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Abstract. We study stochastic two-player games where the goal of one
player is to achieve precisely a given expected value of the objective
function, while the goal of the opponent is the opposite. Potential appli-
cations for such games include controller synthesis problems where the
optimisation objective is to maximise or minimise a given payoff function
while respecting a strict upper or lower bound, respectively. We consider
a number of objective functions including reachability, ω-regular, dis-
counted reward, and total reward. We show that precise value games
are not determined, and compare the memory requirements for winning
strategies. For stopping games we establish necessary and sufficient con-
ditions for the existence of a winning strategy of the controller for a
large class of functions, as well as provide the constructions of compact
strategies for the studied objectives.

1 Introduction

Two-player zero-sum stochastic games [13] naturally model controller synthesis
problems [12] for systems exhibiting both the controllable and the uncontrol-
lable nondeterminism coupled with stochastic behaviour. In such games two
players—Min (the controller) and Max (the environment)—move a token along
the edges of a graph, called a stochastic game arena, whose vertices are parti-
tioned into those controlled by either of the players and the stochastic vertices.
Player chooses an outgoing edge when the token is in a state controlled by her,
while in a stochastic state the outgoing edge is chosen according to a state-
dependent probability distribution. Starting from an initial state, choices made
by players and at the stochastic vertices characterise a run in the game. Edge-
selection choices of players are often specified by means of a strategy, which is a
partial function from the set of finite runs to probability distributions over en-
abled edges. Fixing an initial state and strategies for both players determines a
probability space on the runs of the stochastic game. In classical stochastic games
players Min and Max are viewed as optimisers as their goals are to minimise and
maximise, respectively, the expectation of a given real-valued function of the
run called the payoff function. Payoff functions are often specified by annotating
the vertices with rewards, and include total reward, discounted reward, average
reward [8], and more recently ω-regular objectives [3].



In this paper we take a different stand from the well-established notion of
viewing players as optimisers which, even though useful in many applications, is
inadequate for the problems requiring precision. Among others, such precision re-
quirements may stem from: a) controller design under strict regulatory or safety
conditions, or b) optimal controller design minimising or maximising some pay-
off function while requiring that a given lower or upper bound is respected. For
instance, consider the task of designing a gambling machine to maximise profit
to the “house” while ensuring the minimum expected payback to the customers
established by a law or a regulatory body [14,2]. Given that such a task can be
cast as a controller synthesis problem using stochastic games, the objective of the
controller is to ensure that the machine achieves the expected payback exactly
equal to the limit set by the regulatory body—higher paybacks will result in a
substantial decrease in profits, while lower paybacks will make the design illegal.
There are examples from other domains, e.g., ensuring precise ‘coin flipping’ in a
security protocol (e.g., Crowds), keeping the expected voltage constant in energy
grid, etc.

In order to assist in designing the above-mentioned controllers, we consider
the problem of achieving a precise payoff value in a stochastic game. More specif-
ically, we study games played over a stochastic game arena between two players,
Preciser and Spoiler, where the goal (the winning objective) of the Preciser is
to ensure that the expected payoff is precisely a given payoff value, while the
objective of the Spoiler is the contrary, i.e., to ensure that the expected value is
anything but the given value. We say that the Preciser wins from a given state if
he has a winning strategy, i.e., if he has a strategy such that, for all strategies of
Spoiler, the expected payoff for the given objective function is precisely a given
value x. Similarly, the Spoiler wins from a given state if she has a strategy such
that, for all strategies of Preciser, the payoff for the given objective function is
not equal to x. The winning region of a player is the set of vertices from which
that player wins. Observe that the winning regions of Preciser and Spoiler are
disjoint. We say that a game is determined if winning regions of the players
form a partition of the states set of the arena. Our first result (Section 3.1) is
that stochastic games with precise winning objectives are not determined even
for reachability problems. Given the non-determinacy of the stochastic precise
value games, we study the following two dual problems. For a fixed stochastic
game arena G, an objective function f , and a target value x,

– the synthesis problem is to decide whether there exists a strategy π of Preciser
such that, for all strategies σ of Spoiler, the expected value of the payoff is
equal to x, and to construct such a strategy if it exists;

– the counter-strategy problem is to decide whether, for a given strategy σ of
Spoiler, there exists a counter-strategy π of Preciser such that the expected
value of the payoff is equal to x4.

4 We do not consider the construction of π here. Note that the problem of constructing
a counter-strategy is not well defined, because the strategy σ can be an arbitrary
(even non-recursive) function.



Consider the case when Spoiler does not control any states, i.e., when the
stochastic game arena is a Markov decision process [11]. In this case, both the
synthesis and the counter-strategy problems overlap and they can be solved using
optimisation problems for the corresponding objective function. Assuming that,
for some objective function, Preciser achieves the value h while maximising, and
value l while minimising, then any value x ∈ [l, h] is precisely achievable by
picking minimising and maximising strategies with probability θ and (1 − θ)
respectively, where θ = h−x

h−l if l 6= h and θ = 1 if l = h. Notice that such a
strategy will require just one bit of memory for all the objectives for which there
exist memoryless strategies for the corresponding optimisation problems in a
Markov decision process, including a large class of objective functions [11], such
as expected reachability reward, discounted reward, and total reward objectives.

