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Introduction

The subject of automata on infinite sequences and infinite trees was established in the
sixties by Biichi [1962], McNaughton [1966], and Rabin [1969]. Their work introduced
intricate automaton constructions, opened new connections between automata theory
and other fields (for example, logic and set theoretic topology), and resulted in a
theory which is fundamental for those areas in computer science where nonterminating
computations are studied.

A main motivation of the early papers was the investigation of decision problems in
mathematical logic. Biichi discovered that automata provide a normal form for certain
monadic second-order theories. Rabin’s tree theorem (which states that the monadic
second-order theory of the infinite binary tree is decidable) turned out to be a power-
ful result to which a large number of other decision problems could be reduced.

From this core the theory has developed into numerous directions. Today, a major
application area is the specification and verificadon of concurrent programs: many
aspects of them are studied adequately in terms of nonterminating computations of
automata. Moreover, most of the logical specificaton formalisms for concurrent pro-
grams (such as systems of program logic or temporal logic) are embeddable in the
monadic theories studied by Biichi and Rabin; in some sense these theories can be
considered as "universal process logics" for linear, resp. branching computations.

Besides applications in program logics and in the development of concurrent systems
(see Emerson [1988]), the following lines of research should be mentioned:

- the investigation of other (usually more general) models of computation than
finite automata: grammars, pushdown automata, Turing machines, Petri nets,
etc.,

- the classification theory of sequence (or tree) properties, e.g. by different
acceptance modes of automata or by topological conditions,

- algebraic aspects, e.g. the semigroup theoretical analysis of automata over -
sequences,

- the connection with fixed point calculi,

- the study of more general structures than «-sequences and @-trees in con-
nection with automata (e.g. sequences over the integers or certain graphs),
and the extension of Rabin’s decidability result to stronger theories.
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The aim of the paper is to provide the reader with a more detailed overview of these
and related developments of the field, based on a self-contained exposition of the
central results.

Some topics are only treated in brief remarks or had to be skipped, among them
combinatorics on infinite words, the connections with semantics of program schemes,
and the discussion of related term based calculi (such as CCS).

Also the references listed at the end of the paper do not cover the subject completely.
However, we hope that very few papers will be missed when the reader traces the
articles which are cited within the given references.
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L Automata on m:nas words
Notation

Usually A denotes a finite alphabet, and A*, resp. A®, stands for the set of finite
words, resp. the set of @-sequences (or: @-words) over A. Let A = A* U A®, Finite
words are indicated by u,v,w,... , the empty word by €, and sets of finite words by
U,V,W,... . Letters a,B,... are used for w-words and L,L’,... for sets of w-words (i.e., ®-
languages). Notations for segments of «w-words are

a(m,n) := o(m)...o(n-1) (for m <n), and
o(m,) = a(m)o(m+l)....

The logical connectives are written —, A, v, —, 3, V. As a shorthand for the quantifiers
“there exist infinitely many n" and "there are only finitely many n" we use "3%n", resp.
..mAeH—:.

The following operations on sets of finite words are basic: For W < A* let

WO = {ae A?| o = wwy... with w; € W for i20},
im W := {a e AQ| 39y o(0,n) € W},
pref W= {ue A*| Ivuve WwJ.

Finally, for an @-sequence o = ¢(0)c(1)... from SO the "infinity set" of ¢ is

In(o) := {se S| 3% o(n) =s).

1. Biichi automata

Biichi automata are nondeterministic finite automata equipped with an acceptance con-
dition which is appropriate for «-words: An w-word is accepted if the automaton can
read it from left to right while assuming a sequence of states in which some final
state occurs infinitely often ("Biichi acceptance”). More precisely, a Biichi automaton
over the finite alphabet A is of the form 4 = AObo_PE with finite state set Q, initial
state q, € Q, transition relation A € Q x A x Q, and a set F ¢ Q of final states. A run
of 4 on an w-word a = a(0)a(l)... from A®isa sequence ¢ = 6(0)o(1)... such that o(0) =
qy (o(i),a(i),0(+1)) € A for i 2 0; the run is called successful if some state of F oc-
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curs infinitely often in it, i.e. if In(c) N F # @. 4 accepts « if there is a successful run
of Z2on a. Let
LA ={ae >e_ A accepts ot}

be the w-language recognized by 4. If L = L(4) for some Biichi automaton 4, L is said

to be Biichi recognizable.

We consider some easy examples over the alphabet A = {a,b,c}. Define L, c A® by

ael; iff after any occurrence of letter a there is some occurrence of
letter b in a.

A Biichi automaton recognizing L is (in state graph representation)

b,c O . Q a,c

.NHH ¢@ >

S

The complement ._w_ =A®. L, is recognized by the Biichi automaton

ab,c Q % ac

A —>—

Finally, the w-language L, < A® with

ae L, iff between any two occurrences of letter a in o there is an even
number of letters b,c

is recognized by

a bec .

For a closer analysis of Biichi recognizable «-languages we use the following notations,
given some fixed Biichi automaton 4 = Ao.nob.mdn Ifw= ag.a, 1 is a finite word over
A , write s W S if there is a state sequence Sor-1Sp such that S =5
Q}hmiv mbmolAn.m:a mau m..ro.

émw. = —im >*_m -?uV m.- .
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Each of the finitely many languages W is regular. By definition of Biichi acceptan-
ce, the w-language recognized by 4 is

#  L@= Ugp spom‘%ave.

This leads to the following basic characterization of Biichi recognizable sets:

1.1. Theorem (Biichi [1962])
An o-language L ¢ A® is Biichi recognizable iff L is a finite union of sets U-V?
where U,V ¢ A* are regular sets of finite words (and where moreover one .Bmw
assume V-V ¢ V).

The direction from left to right is clear from equation (+); note that ¢<mm.¢<mm c <<mm.
For the converse, we verify the following closure properties of Biichi recognizable sets:

1.2, Lemma
(a) If Vg A*isregular, then V@ is Biichi recognizable.
(b) If U g A* is regular and L ¢ A? is Biichi recognizable, then U-L is Biichi re-
cognizable.
c) If :._tw [t A® are Biichi recognizable, then L,v L, and F_ N FN are Biichi
recognizable.

Proof, (a) Since Ve = 2-?38. assume that V does not contain the empty word;
further suppose that there is no transition into the inital state q, of the finite auto-
maton which recognizes V. A Biichi automaton 2 recognizing V? is obtained from
the given automaton A4 by adding a transition (s,a,q,) for any transition (s,a,s’) with
s’ € F, and by declaring q, as single final state of 4".

The claims in (b) and (c) concerning concatenation and union are proved in the same
way as for regular sets of finite words. For later use we show closure of Biichi recog-
nizable sets under intersection. Suppose L is recognized by 41 = (Qq.91.41,F}) and L,
by A = (Q.9,45,F;). A Biichi automaton recognizing L; N Ly is of the form A =
AO_XONXB._.N_. (91.97:0),A,F), where the transition relation A copies Ay and A, in the
first two components of states, and changes the third component from 0 to 1 when an
Fy-state occurs in the first component, from 1 to 2 when subsequently an Fy-state
occurs in the second component and back to O immediately afterwards. Then 2 occurs
infinitely often as third component in a run iff some Fy-state and some F,-state occur
infinitely often in the first two components. Hence with F := waONxmwu we obtain a
Biichi automaton as desired. Q
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A representation of an w-language in the form L = mm_ cm.<me. where the U;, V;
are given by regular expressions, is called an @-regular expression. Since the construc-
tions in 1.2 are effective, the conversion of w-regular expressions into Biichi automata
and vice versa can be carried out effectively. Hence Biichi recognizable w-languages are
called regular @-languages; other terms used in the literature are @-regular, rational, @-
rational.

As is clear from equation (+), a Biichi automaton 2 accepts some word iff 4 reaches
some final state (say via the word u) which can then be revisited by a loop (say via
the word v). The existence of a reachable final state which is located in a loop of 4
can be checked by an effective procedure. Hence

1.3. Theorem
(a) Any nonempty regular w-language contains an ultimately periodic w-word (i.e.,
an o-word of the form uvvv...).
(b) The emptiness problem for Biichi automata is decidable. O

Vardi, Wolper [1988] show that the nonemptiness-problem for Biichi automata
("L(A) # @) is logspace complete for NLOGSPACE, and Sistla, Vardi, Wolper [1987]
prove that the nonuniversality problem for Biichi automata ("L(A) # AD
complete for PSPACE.

) is logspace

-

2. Congruences and Complementation

Closure of Biichi recognizable w-languages under complement is nontrivial and involves
an interesting combinatorial argument. As will be seen, it is not possible to work with
a reduction to deterministic Biichi automata.

2.1. Theorem (Biichi [1962])
IfL ¢ A? is Biichi recognizable, so is A%L. Moreover, from a Biichi automaton re-
cognizing L one can construct one recognizing A® - L.

For the proof we shall represent both L and A®L as finite unions of sets U-V®
where U and V are regular sets of a special kind, namely classes of a certain
congruence relation over A* of finite index. (A congruence is an equivalence relation
compatible with concatenation.) Let L = L(#) where 2 = (Q,q,,A.F) is a Biichi automa-
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W.v s’ if there is a run of 4 on w from state s to state s’ such that at

least one of the states in the run (including s and s’) belongs to F. The set

F
Wss

ton. Write s -

= F_o
,i={we >*_m-€.vw )
is regular. Now define the equivalence relation ~ g over A* as follows:
u~gv iff Vss'eQ (s S <> se>s and

N
F_o o F_o

s> 8 <=> m-«-v: .
The relation ~, is a congruence over A*, which is of finite index by finiteness of Q.
Hence each lb.&mwm is regular. (The 1&.&»& [w] containing the word w is the inter-
section of the sets ¢<mm. and 4<m s and >*-€mu. and >*-<<w ¢ containing w.)
A representation of L(4) and A®.L(2) in terms of the ~ g-classes will be provided by
the following lemma:

2.2. Lemma, .
(@) Let A4 be a Biichi automaton. For any ~g-classes U,V: If UvV® A L) = O,
then U-V® ¢ L(4). (Hence: If U-V® N (AP-L(2)) # B, then U-VP ¢ AP-L(2).)
(b) Let ~ be a congruence over A* of finite index. For any w-word . € A? there
are ~-classes U,V (even with V-V < V) such that a € U-V®.

Part (a) states a "saturation" property of ~g Wwith respect to 1(A) and AD.L(2). By
definition, a congruence ~ over A* saturates an w-language L ¢ AQif

UVPAL =@ implies U-V® ¢ L, for all ~classes U,V.
If ~ saturates L and also is of finite index, then
L= C~C.<8_ U,V ~classes, U-V® AL = 3);

the inclusion "2" holds by saturation and "¢" follows from part (b) of 2.2. Moreover,
since ~ has finite index, the ~-classes are regular and the union is finite; so L is a
regular @-language. For the congruence ~,, which saturates AQL(a) by (a) and is of
finite index, we obtain that A®-L(4) is regular. Note that emptiness of uv® A L(a)
(and hence also nonemptiness of U-V? A (A®-L(2))) can be decided effectively by 1.2(c)
and 1.3. Thus a Biichi automaton recognizing A® . L(A) can be constructed effectively
from the given automaton A So Lemma 2.2 suffices to show 2.1.

Proof of 2.2, (a) Suppose & = uvyv,... where u € Uand v; € V for i > 0, and assume
further that there is a successful run of 2 on o From this run we obtain states



§1+59m-- such that

B 5> 51 %2 5> 3
where we even have
s; -ﬂv $i41 for infinitely many i.

LetB e U-V® be arbitrary. We show that B € L(Z). We have B = u’v]vj... where v’ € U

and vi € V for i>0. Since U,V are xk.&wmmom and hence u 1.»:., Vi~a <.w. we obtain

qy > 8] > Sy > 53 >

u <._ V5
and -
F

8= —>Si4 for infinitely many i.

i
Vi

.

This yields a run of 4 on B in which some F-state occurs infinitely often. Hence B e
L(®).

(b) Let ~ be a congruence of finite index over A*. Given a € A®, two positions kk’
are said to merge at position m (where m > kk’), if a(k,m) ~ a(k’,m). In this case
write k = k’ (m). Note that then also k = k’ (m’) for any m’ > m (because o(k,m) ~
o(k’,m) implies o(k,m)a(m,m’) ~ a(k’,m)o(m,m’)). Write k =, k' if k= k’ (m) for some
m. The relation =y is an equivalence relation of finite index over ® (because ~ is of
finite index). Hence there is an infinite sequence _no,w?:. of positons which all belong
to the same =, -class. By passing to a subsequence (if necessary), we can assume k, > 0
and that for i > 0 the segments a(k,k;) all belong to the same ~-class V. Let U be

the ~-class of a(0.k ). We obtain
*) 3k, ((0k) e U A 3% (akgk) € V A 3mk, =, k (m))).

We shall show that (¥) implies o € U-V® and V-V < V (which completes the proof of
(b)). Suppose that k, and a sequence kjkj,... are given as guaranteed by (*). Again by
passing to an infinite subsequence we may assume that for all i 2 O, the positions
kys--.k; merge at some m < ki, ; and hence at k;, ;. We show akyki,) e V fori20.
From (*) it is clear that anokuv € V. By induction assume that Qow._m. +—v e V for
j < i. We know a(k ki) € V and that wo,f merge at ﬁi. Thus Qam,_miv eV, as
was to be shown. - Finally, in order to verify the claim V-V ¢ V, it suffices to show
V-V AV 2@ (since V isa class of a congruence). But this is clear since a(k,k;),
a(k;,k;, 1) and ok ks, 1) belongto V foranyi>0. Q

The use of the merging relation =, in the preceding proof can be avoided if Ramsey’s
Theorem is invoked (as done in the original proof by Biichi [1962]): One notes that ~
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induces a finite partition of the set {(ij)li < j}, by defining that (i,j) and (i’,j’) belong
to the same class iff a(ij) ~ a(’,j’). Now Ramsey’s Theorem states that there is an
infinite homogeneous set, i.e. a set :o.m_....v such that all pairs Qwh_v with k < 1 are in
one ~-class, in particular all pairs (i.ip,;) are in this class. Define V to be this ~-
class and let U be the ~-class of a(0,i)). Then a € U-Ve, - we gave the above self-
contained proof because mb:&n.o: (*) will be used again in section 4. :

By 1.2 and 2.1, the regular @-languages are effectively closed under boolean operations.
As for regular sets of finite words, this implies .

2.3. Theorem
The equivalence problem for Biichi automata is decidable.

Proof,  Given Biichi automata A, Ay, we have FA&_V = FSNV iff Fﬁhﬂv-ﬁngv @)
L)L) = @. A Bichi automaton recognizing the latter language can be con-
structed from 2,4, using 1.2 and 2.1, and be tested for emptiness by 1.3. ]

Let us consider the complexity of the complementation process and the equivalence
test. Given a Biichi automaton with n states, there are n? different pairs (s,s’) and
hence Oﬁunwv different ~ ,-classes. This leads to a size bound of OANE.NV states for
the complement automaton (Pécuchet [1986], Sistla, Vardi, Wolper [1987]). An improved
bound of OQR™°8™) is given by Safra [1988]; Michel [1988] shows that this bound is
optimal. The equivalence problem is considered in Alaiwan [1984] and Sistla, Vardi,
Wolper [1987]; they obtain an exponential time, resp. polynomial space bound for its
solution. Kurshan [1987] investigates the containment problem for regular w-languages
using a decomposition technique for Biichi automata.

The equivalence problem has also been studied in terms of equations between w-regular
expressions, building on work of Salomaa for classical regular expressions. A sound and
complete axiom system, consisting of 8 axioms and 4 rules, is given in Wagner [1976];
other (independent) approaches are found in Izumi, Inagaki, Honda [1984], Darondeau,
Kot [1984,1985]. See also Milner [1984]. Representations of regular @-languages by
further operations are studied in Mostowski [1977]. Litovski, Timmerman [1987] consider
the generation of w-powers (sets of the form W®); they investigate the structure of the
corresponding classes of generators (sets V such that VO = w®),

Lemma 2.2 above not only shows complementation for regular c-languages but also
serves as a starting point for an investigation of these -languages in terms of finite
semigroups. Recall that a language W < A* is regular iff there is a finite monoid M



10

and a monoid homomorphism f: A* — M such that W is a union of sets f HABV where
m € M. Since >*\1.» is a finite monoid (for any Biichi automaton 4), we obtain from
1.1 and 2.2:

2.4. Theorem
An w-language L ¢ A® s regular iff there is a finite monoid M and a monoid ho-
momorphism f: A* — M such that L is a union of sets ﬂ_AEv.Ql:nvve with
me € M and where e can be assumed to be idempotent (i.e. satisfying e-e = e).
Q

As will be shown in 2.6 below, there is a canonical minimal monoid with this property.
In other words, there is a coarsest congruence = over A* which saturates L. We in-
troduce = here together with two other natural congruences associated with an -
language L. Given L ¢ >€. define foru,v € A*

u~p v iff Vae >8?erAuv voe L)
(a right congruence; Trachtenbrot [1962], Staiger [1983])

u= v iff Vxe A*Vae >€OEQ.mFAnV xva e L)
(Jiirgensen, Thierrin [1983]) -

u= v iff Vxyze A* oav.ue €L <=> xé.ue el
and x@cuve el <=> xQﬁve el)
(Arnold [1985]).

