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Abstract. Statistical model checking (SMC) is a technique inspired
by Monte-Carlo simulation for verifying time-bounded temporal logi-
cal properties. SMC originally focused on fully stochastic models such
as Markov chains, but its scope has recently been extended to cover
formalisms that mix functional real-time aspects, concurrency and non-
determinism. We show by various examples using the tools UPPAAL-
SMC and Modes that combining the stochastic interpretation of such
models with SMC algorithms is extremely subtle. This may yield signifi-
cant discrepancies in the analysis results. As these subtleties are not so
obvious to the end-user, we present five semantic caveats and give a clas-
sification scheme for SMC algorithms. We argue that caution is needed
and believe that the caveats and classification scheme in this paper serve
as a guiding reference for thoroughly understanding them.

1 Introduction

Statistical model checking (SMC) techniques [21] have been proposed for over-
coming many challenges in devising tractable numerical methods for probabilistic
models. Inspired by Monte-Carlo simulation, SMC techniques simulate a random
system for a particular number of times, such that statistical evidence is built
up for deciding whether a property holds on the model. This method is light-
weight and easily parallelizable. Drawn by their tractability, research groups have
subsequently adapted them to more-expressive classes of models [17]. A partic-
ular class, which we refer to as real-time stochastic models, are characterized by
intertwining concurrency, non-deterministic choice, real-time and probabilistic
aspects into a single formalism. We consider these models as partially stochastic,
as they have no common stochastic interpretation on their non-probabilistic lan-
guage elements, such as concurrency. Yet, their potential applications are clear.
For example, real-time stochastic models could be used for expressing safety-
critical embedded systems, which are constructed for validating RAMS (relia-
bility, availability, maintainability and safety) requirements. The probabilistic
∗ This work was partially supported by ESA/ESTEC (contract no. 4000107221 (HAS-

DEL)) and the EU (project reference 318772 (D-MILS) and project reference 318490
(SENSATION)).

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 177–192, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



178 D. Bohlender et al.

features are often used for expressing uncertain faulty/erroneous behavior, like
for example bit-flips, sensor glitches or simply the complete failure of a com-
ponent. Real-time aspects are generally applied for expressing time-critical be-
havior, such as the nominal functional operation, as well as time-constrained
behavior, like failure recovery mechanisms. On top of that, concurrency, both in
the system and its environment, is omni-present to facilitate compositionality.
Non-deterministic choice can be used to express the various potential implemen-
tations in a single model.

At this moment of writing, there are two prominent publicly available SMC
tools that handle a real-time stochastic modeling formalism, namely UPPAAL-
SMC [11] and Modes [7]. While using and comparing them, we noticed un-
intuitive discrepancies in the computed probabilities that could not be easily
dismissed as bugs. After launching a full investigation, we found that there are
deeply-rooted semantic caveats, as well as algorithmic design aspects that have
a major impact on the computed probabilities. They emanate from mixing con-
currency and non-deterministic choice and real-time and probabilistic aspects.
This paper reports on the lessons we learned by the following contributions:

– The identification of five caveats and their interactions in Sections 3 and 4.
– A classification scheme for SMC algorithms, discussed in Section 5.
– Application and practical evaluation of the above with UPPAAL-SMC [11]

and Modes [7] in Section 6.

Note that these lessons strictly apply to real-time stochastic formalisms that
mix all four aspects. Model formalisms that mix two or three of those aspects
tend to have a fully probabilistic semantics. Hence in those cases, such as In-
teractive Markov Chains [15] or Timed Automata, our learned lessons do not
apply. The intent of our lessons is not to judge the use of SMC techniques on
real-time stochastic models. Rather, we believe this paper provides a reference
for users and developers to make an informed and deliberate decision on which
SMC technique suits their purposes.

2 Preliminaries, Notations and Related Work

The results in this paper are scoped to real-time stochastic models, which we
will loosely characterize in this section.

