component for edge e€E can be
traversed only by a path corresponding to an endpoint of e, every edge in F
must have at least one endpoint among those K selected vertices. There-
fore, this set of K vertices forms the desired vertex cover for G.
Conversely, suppose V*C V is a vertex cover for G with |V*| < K.
We can assume that | V*| =K since additional vertices from ¥ can- always
be added and we will still have a vertex cover. Let the elements of V* be
labeled as vy,v,, ..., vg. The following edges are chosen to be ‘‘in> the
Hamiltonian circuit for G'. From the cover-testing component representing
each edge’e ={u,v} € E, choose the edges specified in Figure 3.5(a), (b), or
(c) depending on whether {u,v} N V* equals, respectively, {u}, {u,v}, or
{v}. One of these three possibilities must hold since V* is a vertex cover
for G. Next, choose all the edges in Ev,'. for 1</<K. Finally, choose the

edges
{a;,(vi, e‘,l_m,l)}, 1 < ISK
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{a,'+],(V,‘, ev‘.[deg(v,)]’ 6)}’ ISi<K
and
{al,(vK, euK[deg(vK)]* 6)}

We leave to the reader the task of verifying that this set of edges actually
corresponds to a Hamiltonian circuit for G'. ®

Several variants of HAMILTONIAN CIRCUIT are also of interest.
The HAMILTONIAN PATH problem is the same as HC except that we
drop the requirement that the first and last vertices in the sequence be
joined by an edge. HAMILTONIAN PATH BETWEEN TWO POINTS is
the same as HAMILTONIAN PATH, except that two vertices v and v are
specified as part of each instance, and we are asked whether G contains a
Hamiltonian path beginning with » and ending with v. Both of these prob-
lems can be proved NP-complete using the following simple modification of
the transformation just used for HC. We simply modify the graph G’
obtained at the end of the construction as follows: add three new vertices,
ag, agsi, and agy,, add the two edges {ag,a;} and {axii.ax4s), and
replace each edge of the form {a},(v, €,14e (1)1 6)} BY (@ +1,(V, €, deg (1, )}
The two specified vertices for the latter variation of HC are ag and ag,,.

All three Hamiltonian problems mentioned so far also remain NP-
complete if we replace the undirected graph G by a directed graph and
replace the undirected Hamiltonian circuit or path by a directed Hamiltonian
circuit or path. Recall that a directed graph G =(V,4) consists of a vertex
set V and a set of ordered pairs of vertices called arcs. A Hamiltonian path
in a directed graph G=(V,4) is an ordering of ¥ as <v;,v5, ..., V,>,
where n=|V|, such that (v;p) €4 for 1<i<n. A Hamlltornan circuit
has the additional requirement that (v,,,vl) € A. Each of the three

undirected Hamiltonian problems can be transformed to its directed coun-

terpart simply by replacing each edge {u,v} in the given undirected graph by
the two arcs (u,v) and (v,u). In essence, the undirected versions are
merely special cases of their directed counterparts.

3.1.5 PARTITION

In this section we consider the last of our six basic NP-complete prob-
lems, the PARTITION problem. It is particularly useful for proving NP-
completeness results for problems involving numerical parameters, such as
lengths, weights, costs, capacities, etc.

Theorem 3.5 PARTITION is NP-compiete
Proof: 1t is easy to see that PARTITION € NP, since a nondeterministic al-
gorithm need only guess a subset 4’ of 4 and check in polynomial time
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that the sum of the sizes of the elements in A’ is the same as that for the
elements in 4—A4'.

We transform 3DM to PARTITION. Let the sets W, X,Y, with
|W|=|X|=|Y|=¢q, and M & W x X X Y be an arbitrary instance of 3DM.
Let the elements of these sets be denoted by

W={w1,w2,...,wq}
X=1{x,x,...,%)]
Y=0ny. 00,0}

and
M={m1,m2, N mk}

where k=|M|. We must construct a set 4, and a size s(a)€ Z* for each
a €A, such that 4 contains a subset 4’ satisfying

Ysta) = ¥ s(a)
a€A’ acA—-A'
if and only if M contains a matching.

The set 4 will contain a total of k+2 elements and w1ll be constructed
in two steps. The first k elements of 4 are {a;: 1<:<k} where the ele-
ment a; is associated with the triple m;€M. The size s(a,) of a; will be
specified by giving its binary representation, in terms of a string of 0’s and
1’s divided into 3g “‘zones” of p = [log,(k+1)] bits each. Each of these
zones is labeled by an element of W U X U Y, as shown in Figure 3.7.

T e T = T
1 T 1 I | ] ] i |

WL Wy eee W, X Xy eve Xg Yy Yy v Yq

Figure 3.7 Labeling of the 3¢ *‘zones,” each containing p = [logy(k+1)] bits
of the binary representation for s{a), used in transforming 3DM to
PARTITION.

The representation for s(a;) depends on the corresponding triple
m;= (e, X000 Yn(n) € M (where f,g,and A are just the functions that
give the subscripts of the first, second, and third components for each m;).
It has a_l in the rightmost bit position of the zones labeled by wy(;, X;(;)»
and y,(, and 0’s everywhere else. Alternatively, we can write

s(ai) — 2p(3q—f(i)) + 2p(2q—g(/)) + 27(g=h (1))

Since each s(a;) can be expressed in binary with no more than 3pg bits, it
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is clear that s{a;) can be constructed from the given 3DM instance in poly-
nomial time.

The important thing to observe about this part of the construction is
that, if we sum up all the entries in any zone, over all elements of
{a;:1<i<k}, the total can never exceed k=2°—1. Hence, in adding up
Y e s(a) for any subset 4’ C {a;: 1<i< k), there will never be any ‘‘car-
ries”” from one zone to the next. It follows that if we let

3g—1
B= Y 2#¥
j=0
(which is the number whose binary representation has a 1 in the rightmost
position of every zone), then any subset 4' C {a;: 1 <i< k} will satisfy

Y s(a) =B
a€d’
if and only if M’ = {m,: a,€ 4’} is a matching for M.
The final step of the construction specifies the last two elements of 4.
These are denoted by b, and b, and have sizes defined by

s(b) =2 i s(a)|— B

i=1

and

s(by) = i s(a)| + B

i=]

Both of these can be specified in binary with no more than (3pg+1) bits
and thus can be constructed in time polynomial in the size of the given
3DM instance.

Now suppose we have a subset 4’ € 4 such that

Y s(a) = Y s(a)

a€Ad’ a€A-A'
Then both of these sums must be equal to 2Y X s(a,), and one of the two
sets, A’ or A—~A’, contains b; but not b,. It follows that the remaining ele-
ments of that set form a subset of {a;: 1< /< k} whose sizes sum to B, and
hence, by our previous comments, that subset corresponds to a matching
M in M. Conversely, if M'CM is a matching, then the set
{6} U {a;: m;€ M’} forms the desired set 4’ for the PARTITION instance.
Therefore, 3DM o PARTITION, and the theorem is proved. ®
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3.2 Some Techniques for Proving NP-Completeness

The techniques used for proving NP-completeness results vary almost
as widely as the NP-complete problems themselves, and we cannot hope to
illustrate them all here. However, there are several general types of proofs
that occur frequently and that can provide a suggestive framework for de-
ciding how to go about proving a new problem NP-complete. We call these
(a) restriction, (b) local replacement, and (c) component design.

In this section we shall indicate what we mean by each of these proof
types, primarily by giving examples. It would be sheer folly to attempt to
define them explicitly. Many proofs can be interpreted in ways that would
place them arbitrarily in any one of the three categories. Other proofs
depend on decidedly problem-specific methods, so that no such limited set
of categories could possibly include them in a natural way. Thus, we cau-
tion the reader not to interpret this as a way to classify all NP-completeness
proofs. Rather, our sole intent is to illustrate several ways of thinking
about NP-completeness proofs that the authors (and othérs) have found to
be both intuitively appealing and constructive.

For brevity in what follows, we shall be omitting from all our proofs
the verification that the given problem is in NP. Each of the problems we
consider is easily seen to be solvable in polynomial time by a nondeter-
ministic algorithm, and the reader should have no difficulty supplying such
an algorithm whenever required.

3.2.1' Restriction

Proof by restriction is the simplest, and perhaps the most frequently ap-
plicable, of our three proof types. An NP-completeness proof by restriction
for a given problem II € NP consists simply of showing that Tl contains a
known NP-complete problem II' as a special case. The heart of such a
proof lies in the specification of the additional restrictions to be placed on
the instances of II so that the resulting restricted problem will be identical
to II'" We do not require that the restricted problem and the known NP-
complete problem be exact duplicates of one another, but rather that there
be an ‘‘obvious’ one-to-one correspondence between their instances that
preserves ‘“‘yes’” and ‘‘no’ answers. This one-to-one correspondence,
which provides the required transformation from IT' to II, is usually so ap-
parent that it need not even be given explicitly.

We have already seen several examples of this type of proof. In Sec-
tion 3.1.2, the problem EXACT COVER BY 3-SETS was shown to be NP-
complete by restricting its instances to 3-sets that contain one element from
a set W, one from a set X, and one from a set Y, where W, X, and Y are
disjoint sets having the same cardinality, thereby obtaining a problem identi-
cal to the 3DM problem. In Section 3.1.4, DIRECTED HAMILTONIAN
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CIRCUIT was shown to be NP-complete by restricting its instances to
directed graphs in which each arc (#,v) occurs only in conjunction with the
oppositely directed arc (v,u), thereby obtaining a problem identical to the
undirected HAMILTONIAN CIRCUIT problem.

Thus proofs by restriction can be seen to embody a different way of
looking at things than the standard NP-completeness proofs. Instead of try-
ing to discover a way of transforming a known NP-complete problem to our
target problem, we focus on the target problem itself and attempt to restrict
away its “‘inessential’’ aspects until a known NP-complete problem appears.

We now give a number of additional examples of problems proved
NP-complete by restriction, stating each proof with the brevity it deserves.

(1) MINIMUM COVER
INSTANCE: Collection C of subsets of a set S, positive integer K.
QUESTION: Does C contain a cover for S of size K or less, that is, a

subset C' € C with |C'| < K and such that {J ¢ = S?
cel’
Proof Restrict to X3C by allowing only instances having |c¢|=3 for all

c€C and having K = |S|/3.

(2) HITTING SET
INSTANCE: Collection C of subsets of a set S, positive integer K.
QUESTION: Does S contain a hitting set for C of size K or less, that
is, a subset $' €S with |S'| < K and such that S’ contains at least
one element from each subset in C ?
Prooft Restrict to VC by allowing only instances having |c|=2 for all
ceC.

(3) SUBGRAPH ISOMORPHISM
INSTANCE: Two graphs, G =(V|,E)) and H=(V,,E,).
QUESTION: Does G contain a subgraph isomorphic t0 H, that is, a
subset ¥ C V) and a subset E € E; such that |V]=|V,|,|E|=|E,],
and there exists a one-to-one function f:V,— V satisfying {u,v} € E,
if and only if {f(u),f(V)} € E?
Proof: Restrict to CLIQUE by allowing only instances for which H is
a complete graph, that is, £, contains all possible edges joining two
members of V,.

(4) BOUNDED DEGREE SPANNING TREE
INSTANCE: A graph G=(V,E) and a positive integer K<|V|~1.
QUESTION: Is there a spanning tree for G in which no vertex has
degree exceeding K, that is, a subset £’ C £ such that |E'|=|V]|~-1,
the graph G'=(V,E") is connected, and no vertex in V¥ is included in
more than X edges from £'?
Proof: Restrict to HAMILTONIAN PATH by allowing only instances
in which K =2,
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(5) MINIMUM EQUIVALENT DIGRAPH
INSTANCE: A directed graph G=(V,4) and a positive integer
K <4l
QUESTION: s there a directed graph G'=(V,4’) such that
A'C A, |A4'] €K, and such that, for every pair of vertices  and v in
V, G' contains a directed path from u to v if and only if G contains a
directed path from v to v.
Prooft Restrict to DIRECTED HAMILTONIAN CIRCUIT by allow-
ing only instances in which G is strongly connected, that is, contains a
path from every vertex u 10 every vertex v, and K =|¥/|. Note that
this is actually a restriction to DIRECTED HAMILTONIAN CIRCUIT
FOR STRONGLY CONNECTED DIGRAPHS, but the NP-
completeness of that problem follows immediately from the construc-
tions we gave for HC and DIRECTED HC.

(6) KNAPSACK
INSTANCE: A finite set U, a ‘*‘size” s{y) € Z* and a ‘‘value”
v{u) € Z* for each u € U, a size constraint B € Z*, and a value goal
KeZzZ
QUESTION: s there a subset U' € {/ such that

Y sw)<B and Y v(u) 2K
uel uey

Prooft Restrict 10 PARTITION by allowing only instances in which
s(u)=v(y) forall u € Uand B=K =%y, ., s(u).

(7) MULTIPROCESSOR SCHEDULING
INSTANCE: A finite set 4 of “‘tasks,” a “‘length> /(a) € Z* for
each a € A, a number m € Z* of ‘“‘processors,” and a ‘“‘deadline™
Dez* .
QUESTION: lIs there a partition 4 = A4,U4,U -+ U4, of 4 into
m disjoint sets such that

max{ ¥ /a):1<i<m{ <D ?
a€A;

Prooft Restrict (0 PARTITION by allowing only instances in which
m=2and D="Y,,/(a).

As a final comment, we observe that, of all the approaches (10 proving
NP-completeness we shall discuss, proof by restriction is the one that would
profit most from an extensive knowledge of the class of known NP-
complete problems — beyond the basic six and their variants. Many prob-
lems that arise in practice are simply more complicated versions of problems
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that appear on our lists of NP-complete problems, and the ability to recog-
nize this can often lead to a quick NP-completeness proof by restriction,

3.2.2 Local Replacement

In proofs by local replacement, the transformations are sufficiently non-
trivial to warrant spelling out in the standard proof format, but they still
tend to be relatively uncomplicated. All we do is pick some aspect of the
known NP-complete problem instance to make up a collection of basic un-
its, and we obtain the corresponding instance of the target problem by re-
placing each basic unit, in a uniform way, with a different structure. The
transformation from SAT to 3SAT in Section 3.1.1 was of this type. In that
transformation, the basic units of an instance of SAT were the clauses, and
each clause was replaced by a collection of clauses according to the same
general rule. The key point to observe is that each replacement constituted
only local modification of structure. The replacements were essentially in-
dependent of one another, except insofar as they reflected parts of the origi-
nal instance that were not changed.

Let us flesh these generalities out with some more examples. The fol-
lowing decision problem corresponds to a problem of minimizing the
number of multiplications needed to compute a given collection of products
of elementary terms, where the multiplication operation is assumed to be
associative and commutative:

ENSEMBLE COMPUTATION
INSTANCE: A collection C of subsets of a finite set 4 and a positive in-

teger J.
QUESTION: Is there a sequence

<zi=x Uy, z5=xUyy, ..., ;=xUy;>

of j<J union operations, where each x; and y; is either {a} for some a €4
or z, for some k<, such that x; and y; are disjoint for 1 </</j and such
that for every subset ¢ €C there is some z;, 1 <i</, that is identical to ¢ ?

Theorem 3.6 ENSEMBLE COMPUTATION is NP-complete.

Prooft We transform VERTEX COVER to ENSEMBLE COMPUTATION.
Let the graph G =(V,E) and the positive integer K < | V| constitute an ar-
bitrary instance of VC.

The basic units of the instance of VC are the edges of G. Let a4 be
some new element not in V. The local replacement just substitutes for
each edge {u,v}€E the subset {ag,u,v} € C. The instance of ENSEMBLE
COMPUTATION is completely specified by:
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A=VU {ao}
C={{a0,u,v}:{u,v}€E}
J=K+|E|

It is easy to see that this instance can be constructed in polynomial time.
We claim that G has a vertex cover of size K or less if and only if the
desired sequence of j < J operations exists for C.

First, suppose V' is a vertex cover for G of size X or less. Since we
can add additional vertices to ¥’ and it will remain a vertex cover, there is
no loss of generality in assuming that | ¥'| =K. Label the elements of V' as
Vi,¥2, . . -, Vg and label the edges in E as ej,e,, .. .,e,, where m=|E|.
Since V' is a vertex cover, each edge e, contains at least one element from
V'. Thus we can write each ¢; as ¢;= {u;,v,;;}, where r[/] is an integer
satisfying 1< r[/1< K. The following sequence of K +|E|=J operations is
easily seen to have all the required properties:

<zi={agulv}, zz=1aglUlv,}, . . ., ze={ag} Ui},

ZK+1={“I}UZr[I]’ ZK+2={u2}UZr[2]: ce ey ZJ={“m}.U Zp[m} >

Conversely, suppose S = <zj=x; Uy, ...,z=x;Uy;> is the
desired sequence of j < J operations for the ENSEMBLE COMPUTATION
instance. Furthermore, let us assume that S is the shortest such sequence
for this instance and that, among all such minimum sequences, S contains
the fewest possible operations of the form z; = {u} U {v} for u,v € V. Our
first claim is that S can contain rno operations of this latter form. For sup-
pose that z, = {u} U {v} with u,v€V is included. Since {u,v} is not in C
and since S has minimum length, we must have {u,v}€E, and
{ag,u,v} = {ag} U z (or z U {ae}) must occur later in S. However, since
{u,v} is a subset of only one member of C, z cannot be used in any other
operation in this minimum length sequence. It follows that we can replace
the two operations

z = {u} U {v} and {ag,u,vl ={agl U z

by
7 = {agt U {u} and {ag,u,v}={v} Uz

thereby reducing the number of proscribed operations without lengthening
the overall sequence, a contradiction to the choice of S. Hence S consists
only of operations having one of the two forms, z;={ao} U {u} for u€ ¥ or
{ag,u,v}=1{v} U z for {u,v} € E (where we distegard the relative order of
the two operands in each case). Because |C|=|F| and because every
member of C contains three elements, S must contain exactly |E| opera-
tions of the latter form and exactly j—|E| <J—|E|=K of the former.’
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Therefore the set
vV ={uev: z=1{a,} U {u} is an operation in S}

contains at most X vertices from V and, as can be verified easily from the
construction of C, must be a vertex cover for G. ®

Another example of a polynomial time transformation using local
replacement, this time from EXACT COVER BY 3-SETS, is the following:

PARTITION INTO TRIANGLES

INSTANCE: A graph G=(V,E), with | V| =34 for a positive integer q.
QUESTION: Is there a partition of ¥ into ¢ disjoint sets Vy,V,, ..., V,
of three vertices each such that, for each ¥, = {v,;;, v, Vi), the three
edges {v,-“],v,-m}, {v,-m,v,-[3]}, and {vim,v,-m} all belong to E?

Theorem 3.7 PARTITION INTO TRIANGLES is NP-complete.

Proof We transform EXACT COVER BY 3-SETS to PARTITION INTO
TRIANGLES. Let the set X with |X|=3g and the collection C of 3-
element subsets of X be an arbitrary instance of X3C. We shall construct a
graph G=(V, E), with | V| =3¢’, such that the desired partition exists for
G if and only if C contains an exact cover.

The basic units of the X3C instance are the 3-element subsets in C.
The local replacement substitutes for each such subset ¢ = {x;,y;,z} € C
the collection E; of 18 edges shown in Figure 3.8. Thus G=(V,E) is
defined by

lcl
V=XU U lall:1<,;<9}
i=1

Notice that the only vertices that appear in edges belonging to more than a
single E;, are those that are in the set X. Notice also that
| V] =]X]+9|C| =34+9]|C| so that ¢'= g+3|C|. It is not hard to see
that this instance of PARTITION INTO TRIANGLES can be constructed in
polynomial time from the X3C instance.

If ¢1,¢5, .. .,¢c, are the 3-element subsets from C in any exact cover
for X, then the corresponding partition ¥V = V{UV,U -+ U Vy of Vis
given by taking

{a,‘[l],ailz],xi}, {ai[4]’ai[5]’yi}
{a;[71,a,(8,z}, {4,131,4,16],4,(9]}
from the vertices meeting E; whenever ¢, ={x,,y;,z} is in the exact cover,
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a,‘[l]

X i Z

Figure 3.8 Local replacement for ¢; = (x;,y,,z) € C for transforming X3C to
PARTITION INTO TRIANGLES.

and by taking
{a,(11,a,121,4,(31}, {a,[4],4,(5,a;[6]}, {a;(7],a,(8],q; (9]}

from the vertices meeting E; whenever ¢; is nor in the exact cover, This
ensures that each element of X is included in exactly one 3-vertex subset in
the partition.