The first two relations are direct analogues of the congruences associated with sets W
of finite words (which are of finite index iff W is regular and represent the minimal
automaton for W, resp. its transformation semigroup). The third congruence = views
two finite words as equivalent iff they cannot be distinguished by L as corresponding
segments of ultimately periodic ®-words. Regularity of L implies that ~p, =, =y are
of finite index (since they are all refined by the finite congruence ~4 if A is a Biichi
automaton which recognizes L). We note that the converse fails:

2.5. Remark (Trachtenbrot [1962])
There are nonregular sets L A? such that ~LsSL» and =, are of finite index.

Proof. For given B € A% let L(B) contain all ®-words that have a common suffix with
B. Then any two words u,v are lr%v-onc?an:r since for two w-words ua, va member-
ship in L(B) does not depend on u,v. So there is only one xr%v-&wmm clearly the same
is true for =L(py If we choose B to be not ultimately periodic, L(B) is not regular (by
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1.3). Furthermore, in this latter case also J.AE has only one congruence class. O

Staiger [1983] analyses under which additional conditions an w-language L is regular if
~L is of finite index (called "finite state" G»language there). It is shown that this is
true if L belongs to the class Gg N F of the Borel hierarchy (for definition of Gg .
Fg cf. section 5 below). '

We now show the mentioned maximality property of =L

2.6. Theorem (Arnold [1985])

An o-language L is regular iff =, is of finite index and saturates L; moreover,
= is the coarsest congruence saturating L.

Proof, If =L is of finite index and saturates L, then L = U AC.<8_G.< are = -
classes, UV@ A L # @)} and L hence is regular (see the remark following 2.2). Con-
versely, suppose L is regular; then (as seen before 2.5) =, is of finite index. We show
that = saturates L, i.e. UveAL=z20Q implies U-V® ¢ L for any =p -classes U,V. Since
U-VOAL is regular, we can assume that there is an ultimately periodic @-word xy® in
UV®P AL Ina decomposition of xy? into a U-segment and a sequence of V-segments,
we find two V-segments which start after the same prefix yy of the period y; so we
obtain w := xy™y; € U-V' and z := y,y"y; € VS for some m,n, r,s and Yiy2 = ¥, $0
that xwe = wz®. Denote by [w] and [z] the = -classes of w and z. Since [WlNU-VF = @
we have U-Vf ¢ [w], similarly VS < [z], and hence U-V®? < [w][z]®. It remains to
prove ?;.Ee < L. For contradiction assume there is a e [w][z]? - L, say o =
WZ1Z9--e i..n_,o W, =1, W, z; = z. Since o may be assumed again to be ultimately peri-
odic, we obtain p,q with o = éoN_...NvANv ‘L...Muc Eve. But then from wz® = VQS e L we
know énvﬁnve e L, so ioN_.:Nvﬁnﬁ +1-%p +pv € L by definidon of ~pandthusa e L, a

_contradiction.

It remains to show that = is the coarsest among the congruences ~ saturating L. So
assume ~ is such a congruence and suppose u ~ v (or: <u> = <v> for the ~-classes of u
and v). We verify u = v. We have: xcvﬁe e L iff Ax:wVANve < L (since ~ saturates
L) iff <xvy><z>® ¢ L (since u ~ v) iff xvyz® e L. Similarly one obtains #yuz)® e L iff
xQﬁve € Lithusu = v. Q

The preceding result justifies calling A¥/= “the syntactic monoid of L", with conca-
tenation of classes as the product. It allows to classify the regular -languages by
reference to selected varieties of monoids, extending the classification theory for re-
gular sets of finite words (Eilenberg [1976]). Examples will be mentioned in section 6.
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3. The Sequential Calculus

One motivation for considering automata on infinite sequences was the analysis of the
"sequential calculus”, a system of monadic second-order logic for the formalization of
properties of sequences. Biichi [1962] showed the surprising fact that any condition on
sequences that is written in this calculus can be reformulated as a statement about
acceptance of sequences by an automaton.

For questions of logical definability, an w-word & € A% is represented as a model theo-
retic structure of the form o = Ae.c.i‘A,AOmvmm >v, where (©,0,+1,<) is the structure of
the natural numbers with zero, successor function, and the usual ordering, and where
Q=1lie olad) = a) (for a € A). The corresponding first-order language contains vari-
ables x,y,... for natural numbers, i.e. for the positions in w-words. Typical atomic for-
mulas are "x+1 < y" (“the position following x comes before y") or "x € Q," ("position
x carries letter a"). In this framework, the example set ﬁ_ c ?F&e of section 1 (con-
taining the ®-words where after any letter a there is eventually a letter b) can be
defined by the sentence

Pp: Vx(xe Qu—o3y(x<y A ye Q).
We shall also allow variables X,Y,... for sets of natural numbers and quantifiers ranging
over them. For example, they occur in a definition of the w-language FN of section 1

(containing the @-words where between any two succeeding occurrences of letter a
there is an even number of letters b,c):

Pyl VxVy(xe Qy A yeQ, A x<yA-3z(x<zAz<yazeQ)—
IX(xe X A Vz(ze X nztle X) Anye X))

Note that the set quantifier postulates a set containing every second position starting
with position x ; this ensures that the number of letters between positions x and vy
is even. - The sequential calculus consists of all the conditons on @-words which
can be written in this logical language.

One calls this framework also mona over the signature with
0,+1,<, and the predicates Q,, due to the quantification over sets, which are unary
relations and hepce "monadic second-order objects”. We shall denote it S1S, for "sec-
ond-order Eoo—% of one successor” with the predicates Q, for a e A. (Below in 3.1 it
will be seen that < is second-order definable in terms of successor and hence inessen-

tial). 2

H

Formally, S1S, is built up as follows: Terms are constructed from O and the variables
X,Y.... by applications of "+1", atomic formulas are of the fom t = t’, t < t’, t € X,
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te Ow (for a € A) where t, t’ are terms and X is a set variable, and S1S A-formulas
are constructed from atomic formulas using the connectives —,v,A,—, ¢> and the quan-
tifiers 3,V acting on either kind of variables. We write ¢(X1,--X,) to indicate that at
most the variables Xy,.., X, occur free in @ (i.e., are not in the scope of a quantifier).
Formulas without free variables are called sentences. If ¢ is a sentence, we write
Q = ¢ to indicate that ¢ is satisfied in @ under the canonical interpretation described
above. For instance, if o = abaabaaabaaaab... and @ is as before, we have « | ¢;. The
w-language defined by an S1S >.mo=8=o\o emm A

L(9) = (ae A® g [ ¢).

In the analysis of monadic second-order definability it is sometimes convenient to
cancel the predicate symbols Q, and use free set variables Xy in their place. The re-
sulting formalism will be called S1S. We then use formulas ¢(X1,...X) without the
symbols Q, and interpret them in @-words over the special alphabet {0,1})". In
o e ({0,1)MP, the formula x € X says that the x-th letter of o has 1 in its k-th com-
ponent. As an example, consider the following sequence o € Qo.:Nve. where the letters
from (0,1 wu are written as columns:

. 10
g

10101
00000

[=J =]

1
1
Since in o there are infinitely many letters with first component 1 and second compo-
nent 0, we have

g F VxJy(x<yaye X{a-ye X))
Formally, we represent a € ({0,1)mH® by the structure @ = Ae.o.i.A.vT.:._u:v where vw =

EAQQVW = 1}, writng ¢ F O(X{....X,) Iff @ holds in o with Py as interpretation of
X} Furthermore, for an S1S-formula ¢ = ¢(Xy.....X,)) define L(¢) = {a € ({0,] Ml ok

QX p,.Xp)).

By embedding a given alphabet A into a set {0,1)" for suitable n, S1S A-sentences can
be reformulated as S1S-formulas O(X1.....Xp). (Instead of "x e Q," write the correspon-
ding conjuncton consisting of formulas "x € X" and "~ x € Xy™:) Depending on the
alphabet under consideration we shall henceforth call an w-language L sifhply definable
in_S1§ if for some sentence ¢ with the symbols Q. resp. for some formula ¢ =
X _.:..undv without the Q,, we have L = L(g).

3.1 Biichi’s Theorem [1962]
An o-language is definable in S18 iff it is regular.
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Proof. The direction from right to left is easy: Let 2 = AObo,Pm.v be a Biichi auto-
maton over the alphabet A, and assume Q = (0,..,m} and q, = 0. The existence of a
successful run on an w-word o € A® can be expressed by the existence of a suitable
(m+1)-tuple of sets Yy Ypps Y; contains the positions where the run assumes state i
L(4) is defined by the sentence

m.&o:.m%B A\/mu».m —Jy(y e Y;aye ﬁv A Oe <o
AVx /\Q,P.cmbonm Y; A xeQ, A xtle J.v
A <mmm<xm<9A< AYyeY)).
We shall prove the converse for S1S-formulas GOAH.:..x:V interpreted in w-words over
{0,1)™ as explained above. It is to be shown that the above type of formula represents
a normal form for S1S-formulas (Biichi’s "automata normal form"). We proceed in two
steps: First S1S is reduced to a simpler formalism 81S,, where only second-order varia-
bles X- occur and the atomic formulas are of the form uﬁ c um_ A._Nm is a subset of vm..v

and m:ooomv = um A_.Nm.vm are singletons {x}, {y} where x+1 = y"). In a second step an
induction over mﬁO-mQ.BEmm ¢(Xy....X,,) shows that L(9) is Biichi recognizable.

(1) Reduction of S1S to S1S. Carry out the following steps, starting with a given
S1S-formula:

(i) Eliminate superpositions of "+1" by rewriting, e.g.,

"(x+1)+1 e X" as "ydz(x+l =y A y+l=z A ze X)".

(i) Eliminate the symbol 0 and then the symbol < by rewriting, e.g.,

"0e X" as "Ix(xe X A = 3y(y <x))",
"x<y" as "VX(x+le X A Vz(ze X2 z+le X) 5 ye X)".

We arrive at a formula with atomic formulas of type x = y, x+1 =y, and x € X only.
For the remaining step we use the shortwritings

"X=Y" for "XcY A YcX","X2Y" for "-X=Y",
"Sing X" ("X is a singleton") for
"YXYCXAY#EX A TZZX AZzEX A Z2Y)"
»("there is exactly one proper subset of X").

(iii) Eliminate first-order variables, by rewriting, e.g.,

"Vx3y(x+l=y A ye Z)" as
"VX(Sing X - 3Y(Sing Y A SuccX)=Y A YCZ))"

We obtain a S1S -formula equivalent to the given S1S-formula.
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By induction over S1S -formulas we
show that for any S1S-formula @(Xy,...X) there is a Biichi automaton 4 over (0,1)"
with L(2) = L(¢). As typical examples of atomic formulas consider X; ¢ X, and
Succ(X;) = X. Corresponding Biichi automata are

Wou W 0
1,1 i . 0 -
() | OV oo Q
-0 and —.-%,.. 1,0

For the induction step it suffices to treat -, v, and 3 (since A, —, ¢, V are expressible
in terms of —, v, 3). Cases — and v are clear, by closure of the regular w-languages
under complement and union. Concerning 3, we have to show closure of the regular ©-
languages under projection: Assume, for example, that for the mHmo-monBEu eor.xuv a
Biichi automaton A over 3.:~ exists with L(4) = L(¢); we have to find an automaton
A over {0,1} for the formula ¢’(X;) = 3X, ¢(X1.X,). We obtain A’ by changing the
letters of the transitions of 4 from W , w to 1, resp. from w , w to 0. A success-
ful run of 4’ thus "guesses" a second component for the given input o € (0,1}®, and for
the resulting sequence from Qo.:Nve it is a successful run of A Thus A’ recognizes
L().a

Biichi’s Theorem shows that "global” properties of sequences, as formulated in S1S-
conditions by means of quantifiers over arbitrary elements and sets, can be given a
strictly "operational” meaning, represented by the stepwise working of a Biichi automa-
ton. From a dual point of view, Biichi automata are, despite their conceptual simplicity,
a very powerful formalism for the specification of sequence properties.

With minor modifications the above result also holds for sets of finite words. Thus
"regular" is equivalent to "monadic second-order definable” for languages as well as for

" o-languages. In a finite word w of length k, the variables x,y,... refer to the positions

of w (from 1 to k) and the variables X,Y,... to subsets of {1,....k}. Moreover, the suc-
cessor function has to be redefined for the maximal element k; we may set, for in-
stance, k+1 = k. Also a suitable convention for the empty word is adopted (it should
satisfy universal sentences but not existential sentences). Then with the resulting
notion of monadic second-order definability for sets W ¢ A* one obtains

3.2. Theorem (Biichi [1960], Elgot [1961])

A set W ¢ A* is regular iff it is definable in S1S (interpreted over finite word
models).
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The proof involves some obvious modifications of 3.1. For example, the formula de-
scribing a successful run of an automaton on a finite word now states that at the last
position of the word a combination (state, letter) is entered which leads to some final
state. Q

Looking back at the projection step of 3.1, one notes that it works also for a formula
¢ = wx— @(X1), which is a sentence of S1S, ie. a formula without free variables. The
resulting automaton A4’ has unlabelled transitions and in this sense works "input-free".
A admits a successful run iff the existential sentence @’ is true over the domain ® of
the natural numbers. Since the existence of a successful run is effective (see ~.mv.,§m
yields:

3.3. Theorem (Biichi [1962])
Truth of sentences of S18S is decidable. O

The decision problem for S1S was a main motivation in Biichi’s investigations. Automata
represented a manageable normal form of S1S-formulas which was simple enough to be
decided effectively.

If set quantification refers to finite sets only, one speaks of the weak monadic theory
of successor, denoted WS1S. Decidability was shown earlier for WS1S than for S1S (in
connection with the characterization of regular sets of finite words, by Biichi [1960],
Elgot [1961]); it also follows from 3.3 by an interpretation of WS1S in S1S. (One con-
siders S1S-sentences in which set quantifiers are relativized to finite sets, by writing,
e.g., "3X ¢X)" as "IX@AyVx(x € X = x <y) A ¢(X))", and noting that < can be elimi-
nated as before when using only finite-set quantifiers.) WS1S was the first decidable
theory shown to be intractable in the sense that there is no polynomially time bounded
(even elementary time bounded) decision procedure for it (Meyer [1975]).

Theorem 3.3 can be used to derive further interesting decidability results. For example,
one concludes that Presburger arithmetic (the first-order theory of additon over w) is
decidable. The idea is to represent numbers in binary notation' and interpret the re-
sulting (finite) O-1-sequences by (finite) sets. It is easy to define the relation x+y = z
in terms of this interpretation; one simply describes the process of digit by digit cal-
culation of the sum (using successor to proceed to the next digit, and some auxiliary
set variable to represent the carry). In this way sentences in the language of Presbur-
ger arithmetic can be translated into the language of WS1S where of course number
quantifiers become set quantifiers. Now the decision procedure for WS1S can be app-
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lied. As noted already by Biichi [1962], this idea extends to the case where infinite bi-
nary expansions of real numbers are considered. Thus also the first-order theory of
(R,+), the theory of addition of the reals, is decidable. Moreover, the fact that any
S1S-definable set of 0-1-sequences contains (by 1.3) an ultimately periodic sequence
(which is the expansion of a rational number) can be used to show that the first-order
theories of (R,+) and (Q,+) coincide.

The a.@nwawwEQ result on S1S has been extended in many directions. One of them,
Rabin’s "tree theorem” (stating decidability of the monadic theory S2S of two successor
functions, i.e. of the binary tree) will be discussed in section 11 below. Another kind
of extension is concerned with addition of further number theoretic relations or func-
tions to the theory S1S (besides successor and order). Elgot, Rabin [1966] showed that
one may add the unary predicates "is a factorial" or "is a power of k" (for k 2 2)
without destroying decidability. However, by Robinson [1958], S1S enriched by the
function x +~ 2x already allows to interpret full first-order arithmetic and thus is un-
decidable. More recent results are discussed in Semenov [1984].

Biichi [1973] extended his proof of 3.1 to transfinite ordinals and showed that the
monadic second-order theory of (01,<) is decidable. Automata working on transfinite
sequences were further considered in Choueka [1978], Wojciechowski [1985]. Siefkes
[1970] and Biichi, Siefkes [1973] presented axiomatizations of the monadic theories of
(®,<) and (01,<)- In subsequent work of Gurevich, Magidor and Shelah [1983] it became
clear that from ®, onwards the monadic second-order theory of an ordinal depends on
set theoretic hypotheses.

A fundamental progress in the study of monadic theories was made by Shelah [1975].
He developed a model theoretic technique for obtaining decidability results, which does
not refer to automata and is applicable to a larger class of structures. A central idea
in this approach is to "compose" a finite fragment of the theory of an ordering (given

- say by the formulas up to some quantifier-depth) from the corresponding theory-frag-

ments of suborderings and the way these suborderings are arranged. In a series of
intricate papers Gurevich and Shelah applied the method to show strong decidability
results, in particular concerning dense orderings and trees. However, again based on
Shelah [1975], they also showed that the monadic second-order Eooq of (R,<), the
ordering of the real numbers, is undecidable. For an exhaustive presentation of the
subject we recommend the survey Gurevich [1985].

Recently the automata theoretic aspects of the monadic theory of the integers, i.e. of
the ordering (Z,<), have attracted increasing attention. This theory is closely related to
problems in ergodic theory and symbolic dynamics (cf. Blanchard, Perrin [1980]). Besi-
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des this, interesting phenomena have to be dealt with which are not present in the
theory of «-languages. In particular, words over the ordering of the integers ("biinfi-
nite words") have no distinguished position, like the first position of an @-word. Thus
two Z-words are identified if they can be transformed into each other by a finite
shift; and a natural automaton model does not refer to some "start position" but works
on Z-words from left to right, "coming from infinity" and "going to infinity". A detail-
ed development of the theory of regular Z-languages, establishing results analogous to
the case of w-languages, is given in Nivat, Perrin [1986], Beauquier [1984], and Perrin,
Schupp [1986].

4. Determinism and McNaughton’s Theorem

A simple argument, given in 4.2 below, shows that deterministic Biichi automata are not
closed under complement and hence strictly weaker than Biichi automata in general.
Nevertheless, by refining the notion of acceptance, it is possible to define a type of
deterministic automaton which characterizes the regular -languages. In the present
section we discuss this fundamental determinization theorem, due to McNaughton [1966].

