

This page intentionally left blank

LECTURES IN GAME THEORY FOR
COMPUTER SCIENTISTS

Games provide mathematical models for interaction. Numerous tasks in computer
science can be formulated in game-theoretic terms. This fresh and intuitive way
of thinking about complex issues reveals underlying algorithmic questions and
clarifies the relationships between different domains.

This collection of lectures, by specialists in the field, provides an excellent intro-
duction to various aspects of game theory relevant for applications in computer
science that concern program design, synthesis, verification, testing and design of
multi-agent or distributed systems. Originally devised for a Spring School organ-
ised by the ESF Networking Programme on Games for Design and Verification
(GAMES) in 2009, these lectures have since been revised and expanded, and range
from tutorials concerning fundamental notions and methods to more advanced
presentations of current research topics.

This volume is a valuable guide to current research on game-based methods
in computer science for undergraduate and graduate students. It will also interest
researchers working in mathematical logic, computer science and game theory.

Krzysztof R. Apt is Professor at the University of Amsterdam and a Fellow
at Centrum Wiskunde en Informatica (CWI), Amsterdam.

Erich Grädel is Professor for Mathematical Foundations of Computer Science
at RWTH Aachen University, Germany.

LECTURES IN GAME THEORY FOR
COMPUTER SCIENTISTS

Edited by

KRZYSZTOF R. APT
Centrum Wiskunde en Informatica (CWI), Amsterdam

ERICH GRÄDEL
RWTH Aachen University

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521198660

C© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-19866-0 Hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

Contents

List of contributors page viii
Preface ix

1 A Primer on Strategic Games
Krzysztof R. Apt 1

1.1 Introduction 1
1.2 Basic concepts 2
1.3 Iterated elimination of strategies I 5
1.4 Mixed extension 13
1.5 Iterated elimination of strategies II 16
1.6 Variations on the definition of strategic games 22
1.7 Mechanism design 23
1.8 Pre-Bayesian games 30
1.9 Conclusions 33

2 Infinite Games and Automata Theory
Christof Löding 38

2.1 Introduction 38
2.2 Basic notations and definitions 40
2.3 Transformation of winning conditions 44
2.4 Tree automata 57
2.5 Beyond finite automata 68
2.6 Conclusion 70

3 Algorithms for Solving Parity Games
Marcin Jurdziński 74

3.1 Games on graphs 74
3.2 Solving repeated reachability and eventual safety games 77
3.3 Solving parity games 81
3.4 Related work 95

vi Contents

4 Back and Forth Between Logic and Games
Erich Grädel 99

4.1 Introduction 99
4.2 Reachability games and parity games 102
4.3 Reachability games and logic 105
4.4 Logics with least and greatest fixed-points 109
4.5 Definability of winning regions in parity games 120
4.6 Inflationary fixed-point logic and backtracking games 127
4.7 Logic and games in a quantitative setting 138

5 Turn-Based Stochastic Games
Antońın Kučera 146

5.1 Introduction 146
5.2 Winning objectives in stochastic games 151
5.3 Reachability objectives in games with finitely and

infinitely many vertices 170
5.4 Some directions of future research 180

6 Games with Imperfect Information:
Theory and Algorithms
Laurent Doyen and Jean-François Raskin 185

6.1 Introduction 185
6.2 Games with perfect information 188
6.3 Games with imperfect information: surely-winning 194
6.4 Games with imperfect information: almost-surely-winning 204

7 Graph Searching Games
Stephan Kreutzer 213

7.1 Introduction 213
7.2 Classifying graph searching games 217
7.3 Variants of graph searching games 229
7.4 Monotonicity of graph searching 236
7.5 Obstructions 249
7.6 An application to graph-decompositions 252
7.7 Complexity of graph searching 255
7.8 Conclusion 260

8 Beyond Nash Equilibrium: Solution Concepts for
the 21st Century
Joseph Y. Halpern 264

8.1 Introduction 264
8.2 Robust and resilient equilibrium 266
8.3 Taking computation into account 270

Contents vii

8.4 Taking (lack of) awareness into account 274
8.5 Iterated regret minimisation 280
8.6 Conclusions 285

Index 291

Contributors

Krzysztof R. Apt
CWI & University of Amsterdam

Christof Löding
RWTH Aachen University

Marcin Jurdziński
University of Warwick

Erich Grädel
RWTH Aachen University

Antońın Kučera
Masaryk University

Laurent Doyen
CNRS & ENS Cachan

Jean-François Raskin
Université Libre de Bruxelles

Stephan Kreutzer
University of Oxford

Joseph Y. Halpern
Cornell University, Ithaca, NY

Preface

Game playing is a powerful metaphor that fits many situations where in-
teraction between autonomous agents plays a central role. Numerous tasks
in computer science, such as design, synthesis, verification, testing, query
evaluation, planning, etc. can be formulated in game-theoretic terms. Viewing
them abstractly as games reveals the underlying algorithmic questions, and
helps to clarify relationships between problem domains. As an organisational
principle, games offer a fresh and intuitive way of thinking through complex
issues.