Conversely, if V= VU V,U --- UV, is any partition of G into trian-
gles, the corresponding exact cover is given by choosing those ¢;€C such
that {a,[31,4;(6],a;[91} = V; for some j, 1<j<q’. We leave to the reader
the straightforward task of verifying that the two partitions we have con-
structed are as claimed. ®

Both examples we have just seen represent what might be called
“pure”” local replacement proofs. The structure of the target instance was
completely determined by the structure of the given problem instance and
the local replacements. It is often advantageous to augment this with a lim-
ited amount of additional structure that acts as an ‘“‘enforcer,”’ imposing
certain additional restrictions on the ways in which a ‘‘yes’’ answer to the
target instance can be obtained. For a target problem having the form
“Given an instance [/, does there exist an X; having the desired property?”’
the enforcer portion of / acts to limit the possible X;’s so that the remain-
ing choices all mirror the choices available in the original problem instance,
whereas that portion of / obtained by applying local replacement to the ori-
ginal instance provides the means for making those choices and for ensuring
that they have the desired properties. The two elements b; and b, in the

t A picturesque term suggested by Szymanski {1978].
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NP-completeness proof for PARTITION acted as such an enforcer. We
give two further examples of local replacement proofs using enforcers,
beginning with that for the following scheduling problem:

SEQUENCING WITHIN INTERVALS

INSTANCE: A finite set T of ‘‘tasks’’ and, for each t€T, an integer
“release time ’ r(t) 20, a “‘deadline” d(r) € Z*, and a ‘‘length” /() €Z™.
QUESTION: Does there exist a feasible schedule for T, that is, a function
o: T— Z% such that, for each t€ T, o(t) = r (1), o (+1(2) £ d(1), and, if
'€ T—{t}, then either a(£)+1(¢) L o (1) or o(¢) > o ()+1(1)? (The task
t is ““executed” from time o (¢) to time o {(£)+I(r), cannot start executing
until time r{z), must be compieted by time d(r), and its execution cannot
overlap the execution of any other task r'.)

Theorem 3.8 SEQUENCING WITHIN INTERVALS is NP-complete.
Proof: We transform PARTITION to this problem. Let the finite set 4 and
given size s(a) for each a€A4 constitute an arbitrary instance of PARTI-
TION, and let B=3,., s(a).

The basic units of the PARTITION instance are the individual elements
a€A. The local replacement for each a€A4 is a single task f, with
r(t,) =0, d(t,) =B+1, and I(1,) =s(a). The “‘enforcer” is a single task 7
with r(7)={B/2], d(7)=[(B+1)/2], and /(T)=1. Clearly, this instance
can be constructed in polynomial time from the PARTITION instance.

The restrictions imposed on feasible schedules by the enforcer are two-
fold. First, it ensures that a feasible schedule cannot be constructed when-
ever B is an odd integer (in which case the desired subset for the PARTI-
TION instance cannot exist), because then we would have r(7) =d(7), so
that 7 could not possibly be scheduled. Thus from now on, let us assume
that B is even. In this case the second restriction comes to the forefront.
Since B is even, r(7)=B/2 and 4(r)=r(7)+1, so that any feasible
schedule must have o(f)=B/2. This divides the time available for
scheduling the remaining tasks into two separate blocks, each of total length
B/2, as illustrated in Figure 3.9. Thus the scheduling problem is turned
into a problem of selecting subsets, those that are scheduled before 7 and
those that are scheduled after 7. Since the total amount of time available in
the two blocks equals the total length B of the remaining tasks, it follows
that each block must be filled up exactly. However, this can be done if and
only if there is a subset 4'C 4 such that

Ys@=B82= ¥ s

d€a’ a€d—A'
Thus the desired subset 4' exists for the instance of PARTITION if and

only if a feasible schedule exists for the corresponding instance of
SEQUENCING WITHIN INTERVALS. =
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Figure 3.9 Schedule ‘‘enforced”” by the transformation from PARTITION to
SEQUENCING WITHIN INTERVALS.

Our final example of the use of an enforcer in a local replacement proof
involves the following problem of diagnostic testing:

MINIMUM TEST COLLECTION .

INSTANCE: A finite set 4 of ‘‘possible diagnoses,”” a collection C of sub-
sets of A, representing binary “‘tests,”” and a positive integer J<|C]|.
QUESTION: Is there a subcollection C' C C with |C'] < J such that, for
gvery pair a;,a; of possible diagnoses from 4, there is some test c€C' for
which |{a;,a;}Nc| =1 (that is, a test ¢ that “‘distinguishes’” between a; and
a;)?

Theorem 3.9 MINIMUM TEST COLLECTION is NP-complete.

Prooft We transform 3DM to this problem. Let the sets W, X, Y, with
|W|=|X|=|Y|=4q, and the collection M C W x X x Y constitute an arbi-
trary instance of 3DM.

The basic units of the 3DM instance are the ordered triples in M. The
local replacement substitutes for each m=(w,x,y)€ M the subset
{w,x,y} € C. The enforcer is provided by three additional elements,
wg, Xp» and yg, not belonging to WUXUY, and two additional tests,
Wu{wg) and Xulxy}. The complete MINIMUM TEST COLLECTION
instance is defined by:

A=WUXUYU{wg, x vl
C ={wx,yhw,x, e} U { Wy (w), X uxo)}
J=q+2

It is easy to see that this instance can be constructed in polynomial time
from the given 3DM instance.

Once again the enforcer places certain limitations on the form of the
desired entity (in this case, the subcollection C’ of tests). First, C' must
contain both Wu{wy and Xu{xyl, since they are the only tests that
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distinguish y, from wy and x,. Then, since wy, xp, and y, are not contained
in any other tests in C, each element of WU XU Y must be distinguished
from the appropriate one of wg, xg, or ¥y by being included in some addi-
tional test ¢ € C'—{Wu{wel,Xu{xpl). At most J-2=g such additional
tests can be included. Because each of the remaining tests in C contains
exactly one member from each of W, X, and Y, and because W, X, and Y
are disjoint sets, having ¢ members each, it follows that any such additional
g tests in C' must correspond to g triples that form a matching for M.
Conversely, given any matching for M, the corresponding g tests from C
can be used to complete the desired collection of J=g+2 tests. Thus M
contains a matching if and only if the required subcollection of tests from C
exists. ®

Although the enforcers in both our examples are quite simple, the
reader should be placed on notice that this need not always be the case. A
particularly complicated enforcing structure is used in the NP-completeness
proof for PLANAR DIRECTED HAMILTONIAN PATH in {Garey, John-
son, and Stockmeyer, 1976]. Other relatively complicated enforcers can be
found in [Liu and Geldmacher, 19781, [Garey, Johnson, and Sethi, 1976],
and [Garey, Graham, Johnson, and Knuth, 1978].

3.2.3 Component Design

Our last type of proof, and the one that tends to be the most complicat-
ed, is component design. The NP-completeness proofs given in Section 3.1
for 3-DIMENSIONAL MATCHING, VERTEX COVER, and HAMIL-
TONIAN CIRCUIT are typical examples of this type of proof.

The basic idea is to use the constituents of the target problem instance
to design certain ‘‘components’’ that can be combined to ‘‘realize” in-
stances of the known NP-complete problem. In these three examples, there
are two basic types of components, ones that can be viewed as ‘‘making
choices’ (for example, selecting vertices, choosing truth values for vari-
ables) and ones for “‘testing properties” (for example, checking that each
edge is covered, checking that each clause is satisfied). These components
are joined together in a target instance in such a way that the choices are
communicated to the property testers, and the property testers then check
whether the choices made satisfy the required constraints. Interactions
between components occur both through direct connections (such as the
edges linking the truth setting components to the satisfaction testing com-
ponents in the transformation from 3SAT to VC) and through global con-
straints (such as the overall bound X in the transformation from 3SAT to
VC, which, together with the structure of the components, ensures that
each truth setting component contains exactly one vertex from the cover
and that each satisfaction testing component contains exactly two vertices
from the cover).
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More generally, any proof in which the constructed instance can be
viewed as a collection of components, each performing some function in
terms of the given instance, can be regarded as a component design proof.
The generic transformation used to prove Cook’s Theorem in Chapter 2 is a
good example of this, with each of the six clause groups being one type of
component.

Since component design proofs tend to be rather lengthy and since we
have already given a number of examples of such proofs, we shall confine
ourselves to a single additional example in this section. (More can be
found in [Sethi, 1975], [Even, Itai, and Shamir, 1976], [Garey, Johnson,
and Tarjan, 1976] and [Stockmeyer, 1973].) This final example is quite
different from the standard ones, and illustrates an approach that has been
useful for transforming CLIQUE to several other problems. The target
problem is a scheduling problem related to the problem of SEQUENCING
WITHIN INTERVALS proved NP-complete in the preceding subsection.

MINIMUM TARDINESS SEQUENCING

INSTANCE: A set T of ‘‘tasks,”” each t€T having ‘‘length” 1 and a
““deadline” d(¢) €Z*, a partial order < on 7, and a non-negative integer
K<|T). ’

QUESTION: Is there a “‘schedule” o: T—{0,1,...,|7|—1} such that
o (1) #o () whenever t# ¢, such that o (1) <o (¢) whenever ¢t< ¢, and
such that |{r€T: o0 (+1>d(D}] < K?

Theorem 3.10 MINIMUM TARDINESS SEQUENCING is NP-complete.
Proof: Let the graph G =(V,E) and the positive integer J<| V| constitute
an arbitrary instance of CLIQUE. The -corresponding instance of
MINIMUM TARDINESS SEQUENCING has task set T=VUE,
K =|E|-(J(J-1)/2), and partial order and deadlines defined as follows:

t<t <> t€V,F'€E, and vertex ¢ is an endpoint of edge ¢

JU+D/2 if t€E
a0 =1 |yl +|E| if rew

Thus the “‘component’ corresponding to each vertex is a single task with
deadline | V| +|E|, and the “‘component’ corresponding to each edge is a
single task with deadline J(J+1)/2. The task corresponding to an edge is
forced by the partial order to occur after the tasks corresponding to its two
endpoints in the desired scheduie, and only edge tasks are in danger of be-
ing tardy (being completed after their deadlines).

It is convenient to view the desired scheduie schematically, as shown in
Figure 3.10. We can think of the portion of the schedule before the edge
task deadline as our ‘‘clique selection component.”” There is room for
J(J+1)/2 tasks before this deadline. In order to have no more than the
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specified number of tardy tasks, at least J(J—1)/2 of these ‘‘early’’ tasks
must be edge tasks. However, if an edge task precedes this deadline, then
so must the vertex tasks corresponding to its endpoints. The minimum
possible number of vertices that can be involved in J(J—1)/2 distinct edges
is J (which can happen if and only if those edges form a complete graph on
those J vertices). This implies that there must be at least J vertex tasks
among the “‘early’’ tasks. However, there is room for at most

VU+D/D - U-D/2) =J

vertex tasks before the edge task deadline. Therefore, any such schedule
must have exactly J vertex tasks and exactly J(J—1)/2 edge tasks before this
deadline, and these must correspond to a J-vertex clique in G. Conversely,
if G contains a complete subgraph of size J, the desired schedule can be
constructed as in Figure 3.10. =

Clique Clique

vertices  edges

"

J JU-D2| WVI~J | |E|=J(-D/2

Vertex Edge Vertex Edge

tasks tasks tasks tasks’

0 JJ+D) [Vi+|E]
2

—— Time —>

Figure 3.10 Diagram of the desired schedule for an instance of MINIMUM
TARDINESS SEQUENCING corresponding to a CLIQUE of size J.

3.3 Some Suggested Exercises

In this section we present the definitions of twelve NP-complete prob-'

lems and leave to the reader the task of proving that they are NP-complete.
None of these problems requires a complicated proof, so we encourage the
reader to attempt them all. For the purposes of these exercises, only those
“known’’ NP-complete problems mentioned in Section 3.1 should be used.
As a hint for how to proceed, we have grouped the problems according to
our own preferred proof technique, but the reader should feel free to ignore
these hints whenever an alternative approach seems worthy of pursuit.
Those desiring additional (or more difficult) exercises can choose from the
lists included in the Appendix, keeping in mind that these lists contain
some problems for which only quite elaborate proofs are known,
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Restriction ; 1y
Lo > _

1. LONGEST PATH —
INSTANCE: Graph G =(V,E), positive integer K <| V.
QUESTION: Does G contain a simple path (that is, a path encountering no
vertex more than once) with K or more edges?

2. SET PACKING
INSTANCE: Collection C of finite sets, positive integer K <|C|.
QUESTION: Does C contain K disjoint sets?

3. PARTITION INTO HAMILTONIAN SUBGRAPHS
INSTANCE: Graph G=(V,E), positive integer KS] V.
QUESTION: Can the vertices of G be partitioned into k<K disjoint sets
Vi.Va, ..., Vi such that, for 1<i<k, the subgraph induced by V; contains
a Hamiltonian circuit? )

4. LARGEST COMMON SUBGRAPH
INSTANCE: Graphs G;=(V,E)) and G,=(V,,E,), positive integer K.
QUESTION: Do there exist subsets E{C E; and "E;C E; such that
|E{|=|E5l > K and such that the two subgraphs Gi= (V,£])) and
G3 = (V,,Ey are isomorphic?

5. MINIMUM SUM OF SQUARES
INSTANCE: Finite set A, ‘‘size” s(a) € Z* for each a € 4, positive integers

K and J.
QUESTION: Can the ele;nents of 4 be partitioned into K disjoint sets
AuAy, . Agsuchthat ¥ ( T s(a)’ <72

i=l  g€d,
!

Local Replacement

6. FEEDBACK VERTEX SET
INSTANCE: Directed graph G =(V,4), positive integer K <| V|.
QUESTION: Is there a subset ¥'C ¥ such that | V| <K and such that every
directed circuit in G includes at least one vertex from V'?

7. EXACT COVER BY 4-SETS
INSTANCE: Finite set X with |X|=4¢, ¢ an integer, and a collection C of
4-element subsets of X.
QUESTION: Is there a subcollection C'GC such that every element of X
oceurs in exactly one member of C'?

8. DOMINATING SET
INSTANCE: Graph G=(V,E), positive integer K <| V.
QUESTION: Is there a subset ¥'C ¥V such that | ¥'|<K and such that every
vertex v € V—V' is joined to at least one member of V' by an edge in E?

9. STEINER TREE IN GRAPHS
INSTANCE: Graph G =(V E), subset R C V, positive integer K < | V|-1.
QUESTION: Is there a subtree of G that includes all the vertices of R and
that contains no more than K edges?
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10.

1L

12.

13.

14.
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STAR-FREE REGULAR EXPRESSION INEQUIVALENCE

INSTANCE: Two star-free regular expressions £, and £, over a finite alpha-
bet I, where such expressions are defined by (1) any single symbol ¢ €Z is a
star-free regular expression, and (2) if e; and e, are star-free regular €xpres-
sions, then the strings e;e; and (e;Ve,) are star-free regular expressions.
QUESTION: Do E; and E, represent different languages over X, where the
language represented by o€ZX is {o}, and, if e; and e, represent the
languages L, and L, respectively, then e;e, represents the language
{xy:x€L,and y€L,} and (e,Ve,) represents the language L;UL; ?

Component Design

SET SPLITTING

INSTANCE: Coliection C of subsets of a finite set S.

QUESTION: Is there a partition of S into two subsets S; and S, such that
no subset in C is entirely contained in either S; or S;?

Hint: Use 3SAT.

PARTITION INTO PATHS OF LENGTH 2

INSTANCE: Graph G=(V,E), with | V]| =34 for a positive integer g.
QUESTION: Is there a partition of ¥ into ¢ disjoint sets ¥y, V>, ..., ¥, of
three vertices each so that, for each ¥; = { vy, v, Vit 2t least two of the
three edges { vy, vital, {viun v}, and {vi), v} belong to £

Hint: Use 3DM.

GRAPH GRUNDY NUMBERING

INSTANCE: Directed graph G =(V,4).

QUESTION: Is there a labeling L: ¥—Z* (where the same label may be as-
signed to more than one vertex) such that, for each v€ V, L(v) is the least
non-negative integer not in the set {L (u): u€V,(v,u) €4}?

Hint: Use 3SAT.

GRAPH 3-COLORABILITY

INSTANCE: Graph G=(V.,E).

QUESTION: Is G 3-colorable, that is, does there exist a function
£ V—(1,2,3} such that f(u)+#s(v) whenever {u,v}€E? :
Hint: Use 3SAT.

4

Using NP-Completeness
to Analyze Problems

Now that we have the basic tools of NP-completeness well in hand, we
can begin to examine how this theory can be used for analyzing probiems.

The discussions in Chapter 1 suggest that, whenever we are confronted
with a new problem, a natural first question to ask is: Can it be solved with
a polynomial time algorithm? If the answer to this question is obviously
‘‘yes,”” then nothing further can be said about the problem from the stand-
point of NP-completeness. We can concentrate our efforts on trying to find
as efficient a polynomial time algorithm as possible. However, if no polyno-
mial time algorithm is apparent, an appropriate second question to ask is:
“Is the problem NP-complete?”’

So that this question is meaningful, let us suppose that we have stated
our problem as a decision problem and, further, that we know the decision
problem belongs to NP. Just as it might have been obvious that our prob-
lem is polynomially solvable, it might now be obvious that it is NP-
complete. If so, we have strong evidence that it cannot be solved with a
polynomial time algorithm.

In most cases, neither of these questions will have an obvious answer.
Usually our problem will be neither obviously polynomially solvable nor ob-
viously NP-complete, and some effort will be required to determine which
is the case (if indeeg either case holds; recall from Section 2.5 that if
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P £ NP there will be problems in NP that are neither NP-complete nor poly-
nomially solvable). How might we proceed to resolve the status of our
problem?

If we have a strong suspicion about what the outcome will be, it is rath-
er tempting to concentrate our efforts in that single direction. However, in-
tuition can be a particularly untrustworthy guide in these matters, since
many probiems that are polynomially solvable differ only slightly from other
problems that are NP-complete. For example, we already have seen that
3-SATISFIABILITY and 3-DIMENSIONAL MAT\\CHING are NP-complete,
whereas the related 2-SATISFIABILITY and 2-DIMENSIONAL MATCH-
ING problems can be solved in polynomial time. Figure 4.1 lists several
other pairs of similar problems for which one belongs to P and the other is
NP-complete. Our intuition is based on our knowledge about related prob-
fems, and if we let it lead us into investing all our efforts in just one of the
possibilities, we run a serious risk of placing all our eggs in the wrong
basket.

Thus it is best to proceed with our analysis using a two-sided approach.
While we are attempting, on the one hand, to construct an NP-
completeness proof, on the other hand, we should be trying to discover a
polynomial time algorithm. Which of these two options we choose to em-
phasize at any one time certainly will depend on the current state of our ex-
pectations, but whenever our current line of attack appears to be foundering
we must be prepared to reverse direction and try the other. In fact, as we
alternate back and forth, the two approaches will often interact with one
another. The failure of a proposed NP-completeness proof might lead to an
idea for an algorithm; the failure of a proposed algorithm might suggest a
way for proving NP-completeness. Any partial results proved along the
way, especially those providing ‘‘normal forms’ for solutions, can be just as
useful for constructing an NP-completeness proof as for designing an
efficient algorithm.

It is clear that the successful application of such a two-sided approach
demands skill both in constructing NP-completeness proofs and in designing
polynomial time aigorithms. We have already said a great deal about tech-
niques for the former in Chapter 3. For the latter, we refer the reader to
any of the standard texts on algorithm design, such as [Aho, Hopcroft, and
Ullman, 1974] or [Reingold, Nievergelt, and Deo, 1977]. In the remainder
of this chapter, we will direct our attention to the use of a similar two-sided
approach for continuing our analysis in more depth once we have proved
(as so often seems to be the case) that our initial problem is NP-complete.

In Section 4.1 we discuss how one can probe more deeply into the com-
plexity of an NP-complete probiem by investigating its subproblems, trying
to ““map the boundary’’ between those subproblems that are polynomially
solvable and those that are NP-complete. In Section 4.2 we focus on a spe-
cial type of subproblem that often merits attention for problems in which
numbers play a significant role. This leads us to introduce the concepts of
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3

NP-complete

SHORTEST PATH

BETWEEN TWO VERTICES
INSTANCE: Graph G=(V,E), length
i(e) € Z* for each e € E, specified ver-
tices a,b € V, positive integer B.
QUESTION: Is there a simple path from
a to b in G having total length B or
less?

LONGEST PATH

BETWEEN TWO VERTICES
INSTANCE: Graph G=(V,E), length
[(e) € Z* for each e € E, specified ver-
tices a,b € V, positive integer B.
QUESTION: Is there a simple path from
a to b in G having total length B or
more?

EDGE COVER

INSTANCE: Graph G =(V,E}, positive
integer K.

QUESTION: Is there an E'C E with
|E't € K such that for each v € V there
is some e € E’ for which v € e?

VERTEX COYER

INSTANCE: Graph G =(V,E), positive
integer K.

QUESTION: Is there a V' CV with
| V'] € K such that for each e € E there
is some v € V' for which v € e?

TRANSITIVE REDUCTION
INSTANCE: Directed graph G={(V,4),
positive integer K.

QUESTION: Is there an 4’ € ¥V x V with
|A’|<K such that for all u,ve€V
G'=(V,4') contains a path from u to v
if and only if G does?

MINIMUM EQUIVALENT DIGRAPH
INSTANCE: Directed  graph G =(V, 4),
positive integer K.

QUESTION: Is there an A'C A4 with
|A'|€K such that for all wu,veV
G'=(V,A’) contains a path from u to v
if and only if G does?

INTREE SCHEDULING

INSTANCE: Set T of unit length tasks,
deadline d(¢) € Z* for each ¢ € T, partial
order < on T such that each task has at
most one immediate successor, positive
integer m.

QUESTION: Can T be scheduled on m
processors to obey the partial order and
meet all the deadlines?

OUTTREE SCHEDULING

INSTANCE: Set T of unit length tasks,
deadline d(r) € Z* for each ¢ € T, partial
order < on T such that each task has at
most one immediate predecessor, positive
integer m.

QUESTION: Can T be scheduled on m
processors to obey the partial order and
meet all the deadlines?