It seems natural to conjecture that a similar approach can be used for the
game setting, i.e., Preciser can achieve any value between his minimising and
maximising strategies by picking one of the strategies with an appropriate prob-
ability. Unfortunately, the same intuition does not carry over to stochastic games
because, once Preciser fixes his strategy, Spoiler can choose any of her sub-optimal
(i.e., not optimising) counter-strategies to ensure a payoff different from the tar-
get value. Intuitively, the strategy of Preciser may need to be responsive to Spoiler
actions and, therefore, it should require memory.

Strategies are expressed as strategy automata [6,1] that consist of—i) a set
of memory elements, ii) a memory update function that specifies how memory is
updated as the transitions occur in the game arena, and iii) a next move function
that specifies a distribution over the successors of game state, depending on the
memory element. Memory update functions in strategy automata can be either
deterministic or stochastic [1]. We show that the choice of how the memory is
updated drastically influences the size of memory required. In Section 3.2 we
show that deterministic update winning strategies require at least exponential
memory size in precise value games. Although we are not aware of the exact
memory requirement for deterministic memory update strategies, we show in
Section 4 that, if stochastic update strategies are used, then memory need is
linear in the size of the arena for the reachability, ω-regular properties and
discounted and total reward objectives. We study precise value problems for
these objectives and show necessary and sufficient conditions for the existence of
winning strategies for controller synthesis problem in stopping games (Section 4)
and counter-strategy problem in general (Section 5).

Contributions. The contributions of the paper can be summarised as follows.

– We show that stochastic games with precise value objectives are not deter-
mined even for reachability objectives, and we compare the memory require-
ments for different types of strategies.

– We solve the controller synthesis problem for precise value in stopping games
for a large class of functions and provide a construction for compact win-
ning strategies. We illustrate that for non-stopping games the problem is
significantly harder to tackle.



– We solve the counter strategy as well as discounted reward controller syn-
thesis problem for general games.

The proofs that have been omitted from this paper can be found in [5].

Related work. We are not aware of any other work studying precise value prob-
lem for any objective function. There is a wealth of results [8,10,3] studying two-
player stochastic games with various objective functions where players optimise
their objectives. The precise value problem studied here is a special case of multi-
objective optimisation, where a player strives to fulfill several (in our case two)
objectives at once, each with a certain minimum probability. Multi-objective
optimisation has been studied for Markov decision processes with discounted
rewards [4], long-run average rewards [1], as well as reachability and ω-regular
objectives [7]; however, none of these works consider multi-player optimisation.

2 Preliminaries

We begin with some background on stochastic two-player games.

Stochastic Game Arena. Before we present the definition, we introduce the
concept of discrete probability distributions. A discrete probability distribution
over a (countable) set S is a function µ : S → [0, 1] such that

∑
s∈S µ(s) = 1.

We write D(S) for the set of all discrete distributions over S. Let supp(µ) =
{s ∈ S |µ(s)>0} be the support set of µ ∈ D(S). We say a distribution µ ∈ D(S)
is a Dirac distribution if µ(s) = 1 for some s ∈ S. Sometimes we abuse the
notation to identify a Dirac distribution µ with its unique element in supp(µ).

We represent a discrete probability distribution µ ∈ D(S) on a set S =
{s1, . . . , sn} as a map [s1 7→ µ(s1), . . . , sn 7→ µ(sn)] ∈ D(S) and we omit the
states outside supp(µ) to improve presentation.

Definition 1 (Stochastic Game Arena). A stochastic game arena is a tuple
G = 〈S, (S , S , S ), ∆〉 where:

– S is a countable set of states partitioned into sets of states S , S , and S ;
– ∆ : S × S → [0, 1] is a probabilistic transition function such that ∆(〈s, t〉) ∈
{0, 1} if s ∈ S ∪ S and

∑
t∈S ∆(〈s, t〉) = 1 if s ∈ S .

A stochastic game arena is finite if S is a finite set. In this paper we omit
the keyword “finite” as we mostly work with finite stochastic game arenas and
explicitly use “countable” for the arenas for emphasise when they are not finite.

The sets S and S represent the sets of states controlled by players Preciser
and Spoiler, respectively, while the set S is the set of stochastic states. A game
arena is a Markov decision process if the set of states controlled by one of the
players in an empty set, while it is a Markov chain if the sets of states controlled
by both players are empty. For a state s ∈ S, the set of successor states is denoted

by ∆(s)
def
= {t ∈ S | ∆(〈s, t〉)>0}. We assume that ∆(s) 6= ∅ for all s ∈ S.

Paths. An infinite path λ of a stochastic game arena G is an infinite sequence
s0s1 . . . of states such that si+1 ∈ ∆(si) for all i ≥ 0. A finite path is a finite



such sequence. For a finite or infinite path λ we write len(λ) for the number of
states in the path. For i < len(λ) we write λi to refer to the i-th state si of
λ. Similarly, for k ≤ len(λ) we denote the prefix of length k of the path λ by

Pref(λ, k)
def
= s0s1 . . . sk−1. For a finite path λ = s0s1 . . . sn we write last(λ) for

the last state of the path, here last(λ) = sn. For a stochastic game arena G we
write ΩG

+ for the set of all finite paths, ΩG for the set of all infinite paths, ΩG,s
for the set of infinite paths starting in state s. If the starting state is given as
a distribution α : S → [0, 1] then we write ΩG,α for the set of infinite paths
starting from some state in supp(α).