Real-Time Stochastic Models

Real-time stochastic models have a concurrent, a real-time and a probabilistic
dimension. Particular examples of them are (networks of) Priced Timed Au-
tomata (PTA) as used by UPPAAL-SMC [11] and Stochastic Timed Automata
(STA) as used by Modes [7]. Both models share a particular set of ingredients.
The focus of this paper does not lie on the complete semantics of either model
per se, but rather addresses issues related to a wider and more general class of
real-time stochastic automata. Therefore, the semantics only provide a basis for
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the further discussion in this paper, and do not form a single consistent model.
We refer the reader to the original work on PTA and STA for their complete
semantics.

Timed Processes. We first introduce a timed process, defined as a tuple P =
〈L, l0, I, T, C,A〉, with L the set of locations, l0 the initial location in L, C the
set of real-valued clocks, A the set of actions including internal action τ , and

– I : L → Expr is the function that assigns to each location an invariant
expression in Expr, which is a Boolean expression over the clocks in C.
They restrict the residence time in that location based on the valuation of
the clocks.

– T ⊆ L × A × Expr × 2C × L denotes the set of discrete transitions, with
Expr being the set of Boolean guard expressions over the clocks C.

A transition 〈ls, α, g,X, lt〉 ∈ T allows the system to move from location ls to lt,
executing action α. The transition is only enabled if the expression g evaluates
to true in the current state. Upon execution of the transition, the clocks in set
X are reset to zero.

The continuous state space of a timed process is defined as a set of tuples,
consisting of the process’ current location and valuation of the clocks. For process
P at initial location p0, with a single clock cp assigned the value zero, the state is
defined as 〈p0, (cp, 0.0)〉. For a process with a single clock we abbreviate this by
〈p0, 0.0〉. Transitions between states either delay or are discrete. Delay transitions
progress clock values, e.g. 〈p0, 0.0〉 4.5−−−→〈p0, 4.5〉. Discrete transitions are caused
by a transition in a process’ transition relation, e.g. 〈p0, 4.5〉 α−−→〈p1, 4.5〉. A path
(or sometimes also called trace or run) is a sequence of alternating delay and
discrete transitions, e.g. 〈p1, 6.5〉 2−→〈p1, 8.5〉 α−−→〈p2, 8.5〉 1−→ . . ..

For expressing concurrency, we define a network of communicating processes
(or sometimes called a network of automata). It consists of one or more timed
processes composed together using a synchronization operator, denoted by ‖. We
define the state space of such a model as the cross-product of the state space
of each individual process. In such a model, discrete transitions occur either
concurrently, synchronizing on the shared communication alphabet of all the
sets A of each process, or independently. When multiple independent transitions
are enabled, a race condition occurs that is resolved by means of a scheduler.
Timed transitions globally increase all clocks at the same rate.

Probabilistic Semantics. In the previous section we described the syntactical
concepts for expressing a network of timed processes. We further extend upon
this by introducing the possible ways of giving them a probabilistic semantics
through inferring probability distributions and assuming a strategy for interpret-
ing concurrency probabilistically.

Two types of stochastic behavior can be specified, namely for discrete tran-
sitions and delay transitions. In the case of a set of non-deterministic discrete
transitions T , a discrete probability distribution Distr(T ) can be defined over



180 D. Bohlender et al.

these transitions. This distribution specifies for each transition the probability
of taking that transition, see e.g. [12,19]. Non-deterministic choice on its own,
however, has no probabilistic semantics and thus typically one assumes one while
simulating, like a uniform distribution. Additionally, there are formalisms that
capture a discrete probabilistic distribution over successor locations. However
w.l.o.g. they can be represented by a set of transitions such that we only have
to restrict ourselves to models where transitions only have a single successor lo-
cation. For delay transitions, a probability density function η(l) can be specified
over the possible delay times in the current location l. As we reason over a dense
notion of time, this has to be a continuous distribution. This distribution can be
explicitly specified by the user, or it is inferred from invariants or annotations
on outgoing transitions like guards. Both the inference of a delay distribution
and the choice for a discrete branching distribution come with caveats, which
are discussed in Section 3.