Figure 4.1 Pairs of similar problems, one belonging to P and the other NP-

compiete,

‘“‘pseudo-polynomial time algorithm”’ and ‘‘strong NP-completeness,’

]

and

also to present an additional (seventh) *‘basic’> NP-complete problem. Sec-
tion 4,3 concludes the chapter with a brief discussion of how analyzing sub-
problems can be used to study the effect of individuai problem parameters
(rather than just the conglomerated ‘‘input length’’) on the complexity of a

problem.
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4.1 Analyzing Subproblems

~ Suppose we have just-succeeded in demonstrating that our initial prob-
lem is NP-complete. Even though this effectively answers the two ques-
tions with which we began our analysis, there are still many appropriate
follow-up questions that should be asked. The problem we have been
analyzing is often distilled from a less elegant applied problem, and some of
the details that were dropped in the distillation process might aiter the prob-
iem enough to make it polynomially solvable. If not, there still might be
significant special cases that can be solved in polynomial time. It might
even be the case that the instances for which the problem is hard are refa-
tively rare and possess easily recognizable features that would allow us to
identify them beforehand. Such possibilities can be investigated by analyz-
ing subproblems of our original problem.

As we have been describing decision problems, each consists of two
parts: a domain D that is the set of all instances of the problem, and a yes-
set Y containing all instances from D for which the answer is ‘‘yes.”” By a
subproblem (or ‘‘special case’’) of a problem II=(D,Y), we mean a prob-
lem II'=(D",Y") such that D'C D and Y'=Y N D'. In other words, II' is
a subproblem of II if it asks the same question as II, but only over a subset
of the domain for I1. :

Thus a subproblem of a given problem is obtained whenever we place
additional restrictions on the allowed instances. For graph theoretic prob-
lems, for example, we might restrict the instances to those in which the
graphs are planar, or bipartite, or acyclic, or some combination of these.
For problems involving sets, we might restrict the sets to be no larger than
a certain size, or to be such that no element occurs in more than a specified
number of sets. Any values assigned to set elements might be required to
come from some fixed, limited set of allowed values. From all these possi-
ble subproblems, the ones we choose to analyze in detail usually are deter-
mined by the application we have in mind or are in some sense ‘‘natural’
subprobiems that might be expected to arise in some application. ’

It should be apparent that, even though a problem II is NP-complete,
each of the subproblems of I1 might independently be either NP-complete
or polynomially solvable. (Of course, if II belongs to P, then any subprob-
lem of II whose instances are themselves recognizable in polynomial time
must also be in P, and in general we always restrict our attention to such
subproblems.) We aiready have noted two subproblems of SATISFIABILI-
TY that differ in this respect, 3-SATISFIABILITY and 2-SATISFIABILITY.
Assuming that P#NP, we can view the subproblems of any NP-complete
problem II as lying on different sides of an imaginary ‘‘boundary’’ between
polynomial time solvability and intractability. Our goal in analyzing the
problem is to determine which subproblems lie on each side.

Actually it is perhaps more accurate to think in terms of there being, at
any particular time, a ‘“‘frontier”” between those subproblems we know to be
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polynomially solvable and those we know to be NP-complete. The frontier
consists of the subproblems whose NP-completeness is still an open ques-
tion. Figure 4.2 gives a schematic representation for one possible ‘“‘current
state of knowledge’’ about a coliection of subproblems of a problem II.
Whenever we determine that a currently open problem is in P or is NP-
complete, we narrow the frontier, enlarging that part of the world upon
which *‘civilization’’ has been imposed. Of course, unless II is polynomially
solvable, we will never be able to narrow the frontier completely, except
possibly for the limited set of subproblems that hold immediate interest.
Even if we restrict our attention to a fixed, finite collection of subproblems,
some of them might belong to that annoying group of problems that are
neither NP-complete nor in P (as we have already remarked, such problems
must exist if P#£NP). Nevertheless, each time we settle one of the remain-
ing open problems we can picture ourselves as closing in on an imaginary
“borderline.””

NP-compléte
problems

Open problems
(the “*frontier’”)

Problems in P

Figure 4.2 One possible state of knowledge about subproblems of an NP-complete
problem [I. Probiems are represented by circles, filled-in if known to
be NP-complete, empty if known to be in P, and dotted if ‘‘open.” An
arrow from II; to I1, signifies that II, is a subproblem of II,.

To put these ideas in terms of a concrete example, consider the follow-
ing problem of scheduling equal length tasks subject to precedence con-
straints (itself a special case of several more general scheduling probiems):

PRECEDENCE CONSTRAINED SCHEDULING

INSTANCE: A set T of ‘“‘tasks” (each assumed to have ‘‘length” 1), a
partial order < on T, a number m of ‘‘processors,”’ and an overall ‘‘dead-

line” D € Z*.
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QUESTION: Is there a “‘schedule’” o:T7—1{0,1, ..., D} such that, for
each i €{0,1, {te T:o(£)=i}| < m, and such that, whenever
1< r', then o (1) <o (¢)?

As a hypothetical ‘‘application’” of this problem, suppose that you are
an assistant professor of computer science at State University and have just
been assigned the task of helping entering freshmen plan their undergradu-
ate programs. The students provide you with a list of all the courses they
intend to take, the number D of semesters in which they expect to gradu-
ate, and a maximum number m of courses they are willing to take at one
time. State U is sufficiently jarge that every course is offered each semes-
ter, and no two courses selected by your advisees will ever be offered at
conflicting times. However, certain courses are required as prerequisites for
certain other courses and hence must be taken earlier (< ¢ means that ¢ is
a prerequisite for ¢'). You would like to devise a computer program that
takes in all this information and constructs a schedule for each student to
follow.

The PRECEDENCE CONSTRAINED SCHEDULING problem is NP-
complete {Ullman, 1975], so it is unlikely that you will be able to come up
with a general, polynomial time scheduling algorithm. However, there are
some natural restrictions that might make the problem easier to solve and
that might suffice for most students. For example, it is probably reasonable
to place an upper bound on m, such as m<6, as most students do have a
limited capacity for work. The course prerequisites also might satisfy special
constraints. Many of your students might select such a varied program of
study that none of their chosen courses has any prerequisites, in which case
the partial order is empty. Or, in some cases, it might be that each course
has only a single “‘explicit’ prerequisite, with all other prerequisites for the
course also being prerequisites of the explicit one. This gives rise to what is
known as a ‘‘tree” partial order. Other restrictions are possible, but let us
limit our attention to these. Among them they determine the array of sub-
problems pictured in Figure 4.3, which also displays the current state -of
knowledge about the complexity of these subproblems.

Note that all the possibilities shown in Figure 4.2 actually occur in Fig-
ure 4.3, including the existence of a “‘frontier.”> When we have a uniform
hierarchy of subproblems like this, it is often possible to specify the same
information more concisely by giving the ‘‘minimal”> NP-complete subprob-
lems and the ‘““‘maximal” polynomially solvable subproblems. Given a col-
lection C of subproblems of some NP-complete problem, a problem IT1 € C
is a (currently) minimal NP-complete subproblem if II is known to be NP-
complete and no subproblem IT' of IT both belongs to C and is known to be
NP-complete. A problem I1 € C is a (currently) maximal polynomially solv-
able subproblem if II is known to be in P, and no other problem [I' that
contains II as a subproblem both belongs to C and is known to be polyno-
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m<l m€2 m<3I m<4 m<5 m<100 m arbitrary

Figure 4.3 Current state of knowledge for a collection of subprobiems of PRE-
CEDENCE CONSTRAINED SCHEDULING, using the key given in
Figure 4.2

mially solvable. Minimal and maximal open probiems for C can be defined
similarly.

For the class of subproblems of PRECEDENCE CONSTRAINED
SCHEDULING illustrated in Figure 4.3, the two subproblems specified by
“< arbitrary, m<2” and ‘< a tree, m arbitrary’’ are (currently) maxi-
mal poiynomial time solvable subproblems. The general problem itself is
the (currently) minimal NP-complete subproblem. The minimal open prob-
lem is specified by ‘< arbitrary, m<3,”’ and there iS no maximal open
problem because ‘‘ < arbitrary, m<J "’ is open for all integers J>3.

[t is natural to investigate the boundary for a particular problem by
means of a global version of the two-sided approach discussed earlier. We
alternate between analyzing those subproblems that seem most likely to be
in P and those that seem most likely to be NP-compiete. Using as our
starting points the subproblems that are obviously polynomially solvable and
the subproblems whose NP-completeness follows trivially from that of the
general problem, we gradually enlarge the sets of allowed instances for the
former and gradually restrict the sets of aliowed instances for the latter. In
contrast to analyzing a fixed problem, when we change modes from design-
ing algorithms to proving NP-completeness, we also can change problems,
in this case from a more-restricted one to a less-restricted one.

The techniques appropriate for proving a subproblem NP-compiete are
essentially the same as those described in Chapter 3 for an isolated problem.
However, there is one important difference. When we are trying to prove a
subproblem- NP-complete, we already have an NP-completeness proof for
some generalized version of it. This gives us a good candidate for a
“known’> NP-complete problem to use in our desired proof, and it also
gives us an NP-completeness proof that we might be able to modify to ob-
tain a proof for our subproblem. Although this will not always make our-
task easier, it at least provides us with a head start over trying to construct
an NP-completeness proof for an isolated probiem.
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The advantages of this can be illustrated nicely in terms of some well-
known graph theoretic problems. In fact, since problems from graph theory
are quite common among the NP-complete problems, and since the restric-
tions we will be considering are frequently important for such problems, the
specific techniques we use for proving NP-completeness results under these
restrictions are worth illustrating in their own right.

Although we will be discussing a variety of graph problems, the follow-
ing “‘graph coloring’’ problem (which was an exercise in Chapter 3) will be
our primary example:

GRAPH 3-COLORABILITY

INSTANCE: Graph G=(V E)

QUESTION: Is G 3-colorable, that is, does there exist a function
f: V—11,2,3} such that f(u) # f(v) whenever {u,v}€E?

This problem is related to the famous Four Color Conjecture (recently
proved by Appel and Haken [1977a;1977b]) and arises in connection with
certain scheduling and partitioning problems. It is itself a special case of
GRAPH K-COLORABILITY, in which the range of f is {1,2,..., K},
with K being specified as part of the instance. The NP-completeness of
GRAPH 3-COLORABILITY was proved by Stockmeyer [1973] (the proof
also appears in [Garey, Johnson, and Stockmeyer, 1976]).

The first restriction we consider is that of bounding the maximum ver-
tex degree (the degree of a vertex is the number of edges containing it).
Most graph problems can be solved in polynomial time if the maximum
vertex degree is restricted to be sufficiently small. For example, if we re-
quire that all vertices have degree 2 or less, then HAMILTONIAN CIR-
CUIT, VERTEX COVER, GRAPH 3-COLORABILITY (and almost any
graph problem imaginable) can be trivially solved in polynomial time. The
question thus arises: What is the strongest constraint on vertex degree for
which the problem remains NP-complete?

The CLIQUE problem is one example for which no constant bound on
vertex degree preserves its NP-completeness. For if the degree bound is D,
then none of our graphs can contain a clique on more than D +1 vertices.
Thus we can find the largest clique by examining all subsets of D +1 or
fewer vertices, and the number of such subsets will be polynomially bound-
ed because D is a fixed constant. Note, however, that although this
prevents us from proving that the restricted problems are NP-complete (as-
suming P# NP), the resuiting polynomial time algorithms would not be par-
ticularly useful if D were large.

For many other graph probtems there are degree constrained subprob-
lems that remain NP-complete Figure 4.4 tabulates some results of this
lYPe Observe that in each case the bound is the best possible (unless

P=NP), because reducing the bound by only one produces a polynomially
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solvable subproblem. In fact, each problem then becomes trivial. (For
GRAPH 3-COLORABILITY, a theorem of Brooks [1941] asserts that a
connected graph with maximum degree 3 is 3-colorable if and only if it is
not the complete graph on four vertices, an easily verified condition.)

InP NP-compiete
for DK for D2

VERTEX COVER 2 3
HAMILTONIAN ) 3
CIRCUIT

GRAPH 3 4
3-COLORABILITY .
FEEDBACK 2 3

VERTEX SET

Figure 4.4 Classification of subproblems obtained by restricting instances to graphs
having no vertex degree larger than D, with respect to polynomial time
solvability and NP-completeness.

Each of these degree-limited NP-completeness results can be proved
from the general problem using local replacement. The key idea is that of a
“‘vertex substitute,’’ which we illustrate for GRAPH 3-COLORABILITY.

Theorem 4.1. GRAPH 3-COLORABILITY with no vertex degree exceeding
4 is NP-complete.

Prooff Membership in NP for the restricted problem foliows immediately
from that for the general problem. So suppose G =(V,E) is an arbitrary
instance of the general problem. We must construct a corresponding graph
G'=(V',E') that has no vertex degree exceeding 4 and that is 3-colorable if
and only if G is 3-colorable.

Our vertex substitute is based on the eight vertex graph H; shown in
Figure 4.5(a), which has three ‘“‘outlets,”” labeled by 1, 2, and 3 in the
figure. For k>4, the k-outlet vertex substitute H, is formed by adjoining
to H,_, a copy of H; having its first outlet coinciding with outlet k—1 of
H,_,. The outlet vertices of H, are the vertices having degree two. The
outlets that originally belonged to the H,_; retain the same labels, with the
second outlet of the adjoined H; becoming outiet k—1 and its third outlet
becoming outlet k. Figure 4.5(b) shows H;.
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2 2 3 4
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Figure 4.5 The graph H; and vertex substitute Hs (formed from three copies of

H;) used for proving the NP-completeness of degree-restricted GRAPH
3-COLORABILITY.

It is easy to see that, for all k23, the following facts hold:
(1) H, has 7(k—2) +1 vertices, including k labeled outlets.

(2) No vertex of H, has degree exceeding 4.

(3) Each outlet of H, has degree 2.

(4) H, is 3-colorable, but not 2-colorable, with every way of ‘‘3-
coloring™ H, assigning the same ‘‘color’ to all its outlets.

Arbitrarily designate as v;,v,, ..., v, the r vertices of the given graph
G that have degree exceeding 4. We construct a sequence of graphs.

G=GypG.G,y,...,G =G

as follows. Each G;, 1<i<r, is constructed from G,_;. Let d be the de-
gree of v, in G,_; and let {uy,v;},{us,v}, . . ., {uy,v;} be the edges that in-
clude v;. To form G,, delete vertex v; from G,_;, replacing it with a copy of
H,, and replace each edge {u;,v;} by an edge joining .4; to outlet j of the
vertex substitute.

It follows from the construction and previously stated facts that, for
0<k<r, G, has r—k vertices of degree exceeding 4 and G; is 3-colorable
if and only if G is 3-colorable. Thus G'= G, has the desired properties. ®

Different vertex substitutes are required for different probiems, and
substantial ingenuity may be needed to come up with one that preserves all
the necessary properties. However, the frequency with which such degree
constraints occur in practice (for example, fan-in, fan-out restrictions on
logic circuits) makes it worthwhile to examine their effect on the complexity
of any general graph problem.

Another common restriction for graph problems is that to planar
graphs. A graph is planar if it can be embedded in the plane by identifying
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each vertex with a unique point and each edge with a line connecting its
endpoints, so that no two lines meet except at a common endpoint. Many
applications, from map-making to integrated circuit layout, give rise to
graphs that are inherently planar, so it is natural to consider the effect of
planarity on the complexity of a problem. Once again, CLIQUE is an exam-
ple of a problem that becomes easy when so restricted, because a planar
graph cannot contain a complete subgraph of more than four vertices. A
more interesting example is that for the following problem:

MAX CUT

INSTANCE: Graph G=(V,E), “weight”” w(e) € Z* for each edge e € E,
positive integer K.

QUESTION: Can V be partitioned into two disjoint sets ¥, and ¥V, such
that the sum of the weights of the edges from E that have one endpoint in
each set is at least K?

For arbitrary graphs this problem is NP-complete even if we require that all
edge weights be equal {Garey, Johnson, and Stockmeyer, 1976]. However,
Orlova and Dorfman [1972] and Hadlock [1975] show how matching theory
can be used to solve it in polynomial time for planar graphs, with no restric-
tions on the edge weights.

On the other hand, many graph problems (for example, all those dis-
cussed in Chapter 3) remain NP-complete when restricted to planar graphs.
There are two common ways to prove such results. The first is to use a
planarity preserving transformation from another problem already known to
be NP-complete for planar graphs. The second, more basic, technique is to
use local replacement applied to the general problem, designing a ‘‘cross-
over” that can be used in place of any edge crossings that occur when a
(not necessarily planar) graph is embedded in the plane. We again use
GRAPH 3-COLORABILITY to illustrate this technique.

Theorem 4.2. PLANAR GRAPH 3-COLORABILITY is NP-complete.
Proofr Membership in NP follows in the obvious way (planar graphs can be
recognized in polynomial time, for exampie using the liear time algorithm
of Hopcroft and Tarjan [1974]). So suppose G =(V,E) is an arbitrary in-
stance of GRAPH 3-COLORABILITY. We must show how to construct a
corresponding planar graph G'= (V' E’) such that G' is 3-colorable if and
only if G is 3-colorable.

The “‘crossover’’ used in this proof is the graph H shown in Figure 4.6,
and has “‘outlets” x, x’,y, and y’ as labeled. This crossover was suggested
by M. J. Fischer and is simpler than that used in the original proof of Stock-
meyer [1973]. H has 13 vertices and 24 edges and has the following pro-
perties (whose verification we leave to the reader):
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Figure 4.6 Crossover H used in the NP-completeness proof for PLANAR GRAPH
3-COLORABILITY.

1. Any 3-coloring f of H satisfies f(x) = f(x") and £ () =r(".
2. There exist 3-colorings f; and f, for H that satisfy
[1(x) = 110D = £,(0) = £, ()
and

fz(x) =f2(x') %fz(y) =f2(}’,)

We construct G’ from G as follows:

(a) Embed G in the plane, allowing edges to cross one another, but
not allowing any edge to touch a vertex other than its own end-
points and not allowing more than two edges to meet at any
point other than a vertex. This can be done easily in polynomial
time.

(b) For each edge {u,v} € E, call its representation in the plane the
{u,v}-line. To each such line that is “‘crossed’ by other lines,
add new vertices, one between each endpoint and the nearest
crossing to it and one between each pair of adjacent crossings.
See Figure 4.7(a) and (b).

(c) Replace each crossing in the graph by a copy of H, identifying
the outlets x and x' with the nearest two points on one of the
lines involved and y and p' with the nearest two points on the
other line. See Figure 4.7(c).

(d) For each {u,v} € E, choose one endpoint as the distinguished end-
point and coalesce it with the nearest new point on the {u,v]}-
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Figure 4.7 The construction of a planar graph G' from a given graph G, using the
crossover H of Figure 4.6, so that 3-colorability is preserved.

line. See Figure 4.7(d). The original vertex {from V) retains
its identity, and no coalescing occurs unless there are new points
on the {u,v}-line. The edge between the other endpoint of the
{u,v}-line and its nearest new point on the {u,v}-line will be
called the operant edge of the {u,v}-line.

This completes the description of G'. It is not difficult to see that G' is
planar and can be constructed in polynomial time. It remains for us to
show that G’ is 3-colorable if and only if G is.

Suppose f: V'—{1,2,3} is any 3-coloring for G'. We claim that f res-
tricted to V is a 3-coloring for G. For suppose not. Then there must be a
{u,v} € E such that f(u)=f(v). Consider the {u,v}-line in G', and as-
sume without loss of generality that u is the distinguished endpoint for this
line chosen in step (d) of the construction. Then by property 1 of H, all
the new points on the {u,v}-line must be assigned the same “‘color’ as u.
Therefore both endpoints of the operant edge for that line have the same
color, and this contradicts the assumption that f was a 3-coloring for G'.

Conversely, suppose f: V—{1,2,3} is any 3-coloring for G. It can be
extended to a 3-coloring for G’ as follows: For each {u,v} € E, color each
new point on the {u,v}-line with color f(u), where u is the distinguished
vertex for that line. This ensures that both endpoints of every operant edge
are colored differently (because f(u)+# f(v)). By property 2 of H, this
partial coloring of G' can be extended to a 3-coloring of G' by an appropri-
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ate 3-coloring of the interior vertices of each of the crossovers, and the
desired result foliows. ®

A perusal of the lists contained in the Appendix will provide many oth-
er examples of restrictions that have been analyzed for graph theoretic prob-
lems. We have attempted throughout these lists to provide as much infor-
mation as possible about the complexity of various subproblems of each
problem. Thus the lists can be used as one source of suggestions for res-
trictions that might be analyzed for a given problem. Other restrictions will
be suggested by the context in which the probiem arises. Instances arising
in a particular application will often satisfy special constraints that could
affect the complexity of the problem, even though these constraints might
not be apparent at first. In the next section we discuss a special type of res-
triction that is often of interest for problems having numerical parameters.

4.2 Number Problems and Strong NP-Completeness

Nowhere does the need for analyzing subproblems of an NP-complete
problem have more import than in the case of problems involving numbers.
The reasons for this can be iflustrated by considering the following ‘‘dynam-
ic programming’’ approach to solving the PARTITION problem.