Strategy. Classically, a strategy of Preciser is a partial function π : ΩG
+ → D(S),

which is defined for λ ∈ ΩG+ only if last(λ) ∈ S , such that s ∈ supp(π(λ)) only if
∆(〈last(λ), s〉) = 1. Such a strategy π is memoryless if last(λ) = last(λ′) implies
π(λ) = π(λ′) for all λ, λ′ ∈ ΩG+. If π is a memoryless strategy for Preciser then
we identify it with a mapping π : S → D(S). Similar concepts for a strategy
σ of the Spoiler are defined analogously. In this paper we use an alternative
formulation of strategy [1] that generalises the concept of strategy automata [6].

Definition 2. A strategy of Preciser in a game arena G = 〈S, (S , S , S ), ∆〉
is a tuple π = 〈M, πu, πn, α〉, where:

– M is a countable set of memory elements.
– πu : M× S → D(M) is a memory update function,
– πn : S ×M→ D(S) is a next move function such that πn(s,m)[s′] = 0 for

all s′ ∈ S \∆(s),
– α : S → D(M) defines an initial distribution on the memory elements for a

given initial state of G.

A strategy σ for Spoiler is defined in an analogous manner. We denote the set
of all strategies for Preciser and Spoiler by Π and Σ, respectively.

A strategy is memoryless if |M| = 1. We say that a strategy requires finite
memory if |M| < ∞ and infinite memory if |M| = ∞. We also classify the
strategies based on the use of randomisation. A strategy π = 〈M, πu, πn, α〉 is
pure if πu, πn, and α map to Dirac distributions; deterministic update if πu
and α map to Dirac distributions, while πn maps to an arbitrary distributions;
and stochastic update where πu, πn, and α can map to arbitrary distributions.
Stochastic update strategies are convenient because, for example, they allow to
randomly choose between several other strategies in α, thus making the imple-
mentation of exact value problem for MDPs (as discussed in the introduction)
straightforward. Note that from an implementation point of view, the controller
using a stochastic update or a deterministic update strategy where πn uses ran-
domisation has to be equipped with a random number generator to provide a
correct realisation of the strategy.

Markov chain induced by strategy pairs. Given a stochastic game arena
G and an initial state distribution α, a strategy π = 〈M1, πu, πn, α1〉 of Preciser
and a strategy σ = 〈M2, σu, σn, α2〉 of Spoiler induce a countable Markov chain
G(α, π, σ) = 〈S′, (∅, ∅, S′), ∆′〉 with starting state distribution α(π, σ) where



– S′ = S ×M1 ×M2,
– ∆′ : S′ × S′→[0, 1] is such that for all (s,m1,m2), (s′,m′1,m

′
2) ∈ S′ we have

∆′(〈(s,m1,m2), (s′,m′1,m
′
2)〉) =

πn(s,m1)[s′] · πu(m1, s
′)[m′1] · σu(m2, s

′)[m′2] if s ∈ S ,

σn(s,m2)[s′] · πu(m1, s
′)[m′1] · σu(m2, s

′)[m′2] if s ∈ S ,

∆(〈s, s′〉) · πu(m1, s
′)[m′1] · σu(m2, s

′)[m′2] if s ∈ S .

– α(π, σ) : S′ → [0, 1] is defined such that for all (s,m1,m2) ∈ S′ we have that
α(π, σ)[s,m1,m2] = α[s] · α1(s)[m1] · α2(s)[m2].

To analyze a stochastic game G under a strategy pair (π, σ) ∈ Π × Σ and
a starting state distribution α we define the probability measure over the set of
paths Ωπ,σG,α of G(α, π, σ) with starting state distribution α(π, σ) in the following

manner. The basic open sets of Ωπ,σG,α are the cylinder sets Cyl(P )
def
= P · S′ω for

every finite path P = s′0s
′
1 . . . s

′
k of G(s, π, σ), and the probability assigned to

Cyl(P ) equals α(π, σ)[s′1] ·
∏k
i=0∆

′(〈s′i, s′i+1〉). This definition induces a prob-
ability measure on the algebra of cylinder sets which, by Carathéodory’s ex-
tension theorem, can be extended to a unique probability measure on the σ-
algebra B′ generated by these sets. We denote the resulting probability mea-
sure by Prπ,σG,α. Often, we are only interested in the states visited on a path
through G(s, π, σ) and not the memory contents. Let B be the σ-algebra gen-
erated by the cylinder subsets of Sω. We obtain a probability measure P on B
by setting P (A) = Prπ,σG,α(ρ−1(A)), where ρ is the natural projection from S′

ω

to Sω. We abuse notation slightly and denote this probability measure also by
Prπ,σG,α. Our intended measurable space will always be clear form the context.