If a deterministic finite automaton A, which recognizes the set W < A*, is used as a
Biichi automaton, it accepts an w-word o iff infinitely many prefixes of o lead 4 to a
final state, i.e. belong to W. Collecting these @, we obtain the "limit" set

m W := (o e A®]3% o(0,n) € W).

By the mentioned conversion of finite automata into deterministic Biichi automata and
vice versa we have immediately:

4.1. Remark
An o-language L ¢ A? s recognized by a deterministic Biichi automaton iff
L = lim W for some regular set W c A*. O

The following example shows that not every regular w-language is of this form; at the
same time we see that closure under complement fails for deterministic Biichi automata:

4.2. Example (Landweber [1969])
Let A={ab) and L := {a € A®]a contains only finitely many letters a)
(e, L=A%. lim(b*a)*). Then L is not of the form lim W with W < A*.

Proof, Assuming L = lim W one obtains a contradiction as follows: For some ny,
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bl ¢ W (because b2 e L = lim W). For this n; there is some ny such that
b™ab™ & W (because b"1ab® € L = lim W). Proceedirig in this way, one obtains a
sequence of words cn_mczu.:mc:_n € W (k = 1,2,...). Hence the w-word cEwc:N... is in
lim W and thus in L, contradicting the definition of L. Q

A suitably generalized acceptance condition for deterministic automata on @-words
which captures the power of Biichi automata was defined by Muller [1963] (in connec-
tion with a problem in asynchronous switching theory). A Muller automaton over the
alphabet A is of the form 4 = (Q9y,8,9 where Q is finite, 3G Q&QXxA 5 Qis
the (deterministic) transition function, and ¥ < 2Q a collection of final state-sets. 4
accepts an @-word a if those states which 4 assumes infinitely often in its unique run
o on « form a set occurring in %, ie. In(c) € % An o-language L < A? is called Muller
recognizable if it consists of all w-words over A accepted by some Muller automaton.
(There is also a nondeterministic version of Muller automaton, where a transition rela-
tion A  QxAxQ replaces 8, and acceptance means existence of a run G as described
above. The w-languages recognized by nondeterministic Muller autornata are definable in
S1S - by the same idea as in Theorem 3.1 - and hence obviously coincide with the
regular @-languages. In the sequel we consider only the deterministic version.)

Each deterministic Biichi automaton 4 = Ao.no,m.mv is equivalent to a Muller automaton,
namely to the automaton 4’ = AObo.m.S where ¥ consists of all subsets of Q having
a nonempty intersection with F. Furthermore, the Muller recognizable -languages are
closed under boolean operations: If 4 = Ao.no.m.S recognizes L, then Aobo.m.mo.uo
recognizes A®-L. Given 4 = (Qq,8.5 and 2° = (Q'.9°,,8’,F) recognizing L and L’,
respectively, L U L’ is recognized by the product automaton of A4 and A’ where the
collection of final state sets contains HS_bC...:Sabw: iff _ET:..@_L € F or
Sw..:bm—_ € F. These observations, together with 4.1, yield the direction from right to
left of the following lemma:

4.3. Lemma

An @-language L ¢ A® is Muller recognizable iff L is a boolean combination (over
>8v of sets lim W where W < A* is regular.

Proof, For the direction from left to right, consider a Muller automaton 4 =
(Q9y,8.9 recognizing L; write <<a for the set of finite words recognized by the finite
automaton (Q.q,,,8,{q}). By definition, 4 accepts o iff for some F e 7, a belongs to
lim a<n for all g € F and a does not belong to lim W_ for all q € Q-F. Thus we get

q
the desired representation
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L=Uge s( N geplimWg N NgeQ.p-limWy. O

We now show that Muller automata and Biichi automata are equivalent in recognition
power. Note that this reproves closure of Biichi recognizable sets under complement.
The main difficulty lies in the fact that a membership test "o € U-VO?" as performed
by a Biichi automaton, i.e. the test whether a can be split into segments uvyv,vj...
with u € U and v;
has to be reduced to a deterministic procedure which should depend only on finite

€ V, involves "unlimited guessing” in choosing the segments v;; this
information about finite prefixes of o.

4.4. McNaughton’s Theorem [1966]
An w-language is regular (i.c., Biichi recognizable) iff it is Muller recognizable.

The direction from right to left follows from 4.3 and the closure properties for Biichi
automata. For the converse, it will suffice, again by 4.3, to show:

4.5. Theorem
Every Biichi recognizable «-language is a finite union of sets of the form
lim W N ~lim W’ where W,W’ ¢ A* are regular.

Before turning to the proof, we mention that 4.5 motivates also a modified version of
Muller automaton, the sequential Rabin automaton introduced by Rabin [1972]). Here the
collection ¥ of final sets (in a Muller automaton AObo,m,Sv is replaced by a collection
Q= NP?CMV::.P:‘C:z of "accepting pairs” (L;,U;) where r.cm < Q. The acceptance
condition for a run of the resulting automaton states that for some i € {1,..,n} the L;-
states occur only finitely often but some Uj-state occurs infinitely often in the run. If
W, (resp. Wj) is the regular language recognized by the finite automaton (Q.q.,8,U;)
(resp. (Q.q,,0,L;)), then the automaton (Q.q,:8.Q) recognizes the w-language

U 2, (im W; N ~lim W}),

i.e. a language as required in 4.5. From 4.3 and 4.5 it follows that the Rabin automata
AObo.m.bv are equivalent to Muller automata.

Proof of 4.5, Let 4 be a Biichi automaton. By Lemma 2.2 it suffices to consider the
case L(2) = U-V® with ~ .s.&mmmom U,V and V-V ¢ V. We use the notation introduced in
the proof of 2.2, in particular the merging relation =,. (By k =, k' (m) we mean here
that a(k,m) ~ 4 a(k’,m).) The condition & € U-V® was shown to be equivalent to

21
*) 3k, @Ok e U A 3% (alkok) e V A 3mky =y k @m))).

in same ~ h.&mmm

\llu\fﬂ
e

o ¥ i
I i

Y
Q

Call a segment Q.cno,Bv a V-witness if for some k with wo <k <m m is the
smallest position such that ano._c € V and wo = k (m). It is not difficult to verify
that the set c<< C A* of V-witnesses is regular. Since for any k as described in (*)
there is a unique V-witness, we obtain that (*) is equivalent to

% 3k, @0k e U A 3%m a(k,m) isa V-witness),
in other words:
o e Ulim Wy,.

Our aim is to rewrite (**) as a boolean combination of conditions "3®m a0m) e W"
(with regular W); so we want to exchange the quantifiers wwo and 3%m in (**). In the
desired condition of the form ..wewao ..." we have to ensure that k., may be chosen
fixed (independent of the m). The idea is to postulate infinitely many prefixes o(0,m)
which admit a decomposidon a(0,m) = QAo.wch.Awo.Bv with Q.Ao,_nov € U and a(k,,m)
€ Wy, and to guarantee that only finitely many choices of k, occur while m in-
creases. A -simple approach would be to refer always to the smallest k, < m with
a(0,k,) € U. However, this k, might not have the property that there are infinitely
many m with a(k,,m) € Wy;: It may happen that only some greater ky with 2(0,k;) € U,
which does not merge with k., has this property. Suppose there are exactly r =y
classes with elements k such that a(0,k) € U, ie. there are r positions, say | ST .
in a which pairwise do not merge and satisfy a(0k;) € U ("case r"). Then k, may be
chosen as one of these positions. So we require in "case r* for infinitely many m the
existence of wm....._n_. < m which pairwise do not merge at m and satisfy Qno.wb e U.
We express that for increasing m these k; remain below a fixed finite bound (so that
only finitely many choices of k, are possible) by saying that for only finitely many m
a new choice of k,...,k;. (or just of the maximal position k) is necessary.

To give a precise formulation, let us call k r-appropriate for m iff k = _m. for some
r-tuple c&.....w—.v with 0 < k] <. < k, < m such that a(0k;) € U for all k; and not
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f. =y J (m) for _n_ # _m If in addition Qenm.Bv e 4<< for some _o_. we say that k is
r-appropriate for m by Wy, Finally, a new k r-appropriate for m is a number
which is r-appropriate for m and fails to be r-appropriate for any m’ < m. Then,
assuming "case r", (**) amounts to the following:

%), 3°m [there exists k r-appropriate for m by Wyl
AT%nm {there exists a new k r-appropriate for m]).

Both conditions [...] and {..} above depend only on the segment a(0,m); indeed, by a
tedious programming exercise one can design two finite automata accepting exactly
those words a(0,m) satisfying these requirements. (As an alternative, one may note
their definability in WS1S and apply 3.2.) Denote by W, and W, the (regular) sets of
words o(0,m) satisfying [...], resp. {...}. Then A**Jn says that

ae =8c<n31=B¢<m.

The disjunction of the conditions (***). over all possible r is equivalent to (**).
Since r cannot exceed the finite number n of different ~ gclasses, we obtain

U 2 (lim W, N ~ lim W)

as the desired representation of U-V®, Q

McNaughton’s Theorem and its proof have interesting consequences, among them fur-
ther characterizations of the regular w-languages. For example, parts (c) and (d) of the
following result offer a simple inductive construction of the regular sequence sets and

show the surprising fact that S1S and the weak theory WS1S have the same expressive
power:

4.6. Theorem
For an @-language L < A the following conditions are equivalent:
(a) Lisregular.
(b) L is a finite union of sets U-lim W where U,W C A* are regular.
(¢) L can be obtained from A® by finitely many applications of union, complement

(wr.t. A®) and concatenation with a regular set W ¢ A* on the left.
(d) L isdefinable in WSIS.

Proof, Implication (a) — (b) is clear from the proof of 4.5 (cf. condition (**)). For
(b) - (c) it suffices to represent im W as stated in (c), supposing that W is regular.
Let (Qq,,5,F) be a finite automaton recognizing W; set 33 = {we A* | 3(p,w) = q).
We have lim W = ~ L where L contains all @-words which have only finitely many

prefixes in W, i.e. no prefix in W ‘or a last prefix in - W. Note that o(0,m) is a last
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prefix of a in W iff for some state peF, mSo.nAo.va = p and there is no n > m and no
q € F with 8(p,0(m,n)) = g. This yields the equation

L = ~W-AD U Uy pW - ~(Ngeg Wpq 0 AD-AD).

Wagp

So L and hence lim W are represented as desired.

Implications (c) — (a) and (d) — (a) are obvious; so it remains to show (a) — (d). By
McNaughton’s Theorem, a regular -language L is a boolean combination of sets lim W
with regular W. From a WS1S-formula 9(X which defines W by 3.2 we obtain a WS1S-
formula ﬁw@v which expresses over w-words that the prefix up to position y satisfies
ﬁwo (use relativization to the positions < y). Now L is definable in WS1S by a boolean
combination of formulas Vx3y(x <y A y(X,y)). Q

There are several fully worked-out expositons of McNaughton’s Theorem; we mention
Rabin [1972], Schiitzenberger [1973), Biichi [1973], Trachtenbrot, Barzdin [1973], Choue-
ka [1974], Eilenberg [1974]. The above proof of 4.5 follows Thomas [1981]. A very
elegant automaton construction appears in Safra [1988]; it yields for a Biichi automaton
with n states a deterministic automaton, accepting by Rabin’s condition, with
O@n._omﬁvv states and n accepting pairs. Characterization 4.6(b) of the regular w-lan-
guages is implicit in McNaughton [1966] and was given by Choueka [1974] and Eilen-
berg [1974]; it shows that Biichi automata with very restricted nondeterminism suffice
to recognize the regular w-languages (cf. also Karpinski [1975]). Arnold [1983a] proves
a related result on non-ambiguous automata: Any regular @-language is recognized by a
Biichi automaton which admits on any given input at most one successful run. Condition
4.6(c), noted in Thomas [1979] in a logical serting, was given a simplified proof by
Choueka, Peleg [1983]. Characterization 4.6(d) appears in Thomas [1980), where also a
generalization to arbitrary limit ordinals is shown.

Finally, we mention that the question of determinism has also been studied for finite
automata working in a reverse direction (from right 1o left) on -words: Mostowski
[1982] and Beauquier, Perrin [1985] show that " inist 1a" are as power-
ful as Biichi automata. The equivalence of (nondeterministic)
words to Biichi automata is shown in Pécuchet [1985].

on -
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5. Acceptance conditions and Borel classes

Definability of sequence sets is a traditional subject in set theoretic topology and
descriptive set theory. Automata on -words constitute a special type of “finitary"
definability of sequence sets and lead to combinatorial problems not considered in the
classical mathematical literature. (McNaughton’s Theorem is an example.) Conversely,
several basic topological notions, in particular in connection with the Borel hierarchy,
have a natural meaning in the context of automata and help to systematize the accep-
tance conditions. In the present section we introduce the classification of acceptance
modes for automata in a topological setting, and indicate applications to sequence
properties which arise in distributed systems. For a more complete discussion see the
surveys Hoogeboom, Rozenberg [1986] and Staiger [1987a].

We refer to the Cantor topology on the set A®, where A is a finite alphabet. This
topology may be characterized in several equivalent ways:

- as the product topology of the discrete topology on A,
- by declaring as open sets all w-languages W-A® with W < A*, or the sets
ﬂi.>e. as a basis,
- by the metric d: A® x A® — R, given by
0 ifa=p

1/2® with n = min{i| a(i) = B()) else .

d(a,B) =

Taking the example A = (0,1}, the elements of the space A® may be considered as
paths through the infinite binary tree (where "0" means "branch left" and "1" means
"branch right"). Two paths o, are close to each other if they have a long commor
initial segment. The so-called Cantor discontinuum is a linearly ordered representation

of the space, corresponding to the left to right ordering of the paths in the binary
tree.

Following classical terminology we denote by G the class of open ®-languages and by
F ("fermé") the class of closed w-languages. The Borel hierarchy is obtained by taking
alternately countable intersections and unions starting with -languages in G or F.
One denotes by Gg (Fg) the countable intersections (resp. unions) of sets in G (resp.

F), by qu Q..va the countable unions (resp. intersections) of sets in Om (resp. _uov.
etc. Then a hierarchy of the form

open = G Gg qu
closed= F >< F >< mmVA:.

(o) (o]

results, where each line indicates a proper inclusion. A set L belongs to some class

25

in the hierarchy (say L € Gg) iff its complement is in the dual class (in the example,
~Le mov.

Our aim is to locate the regular w-languages in the Borel hierarchy. As a preparation
note two useful facts about open, resp. closed sets. First, an open set W-A® s equal to
<<.o.>8 where W contains all words from W with no proper prefix in W. Any two
words in W, are then incomparable w.r.t. the prefix relation; if this holds and W-AQ =
WA®? we say that W, is a minimal basis for W-A®. The property of being a minimal
basis will not be destroyed if we replace, for some n, a word w € W, by all words in
{w)-A™, Using thus longer and longer words in minimal bases, it is possible to re-
present a sequence ¢<_.>8. ¢<~.>8. ... of open sets by a sequence of pairwise disjoint
minimal bases W;.

Secondly, note that the closed sets in the Cantor topology do not coincide with the
sets im W < A®. The topological closure of a set L consists of all sequences that
have arbitrary long common prefixes with @-words in L. Thus the set L = lim a*bb* is
not closed since a® is in the closure of L but does not belong to L itself. The sets
lim W are more general than closed sets in the following sense:

5.1. Remark i
«
L =lim W for some W ¢ A* iff L isin Qm.

Proof. Assume first L € G, ie. L = () 5, W A®. Wlog. we have Wy 2 W; 2 ..
(if not, replace ¢<= by D i<n imv. Choose a sequence W7, .T of disjoint minimal
bases (as explained above) of ¢<o.>8. <<_.>8..,. and set W := n>o Wq- Then a e lim
W iff a has a prefix in W} for infinitely many n iff a has a prefix in W for
infinitely many n iff (by monotonicity) a € N n>o ¢<=.>8. ie. a € L. Conversely,
suppose that L = lim W. Denote by A3 the set of words of len gth 2n over A. We have

EmW= () 5, (WA AZY)A®L
and henceL e Gg. O

For a discussion of the topology induced by the lim-operation as topological closure
see Redziejowski [1985]. - By 5.1 and McNaugthon’s Theorem, the regular -lan-
guages occur very low in the Borel hierarchy:

5.2. Theorem

Every regular o-language L is a boolean combination of Gg-(and/or Fg-)sets; in
particular, L € QmGDﬁQm. Q
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We now discuss some interesting refinements of this result due to Landweber [1969],
which yield a characterization of the regular sets L ¢ A® occurring on the levels G, F,
Gg, Fg of the Borel hierarchy, and establish effective procedures for deciding whether
a regular set is of one of these types.

Let 4 = (Qq,,5,F) a deterministic finite automaton over A and o € A® 2 1-accepts
a iff 3n 8(q,, o(0,n)) € F, and 4 2-accepts o iff 3%, 8(q,,0(0,n)) € F. Thus 2-accep-
tance is Biichi acceptance for deterministic automata. The dual notions, called 1’- and
2’-acceptance, arise by changing 3n to Vn and 3%n to "for almost all n"; by 3-accep-
tance the recognition by Muller automata is meant. Now L < A® is called 1- (resp. 2-)
recognizable if L consists of the @-words 1- (resp. 2-) accepted by some determin-
istic automaton. Since L is 1- (resp. 2-) recognizable iff L = W-A® (resp. L = lim W)
for some regular set W, one calls such w-languages regular-open (resp. regular-Gg).
The following result shows in particular that regular w-languages which are open are in
fact regular-open, similarly for Gg:

5.3. Theorem (Landweber [1969])
(a) A regular w-language is in G iff it is 1-recognizable.
(b) A regular w-language is in Gg iff it is 2-recognizable.
(¢) It is decidable whether a regular w-language (represented say by a Muller
automaton) is 1-recognizable, resp. 2-recognizable.