In the face of concurrency, a statistical model checker employs a scheduler
that selects the process to fire the next transition (or processes in the case of
synchronization). This can be a scheduler that assigns a uniform distribution
over the processes with the shortest waiting time, such as in UPPAAL-SMC.
Other approaches exist as well. This also induces a caveat that is discussed in
Section 3.

Recent work of [7] describes networks of Price Timed Automata, extending
PTA [2,5] with exit rates for locations, as well as concurrency and probabilistic
semantics for SMC. Like Timed Automata [1], they support the specification of
clock variables, with location invariants and transition guards. It is the formalism
implemented by the UPPAAL-SMC tool.

The work by [8] describes the MoDeST language that provides constructs
for expressing the concurrency, probabilistically distributed waiting times, prob-
abilistic branching and non-deterministic branching aspects described above. A
set of MoDeST processes are mapped upon a stochastic timed automaton (STA),
which can be viewed as a generalization of Timed Automata and various Markov
processes, e.g. CTMDPs [15]. It is the formalism implemented by the Modes
tool.

Statistical Model Checking

Statistical model checking techniques [17] build upon and extend Monte-Carlo
simulation techniques for verifying temporal bounded properties. These tech-
niques rely on the following components: A path generator (sometimes also re-
ferred to as discrete event simulator), a property checker that decides whether
path generation should continue or not, and an algorithm that decides if more
paths need to be generated. The path generator simulates the behavior of the
model by repeating discrete or delay transitions. Path generation continues un-
til the property can be decided to hold or not, or when a boundary condition
has been met. This is referred to as the termination condition. The Monte-Carlo
method approximates the probability of a property by generating a large number
of random samples. By repeatedly sampling random paths (also called traces or
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simulations) from the automaton, statistical evidence is built up for disproving
or proving the property of interest. Essentially, each generated path satisfies or
dissatisfies the property. The outcomes of the generated paths are used to sta-
tistically decide whether additional paths are required and what the estimated
probability of the property is. We refer the reader to [17] for an overview of
statistical model checking techniques.

Several statistical model checkers have been built and reported. As the fo-
cus of this paper lies towards real-time stochastic models, only a few model
checkers apply. The PLASMA tool [16,9] can analyze stochastic models such as
Continuous Time Markov Chains (CTMCs) [4] and Markov Decision Processes
(MDPs). It however does not support real-time aspects (yet), so it is omitted
in the remainder of this paper. UPPAAL-SMC [11] and Modes [7] do support
the aforementioned real-time stochastic formalisms and are therefore within the
scope of this paper.

3 Semantic Caveats

As statistical model checking builds upon Monte-Carlo simulations, a fully proba-
bilistic interpretation is required of the real-time stochastic model. This involves
inferring or assuming probabilistic distributions on model elements that have no
probabilistic semantics. The implications of this are however not always made
obvious to the user. We investigated this and summarized the results as a set of
semantic caveats which are elaborated upon in this section.

These caveats can be distinguished into two groups: The first group contains
the caveats that originate from resolving underspecifications in the model, which
are caveats C1, C2 and C3. The second group contains caveats C4 and C5,
which the caveats that arise due to possible inconsistencies in the semantics of
the model after inferring or assuming the probability distributions.

The diagrams in this section are denoted as follows: Nodes correspond to
locations in the model, where the upper part indicates the label of the node; the
lower part indicates either the invariant associated with the location, or the exit
rate of the location. Edges between nodes represent discrete transitions. The
enabled time interval induced by the guard of a transition is shown below the
edge, the action above. Each example has an associated global clock. In order
to simplify the diagrams, this clock has been hidden from the invariants and
guards.