The xpected value of a measurable function f : S′
ω → R ∪ {∞} or f : Sω →

R ∪ {∞} under a strategy pair (π, σ) ∈ Π×Σ and a starting state distribution α

is defined as Eπ,σG,α[f ]
def
=

∫
f dPrπ,σG,α. The conditional expectation of a measurable

function f given an event A ∈ B (A ∈ B′) such that Prπ,σG,α(A) > 0 is defined

analogously, i.e. Eπ,σG,α[f | A] =
∫
f dPrπ,σG,α(· | A), where Prπ,σG,α(· | A) denotes the

usual conditional probability measure (conditioned on A).

3 Stochastic Games with Precise Objectives

We start this section by providing generic definitions of the two types of problems
that we consider – controller synthesis and counter strategy. Then we show that
the games are not determined even for reachability objectives and discuss the
memory requirements for deterministic update strategies.

In a stochastic game with precise objective on arena G, with starting state s,
objective function f : ΩG,s → R, and target value x ∈ Q, we say that a strat-
egy π of player Preciser is winning if Eπ,σG,s [f ] = x for all σ ∈ Σ. Analogously, a

strategy σ of player Spoiler is winning if Eπ,σG,s [f ]6=x for all π ∈ Π. It is straight-
forward to see that for every starting state at most one player has a winning
strategy. In Section 3.1 we show via an example that there are games where no
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Fig. 1. Two stochastic game arenas where we depict stochastic vertices as circles and
vertices of players Preciser and Spoiler as boxes and diamonds, respectively.

player has a winning strategy from some given state, i.e. stochastic games with
precise objective are in general not determined. Hence, we study the following
two problems with applications in controller synthesis of systems.

Definition 3 (Controller synthesis problem). Given a game G, a state s,
an objective function f : ΩG,s → R, and a target value x ∈ Q, the controller
synthesis problem is to decide whether player Preciser has a winning strategy.

Definition 4 (Counter-strategy problem). Given a game G, a state s, an
objective function f : ΩG,s → R, and a target value x ∈ Q, the counter-strategy
problem asks whether Spoiler has no winning strategy, i.e., whether for every
strategy σ of Spoiler there exists a strategy π of Preciser such that Eπ,σG,s [f ] = x.

In this paper we study the study controller synthesis and counter-strategy
problems for the following objective functions:

– Reachability (with respect to a target set T ⊆ S) defined as fTreach(λ)
def
= 1 if

∃i ∈ N : λi ∈ T , and fTreach(λ)
def
= 0 otherwise.

– ω-regular (with respect to an ω-regular property given as a deterministic
parity automaton A [9]; we write L(A) for the language accepted by A)

defined as fAomega(λ)
def
= 1 if λ ∈ L(A), and fAomega(λ)

def
= 0 otherwise.

– Total reward (with respect to a reward structure r : S → R≥0) defined as

frtotal(λ)
def
=

∑∞
i=0 r(λi) .

– Discounted reward (with respect to a discount factor δ ∈ [0, 1) and a reward

structure r : S → R≥0) defined as fδ,rdisct(λ)
def
=

∑∞
i=0 r(λi) · δi .

3.1 Determinacy

In this section, we show that our games are, in general, not determined, i.e., a
positive answer to the counter-strategy problem does not imply a positive answer
to the controller synthesis problem. To see this, consider the game arena G given
in Figure 1 (left) w.r.t the reachability function fTreach with target set T = {s4}.

Proposition 1. Preciser has no winning strategy on G from state s1 for objective
function fTreach and target value x = 0.5.
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Fig. 2. Exponential deterministic update memory for Preciser

Proof. Assume that π = 〈M, πu, πn, α〉 is a solution the controller synthesis
problem. We define two memoryless Spoiler strategies σ = 〈M2, σu, σn, α2〉
and σ′ = 〈M2, σu, σ

′
n, α2〉, where M2 = {init}, σu(init , s1) = α2(s1) = init ,

σn(s3, init) = s4, and σ′n(s3, init) = s5. From the strategy construction and the
fact that 0.5 of the probability mass is under control of Spoiler in s3, we get that

Eπ,σG,s1 [fTreach]− Eπ,σ
′

G,s1 [fTreach] = 0.5 =⇒ Eπ,σG,s1 [fTreach] 6= 0.5 or Eπ,σ
′

G,s1 [fTreach] 6= 0.5,

and thus π cannot be a solution to the controller synthesis problem. ut

Proposition 2. Spoiler has no winning strategy on G from state s1 for objective
function fTreach and target value x = 0.5.

Proof. Let σ = 〈M, σu, σn, α〉 be any strategy for Spoiler. Then any strategy
π = 〈M, πu, πn, α〉 for Preciser with πu(m, s2) = σu(m, s3) and πn(s2,m)[s4] =
σn(s3,m)[s5] for all m ∈M satisfies Eπ,σG,s1 [fTreach] = 0.5. ut

3.2 Memory requirements

In this section we show that if deterministic update strategies are used, then the
required size of the memory may be exponential in the size of the game. On
the other hand, we later prove that stochastic update strategies require memory
linear in the size of the game arena.

Proposition 3. In the controller synthesis problem, Preciser may need memory
exponential in the size of the game while using deterministic update strategy.