Analogously, F and F; can be characterized in terms of 1’- and 2’-recognizability.
Moreover, as Staiger, Wagner [1974] showed, Gg N Fg4 contains exactly the boolean
combinations of 1-recognizable w-languages. - 5.3 will follow immediately from

5.4. Lemma
There are effective procedures transforming any Muller automaton 4 into a Muller
automaton Aj, resp. Ay, such that FSHV is 1-recognizable, _..QNV is 2-recognizable,
and

L(A) e G iff A=A ; LA e Om iff A= 2.

Proof, Assume 4 = Ao,aob.ﬁ is a Muller automaton, w.l.o.g. such that each q € Q is
reachable from q (i.e., there is w € A* with mEo.iv = q). By a "loop of 4" we shall
mean a strongly connected subset of 4 (considering 4 as a directed graph). ‘

(a) Call a state q of A an F-state iff q is located in a loop of A which forms a set
from 7. Define 2; := (Qq,5,%;) by extending ¥ to F1 such that F; contains all loops
of 4 which are reachable from some Fstate of 4 Let 3 be the union of the sets
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F e 7. A is equivalent to Ao.ao‘m,mt with 1-acceptance. Namely, some state q € Fy
is reached by Ao.ao.m.mt on input a iff Ay assumes on a ultimately the states of a
loop from #;. It remains to show that L(4) € G implies 4 = 4. For this we have to
verify 7} © % Let F € #; so there is an Fstate q of 4 from which the loop F can
be reached. Since q is an F-state, we can choose a sequence o inducing 4 to assume a
loop from ¥ in which q is located. By assumption, L(4) = W-A? for suitable W; so some
prefix w of o is in W. Since all sequences wp are in L(4), any loop reachable from
q, and hence F, is realized via some w-word in L(4). Thus Fe .

(b) Ay is constructed from A4 by enlarging ¥ to F, as follows: For any state q in a
loop forming a set F € % and any set E forming some loop containing q, add F U E
to % _A.»Nv is 2-recognizable: For this we construct a Biichi automaton working as 4
does, but further equipped with a "state memory" S which collects the visited states
and is set back to @ whenever S includes some Fset. So the states are of form
@,S) € Q x No, and from (g,S) the Biichi automaton passes to state (8(q,a),S\w{d(q,a)})
by letter a if S U nmﬁbx.moﬂm not include a set from #, otherwise the transition goes
o (8(q,a), @). The initial state is (3,9), and the states (q,J) are the final ones. 2-
acceptance for this automaton means that some loop extending a loop forming an F-set
is ultimately assumed on the given input, i.e. that A, accepts. Suppose now L(2) e Gg,
say L(4) = lim W, and consider two loops F and E of 4 as above with common
state q. We show F U E € # (and hence ¥ = F)- Pick w such that mSo,iv = q. Via
the loop F we can extend w to a sequence a of L(4) (= lim W) and hence reach
some finite prefix of a in W, say wu; € W. From wu; we may complete the loop F
back to state q (say via v;) and continue further through the loop E, again back to
q (say via wj). Repeating the process, we obtain a sequence WUV W{lyVyWy ... Which
is in lim W and causes A to assume ultimately the states in F U E. Hence F U E € %
Q

The notions of 1-, 2-, and 3-acceptance have been investigated for various other
machine models (besides finite automata), for example pushdown automata (Cohen, Gold
[1977]), deterministic pushdown automata (Cohen, Gold [1978], Linna [1977]), Petri nets
(Valk [1983]), and Turing machines (Cohen, Gold [1978a,1980], Lindsay [1986]). Staiger
[1986] contains a comprehensive study of recursive (i.e. Turing machine recognizable)
o-languages and their classification in the Borel hierarchy as well as in the arithmeti-
cal hierarchy of recursion theory.

In the domain of finite automata theory, Landweber’s Theorem has been extended by
consideration of further modes of acceptance, also using nondeterministic automata
(Staiger, Wagner [1974]), by including the case of nonfinite transition systems (Arnold
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[1983]) and alternating finite automata (Miyano, Hayashi [1984]), and by comparison
with the quantifier complexity of the logical formulas defining w-languages (Takahashi,
Yamasaki [1983], Yamasaki, Takahashi, Kobayashi [1986]). A very refined system of
structural invariants for regular c-languages is given in Wagner [1979]. It allows, for
example, to estimate the length of the boolean expressions arising in McNaughton’s
Theorem: Consider representations of a regular set L < A® by boolean combinations of
Gg-sets:

U2, im W; A ~lim W})

and define the Rabin index of L to be the smallest n such that L is obtained in
this form with regular W;,Wi. Wagner [1979] (and independently Kaminski [1985]) show
that this index induces a strict hierarchy; moreover the Rabin index of a regular -
language is effectively computable. More general acceptance conditions, ».:oim:m an
unbounded number of quantfier alternations and leading beyond the class of regular ®-
languages, are studied in Wisniewski [1987].

We can only briefly mention here related work on topological aspects of functions or
relations over A® (or over the extended space A°°): Boasson, Nivat [1980] and Staiger
[1987] investigate sequential mappings, in particular the topological and language
theoretical properties of @-languages they preserve, and Gire, Nivat [1984] introduce a
generalization of the notion of rational transduction to w-languages.

Recently, the topological approach has also been applied in the classification of se-
quence properties that arise in distributed systems. Intuitively one calls a property of
state sequences of a system a safety property if it ensures that nothing "bad" (like
deadlock) happens at any time instance. Similarly, a liveness property guarantees that
given any time instance something "good" (like entering a critical section) will eventu-
ally happen. For a systematic treatment of such sequence properties (leading to specific
verification strategies), several exact definitions for describing these intuitive notions
have been proposed, e.g. by Lichtenstein, Pnueli, Zuck [1985], Sistla [1985], Alpern,
Schneider [1985, 1987]. These proposals agree in identifying safety properties with clo-
sed sets (in the Cantor topology). Liveness properties, however, are defined in different
ways, for example as (boolean combinations of) Gg-sets by Lichtenstein, Pnueli, Zuck
[1985], or as dense sets in Alpern, Schneider [1985]. (A set L < A® is dense iff every
w € A* is extendible to a sequence wat € L.) In the latter case, a simple topological
fact ("every set of the space is the intersection of a closed set with a dense set”) can
be applied to obtain a decomposition of correctness proofs into two parts, one estab-
lishing a safety property and the other showing a liveness property (Alpern, Schneider
[1987]).
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An acceptance mode which transcends the previous variants is motivated by so-called
fairness conditions. These conditions require that actions (or transitions), which could
be carried out again and again, happen in fact again and again. In this way it is
possible to specify the absence of effects like “starvation” - (where a process is
"enabled” infinitely often but does not continue). A corresponding language theoretical
operation ("fair merge") has been considered by Park [1980,1981]; "fair" acceptance con-
ditions for Biichi automata appear in Priese, Rehrmann, Willecke-Klemme [1987]. For
example, a Biichi automaton A accepts a sequence a by "path fairness" iff there is a
run sgsy.. of A on o which contains any finite sequence of states infinitely often
which could have been started infinitely often in states of the run (on the respective
rest-input). With this kind of acceptance nonregular w-languages are recognizable; on
the other hand, there are simple regular (>-languages that do not fall in this class.-
The study of fairness assumptions remains an important topic of current research. For
a general exposition see the monograph Francez [1987]; as a recent contribution which
characterizes regular m-languages by fairness conditions in the calculus SCCS (synchro-
nous CCS) we mention Guessarian, Niar [1988].

6. Star-free w-languages

An interesting class of regular w-languages is obtained when the monadic second-order
formalism S1S is restricted to first-order logic; in this case quantification is allowed
only over elements (i.e., positions in sequences). The first-order definable -languages

are closely related to the class of star-free languages and to the propositional temporal
logic of linear time. In this section we discuss both aspects.

Recall that a language W ¢ A* is star-free if it can be generated from finite sets of
words by repeated application of the boolean operations and concatenaton. The result-
ing star-free expressions are very similar to first-order formulas, by the close corre-
spondence between ~, U, - and the connectives —, v, 3. For example, the star-free
language b*-a-A* (with A = {ab,c), b* = ~(A*-(a U c)-A¥)) is defined by the first-or-
der sentence

Ix(x € Om>meQAx>Qm Ow<<m oovvv.

An easy induction shows that each star-free language is first-order definable. In
particular, if U, V are defined by the first-order formulas ¢, y, then U-V is defined
by 3Ix(9’(x) A Y'(x)) where ¢’(x) and y'(x) are the relativizations of ¢, Wy to the
elements < x and > x, respectively (assuming here for simplicity that € ¢ U). More dif-
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ficult is the converse translation, which yields

6.1. Theorem (McNaughton, Papert [1971])

A language W ¢ A* is star-free iff it is first-order definable (in the signature with

< and the unary predicates Q, fora € A). .
Proof. For the translaton from first-order logic into star-free expressions we use
inducdon over quantfier depth of formulas (i.e, the maximum number of nested
quantifiers). In the induction step, we consider the case of the existential quantifier,
here for a formula 3x@(x) of quantifier depth n+l, assuming that sentences of quanti-
fier depth n define star-free sets. (The general situation Jxg(x,y), with free variables
y as parameters, is a litde more technical) We shall reduce the statement 3x@(x) to
statements of the form 3x(¢ ., A x € Q, A @,,) where ¢, , ¢, speak only about the
elements < x, resp. > x. If ¢, and @, are of quantfier depth n, then such a formula
describes a language U-a-V where U, V are star-free by induction hypothesis.

As a preparation we introduce an equivalence relation =, over A*: Define foru, v € A*
u=, v iff uand v satisfy the same sentences of quantifier-depth n.

Also an extended version of this definition is needed for formulas with free variables,
in our case for formulas @(x) with one free variable x. The corresponding models are
words with some distinguished position, of the form (ur) where 1<r<|ul. We write
(u,r) =p,1 (v,s) if (ur) and (v,s) satisfy the same formulas @(x) of quantifier-depth n.
An induction over quantifier depth shows the basic fact that there are, for any n 2 1,
only finitely many equivalence classes of =, and =1 and that any such class W of
words u, resp. class W of word models (ur), can be defined by a sentence @y, resp.
formula 620&. of quantifier depth n. It follows that

(+) any formula @(x) of quantifier depth n is equivalent to a finite disjunction of
formulas eﬁo& (namely those 650& where W contains some (u,r) satisfying ¢(x)).

Next we note a fact which (unlike (+)) depends on the present choice of signature with
ordering and unary predicates only: The relations =, and =p,] &re congruences. Namely,

(++) Ifu =V and u’ = v’, then uu’ = v,

(+4) Ifu= v,ae A andu’ =, v’, then ?uﬁ_:_iv =n1 ?.m<.._=._+5.

(A convenient way of showing (++) and (++); uses a characterization of =, and =p,1 by
the Ehrenfeucht-Fraissé game. For more details Rosenstein [1982] is-recommended.) It
turns out that (++) and (++); do not depend on the fact that u,v are finite; indeed
these statements hold for any linear orderings expanded by unary predicates.
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We now can find the desired star-free expression for 3xg(x): By (+) it suffices to treat

the case of a formula mxe&hoc (since IxP(x) <> wx/\ 6200 $<ﬁ mxeﬁocv Consi-
der now a triple (U,a,V) where U,V are = -o_ﬁmom and a € A. If there are u, € U,
Vo € V such that (uav, o.__. [+1) € W, then, by (++);, we have for all words uav with
:mc. veV that ?w<._=_+c € W. Hence all words from U-a-V satisfy wxeioo.. Thus
mxeﬁnoc defines the union of the sets U-a-V taken over all triples (U,a,V) where U, V
are m:-o_mmmnm and contain u,, Vv, as above. Since U,V are star-free by induction
hypothesis, wxeﬁmxv defines a star-free set. O

The correspondence between star-free expressions and first-order formulas is even
tighter than expressed above: The classification of star-free languages by dot-depth
(= number of alternations between concatenation and boolean operations) coincides with
the classification of first-order definable languages in terms of quantfier alternation
depth (cf. Thomas [1982], Takahashi [1986], Perrin, Pin [1986]).

The proof of 6.1 provides the main prerequisites which are needed for a development
of a theory of star-free (or first-order) -languages in close analogy to the regular
case. It suffices essentially to repeat the proofs in sections 2 and 4 (in particular, 2.2,
4.5, and 4.6), replacing the congruences ~g by the ooaw.:_o:onm =, and using the fact
that = -classes are star-free. In this way one obtains

6.2. Theorem (Ladner [1977], Thomas [1979,1981])
For an w-language L ¢ AQ the following conditions are equivalent:
(a) L is first-order definable (in signature <, O» forae A),
(b) L is afinite union of sets U-V® where U,V < A* are star-free and V-V <V,
(c) Lis afinite union of sets im U N ~ lim V, where U,V ¢ A¥* are star-free,
(d) L is obtained from A® by repeated application of boolean operations and con-
catenation with star-free sets W ¢ A* on the left. Q

An o-language satisfying one of the conditions above is called star-free, The notion
was proposed by Ladner [1977], who referred to conditon (d) and showed that the
star-free @-languages form a proper subclass of the regular ones. A short and self-
contained proof of 6.1 and 6.2(a) <> (d) is given in Perrin, Pin [1986]. Perrin [1985]
shows that the equivalence between (b) and (c) remains true for any class of regular
languages which is associated with a variety of semigroups which is closed under
Schiitzenberger product.

Further interesting aspects of the star-free w-languages are revealed when one con-
siders their syntactic monoid as introduced in Theorem 2.6 above. Referring to this



32

monoid it is possible to extend Schiitzenberger’s Theorem from languages to @-langu-
ages. Recall that this theorem states that a regular language W < A* is star-free iff its
syntactic monoid is group-free. Via condition (b) of 6.2, this implies

6.3. Theorem (Perrin [1984])
A regular o-language L < A® is star-free iff its syntactic monoid A%/~ is group-
free. O

This result yields an effective test deciding whether a given regular -language is star-
free. Also one can use this characterization to exhibit regular w-languages that are not
star-free. For this purpose one observes that a nontrivial group exists in A*/= iff
there are words u,x,y,z € A* such that for infinitely many n, xulyz® e L and for
infinitely many n, xu"yz® ¢ L (or analogously for x(yu"z)®®). So the example language
L, of section 1 ("between any two a there is an even number of b,c") is not star-
free, as can be seen by taking x,y,z=aandu=b.

As in the theory of regular languages of finite words, the group-free monoids are just
a first example of a variety of semigroups that characterizes an interesting language
class. Further cases in the domain of -languages have been studied by Pécuchet
[1986a,1987].

Much of the recent interest in the star-free -languages rests on their connection with
propositional temporal logic of linear time, short PTL. PTL-formulas are built up from
atomic .propositions py,pp,.. by means of the boolean connectives, the unary temporal
operators O ("next"), O ("eventually"), [J ("always", "henceforth”), and the binary
operator U ("until"). A PTL-formula with atomic propositions py,....p, is interpreted in
w-sequences over {0,1}7, where by definition a sequence o satisfies p; (short: a [= py) iff
0(0) has 1 in its i-th component. The semantics of O, 9, [], U is defined by

o =09 iff o(lw)Eo ("¢ holds next time")
a0 iff there is i20 s.t. a(i,0) E ¢ ("o holds eventually”)
alk ¢ iff for all i>0, a(i,0) F ¢ ("¢ holds henceforth")
a = eUy iff there is i20 s.t.: a(i,®) By
and a(j,w) = @ for 0sj<i ("¢ holds until eventually y holds").

It is straightforward to translate PTL-formulas (over atomic propositions py,....pp) into
formulas of first-order logic (with unary predicate symbols Xj,..,X, and using the
interpretation described in section 3). For example, the PTL -formula

0@y = 0¥(=p) Upy))

is equivalent (over w-sequences & € ({0,1 uuvod to the first-order formula
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Vx(xe X; = 3y(x<yaye XjAaVzx<zaz<y—-ze Xj))

Thus PTL may be considered as a system of first-order logic with only implicit use of
variables. As seen above, quantification refers to segments that are unbounded to the
right, with the only exception of the bounded quantification involved in the undl-
operator. Hence it tends to be hard to express in PTL statements about finite segments
of sequences. Nevertheless, we have

6.4. Theorem (Kamp [1968], Gabbay, Pnueli, Shelah, Stavi [1980])
Propositional temporal logic PTL (with atomic propositions py,....p,) is expressively
equivalent to first-order logic over @-sequences (in the signature with < and n
unary predicates). O

The translation from first-order logic to PTL is difficult and will not be described
here. It involves a non-elementary blow-up in the length of the formulas, as can be
seen from the fact that satsfiability of PTL-formulas is PSPACE-complete (Sistla,
Clarke [1985]) while satsfiability is nonelementary for star-free expressions or for
first-order formulas in the given signature (Stockmeyer, Meyer [1973]). A transparent
proof of 6.4 which is based on 6.3 and the wreath product decomposition of group-free
monoids has been found by Perrin, Pin [1986a].

An extension of PTL which allows to define exactly the regular sets of @-sequences
was suggested by Wolper [1983], Wolper, Vardi, Sistla [1983] (see also Vardi, Wolper
[1988]); it is called ETL ("extended temporal logic"). The idea is to admit an infinity of
temporal operators, each of them associated with a regular grammar (or an automaton).
The standard operators of PTL are included in this set-up as simple examples.

Temporal logic has attracted attention as a framework for the specification and veri-
fication of concurrent programs (Pnueli [1981]), Lamport [1983]). Temporal logic for-
mulas are well suited for this purpose since arguing about concurrent programs is
primarily concerned with their ongoing behavior in time and not so much with their
input-output behavior (to which the formulas of Hoare logic correspond more directly).
From the extensive literature on the subject we select a few aspects connected with
Biichi automata and ®-language theory. (The reader will find more on the topic in the
surveys Pnueli [1986] and Emerson [1988].)