Let the set 4 ={ay,a,, ..., a,} and the sizes s(a,), say), ..., s(a,)
in Z* constitute an arbitrary given instance of PARTITION. Define B to
be equal to ¥, ., s(a). If B is not evenly divisible by 2, then we know
that no subset 4'C A can possibly satisfy

Y sla)= Y s(a ,

acA’ a€A—-A'
so we can immediately respond ‘‘no’” for this instance. Otherwise, for in-
tegers 1<i<n,0<<B/2, let t(i,j) denote the truth value of the state-
ment: ‘“‘there is a subset of {a;,a,, ..., a;} for which the sum of the item
sizes is exactly j.”' The values of all the t{i,j) can be viewed as being ar-
ranged in a table, as shown in Figure 4.8.

The crux of the approach lies in the very simple procedure that can be
used for filling in the table entries. It proceeds row by row, from top to
bottom. For the top row, all we need do is observe that ¢(1,7) =T if and
only if either j=0 or j=s(a;). Each subsequent row is filled in by using
the entries in the previous row. For 1<i<n, 0<j<B/2, the entry t(i,j)
in row i has the value T if and oniy if either ¢t(i—1, j) =T or s(a,) <j and
t(i—1, j~s(a)) =T. Finally, we observe that, once the entire table has
been filled in, we have soived the given instance of PARTITION, because
the answer is “‘yes’’ if and only if ¢(n,B/2) =T.

The reader should have no difficuity in specifying an iterative algorithm
for filling in the table entries, in the manner described, in time bounded by
a low order polynomial in the number of table entries (that is, polynomial
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Figure 4.8 Table of ¢(i,j) for the instance of PARTITION for which
A=la,a;,a3,a4,a5), s(a) =1, s{a)=9, s{a;)=5, s{ay)=3, and
s(as) =8. The answer for this instance is ‘“‘yes,”” since #(5,13)=T,
reflecting the fact that s(a,) + s(ay) + s(a,) =13=26/2.

in nB). In fact, at first glance this might even appear to give us a polyno-
mial time algorithm for solving PARTITION, thus proving that P=NP and
obviating the need for this book. Of course this is not the case. The reason
is that, by the *‘conciseness’’ requirement for reasonable encoding schemes,
each integer s(a;) would be described in the input by a string of length only
Oflog s(a;)). Therefore the length of the entire PARTITION instance
would be only O(nlog B), and n B is not bounded by any polynomial func-
tion of this quantity. Thus, this is not a polynomial time algorithm for
PARTITION.,

Nevertheless, in view of this algorithm, it is clear that the NP-
completeness of PARTITION (and its supposed intractability) depends
strongly on the fact that extremely large input numbers are allowed. If any
upper bound were imposed in advance on these numbers, even a bound
that is polynomial in Length [/], this algorithm would be a polynomial time
algorithm for the restricted problem. (In the sequel, we will be defining the
term ‘‘pseudo-polynomial time algorithm’’ to refer to algorithms having this
property.) One might expect such a bound to be satisfied in many practical
applications.

For example, in scheduling problems where the numbers represent task
lengths, extremely large numbers would be unlikely to occur because we ac-
tually intend to perform those tasks and we could not afford to do so if any
one of them required an inordinately large amount of time. In other prob-
lems, where numbers represent empirically measured quantities, limits on
the precision of measurement have the effect of limiting the range of
numbers for which our algorithm must apply.

Furthermore, a pseudo-polynomial time algorithm can be useful even
when there is no natural bound on the input numbers we expect. It wiil
display ‘‘exponential behavior’” only when confronted with instances con-
taining ‘‘exponentially large’® numbers, and instances of this sort might be
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rare for the application we are interested in. If so, this type of algorithm
might serve our purposes almost as well as a polynomial time algorithm.

Thus, the possibility of finding a pseudo-polynomial time algorithm for
an NP-complete problem involving numbers can be well worth investigat-
ing. We shall see that not all such problems are like PARTITION in this
regard. For some the theory of NP-completeness can be used to show that
even a pseudo-polynomial time algorithm cannot exist unless P=NP. Sec-
tion 4.2.1 introduces some new terminology and lays the groundwork for
proving such ‘‘strong” NP-completeness results. Section 4.2.2 illustrates
the proof techniques and presents our seventh ‘“‘basic”” NP-complete prob-
fem.

4.2.1 Some Additional Definitions

Our new definitions will involve subproblems obtained by placing res-
trictions on the magnitudes of the numbers occurring in a problem instance.
These restrictions will be stated in terms of two encoding-independent func-
tions, Length: Dy— Z* and Max: D;;— Z*, which we assume to be associ-
ated with any decision problem II. Although in theory these two functions
can be entirely arbitrary (just like encoding schemes), the significance of
what we do with them will depend on the extent to which they reflect the
following intended meanings. The function Length, as discussed in Section
2.1, is intended to map any instance / to an integer Length[/] that
corresponds to the number of symbols used to describe / under some rea-
sonable encoding scheme for II. The function Max, which has not been
discussed previously, is intended to map any instance / to an integer
Max[/] that corresponds to the magnitude of the largest number in 7.

The types of results we will be proving will be sufficiently general that
each will hold for a broad class of “‘polynomially related’” Length and Max
functions. Two Length functions, say Length and Length’, for a problem [I
are said to be polynomially related if there exist polynomials p and p' such
that, for all instances /€ Dy,

Length[/] < p'(Length'[/]) '
and
Length'l/] < p (Length[/])

We will say that the pair of functions (Length, Max) is polynomially related
to the pair of functions (Length', Max’) if Length and Length’ are polyno-
mially related as above and there exist two-variable polynomials ¢ and ¢’
such that, for all /€ Dy,

Max[7] € ¢'Max'[7],Length’'[I])
and
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Max'[/] € g(Max[/],Lengthl[/])

All the results we state will hold for any Length and Max functions that are
polynomially related to the ones we are using.

As an example, consider the PARTITION problem, in which an in-
stance I consists of a finite set 4 and a size s(q) € Z* for each a €A4. Any
of the following would be a suitable Length function for PARTITION:

Length[/] = |4 |+ Y [log; s(a)]
acAd

Length{/] = |4 | + max {[log; s(a)]: a€ 4}

Length[/] = |4]-[log, T s(a)]
a€4d
Similarly, any of the following would be a suitable Max function for PAR-
TITION:

Max[/] = max{s(a): acA)
Max[/] = ¥ s(a)

a€Ad

Max[/1=[(Y s(a))/|4]]
acAd
We leave for the reader to verify that any of the nine pairs of Length and
Max functions that can be chosen using these two lists is polynomially relat-
ed to any of the others.

The flexibility we are allowed in choosing Length and Max functions
will enable us to avoid explicitly stating the ones we have in mind for a
problem TI, since they can be inferred with sufficient accuracy from our
description of a generic problem instance. An appropriate Length function
is implied by what we consider to be a reasonable encoding scheme for the
problem, and the [atter follows from our description of the generic instance
using the standard conventions set forth at the end of Section 2.1. An ap-
propriate Max function is implied by our specifying that certain objects in
the generic instance are numbers (in distinction to sets, sequences, graphs,
named elements, etc.). These numbers usually will be integers, and any
more complicated ‘“‘number” in an instance will be viewed as being a com-
posite of one or more separate integers, as has already been done for ration-
al numbers. By convention, we will take Max[/] to be the magnitude of
the largest integer occurring in /, or 0 if no integers occur in /.

One final property will be required of the functions Max and Length.
This is that, given any reasonable encoding scheme for [1, there must exist
polynomial time DTMs that take as input the encoded representation of any
instance /€Dy and that output the values of Length [/] and Max[/], writ-
ten in binary notation. We need this property solely because we will be
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considering restrictions on instances defined in terms of Length[/] and
Max[7], and we need to be able to decide whether or not a given string en-
codes an instance meeting these restrictions. Any natural choices for
Length and Max will certainly have this property.

The definitions that follow assume that every decision problem II has
an associated Length function and an associated Max function as discussed
above. Formal precision at the language level would also require that an
encoding scheme be given for each problem [1. However, it is convenient
to state the definitions at the problem level without this proviso, operating
under our standard assumptions about the use of reasonable encoding
schemes. The reader should have no difficulty in filling in the details need-
ed to make these definitions precise at the language level, and it is more na-
tural and informative to continue our discussions in terms of problems.

An algorithm that solves a problem II will be called a pseudo-polynomial
time algorithm for I1 if its time complexity function is bounded above by a
polynomial function of the two variables Length[/] and Max[/]. By
definition, any polynomial time algorithm is also a pseudo-polynomial time
algorithm, because it runs in time bounded by a polynomial in Length [7]
alone. However, we have already seen an example of a pseudo-polynomial
time algorithm that is nor a polynomial time algorithm, that given for PAR-
TITION. This shows that, even though an NP-completeness result for a
problem II rules out the possibility of solving I with a polynomial time al-
gorithm (unless P=NP), it does not rule out the possibility of solving II
with a pseudo-polynomial time algorithm.

To be more precise, an NP-completeness result does not necessarily
rule out the possibility of solving IT with a pseudo-polynomial time algo-
rithm. Many of the decision problems we have considered so far have the
property that Max[/] is itself bounded by a polynomial function of
Length [/], and for these problems there is no distinction between polyno-
mial time algorithms and pseudo-polynomial time algorithms. For example,
the only number that occurs in an instance of CLIQUE is the bound J, and
J is constrained to be no larger than the number of vertices in the given
graph. SATISFIABILITY involves no numbers at all, except for the sub-
scripts on variables and literals, and these can be ignored because they actu-s
ally are ‘‘names’ rather than “‘numbers.”” (Our conventions on encoding
schemes ensure that such numerical ‘‘names’ will always be polynomially
bounded in terms of Length[/].) The issues we are concerned with here
are not relevant for problems like this, so let us give a name to the type of
problem for which these issues are relevant. We say that a problem II is a
number  problem if there exists no polynomial p such that
Max[/] < p(Length(/]) for all [ € Dy. The only number problem among
our six basic NP-complete problems is PARTITION.

As an immediate consequence of this definition, we can make the fol-
lowing observation:
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Observation 4.1 If I1 is NP-complete and I is not a number problem, then
[T cannot be solved by a pseudo-polynomial time algorithm unless P =NP.

Thus, assuming that P#NP, the only NP-complete problems that are po-
tential candidates for being solved by pseudo-polynomial time algorithms
are those that are number problems.

For any decision problem [T and any polynomial p (over the integers),
let [T, denote the subproblem of [T obtained by restricting IT to only those
instances 7 that satisfy Max{/]1 < p(Length[/1). Then [T, is not a number
problem. Furthermore, if II is solvable by a pseudo-polynomial time algo-
rithm, then II, must be solvable by a polynomial time algorithm. Given
any input string x, all we need do is check that x encodes an instance /
satisfying Max[/] < p(Length[/]) and, if so, apply the pseudo-polynomial
time algorithm for TT'to /. By our assumption that Max{/] and Length [/]
can be computed in polynomial time, the required inequality can be checked
in polynomial time. By the definition of pseudo-polynomial time algorithm,
the algorithm for II will be a polynomial time algorithm for the instances
that satisfy this inequality. This motivates us to call a decision problem II
NP-complete in the strong sense if [ belongs to NP and there- exists a polyno-
mial p over the integers for which I, is NP-complete. In particular, if II is
NP-complete and II is not a number problem, then II is automatically NP-
complete in the strong sense.

We then have the following generalization of Observation 4.1:

Observation 4.2 If 11 is NP-complete in the strong sense, then I cannot be
solved by a pseudo-polynomial time algorithm unless P=NP.

This second observation provides the means for applying the theory of
NP-completeness to questions about the existence of pseudo-polynomial
time algorithms. We know that PARTITION cannot be NP-complete in the
strong sense, because it can be solved by a pseudo-polynomial time algo-
rithm. However, we have not yet seen any examples of number problems
that are NP-complete in the strong sense. This situation will be rectified in
the next section, where we illustrate how strong NP-completeness results
can be proved.

4.2.2 Proving Strong NP-Completeness Results

The most straightforward way to prove that a number problem II is
NP-complete in the strong sense is simply to prove for some specific poly-
nomial p that II, is NP-complete. For example, the TRAVELING SALES-
MAN problem (TS) defined in Section 2.1 is a number problem because
there are no constraints on the values of either the intercity distances d{i,/)
or the bound B. We proved TS NP-complete by transforming HAMIL-
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TONIAN CIRCUIT to it. Moreover, the instances of TS created by this
transformation all have intercity distances equal to 1 or 2 and a bound B
equal to the number m of cities. Thus if we take Max[/] to be the larger
of B and the longest intercity distance, and we take Length[/] to be
m + [log, Bl + ¥ [log, d(i, /], then all the instances created by this transfor-

ij
mation satisfy the bound
Max[/] < Length[/]

In other words, this transformation actually shows that the subproblem of TS
made up of all those instances satisfying the above inequality is itself NP-
complete. [t follows that TRAVELING SALESMAN is NP-complete in the
strong sense,

In contrast, the NP-completeness proofs for KNAPSACK, MUL-
TIPROCESSOR SCHEDULING, and SEQUENCING WITHIN INTER-
VALS, described in Section 3.2, all leave open the possibility that these
problems can be solved by pseudo-polynomial time algorithms. It turns out
that KNAPSACK can be solved in pseudo-polynomial time, using a dynam-
ic programming approach similar to that we used for PARTITION, as del-
ineated in [Dantzig, 1957]. All pseudo-polynomial time algorithms known
to us are based on similar techniques, and we refer the reader to [Horowitz
and Sahni, 1976), [Lawler, 1977a), [Lawler and Moore, 1969], and [Sahni,
1976] for illustrations of these techniques.

The problems MULTIPROCESSOR SCHEDULING and SEQUENC-
ING WITHIN INTERVALS, however, do turn out to be NP-compiete in
the strong sense. In order to show this, it is useful to have a number prob-
lem that is NP-complete in the strong sense and that is somewhat ‘‘more
numeric’’ than any we have seen so far. Such a problem is provided by our
seventh ‘‘basic NP-complete problem, 3-PARTITION, which is defined as
follows:

3-PARTITION

INSTANCE: A finite set 4 of 3 elements, a bound B€Z™, and a ‘‘size”’
s{a)€Z* for each a€4, such that each s(a) satisfies B/4 < s(a) < B/2
and such that ¥, ., s(a) =mB.

QUESTION: Can 4 be partitioned into m disjoint sets S;,5,, . . . , S, such
that, for 1 € i <m, ¥ es,5(a) = B? (Notice that the above constraints on

the item) sizes imply that every such §; must contain exactly three elements
from A.

We prove that 3-PARTITION is NP-complete in the strong sense in
two steps, first proving that the related 4-PARTITION problem is NP-
complete in the strong sense. 4-PARTITION is identical to 3-PARTITION
except that the set 4 contains 4m elements and each s(a) must satisfy
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B/5 < s(a) < B/3. Thus each set in the desired partition will contain ex-
actly four elements.

Theorem 4.3 4-PARTITION is NP-complete in the strong sense.

Prooft It is easy to see that 4-PARTITION belongs to NP, since all we need
do is verify in polynomial time that a given partition of 4 has all the stated
properties. We shall transform 3-DIMENSIONAL MATCHING to a res-
tricted version of 4-PARTITION in which all the element sizes are bounded
by a polynomial function of the total number of elements, and hence by a
polynomial function of Length[/]. In particular, taking Max[/] to be
max {s{a): a€A4} we shall show that 4-PARTITION is NP-complete even
when restricted to instances / with Max[/] < 2'6-|4*

Let W= {w,wy, ..., w}, X=1{x,x3, ..., x) Y="0uy, ..., Yobs
and M C W x X X Y denote an arbitrary instance of 3DM. We may assume
without loss of generality that || > ¢. Our corresponding instance of
4-PARTITION has |4|=4|M]| elements, one for each occurrence of a
member of W u X u Y in a triple in M and one for each triple in M.

The elements corresponding to a particular z € WuXu Y will be denot-
ed by z[1],z[2], ..., z[N(2)], where N(z) denotes the number of triples
from M in which z occurs. We shall regard z[1] as being the ‘“‘actual’ ele-
ment corresponding to z, and z[2] through z[N(2)] as being the “dummy’’
elements corresponding to z. The sizes of these elements depend on which
one of W, X, or Y contains z and on the index of z within that set. These
are defined as follows, where r is chosen equal to 324:

slw;[11) = 10r4+ir+1 1€igyq
sw ) = 11r*+ir+1  1<i<q, 2<ISN(w)

S(xj[ll) = 10r%+,r2+2 1</j<q
sCol) = 14242 1</<q, 2<ISN (x)

s D) = 10r*+kr’+4  1<k<g -
s ) = 8ri+kr3+4 1<k<q, 2<ISN ()

The single element corresponding to a particular triple
m;=(w;, x;, yy) € M is denoted by u, and its size depends on the indices of
its members as follows:

sCu) =10r%—krd—jr2—ir+8

Notice that, if we add to s(u,) the sizes of three elements that correspond
to w;, x;, and y,, respectively, then the total will be equal to 40/*+15
whenever all three are ‘‘actual’” elements or whenever all three are
“dummy”’ elements. We choose this number to be our bound B, that is,



98 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

B = 40441543 +15

The reader should have no difficulty verifying that this is a polynomial
transformation, that the size of each element is strictly between B/3 and
B/5, and that the sum of all the element sizes is IMI-B, as required.
Furthermore, we observe that the size of each element is bounded above by
12r% € 12-8%]4|* < 2!6.|4|* Thus all that remains to be done to prove
that 4-PARTITION is NP-complete in the strong sense is to show that the
desired 4-partition exists if and only if M contains a matching.

First, suppose that M'C M is a matching. The corresponding 4- pam-
tion is made up of |M| 4-sets, each containing a u, a w,[], an x;[-], and a
wll, where (w,x,yp)=meM. If m€eM, we group u, with

w;[1], x;[1], and yk[l] If m, € M—M', we group u, with “dummy’’ ele-
ments correspondmg to w;, x;, and y,. It is not hard to see that there are
enough dummy elements so that this can be done, and by our previous
comments the sizes of the four elements in each set will sum exactly to B.
Thus we have our required 4-partition.

Now suppose we are given a 4-partition of the required form. Consider
any 4-set in this 4-partition. By successively considering the sum of the ele-
ment sizes modulo r, r2, r3, r4, and r%, we shall show that this 4-set must
contain one element corresponding to each of the three members of that tri-
ple, all three being ‘‘actual’” elements or all three being ‘‘dummy’’ ele-
ments. First, since r > 4-8 =32, we know that the sum modulo R of the
sizes of the four elements, which must equal B{mod r) =15, is the same as
the sum of the item sizes when each is taken modulo r beforehand. The
only way these can sum to 15 is for the 4-set to contain one element that
corresponds to a member of W, one that corresponds to a member of X,
one that corresponds to a member of Y, and one that corresponds to a tri-
ple from M. Let w, x;,and y, denote the corresponding members of
W,X,and Y, and let m; = (w;, x;,,) denote the corresponding triple
from M. Then the sum of the element sizes modulo r? must equal
((i—i")r +15)(mod r?) and, since (i—i')r+15 < r2, we must have

B(modr?) =15 = (i—i)r+15

It follows from this that i=/". Similarly, since (j—j)r2+15 < r3, we
must have

4

B(modrd) =15 = (j—j)r2+15
and hence j=j', and , since (k—k)r3+15 < r*, we must have
B(mod r*) =15 = (k—k')r’+15

and hence k=k'". Thus w;, x;,and y, are indeed the three members of the
tnple my;, and we Know that the coefficient of r* in the sum of the element
sizes is simply the sum of the individual coefficients for r%. Our choice of
these coefficients in the construction then guarantees that the only way for

2
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them to sum to 40 is for all three elements to be “‘actual’” elements or for
all three to be “‘dummy’’ elements.

The total collection of 3¢ ‘‘actual’ elements, one for each member of
Wu X u Y, must therefore be contained in ¢ of our given 4-sets, each of
these 4-sets consisting of one element corresponding to a triple from M and
the three ‘‘actual™ elements corresponding to the members of that triple.
Those g triples from M provide the desired matching. ™

Theorem 4.4 3-PARTITION is NP-complete in the strong sense.

Prooft It is easy to see that 3-PARTITION belongs to NP. We shall
transform the subproblem of 4-PARTITION in which all instances satisfy
max {s(a):a€A} < 2'9]4|* to 3-PARTITION, maintaining the property
that all element sizes are bounded by a polynomial function of the total
number of elements.

Let A= {a,,a,,...,a4,), bound B, and item sizes s(a) satisfying
B/5< s{a) <B/3 and s(a) €2'%|4]* be a specification of any such
instance of 4-PARTITION. Our corresponding instance of 3-PARTITION
will have 24n2—3n elements, one for each element from A, two for each
pair of elements from 4, and 8#>—3n “‘filler” elements.

Corresponding to each element a;€4 is a ‘‘regular’’ element w;, with
size defined by

s'(w) =4 (5B+s(a))+1

where we use s'(-) to denote the size function in our 3-PARTITION
instance. Corresponding to each pair of elements a;,a;€A we have two
“pairing”’ elements, u{7,;] and u[i,], with sizes defined by

s'uli.jh) = 4 (6B —s(a) —s(a;)) +2 -
s'(ulij]) = 4 (5B +5(a) +5(a))) +2

Finally, for 1 < k <8n*-3n, we have a “filler” element u® with size
s'(uf) = 20B. The bound B’ for our 3-PARTITION instance is 648 + 4.