C1 – Underspecified Scheduling between Processes

The range of possible interleavings between concurrent processes is typically left
underspecified during the design of the system and is subject to refinement in
subsequent development phases. As such, we are dealing with an underspecifi-
cation of the possible execution schedule(s). This ensures a conservative over-
approximation of the possible behaviors in the analysis results.
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Statistical model checkers employ a probabilistic interpretation over this form
of underspecification. However, it is not immediately clear what this interpre-
tation should be based on. Depending on how the one-step probabilities are
calculated, this “progress” could depend on a process with the shortest waiting
time (possibly uniformly chosen among multiple waiting times), but may also
be distributed over any process that is capable of making progress after waiting.
Finally, samples from the waiting time distribution may be discarded entirely
if a process fails to find an enabled transition, requiring the sample process to
start over.

C2 – Underspecified Choice within a Process

Within the context of communicating concurrent processes, we identify two kinds
of choice, namely internal and external choice. Internal choice is when multiple
internal transitions emanate from a location in the same process and they are
unobservable by other processes, yet they lead to different successor locations.
With external choice, we have multiple synchronizing transitions emanating from
a single location.

When either choice is underspecified within a single process, i.e. Distr(T )
is not specified, the statistical model checker has to provide a probabilistic in-
terpretation over it (see e.g. [13]). This is typically implicitly interpreted as
equiprobabilistic, but other approaches exist, see e.g. [18] and Section 5. Issues
may arise due to the introduction of a bias towards certain behavior.

Consider the example in Figure 1, with an external choice between actions α
and β, and an internal choice between two α transitions. Applying a strictly uni-
form distribution over all transitions introduces a bias towards action α. However,
applying a uniform distributions over the actions first introduces a bias towards
the transition towards location p3.

C3 – Underspecified Waiting Times

Transition guards and invariants are powerful modeling concepts for expressing
timed behavior. They express the range of time in which certain behavior can
occur, without requiring the user to specify exact time points or delay distri-
butions. However, in the case of such underspecifications, the statistical model
checker has to provide one as well, similar to caveat C2. As an example, Figure 2
shows a process with a transition that is enabled in the interval [1, 5], and an
invariant that is true for all clock values in the interval [0, 5], without specifying
a delay distribution.

Delay distributions may be derived from any combination of invariants, tran-
sition guards and process synchronization. Generally, a uniform distribution is
derived (like in [3]), though other distributions may be used or even required,
see caveat C4. Again, care has to be taken not to introduce any unwanted bias.
Choosing whether or not to derive a distribution based on transition guards or
process communication influences this, see Section 4.
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C4 – Choice of Distributions

The previous caveats discussed underspecifications for which a statistical model
checker has to generate probability distribution functions. However, based on the
structure of the model, different distributions may be applicable. Often uniform
distributions (both discrete and continuous) are employed, based on the notion
of equiprobability. However, other distributions may be used or even required,
for instance if the model specifies a boundary that extends to infinity, or specifies
a deterministic delay by means of a point interval.

This introduces a caveat that requires attention in two directions. First, the
support may not coincide with the enabledness of all transitions, which may lead
for example to a deadlock (see also the accuracy dimension in Section 5). For
instance, Figure 3 exemplifies this with an exponential distribution of which the
support does not match the interval for which the transition is enabled. Second,
and more obvious, the choice of distribution directly influences the bias on the
waiting time.

C5 – Invalid Paths

The modeling formalisms we consider come with an innate degree of abstrac-
tion. This comes with caveats by itself, namely Zeno behaviors, action-locks and
deadlocks, which may generate semantically invalid paths. These caveats are well-
known and widely studied [20]. Akin to analytical model checking techniques,
also for statistical model checking these caveats require serious consideration.

Zeno behaviors may occur as a result of the model not allowing time to
progress beyond a certain point, a timelock, or allowing paths that execute an
infinite number of actions in a finite amount of time. As a result, a statisti-
cal model checker may not terminate its path generation when the termination
condition is based on reaching a certain time bound.