As a result mathematical models of games play an increasingly important
role in a number of scientific disciplines and, in particular, in many branches
of computer science. One of the scientific communities studying and applying
games in computer science has formed around the European Network ‘Games
for Design and Verification’ (GAMES), which proposes a research and training
programme for the design and verification of computing systems, using a
methodology that is based on the interplay of finite and infinite games,
mathematical logic and automata theory.

This network had initially been set up as a Marie Curie Research Training
Network, funded by the European Union between 2002 and 2006. In its four
years of existence this network built a strong European research community
that did not exist before. Its flagship activity – the annual series of GAMES
workshops – saw an ever-increasing number of participants from both within
and outside Europe. The ESF Research Networking Programme GAMES,
funded by the European Science Foundation ESF from 2008 to 2013, builds
on the momentum of this first GAMES network, but it is scientifically broader
and more ambitious, and it covers more countries and more research groups.

This book grew out of the lectures given at a Spring School organised
by the GAMES Networking Programme in Bertinoro, Italy, from May 31

x Preface

to June 6, 2009, with almost eighty participants, most of them students or
postdoctoral young researchers from all over Europe.

For eight out of the nine courses presented at this school, the lecture notes
have now been revised and expanded, and are presented to a wider audience
as a collection of

Lectures in Game Theory for Computer Scientists,

covering various aspects of finite and infinite games. It is of course not
possible to cover in a Spring School or in a collection of lectures all facets
of ‘games for computer science’, not even for those games that are used for
the synthesis and verification of reactive systems. The lecture notes we have
assembled range from tutorials concerning fundamental notions and methods
to more advanced presentations of specialized topics of current research.

Krzysztof R. Apt presents A Primer on Strategic Games, focusing
on fundamental notions of strategic games such as best response, Nash
equilibrium, Pareto efficient outcomes, strict and weak dominance, mixed
strategies, and discusses the relation between these notions in the context of
iterated elimination of strategies. He also introduces the basics of mechanism
design and of the underlying class of games, called pre-Bayesian games.

Christof Löding gives an introduction to Infinite Games and Automata
Theory. He illustrates how the theory of automata on infinite words can be
used to solve games of infinite duration with complex winning conditions, for
example specified by logical formulae, and why infinite games are a useful tool
to solve problems about automata on infinite trees such as complementation
and the emptiness test.

Marcin Jurdziński provides a selective survey of Algorithms for Solving
Parity Games. Parity games are a class of ω-regular games, i.e., games on
graphs whose payoff function is computable by a finite automaton on infinite
words. First, a divide-and-conquer algorithm is discussed for solving games
with two important special cases of the parity payoff function: repeated
reachability (Büchi) and eventual safety (co-Büchi) games. Then, a number
of state-of-the-art algorithms for solving parity games are presented. Algo-
rithmic techniques applied include divide-and-conquer and value iteration
for computing parity progress measures, as well as non-trivial combinations
of the two.

In his lecture, Erich Grädel goes Back and Forth Between Logic and
Games, focusing on first-order and fixed-point logic, and on reachability
and parity games. He discusses the general notion of model-checking games.

Preface xi

While it is easily seen that the meaning of first-order logic is captured by
reachability games, more effort is required to see that parity games are the
appropriate games for evaluating formulae from least fixed-point logic and the
modal μ-calculus. The algorithmic consequences of this result are discussed.
Then the reverse relationship between games and logic is explored, namely
the question of how winning regions in games are definable in logic. Finally,
the relationship between logic and games is discussed for more complicated
scenarios provided by inflationary fixed-point logic and the quantitative
μ-calculus.

Antońın Kuc̆era presents a survey on Turn-Based Stochastic Games,
with a taxonomy of winning objectives in such games, a discussion of their
basic properties, and an overview of the existing results about existence and
construction of optimal strategies. He devotes special attention to games
with infinitely many vertices.

Laurent Doyen and Jean-François Raskin present an introduction
to Games with Imperfect Information: Theory and Algorithms. They study
observation-based strategies that rely on imperfect information about the
history of a play. Such games occur in the synthesis of a controller that
does not see the private state of the controlled system. For a different kind
of objective, they exhibit algorithms for computing the set of states from
which a player can win with a deterministic or randomised observation-based
strategy.

Stephan Kreutzer introduces Graph Searching Games explaining the
use of games for distinguishing between simple and complicated graphs. The
unifying idea of graph searching games is that a number of searchers want
to find a fugitive on an arena defined by a graph or hypergraph. Depending
on the precise definition of moves allowed for the searchers and the fugitive
and the type of graph the game is played on, this gives a number of variants
of graph-searching games, which lead to different complexity measures of
graphs.