Proof. Consider the game G in Figure 2 with the target set T shaded in gray,
and constants xi set to 2−(i+1). Observe that under any strategy of Spoiler, the
probability of runs that end in state sti or sfi is exactly

∑n
i=1 xi ·β(i−1), where

β(k) =
∏k
j=1(1− xj).

We now construct a deterministic update strategy π = 〈M, πu, πn, α〉, which
ensures that the probability to reach T is exactly 0.5. Intuitively, the strategy
remembers the exact history, and upon arriving to sd it looks at which states
ai for 1 ≤ i ≤ n were visited on a prefix of a history (and hence how much of
the probability mass was directed to sti), and sets the probability of going to
sf so that it “compensates” for these paths to target states to get the overall
probability to reach target equal to 0.5. Formally,



– M = {Pref(λ, k) : λ ∈ ΩG,s1 , k ∈ {1, . . . , 2n}}
– πu(m, s) equals [m·s 7→ 1] if m·s ∈M, and [m 7→ 1] otherwise.
– πn(sd,m) = [st 7→ p, sf 7→ 1− p], s. t. p · β(n) +

∑
ai∈m xi · β(i− 1) = 0.5

– α(s) = [s 7→ 1]

Note that p above surely exists, because β(n) ≥ β(∞) > 1
2 . We argue that

any strategy needs at least 2n memory elements to achieve 0.5. Otherwise, there
are two different histories s1t1s2t2 . . . sntnsd and s1t

′
1s2t

′
2 . . . snt

′
nsd where ti, t

′
i ∈

{ai, bi} after which π assigns the same distribution [st 7→ y, sf 7→ 1−y]. Let k be
the smallest number such that tk 6= t′k, and w.l.o.g. suppose tk = ak. Let σ ∈ Σ
be a deterministic strategy that chooses to go to ti in si, and let σ′ ∈ Σ be a
deterministic strategy that chooses to go to t′i in si. Then the probability to reach
a target state under π and σ is at least

∑
i<k,ti=ai

xi·β(i−1)+xk·β(k−1)+y·β(n),
and under π and σ′ — at most

∑
i<k,ti=ai

xi·β(i−1)+
∑
k<i≤n xi·β(i−1)+y·β(n).

Because xk·β(k− 1) > (
∑
k<i≤n xi)·β(k− 1) >

∑
k<i≤n xi·β(i− 1), we obtain a

contradiction.
Note that by replacing the states ai and bi with gadgets of i + 1 stochastic

states the example can be altered so that the only probabilities assigned by the
probabilistic transition function are 0, 1 and 1

2 .

4 Controller Synthesis Problem

In this section we present our results on controller synthesis problem. We say
that a state is terminal if no other state is reachable from it under any strategy
pair. We call a stochastic game stopping if a terminal state is reached with
probability 1 under any pair of strategies. We define conditions under which the
controller synthesis problem has a solution for a general class of functions, the
so-called linearly bounded functions—under stopping games assumption. We say
that an objective function is linearly bounded if there are x1 and x2 such that
for any ω that contains k nonterminal states we have |f(ω)| ≤ x1 · k + x2. We
observe that objective functions define in previous section are linearly-bounded
and present compact winning strategies for those objective.

4.1 Conditions for the existence of winning strategies

We define ExactG(s, f)
def
= {x ∈ R | ∃π ∈ Π .∀σ ∈ Σ : Eπ,σG,s [f ] = x} to be the set

of values for which Preciser has a winning strategy on G from s with objective
function f . Given a function f : ΩG → R, a finite path u·s ∈ ΩG+ and an infinite
path v ∈ ΩG , we define a curried function fu·s(s ·v) = f(u·s·v), where s ∈ S.
Given a finite path as the history of the game, the following lemma presents
conditions under which player Preciser cannot win the game for any value.

Lemma 1. Given a game G, a finite path w·s ∈ ΩG+, where s ∈ S and a func-
tion f , if inf

π∈Π
sup
σ∈Σ

Eπ,σG,s [fw·s] > sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [fw·s], then Preciser cannot achieve

any exact value after that path, i.e., ExactG(s, fw·s) = ∅.



Proof. For every Preciser strategy π ∈ Π, we have that

inf
σ∈Σ

Eπ,σG,s [fw·s] ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [fw·s] < inf
π∈Π

sup
σ∈Σ

Eπ,σG,s [fw·s] ≤ sup
σ∈Σ

Eπ,σG,s [fw·s].

Hence, for any of the strategy π of Preciser, Spoiler can ensure one of the two
distinct values inf

σ∈Σ
Eπ,σG,s [fw·s] or sup

σ∈Σ
Eπ,σG,s [fw·s], and therefore Preciser cannot

guarantee any exact value after history w·s, so ExactG(s, fw·s) = ∅. ut

Let Ωno
G,f ⊆ ΩG

+ be a set paths in G such that a path w is in Ωno
G,f if and only

if w satisfies the condition in Lemma 1, i.e., after w Preciser cannot guarantee
any exact value for a function f . The above proposition characterises the states
from which Preciser cannot achieve any exact value.

Proposition 4. In a game G, and a state s ∈ S, if for any strategy of Preciser,
Spoiler has a strategy to make sure that at least one path from Ωno

G,f has positive
probability, then ExactG(s, f) = ∅, i.e.,

∀π ∈ Π .∃σ ∈ Σ : Prπ,σG,s (
⋃

w∈Ωno
G,f

Cyl(w)) > 0⇒ ExactG(s, f) = ∅.