Once again the reader should encounter no difficulty in verifying that
this is a polynomial transformation, that the size of every element is strictly
between B'/4 =168 +1 and B'/2 =32B+2, and that the sum of all the
element sizes is equal to (8#2—n)B’. Furthermore, since the elements in
A are constrdined to have sizes no larger than 2'¢:|4{% the sizes in the
3-PARTITION instance will also satisfy a polynomial bound in terms of
|A|, hence in terms of the number of elements in the constructed instance
I', hence in Length [/]. Thus, to complete our demonstration that 3-PAR-
TITION is NP-complete in the strong sense, we need only show that a
3-partition exists for the constructed instance if and only if a 4-partition
exists for the original instance.
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First, suppose that we have a 4-partition for the original'instance. The
corresponding 3-partition is constructed as follows: Arbitrarily divide .ei'ich
4-set {a;,a;,a;,a,} into two 2-sets, say {g;,q;} and {ak,a,}.—Our 3-partition
will then contain the two 3-sets {w;,w;,uli,j1} and {w,,w,uli,jl}. (Notice
that we could just as well have used #lk,/] instead of uli,j] and ulk,/]
instead of #[i,/].) The sizes of the elements in each of these 3-sets sums
to B' since s(a;) +s(a;) +s(a,) +s(a) = B. Doing this for each of the n
given 4-sets, we obtain 2# 3-sets that contain all of the ‘“‘regular” elements
and n matched pairs of *‘pairing’’ elements. This leaves 8#2—3» matched
pairs of “‘pairing” elements and 8#%—3n ““filler’’ elements. Since the sum
of the sizes of two matched “‘pairing’’ elements is 44B+4 = B'—20B,
each such matched pair can be grouped with a remaining one of the “‘filler”
elements to complete the desired 3-partition.

Now suppose that we are given a 3-partition for the constructed
instance. By considering the element sizes modulo 4 we see that no 3-set
can contain an odd number of “‘regular’” elements, no 3-set can contain
three “‘pairing” elements, and no 3-set can contain two ‘‘regular’ elements
and a ‘‘filler” element. It follows that the given 3-partition is made up of
2n 3-sets that each contain two ‘‘regular’’ elements and one ‘‘pairing’’ ele-
ment, along with 8#%2—3» 3-sets that each contain:two ‘“‘pairing’” elements
and one “‘filler”” element. Consider any one of the latter type of 3-sets, and
let uli,jl (or ulk,!l) be one of the two ‘“pairing”’ elements in that set. If
the other pairing element in this 3-set is not #[i,j] (or ulk,/1), then it
must have the same size as that matching element and so can be inter-
changed with it to obtain an equivalent 3-partition. This operation can be
repeated until we obtain a 3-partition in which every ““filler’” element occurs
together with a matched pair u[i,j], uli,jl. Thus, any ‘“‘pairing” element
that occurs with two ‘‘regular” elements in this 3-partition is such that its
““match” also occurs in such a 3-set. This divides the 3-sets containing
“regular’” elements into n pairs of 3-sets. Since the two ‘‘pairing” ele-
ments in each such pair of 3-sets are matched, their sizes sum to 448 + 4,
and hence the sizes of the four “‘regular’ elements must sum to 848 + 4.
This implies that the corresponding four elements from A form a 4-set of
elements whose sizes sum to B. Therefore these » pairs of 3-sets provide
the required 4-partition. ® ,

Notice that this last transformation, if viewed as a transformation from
the general 4-PARTITION problem to 3-PARTITION, would not be
enough to prove strong NP-completeness for 3-PARTITION. We needed to
restrict our attention to an NP-complete subproblem of 4-PARTITION in
which max {s(a)} was polynomially bounded. However, it is easy to see
that the particular polynomial bound that we chose was not essential.
Indeed, it would be convenient if we could operate with transformations
like this without needing to go into the details of the subproblems and the
particular polynomials involved. This can be done using the following
definition and lemma.
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Let II and IT' denote arbitrary decision problems with instance sets Dy
and D, ‘‘yes” sets Yy and Y, and specified functions Max, Length,
Max', and Length’, respectively. A pseudo-polynomial transformation from 11
to IT' is a function f: Dy— Dy such that

(a) forall €Dy, I€Yyifand only if F(I)€ Yy,

(b) f can be computed in time polynomial in the two variables
Max[/] and Length [/],

(c) there exists a polynomial ¢, such that, for all /€Dy,
g (Length’ [ (/)]) = Lengthl/]
(d) there exists a two-variable polynomial g, such that, for all /€Dy,
Max'[F(I)] € g,(Max[7],Lengthl/])

Lemma 4.1 If II is NP-complete in the strong sense, [I'éNP, and there
exists a pseudo-polynomial transformation from II to.II', then IT' is NP-
complete in the strong sense.

Progff Let f be such a pseudo-polynomial transformation, with functions
g, and g, as specified in the definition. We can assume without loss of gen-
erality that ¢, and ¢, have only positive integer coefficients, since they can
be so modified without decreasing their values. Because Il is NP-compiete
in the strong sense, there is some polynomial p such that II, is NP-
complete. Furthermore, we can choose such a p that has only positive
integer coefficients, because if p, is any polynomial over the integers satisfy-
ing po(x) > p(x) for all x, then I1, will contain all the instances of I, and

hence must be NP-complete if I, is. Let p be the polynomial defined by
p(x) = q2{p{q;(x)),q,(x))

We claim that the function /', when restricted to instances of IT,, becomes
a polynomial transformation from II, to [I}, thus proving that IT; is NP-
complete. First let us see that every instance / of II, is mapped by / to an
instance of Hi:" Using the definition of II, and the inequalities satisfied by
q: and g¢,, we have, for each instance / of II,,

Max'[f(I)] < g,(Max{7],Length[/])

g,(p(Length{/1), Lengthl[71)

< g,(p(q1(Length’ [ £ (1)D),q,(Length’ [ £ (1))
= p(Length'[£ (/)]

Thus £(7) is an instance of I1;. Conditions () and (b) of the definition of
pseudo-polynomial transformation, along with the fact that every instance /
of I, satisfies Max(/] < p(Lengthl/]), then imply immediately that f
meets the remaining requirements to be a polynomial transformation.

N IN A



102 USING NP-COMPLETENESS TO ANALYZE PROBLEMS

Hence Hizl is NP-complete, and it follows that II' is NP-complete in the
strong sense. ®

This lemma frees us from having to deal with particular subproblems
I1, when proving strong NP-completeness results, a great convenience since
we are rarely interested in identifying the specific polynomial involved.
However, the complicated definition of pseudo-polynomial transformation
might appear to be a rather formidable obstacle to using this approach. In
fact, it is not as complicated as it seems. Condition (a) is identical to one
of the two requirements that must be met by an ordinary polynomial
transformation, and condition (b) is almost identical to the other but allows
us a bit more freedom in the complexity of our transformation. Condition
(c) will be met by all but the most unusual transformations, since it
requires only that the transformation not cause a substantial decrease in
input length. The heart of the definition lies in condition (d), and it serves
the purpose of ensuring that the magnitude of the largest number in the
constructed instance does not blow up exponentially in terms of the Max
and Length of the given instance.

As a first example, the construction we used to prove Theorem 4.4 can
be viewed as a pseudo-polynomial transformation from the general 4-PAR-
TITION problem to 3-PARTITION. The 3-PARTITION problem itself
earns its title as our seventh ‘‘basic NP-complete problem’” because of the
ease with which pseudo-polynomial transformations can be constructed from
it. PFor instance, we can use such a transformation to show that the
SEQUENCING WITHIN INTERVALS problem, proved NP-complete in
Section 3.2.2, is actually NP-complete in the strong sense.

Theorem 4.5 SEQUENCING WITHIN INTERVALS is NP-complete in the
strong sense.
Proof: Recall that in this problem we are given a set T of tasks, each task
t€T having a length /(¢) € Z* and a time interval [r(z),d(£)] within which
it is to be executed, and we are asked whether the tasks can be sequenced
to obey these constraints, with at most one task ever being executed at a
time. In Section 3.2.2 we proved it to be NP-complete, and hence we
already know that it belongs to NP. We shall give a pseudo-polynomial
transformation from 3-PARTITION to SEQUENCING WITHIN INTER-
VALS.

Let A={a,ay,...,a3,), BEZT, and s(a,), s(ay), ..., s(a;,) con-
stitute an arbitrary instance of 3-PARTITION. The corresponding instance
of SEQUENCING WITHIN INTERVALS is given by

T=AdU{:1<i<m)
1 if t=1,1<i<m

o = s(a) ift=a,ed
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iB+i—-1 ift=1,1<i<m

r@="1y if t=a,€4
iB+i if r=r,1<i<m
A0 = | nBrm—-1 ift=a,e4

This transformation clearly can be performed in time polynomial in the
input length alone, and the length of the constructed instance is polynomi-
ally related to the length of the given instance, so conditions (b) and (c) of
the definition of pseudo-polynomial transformation are met. Furthermore,
the largest number in the constructed instance is m B+ m —1, so condition
(d) is met. All that remains to be shown is that condition (a) is met, just as
in our usual NP-completeness proofs.

Any sequence that satisfies the specified constraints must execute each
task f;, 1<i<m, from time iB+i—1 to time /B+/, as shown in Figure
4.9. This leaves m separate blocks of time, each of length exactly B, and
since this is just enough time in total to accommodate all the tasks r€4,
each block must be completely filled. These blocks therefore play the same
role as the sets §,,5,, ... ,S, in the desired partition of 4. It follows that
the desired sequence exists if and only if the desired partition exists for the
given 3-PARTITION instance.

B B B
— N —
L lal fol -«c [w] |
0 B B+1 2B+1 2B+2 mB+m—1

Figure 4.9 The form required of a sequence meeting the constraints of an instance
of SEQUENCING WITHIN INTERVALS obtained by transforming an
instance of 3-PARTITION in the proof of Theorem 4.5.

Thus condition (a) is met, and we indeed have given a pseudo-
polynomial transformation from 3-PARTITION to SEQUENCING WITHIN
INTERVALS. By Lemma 4.1, this proves that the latter problem is NP-
complete in the strong sense. ¥

We suggest as an exercise that the reader try to construct a similar
transformation from 3-PARTITION to the MULTIPROCESSOR
SCHEDULING problem defined in Section 3.2.1. Our lists of NP-complete
problems contain a number of other problems that are proved NP-complete
in the strong sense with comparable ease, merely by slightly modifying ear-
lier proofs that used PARTITION to use 3-PARTITION instead. The
straightforward nature of these modifications is indicative of the usefulness
of 3-PARTITION.
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We conclude this section with an example of how a pseudo-polynomial
transformation from 3-PARTITION can be useful for proving an ordinary
NP-completeness result for a problem that is »ot a number problem. In
fact, this problem will involve no numbers at all!

Recall the SUBGRAPH ISOMORPHISM problem defined in Section
2.1: Given two graphs G and H, is H isomorphic to a subgraph of G? We
proved this problemm NP-complete in Section 3.2.1 simply by noting that it
contains CLIQUE as a special case. However, there is one important sub-
problem of SUBGRAPH ISOMORPHISM that is known to belong to P.
This is the problem SUBTREE ISOMORPHISM in which both G and H are
required to be ¢rees (a tree is a connected graph that contains no cycles). A
polynomial time algorithm for this subproblem has been obtained by
Edmonds and Matula [1976] (see also {Reyner, 1977]).

Our philosophy of trying to narrow in on the ‘“‘boundary’’ between easy
and hard subproblems of an NP-complete problem then suggests the follow-
ing question: What if only one of G and H is required to be a tree? In one
case the answer is immediate. The version in which only H is required to
be a tree contains HAMILTONIAN PATH as a subproblem and hence is
NP-complete. The case in which only G is required to be a tree is more
interesting. We know that H cannot be a subgraph of such a G unless it is
acyclic (contains no cycles), but this does not imply that A must be a tree,
since it might be disconnected. In general, an acyclic graph is called a
forest, with only connected forests being trees (see Figure 4.10).

Y
\

G F T

Figure 4.10 Examples of a graph G, forest F, and tree T. G is a graph but not a
forest, and F is a forest but not a tree. F is not a subforest of T, but
each tree in F is a subtree of 7.

Let us give the name SUBFOREST ISOMORPHISM to the subproblem
of SUBGRAPH ISOMORPHISM in which G is required to be a tree and H
is required to be a forest.. Despite the similarity of this problem to the poly-
nomially solvable SUBTREE ISOMORPHISM problem, we have the follow-
ing theorem:
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Theorem 4.6 SUBFOREST ISOMORPHISM is NP-complete.
Prooff Membership in NP follows from that for SUBGRAPH ISOMOR-
PHISM. We shall give a pseudo-polynomial transformation from 3-PAR-
TITION to SUBFOREST ISOMORPHISM, and the result will follow by
Lemma 4.1.

Let A={ay,a,,...,a,}, BEZ*, and s(a)),s(ay, ...,sla,) in Z*
constitute an arbitrary instance of 3-PARTITION. The corresponding
instance of SUBFOREST ISOMORPHISM is illustrated in Figure 4.11.

N 7T, s

—_— Y
-~ m vertices

B+l } i"" chain
vertices has s (0)
. . . . i
oo : vertices
l 1 i ,A

3m chains
m chains
G H

Figure 4.11 The tree G and forest H corresponding to an instance of
3-PARTITION in the proof of Theorem 4.6.

The tree G consists of m chains of B+1 vertices each, all attached at
one end to an additional common vertex. The forest H consists of 3m +1
trees, including one ‘‘star” on m+1 vertices and 3m chains, each
corresponding to a particular element a € 4 and having s{a) vertices.

Any isomorphism from H to a subgraph of G must map the center of
the star to the single high-degree vertex of G. The m neighbors of the
center of the star in H then must be mapped to the m neighbors of that
vertex in G. This leaves m chains, each of B vertices, in G to which the
remaining 3m chains in A must be mapped by the isomorphism. The map-
ping of these chains from H to the remainder of G corresponds to a parti-
tion of the elements of 4 into m sets and, by our construction, can be com-
pleted if and only if the elements in each set have sizes summing exactly to
B. Thus the required isomorphism from H to a subgraph of G will exist if
and only if the required 3-partition of A4 exists. )

This confirms condition (a) of a pseudo-polynomial transformation. It
is easy to see that this transformation can be performed in time polynomial
in m and B, so condition (b) is satisfied. The total number of vertices in G
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and H is 2(m B+1), so condition (c) is satisfied. Finally, there are no
numbers in the constructed instance, so condition (d) holds. Thus by Lem-
ma 4.1, SUBFOREST ISOMORPHISM is NP-complete in the strong sense,
which implies that it is NP-complete in the ordinary sense as well. ®

4.3 Time Complexity as a Function of Natural Parameters

So far in this chapter we have motivated the study of subproblems
mainly on the basis of the fact that in practice it is often the subproblem,
rather than the general problem, that we are called upon to solve. Having
mapped the boundary between the NP-complete subproblems and the poly-
nomial time solvable subproblems, one is better prepared to focus the
search for algorithms in potentially profitable directions when such a sub-
problem arises.

Results concerning subproblems also can be used to help guide the
search for algorithms that solve the general problem. If the general prob-
lem is NP-complete, we know that an exponential time algorithm will be re-
quired (unless P=NP), but there are a variety of ways in which the time
complexity of an algorithm can be ‘‘exponential,” some of which might be
preferable to others. This is especially evident when, as is customary in
practice, we consider time complexity expressed in terms of natural problem
parameters instead of the artificially constructed ‘‘input length.”

For example, consider the MULTIPROCESSOR SCHEDULING prob-
lem of Section 3.2.1. Here a collection of natural parameters might consist
of the number » of tasks, the number m of processors, and the length L of
the longest task. The ordinary NP-completeness result for this problem
proved in Section 3.2.1 implies that, unless P=NP, MULTIPROCESSOR
SCHEDULING cannot be solved in time polynomial in the three parame-
ters n, m, and log L. However, one can still ask whether it is possible to
have an algorithm with time complexity polynomial in m” and log L, or
polynomial in »™ and log L, or polynomial in n, m, and L, or even poly-
-nomial in (n L)™,

Our complexity results for subproblems shed some light on these ques-
tions. The original NP-completeness result for MULTIPROCESSOR
SCHEDULING actually shows that the subproblem in which m is restricted
to the value 2 is NP-complete, thus ruling out an algorithm polynomial in
n™ and log L (unless P=NP), since such an algorithm would be a polyno-
mial time algorithm for this subproblem. Our subproblem results do not
rule out an algorithm polynomial in m” and log L, and inrdeed exhaustive
search algorithms having such a time complexity can be designed. Analo-
gously, the strong. NP-completeness resuit for MULTIPROCESSOR
SCHEDULING claimed in Section 4.2.2 rules out an algorithm polynomial
in n, m, and L (unless P=NP). It leaves open the possibility of an algo-
rithm polynomial in (nL)™ (which would give a pseudo-polynomial time
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algorithm for_each fixed value of m), and again such an algorithm can be
shown to exist.

Thus by considering the subproblems obtained by placing restrictions
on one or more of the natural problem parameters, we obtain useful infor-
mation about what types of algorithms are possible for the general problem.
Care must be taken to ensure that the parameters we choose are sufficiently
representative of instance size that Length [/] can be expressed as a polyno-
mial function of them (so that the class of polynomial time algorithms for
the problem is identical to the class of algorithms polynomial in the selected
parameters), but otherwise we may choose whatever parameters seerii most
natural and relevant. A general NP-completeness result then will imply that
the problem cannot be solved in time polynomial in all the chosen parame-
ters, and information obtained by restricting these parameters can be mean-
ingful with regard to other types of general algorithms.

Although questions concerning strong NP-completeness and pseudo-
polynomial time algorithms are especially relevant here, analyses of this
type also can be applied fruitfully to problems that are not number prob-
lems, since all problems have natural numerical parameters like sizes of
sets, values of bounds, etc. Thus, for instance, the NP-completeness of
3-SATISFIABILITY rules out the possibility (unless P=NP) of an algo-
rithm for SATISFIABILITY that runs in time polynomial in (mn)M, where
m is the number of clauses, » is the number of literals, and M is the max-
imum number of literals per clause, whereas for the CLIQUE problem an
n? algorithm is possible, where » is the number of vertices and D is the
maximum vertex degree. Thus the theory of NP-completeness can be used
to guide our search not only for polynomial time algorithms, but for ex-
ponential time algorithms as well.
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NP-Hardness

This chapter will conclude our coverage of the main concepts and appli-
cations of the theory of NP-completeness. It consists of two parts. In the
first part, which makes up the major portion of the chapter, we show how
the implications of the theory can be extended beyond the class NP by use
of a more general type of reducibility between problems. In the second part
we briefly survey the historical development of the theory of NP-complete-
ness and mention some of the alternative terminology that has been used in
the literature.

5.1 Turing Reducibility and NP-Hard Problems

Although we have restricted our discussions so far mainly to problems
that belong to NP, it should be apparent that the techniques used for prov-
ing NP-completeness also can be used for proving that problems outside of
NP are hard. Any decision problem II, whether a member of NP or not, to
which we can transform an NP-complete problem will have the property
that it cannot be solved in polynomial time unless P=NP. We might say
that such a problem II is *““NP-hard,’” since it is, in a sense, at least as hard
as the NP-complete problems.

Our notion of NP-hardness will be more general than this, however,
since it is possible to generalize the notion of a polynomial transformation
in such a way that problems other than just decision problems can be
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proved to be ‘‘at least as hard” as the NP-complete problems. As in
Chapter 2, all our definitions will be stated both formally in terms of
languages and Turing machines and informally in terms of problems and al-
gorithms.

The more general class of problems to which our definitions will apply
is the class of ‘‘search problems.” A search problem 1! consists of a set Dy
of finite objects called instances and, for each instance /€ Dy, a set Sgl/] of
finite objects called solutions for I. An algorithm is said to sofve a search
problem IT if, given as input any instance 7€ Dy, it returns the answer
“no”* whenever Sy[/] is empty and otherwise returns some sofution s be-
longing to S;[7].

For example, the solution set for an instance of the traveling salesman
optimization problem consists of al/ tours having the minimum possible
length. An algorithm that solves this search problem need only find one
such tour for any given instance. An example in which Sgl/] can be empty
is provided by the ‘“‘Hamiltonian circuit construction problem,’’ in which
the solution set for a given graph G consists of all Hamiltonian circuits in
G. An algorithm for solving this problem must output ‘“no’> whenever G
does not have a Hamiltonian circuit and otherwise must output one such
circuit for G. Notice that any decision problem IT can be formulated as a
search problem by defining Sp{/]1 = {“‘yes”} if /€ Yg and Syl/l=¢ if
I € Yn. It is convenient to assume that all decision problems have been for-
mulated in this way, so that a decision problem can be considered simply to
be a special type of search problem.

The formal counterpart of a search problem is a string relation. For a
finite alphabet Z, a string relation over T is a binary relation R € Z*xXXI*,
where T+ = Z*—{¢}, the set of all nonempty strings over X. A language L
over Z can be identified with the string relation

R={{(x,s):x€xrand x€ L}

where s is any fixed symbol from ¥. (Notice that this ignores whether or

not the empty string belongs to L but will not affect the kinds of computa-
tional questions in which we are interested.) A function f:X*—X* real-
izes the string relation R if and only if, for each x € Z+, f(x) = € whenever
there is no y € ¥ such that (x,y) € R and otherwise f(x) equals some
y € Z¥ for which {x,y) € R. A DTM program M solves the string relation
R if the function f,, computed by M realizes R.