Finally, in his lecture Beyond Nash Equilibrium: Solution Concepts for
the 21st Century, Joseph Y. Halpern addresses shortcomings of Nash
equilibrium, the central solution concept of classical game theory, from a
computer science perspective. For example, Nash equilibria are not robust in
the sense that they do not tolerate faulty or unexpected behaviour, they do
not deal with coalitions, they do not take computation costs into account,
and they do not deal with cases where players are not aware of all aspects of

xii Preface

the game. Halpern discusses alternative solution concepts that try to address
these shortcomings.

We hope that this collection of lectures will be helpful as an introduction
and guide to current research on game-based methods in computer science,
and will attract new researchers to this field. We wish to thank the European
Science Foundation ESF for financing the GAMES Networking Programme.
We acknowledge in particular their generous support for the GAMES Spring
School in Bertinoro and for the preparation of this collection of lectures.
Finally, we thank Joel Uckelman for his help in preparation of this volume.

Krzysztof R. Apt and Erich Grädel Amsterdam and Aachen

PS. A comment about the cover: the expression ‘to outfox somebody’ suggests
that foxes are experts in game theory.

1

A Primer on Strategic Games
Krzysztof R. Apt

CWI and University of Amsterdam

Abstract

This is a short introduction to the subject of strategic games. We focus on
the concepts of best response, Nash equilibrium, strict and weak dominance,
and mixed strategies, and study the relation between these concepts in
the context of the iterated elimination of strategies. Also, we discuss some
variants of the original definition of a strategic game. Finally, we introduce
the basics of mechanism design and use pre-Bayesian games to explain it.

1.1 Introduction

Mathematical game theory, as launched by Von Neumann and Morgenstern in
their seminal book, von Neumann and Morgenstern [1944], followed by Nash’s
contributions Nash [1950, 1951], has become a standard tool in economics for
the study and description of various economic processes, including competi-
tion, cooperation, collusion, strategic behaviour and bargaining. Since then it
has also been successfully used in biology, political sciences, psychology and
sociology. With the advent of the Internet game theory became increasingly
relevant in computer science.

One of the main areas in game theory are strategic games (sometimes also
called non-cooperative games), which form a simple model of interaction
between profit maximising players. In strategic games each player has a
payoff function that he aims to maximise and the value of this function
depends on the decisions taken simultaneously by all players. Such a simple
description is still amenable to various interpretations, depending on the
assumptions about the existence of private information. The purpose of this
primer is to provide a simple introduction to the most common concepts used

2 Krzysztof R. Apt

in strategic games: best response, Nash equilibrium, dominated strategies
and mixed strategies and to clarify the relation between these concepts.

In the first part we consider the case of games with complete information.
In the second part we discuss strategic games with incomplete information,
by introducing first the basics of the theory of mechanism design that deals
with ways of preventing strategic behaviour, i.e., manipulations aiming at
maximising one’s profit. We focus on the concepts, examples and results, and
leave simple proofs as exercises.

1.2 Basic concepts

Assume a set {1, . . . , n} of players, where n > 1. A strategic game (or
non-cooperative game) for n players, written as (S1, . . . , Sn, p1, . . . , pn),
consists of

• a non-empty (possibly infinite) set Si of strategies,
• a payoff function pi : S1 × . . .× Sn → R,

for each player i.
We study strategic games under the following basic assumptions:

• players choose their strategies simultaneously ; subsequently each player
receives a payoff from the resulting joint strategy,

• each player is rational , which means that his objective is to maximise his
payoff,

• players have common knowledge of the game and of each others’ ratio-
nality.1

Here are three classic examples of strategic two-player games to which we
shall return in a moment. We represent such games in the form of a bimatrix,
the entries of which are the corresponding payoffs to the row and column
players.

Prisoner’s Dilemma

C D
C 2, 2 0, 3
D 3, 0 1, 1

1 Intuitively, common knowledge of some fact means that everybody knows it, everybody knows
that everybody knows it, etc.

A Primer on Strategic Games 3

Battle of the Sexes

F B
F 2, 1 0, 0
B 0, 0 1, 2

Matching Pennies

H T
H 1,−1 −1, 1
T −1, 1 1,−1

We introduce now some basic notions that will allow us to discuss and
analyse strategic games in a meaningful way. Fix a strategic game

(S1, . . . , Sn, p1, . . . , pn).

We denote S1 × . . .× Sn by S, call each element s ∈ S a joint strategy , or
a strategy profile, denote the ith element of s by si, and abbreviate the
sequence (sj)j �=i to s−i. Occasionally we write (si, s−i) instead of s. Finally,
we abbreviate ×j �=iSj to S−i and use the ‘−i’ notation for other sequences
and Cartesian products.

We call a strategy si of player i a best response to a joint strategy s−i

of his opponents if

∀s′i ∈ Si pi(si, s−i) ≥ pi(s′i, s−i).

Next, we call a joint strategy s a Nash equilibrium if each si is a best
response to s−i, that is, if

∀i ∈ {1, . . . , n} ∀s′i ∈ Si pi(si, s−i) ≥ pi(s′i, s−i).