In the next theorem we complement the proposition by describing the states with
nonempty sets ExactG(s, f), for the class of linearly-bounded objective functions.

Theorem 1. Given a stopping game G, a linearly bounded objective function f
satisfying Ωno

G,f = ∅, a state s ∈ S, and a value x ∈ R,

x ∈ ExactG(s, f)⇐⇒ inf
π∈Π

sup
σ∈Σ

Eπ,σG,s [f ] ≤ x ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [f ].

Proof (Sketch). The “⇒” direction of the theorem is straightforward. To show
“⇐” direction, we construct a strategy to achieve any given probability x.

Let π− and π+ be minimising and maximising pure deterministic update
strategies 5. Let w·s ∈ ΩG+. We define minimum and maximum expected values
achievable by Preciser after a finite path w·s as:

val−(w·s) = inf
π∈Π

sup
σ∈Σ

Eπ,σG,s [fw·s] and val+(w·s) = sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [fw·s].

We will now construct a stochastic update strategy for Preciser, which is
winning from all s ∈ S. Given any l ≤ y ≤ h, we define c(y, l, h) as h−y

h−l if l 6= h

and 1 otherwise. For a finite path w ∈ ΩG+ such that val−(w) ≤ y ≤ val+(w),
we define β(y, w) = c(y, val−(w), val+(w)). The strategy π = 〈M, πu, πn, α〉 is
defined by

– M = {〈w, val−(w)〉, 〈w, val+(w)〉 | w ∈ ΩG+},
5 Note that thanks to our restrictions on f and G these always exist.



– πu(〈w·s, y〉, t) =



〈w·s·t, y〉, if s ∈ S ,

[〈w·s·t, val−(w·s·t)〉 7→ β(y, w·s·t),
〈w·s·t, val+(w·s·t)〉 7→ 1− β(y, w·s·t)], if s ∈ S ,

〈w·s·t, val−(w·s·t)〉, if s ∈ S and y = val−(w·s),
〈w·s·t, val+(w·s·t)〉, if s ∈ S and y = val+(w·s),

– πn(s, 〈w, y〉) =

{
π−(w) if y = val−(w),

π+(w) otherwise

– α(s) = [〈s, val−(s)〉 7→ β(x, s), 〈s, val+(s)〉 7→ 1− β(x, s)],

for all w ∈ ΩG
+, s, t ∈ S, and 〈w, y〉, 〈w·s, y〉 ∈ M. The correctness of the

strategy follows from the proof in [5]. ut

4.2 Compact Strategies for Objective Functions

In this section, using the results from Theorem 1, we construct stochastic up-
date strategies for the functions defining reachability, total expected reward,
discounted reward and ω-regular objectives, all of which are linearly bounded.
For all games, and objective functions in this section we assume that Ωno

G,f = ∅.
Proposition 5. Reachability, ω-regular, total reward and discounted reward ob-
jectives are linearly-bounded.

From Theorem 1 and Proposition 5 it follows that for in a game G, a state s
and value x, if f is reachability, ω-regular, total reward or discounted reward
objectives satisfying the assumptions of Theorem 1, then player Preciser has a
winning strategy if and only if inf

π∈Π
sup
σ∈Σ

Eπ,σG,s [f ] ≤ x ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [f ]. The

construction from Theorem 1 only provides strategy having countable memory.
In this section we show that these objectives allow for a compact strategy.

Proposition 6 (Reachability). If there exists a winning strategy for Preciser
in stopping game G for reachability function fTreach, then there exists a stochastic
update winning strategy π = 〈M, πu, πn, α〉 such that |M| ≤ 2·|S|.
Proof (Sketch). Let f = fTreach and π− and π+ be the pure memoryless deter-
ministic update strategies achieving, for every w ·s ∈ ΩG

+, the minimum and
maximum expected value for f . By Theorem 1 there exists a stochastic update
strategy π?, which achieves the precise reachability probability. However, the
construction only provides a strategy having countable memory. We will con-
struct a stochastic update strategy which is equivalent to π?, but has memory
size at most 2·|S|. The strategy π = 〈M, πu, πn, α〉 is defined as follows:

– M = {〈s, val−(s)〉, 〈s, val+(s)〉 | s ∈ S},

– πu(〈s, y〉, t) =



〈t, y〉 if s ∈ S ,

[〈t, val−(t)〉 7→ β(y, t),

〈t, val+(t)〉 7→ 1− β(y, t)] if s ∈ S ,

〈t, val−(t)〉 if s ∈ S and y = val−(s),

〈t, val+(t)〉 if s ∈ S and y = val+(s),



– πn(s, 〈s, y〉) =

{
π−(s) if y = val−(s),

π+(s) otherwise

– α(s) = [〈s, val−(s)〉 7→ β(x, s), 〈s, val+(s)〉 7→ 1− β(x, s)],

for all s, t ∈ S, and 〈s, y〉 ∈ M.
Let us look at the functions of the strategy individually. The initial distribu-

tion functions of π? and π are the same. For the next move functions, since π−

and π+ are memoryless, we have that for any path w·s ∈ ΩG+, π−(w·s) = π−(s)
and π+(w·s) = π+(s). It follows that πn(s, 〈w·s, y〉) = πn(s, 〈s, y〉). For the mem-
ory update function πu, it is equivalent to the memory update function of π?