Action-locks occur in the discrete part of the model, when the current state
does not allow any further discrete transitions to be taken for any given delay.

Deadlocks are the combination of action-locks and timelocks. In a deadlocked
state, neither the timed part nor the discrete part of the model can progress, and
path generation will terminate prematurely. Examples of all three behaviors are
shown in Figure 4. Note that for the action- and deadlocks, the behavior occurs
in locations q1 and r1 respectively.
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Fig. 5. Example network with synchronizing actions

4 Caveat Interactions

Thus far the caveats from the previous section have only been treated as separate
instances. However, it is very well possible that they appear in the model at the
same time, possibly constraining the possible distributions, or affecting the over-
all bias of the outcomes. Therefore, in this section we provide further examples
to highlight the fact that caveats may interact and should not be considered as
isolated entities.

C1,C3 – Event Synchronization with Partially Overlapping
Enabledness Intervals

Underspecification of scheduling is generally dealt with by scheduling the pro-
cess with the shortest waiting time first. Action synchronization requires two
processes to take a discrete transition at the same time. Figure 5 highlights such
a synchronization. Two processes P (left) and Q (right) are defined. Here, the
action α is part of the communication alphabet. Thus the transitions synchro-
nize and are therefore only enabled in the interval [2, 4], due to the interaction
of the guards and the invariants of the target locations.

This example highlights that action synchronization requires the path gen-
erator to consider all processes with synchronizing actions in order to prevent
generating invalid paths that may for example invalidate invariants. For exam-
ple, if only the local transitions in process P is considered, a waiting time of one
may be sampled. However, it cannot synchronize then with process Q, as the
transition is only enabled after time point two.

C2,C3 – Bias of Time Intervals

The bias towards a certain transition greatly depends on the time intervals. Fig-
ure 6 shows three different types of intervals that are subject to underspecifica-
tion of choice as well. In all cases, if the underspecification of choice is resolved
first and uniformly, selecting each outgoing transition with probability 1

2 , the
probability of reaching either of the two target states is equal.
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Fig. 6. Examples of underspecification of both choice and time with convex, non-convex
and overlapping intervals respectively

However, resolving the underspecification of time first can cause considerable
differences. In the first example (Figure 6, left), sampling in the interval in
which either transition is enabled will cause a bias towards transition α (with
probability 4

5 ), as it has a larger interval. In the second case, both intervals are
equally large. However, due to the union of the intervals being non-convex, a
bias may be formed towards transition κ if the simulator generates a delay in
the interval [1, 4] as transition κ is the only transition that will become enabled
after such a time point (see also Section 5.2). The third case shows the effect
of the scope of the samples (Section 5.3). If a single sample is generated for
location r0, the waiting time is uniformly distributed. On the other hand, when
generating a sample for both transitions individually, the probability distribution
over the time intervals is no longer uniform, as the interval [4, 5] of transition μ
will increase the likelihood of picking a delay from that interval (when resolving
the choice first (Section 5.1), the probability of a delay in [4, 5] would become
1
2 · 1

5 + 1
2 · 1

1 = 3
5 ).

5 Classifying SMC Algorithms

All statistical model checkers encounter the caveats outlined in the previous two
sections and their implementations somehow deal with them. There is a range
of possible solutions. We analyzed them and developed a classification scheme
that has four dimensions, which we elaborate upon in the next sections.

5.1 Transition Selection Order – Early versus Delayed

The order solution dimension follows from caveats C1 and C2. It relates to the
moment an enabled transition is chosen with respect to the moment that the
waiting times are sampled. The choice of a particular order also impacts the
accuracy dimension, which is elaborated later on.

Early ordering picks from each process a single enabled transition before sam-
pling a waiting time. Thus, the race between transitions within a process is not
determined by the execution times of the individual transitions. In our setting,
this decision is usually made equiprobabilistically.