So a joint strategy is a Nash equilibrium if no player can achieve a higher
payoff by unilaterally switching to another strategy.

Finally, we call a joint strategy s Pareto efficient if for no joint strategy s′

∀i ∈ {1, . . . , n} pi(s′) ≥ pi(s) and ∃i ∈ {1, . . . , n} pi(s′) > pi(s).

That is, a joint strategy is Pareto efficient if no joint strategy is both a weakly
better outcome for all players and a strictly better outcome for some player.

Some games, like the Prisoner’s Dilemma, have a unique Nash equilibrium,
namely (D,D), while some other ones, like the Matching Pennies, have no
Nash equilibrium. Yet other games, like the Battle of the Sexes, have multiple
Nash equilibria, namely (F, F) and (B, B). One of the peculiarities of the
Prisoner’s Dilemma game is that its Nash equilibrium is the only outcome
that is not Pareto efficient.

4 Krzysztof R. Apt

Let us return now to our analysis of an arbitrary strategic game (S1, . . . , Sn,

p1, . . . , pn). Let si, s
′
i be strategies of player i. We say that si strictly dom-

inates s′i (or equivalently, that s′i is strictly dominated by si) if

∀s−i ∈ S−i pi(si, s−i) > pi(s′i, s−i),

that si weakly dominates s′i (or equivalently, that s′i is weakly dominated

by si) if

∀s−i ∈ S−i pi(si, s−i) ≥ pi(s′i, s−i) and ∃s−i ∈ S−i pi(si, s−i) > pi(s′i, s−i),

and that si dominates s′i (or equivalently, that s′i is dominated by si) if

∀s−i ∈ S−i pi(si, s−i) ≥ pi(s′i, s−i).

Further, we say that si is strictly dominant if it strictly dominates all
other strategies of player i and define analogously a weakly dominant and
a dominant strategy.

Clearly, a rational player will not choose a strictly dominated strategy. As
an illustration let us return to the Prisoner’s Dilemma. In this game for each
player, C (cooperate) is a strictly dominated strategy. So the assumption of
players’ rationality implies that each player will choose strategy D (defect).
That is, we can predict that rational players will end up choosing the joint
strategy (D,D) in spite of the fact that the Pareto efficient outcome (C, C)
yields for each of them a strictly higher payoff.

The Prisoner’s Dilemma game can be easily generalised to n players as
follows. Assume that each player has two strategies, C and D. Denote by
Cn the joint strategy in which each strategy equals C and similarly with Dn.
Further, given a joint strategy s−i of the opponents of player i denote by
|s−i(C)| the number of C strategies in s−i.

Assume now that ki and li, where i ∈ {1, . . . , n}, are real numbers such
that for all i ∈ {1, . . . , n} we have ki(n− 1) > li > 0. We put

pi(s) :=

{
ki|s−i(C)|+ li if si = D

ki|s−i(C)| if si = C.

Note that for n = 2, ki = 2 and li = 1 we get the original Prisoner’s Dilemma
game.

Then for all players i we have pi(Cn) = ki(n− 1) > li = pi(Dn), so for all
players the strategy profile Cn yields a strictly higher payoff than Dn. Yet
for all players i strategy C is strictly dominated by strategy D, since for all
s−i ∈ S−i we have pi(D, s−i)− pi(C, s−i) = li > 0.

Whether a rational player will never choose a weakly dominated strategy
is a more subtle issue that we shall not pursue here.

A Primer on Strategic Games 5

By definition, no player achieves a higher payoff by switching from a
dominant strategy to another strategy. This explains the following obvious
observation.

Note 1.1 (Dominant Strategy) Consider a strategic game G. Suppose that
s is a joint strategy such that each si is a dominant strategy. Then it is a
Nash equilibrium of G.

In particular, the conclusion of the lemma holds if each si is a strictly
or a weakly dominant strategy. In the former case, when the game is finite,
we can additionally assert (see the IESDS Theorem 1.3 below) that s is a
unique Nash equilibrium of G. This stronger claim does not hold if each si is
a weakly dominant strategy. Indeed, consider the game

L R
T 1, 1 1, 1
B 1, 1 0, 0

Here T is a weakly dominant strategy for the player 1, L is a weakly dominant
strategy for player 2 and, as prescribed by the above Note, (T, L), is a
Nash equilibrium. However, this game has two other Nash equilibria, (T, R)
and (B, L).

The converse of the above Note of course is not true. Indeed, there are
games in which no strategy is dominant, and yet they have a Nash equilibrium.
An example is the Battle of the Sexes game that has two Nash equilibria,
but no dominant strategy.

So to find a Nash equilibrium (or Nash equilibria) of a game it does not
suffice to check whether a dominant strategy exists. In what follows we
investigate whether iterated elimination of strategies can be of help.