(i.e., produces the same distributions for all paths) if the target states are treated
as terminal, i.e., for reachability function it does not matter what actions are
played after the target has been reached. ut

The proofs for the following two propositions are similar (see [5] for details).

Proposition 7 (ω-regular). If there exists a winning strategy for Preciser in
stopping game G for ω-regular objective function fAomega and objective given as a
deterministic parity automaton A, then there exists a stochastic update winning
strategy π = 〈M, πu, πn, α〉 such that |M| ≤ 2·|S|·|A|.

Proposition 8 (Total reward). If there exists a winning strategy for Preciser
in a stopping game G for total reward function frtotal, then there exists a stochastic
update winning strategy π = 〈M, πu, πn, α〉 such that |M| ≤ 2·|S|.

Since discounted objective implicitly mimics stopping mechanism, using Proposi-
tion 8 and Theorem 1 we show that for the discounted objectives we can construct
compact strategies for arbitrary finite games without the stopping assumption.

Theorem 2. Given a game arena G, a discounted reward function f = fδ,rdisct,
satisfying Ωno

G,f = ∅, a state s ∈ S, and a value x ∈ R.

x ∈ ExactG(s, f)⇐⇒ inf
π∈Π

sup
σ∈Σ

Eπ,σG,s [f ] ≤ x ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [f ].

Proof. The proof employs a standard construction [11] that reduces the ex-
pected discounted reward problem to expected total reward problem. Let G =
〈S, (S , S , S ), ∆〉, and let fδ,rdisct be given by a reward structure r and a discount
factor 0 < δ < 1, we define a stopping game G′ = 〈S ∪ S′, (S , S , S ∪ S′), ∆′〉
and a total reward objective function frtotal as follows. The set S′ contains states
s̄ for all s ∈ S and a distinguished state ?. The set ∆′ is defined as follows: for
all s, t we define ∆′(s, t̄) = ∆(s, t), ∆(t̄, t) = 1 − δ and ∆(t̄, ?) = δ. We make
the state ? terminal by putting ∆′(?, ?) = 1. The reward structure r′ for frtotal
in G′ is defined by r′(s) = r(s) for all s ∈ S and r(s′) = 0 otherwise. There is a
straightforward bijection between the strategies of G and G′ that for any π and

σ returns π′ and σ′ such that Eπ,σG,s [fδ,rdisct] = Eπ
′,σ′

G′,s [frtotal]. The theorem is then
obtained by using Theorem 1 and Proposition 8. ut



4.3 Complexity

We discuss the complexity of the controller synthesis problem for the objec-
tives considered in Section 4.2 where compact strategies do exist. As we dis-
cussed in previous section, controller synthesis essentially boils down to com-
puting the extreme values of the corresponding game. Assume that we have
an oracle to decide the following: (1) given any state of the game s, whether
supπ∈Π infσ∈Σ Eπ,σG,s [f ] ≥ infπ∈Π supσ∈Σ Eπ,σG,s [f ] and (2) given any state of the

game s, whether infπ∈Π supσ∈Σ Eπ,σG,s [f ]≤ x ≤ supπ∈Π infσ∈Σ Eπ,σG,s [f ]. By Propo-
sition 4 and Theorem 1, together with Proposition 6 – 8 the controller synthesis
problem is decidable in polynomial time if we have oracles for (1) and (2).

For the considered objectives, (1) and (2) are decidable in NP ∩ co-NP since
games with these objectives admit pure memoryless strategies for both players
(in the product of the game with the deterministic parity automaton at least
in the case of ω-regular objectives; cf. [3]). It is easy to see that PNP∩co-NP =
NP ∩ co-NP. Hence, we can conclude that the controller-synthesis problem is
in NP ∩ co-NP for the objectives studied in Section 4.2.

4.4 Non-stopping games

It is natural to ask whether the result of Theorem 1 can be transferred to non-
stopping games. The following proposition provides a negative answer.

Proposition 9. There is a game G and a reachability objective f , a state s ∈ S
and a number inf

π∈Π
sup
σ∈Σ

Eπ,σG,s [f ] ≤ x ≤ sup
π∈Π

inf
σ∈Σ

Eπ,σG,s [f ] such that Ωno
G,f = ∅ and

x 6∈ ExactG(s, f).