We refer to the model of computation proposed in Manna, Pnueli [1981]. A concurrent
program P consists of say n modules Py,..,P, where each of the P; is a sequential
program composed of labelled instructions; both shared variables and variables private
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to the P; are admitted. The possible computations of P are defined as the interleavings
of the computations of the P;. A state of the program is identified with an n-tuple of
instruction labels from Py,..P, and of values for the program variables. Since the
desired properties of such a program (like deadlock freedom, fairness etc.) are typically
concerned with the flow of control and not so much with an infinity of possible values
for the variables, it is often appropriate to assume that the number of essentially
different states is finite. In this case one speaks of a finite state program.

Suppose that for a specification of the program P the properties py,...py, of states
are relevant. Then the program can be represented as an annotated directed graph,
where nodes are states and arrows represent transitions between states in one step.
The state s is annotated by those p; which are true in s. Formally, the graph is a
Kripke structure Mp = (S,R,®) where S is the set of states, R © S x S the transition
relation, and ®:S — N?T.:%B_ a truth valuation. Note that each ®(s) can be regarded
as an m-bit vector from {0,1})™; thus any computation ¢ = $oS1- € S® induces a
corresponding sequence O = eﬁoveﬁmwv:. from ({0,1}™@, containing the relevant informa-
tion about G w.r.t. the properties py,....pp

In this framework, the correctness problem (whether program P is in accordance with
specification @) is the following question: Do all sequences ae ({0,1}™® which are given
by paths through Mp satisfy the PTL-formula ¢? One says in this case that "Mp is a
model of ¢"; so the correctness problem has been rephrased as a modelchecking prob-
lem.

Several approaches have been studied to develop efficient model checking procedures,
for instance using tableaux (= extensions of the annotations of #p by arbitrary sub-
formulas of the specification), cf. Lichtenstein, Pnueli [1985). Vardi, Wolper [1986a]
suggest to apply the theory of Biichi automata for the programs and for the speci-
fications: First it is possible to view the Kripke structure #p as a Biichi automaton Ap
such that L(Ap) contains the sequences o€ ({0,1Y™)? given by Mp. Secondly a PTL-
formula ¢ defines a regular w-language (by 6.2, 6.3) and thus is also representable by a
Biichi automaton he Hence the correctness problem reduces to the containment prob-
lem for w-languages "L(Ap) © PQGV.N.. or, in negated form, to the intersection problem
..rgvv N ENJGV # (@7". Alpemn, Schneider [1985a,1987] and Manna, Pnueli [1987] suggest
to use Biichi automata as a genuine specification formalism, taking advantage of the
fact that a pictoral graph representation can be more transparent than logical formulas.
In Manna, Pnueli [1987] a variant of the Biichi acceptance condition is used (the "V-
automaton"), which involves a "universal” condition on runs instead of an "existential”
one and is hence better suited for the question whether all Ap-runs satisfy the speci-
fication.
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Further applications of «-language theory are based on normal form theorems, in
particular the representation of regular @-languages as unions of sets lim U; N ~lim V;
in McNaughton’s Theorem and in 6.2 (see e.g. Lichtenstein, Pnueli, Zuck [1985], Pnueli
[1986], Alpern Schneider [1987a]).

7. Context-free w-languages

In this section we give a short account on the use of grammars for the generation of
w-words. A natural approach is to allow infinite leftmost derivations. As an example,
consider the following grammar:

Gy X1 = XpXp, X9 —> axpb | ab.

The infinite derivation

M) x; bxpxg Fabx; | abx,x, - ababx; - ababx,x k..

generates the @-word (ab)® from left to right, and

) x.u L X9Xq L m&x» - manf - abax,bxy - abaax,bbx b mg»mxwgcx_ -...

yields from left to right the @-word aba®.

Derivation (2) will be excluded if we impose the condition that both variables X1.Xp be
used infinitely often (as left-hand side of applied rules). Thus there are two variants
of context-free generation of @-languages, depending on whether arbitrary (leftmost)
derivations are admitted or the variables used infinitely often are also specified.

In the sequel, a context-free grammar G over the alphabet A with variables (nontermi-
nals) Xq,....xp is given by an n-tuple (Gy....Gy) of finite sets G; < (AU{xy,...x ¥,
where w € Gj means that x; — w is a rule of G. As start symbol the variable x; is
used. A leftmost derivation

%O _l—:%m(-m T:N%N<N —l...
with y, = X, y; € A* and y; € {x},...x;} generates either an @-word (the unique
common extension of the fv or a finite word (if for some n, up o= U,y = .). Of
course, a finite word can also be generated by a terminating derivation. Hence an
appropriate domain for the present discussion is A instead of A®. An eo-language

L ¢ A” is called algebraic (or: o-algebraic) if there is a context-free grammar G such
that L consists of all words of A™ that are generated from x; by a leftmost derivation
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of G. If G is given together with a system ¥ of sets of variables, such that only those
derivations are admitted where the variables used infinitely often form a set in %, then
the resulting eeo-language is called context-free (or: ee-context-free). Analogous defi-
nitions apply to w-languages. Then it can be shown that a oo-language is algebraic (resp.
context-free) iff it is the union of an algebraic (resp. context-free) w-language with a
context-free language of finite words. In this way also the notion of a regular ee-
language is introduced. For the algebraic case the restricion to leftmost derivations is
inessental (Nivat [1978]), while for context-free oo-languages cancellation of this
property causes a proper loss of generating power (Cohen, Gold [1977]).

Let us first note that the regular, algebraic and context-free w-languages (and hence
oo-languages) form a proper hierarchy:

7.1. Theorem (Cohen, Gold [1977])
The class of regular w-languages is properly contained in the class of algebraic -
languages which itself is properly contained in the class of context-free w-langu-
ages.

Proof. It is obvious that any algebraic w-language is context-free. To show that
regular »-languages are algebraic, we refer to the representation of regular w-languages
in the form L = C»MH Gm.<we where U,,V; are regular. The proof will be clear when
the case L = V@ (assuming € ¢ V) is settled. Let O< be a left-linear grammar which
generates the regular set V (say with start symbol y;). Then Gy, extended by the rule
X = yX; generates @-words by leftmost derivations of the form

Xy _.53 f* viXq _.<Q_x_ b+ V{VaXy k..
and hence defines the w-language V®. (Note that if Gy were right-linear one would
obtain the @-words in V*-(lim(pref V)) which in general is different from V@)

We indicate properness of the inclusions only by definiton of suitable example langua-
ges: The algebraic w-language

(a"1p"1a"202 | n21ju {aP1pP1 2@ | ngpnp 21)

is generated by the example grammar G, above and easily shown to be non-regular (by
an adaptation of the pumping lemma for nondeterministic finite automata). On the
other hand, the first part of the above union is context-free since it is generated by
G, with the system F = :x_,xN: of one designated variable-set (see the above
derivation examples (1), (2)). It turns out that this @-language is indeed not algebraic. Q

The above proof for regular w-languages can be extended to a characterization of the
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context-free w-languages. If £ is a class of languages (< A*), the @-Kleene closure of £
is the class of all w-languages which are finite unions of sets UV@withU\Ve L

7.2. Theorem (Cohen,Gold [1977])

An o-language is context-free iff it belongs to the w-Kleene closure of the class of
context-free languages. O :

Some standard results on context-free grammars fail when considered in the domain of
oo-languages. We discuss an interesting example of this kind, the reduction to Greibach
normal form (i.e. to grammars G = AOH..:.Osv where each G; is contained in
A-(AU(x(,..x )*). Call an oo-language Greibach-algebraic if it is given as in the defini-
tion of "algebraic" but referring to grammars in Greibach form. We shall show that
the Greibach algebraic eo-languages do not cover the class of regular oo-languages. For
the proof one extends the topology over A® (as introduced in section 5) to a topology
over A™, by introduction of a new symbol Q ¢ A and representation of finite words w
as sequences w-Q®. We shall verify that Greibach algebraic oo-languages are closed in
this topology. Since there are nonclosed regular eo-languages (for example, lim a*bb*, as
shown before 5.1), the Greibach algebraic eo-languages form a proper subclass of the
algebraic ones.

The topological closure cl(L) of a set L < A®™ contains the sequences that have arbitra-
ry long common prefixes with sequences from L. In other words, the set

adh(L) := lim(pref(L))

the adherence of 1., is the set of accumulation points of L, and we have cl(L) =
L v adh().

In order to show that Greibach algebraic eo-languages are closed, let a € A® be an
accumulation point of the Greibach algebraic set L, i.e. for infinitely many prefixes u
of a there is B € A™ with up € L. We have to verify @ € L. Consider all leftmost
derivations (by the Greibach grammar G for L) which generate a sequence uf € A®™
where u is prefix of a. We organize the finite initial parts of such derivations in tree
form. We obtain a finitely branching tree of finite derivations which has the zero-step
derivation x; as root and is infinite by assumption on a. By Konig’s Lemma there is an
infinite path, i.e. an infinite derivation. This derivation must describe a generation of a
(and not only of a finite prefix of o) because G is Greibach.

Boasson, Nivat [1980] proved a sharpened form of this result, including also a converse

statement:
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7.3. Theorem (Boasson, Nivat [1980])
A context-free oo-language L < A®™ is Greibach algebraic iff it is the (topological)
closure of a context-free language W ¢ A*. Q

A common framework for characterizations of the Greibach algebraic, algebraic and
context-free oo-languages has been developed by Niwinski [1984], continuing previous
work of Nivat [1977,1978,1979], Park [1980], and others. Here a grammar G =
(Gq»-Gp) s regarded as a ‘fixed point operator. The operator maps n-tuples of oco-
languages to n-tuples of eo-languages. The first component of its (well-defined) greatest
fixed point is by definition the eo-language defined by G. More precisely, any word w
from A>C?T.:.x53* defines a map F, that sends an n-tuple Lqseeslp)s wWhere L; < A%,
to the co-language which results from w by substituting L; for x;. (For cases like w =
X1X2, certain conventions concerning concatenation are used, such as PM.FN = : for
L;c AQ, L, < A®°.) Now one associates with a set G c o»C?T....x::* the map which
yields for (Lq,....Ly) the union of the sets F,(L{,....L;)) where w e G;.

In this way G induces an operator G mapping n-tuples to n-tuples of ce-languages.
Since G is monotone (w.r.t. set inclusion taken componentwise), an application of the
Knaster-Tarski Theorem guarantees a greatest fixed point (Ky,...Kp). (The n-tuple
(Ky»-Ky) is obtained from (A*,..,A”) by a B-fold iteration of G for some ordinal B,
possibly greater than ®.) Note that in this set-up the sets G; need not be finite. For a
class £ of languages L ¢ A* denote by GFP(L) the class of eo-languages that are obtai-
ned from an operator G as first component of its greatest fixed point, where the
components G; of G are in L For £ = FIN (the finite languages), resp. REG (the
regular languages), and CF (the context-free languages) we arrive at the mentioned
characterization:

7.4. Theorem (Niwinski [1984])
For any ee-language L :
(a) L is Greibach algebraic iff L € GFP(FIN),
(b) L is algebraic iff L € GFP(REG),
(¢) L is context-free iff L € GFP(CF). QO

A much more complicated classification of context-free - (or oo-) languages arises
when we consider definitions by deterministic or nondeterministic pushdown automata
with various modes of acceptance. Cohen, Gold [1977] characterize the algebraic -
languages by pushdown automata with 1’-acceptance (meaning that a run exists such
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that all its states are in one of the designated state sets), and the context-free w-lan-
guages by pushdown automata with 3-acceptance (analogous to Muller acceptance for
nondeterministic automata). A detailed analysis of eco-language classes induced by
deterministic pushdown automata is given in Linna [1976,1977] and Cohen, Gold [1978].

In the above treatment of grammars a certain asymmetry is manifested in the conven-
tion that only left to right generation of @-words is considered and terminal symbols
are ignored when not reached from the left within @ steps. Dropping this restriction,
the derivation example (2) of the beginning of this section would be regarded as
producing the generalized word abaaa... ..bbb. Formally, generalized words over the
alphabet A are identified with A-labelled countable orderings (where the ordering (®,<)
occurs as a special case). In Courcelle [1978], Heilbrunner [1980], Thomas [1986],
Dauchet, Timmerman [1986] some results on generalized words, their derivation trees,
and finite expressions for their description are presented.

There are further devices of computation that have been investigated in connection
with @-languages but cannot be treated in detail here. We mention two such models:
Turing machines (studied e.g. in Cohen, Gold [1980], Lindsay [1986], see also Staiger
[1986]), and Petri nets. From a Petri net, a language and an @-language can be ex-
tracted essentially by collecting all sequences of transitions that describe an admissible
firing sequence. Jantzen [1986] presents a survey on Petri net languages of finite
words. In Valk [1983] a language theoretical characterization of Petri net ®-languages
is established close to the representation of regular @-sets as unions of sets U-V® with
regular U,V. Parigot, Pelz [1985] and Pelz [1987] describe a logical formalism (ex-
tending Biichi’s theory S1S) which characterizes Petri net (w-)languages; they refer to
existential formulas in a signature where a primitive for comparison of finite cardinali-
ties has been added.



40

II. Automata on infinite trees
Notation

If A is an alphabet, an A-valued tree t 1is specified by its set of nodes (the
"domain" dom(t)) and a valuation of the nodes in the alphabet A . Formally, a k-ary
A-valued tree is a map t : dom(t) - A where dom(t) < {0,...k-1}* is a :osnBvQ. set,
closed under prefixes, which satisfies

wj € dom(t) ,i<j => wie dom(t).

As an example over A = {f,g,c] consider a finite tree:

f €
7\ VAN
f c 0 1
/7 N\ 7 N
ty: f g aoBcov“ 00 01
7\ { 7 N\ |
c c c 000 001 010

The frontier of t is the set
fr(t) = {w € dom(t) | - 3i wi e dom(t)},

and the outer frontier frt(t) contains the points wi ¢ dom(t) where w € dom(t) and
i<k

We ‘set dom™(t) = dom(t) U frh (). The (proper) prefix relaton over {0,..k-1}* is
written <. A path through t is a maximal subset of dom(t) linearly ordered by <. The
subtree t, of t at node w € dom(r) is given by dom(t,) = {v € (0,..k1}* | wv e
dom(t)} and 1, (V) = t(wv) forve aoBin.

Often trees arise as terms (possibly infinite terms). In this case one refers to a ranked
alphabet A = Aj U..U Ay where A; contains i-ary function symbols. The example tree
t above represents the term f(f(f(c,c),g(c)),c) over the ranked alphabet A = >oC>_C>N
with >o ={c}, A= {g), Ay = {f). (One may even allow AN >h. # @ for i#j.)

For easier exposition we shall restrict to binary trees in the sequel: By T, denote the
set of finite binary A-valued trees (where a node has either two sons or no sons), and
by Ty the set of infinite A-valued trees with domain {0,1)*. Set Ty = Ty U Ty
Subsets T of Ty or HM will sometimes be called tree languages. Binary trees repre-
sent the typical case from which all notions and results to be discussed below are
easily transferred to the general situation. For instance, arbitrary k-ary A-valued trees
can be represented within binary trees from HWC~ Qy where Q is a new symbol, via the
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coding which maps node nj..n. (n; < k) to node 1"o . 1770 and associates value Q to
all nodes of {0,1)* which are outside the range of this ‘map. In a similar way it is
possible to handle countably branching trees in the framework of binary trees.

We now introduce notation concerning free concatenation (defined here in terms of
tree substitution). Let T,T’ ¢ ‘—.> and ¢ € A. Then T .° T’ contains all trees_which
result from some t € T by replacing each occurrence of ¢ on fr(t) by a tree from T°,
where different trees are admitted for different occurrences of ¢ . Define a corre-
sponding star operation *C by

T+ = CDNO ThC

where

..—;OO = AO_ , .H.A=+~v0 = .H.SO u (T K4 .Hﬂnv .

A tree language T T A is called regular iff for some finite set C disjoint from A, T
can be obtained from finite subsets of T, ,c by applicatons of union, concatenations
., and star operations *¢ where ¢ € C. Note that this notion of regularity generalizes
that for sets of finite words, if a word w = ajay..a. over A is considered as a unary
tree over AU(c} of the form a;(a,(...a;(c)...)).

We shall also refer to tuples ¢ = (Cy,....c;) of concatenation symbols instead of single
symbols c. For T,Ty,..Ty © Ty let T-€ (Tq,....T) be the set of trees obtained from
trees t € T by substituting, for i = 1,...,m, each occurrence of c; on fr(t) by some tree
in T;. - Furthermore, the set ﬁ.T:..ﬂBven is defined to consist of all infinite trees
obtained by w-fold iteration of this tree concatenation; more precisely, it contains all
mees t € HM for which there are trees tg,ty,... such that ty € {c1nsCp)s tpyy € :Eva
(T Ty and t is the common extension of the trees mnsaos result from the t
by deleting the symbols ¢; at their frontiers.

We shall use expressions like t;-%ty or no.nf..:,”BVSo as shorthands for {t;}-{t,},
:ov.an:r....:B_ven. respectively. This notation is extended to infinite trees t with
domain {0,1}* by the convention that instead of frontier occurrences of the c; the
“first" occurrences of the c; are used for replacement, i.e. their occurrences at nodes
w such that no v < w exists with a value c;. We write t;-t) and to(t] et ® if the
mv.Bco_mo.nﬂo&oﬂ.@oBEoooonr
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8. Tree automata

Tree automata generalize sequential automata in a simple way: On a given A-valued
tree, the automaton starts its computation at the root in an initial state and then
simultaneously works down the paths of the tree level by level. The transition relation
specifies which pairs (q;.q;) of states can be assumed at the two sons of a node, given
the node’s value in A and the state assumed there. The tree automaton accepts the
tree if there is a run built up in this fashion which is "successful”. A run is successful
if all its paths are successful in a sense given by an acceptance condition for sequential
automata. It turns out that for infinite trees the reference to Biichi and Muller
acceptance leads to nonequivalent types of tree automata. In this section we introduce
these tree automata, first studied by Rabin [1969,1970].