1.3 Iterated elimination of strategies I

1.3.1 Elimination of strictly dominated strategies

We assumed that each player is rational. So when searching for an outcome
that is optimal for all players we can safely remove strategies that are strictly
dominated by some other strategy. This can be done in a number of ways.
For example, we could remove all or some strictly dominated strategies
simultaneously, or start removing them in a round robin fashion starting
with, say, player 1. To discuss this matter more rigorously we introduce the
notion of a restriction of a game.

Given a game G := (S1, . . . , Sn, p1, . . . , pn) and (possibly empty) sets

6 Krzysztof R. Apt

of strategies R1, . . . , Rn such that Ri ⊆ Si for i ∈ {1, . . . , n} we say that
R := (R1, . . . , Rn, p1, . . . , pn) is a restriction of G. Here of course we view
each pi as a function on the subset R1 × . . .×Rn of S1 × . . .× Sn. In what
follows, given a restriction R we denote by Ri the set of strategies of player
i in R.

We now introduce the following notion of reduction between the restrictions
R and R′ of G:

R→S R′

when R �= R′, ∀i ∈ {1, . . . , n} R′
i ⊆Ri and

∀i ∈ {1, . . . , n} ∀si ∈ Ri \R′
i ∃s′i ∈ Ri si is strictly dominated in R by s′i.

That is, R→S R′ when R′ results from R by removing from it some strictly
dominated strategies.

In general an elimination of strictly dominated strategies is not a one step
process; it is an iterative procedure. Its use is justified by the assumption of
common knowledge of rationality.

Example 1.2 Consider the following game:

L M R
T 3, 0 2, 1 1, 0
C 2, 1 1, 1 1, 0
B 0, 1 0, 1 0, 0

Note that B is strictly dominated by T and R is strictly dominated by M .
By eliminating these two strategies we get:

L M
T 3, 0 2, 1
C 2, 1 1, 1

Now C is strictly dominated by T , so we get:

L M
T 3, 0 2, 1

In this game L is strictly dominated by M , so we finally get:

M
T 2, 1

�

A Primer on Strategic Games 7

This brings us to the following notion, where given a binary relation →
we denote by → ∗ its transitive reflexive closure. Consider a strategic game
G. Suppose that G→ ∗

S R, i.e., R is obtained by an iterated elimination of
strictly dominated strategies, in short IESDS , starting with G.

• If for no restriction R′ of G, R→SR′ holds, we say that R is an outcome

of IESDS from G.
• If each player is left in R with exactly one strategy, we say that G is

solved by IESDS .

The following simple result clarifies the relation between the IESDS and
Nash equilibrium.

Theorem 1.3 (IESDS) Suppose that G′ is an outcome of IESDS from a
strategic game G.

(i) If s is a Nash equilibrium of G, then it is a Nash equilibrium of G′.
(ii) If G is finite and s is a Nash equilibrium of G′, then it is a Nash

equilibrium of G.
(iii) If G is finite and solved by IESDS, then the resulting joint strategy is a

unique Nash equilibrium.

Exercise 1.1 Provide the proof. �

Example 1.4 A nice example of a game that is solved by IESDS is the
location game due to Hotelling [1929]. Assume that that the players are two
vendors who simultaneously choose a location. Then the customers choose
the closest vendor. The profit for each vendor equals the number of customers
it attracted.

To be more specific we assume that the vendors choose a location from
the set {1, . . . , n} of natural numbers, viewed as points on a real line, and
that at each location there is exactly one customer. For example, for n = 11
we have 11 locations:

and when the players choose respectively the locations 3 and 8:

8 Krzysztof R. Apt

we have p1(3, 8) = 5 and p2(3, 8) = 6. When the vendors ‘share’ a customer,
they end up with a fractional payoff.

In general, we have the following game:

• each set of strategies consists of the set {1, . . . , n},
• each payoff function pi is defined by:

pi(si, s3−i) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

si + s3−i − 1
2

if si < s3−i

n− si + s3−i − 1
2

if si > s3−i

n

2
if si = s3−i.

It is easy to see that for n = 2k + 1 this game is solved by k rounds of
IESDS, and that each player is left with the ‘middle’ strategy k. In each
round both ‘outer’ strategies are eliminated, so first 1 and n, and so on. �

There is one more natural question that we left so far unanswered. Is the
outcome of an iterated elimination of strictly dominated strategies unique,
or in game theory parlance: is strict dominance order independent? The
answer is positive. The following result was established independently by
Gilboa et al. [1990] and Stegeman [1990].

Theorem 1.5 (Order Independence I) Given a finite strategic game all
iterated eliminations of strictly dominated strategies yield the same outcome.

As noted by Dufwenberg and Stegeman [2002] the above result does not
hold for infinite strategic games.

Example 1.6 Consider a game in which the set of strategies for each
player is the set of natural numbers. The payoff to each player is the number
(strategy) he selected.