In the case of delayed ordering, the waiting time(s) are sampled first, simulat-
ing racing transitions. After sampling, the algorithm picks a winning transition
which is used to extend the path. This choice is typically made equiprobabilisti-
cally between the fastest transitions, similar to racing processes.
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Taking Figure 1 as an example, early ordering would pick either of the 3
transitions – usually uniformly – and sample a delay afterward. Delayed ordering
does the opposite and generates a delay based on location p0 and then pick any
of the (enabled) transitions, possibly based on the delay.

A hybrid approach exists as well. In the work of [18], the preselection policy
allows a set of transitions to be preselected, probabilistically or deterministically,
which may then enter the race between processes. The simulation process then
continues further as with delayed ordering.

5.2 Accuracy of Waiting Time Distributions – Exact versus
Approximate

This dimension follows from caveat C3, the underspecification of time. This
underspecification is resolved using a probability distribution over the possible
time intervals. The simulator may generate such a distribution with a support
that exactly coincides with the time intervals in which any transition is enabled,
or it may approximate these intervals. Information used may stem from source
and target location invariants, and transition guards. Synchronization effects
may be taken into account as well.

In the exact case, the constructed probability distribution has a support that
matches the time points that enable at least one transition. This is a strong
property. Note that the constructed distribution can be non-convex. In the ex-
ample of Figure 6 in the middle, this would mean the sampled waiting time is
generated in the set [0, 1] ∪ [4, 5].

The approximate case allows the distribution to range over an over- or under-
approximation of the set of possible waiting times. That means waiting times can
be sampled for which no transition is enabled. Taking again the middle process of
Figure 6 as an example, based only on the location invariant a possible interval
could be [0, 5]. Over-approximating potentially results in an action-lock (see
caveat C5). It is then up to the SMC algorithm what to do with the current
sampled waiting time. This is the attitude policy and is discussed in Section 5.4.

5.3 Scope of Waiting Time Samples – Location Local versus
Transition Local

The scope dimension follows from caveats C2 and C3 and when multiple tran-
sitions are enabled. A single delay can be sampled for the current location, or
individual delays can be sampled for each transition emanating from the current
location. Such a situation exists in all examples of Figure 6, where one delay may
be generated entailing both transitions, or one delay per transition, totaling two.

We refer to the former solution as the location local scope. The distribution
that is being constructed will account for all enabled time intervals of all non-
deterministic choices. A waiting time sampled from that distribution does not
necessarily imply which transition progresses, as the non-deterministic choices
may have overlapping enabled intervals. As only one sample is generated for all
transitions, the location local scope introduces a bias towards transitions that
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Table 1. Summary of algorithmic policies

Policy class Transition Policies keeping sample Policies rejecting sample

Memory Enabled Age & Enabling Memory Resampling
Disabled Age Memory Enabling Memory

Attitude Enabled Progressive & Conservative -
Disabled Progressive Conservative

have a larger interval, and may in fact render the simulator incapable of picking
transitions with a deterministic point interval.

The alternative is referred to as the transition local scope. Here a sample
is generated for each non-deterministic choice from a process’ current location.
Then, a race occurs within the process between the individual transitions. The
transition local scope may introduce a bias as well. As was shown in Section 4
(Figure 6 right example), different transition intervals may induce a bias within
the overall distribution of delays, in this case towards [4, 5].

5.4 Race Policy

The race policy dimension addresses the lifetime of sample(s) generated for a
process under a race condition. When the stochastic model is described by non-
memoryless distributions, different probabilistic outcomes can be realized based
on the manner in which samples are retained or discarded, which is decided by a
policy. Such a policy can make different decisions based on winning or losing the
race described by caveat C1 and whether any associated transitions are enabled
or not.

Memory policies describe whether or not the generated sample will be retained
for a future step if the process lost the race. In [18] three policies are described:
age memory, which retains the sample if there is no enabled transition; enabling
memory, which rejects the sample if no transition is enabled; and resampling,
which always rejects the sample. Furthermore, the age and enabling policies
keep the sample if the transition remains enabled.