As a preparation we collect some basic notions and facts concerning automata over
finite trees. A (nondeterministic top-down) tree automaton over A is of the form 4 =
(Q.QyAF), where Q is nonempty and finite, Q,,F < Q are the sets of initial, resp. final
states, and A < QxAxQxQ is the transition relation. A run of 4 on t is a tree
r:dom™(t) - Q where 1(g) € Oo and (r(w),t(w),r(w0),r(w1)) € A for each w € dom(t); it is
successful if r(w) € F for all we ?+3. The tree language T(A) recognized by 4
consists of all trees t which admit a successful run of 2 ont, and Tg T ‘A is recogniz-
able if T = T(A4) for some tree automaton 4.

Most of the basic results on regular word languages can be reproved for recognizable
tree languages, including a Kleene theorem and closure under boolean operations (cf.
8.1 below). However, an important difference between the sequential and the tree case
appears in the question of determinism, since deterministic top-down tree automata,
where a function 8:QxA — QxQ replaces the transition relation, are strictly weaker
than nondeterministic ones. (For instance, any deterministic top-down tree automaton
accepting the trees f(a,b) and f(b,a) would have to accept f(a,a) as well; so it does not
recognize the finite set {f(a,b),f(b,a)}, which is clearly recognized by a nondeterministic
top-down tree automaton.) Intuitively, tree properties specified by deterministic top-
down automata can depend only on path propertdes. A reduction to determinism is
possible when the working direction of tree automata is reversed from "top-down" to
"bottom-up". Nondeterministic bottom-up tree automata are of the form 6bo.>.3 with
A ¢ QxQxAxQ and Q,» F as before. A successful run on a tree t should have a state
from Q, at each point of frt(t) and a state from F at the root €. By an obvious
correspondence, nondeterministic bottom-up tree automata are equivalent to nondeter-
ministic top-down tree automata. However, for the bottom-up version it is possible to
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carry out the “"subset construction” (as for usual finite automata) to obtain equivalent
deterministic bottom-up tree automata. Note that the computation of such an automaton,
say with state set Q, on a term t as input tree may be viewed as a parallel inside-out
evaluation of t in the finite domain Q. For a detailed treatment see Gecseg, Steinby
[1984]. In the sequel we refer to the nondeterministic top-down version.

Let us summarize the properties of recognizable tree languages that are needed in the
sequel:

8.1. Theorem (Thatcher, Wright [1968], Doner [1970])
(@) The emptiness problem for tree automata over finite trees is decidable (in
polynomial time).
(b) A wee language T < T is recognizable iff T is regular.
(c) The class of recognizable tree languages T & Tp is closed under boolean
operations and projection.

Proof, For (a) the decidability claim is clear from the fact that a tree automaton 4,
say with n states, accepts some tree iff A accepts one of the finitely many ﬂ,onﬁow
height < n (climinate state repetitions on paths). A polynomial algorithm results from
the observation that for the decision it even suffices to build up partial run trees in
which each transition of the automaton is used at most once.

Part (b) is shown in close analogy to the proof of Kleene’s Theorem for sets of finite
words. For details see Gecseg, Steinby [1984].

In (c), the step concerning union is straightforward. Closure under complement is
shown using the equivalence between nondeterministic top-down and deterministic
bottom-up tree automata: For the latter, complementation simply means to change the
nonfinal states into final ones and vice versa. For projection, assume T ¢ T AxB 18
recognizable and consider its projection to the A-component, i.e. the set

T =(se Tyl 3te Tgshe T)

where s™t is given by s(w) = (s(w),u(w)). If T is recognized by the tree automaton 4,
then T’ is recognized by an automaton which guesses on a tree s € T A the B-component
and works on the resulting tree like 2 O

For nondeterministic automata it is possible to restrict the sets of inidal, resp. final
states to singletons. For technical reasons we shall henceforth assume that tree
automata have a single initial state, which moreover occurs only at the root of run
trees (i.c., it does not appear in the third and fourth component of transitions).
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We now turn to tree automata over infinite trees. We consider two basic types, the
Biichi tree automaton and the Rabin tree automaton, which inherit their acceptance
modes from sequential Biichi automata, resp. sequential Rabin automata. A Biichi tree
automaton over the alphabet A is of the form 4 = AObo.Pm.v with finite state set Q,
q, € Q, A € QxAxQxQ, and F ¢ Q. A Rabin tree automaton has the form Ao.nobbv.
where Q, g, A are as before and Q = (L1, UL Uy} is a collection of "accepting

pairs” of state sets r. Cm < Q. Runs of these tree automata over trees from Hw,w_d ’

mappings r:{0,1}* — Q, defined in the same way as over finite trees. A tree t € .Hw is
accepted if there is a successful run of the automaton on t. For a Biichi automaton 4
as given above a run r is successful if

for all paths &, In(r| ©) N F = @,

where r|n denotes the restriction of r to the path w. The reference to Biichi acceptance
on paths motivates the name "Biichi tree automaton" (cf. Vardi, Wolper [1986]); Rabin
[1970] used the term "special automaton”.

For a Rabin tree automaton 4 of the form above a run is successful if

for all paths = there existsi € {1,...,n} with Intrlm) A L; =@ and In@rlm) N U= 0.
Asat T g Hw is Biichi r izable, resp. Rabin recognizable, if it consists of the
trees accepted by a Biichi, resp. Rabin tree automaton. Since any Biichi tree automaton

may be regarded as a Rabin tree automaton (set Q = {(@,F)}), any Biichi recognizable
set of infinite trees is Rabin recognizable.

We mention two equivalent variants of Rabin tree automata. In the first, the Muller
tree _automaton, the collection Q is replaced by a system ¥ of state sets, and accep-
tance is defined via existence of a run r such that for each path =, H:Q_qo e F. The
second variant, the Streett automaton as introduced by Streett [1982], is specified as a
Rabin tree automaton but uses the negation of the Rabin condition on a given path of
arun: Arun r of a Streett automaton AObo.va is successful if

for all paths 7t and for alli e (1,...,n}: In(rlm) A U; # @ implies Intrlm) N L;# a.
To illustrate the function of Biichi and Rabin tree automata consider an example tree
language T over A = {a,b}:

T,=(te .HA%_ some path through t carries infinitely many a}.
A Biichi tree automaton A which recognizes T, may work as follows: By nondetermi-

nistic choice, A4 guesses a path down the tree and on this path assumes a final state
iff letter a is met; on the other parts of the tree only a fixed final state is computed.
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Then the existence of a successful run amounts to existence of a path in t with
infinitely many values a. Thus T, is Biichi recognizable (and of course Rabin recog-
nizable). The complement language

Ty={te .ﬂﬂ_ all paths through t carry only finitely many a}

is recognized by a Rabin automaton with one accepting pair ({q,},Q) where Q is the
state set and q, is computed iff letter a is encountered. Biichi tree automata, however,
do not offer in their acceptance condition such a “finiteness test” along paths. Indeed,
they cannot recognize T :

8.2. Theorem (Rabin [1970])

The set Ty is a wee language which is Rabin recognizable but not Biichi recog-
nizable.

Proof. Assume for contradiction that T; is recognized by the Biichi tree automaton
A= AObo.va. say with n-1 states. A accepts all trees Y4 which have letter a at the
positions mLB_o. e s ~E~o.:p8_o where my,..,m; > 0, and letter b elsewhere. The
figure on the left indicates the nodes with value a in t,.

Consider a successful run r of A on t.. One shows (by induction on n) that there must
be a path in t, with three nodes u < v < w such that r(u) = r(w) = s € F and t,(v) =
a. Nodes u and w induce a decomposition of r (and t,) into three parts as follows:
Obtain ry from r by deleting r, and setting rj(u) = c. Obtain r, similarly from r, by
deleting 1y, and let 13 = 1. Then r = rj-Tyr3. In the analogous way a decomposition
of the underlying tree t; in the form t; = sy-sy'sy is defined. Now consider :._,Ne. It
is a successful run of A on the tree J.wne. Since by choice of u,v,w this tree contains
a path with infinitely many letters a, we obtain a contradiction. Q
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The following sections present results analogous to Theorem 8.1 for Biichi and Rabin
tree automata, excepting only a Kleene type characterization for Rabin recognizable
sets and complementaton for Biichi tree automata. For Rabin tree automata, however,
closure under boolean operations and projecton holds, which leads to an equivalence
with monadic second-order logic as in 3.1.

9. Emptiness problem and _.mm..__w_. trees

In this section the structure of successful runs of Biichi and Rabin tree automata is
analyzed.

First we consider Biichi tree automata and show a simple representation of Biichi
recognizable sets in terms of recognizable sets of finite trees.

Let 2= Acbo.PS be a Biichi tree automaton, where F = _f.:.bBr and let r:{0,1}* - Q
be a successful run of 4 on the tree t € HMU. We claim that r can be built up from
finite run trees of A4 which are delimited by final states of A Indeed, the following
observation shows that starting from any node u of r the next occurrences of final
states enclose a finite tree: Let

D, :={we u{0,1)*| r(v) ¢ Fforall v withu <v Sw).

D, defines a finitely branching tree which does not contain an infinite path (since r is
a successful run). So by Konig's Lemma D, is finite, and the nodes of its outer
frontier have r-values which are final states. This argument allows to decompose r into
"layers” consisting of finite trees: The first layer consists of Dg, and given the outer
frontier F, of the n-th layer, the (n+1)-th layer is the union of all D, withu € F.

As a consequence we can represent T(R) using recognizable sets of finite trees. We
refer to trees from the set T AUF which have values from F exactly at the frontier and
are otherwise valued in A. (If t is such a tree, t results from t by deleting the F-
valued frontier.) Now for q € Q let .—.n consist of all such trees t where there is a
run of 4 on t which starts in q and reaches on fr¥(t) exactly the states of fr(t). Each
set .Hn is recognizable. The argument above shows that an infinite tree is accepted by
the Biichi tree automaton 4 iff it belongs to

* q ,q

™*) .—.no. Q.f,:..ﬂaav

where q = (qy,...qy,) is the sequence of all final states in F. Conversely, it is easy to
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see that for any (m+1)-tuple Aﬂo.j::.ﬂn.v of recognizable sets of finite trees, the
expression corresponding to (*) defines a Biichi recognizable set of infinite trees:

9.1. Theorem
AsetTg .HM is Biichi recognizable iff there are recognizable sets .H.o..w_......_.. c
Tpuc (Where C= {cy,....cp}) such that T = q.o.nqu.....ﬂavso. Q

The representation is implicit in Rabin’s [1970] solution of the emptiness problem; for a
stronger statement see Takahashi [1986] (where also rational expressions for tree
languages are introduced).

Using the sets q.n above, the emptiness problem for Biichi tree automata is shown
decidable. For this we set up an algorithm which eliminates step by step those states
of a given Biichi tree automaton 4 = AObo.D.ﬂv which are useless for successful runs.
Certainly a state q cannot appear in a successful run if the set T, is empty. So

q
eliminate successively those states q from A where T, is empty and update the

transition relaton of A accordingly. (Note that each ,_.n is m,ooomam—zo. so its emptiness
can be checked in polynomial time by 8.1(a).) The elimination procedure stops after at
most QI steps, delivering a state set Q, We claim that A accepts some infinite tree
iff Q, still contains the initial state q, (which establishes the desired algorithm). To
prove this, assume q, is not eliminated and let qy.--Qy, be the final states remaining
in Qg note that m 2 1 by nonemptiness of .Hno and that also Hf..:.ﬂn are nonempty.
So the set (*) as displayed above is nonempty, which is a subset of ﬁ&. - Conversely,
it is clear that in case T(4) # @ the state q, will not be eliminated. A closer analysis

of the algorithm yields also a polynomial complexity bound:

9.2. Theorem (Rabin [1970], Vardi, Wolper [1986])
The emptiness problem for Biichi tree automata is decidable; moreover, it is
logspace complete for PTIME. QO

An example tree t in a nonempty Biichi recognizable set T can be obtained by choosing
finite trees t,...t, from the sets T .....Hn which the above algorithm produces, and
setting t = Ho.f.:..muve. This mmmaﬁ Tee t is “finitely generated" from t,...t;:
There are only finitely many distinct subtrees t, in t (their number is bounded by
Mm_aoafv_v. Trees with this property are called "regular". An equivalent definition
states that t:(0,1})* — A is a regular tree if there is for each letter a € A a regular
expression 1, which defines the language (u e {0,1)*|1(u) = a). In terms of automata this
means that there is a finite automaton A4 over finite words which “generates t", i.e.
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whose state set is partitioned into sets 0u (a € A) such that 4 reaches a state in Om
via input u iff t(u) = a.

Regular trees represent the most basic infinite terms and hence are fundamental in
several areas of computer science, for instance in semantics of program schemes (where
they appear as unravellings of finite flowcharts) and in the foundations of logic
programming. Courcelle [1983] is a survey which covers the basic theory and applications
in semantics. For the role of regular trees in logic programming see e.g. Colmerauer
[1982]. In Braquelaire, Courcelle [1984] the complexity of (term: based) rational expres-
sions for given regular trees is studied.

Extending the above oonmao;,mo: on Biichi recognizable sets, we shall show that also
any nonempty Rabin recognizable set contains a regular tree, and thereby see that the
emptiness problem for Rabin tree automata is decidable. Since unary regular trees are
ultimately periodic @-words, this generalizes Theorem 1.3 on Biichi automata in a
natural way.

9.3. Theorem (Rabin [1972])
(a) Any nonempty Rabin recognizable set of trees contains a regular tree.

(b) The emptiness problem for Rabin tree automata is decidable (in exponential
time).

Proof, (a) First reduce the problem to "input-free" tree automata with a transition
relation A ¢ Q x Q x Q. For this, transform a given Rabin tree automaton 4 = AObo.PQ
over A into 4’ = AOX?DO.D..DJ. where A’ € (QxA)X(QxA)X(QXA) contains a transition
((q,2),(q",a’),(q",a")) iff (q,a,9°,9") € A. OO contains all states (qq:2)s and Q' those pairs
of sets of states from QxA where the Q-components yield a pair from €. Then the
successful runs r’ of 4’ are the pairs r*t where r is a successful run of 4 on t; and in
this case r is regular provided r’ is regular. A corresponding statement holds if 4’ has
been reduced to an automaton with a single initial state (as mentioned after 8.1).

So it suffices to show that an input-free Rabin tree automaton with some successful
run admits also a regular successful run. Let 4 = (Q.9,,4.Q) be a Rabin tree automaton
with A € QxQxQ. Call a state geQ live if q # q, and the automaton is not forced to
stay in q by the single available transition (q,q,q). Using induction on the number of
live states of 4 we transform a given successful run r into a regular successful run.

If there are no live states, the run r will be stationary from the sons of its root
onwards and hence be regular.

In the induction step, distinguish three cases. First assume that in r some live state q

49

of A4 is missing. Then the induction hypothesis can be applied to the automaton where
q has been cancelled, and we obtain the desired regular run of A - Secondly suppose
in r there is a node u such that r(u) = q is live but some live state q’ does not appear
beyond node u (viewing run trees top-down). We find two regular runs ry, r,, replacing
the r-parts "up to first occurrences of q" and "from first occurrences of q onwards",
such that the regular run n—.n 1y is successful for A Run r; is obtained by declaring
q as non-live in A4, i.e. we consider the modified automaton where only transition
(9.9,9) is available for q and apply the induction hypothesis. Run r, is found from the
modified automaton where q is taken as initial state and q' is deleted, again by
induction hypothesis.

It remains to treat the case that all live states appear in r beyond any given node.
Then we may choose a path LN through r where all live states appear again and again
(and hence no non-live states can occur). Since r is successful, there is an accepting
pair, say (L1.Up), such that H:Q_:ov NnL;= @ and Fﬁ_aov NnU; = @. Note that L;
contains only non-live states, since H:o,_:cv is the set of live states. Pick q from
Hbo,_aov N U;. Again we find two regular runs ry, 1y, now aiming at the property that
the regular run n_.n nmox_ is successful for 4 Run r; is given as in the second case
above. Run 193 is obtained from a modification of 4, where q is taken as initial state
and used non-live when revisited the first time; to this modified automaton the
induction hypothesis can be applied. In the verification that r-%r,®1 is indeed
successful, the interesting case concerns those paths m where q appears infinitely
often. We show for such w that (L1, Up) is an appropriate accepting pair: Concerning
Uy it suffices to note that q € U;. Suppose some L-state q* occurs infinitely often on
m. Since L, contains only non-live states, q' is non-live and hence must be the only
state occurring infinitely often on m; but this contradicts the fact that already the
(live) state q occurs infinitely often.

(b) As in the preceding proof, it is enough to consider input-free automata. Suppose
an input-free Rabin automaton A4 has to be checked for existence of a successful run.
Assume A4 has n live states. Only finitely many automata can be obtained from A4 by
the above mentioned modifications which reduce the number of live states by 1.
Tterating these reductions, we obtain in a constructive way finitely many automata
derived from A4, where the number i of live states ranges from n to 0. In case i = 0
(non-live states only), it is trivial to decide whether a successful run exists. For an
automaton with i+l live states, the proof above shows how to decide existence of a
successful run, given this information for the automata with i live states. Using n such
steps the answer concerning A is computed. The analysis of this algorithm (see Rabin
[1972]) yields an exponential time bound for its execution. O
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10. Complementation and determinacy of games

In this survey it is not possible to give a proof of the complementation theorem for
Rabin tree automata, the most intricate part of Rabin [1969]. We shall explain, however,
a treatment of this problem in the framework of “infinite games". This approach was
proposed by Biichi [1977,1983] and Gurevich, Harrington [1982]. It allows to study the
complementation problem in the context of descriptive set theory and clarifies inte-
resting connections between tree automata and sequential automata. Moreover, some of
the earliest problems on -automata, the questions of Church [1963] on "solvability of
sequential conditions”, can be settled via these connections.