The correspondence between search problems and string relations is
once again accomplished by means of encoding schemes, only now an en-
coding scheme for II must give both a string encoding each instance 7€ Dy
and a string encoding each solution s € Sg[/]. Under the encoding scheme
g, the search problem II corresponds to the string refation R {I1,e] defined

y:
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x €Tt is the encoding under e of an instance
RiM,el = } (x,y): 1 €Dyandy€%* is the encoding under e
of a solution s € Syll]

We say that IT (under encoding scheme e) is solvable by a polynomial time
algorithm if there is a polynomial time DTM program that ‘‘solves”
RIM,el.

The generalization of ‘‘polynomial transformation’’ that we will be us-
ing is motivated by the observation that any polynomial transformation
from a decision problem II to a decision problem I1' provides an algorithm
A for solving IT by using a hypothetical ‘‘subroutine”” for solving IT'. Given
any instance I of II, the algorithm first constructs an equivalent instance [’
of IT', then applies the subroutine to /', and finally outputs the answer re-
turned by the subroutine, since it is also the correct answer for /. Except
for the time required by the subroutine, the algorithm A runs in polynomial
time. Thus if the subroutine were itself a polynomial time algorithm for
solving IT', then the overall procedure would be a polynomial time algo-
rithm for solving I1.

Notice that this last statement would be true even if 4. used the sub-
routine for II' many times (though no more than a polynomially bounded
number of times) and even if the assumed subroutine were for solving a
search problem rather than a decision problem. This fact provides the basis
for our generalization. A polynomial time Turing reduction (or simply Tur-
ing reduction) from a search problem II to a search problem II' is an algo-
rithm A that solves Il by using a hypothetical subroutine S for solving I1'
such that, if S were a polynomial time algorithm for IT', then 4 would be a
polynomial time algorithm for II.

This notion can be captured formally in terms of what are called oracle
machines. For specificity we again use a Turing machine model, although
analogous definitions could be made in terms of any standard model of
computation. An oracle Turing machine (OTM) consists of a standard
DTM augmented with an additional oracle tape, having tape squares num-
bered ...,—2,—-1,0,1,2,..., and a read-write oracle head for operating
with this tape. Such a machine is illustrated schematically in Figure 5.1.

A program for an OTM is similar to that for a DTM and specifies the
following:

(1) a finite set I' of tape symbols, including a subset TCT of
input symbols and a distinguished blank symbol b€ T —L;

(2) a finite set Q of startes, including a distinguished start-state q,, a
distinguished halt-state gy, a distinguished oracle-consultation state
4., and a distinguished resume-compuration swte g, ;
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Figure 5.1 Schematic representation of an oracle Turing machine (OTM).

(3) a transition function
8 (Q—{g,,q. DXTXE — OxTxEx{—1,+1}x{-1,+1}.

The computation of an OTM program on an input x € £* is also much
like that for a DTM, except that, when the finite state control is in state g,
what happens in the next step depends on a specified oracle function
g:I*—L* The computation begins with the symbols of x written in
squares 1 through |x| of the primary tape, with the rest of that tape and all
of the oracle tape being blank, each tape head scanning square 1 of its tape,
and the finite state control in state g,. The computation proceeds in a
step-by-step manner, with one of three possibilities occurring at each step:

a. If the current state is g, then the computation has ended and no furth-
er steps take place.

b. If the current state is ¢€ Q—{g,.4.}, then the action taken depends on
the symbols being scanned on the two tapes and the transition function
8. Let s; be the symbol in the square currently being scanned by the
primary tape head, let s, be the symbol in the square currently being
scanned by the oracle head, and let (g, s;, 55, Ay, &) -be the value of
8(q,s1,57). The finite state control then changes from state g to state
q', the primary tape head writes s; in place of s; and changes its scan-
ning position by A; (forward one square if A;=+1 and backward one
square if A;=—1), and the oracle head writes s, in place of s, and
changes its scanning position by A,. Thus this is just like a step of an
ordinary DTM, except that it involves two tapes.

c. If the current state is g., then the action taken depends on the contents
of the oracle tape and on the oracle function g. Let y € Z* be the
string appearing in squares 1 through | y| of the oracle tape, where
square [y |+1 is the first square to the right of square 0 that contains a
blank, and let z € Z* be the value of g(y). Then in one step the oracle
tape is changed to contain the string z in squares 1 through |z |, with
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blanks everywhere else, the oracle head is set to scan square 1, and the
finite state control is changed from state g, to state g,. Such a step
leaves both the contents of the primary tape and the position of its tape
head unchanged.

The main difference between a DTM and an OTM is in this third type
of step, which provides the means by which an OTM program can ‘‘con-
sult” the oracle. If the OTM writes a query string y on the oracle tape and
then enters the oracle-consultation state, the answer string z =g (y) will be
returned in one step of the computation. Thus this corresponds to calling a
hypothetical subroutine for computing the function g. The computation of
an OTM program M on an input string x depends both on x and on the as-
sociated oracle function g.

Let us use M, to denote the “‘relativized” OTM program obtained by
combining M with oracle g. If M, halts for all inputs x€Z*, then it can be
viewed as computing a function f§:Z*—T*, defined in exactly the same
way as for a DTM. We shall say that M, is a polynomial time OTM pro-
gram if there exists a polynomial p such that M, halts within p(|x|) steps
for every input x€XL*.

Let R and R' be any two string relations over L. A polynomial tine
Turing reduction from R to R’ is an OTM program M with input alphabet
such that, for every function g:Z*—ZXI* that realizes R’', the relativized
program M, is a polynomial time OTM program and the function f§, com-
puted by M, realizes R. If there is such a reduction from R to R’, we shall
write R <y R’, read **R Turing-reduces to R'.” Notice that «y, like «, is
transitive.

We are now prepared to define ““NP-hard.”” A string relation R is
NP-hard if there is some NP-complete language L (itself stated as a string
relation, as noted earlier) such that L <y R. A search problem IT (under
encoding scheme e) is said to be NP-hard if the string relation R[[L,e] is
NP-hard. Informally, this can be interpreted as saying that a search prob-
lem II is NP-hard if there exists some NP-complete problem II' that
Turing-reduces to II. It is not difficult to see that if a string relation R (or
a search problem IT) is NP-hard, then it cannot be solved in polynomial
time unless P =NP.

Note that, by the transitivity of «4, if R is any NP-hard string relation
and if R Turing-reduces to the string relation R’, then R’ also must be
NP-hard. Furthermore, by our association of languages with string relations
and decision problems with search problems, we can immediately say that
all NP-complete languages and all NP-complete problems are NP-hard.

We will encounter OTMs once more in Chapter 7, but for now let us
continue solely at the problem level, applying the above terminology in the
usual informal way, to examine some of the applications of Turing reduci-
bility and NP-hardness.
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The first and most trivial application concerns the complements of the
NP-complete problems. The complement of a decision problem II is the
problem II¢ having domain Dy and yes-set Dy—Yy. In Chapter 2 we ob-
served that it is not known in general whether II € NP implies I1°€ NP,
Nor is it always apparent that II can be polynomially transformed to II¢, be-
cause of the reversed roles of ‘‘yes” and ‘“‘no.”” However, it is a trivial
matter to give a Turing reduction from IT to [1° (and vice-versa), so if IT is
NP-complete or NP-hard, then I1¢ must be NP-hard.

Our second application concerns those search problems, like the travel-
ing salesman optimization problem and the Hamiltonian circuit construction
problem, for which the corresponding decision problems are known to be
NP-complete. Whenever we show that a polynomial time algorithm for the
search problem could be used to solve the corresponding decision problem
in polynomial time, we are actually giving a Turing reduction between
them, and hence an NP-completeness result for the decision problem can be
translated into an NP-hardness result for the search problem. Thus the ar-
gument presented in Chapter 2 to show that TRAVELING SALESMAN is
no harder than the traveling salesman optimization problem, along with the
fact that TRAVELING SALESMAN is NP-complete, constitutes a proof
that the optimization problem is NP-hard.

Neither of these examples illustrates the full power of Turing reducibil-
ity, however, because each requires only one call of the subroutine (one
consultation of the oracle) for any instance. An example that uses Turing
reducibility to more advantage involves the following decision problem:

Kt LARGEST SUBSET

INSTANCE: A finite set 4, a size s(a) € Z* for each a €4, and two non-
negative integers B < Y, s(a) and K <241,

QUESTION: Are there at least K distinct subsets 4'CA that satisfy
5(4") < B (where s(4) is defined to be ¥ ,¢ . 5(a))?

It is shown in [Lawler, 1972] that this problem can be solved in pseudo-
polynomial time, in fact in time bounded by a polynomial function of
|A|-K[log s(4)]. Thus, for any fixed value of K, it can be solved in poly-
nomial time. The question then arises, can it be solved in general in poly-
nomial time?

Not only does this problem appear not to be in P, it does not appear
even to be in NP, since the natural way of solving it nondeterministically
involves guessing K subsets of A4, and there seems to be no way to write
down such a guess using only a polynomial number of symbols in
|4|-[log K]-Tlog s(4)]. On the other hand, no transformation from an NP-
complete problem to this problem is known. However, Johnson and Kash-
dan [1976] show that the NP-complete PARTITION problem can be
Turing-reduced to K" LARGEST SUBSET.
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The argument proceeds as follows: Suppose S[4,s,B,K] is a subrou-
tine for solving the K" LARGEST SUBSET problem, with parameters
A=laya,, ...,a,), s:A—Z*, B<s(4), and K <2". The correspond-
ing algorithm for solving PARTITION begins by computing s(A4), where
A={ay,ay ...,a,} and 5s: A—Z" describe the given instance. If s(4) is
not evenly divisible by 2, the algorithm immediately responds ‘‘no’’ for this
instance. Otherwise, it sets b equal to s(4)/2 and applies the following
binary search procedure, using the assumed subroutine, to determine the
number L* of subsets 4'C A satisfying s(4) < b.

Step 1. Set LMIN‘_Os LMAX*—2".
Step 2. If Lyax ~Lyun =1, set L*— Lyyn and halt.

Step 3. Set L— (LMAx‘}‘LMIN)/z and call S[A,S,b,L]. If the answer is
“yes,” set Lyn+—L and go to Step 2. Otherwise, set
Lyax— L and go to Step 2.

This procedure determines L* using exactly n calls of the subroutine. Only
one additional call is needed to determine the answer for our given PARTI-
TION instance, this time to S{4,s,6—1,L*]. If the answer for this call is
“ves,”” then all subsets 4'C 4 that satisfy s(4')< b also- must satisfy
s(4)< b—1, so the answer for the PARTITION instance is ‘‘no.”” If the
answer for this call is ‘‘no,” then there must be some subset 4'C 4 for
which s(4") = b, so the answer for the PARTITION instance is ‘‘yes.”

It is easy to see that this procedure would be a polynomial time algo-
rithm for PARTITION if S were a polynomial time subroutine for K"
LARGEST SUBSET. Thus we have the desired Turing reduction from
PARTITION to K'* LARGEST SUBSET. It follows that K LARGEST
SUBSET is NP-hard and cannot be solved by a polynomial time algorithm
unless P=NP.

On the basis of this example it should be evident that we can use the
notion of NP-hardness for analyzing the complexity of problems in much
the same way as we use NP-completeness. All the types of questions dis-
cussed in Chapter 4 are also applicable to NP-hard problems, and we can
proceed to consider the complexity of subproblems and such related issues
as pseudo-polynomial time algorithms and “‘strong’ NP-hardness (defined
analogously to strong NP-completeness, with a search problem being NP-
hard in the strong sense if it contains an NP-hard subproblem satisfying a
polynomial bound on Max[/]). The only limitation on such results is that,
whereas an NP-complete problem can be said to be solvable in polynomial
time if and only if P=NP, all we can say with certainty about an NP-hard
problem is that it cannot be solved in polynomial time unless P=NP.

As a final application of Turing reducibility we shall show how even
this distinction can often be removed. Recall that, when we pointed out in
Chapter 2 that TRAVELING SALESMAN is no harder than the
corresponding optimization problem, we also noted that it is in a sense ‘‘no
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easier.”” What we meant by that statement can now be spelled out: Not
only is the decision problem Turing reducible to the optimization problem,
but the optimization problem is also Turing reducible to the decision prob-
lem. Thus each can be solved in polynomial time if and only if the other
can. Since the decision problem is NP-complete, it follows that the optimi-
zation problem can be solved in polynomial time if and only if P=NP.

To see this, let us introduce an intermediate problem, defined as fol-
lows:

TRAVELING SALESMAN EXTENSION (TSE)

INSTANCE: A finite set C={cp,c; ...,c,) of cities, a distance
d(c;,c;) € Z* for each pair of cities ¢;,¢; € C, a bound B€ Z*, and a “‘par-
tial” tour @ = <c,1),Cu(2), . . ., Ca(iy> Of K distinct cities from
C,1<K<m. '

QUESTION: Can © be extended to a full tour

Cz(1:Cr(@s + «  » Cr(k» CalK+D)s + - » Cr(m) >
having total length B or less?

It is easy to see that this problem belongs to NP, and hence, by the
definition of NP-completeness, TSE « TS. Since a transformation is just a
special case of a Turing reduction, this in turn implies that TSE e« TS.
Thus letting TSO stand for the traveling salesman optimization problem, all
we need to show is that TSO <y TSE and by transitivity we will have that
TSO is Turing reducible to TS.

So suppose that S[C,d,0,B] is a subroutine for solving TSE, with the
parameters standing for the set C of cities, distance function & from pairs
of cities to Z*, partial tour ®, and bound B€ Z*. Let C and d be any
given instance of TSO, and let B* denote the optimal tour length for this
instance, whatever it might be, Since every city must occur in an optimal
tour, and since any tour can be cyclically permuted without changing its
length, there must be an optimal tour that starts with city ¢,. Furthermore,
we know that B* lies between the two values Byyn=m and
Byax = m-(max{d(c;,c;): ¢;,c;€C}). Thus by using a binary search pro-
cefiure analogous to that used for K™ LARGEST SUBSET, we can deter-
mine the value of B* by a sequence of at most [log; Byax] calls on the sub-
routine S{C,d,<c;>,B], with different values of B.

Once we know the value of B*, we can proceed to construct an optimal
tour using the subroutine §. Let us call a sequence © of distinct cities from
C an extendible partial tour if it can be extended to a complete tour having
total length B*. Clearly, <c;> is an extendible partial tour. Sincé <c,;>
is extendible, there must exist at least one ¢;€ C—{c,} such that <cj,¢;> is
an extendible partial tour, We can find such a ¢; by making a sequence of
at most m—2 calls of the subroutine S, each of the form
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SIC.,d,<c;,c;>,B*] for a ¢;€ C—{c;}. (If the first m—2 choices fail, then
we know that the remaining choice must succeed, so we need not apply the
subroutine for it.)

In general, if <c,qy,...,Crxy> is an extendible partial tour with
K<m, then we can find another extendible partial tour
<Ca(t)r - - -+ Cu(K)-Cr(k+1)>> involving one additional city by a sequence of

at most m—K—1 calls of the subroutine S. Thus we can build a complete
tour for C by using a total of at most (m—1)(m—2)/2 calls of S, beyond
those used to determine B*. Since a suitable Length function for traveling
salesman instances is Length{/1 = m + log,Byax, this clearly gives a (poly-
nomial time) Turing reduction from TSO to TSE. Thus we have that
TSO <1 TSE 1 TS, and consequently TSO « TS as desired.

Notice here that the key relation is TSO <1 TSE. Once we know that
the traveling salesman optimization problem is Turing reducible to some
problem in NP, then we know that it can be solved in polynomial time if
P=NP and hence can be ‘‘no harder” than the NP-complete problems.
Thus, let us call a search problem IT NP-easy whenever there exists a prob-
lem I1'€ NP for which Moy IT".

Once the reader has absorbed the techniques of the TSO «1TSE pro-
cedure, it should not be difficult to see how the same approach can be used
to prove that many other search problems are NP-easy, especially those
whose decision problem counterparts we have shown to be NP-complete.
The problem IT' from NP is usually defined as was TRAVELING SALES-
MAN EXTENSION, so that it can be used to build up the desired solution
sequentially (see for instance [Valiant, 1976al). For optimization problems,
the solution construction procedure is preceded by an initial binary search
phase in which the optimum value is determined. As an exercise, we sug-
gest that the reader attempt to prove that the search problems related to the
six basic NP-complete problems of Section 3.1 are all NP-easy — namely,
finding a satisfying truth assignment, finding a three dimensional matching,
finding a minimum cardinality vertex cover, finding a maximum cardinality
clique, finding a Hamiltonian circuit, and finding a partition of a set of
‘“‘sized elements’’ into two subsets having the same total size.

In fact, we now observe that the restriction of the basic theory to deci-
sion problems has caused no substantial loss of generality, since most often
the search problems whose decision problem counterparts have been proved
to be NP-complete are themselves NP-easy and hence of equivalent com-
plexity. As we have been building our equivalence class of NP-complete
problems, we have at the same time been building a much larger class of
equivalent search problems: those that are both NP-hard and NP-easy (and
which therefore might be called ‘‘NP-equivalent’). Although the larger
class contains many problems that do not belong to NP, it still retains the
familiar property we associate with the NP-complete problems: No problem
in this class can be solved in polynomial time unless P=NP, and if P=NP
all problems in this class can be solved in polynomial time.
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5.2 A Terminological History

As we conclude our description of the theory of NP-completeness, it is
appropriale to take a brief look backward at the historical development of
the main ideas and at the checkered career of the terminology used for dis-
cussing them.

We have already mentioned, in Chapter 1, two early papers that dis-
cussed the significance of polynomial time complexity. Cobham [1964] not-
ed the wide variety of mathematical functions that can be computed in poly-
nomial time and observed that the class of all such functions remains the
same under many different models of computation. Edmonds [1965a] in-
formally identified the term *‘good algorithm’ with the notion of a polyno-
mial time algorithm. A third early paper, [Edmonds, 1965bl, also intro-
duced an informal notion analogous to NP. In that paper, it is proposed
that a problem be said to have a *‘good characterization” if for every solu-
tion there exists a polynomial time checkable ‘‘proof’’ that it is indeed a
solution.

All of these early discussions were in terms of functions or in terms of
what we have called search problems. Part of the fundamental contribution
of Cook was in seeing the value of restricting discussion to languages and
the decision problems they encode. In [Cook, 1971al, the classes of
languages we now call P and NP are first identified, and Cook’s fundamental
theorem is proved. However, this paper diverges from later practice in two
significant ways. First, Cook’s basic notion of reducibility between
languages, which he called ‘‘P-reducibility,” involved polynomial time Tur-
ing reductions rather than polynomial transformations. For this reason, one
occasionally sees polynomial time Turing reducibility referred to as ‘“‘Cook-
reducibility.” Second, the unnamed equivalence class of problems that
Cook built up about SATISFIABILITY was not restricted to what are now
called the NP-complete problems, but instead contained all those decision
problems we have termed ‘‘NP-equivalent.”

It was in [Karp, 1972] that the theory of NP-completeness took on its
present form, though not all of its current terminology. Karp introduced
the terms P and NP, and observed that Cook’s Theorem would remain true
if the notion of Turing reducibility were replaced by the simpler and more
manageable notion of polynomial transformability. This latter type of redu-
cibility is sometimes referred to as ‘‘Karp-reducibility.”” It also is occasion-
ally called ‘“‘many-one reducibility,”” because a polynomial transformation is
a many-one function. Karp himself simply used the term ‘‘reducible.”” He
then presented the current definition of ““NP-complete problem,” although
the term he used was “‘polynomial complete problem,’’ thus suggesting the
analogous ‘‘polynomial reduction.” (The term ‘‘complete’’ comes from the
recursion theoretic notion of a language being ‘“‘complete” for a class with
respect to a given type of reducibility if it belongs to the class and every
other member reduces to it.) In light of the distinction between the two
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classes defined by Cook and Karp, it is amusing to see occasional references
in the literature to the ‘‘Cook-Karp class,”” which usually can be taken to
mean the Karp class.

Karp’s paper, and the talks he gave preceding its publication, had a
very stimulating effect. As is perhaps natural, along with the new results
that began to appear new lerminology was occasionally proposed. In place
of ‘“‘polynomial complete,”” some grammarians in the field felt constrained
to say ‘‘polynomially complete,” despite its added cumbrousness. More
substantially, Sahni [1974] introduced the term ‘‘P-complete’” as an analo-
gue of ‘‘polynomial complete’ extended to a more general class of prob-
lems (something like our search problems), along with *P-hard’” to
describe a problem that is at least as hard as the P-complete problems.
Meanwhile, L. A. Levin in the Soviet Union independently proved a varia-
tion of Cook’s Theorem and introduced a term that translates to ‘‘universal
sequential search problem™ [Levin, 19731, and which, like Sahni’s ‘‘P-
complete,”” applied to a more general class of problems than just decision
problems. Our use of the term ‘‘search problem” is, in part, borrowed
from Levin’s paper.