Note that in this game every strategy is strictly dominated. Consider now
three ways of using IESDS:

• by removing in one step all strategies that are strictly dominated,
• by removing in one step all strategies different from 0 that are strictly

dominated,
• by removing in each step exactly one strategy.

In the first case we obtain the restriction with the empty strategy sets,
in the second one we end up with the restriction in which each player has
just one strategy, 0, and in the third case we obtain an infinite sequence of
reductions. �

A Primer on Strategic Games 9

The above example shows that in the limit of an infinite sequence of
reductions different outcomes can be reached. So for infinite games the
definition of the order independence has to be modified. An interested reader
is referred to Dufwenberg and Stegeman [2002] and Apt [2007] where two
different options are proposed and some limited order independence results
are established.

The above example also shows that in the IESDS Theorem 1.3(ii) and (iii)
we cannot drop the assumption that the game is finite. Indeed, the above
infinite game has no Nash equilibria, while the game in which each player
has exactly one strategy has a Nash equilibrium.

1.3.2 Elimination of weakly dominated strategies

Analogous considerations can be carried out for the elimination of weakly
dominated strategies, by considering the appropriate reduction relation →W

defined in the expected way. Below we abbreviate iterated elimination of
weakly dominated strategies to IEWDS .

However, in the case of IEWDS some complications arise. To illustrate
them consider the following game that results from equipping each player in
the Matching Pennies game with a third strategy E (for Edge):

H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1

Note that

• (E,E) is its only Nash equilibrium,
• for each player, E is the only strategy that is weakly dominated.

Any form of elimination of these two E strategies, simultaneous or iterated,
yields the same outcome, namely the Matching Pennies game, that, as we
have already noticed, has no Nash equilibrium. So during this eliminating
process we ‘lost’ the only Nash equilibrium. In other words, part (i) of the
IESDS Theorem 1.3 does not hold when reformulated for weak dominance.

On the other hand, some partial results are still valid here.

Theorem 1.7 (IEWDS) Suppose that G is a finite strategic game.

(i) If G′ is an outcome of IEWDS from G and s is a Nash equilibrium of
G′, then s is a Nash equilibrium of G.

10 Krzysztof R. Apt

(ii) If G is solved by IEWDS, then the resulting joint strategy is a Nash
equilibrium of G.

Exercise 1.2 Provide the proof. �

Example 1.8 A nice example of a game that is solved by IEWDS is
the Beauty Contest game due to Moulin [1986]. In this game there are
n > 2 players, each with the set of strategies equal {1, . . . , 100}. Each player
submits a number and the payoff to each player is obtained by splitting 1
equally between the players whose submitted number is closest to 2

3 of the
average. For example, if the submissions are 29, 32, 29, then the payoffs are
respectively 1

2 , 0, 1
2 .

One can check that this game is solved by IEWDS and results in the joint
strategy (1, . . . , 1). Hence, by the IEWDS Theorem 1.7 this joint strategy
is a (not necessarily unique; we shall return to this question in Section 1.5)
Nash equilibrium. �

Exercise 1.3 Show that the Beauty Contest game is indeed solved by
IEWDS. �

Note that in contrast to the IESDS Theorem 1.3 we do not claim in part
(ii) of the IEWDS Theorem 1.7 that the resulting joint strategy is a unique
Nash equilibrium. In fact, such a stronger claim does not hold. Further, in
contrast to strict dominance, an iterated elimination of weakly dominated
strategies can yield several outcomes.

The following example reveals even more peculiarities of this procedure.

Example 1.9 Consider the following game:

L M R
T 0, 1 1, 0 0, 0
B 0, 0 0, 0 1, 0

It has three Nash equilibria, (T, L), (B, L) and (B, R). This game can be
solved by IEWDS but only if in the first round we do not eliminate all weakly
dominated strategies, which are M and R. If we eliminate only R, then we
reach the game

L M
T 0, 1 1, 0
B 0, 0 0, 0

that is solved by IEWDS by eliminating B and M . This yields

L
T 0, 1

A Primer on Strategic Games 11

So not only IEWDS is not order independent; in some games it is advanta-
geous not to proceed with the deletion of the weakly dominated strategies
‘at full speed’. The reader may also check that the second Nash equilibrium,
(B, L), can be found using IEWDS, as well, but not the third one, (B, R).

�

To summarise, the iterated elimination of weakly dominated strategies

• can lead to a deletion of Nash equilibria,
• does not need to yield a unique outcome,
• can be too restrictive if we stipulate that in each round all weakly dominated

strategies are eliminated.

Finally, note that the above IEWDS Theorem 1.7 does not hold for infinite
games. Indeed, Example 1.6 applies here, as well.