Attitude policies dictate what samples are valid for a process that won the
race. The conservative policy discards the sample if no transition is enabled. The
progressive policy keeps the sample even if no transition is enabled (potentially
causing an action-lock, see caveat C5). Both policies keep the sample (and use
it) when a transition is enabled, and no policy rejects a sample in such a case.
Both the memory and attitude policies are summarized in Table 1.

6 Applying the Systematization

To put the systematization in this paper to practical terms, we show how
UPPAAL-SMC and Modes deal with the caveats and how their respective
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Table 2. Model checking results from UPPAAL-SMC and Modes on the examples.
The UPPAAL-SMC and Modes columns show the calculated probability intervals.

Caveats Example Property UPPAAL Modes

C2 Figure 1 P(�[0,5](p1∨p2)) [0.66,0.68] [0.66,0.68]
P(�[0,5]p3) [0.32,0.34] [0.32,0.34]

C3 Figure 2 P(�[0,4]p1)a [0.74,0.76] [0.98,1.00]

C4 Figure 3 P(�[0,5]p1) [0.86,0.88] [0.51,0.53]

C1,C3 Figure 5 P(�[0,5](p1∧q1)) errorb [0.98,1.00]

C2,C3 Figure 6 P(�[0,5]p1) [0.79,0.81] [0.98,1.00]
P(�[0,5]p2) [0.19,0.21] [0.00,0.02]

C2,C3 Non-convex Figure 6 P(�[0,5]q1) [0.19,0.21] [0.98,1.00]
P(�[0,5]q2) [0.79,0.81] [0.00,0.02]

C2,C3 Overlapping Figure 6 P(�[0,5]r1) [0.89,0.91] [0.98,1.00]
P(�[0,5]r2) [0.09,0.11] [0.00,0.02]

a A time bound of four was chosen to highlight the difference between UPPAAL-SMC
and Modes scheduling.

b UPPAAL-SMC cannot execute the model as it is not input enabled.

SMC implementations can be classified. We furthermore compared these two
tools using the examples presented in Sections 3 and 4. These examples have
been modeled using the formalism used by the respective tool, and probabilistic
time bounded reachability properties were evaluated to quantify the differences.
The results are presented in Table 2.

For both tools, results were determined with a 0.99 confidence, and a 0.01
error bound. These parameters were chosen as they provide sufficient precision
and confidence to compare the outcomes of the experiments. Note that due to the
existence of an error bound, the results are not exact values but rather intervals.
More detailed results and the sources of the models can be found online [10].

UPPAAL-SMC vs Modes

The path generation algorithm implemented by UPPAAL-SMC is described in
[11]. The algorithm first determines the interval of possible waiting times by
inspecting the invariant of the current active location. It then delays based on a
sample from that interval, and uniformly chooses from the enabled transitions af-
terward. Any previously generated samples are ignored. When multiple processes
are involved, the sample with shortest waiting time is selected.

The behavior of the path generation algorithm in the Modes tool [7] has been
analyzed using the semantics of the MoDeST language, configuration of the
Modes tool and analysis of the experimental results. No information has been
provided by the authors or derivative work on the path generation algorithm of
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Modes. The Modes tool allows the resolution for both the underspecification
of choice and time to be configured. Underspecification of choice can be resolved
in four ways: The model is rejected; confluence detection is used to remove
spurious non-determinism [14]; partial order reduction is used to remove spurious
non-determinism [6]; or a uniform distribution is applied. Underspecification of
waiting time can be resolved in two ways: Either the model is rejected, or an
as-soon-as-possible (ASAP) scheduler is used (which always selects the shortest
possible waiting time to enable a transition). For the experiments performed in
this section, the uniform distribution is used for underspecification of choice, and
the ASAP scheduler for underspecification of time.