We consider infinite games as studied by Gale, Stewart [1953] and Davis [1964]. Let A
and B be alphabets (each with at least two letters) and let I' < (AxB)® be an w-language.
I' defines a game between two players I and II, where a single play is performed as
follows: First I picks some a, € A, then II picks some b, € B, then I some a; € A,
and so on in turns. Player 1 wins the play if the resulting w-word Amo.woxﬁ.fv:. is in
I', otherwise II wins. (If o = ayay... and B = cof:. we shall denote the sequence
(agbp)(@y,by)... by orB.) A strategy for I is a function f:B* — A, telling I to choose
a, = »,?o...cs-uv if I has chosen b ...;c:-ﬂ. The strategy f induces a transformation
£:B® - AY; if II builds up B and I plays strategy f, the play f(B)*B will emerge. We say
that f is a winning strategy for I if for all B € B®, T(B)"B e I. If there is such a
strategy for I we say that I wins I. Analogous definitions apply to player I (where a
strategy for II is a map g:A* — B, inducing a transformation g:A® — B®).

A game I is called determined if player I wins I' or player I wins I'. Determinacy of
infinite games is a central topic of descriptive set theory, closely related to the
continuum problem (see e.g. Moschovakis [1980, Chapter 6]). The claim that T is
determined amounts to an infinitary version of a quantifier law:

- mwo<comm_<c— - (ag,by)ay,by)...e€ I' ("I does not win I')
iff Va,3b,Va;3b; ... (agby)(@y,by)... € T ("I wins ™).

But the assumption that all games I' are determined is a strong set-theoretic hypothesis
which contradicts the axiom of choice. For "nice” games I', however, determinacy has
been shown: By Martin [1975], a game I' < (AxB)® is determined provided I’ belongs to
the Borel hierarchy. In the sequel, the relevance of determinacy lies in the fact that it
allows to transform the statement

— 3 strategy f VBT (B)*B e I' ("I does not win I™)

into the form
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I strategy g Vo org(a) ¢ ' (" I wins I™)

and hence to write the negation of an existential statement again as an existential
statement. Complementation of Rabin automata is a natural application, since it requires
to express nonexistence of successful runs by one automaton as the existence of
successful runs by the complement automaton. -

For this purpose the following observation is crucial: Runs of tree automata (and, more
generally, valued trees) are strategies. Just view a strategy f:B* — A as a _w_-E‘v. A-
valued tree: its nodes are represented by the words from B* (the root corresponding to
the empty word), and the value a € A at node w indicates that f(w) = a. Similarly,
strategies m“>+ — B are _>_-8.v. B-valued trees with a default value at the root. If
such a tree is regular, it codes a special kind of strategy: Since in this case the value
of the tree say at a node w is computable by a finite automaton (determined by the
state reached after reading w), the corresponding strategy is "executable by a finite
automaton”, or shorter: a finite state strategy. Thus for a finite state strategy f, the
choice f(w) depends only on uniformly bounded finite information in w.

We now specialize the games I' in two ways : First " is defined in terms of automata.
The key example are the regular games I' < (AxB)®, i.e. games which are recognized
by Biichi (or Muller) automata when considered as w-languages over AxB. Note that in
this case I' belongs to the Borel hierarchy; hence by Martin’s result stated above
regular games are determined. (Since by 5.2 a regular game I' is even in the boolean
closure of the Borel class Fgy determinacy may be inferred from an easier result of
Davis [1964].) Secondly, we impose also corresponding restrictions on the two players:
their strategies are now required to. be finite state, So the following sharpened
questions on determinacy arise :

Solvability: Given (a presentation of) a regular game T, can one decide effectively who
winsI"?

Synthesis: Can one exhibit a finite state winning strategy for the winner of a regular
game I" ?

Both problems were proposed by Church [1963), referring, however, to different
motivation and terminology. I' was considered as a "sequential condition” on pairs of
sequences (ie., I' < A® x B®), expressed in the sequential calculus as a “synthesis
requirement” for digital circuits. The circuits should realize a transformation producing
for any input sequence P a sequence a such that (a,B) € T.
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Church’s problems were solved positively by Landweber in his thesis (cf. Biichi,
Landweber [1969]). We sketch here a short proof due to Rabin [1972] which exploits
the correspondence between strategies and trees :

10.1. Theorem (Biichi, Landweber [1969])
Regular games are determined in the following strong sense: It can be decided
effectively who wins, and the winner has a finite state winning strategy.

Proof (Rabin [1972]). As a typical example consider the case A={0,1}, B={0,1}). Let
T < ({0,1}x{0,1})® be regular, say recognized by the Muller automaton M = Q94,89
over {0,1}x{0,1}. We transform M into a (deterministic) tree automaton R = AObo.m. X))
over {0,1}, by defining

3(qa) =(q’,q") iff 8(q,2,0)=q and 8(q,a1)=q" (ac(0,1)).

R accepts a tree t € .ﬁm.m iff along all paths B the states assumed infinitely often by R
form a set in % This means that for all § = a_aw.z (where d;e {0,1)) the sequence
(«(e).dy) QE_V.QNV ca—awvhwv ... is accepted by # and thus in I'. Hence R accepts t
iff t is a winning strategy for I in I. We may assume that ® is (redefined as) a Rabin
tree automaton. The existence of a winning strategy for I can now be decided effective-
ly, by deciding nonemptiness of T(R) (see 9.3(b)), and a finite state strategy is
guaranteed in this case by 9.3(a). The case that II wins is handled similarly. O

The complementation problem for Rabin tree automata requires a more general type of
game: With any Rabin tree automaton 4 = (Q,q,,A,Q) (accepting A-valued trees) and any
tree t € .HM we associate a game ﬂh.ﬁ < (Ax{0,1))®. Thus player I picks transitions from
A, and player II picks elements from (0,1}, i.e. directions building up a path through
the tree t. —;.»p contains all sequences o e (Ax{0,1))® which "describe a successful
path for 2 on t": Formally,

Q>—w = AAmO. O‘mo‘n Q:vuﬁwv AAMH~N~.MHo<m~..v.QNV eoe

should satisfy So = Go 3 = t(dy...dj 1) 41 = s if diy1=0 85,1 =5" ifdj,; =1, and
the state sequence s s;s,... should fulfill the acceptance condition Q. Then the winning
strategies f:(0,1}* — A for I are in one-to-one correspondence with the successful runs
of Zont, and we have

(*) Aacceptst iff IwinsT” ar

Note that the underlying tree t is completely arbitrary and one can no more expect
that the winning strategies are finite state. However, it turns out that relativized
finite state strategies (as we call them) can be guaranteed. Such a strategy, say for
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player II, is executed by a finite automaton C which is allowed to use an auxiliary tree
U e .HM. over an alphabet A’ in addition to the given tree t € HWV (and the transitions
from A picked by player I). ¢ works over AXAXA’ and outputs directions from {0,1} (via
a partiion of its state set into "O-states" and "1-states”). More precisely, consider the
game situation

I:t= 15 T« T

O:w= d; ..d,
and denote by ﬁ_ivzn._iv the sequence of AXA’-values of tt’ for the nodes visited
along w (namely € dy, dydy, ... , dj..d;). Then the state reached by C after reading
the word m.>¢_ WA | w) € A>x>x>.v=+ fixes the next choice of player II.

Determinacy for the games I' at by such reladvized finite state strategies was stated
by Biichi [1977] with a short proof hint and given a detailed exposition in Biichi [1983].
A different and simpler proof was given by Gurevich, Harrington [1982]. We state this
difficult result here without proof and conclude from it the complementation for Rabin
tree automata.

10.2. Theorem (Biichi [1977,1983], Gurevich, Harrington [1982]).
Let A4 be a Rabin tree automaton over A and t & .H.Mw. The game H‘.Pn is deter-
mined, and the winner has a relativized finite state strategy. Q

10.3. Corollary
For any Rabin tree automaton A there is (by effective construction) a Rabin tree
automaton 4’ recognizing T} - T(A).

Proof of Corollary, Let 4 = AObob.Q be a Rabin tree automaton over A. We have to
find a Rabin tree automaton & such that for all t e T

Adoes not accept t iff 4’ accepts t.

By (*) above, A does not accept t iff I does not win _‘k.ﬁ. By 10.2, this holds iff II
wins I’ At in the following sense, using a finite automaton C:

for some tee ' € TS, over an auxiliary alphabet A’: if & € A® is proposed by I
and P e (0,1)? is the response by II (computed by ¢ from a,t,t’), then a*B does not
describe a successful path for Zon t.
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This can be formulated as follows:

(1) for some t'e T®::
) forallPe {0,1)¥:
(3) for all @ € A®: if B results from att’ by output of ¢, then
/B does not describe a successful path for Zon t.

Note that (3) is a condition on sequences of the form u>c_mv>ﬁ._9 e ({0,1}xAxA)?, (2)
is a condition on trees from Hmrux\r: and (1) a condition on trees from .ﬁmw. Since (3) is
easily expressed in - S1S, it can be defined by a Muller automaton A Now construct
from M a deterministic tree automaton R as in the proof of 10.1. Then R accepts the
trees satisfying (3) on each path B, ie. all trees t .me\r. with property (2). Projection
to .HM yields a (nondeterministic) Rabin automaton &’, accepting the trees t ,_,Mu with
property (1). Since these trees were just the trees for which I wins ﬂxu , A is a
Rabin tree automaton as desired. O

The complementation problem for Rabin tree automata has been (and continues to be)
investigated by several authors. Muchnik [1985] presents an elegant proof using an
induction over the number of states in the automata. An interesting approach has
recently been developed by Muller, Schupp [1987], based on the idea of alternating
automata over trees. In addition to performing nondeterministic choice, theése automata
are able to pursue several computations simultaneously. The operation of an alternating
automaton with state set Q is described by the elements of the free lattice over
{0,1}xQ. The intended meaning of such an element, say

AAO.A:.V A Aranv v AAH*A:V A Arﬂva.

is that the automaton proceeds from a given node with q; to the left and qp to the
right, or proceeds with q; to the right and also with qy to the right. The second
possibility is missing in Rabin tree automata. One can now collect all possible histories
of the alternating automaton A4 over t in a computation tree C(A4_t), where one history
follows one simultaneous realization of states through the levels of the tree. (So a
history is a kind of "multirun".) A accepts t if for some infinite history, i.e. some path
in C(at), all state sequences along paths described by it are successful in the sense of
Muller acceptance. Complementation for these alternating automata is easy, performed
by dualizing the given automaton (exchange A and v in the transitions, and complement
the system of final state sets). The hard closure property is projection, which is shown
again by an application of 10.2. An advantage of this approach is that fragments of the
monadic theory of the trec which are defined in terms of restricted second-order
quantifiers may be handled by suitable restricdons of the projection operation for
alternating automata and hence by weakened versions of 10.2.
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11. Monadic tree theory and decidability results

For a wansfer of the preceding results from automata theory to logic, trees are
represented as model theoretic structures. If A is the alphabet {0,1)", a tree t € TY is
coded by a model of the form ’

t= Aﬁoe,— w*.M~m—uﬂ00.mcgH.A‘MVH...JHUH—V.

where Succ,, succy are the two successor functions over {0,1}* with mcnoo?o = w0,
succy(w) = wl, < is the prefix relation over {0,1}*, and m.?.:.m.: are subsets of {0,1}*
with w e P; iff the i-th component of t(w) is 1. We En.oa:.no the interpreted forma-
lism S2S ("second-order theory of two successors”) as the corresponding monadic
second-order language with the canonical interpretation in these models. The language
contains variables x,y,.. and X,Y,... (ranging over elements, resp. subsets of {0,1}*).
Terms are obtained from the individual variables x.y,... and the constant € by applica-
tions of succ,, succy; we write x0 instead of succy(x) etc. Atomic formulas are of the
formte X, t =1t, t <t where t,t’ are terms and X is a set variable; and arbitrary
formulas are generated from atomic formulas by boolean connectives and the quantifiers
3,V (ranging over either kind of variable). If ¢(X,...X) is a' S2S-formula and ta wee
model as above, we write t | OX{,...X}) if ¢ is satsfied in t with P;as inter-
pretation for X;. Let T(¢) = {t € .HM_PT ¢X)). If T = T(¢) for some S2S-formula @,
T is called definable in S2S.

The system WS2S is obtained when the set quantifiers range over finite subsets of

{0,1)* only. If T = T(¢) for some WS2S-formula ¢ (i.e., some S2S-formula using this
"weak interpretation"), T is definable in WS2S (or simply: "weakly definable").

The above definitions are analogously applied to finite tree models t (where t € Tp). In
this case there is no difference between the weak and the strong interpretation.

Note that SIS (as introduced in section 3) results from S2S by deleting the successor
function succy and by restriction of the underlying models to the domain 0*. Similarly
to the case of S1S, the primitives € and < are definable in terms of succy, succ; and
hence could be cancelled; we use them for easier formalizations. By "the infinite binary
tree" (as a model theoretic structure) we shall mean the structure ({0,1 _*,m:ooo,mcon_v.

We list some examples of S2S-formulas (using abbreviations suchasx <y, X ¢ Y, etc.):
Chain(X): VxVy(xe XAye X2 x<yvx=yvy<x)
Path(X): Chain(X) A=~ 3Y(X S Y A X # Y A Chain(Y))
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x{y: xSy v 3z(z0<x Azl <y)
(This is the total lexicographical ordering of {0,1}*.)
Fin(X): VYYCXAY#@ — Qy"yis(-minimal in Y"

A Jy "y is (-maximal in Y"))
(This shows definability of finiteness in S2S; hence WS2S can be
interpreted in §28S.)

As an example tree language definable in S2S consider the set T, of section 8; w is
defined as follows (identifying letters a,b with 1,0):

IY(Path(Y) AVx(xe Y - 3y(ye YAX<yA ye X

We now can state the analogue of Biichi’s Theorem 3.1 for sets of trees:

11.1. Theorem
(a) (Thatcher, Wright [1968], Doner [1970])
A set T C T of finite trees is definable in (W)S2S iff T is recognizable.
(b) (Rabin [1969])
AsetTg .Jm is definable in S28 iff T is Rabin recognizable.

Proof, Assume A = {0,1}™. For the implications from right to left formalize the
acceptance condition for the given tree automaton & Suppose, for (b), that the Rabin
tree automaton A has the states 0,..,m and the accepting pairs LU @pUp. T
is defined by an $2S-formula which says

w%o...m%BA.@o.:..%E represent a run of 2on X 1Xy"

A VZ(Path(Z) - /\ummm% \/u.mrm ..mAa.au%xm ZAxe <_.v._
A /\.mmCm.w x(xe ZAXe ﬁv..vvv.
The converse is also shown similarly to 3.1: First S2S is reduced to a pure second-
order formalism mNmo with atomic formulas of the form mcnoocn».xu.v. m:oﬁombm.v.
X; < N_. only. Induction over 528 ,-formulas O(Xy,...X;) shows recognizability, resp.
Rabin recognizability of T(¢). The steps for v and 3 are easy since the (nondetermi-
nistic) automata are closed under union and projection. (For (a) apply 8.1(c); the proof
for Rabin trec automata is similar) Concerning negation, use again 8.1(c), resp. the
complementation result 10.3. Q

Biichi tree automata correspond to a proper fragment of S2S which still allows to
express many interesting tree properties; they also are used for a beautiful characteri-
zation of WS2S. We state the result here only with hints for the proof of the easier
part (a):
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11.2. Theorem (Rabin [1970])
Let A = {0,1}™.
(@ AstTcg .H,M»N is Biichi recognizable iff T is definable by a S2S-formula
Y1 3Y 0¥ 100 Yo X o X)) Where @ is a WS2S-formula.
b AstTg ._.w)u is definable in WS2S iff T and Hﬂ.ﬂ are Biichi recognizable.

Proof. (of (a)). For a description of a Biichi recognizable set of trees by an existential
closure of a weak formula the representation of 9.1 can be used: The formula says that
sets <p exist (where q ranges over the final states of the given automaton Ao.nob.g
which define a decomposition of the tree into finite subtrees; such a finite subtree is
required to be accepted by the (finite-) tree automaton (Q,q,AF) iff its root is in <n.
The converse direction is more involved and requires a nontrivial closure property of
Biichi tree automata, concerning universal quantification over finite sets. We omit the

details. Q

A direct automata theoretic characterization of WS2S (in terms of alternating automata
over trees) is given by Muller, Saoudi, Schupp [1986].

In 4.6 it was shown that S1S and WS1S are expressively equivalent. From 11.2(a) and
the failure of complementation for Biichi tree automata (cf. 8.2) it follows that WS2S is
strictly less expressive than S2S and even than Biichi tree automata. However, this
applies only to formulas ¢(Xy,...X;) which speak about sets: Liuchli, Savioz [1987]
have shown that any S2S-formula eonf.:.x:v. where only individual variables occur
free, can be expressed as a WS2S-formula.

A possible application of the above equivalence theorems is the analysis of variants of
Biichi, resp. Rabin tree automata. Let us mention two such automaton models: the
subtree automaton of Vardi, Wolper [1986] and the hybrid automaton of Vardi, Stock-
meyer [1985].

A subtree automaton over A is of the foom 4 = (Q,Af,F) where QA,F are as for Biichi
tree automata and A — Q. A weet e ._,M is accepted by A if all its nodes x are roots
of finite trees accepted by the tree automaton 2' = (Q,f(x),A,F). Hence the properties
recognized by subtree automata are definable by formulas

() VX 9(x,X)

where @(x,X) expresses that the finite tree with root x and (finite) frontder X is
recognized by 4’. Since (+) is a WS2S-formula, subtree automata recognize only WS2S-
definable sets and hence are a proper specialization of Biichi tree automata. Subtree
automata are tailored for obtaining good upper complexity bounds for program logics.
Vardi, Wolper [1986] show that for several program logics the satisfiability problem
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amounts to a test on existence of certain trees ("Hintikka-trees”) which are defined in
terms of eventuality properties of the form (+).