The terminology in common use today (NP-complete, NP-hard, poly-
nomial transformation) is in large part a result of the efforts of Donald
Knuth. In 1973, primarily because he wanted a better term for ‘“at least as
hard as the polynomial complete problems’ to use in Volume 4 of his series
The Art of Computer Programming, Knuth circulated a private poll to a col-
lection of members of the research community, asking them to rate three
proposed alternatives as to their acceptability. He rejected the term ‘‘P-
hard’’ for semantic reasons, since if P+ NP, the polynomial complete prob-
lems would in fact be much harder than those in P. The research commun-
ity in turn rejected all three of Knuth’s alternatives, but responded with a
variety of alternative proposals, some not entirely serious. (For instance
Shen Lin proposed that the polynomial complete problems be called the
“PET problems,”” not only because they were his personal favorites, but
also because PET could be an acronym for “‘probably exponential time.”
Moreover, even if the question of whether P=NP were resoived, the name
would still have a valid interpretation. If P#NP, then PET could stand for
“provably exponential time.”” If P=NP, then it could stand for “‘previous-
ly exponential time.””) An entertaining report on this poll and the discus-
sions it provoked appears in [Knuth, 1974al. The end result was that the
terms ‘‘NP-complete’” and ‘“NP-hard,”” both write-in candidates, were de-
clared the victors, with ‘‘NP-complete’ to replace ‘‘polynomial complete™
and a decision problem II to be called ‘“NP-hard” if SATISFIABILITY «[I.
The term “‘NP-complete’ was appealing both because it has three fewer
syllables than “‘polynomial complete’ and because it is more meaningful in
theoretic terms, an NP-complete problem being one that is complete for NP
(with respect to polynomial time reducibility). Similarly, ‘““NP-hard”* could
be interpreted as meaning ‘‘as hard as the hardest problem in NP.”
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The use of these terms has since become nearly universal, although a
stray ‘‘polynomial complete’” still appears every so often. However,
although the definition of NP-complete seems to be fairly stable, the
definition of *“‘NP-hard” is somewhat less so. In a postscript (which also in-
troduced the term ‘‘polynomial transformation’ for ‘‘polynomial reduc-
tion’’), Knuth [1974b] suggested that **NP-hard’’ be redefined to apply to
any decision problem to which SATISFIABILITY is Turing reducible (rather
than just transformable) so that, for instance, the complements of the NP-
complete problems could be called ‘‘“NP-hard.”” The term ‘“‘NP-hard’ can
now be encountered in the literature with both definitions, and neither
seems to predominate,

In this book we have gone one step beyond Knuth and presented a still
broader definition of ‘““NP-hard,” extending it and the notion of Turing
reducibility to include search problems, so that these terms will be more
generally useful. With a similar philosophy, we have also introduced the
terms ‘‘NP-easy’’ and “‘NP-equivalent,”” the latter being an attempt to cap-
ture something of what Sahni and Levin meant with their ‘“‘P-complete”
and ‘‘universal sequential search’ problems.

In addition, the ‘‘strong NP-completeness’” terminology of Section 4.2
was also introduced by the authors, first appearing in [Garey and Johnson,
1978]. An alternative formulation of these concepts is used in [Lageweg,
Lenstra, Rinnooy Kan, 1978], where a problem that is NP-complete in the
strong sense is called ‘“‘unary’’ NP-complete, and a problem that is NP-
complete in the ordinary sense is called ““binary”” NP-complete. This termi-
nology is based on the fact that, if a problem is strongly NP-complete, then
the corresponding language is NP-complete even when the encoding scheme
is allowed to represent numbers using the (non-concise) ‘‘unary’ notation
(a string of n 1’s representing the number n).

Other than the above-mentioned innovations, and a few non-
fundamental idiosyncrasies in our machine models, we have attempted to
stay as close as possible to accepted practice and terminology, so that this
book would be consistent with at least the current literature. The reader
who chooses to use this book as a stepping-off point for an exploration of
the literature will no doubt encounter references to many peripheral issues
that enliven the study of NP-completeness. In the next two chapters we
present a sampler of some of these related topics, so that the reader will be
aware of what such references are about and can follow up on those that
seem most interesting.

6

Coping with NP-Complete Problems

Let us return for a moment to the bandersnatch department of Section
1.1. Recall that we left you there in a somewhat unresolved position. As
the chief algorithm designer, you had just neatly sidestepped potential
charges of incompetence by proving that the bandersnatch problem is NP-
complete. However, the bandersnatch problem had refused to vanish at the
sound of those mighty words, and you were still faced with the task of
finding some usable algorithm for dealing with it.

In this chapter we will be discussing several of the ways you mights
approach this task, concentrating primarily on recent work that seeks to
obtain provable ‘‘performance guarantees’ for algorithms. Before narrow-
ing our focus, however, it is appropriate to survey briefly the alternatives
that might be considered. These can be divided roughly into two general
categories.

The first category consists of those approaches that, while acknowledg-
ing the apparent inevitability of exponential time complexity, seek to obtain
as much improvement over straightforward exhaustive search as possible.
Among the most widely used approaches to reducing the search effort are
those based on *‘branch-and- bound” or “‘implicit enumeration’ techniques
(for example, see [Garfinkel and Nemhauser, 1972]). These generate ‘‘par-
tial solutions’ within a tree-structured search format and utilize powerful
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bounding methods to recognize partial solutions that cannot possibly be ex-
tended to actual solutions, thereby eliminating entire branches of the search
in a single step. Other approaches that provide alternative ways of organiz-
ing the search, and which sometimes are used in conjunction with branch-
and-bound, include dynamic programming (such as used to obtain the
pseudo-polynomial time algorithms discussed in Chapter 4), cutting plane
methods (for example, see [Hu, 19691, [Garfinkel and Nemhauser, 1972]),
and Lagrangian techniques (for example, see [Geoffrion, 1974], [Held and
Karp, 19711). In addition, it is sometimes possible to reduce substantially
the worst case time complexity of exhaustive search merely by making a
more clever choice of the objects over which the exhaustive search is per-
formed. Some recent examples of this include algorithms for the PARTI-
TION problem [Horowitz and Sahni, 1974], GRAPH K-COLORABILITY
[Lawler, 1976b], and INDEPENDENT SET [Tarjan and Trojanowski, 1977].

The second category of approaches pertains solely to optimization prob-
lems (not a severe restriction, since so many problems arising in applica-
tions are naturally formulated in this way) and involves what might be
called a “‘lowering of our sights.”” Here we no longer focus on finding an
optimal solution, but instead try to find a ‘‘good” solution within an accept-
able amount of time. Algorithms that do this are loosely termed ‘‘heuris-
tic’’ algorithms, since they frequently are based on sensible ‘‘rules of
thumb.”” The methods used for designing such algorithms tend to be rather
problem specific, although a few guiding principles have been identified and
can provide a useful starting point (see [Lin, 1975] for an excellent discus-
sion of these). The most widely applied technique is that of “‘neighborhood
search,” in which a preselected set of local operations is used to repeatedly
improve an initial solution, continuing until no further local improvements
can be made and a ‘‘locally optimum’ solution has been obtained. Heuris-
tic algorithms designed via this and other approaches have often proved
quite successful in practice, although a considerable amount of fine-tuning
is usually required in order to achieve satisfaetory performance. As a
consequence, it is rarely possible to predict how well such algorithms will
perform by formally analyzing them beforehand. Instead, these algorithms
are usually evaluated and compared through a combination of empirical stu-
dies and common-sense arguments,

Recently, however, a number of results have been obtained that show
that heuristic algorithms may not always be so immune to formal analysis.
In some cases it is possible to prove that the solutions found by a heuristic
algorithm will never differ from optimal by more than some specified per-
centage. Results like this can be viewed as providing ‘‘performance guaran-
tees’’ for algorithms, and we shall concentrate on them for the remainder of
the chapter.

In Section 6.1 we survey the different types of performance guarantees
that are possible, and in Section 6.2 we show how the theory of NP-
completeness can be used to make inferences about the best possible
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guarantee for a problem. Finally, in Section 6.3, we discuss some practical
considerations concerning the applicability of this type of result, and we
mention some recent theoretical work directed toward analyzing the ‘‘aver-
age performance’’ of heuristic algorithms.

-6.1 Performance Guarantees for Approximation Algorithms

Let us begin by presenting a formal description of what we will mean
by an “‘optimization problem.”

A combinatorial optimization problem 11 is either a minimization problem
or a maximization problem and consists of the following three parts:

(1) aset Dy of instances ;

(2) for each instance [ € Dy, a finite set S;(I) of candidate solutions
for I; and

(3) a function my that assigns to each instance / € Dn and each candi-
date solution o € S;(/) a positive rational number mu(I,0),
called the solution value for o.

If I is a minimization [maximization] problem, then an optimal solution for
an instance / € Dy is a candidate solution o* € $y(/) such that, for all
g €Sul), mul,c*) < myl,0) [mp,c*) 2 mp(l,0)]. We will use
OPT (/) to denote the value my(/,0*) of an optimal solution for / (usual-
ly dropping the subscript I1 when the problem is clear from context).

An algorithm A is an approximation algorithm for II if, given any in-
stance [ € Dy, it finds a candidate solution o € S;(7). The value mg({,o)
of the candidate solution o found by A when applied to / will be denoted
by A(I). If A(J)=0OPT(I) for all ] € Dy, then 4 is called an optimization
algorithm for I1.

These definitions can be illustrated by considering our old friend thex
traveling salesman problem. It is a minimization problem, and the set of
instances consists of all finite sets of cities together with their intercity dis-
tances. The candidate solutions for a particular instance are all the permuta-
tions of the given cities. The solution value for such a permutation is the
length of the corresponding tour. Thus an approximation algorithm for this
problem need only find some permutation of the given set of cities, whereas
an optimization algorithm must always find a permutation that corresponds
to a minimum length tour.

If, as in this case, the optimization problem is NP-hard, then we know
that a polynomial time optimization algorithm cannot be found unless
P=NP. A more reasonable goal is that of finding an approximation algo-
rithm A that runs in low-order polynomial time and that has the property
that, for all instances I, 4 (/) is “‘close’ to OPT(/). The following exam-
ple illustrates the type of results we will be interested in.
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Consider the “‘bin packing” problem: Given a finite set
U={uy,u,,...,u,} of “items” and a rational ‘‘size” s(u) € [0,1] for each
item u € U, find a partition of U into disjoint subsets U, U,, . . ., U such
that the sum of the sizes of the items in each U; is no more than 1 and
such that k is as small as possible. We can view each subset U; as specify-
ing a set of items to be placed in a single unit-capacity ‘‘bin,”’ with our ob-
jective being to pack the items from U in as few such bins as possible.

This problem is NP-hard in the strong sense (it contains 3-PARTITION
as a special case), so there is little hope of finding even a pseudo-
polynomial time optimization algorithm for it. However, there are a
number of simple approximation algorithms for it that are worth consider-
ing.

One of these is known as the ‘‘First Fit’’ algorithm. Imagine that we
start with an infinite sequence By,B,, . . . of unit-capacity bins, all of which
are empty. The algorithm then places the items into the bins, one at a
time, in order of increasing index. It does so according to the following
simple rule: always place the next item y; into the lowest-indexed bin for
which the sum of the sizes of the items already in that bin does not exceed
1—s(w;). In other words, u; is always placed into the first bin in which it
will fit (without exceeding the bin capacity). Figure 6.1 shows an example,
where each item is represented by a rectangle having height proportional to
its size.

Figure 6.1 An example of a First Fit placement, where ug is placed in bin B, since
that is the lowest indexed bin in which it fits.

Intuitively this seems to be a very natural and reasonable algorithm. It
never starts a new bin until all the nonempty bins are too full. What can be
proved about its performance?

A first observation relates the number of bins used by First Fit to a na-
tural function of the problem parameters. Let us use “FF’” as an abbrevia-
tion for First Fit. Then we have that, so long as FF(/)>1,
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n
FF(1) <[23 s()]

i=1
This is because there can be at most one nonempty bin in the First Fit
packing whose contents total % or less. (If not, the first item to go in the
higher indexed such bin would have fit in the lower indexed such bin and
could not have been placed elsewhere by First Fit.) That this bound is
essentially the best possible is apparent when we consider instances of the
form U= {uy,u,,...,u,} where s(u)='2+¢ 1<i<n. Here no two
items will fit in the same bin, so FF(/) = n, even though the sum of the
item sizes is (n/2) + ne, which can be made as close to n/2 as desired by
choosing €>0 suitably small.

This observation also gives us a bound on how bad a First Fit packing

can be relative to an optimal packing, since we clearly have

OPT(/) > [ 3 s(u)]

i=1
We thus conclude that, for all instances 7,
FF(I) < 2-OPT(J)

However, First Fit actually obeys a better bound of this form, given by the
following theorem from [Johnson, Demers, Ullman, Garey, and Graham,
1974):

Theorem 6.1 For all instances / of the bin packing problem,

FF(I) < %OPT(1)+2

Furthermore, there exist instances / with OPT(/) arbitrarily large such that

FF(/) > %(opm)—n

Thus Theorem 6.1 characterizes the asymptotic worst-case performance
of the First Fit algorithm. First Fit never differs from optimal by
significantly more than 70 percent and it can on occasion be essentially this
bad. (A slight improvement on the constant term in the upper bound, re-
placing (17/10)OPT{(/)+2 by [(17/10)OPT({)], is obtained in [Garey,
Graham, Johnson, and Yao, 1976]). Although we omit the lengthy proof
of Theorem 6.1, we note that worst-case behavior almost as bad as that
given by the theorem can be seen from the class of examples described in
Figure 6.2, for which FF(/) = (5/3)OPT(/). (The proof of the lower
bound in the theorem is a complicated extension of these examples.)
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V7+e 1<i<6m
Instance I: U={up,uy, ..., t1gyl, su)=1{1/3+€ 6m<i<12m
lh+e 12m<ig18m

l/7+e€
1/3+¢
i 1/3+e
1p+e . lp+e
1/3+€
17+
6m bins m bins 3m bins 6m bins
OPT() =6m FF(I) =10m
Figure 6.2 Instances / with OPT(J) arbitrarily large such that FF(/) equals
(5/3)0PT{).

These results for First Fit provide a starting point for analyzing approxi-
mation algorithms for bin packing. One can now go on to analyze other al-
gorithms that might have better guarantees. An obvious modification to the
First Fit algorithm, for example, is that obtained by using the following
more sophisticated placement rule: Always place the next item u; in that bin
which has current contents closest to, but not exceeding, 1—s(y;) (choos-
ing the one with lowest index in case of ties). This is known as the ‘‘Best
Fit” algorithm. Unfortunately, and perhaps surprisingly, Best Fit has essen-
tially the same worst case performance as First Fit {Johnson et al., 1974].

A better approximation algorithm is obtained by observing that the
worst performance for First Fit (and Best Fit) seems to occur when the
smaller items appear before the larger items in the ordering used by the al-
gorithm. Suppose that, instead of merely taking the items from U in the
given order, we first sort them by size and reindex them so that
s(u)2s(u) = - - - 2s(u,). The algorithm that applies First Fit to such a
reordered list is called the ‘‘First Fit Decreasing’’ algorithm (FFD). Its per-
formance is characterized by the following theorem, due to Johnson [1973]
(the proof is sketched in [Johnson et al., 1974]):

Theorem 6.2 For all instances / of the bin packing problem,

FFD(/) = ITIOPT(I)+4

Furthermore, there exist instances / with OPT(/) arbitrarily large such that
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11

FFD(J) = -—9—OPT(1)

Thus First Fit Decreasing is guaranteed never to be more than about 22
percent worse than optimal, and it can on occasion be this bad. An identi-
cal result holds for the analogous ‘‘Best Fit Decreasing’ algorithm. Figure
6.3 illustrates a class of examples that suffice to prove the lower bound in
both cases.

lh+e 1<igbm

V4+2e 6m<igi2m
Vs+e 12m<ig18m
1/4—2 18m<i<30m

Instance I: U={uj,uy, ..., Uspp), s(u)=

1/4~2¢ 1/4—2e 2 ?/4 _;
g+e 1/4~2¢ 1/442¢ 1/4—2¢
ljp+e ke ljp+e Vg —2e
, 1/4+2€ 1/4~2¢
b6m bins 3m bins | 6m bins 2m bins 3m bins |
OPT(1) =9m FFD(D)=11m

Figure 6.3 Instances / with OPT(/) arbitrarily large such that FFD(/) equals
(11/90PT (/).

The proof of the upper bound involves an extremely detailed case
analysis, whose recapitulation here would require more pages than we have
allotted to this entire chapter. (Although such lengthy proofs appear to be
the rule for problems similar to bin packing, we note that results like these
for other problems have been obtained without such Herculean effort, and
indeed even for bin packing much shorter proofs are obtainable if we are
willing to settle for weaker bounds.)

Further modifications of First Fit Decreasing have been suggested
([Johnson, 19731, [Yao, 1978al) in hopes of obtaining a polynomial time
approximation algorithm for bin packing with an even better performance
guarantee, but no substantially better bound has yet been proved for any of
them.

In summary, our analysis of approximation algorithms for the bin pack-
ing problem might be described as follows: We started with a straightfor-
ward but apparently sensible algorithm and analyzed its performance, both
by proving bounds on what could happen in the worst case and by devising
examples to verify that these bounds could not be improved. With this
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analysis in mind, and especially the insight it provided as to the drawbacks
of our initial algorithm, we could then seek alternative algorithms (perhaps
just more complicated versions of the original one) and analyze them. We
also settled on a general form for our guarantees, in terms of ratios, which
was useful for comparison purposes and which seems to express nearness to
optimality in a reasonable way. This general approach can serve as a model
for our study of other NP-hard optimization problems and indeed has been
widely applied (although, of course, on occasion other types of guarantees
may be more appropriate or easier to prove, for example, see [Cornuejols,
Fisher, and Nemhauser, 1977], [Nemhauser, Wolsey, and Fisher, 1978]).

To formalize this approach, let us make a few more definitions. If IT is
a minimization [maximization] problem, and / is any instance in D,,, we
define the ratio R, (1) by

AU)

R, (1) = OPT(/)

Ral) = =05

OPT(I) ]

The absolute performance ratio R, for an approximation algorithm A4 for II is
given by '

Ry =inf {r=1:R,(I)<r for all instances I€ Dy}
The asymprotic performance ratio R for A is given by '

Jor some N€ Z*, R, (I) < r for all
I € Dy satisfying OPT(I) = N

Notice that we have defined these ratios in such a way that the ratio for
a minimization problem is the reciprocal of that for a maximization prob-
lem. This has been done so that we will have a uniform scale on which to
consider approximation algorithms for different types of problems, always
having 1 € R, S o and 1 € R;° € oo, with a ratio that is closer to 1 indi-
cating better performance. )

Notice also that R, need not equal R°. Although Theorem 6.2 shows
that Rggp = 11/9, it is easy to give instances / for which OPT(/) =2 and
FFD(]) =3, so that Rgep>3/2. The asymptotic ratios seem to be the
more important ones for bin packing, although for other problems the abso-
lute ratios may be more appropriate, or it may be the case that R, =R° for
all the approximation algorithms in which we are interested. At any rate, it
will be convenient to have both types of ratios available, and the differences
between them are worth keeping in mind when analyzing an approximation
algorithm.

As a second example, let us return once more to the traveling salesman
problem, only this time with an added restriction. An instance / is still a
set C of cities and a specification of the distances between them, but we
also require that these distances obey the “‘triangle inequality”’; i.e., for
every triple a,4,c of cities from C,

Ry =inf|r>hL
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d(a,c) < d(a,b)+d(b,c)

This condition is met, for example, whenever the given distances are the
actual shortest distances in some standard metric or whenever we allow
tours that visit some cities more than once, since in the latter case each of
the given distances d(c;,c;) can be replaced by the length of the shortest
path from ¢ to ¢;. It is not difficult to see that the problem remains NP-
hard under this restriction. Furthermore, all the algorithms that we will be
considering will have R, = R ", so we can limit our attention to R .

Consider the following appealing heuristic, which we shall call the
“Nearest Neighbor’’ algorithm (NN) and which has been proposed, for in-
stance, in [Gavett, 1965). Let C= {cj,¢5, ... ,c,] be the given set of ci-
ties. The first city in the tour, ¢.(j), is set to be ¢,. In general, if the par-
tial tour built up so far is <c,(;),Cre)s - - - » Ca) >, With k<m, the algo-
rithm chooses for ¢, (1) that city ¢ that is not yet in the tour and that,
among all such cities, is the closest one to ¢, i.e., for which d(c,y,c)
is as small as possible (ties can be broken by choosing the lowest indexed
such city). The next theorem, due to Rosenkrantz, Stearns, and Lewis
{1977], shows that this approximation algorithm can have much worse
behavior than any of those we discussed for bin packing:

Theorem 6.3 For all m-city instances I of the traveling salesman problem
with triangle inequality,

NN(/) < —é—([logzml+l)OPT(1) ~

Furthermore, for arbitrarily large values of m, there exist m-city instances
for which

NN(/) > % (log, (m+1) + %) OPT(I)

The main import of this theorem can be stated quite succinctly:
Rnn =00, a not very promising guarantee. An example of the complicated
recursive construction used to prove the lower bound, for m =135, is shown
in Figure 6.4.

The performance of the Nearest Neighbor algorithm clearly leaves
much to be desired. We mention it only as an illustration of how even ap-
parently sensible heuristics can perform very badly, differing from optimal
by arbitrarily large multiples.