1.3.3 Elimination of never best responses

Finally, we consider the process of eliminating strategies that are never best
responses to a joint strategy of the opponents. To motivate this procedure
consider the following game:

X Y
A 2, 1 0, 0
B 0, 1 2, 0
C 1, 1 1, 2

Here no strategy is strictly or weakly dominated. However, C is a never

best response , that is, it is not a best response to any strategy of the
opponent. Indeed, A is a unique best response to X and B is a unique best
response to Y . Clearly, the above game is solved by an iterated elimination
of never best responses. So this procedure can be stronger than IESDS and
IEWDS.

Formally, we introduce the following reduction notion between the restric-
tions R and R′ of a given strategic game G:

R→N R′

when R �= R′, ∀i ∈ {1, . . . , n} R′
i ⊆Ri and

∀i ∈ {1, . . . , n} ∀si ∈ Ri \R′
i ¬∃s−i ∈ R−i si is a best response to s−i in R.

That is, R→N R′ when R′ results from R by removing from it some strategies
that are never best responses.

12 Krzysztof R. Apt

We then focus on the iterated elimination of never best responses, in short
IENBR, obtained by using the → ∗

N relation. The following counterpart of
the IESDS Theorem 1.3 then holds.

Theorem 1.10 (IENBR) Suppose that G′ is an outcome of IENBR from
a strategic game G.

(i) If s is a Nash equilibrium of G, then it is a Nash equilibrium of G′.
(ii) If G is finite and s is a Nash equilibrium of G′, then it is a Nash

equilibrium of G.
(iii) If G is finite and solved by IENBR, then the resulting joint strategy is

a unique Nash equilibrium.

Exercise 1.4 Provide the proof. �

Further, as shown by Apt [2005], we have the following analogue of the
Order Independence I Theorem 1.5.

Theorem 1.11 (Order Independence II) Given a finite strategic game all
iterated eliminations of never best responses yield the same outcome.

In the case of infinite games we encounter the same problems as in the case
of IESDS as Example 1.6 readily applies to IENBR, as well. In particular,
if we solve an infinite game by IENBR we cannot claim that we obtained a
Nash equilibrium. Still, IENBR can be useful in such cases.

Example 1.12 Consider the following infinite variant of the location game
considered in Example 1.4. We assume that the players choose their strategies
from the open interval (0, 100) and that at each real in (0, 100) there resides
one customer. We have then the following payoffs that correspond to the
intuition that the customers choose the closest vendor:

pi(si, s3−i) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
si + s3−i

2
if si < s3−i

100− si + s3−i

2
if si > s3−i

50 if si = s3−i.

It is easy to check that in this game no strategy strictly or weakly dominates
another one. On the other hand each strategy 50 is a best response to some
strategy, namely to 50, and no other strategies are best responses. So this
game is solved by IENBR, in one step. We cannot claim automatically
that the resulting joint strategy (50, 50) is a Nash equilibrium, but it is
straightforward to check that this is the case. Moreover, by the IENBR
Theorem 1.10(i) we know that this is a unique Nash equilibrium. �

A Primer on Strategic Games 13

1.4 Mixed extension

We now study a special case of infinite strategic games that are obtained in
a canonical way from the finite games, by allowing mixed strategies. Below
[0, 1] stands for the real interval {r ∈ R | 0 ≤ r ≤ 1}. By a probability

distribution over a finite non-empty set A we mean a function

π : A→ [0, 1]

such that
∑

a∈A π(a) = 1. We denote the set of probability distributions over
A by ΔA.

Consider now a finite strategic game G := (S1, . . . , Sn, p1, . . . , pn). By a
mixed strategy of player i in G we mean a probability distribution over Si.
So ΔSi is the set of mixed strategies available to player i. In what follows,
we denote a mixed strategy of player i by mi and a joint mixed strategy of
the players by m.

Given a mixed strategy mi of player i we define

support(mi) := {a ∈ Si | mi(a) > 0}

and call this set the support of mi. In specific examples we write a mixed
strategy mi as the sum

∑
a∈A mi(a) · a, where A is the support of mi.

Note that in contrast to Si the set ΔSi is infinite. When referring to the
mixed strategies, as in the previous sections, we use the ‘−i’ notation. So for
m ∈ ΔS1 × . . .×ΔSn we have m−i = (mj)j �=i, etc.

We can identify each strategy si ∈ Si with the mixed strategy that puts
‘all the weight’ on the strategy si. In this context si will be called a pure

strategy . Consequently we can view Si as a subset of ΔSi and S−i as a
subset of ×j �=iΔSj .

By a mixed extension of (S1, . . . , Sn, p1, . . . , pn) we mean the strategic
game

(ΔS1, . . . ,ΔSn, p1, . . . , pn),

where each function pi is extended in a canonical way from S := S1× . . .×Sn

to M := ΔS1 × . . . ×ΔSn by first viewing each joint mixed strategy m =
(m1, . . . , mn) ∈M as a probability distribution over S, by putting for s ∈ S

m(s) := m1(s1) · . . . ·mn(sn),

and then by putting

pi(m) :=
∑
s∈S

m(s) · pi(s).