The hybrid automaton of Vardi, Stockmeyer [1985] is also introduced as a tool for the
analysis of program logics. It is a pair (4,8) where A is a Rabin tree automaton and B
a (sequential!) Biichi automaton. A tree t € ._.M is accepted if 4 accepts t and B rejects
all paths of t (identified with w-words over A). Hence hybrid automata generalize Rabin
tree automata. However, since their acceptance condition is easily expressed in S2S,
they recognize the same sets as Rabin automata. The applicaton in program logics

rests on the fact that the emptiness problem for hybrid automata is harder than for -

Rabin tree automata by one exponential; on the other hand the known transformation
into Rabin tree automata is of doubly exponential complexity. This leads to a gain of
one exponential in the solution of the satisfiability problem for certain program logics.

We turn to applications of theorem 11.1 in decision problems. The starting point is the
following fundamental result:

11.3. Rabin’s Tree Theorem [1969]
The monadic second-order theory of the infinite binary tree is decidable.

Proof, For any S2S-sentence ¢ one can construct, by the proof of 11.1, an input-free
Rabin tree automaton he such that @ is true in the infinite binary tree iff he has a
successful run. The latter condition is decided effectively by 9.3. Q

The result is easily generalized to the monadic second-order theory of the full n-ary
tree, where n sucessor functions succ,, .., succ, q are allowed in the formulas.
Similarly, the monadic second-order theory SwS of countably branching trees is proved
decidable; here one usually refers to the signature with < (prefix relation over ®w*) and
{ (lexicographic order over ®*), because each of the infinitely many successor functions
succ; is definable in terms of < and (.

A large number of theories of mathematical logic have been shown to be decidable via
Rabin’s Tree Theorem; as examples already established by Rabin [1969] we mention: the
monadic second-order theory of countable orderings, the monadic second-order theory
of unary functions over countable domains, and the theory of Boolean algebras with
second-order quantification over ideals.

In the following, we outline a standard application in dynamic logic, concerning the

solution of the The method (and
refinements of it) have been used for several logics, for example propositional dynamic

59

logic and extensions (Streett [1982]), process logic (Harel, Kozen, Parikh [1982]), the
calculus _..t (Streett, Emerson [1984]), and computation tree logic CTL* (Emerson, Sistla
[1984], Emerson, Halpern [1986]). In all instances the satisfiability question "Is there a
model M satisfying the formula @?" is effectively transformed to a question "Is there a
tree t satisfying the S2S-sentence ¢'?" (Logics allowing this reduction are said to
share the tree model property.) We present the conceptually simplest form of this
translation for the example CTL* of computation tree logic. Further developments of
the method (with much better complexity bounds) are surveyed in Emerson [1988].
Muller, Saoudi, Schupp [1988] present a uniform method to obtain exponential time
bounds, based on the alternating automata mentioned at the end of section 10.

Computation tree logic CTL* is a system of modal logic which allows to specify
properties of paths through Kripke structures. From atomic propositions, say Ppj,...pp
for the following discussion, the CTL*-formulas are built up using boolean connectives,
the linear time temporal operators O,0,[J,U, and the additional unary operator E. Recall
(from section 6) that a Kripke structure is of the form # = (S,R,P) where S is a (here
at most countable) set of states, R ¢ SxS the transition relation, and ®:S — N::.....v:w
a truth valuation. For simplicity we assume that there is a distinguished start state s
The semantics of CTL*-formulas in Kripke structures is based on the usual meaning of
0,0.0,U over given state paths and the interpretation of E by "there is an infinite
state path”. Consider an example: The CTL*-formula

P A E(0p, A OE%py)

says that

"py is true in s,, and starting from sy there is an infinite path = through the
model such that all states on m satisfy p,, and in some state of ® a path ©" starts
with some state satisfying p;".

The decision procedure for satisfiability of CTL*-formulas is based on the unravelling
of Kripke structures in tree form: Given the Kripke structure M = (S,R,®), define the
structure M= (§’,R’,®’) by

s’ =s*,

Q—...nva.Am_:.mw& iff k=m,r; =s; for 1<i<k, sgRs,

P’(sq.8) = eauwv.

M can be considered as a (at most countably branching) {0,1)"-valued tree in which
the relation “is father of" represents R’ and where Ew valuation represents ®’. ' is
encoded over the binary tree by the map ny..n. — 10 ~.:_o=~.. We obtain a Ho.:=+~-

valued binary tree t,, where the additional component of the valuation indicates the
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range of A under this map. Let ENU\_.:..%:V be a S2S-formula which says that
X ¢ (10*)* is a range of a tree under the coding and that %T..;.&: < X. Any tree of
form t,, satisfies Ji; conversely any tree satisfying p induces a Kripke model (over
(10%)*).

It is straightforward to reformulate a given CTL*-formula ¢ as a S2S-formula

G.Cm‘%?.i%:v such that it is true over a tree tye iff @ holds in M Hence ¢ is
satisfiable iff the S2S-sentence

IX3Y 1.3 UK Y 0, V) A QXYY )

is true over the infinite binary tree. So by Rabin’s Tree Theorem satisfiability of
CTL*-formulas is decidable.

The decision procedure induced by the above transformation is nonelementary. (Each
level of negation in the given formula requires a corresponding complementation of a
Rabin automaton and hence an at least exponential blow-up in the size of the automa-
ta.) Better procedures are obtained by incorporating more information than just for the
atomic formulas in the tree model t,, ; a possible approach is to include the "Fischer-
Ladner closure” of the given formula. For details see Emerson [1988].

We end this section with the formulation of two interesting generalizations of Rabin’s
Tree Theorem and some remarks on undecidable extensions of the monadic theory of
the binary tree.

Stupp Eo.\&%oo:msﬁsm work of Shelah [1975], extended Rabin’s techniques (in parti-
cular, concerning the complementation theorem) to “higher-dimensional trees" and
similar structures.

11.4. Theorem (Shelah [1975], Stupp [1975])

Let M = E.Qﬂ} va be a relational structure (say with binary relations R; ¢ MxM).
Define the structure M* = QS*.A,QJJMAWV by

u<v iff uis a proper prefix of v (over M*)

uR¥ viff 3 my,...,my,m,m’ € M such that

u=m..mm, V= B_...BWB,, m ws m’.

If the monadic second-order theory of M is decidable, so is the monadic second-
order theory of a*. 0O

The special case of 11.4 which yields Rabin’s Tree Theorem concerns the finite struc-
ture 2, = ({0,1},<;) where <o is the usual order on (0,1} (and which of course has a
decidable monadic second-order theory). We have “50 =({0,1 w».A—,on where
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u <y v iff uis a proper prefix of v,
u<,v iff u=w0, v=wl for some we {0,1}*.

The functions succ,, succq are (monadic second-order) definable in terms of <1» <, and
vice versa. So M is essentially the infinite binary tree.

Another extension of Rabin’s Tree Theorem, which also covers the models MET*, s
due to Muller, Schupp [1985]. They consider infinite directed graphs with labeled edges.
Such a graph is said to be "finitely generated" if it has a distinguished vertex Vo
("origin"), a finite label alphabet A and a fixed finite bound on the degrees of the
vertices. The model theoretic structures which represent these graphs are of the form
G = AO~<o.Aw»vmm >v such that u ww v iff there is an edge labeled a from u to v. A
finitely generated graph is called a context-free graph if it is "finitely behaved at
infinity" in the following sense: One obtains only finitely many distinct isomorphism
types by collecting, for all vertices v, the substructures I'(v) which remain as con-
nected components when the points with smaller distance to Vo than between v and
v, are deleted. The binary tree, with root v and labels 0 and 1 on edges pointing to
left and right successors, respectively, is a simple example with only one such isomor-
phism type. (The terminology is motivated by a connection with group theory: As
shown in Muller, Schupp [1983], a finitely generated group has a context-free word
problem iff its Cayley graph is context-free in the sense above.)

11.5. Theorem (Muller, Schupp [1985])
The monadic second-order theory of any context-free graph is decidable. O

The proof of 11.5 is based on Rabin’s Tree Theorem. The general problem of reducing
monadic theories of graphs to theories of trees is further investigated in Seese [1988];
he considers the conjecture that any decidable monadic theory of a class of graphs has
an interpretation in the monadic theory of a class of trees, and shows that this is true
for the class of planar graphs. Courcelle [1988] presents a thorough analysis of monadic
second-order properties of graphs in connection with an algebraic notion of recogniz-
ability.

The theories in 11.4 and 11.5 seem close to the margin of undecidability. We mention
some variants, resp. extensions of the monadic theory of the binary tee which are
undecidable.

The most basic example is the monadic theory of the "grid" Aexe.mo.ﬁv where moAB.av =
(m+1,n) and sy(mn) = (m,n+1). This structure is obtained from the free algebra
({0,1 w*.mcnno.mcoo_v by adding the relation SUCC,+SUCC| = SUCC] +SUCC).
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11.6. Theorem (Seese [1972])
The (weak) monadic second-order theory of the grid (wxw,s,51) is undecidable.

.Nﬁoloh The idea is similar as in the undecidability proof for the origin constrained
domino problem. For any Turing machine A construct a sentence @, in the weak
monadic second-order language of the grid which expresses existence of a halting
computation of A4 when A4 is started on the empty tape (the tape is assumed here left
bounded and right infinite). As in the domino problem, the i-th cell of the j-th confi-
guration is represented by point (i,j) € wxw. Using existential quantification over
auxiliary predicates (which code the letters and states of 2) it is easy to formalize
that a halting configuration is reached. Since only finitely many steps and a finite
portion of the tape are involved, weak second-order quantification suffices. O

11.7. Corollary
(a) The (weak) monadic second-order theory of the infinite binary tree extended
by the function s with s(w) = Ow (for w € {0,1}*) is undecidable.
(b) The (weak) monadic second-order theory of the infinite binary tree extended
by the "equal level predicate” E, given by u E v iff lul = vl (for uv e
{0,1}*) is undecidable.

Proof. (a) Identify the (weakly definable) subset 0*1* of the binary tree with wxa.
Note that Aexe,mo,m_v is isomorphic to ao*_*.m,mcoﬁv.

(b) Using the predicate E, the function s is weakly definable on 0*1*, since we have
(for u,v € 0*1*)
s(u) =v iff (ue 0*Av=ul) v

Iwe 0*3u’(ue wl* Av’e wOl* AuEu Au’'l =vV).

Now (a) can be applied. O

As a consequence of 11.7 (and by decidability of S2S) one obtains that the function s
and the relation E are not definable in S2S; this is noted (also by other proofs) in
Buszkowski [1980], L4uchli, Savioz [1987], and Emerson [1987].
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12. Classifications of Rabin recognizable sets

In this final section we give a short overview of the (mostly ongoing) work which
studies the "fine structure” of the class of Rabin recognizable sets of trees. The results
presented here fall in three categories, depending on the formalism in which tee
properties are classified: Monadic second-order logic, tree automata, and fixed point
calculi.

12.1. Restrictions of monadic second-order logic

Natural subsystems of the monadic second-order formalism S2S are obtained when the
range of set quantification is narrowed to special subsets of {0,1}*.

First we consider the question for which restricted set quantifiers the same sentences
are true (over the infinite binary tree) as in the case of quantification over arbitrary
subsets. Rabin [1972] showed (as a corollary of his result given in 9.3(a) above) that
the regular subsets of {0,1})* consttute such a restriction. Siefkes [1975] proved that
this fails for the recursive subsets of {0,1}*, using the fact that the “recursive version"
of Konig’s Lemma does not hold. (There are finitely branching infinite trees which are
recursive but have no recursive infinite path.) - A related queston is the uniformiza-
tion problem: Is there for any given formula ¢(X,Y), such that VX3IY@(X,Y) holds, a
"definable choice function", i.e. a (set) function defined by a formula y(X,Y) such that
VXVYWX,Y) = ¢(X,Y))? Siefkes [1975] proves this for S1S, and Gurevich, Shelah [1983]
show by a very intricate proof method that it fails for S28S.

We discuss two further restricted set quantifiers: those ranging over finite sets, and
those ranging over paths through the infinite binary tree. (For other syntactic frag-
ments of S28 see e.g. Mostowski [1981].)

The weakly definable sets of trees, already considered in the preceding section, have
been further classified in Thomas [1982]. It is shown there that an infinite hierarchy is
induced by the alternation depth of "unbounded" quantifiers over finite sets and
elements. (The quantifier in 3X@(X,Y) is called bounded if the formula is equivalent to
IXX<Y A 9(X,Y)), where X<Y abbreviates Vx(xeX — 3y(ye Y A x<y)).) As an example,
consider the formula (+) of the preceding section for the description of subtree auto-
mata; (+) has two unbounded quantifiers, which shows that subtree automata recognize
only sets up to the second level of that hierarchy. Over w-words the analogous hierar-
chy is finite, because by McNaughton’s Theorem two unbounded quantifiers suffice for
the definition of regular w-languages (cf. 4.6).
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When set quantifiers refer to chains in trees (i.e. sets linearly ordered by the prefix
reladon <) or to paths (i.e. maximal chains), one obtains "chain logic", resp. "path
logic" over the binary tree. In Thomas [1987] the sets of trees which are definable in
these systems are characterized in terms of the regular and star-free ®-languages. A
similar approach is developed by Clarke, Grumberg, Kurshan [1987] for a system of
extended branching time logic. The close connection between path quantifiers and
branching time logic is illustrated in Hafer, Thomas [1987], where computation tree logic
CTL* and path logic are shown expressively equivalent, provided that only binary tree
models are admitted. .

The most general decidability result on path quantifiers over trees was shown by
Gurevich, Shelah [1985]. By a combination of tree automata with a model theoretic
composition technique (for finite fragments of theories), they prove that in the langu-
age of path logic the theory of arbitrary trees (considered as any partial orders where
each set {yly < x) is totally ordered) is decidable.

12.2. Restrictions in Rabin tree automata

Several authors investigated the possibility of extending Landweber’s Theorem (cf.
section 5) to Rabin recognizable sets of trees. The notions of 1- and 2-acceptance can
be transferred in a natural way from sequential automata to tree automata (namely, as
conditions for all paths of a run). Also the Cantor topology is extended canonically
from A® to the space .H.W (the sets tT®, where t is a finite tree, form an open basis).
Results on inclusion relations for these acceptance conditions and their topological
meaning are presented in Hayashi, Miyano [1985] and Moriya [1987]. An infinite hierar-
chy of closed sets based on quantifier alternation is introduced in Mostowski [1987].
Mostowski, Skurczynski, Wagner [1985] obtain a partial transfer of Landweber’s Theo-
rem (including decidability results) to tree languages recognized by deterministic Rabin
tree automata. Further results on deterministic tree automata and the power of several
acceptance conditions derived from Muller and Biichi acceptance are given in Saoudi
[1984,1986].

Recently, Niwinski [1986a] showed that the Rabin index (the number of accepting pairs
in Rabin tree automata) defines an infinite hierarchy of sets of trees: For each n there
is aset T, < ._A>c which is recognized only by Rabin tree¢ automata with at least n
accepting pairs. The example languages T, belong to the boolean closure of the Biichi
recognizable sets of trees; Hafer [1987] proves that this boolean closure is still proper-
ly contained in the class of Rabin recognizable sets.
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Mostowski [1984] presents a “standard form" of Rabin tree automata in which an
ordering of the state set enters the acceptance condition. As an application, a calculus
of regular-like expressions is set up which allows to define the Rabin recognizable sets.

12.3. Fixed point calculi

Niwinski [1986] and Takahashi [1986] studied the specification of tree Eovo:u.nm.cw a
fixed-point calculus in which least and greatest fixed points are included. Following

Niwinski [1986], we define the p-terms over an alphabet A and with variables X]:Xseme
by the clauses

- each variable x; is a i-term,
- if 14, T, are p-terms and a € A, then a(11,75) and 11U, are p-terms,
- if tis a p-term and x is a variable, then pxt and vxt are -terms.

Any p-term aoﬁ.z.xnv with free variables XXy defines a function ma“ G,wvz - Hw.
Fort= X; it is the i-th projection. Hmaoﬁ..:.xnv has the form 1 = TV Ty, iet

maAHH.....an = ma_qp.:;.ﬂzv U] mawﬁ,_.:..ﬂuv.
similarly for t = wﬁ#awv

Fy(T,Tp) = (te TRIwe) =2, t e Fo Tty € By, (T3 )-

Finally, for 1 = twaoﬁw,xw.....xuv. resp. T = <<aoQ.xT...,x=v. let Haq T..:.Hsv be the
least, resp. greatest fixed point of the function T ma (T,Tq,....T). (These fixed
points exist by the Knaster-Tarski Theorem.) °

Each p-term t without free variables defines a set T < .ﬁw. denoted here by T(1). As
an example over the alphabet A ={a,b} consider the pi-term

Hx vxg (b(xx,) U alxq,x1));

it defines the set T of section 8, containing all trees such that on each path there
are only finitely many letters a.

By induction over the p-terms T one verifies that the functions E, are definable in
S28. It follows that the sets T(t) are Rabin recognizable. Niwinski [1988] proves also
the ‘converse; so the H-terms have the same expressive power as Rabin tree automata
Aon S$2§). Already-in Niwinski [1986] it is shown that a strict hierarchy of sets of trees
is generated by increasing the number of alternations between the least and greatest
fixed point operators' 1 -and v -in the defining terms. Moreover, the second level of the
hierarchy Am.m,«.,na;vw;n.o” terms where all v-operators precede all p-operators) character-
izes the Biichi aooomu,mumzo sets of trees (Niwinski [1986], Takahashi [1986]). Amold,
Niwinski [1987] show that this characterization continues to hold when the intersection
operator M is added to the p-terms.
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