Discussion

Most of the differences in the results can be attributed to the ASAP scheduler
of the Modes tool. Despite having a delayed and approximate scheduling al-
gorithm, the Modes tool always makes a deterministic choice to sample the
shortest possible waiting time. Thus, whereas the results from UPPAAL-SMC
tend towards a uniform distribution when choice is involved, Modes tends to-
wards a Dirac-delta distribution. This can be seen for all the cases involving C3
(Figures 2, 5 and 6). Here, the probability of reaching a certain state within the
specified time bound is approximately either 1.0 or 0.0 for Modes, indicating
the chosen delay is constant.

Both the UPPAAL-SMC and Modes tools make use of a delayed order, re-
solving the underspecification of time before selecting a transition. For Modes,
this can be seen in the results of the C3 case, as only the transition with the
lowest time bound is chosen (due to the ASAP scheduler). In this case, Modes
always chooses a delay of zero and thus, considering the examples in Figure 6,
ends up in locations p1, q1 and r1 respectively. Furthermore, both tools have
an approximate accuracy. UPPAAL-SMC only takes the invariants into account,
over-approximating the possible transition times. Modes only uses the lowest
possible time value, thus under-approximating the possible transition times. For
the scope dimension, both tools use the location local scope: UPPAAL-SMC uses
just the invariants of a location to generate this sample whereas Modes picks
the lowest possible value.

Both tools differ in the applied race policies. In case of UPPAAL-SMC, a
resampling memory policy is used, as previous results are discarded when a new
step is generated, and a progressive attitude policy is used, as a generated de-
lay is always applied even if no transition is enabled. In the case of Modes,
when process loses the race the age memory policy applies, as samples are ex-
plicitly assigned to process variables. However, the attitude policy can not be
determined, as the scheduler ensures that there is always an enabled transition,
as the difference can only be determined for delays after which no transition is
enabled.

An interesting difference in results can be seen for the C4 case (Figure 3).
This can be attributed to a difference in semantics for models containing expo-
nential distributions to sample waiting times. In the example, location p1 can
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only be reached in the interval [1, 5]. Both Modes and UPPAAL-SMC interpret
any sample above five as a deadlock. However, there is a difference in the in-
terpretation of values below one. In UPPAAL-SMC, the outcome of the entire
exponential distribution is shifted to the right by one unit of time, such that a
waiting time below one is never generated. In Modes, a waiting time below one
simply results in a deadlock, explaining the lower probability of reaching p1.

7 Conclusions

The light-weight and scalable nature of statistical model checking techniques
appeal as a practical way to handle the rich semantics of real-time stochastic
models. From experimentation with two publicly available SMC tools, UPPAAL-
SMC and Modes, we however encountered discrepancies in the computed prob-
abilities on structurally equivalent models. They could not easily be dismissed
as tool implementation bugs. In fact, they turned out to be semantic biases that
did not align with our end-user interpretation. In our effort to study and un-
derstand these biases, we investigated how statistical model checkers deal with
concurrency, non-deterministic and real-time aspects and how the discrepancies
in the probabilities can be traced to key SMC tool design and implementation
choices. From the lessons learned in this investigation, we systematized our ob-
servations into five caveats and a classification scheme for SMC algorithms. They
can be used to understand any SMC technique on real-time stochastic models.
We furthermore exemplify the caveats with concrete models, and show and dis-
cuss how two publicly available SMC tools, UPPAAL-SMC and Modes, compute
significantly different probabilities on them.

We restrict our conclusion to the following: the use of SMC techniques on
real-time stochastic models needs to be approached with caution. The system-
atization in this paper helps the end-user to identify and deal with the key points
for caution. In the end, this increased understanding of SMC techniques helps
the end-user to interpret the (difference in) computed probabilities by SMC tools.
Their perceived biases ought not to be straightforwardly seen as an invalidation
of SMC techniques. In fact, these biases may for example perfectly suit the as-
sumptions that hold in the modeling domain (e.g. RAMS or systems biology).
This paper contributes with a systematization for validating the SMC tools’ be-
haviors against these desired assumptions, which might be for example used for
tool certification.
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