Fortunately, other approximation algorithms for this problem perform
much better. In fact, several approximation algorithms satisfying R, =2 are
described in [Rosenkrantz, Stearns, and Lewis, 1977]. A well-known algo-
rithm that has this behavior is based on the notion of a “minimum span-
ning tree.”” Let us view an instance of the traveling salesman problem in
terms of a complete graph having the cities as vertices and having each edge
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Figure 6.4 Schematic representation of a traveling salesman instance for which the
Nearest Neighbor algorithm performs poorly. There are 15 cities, and
d(¢,¢) is defined to be the length of the shortest path from ¢ to ¢
using the edges in the figure, which can be determined to obey the tri-
angle inequality. The perimeter gives an optimal tour of length 15,
whereas NN would find the darkened tour of length 27. Thus
Ryn(I) = 27/15>16/9 = (1/3) (log,(m+1) +4/3).

{c;,¢;} labeled with the ““length™ d(c;,¢;). There is an obvious one-to-one
correspondence between the possible tours and the Hamiltonian circuits of
this graph. A spanning tree is a subgraph that includes all the vertices, is
connected, and has no circuits (i.e., for any two vertices, there is exactly
one path between them). A simple induction proof shows that, if a graph
has m vertices, then a spanning tree for that graph must have m—1 edges.
A minimum spanning tree is one for which the sum of the lengths of its
edges is as small as possible.

Now, unlike minimum traveling salesman tours, minimum spanning
trees are easy to find in low order polynomial time (see [Kruskal, 1956] or
[Aho, Hopcroft, and Ullman, 1974]). Furthermore, the length of a
minimum spanning tree for the graph obtained from a traveling salesman
instance must be less than the length of a minimum tour, because a span-
ning tree shorter than the tour length can be obtained simply by deleting
any single edge from such a tour. This suggests that a reasonably short tour
might be obtained by first finding a minimum spanning tree and then visit-
ing all the cities by traversing twice around the tree, as shown in Figure
6.5(b) for the tree of Figure 6.5(a). Although this visits some cities more
than once, we can always ‘‘shortcut®’ the tour by proceeding directly to the
next unvisited city, as shown in Figure 6.5(c), with the triangle inequality
ensuring that this cannot lengthen the tour.
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(a) (o) Q)

A spanning tree Twice around the tree A tour, with shortcuts

Figure 6.5 How to turn a spanning tree into a traveling salesman tour, using the
“twice around the tree’’ algorithm.

Thus the length of the resulting tour is at most twice the length of the
minimum spanning tree, so it is strictly less than twice the length of the op-
timal tour. Letting “MST”>’ stand for this “‘twice around the minimum
spanning tree’’ algorithm, we have just proved the following result:

Theorem 6.4 For all instances I of the traveling salesman problem with tri-

angle inequality,
MST(/) < 2-0OPT({)

The construction of examples to show that this is the best possible bound
for the MST algorithm, and hence that Ryst = 2, is not difficuit, and we
leave it as an exercise.

The idea behind the MST algorithm has been extended by Christofides
[1976] to devise an even better performing heuristic for this problem. It
combines the use of ‘‘matching” techniques with the notions of an ‘‘Euleri-
an graph™ and an ‘‘Eulerian tour.”” An Eulerian graph is simply a graph in
which every vertex has even degree. An Eulerian tour in a graph is a circuit
that traverses every edge exactlyonce. It can be shown that a necessary and
sufficient condition for the existence of an Eulerian tour in a graph G is
that G be an Eulerian graph (for example, see {[Liu, 1968]), and further-
more it is a simple matter to give a polynomial time algorithm for finding an
Eulerian tour in such a graph. Christofides observed that the MST algo-
rithm can be viewed as taking place in four stages: (1) Find a minimum
spanning tree, (2) convert the spanning tree into an Eulerian graph by dou-
bling each edge of the tree, (3) find an Eulerian tour of the resulting graph,
and (4) convert the Eulerian tour into a traveling salesman tour by using
shortcuts. Since the added edges have total length equal to the length of
the minimum spanning tree (and thus less than the length of the minimum
traveling salesman tour), and since the triangle inequality ensures that the
shortcuts will not make the tour longer, we know that the resulting travel-
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ing salesman tour must have length less than twice the length of the
minimum possible tour. However, Christofides then showed that there is a
cheaper way to convert the spanning tree into an Eulerian graph.

This is done by restricting attention to the set V'= {a,a;, . . ., ay} of
vertices that have odd degree in the spanning tree (there must be an even
number of such vertices). A matching for V' is a partition of V' into k 2-
element subsets, and the weight of such a matching is the sum of the dis-
tances d(c;,c;) where {c;,¢c;} is a subset in the partition and (to avoid dupli-
cate counting) /< j. Any matching for V' provides us with k edges,
which, when added to the spanning tree, will convert it into an Eulerian
graph, and the total length of those edges is the weight of the matching. A
minimum weight matching for V' is one that achieves the minimum possible
weight. Minimum weight matchings can be found in polynomial time using
standard techniques (for example, see [Lawler, 1976a]). The approximation
algorithm suggested by Christofides merely replaces stage 2 of the MST al-
gorithm by a stage that finds a minimum weight matching for ¥’ and then
converts the spanning tree into an Eulerian graph by adding the correspond-
ing edges.

The key observation for analyzing the performance of this algorithm is
that the weight of a minimum weight matching can be at most half the
length of a minimum traveling salesman tour. This can be seen by first
converting any minimum tour into a tour on just the vertices in ¥’ by skip-
ping over any vertices not in V. The length of this tour cannot be more
than the iength of the original tour, by the triangle inequality. Further-
more, this tour on ¥’ provides us with two matchings for V', each formed
by taking every other edge, and the shortest of these two matchings cannot
have weight exceeding half the tour length. Thus, using ‘“MM”’ to denote
this “‘minimum matching’’ algorithm, we have:

Theorem 6.5 For all instances / of the traveling salesman problem with tri-
angle inequality,

MM (1) < —:;-OPT(I)

Again, it is not hard to devise examples that show this bound is essentially
the best possible one (for example, see [Cornuejols and Nemhauser,
19781), so Rym = 3/2. No polynomial time approximation algorithm for
the traveling salesman problem with triangle inequality is currently known
to provide a better guarantee.

These results for the traveling salesman problem, like those for the bin
packing problem, are characteristic of what one might expect to achieve
with polynomial time approximation algorithms for NP-hard problems. In
both cases it was possible to guarantee finding candidate solutions that were
fairly close to optimal, although in neither case were the best performance
bounds as close to 1 as we might like.
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Unfortunately, there are a number of other NP-hard problems for
which no polynomial time approximation algorithms that perform even this
well have yet been found. One example is the graph coloring problem:
Given a graph G=(V,E), find a function f: V—{1,2, ..., k] such that
f(u)# £(v) whenever {u,v} € E, and such that k is as small as possible.
Here the set of candidate solutions is all functions f: V—{1,2, ...,| V|
that satisfy f(u)# f£(v) whenever {u,v} € E, and the value of a candidate
solution f is max{f(v): v€ ¥}. In [Johnson, 1974b] it is shown for a large
number of polynomial time approximation algorithms 4 for graph coloring
that in each case there exists a positive constant ¢ and infinitely many
graphs G = (V,E) such that

A(G) > c-|V|-OPT(G)

Furthermore, the best performance bound that is currently known for any
polynomial time graph coloring algorithm A [Johnson, 1974b] is
4@ < <11 opr(e)
log | V|
Hence no polynomial time approximation algorithm A4 for graph coloring
has yet been found even to come close to satisfying R,y < oo,

The graph coloring problem thus appears to be more difficult than ei-
ther the bin packing problem or the traveling salesman problem with trian-
gle inequality. Not only can we not guarantee an optimal solution in poly-
nomial time unless P=NP, but we do not even know how to guarantee a
reasonable approximation to an optimal solution in polynomial time. Two
other problems that appear to be equally unmanageable are those of finding
a maximum set of independent vertices in a graph and of finding a
minimum traveling salesman tour when the triangle inequality is not re-
quired to hold. (We shall have more to say about these problems in the
next section.)

It should be pointed out that this apparent division of problems into the
approximable and the nonapproximable does not seem to respect the fact
that many of these problems are closely related by polynomial transforma-
tions. One might think that such a transformation could be used to convert
a good approximation algorithm for one problem into a good approximation
algorithm for the other. This is not the case in general, however, as we il-
lustrate with the following example.

Recall from Section 3.1.3 that the problems VERTEX COVER and IN-
DEPENDENT SET are quite closely related. For a graph G=(V,E), the
set ¥' C V is an independent set for G if and only if the complementary set
V—V'is a vertex cover for G. Furthermore, this relationship carries over
to the corresponding optimization problems. The set }’ is a maximum in-
dependent set for G if and only if ¥ — V' is a minimum vertex cover for G
(where in both cases the solution value is taken to be the number of ver-
tices in the independent set or vertex cover). However, although we know
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of no polynomial time approximation algorithm with R, <o for the max-
imum independent set problem (see [Johnson, 1974a]), there is a straight-
forward algorithm for the minimum vertex cover problem that has R, <2
[Gavril, 1974c].

The algorithm is based on the idea of a ‘“‘maximal matching’’ in a
graph. A matching in a graph G=(V,E) is a set £'C E such that no two
edges in E' share a common endpoint (the relationship between this notion
and that used in Christofides’ algorithm for the traveling salesman problem
should be apparent). A matching £’ is maximal if every remaining edge in
E —E' has an endpoint in common with some member of E'. Maximal
matchings can be constructed in polynomial time quite easily, simply by ad-
ding edges until no longer possible. Moreover, observe that if £’ is a maxi-
mal matching for G, then the set of all endpoints of edges in £’ must be a
vertex cover for G (otherwise E' would not be maximal). This vertex cov-
er has cardinality 2-]|£'|. The key point to observe is that all vertex covers
for G must contain at least | E’| vertices, since they must include at least
one endpoint from each edge in E'. Thus the vertex cover constructed
from E' is never more than twice as large as the minimum possible vertex
cover.

The reason for the widely differing behavior of the maximum indepen-
dent set problem and the minimum vertex cover problem with respect to
approximation algorithms is evident when we attempt to translate the above
algorithm from one problem to the other, via the transformation between
the problems. Suppose we have a graph with 1000 vertices and a minimum
vertex cover of size 490. Our approximation algorithm guarantees that we
will find a vertex cover of size 980 or less, for a ratio of at most 2, but the
corresponding independent sets can have a ratio as large as

1000-490 _ 510
1000980 20

Although the transformation does preserve optimal solutions, it does not
preserve the ratios between the values of optimal and suboptimal solutions.
There is no reason why a candidate solution that is near-optimal for one
problem should map into a candidate solution that is near-optimal for the
other. Thus the transformations we use to prove problems NP-complete
would need to preserve solution values in a much more uniform way than
they do here if they are to be used for converting good approximation algo-
rithms from one probiem to another.

The types of behavior of approximation algorithms that we have illus-
trated so far do not yet exhaust the possibilities. We have seen that some
problems appear to be much harder to ‘“‘approximate’’ than bin packing. On
the other hand, there are some that seem to be much “‘easier.”

Consider, for example, the KNAPSACK problem introduced in Section
3.2.1. As an optimization problem it takes the following form: Given a
finite set U of “items,” a ‘‘size” s(u) €Z* for each w€U, a “‘value”
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v(u)eZ* for each wu€lU, and a positive ‘‘knapsack capacity’
B 2 max {s(u):u€ U}, find a subset U'CU such that ¥, s(w)<B and
such that Y, ., v(«) is as large as possible. That is, we would like to max-
imize the value of what we place in our ‘‘knapsack,” subject to the con-
straint that the total size of all the items not exceed the knapsack capacity.

One simple approximation algorithm for this problem works as follows.
Order the set U= {uju,,...,u,} by ‘value density,” i.e., so that
v(u/sCuy) = vu)/s(uy) = - - - 2 v(u,)/s(u,). Starting with U’ empty,
proceed sequentially through this list, each time adding u, to U’ whenever
the sum of the sizes of the items already in U’ does not exceed B —s(u;).
Then, compare the value for the solution found by this ‘‘greedy procedure’’
to the value for the solution consisting solely of the maximum value item
and take the better of the two. It is not difficult to show that this composite
greedy algorithm GA has Rga=2.

However, one can do significantly better by embedding this algorithm
in a more elaborate procedure. Sahni [1975] shows that, for any k21,
there is a polynomial time approximation algorithm A, satisfying
Ry, < 1+(1/k). The basic idea is to try all possible subsets of k or fewer

items from U as initial values of U, adding as many items-as possible to
each of these using the greedy procedure, and then taking the best of the
resulting sets as our approximate solution.

Unfortunately, although for each fixed value of k the corresponding al-
gorithm runs in time that is polynomial in », logV, and logS (where
V=max{v(u): u€U} and S = max{s(u): u€ U}), the polynomials all have
k in their exponents. In order to guarantee solutions that are extremely
close to optimal, we would have to resort to an algorithm whose time com-
plexity is a rather high degree polynomial and that might well be too expen-
sive to use in practice. Nevertheless, these algorithms do represent at least
a theoretical improvement over the type of behavior we saw for bin pack-
ing, where no polynomial time approximation algorithm with R, substan-
tially less than 11/9 is known. Here there are polynomial time approxima-
tion algorithms with R, arbitrarily close to 1.

Moreover, it has recently been shown by Ibarra and me [1975a] that
the same approximating behavior can be obtained for the knapsack problem
without using algorithms that are exponential in k. Their result is based on
the fact that the knapsack problem can be solved by a pseudo-polynomial
time optimization algorithm. It shows how such an optimization algorithm
can be converted into a polynomial time approximation algorithm by round-
ing and scaling, in such a way that only a limited loss of accuracy is in-
curred.

To illustrate this, suppose 4 is a pseudo-polynomial time optimization
algorithm for the knapsack problem, say with time complexity
O(nV log (n¥S)). We can modify each instance of the problem by replac-
ing the value v(u) of every item « € U by the new value v'(a) =|v(«)/K].
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for some fixed K>0. The time complexity for applying A to the resulting
instance is

0(nX(V/K) log(n¥VS))

Furthermore, because an optimal solution cannot contain more than all »
items, we have the following relationship between the optimum value
OPT(7) for the original instance and the optimum value OPT(/’) for the
corresponding modified instance:

OPT(/) —K-OPT(I) £ Kn

Notice that K-OPT(/’) is less than or equal to the value of the optimum
solution for /' when reinterpreted in terms of the original item values.
Thus, if we take the optimum set U’ for I' as our approximate solution for
1, then its value will differ from optimal by at most Kn.

The desired result is obtained by choosing K in a way that depends on
the given instance. In particular, we can choose K = V/(k+1) n, where & is
a fixed positive integer. We then obtain an approximation algorithm A,
having time complexity O (kn’log (#¥S)), which is polynomial in n, log ¥,
log S, and k (the time for constructing /' from [ is dominated by the time
for applying 4 to I'). Moreover, since

A (1) > OPT(I) —Kn = OPT() — V/(k+1)
and since OPT(/) > ¥V, we have

_OPT() _ A +(V/(k+1))
R D=0 S~ 4,0
<1+ VGt =1+(1/k)

V—(V/(k+1))

Therefore, this algorithm performs as claimed. (The Ibarra and Kim algo-
rithm is actually a bit more complicated, but this suffices to illustrate the
main idea.) .

The approximating behavior displayed by these algorithms is not a
phenomenon restricted only to knapsack problems but occurs in a number
of other situations. Consequently, it is useful to have a general terminology
for discussing such results. We define an approximation scheme for an op-
timization problem II to be an algorithm A that takes as input both an in-
stance /€ Dy and an ‘‘accuracy requirement” € > 0, and that then outputs a
candidate solution o € Sy (/) such that

Ry (1) < 1+e

The term “scheme’ is used here because 4 actually provides a range of ap-
proximation algorithms for I1, one for each fixed value of € > 0.

6.2 APPLYING NP-COMPLETENESS TO APPROXIMATION PROBLEMS 137

We say that 4 is a polynomial time approximation scheme if for each fixed
€ >0 the derived approximation algorithm A, is a polynomial time algo-
rithm. We say that 4 is a fully polynomial time approximation scheme if the
time complexity of A4 itself is bounded by a polynomial function of
Length[/] and 1/e. Thus, the sequence of algorithms given by Sahni
[1975] constitutes a polynomial time approximation scheme for the knap-
sack problem, but it is not a fully polynomial time approximation scheme.
The sequence of algorithms due to Ibarra and Kim {1975a] constitutes a ful-
ly polynomial time approximation scheme for this problem.

Some improvements on the Ibarra and Kim approximation scheme are
discussed in [Lawler, 1977b]. Similar approximation schemes for other
knapsack-like problems and several scheduling problems can be found in
[Sahni, 1976] and [Horowitz and Sahni, 1976]. The key idea in all these
cases is like that described above: Starting with a pseudo-polynomial time
optimization algorithm, rounding and scaling techniques are used to trade a_
limited amount of accuracy for greatly improved time complexity.

In many ways, fully polynomial time approximation schemes are the
best that one might hope for in solving NP-hard optimization problems.
Unless P=NP, we certainly will not be able to find a polynomial time ap-
proximation algorithm 4 with R, =1. However, since R is an asymptotic
ratio, it might be possible to find a polynomial time algorithm with R°=1.
For example, Lipton and Tarjan [1977] give a polynomial time approxima-
tion algorithm A for finding maximum independent sets in planar graphs (a
subproblem that remains NP-hard) that guarantees

|4(1)=OPT(1)| < 0[1/J—logno‘—7—7g0PT D 0PT(1)

Another way of achieving R;°=1 is to have |4 (/)—OPT(7)| bounded by a
constant, independent of /. For example, one might be able to obtain a po-
lynomial time approximation algorithm for bin packing that satisfies
A1) € OPT(I)+1 for all instances /. Although we know of no algorithm
like this for bin packing, Horowitz and Sahni [1978] show that such an algo-

* rithm can be obtained for the NP-hard problem of packing the maximum

possible number of items into two bins. Few such ‘‘difference results’’ are
known for other NP-hard problems, but several problems that are not
known to be solvable in polynomial time have been approximated in this
way [Stone and Fuller, 19731, [Kaufman, 1974], [Karp, McKellar, and
Wong, 1975].

6.2 Applying NP-Completeness to Approximation Problems
So far we have not presented any evidence that the observed

differences in ‘‘approximability”” among NP-hard problems are due to any-
thing other than our own inability to find good approximation algorithms.



138 COPING WITH NP-COMPLETE PROBLEMS

In this section, we shall see that some of these differences are, in fact, in-
herent and that the theory of NP-completeness can be used for delimiting
how closely a given problem can be approximated.

Let us define the best achievable asymptotic performance ratio for an op-
timization problem II to be

there exists a polynomial time approximation

=i >1-
Ron (D = i€} r> 1 it 4 for 11 with R =r

On the basis of the results described in the previous section, we might
suspect that there are some NP-hard problems with Ryn(II) =co, some
with 1<Ryn(D) <o, and some with Ryn(IT) =1. With respect to the
last case, we have seen several significant subcases: (1) II can be solved by
a polynomial time approximation scheme, (2) II can be solved by a fully
polynomial time approximation scheme, (3) Il can be solved by a polynomi-
al time approximation algorithm A4 satisfying R;°=1, and (4) II can be
solved by a polynomial time approximation algorithm A4 satisfying
|4(1)-OPT(I)| < K, for some fixed constant K. Other types of
behavior are, of course, possible, but these are the main types of behavior
investigated up to now, and we shall restrict our attention to them in what
follows.

In seeking to demonstrate that a certain one of these possibilities can-
not be achieved for a particular problem II, we are as usual confronted with
the fact that P has not yet been proved to differ from NP. Thus it remains
possible that all NP-equivalent problems can be solved exacty in polynomial
time (all the optimization problems we have been discussing are NP-easy as
well as NP-hard). For this reason, we are once again constrained to proving
conditional results, showing that, if P#NP, then I1 cannot be solved by a
polynomial time approximation algorithm of the specified type.

Let us begin with the best of the guarantees one might hope for, a
difference result of the form ‘|4 (1)—OPT (/)| < K for all instances /,”
where X is a constant. One example of a problem for which such a guaran-
tee can be ruled out is the knapsack problem, the optimization version of
which was defined in the preceding section.

Theorem 6.6 1f P# NP, then no polynomial time approximation algorithm
A for the knapsack problem can guarantee

|4(1)-0PT(1)| < K

for a fixed constant X.

Proof: Suppose, to the contrary, that 4 is such an approximation algorithm,
where we can assume without loss of generality that K is a positive integer.
We will show how 4 can be used to solve the knapsack problem exactly, in
polynomial time, contradicting the assumption that P#NP. The procedure
is quite simple. Given any instance / of the knapsack problem, we merely
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construct a new instance /' from I by replacing each item value v(u) by
(K+1)v(w), and then apply 4 to I'. This clearly can be done in polynomi-
al time. Furthermore, the candidate solutions for [’ are identical to those
for I, and the value of a solution for I’ is exactly K+1 times the value of
the corresponding solution for 7. Since ali solution values for I’ are integer
multiples of XK+1, the fact that |4 (I)—OPT (/)| € K immediately implies
that |4 (I")—OPT(/")| must equal 0, and hence

|4'(1)=OPT(I)| = |A(I)—OPT(I)|/(K+1) =0

where A' denotes our derived algorithm. Thus the candidate solution found
by A' is necessarily optimal, so 4’ is a polynomial time optimization algo-
rithm for the knapsack problem. This is the desired contradiction, and the
theorem is proved. ®

The only property used in this proof is that all solution values can be
multiplied by an arbitrarily large constant without changing the set of candi-
date solutions. Since this property holds for many other proble