To prove Proposition 9, consider the game G from Figure 1 (right), where the
target state is marked with gray colour. For each state s ∈ {s0, s1, s3} we have
infπ∈Π supσ∈Σ Eπ,σG,s [f ] = 0.5, and for state s2 we have infπ∈Π supσ∈Σ Eπ,σG,s2 [f ] =
0.0. On the other hand, for each state s ∈ {s1, s2, s3} we have that supπ∈Π infσ∈Σ
Eπ,σG,s [f ] = 0.5, while for state s0 we have supπ∈Π infσ∈Σ Eπ,σG,s0 [f ] = 1. However,
for example in state s0 we get Exact (s, f) = {1}. For any value 0.5 ≤ x < 1, any
strategy π that should achieve x must in s0 pick the transition to the terminal
state with probability 2 · x−1, because otherwise Spoiler could propose a counter
strategy σ which deterministically goes up from s1, and thus Eπ,σG,s [f ] 6= x. Let
us suppose that π has this property, then it must further ensure that from s1
the target state is reached with probability 0.5, which means that it can never
randomise in s0 or s1, except for the very first step: if it randomised, Spoiler could
propose a winning counter-strategy that would go to central vertex immediately
after the first randomisation took place. But this means that the strategy π must
always keep going from s2 to s3 and from s0 to s1 deterministically, to which
Spoiler can respond by a strategy σ that always goes from s1 to s2 and from s3
to s0 deterministically, hence avoiding to enter the target state at all.

An interesting point to make is that even though Preciser has not any strategy
that would ensure reaching the target from s0 in G with probability x for a



given 0.5 ≤ x < 1, he has got an “ε-optimal” strategy for any ε > 0, i.e. for
any x there is a strategy π of Preciser such that for all σ of Spoiler we get
x− ε ≤ Eπ,σG,s0 [f ] ≤ x+ ε. For example, if x = 0.5, the strategy π can be defined
so that in s0 it picks the transition to s1 with probability 1 − ε, and the other
available transition with probability ε, while in s2 it takes the transition to s3
with probability 1− ε

1−ε , and the other available transition with probability ε
1−ε .

Again, one might ask whether ε-optimal strategies always exist. Unfortu-
nately, this is also not the case, as can be seen when the transition from s0 to
the target state is redirected to the non-target terminal state.

5 Counter-Strategy Problem

In this section we discuss the counter-strategy problem, which, given a game G,
a state s, and an objective function f , asks whether for any strategy of Spoiler
there exists a counter-strategy for Preciser such that the expected value of f is
exactly x. Let us characterise the set of all values for which counter-strategy
exists by defining CExactG(s, f) = {x ∈ R | ∀σ ∈ Σ . ∃π ∈ Π : Eπ,σG,s [f ] = x} .

Lemma 2. Given a game G, a finite path w · s ∈ ΩG+, where s ∈ S and a func-
tion f , if sup

σ∈Σ
inf
π∈Π

Eπ,σG,s [fw·s] > inf
σ∈Σ

sup
π∈Π

Eπ,σG,s [fw·s], then Preciser cannot achieve

any exact value after that path, i.e., CExactG(s, fw·s) = ∅.
Proof. Let x∗ = sup

σ∈Σ
inf
π∈Π

Eπ,σG,s [fw·s] and x∗ = inf
σ∈Σ

sup
π∈Π

Eπ,σG,s [fw·s] such that x∗ >

x∗; and let σ∗, σ∗ ∈ Σ be the corresponding strategies of Spoiler. Notice that for
any arbitrary strategy π of Preciser we have that

Eπ,σ∗G,w0
[fw·s] ≤ x∗ < x∗ ≤ Eπ,σ

∗

G,w0
[fw·s].

Hence, if x ≤ x∗ then there is no strategy of Preciser that yields expectation
at most x against σ∗, while if x > x∗ then there is no strategy of Preciser that
yields expectation at least x against σ∗. Hence, CExactG(s, fw·s) = ∅. ut

Let Ωnoc
G,f ⊆ ΩG

+ be a set paths in G such that a path w is in Ωnoc
G,f if and only

if w satisfies the condition in Lemma 2, i.e., after w Preciser cannot propose a
counter strategy to achieve any exact value, for a function f .

Proposition 10. In an game G, and a state s ∈ S, if there exists a strategy of
Spoiler, such that for all strategies of Preciser at least one path from Ωnoc

G,f has a
positive probability, then CExactG(s, f) = ∅, i.e.,

∃σ ∈ Σ . ∀π ∈ Π : Prπ,σG,s (
⋃

w∈Ωnoc
G,f

Cyl(w)) > 0⇒ CExactG(s, f) = ∅.

Using the results above we are now ready to characterise the states from which
Preciser has, for any Spoiler strategy, a winning counter strategy to achieve ex-
actly the specified value x. The following theorem is proved in [5].

Theorem 3. In a game G with Ωnoc

G,f = ∅, and a state s ∈ S, x ∈ CExactG(s, f)

if and only if sup
σ∈Σ

inf
π∈Π

Eπ,σG,s [f ] ≤ x ≤ inf
σ∈Σ

sup
π∈Π

Eπ,σG,s [f ].



6 Conclusion and future work

In this paper we studied a novel kind of objectives for two-player stochastic
games, in which the role of one player is to achieve exactly a given expected
value, while the role of the other player is to get any other value. We settled the
controller synthesis problem for stopping games with linearly bounded objective
functions and for arbitrary finite games with discounted reward objective. We
solved the counter strategy problem for arbitrary finite games and arbitrary
payoff functions. There are two main directions for future work: 1. relaxing the
restrictions on the game arenas, i.e., studying the controller-synthesis problem
for non-stopping games; 2. modifying the problem so that the role of preciser is
to reach a value from certain interval, rather than one specific number.
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