The notion of a Nash equilibrium readily applies to mixed extensions. In

14 Krzysztof R. Apt

this context we talk about a pure Nash equilibrium , when each of the
constituent strategies is pure, and refer to an arbitrary Nash equilibrium of
the mixed extension as a Nash equilibrium in mixed strategies of the
initial finite game. In what follows, when we use the letter m we implicitly
refer to the latter Nash equilibrium.

Lemma 1.13 (Characterisation) Consider a finite strategic game
(S1, . . . , Sn, p1, . . . , pn). The following statements are equivalent:

(i) m is a Nash equilibrium in mixed strategies, i.e.,

pi(m) ≥ pi(m′
i, m−i)

for all i ∈ {1, . . . , n} and all m′
i ∈ ΔSi,

(ii) for all i ∈ {1, . . . , n} and all si ∈ Si

pi(m) ≥ pi(si, m−i),

(iii) for all i ∈ {1, . . . , n} and all si ∈ support(mi)

pi(m) = pi(si, m−i)

and for all i ∈ {1, . . . , n} and all si �∈ support(mi)

pi(m) ≥ pi(si, m−i).

Exercise 1.5 Provide the proof. �

Note that the equivalence between (i) and (ii) implies that each Nash
equilibrium of the initial game is a pure Nash equilibrium of the mixed
extension. In turn, the equivalence between (i) and (iii) provides us with
a straightforward way of testing whether a joint mixed strategy is a Nash
equilibrium.

We now illustrate the use of the above theorem by finding in the Battle of
the Sexes game a Nash equilibrium in mixed strategies, in addition to the
two pure ones exhibited in Section 1.3. Take

m1 := r1 · F + (1− r1) ·B,

m2 := r2 · F + (1− r2) ·B,

where 0 < r1, r2 < 1. By definition

p1(m1, m2) = 2 · r1 · r2 + (1− r1) · (1− r2),
p2(m1, m2) = r1 · r2 + 2 · (1− r1) · (1− r2).

Suppose now that (m1, m2) is a Nash equilibrium in mixed strategies. By
the equivalence between (i) and (iii) of the Characterisation Lemma 1.13
p1(F,m2) = p1(B, m2), i.e., (using r1 = 1 and r1 = 0 in the above formula

A Primer on Strategic Games 15

for p1(·)) 2 · r2 = 1− r2, and p2(m1, F) = p2(m1, B), i.e., (using r2 = 1 and
r2 = 0 in the above formula for p2(·)) r1 = 2 · (1− r1). So r2 = 1

3 and r1 = 2
3 .

This implies that for these values of r1 and r2, (m1, m2) is a Nash equilib-
rium in mixed strategies and we have

p1(m1, m2) = p2(m1, m2) = 2
3 .

The example of the Matching Pennies game illustrated that some strategic
games do not have a Nash equilibrium. In the case of mixed extensions the
situation changes and we have the following fundamental result due to Nash
[1950].

Theorem 1.14 (Nash) Every mixed extension of a finite strategic game
has a Nash equilibrium.

In other words, every finite strategic game has a Nash equilibrium in mixed
strategies. In the case of the Matching Pennies game it is straightforward to
check that (1

2 ·H + 1
2 · T, 1

2 ·H + 1
2 · T) is such a Nash equilibrium. In this

equilibrium the payoffs to each player are 0.
Nash’s Theorem follows directly from the following result due to Kakutani

[1941].2

Theorem 1.15 (Kakutani) Suppose that A is a non-empty compact and
convex subset of Rn and

Φ : A→P(A)

such that

• Φ(x) is non-empty and convex for all x ∈ A,
• the graph of Φ, so the set {(x, y) | y ∈ Φ(x)}, is closed.

Then x∗ ∈ A exists such that x∗ ∈ Φ(x∗). �

Proof of Nash’s Theorem. Fix a finite strategic game (S1, . . . , Sn, p1, . . . , pn).
Define the function besti : ×j �=iΔSj →P(ΔSi) by

besti(m−i) := {mi ∈ ΔSi | mi is a best response to m−i}.

Then define the function best : ΔS1 × . . .×ΔSn →P(ΔS1 × . . .×ΔSn) by

best(m) := best1(m−1)× . . .× best1(m−n).

It is now straightforward to check that m is a Nash equilibrium iff m ∈
best(m). Moreover, one can easily check that the function best(·) satisfies
2 Recall that a subset A of R

n is called compact if it is closed and bounded, and is called
convex if for any x,y ∈ A and α ∈ [0, 1] we have αx + (1 − α)y ∈ A.

16 Krzysztof R. Apt

the conditions of Kakutani’s Theorem. The fact that for every joint mixed
strategy m, best(m) is non-empty is a direct consequence of the Extreme
Value Theorem stating that every real-valued continuous function on a
compact subset of R� attains a maximum. �

1.5 Iterated elimination of strategies II

The notions of dominance apply in particular to mixed extensions of finite
strategic games. But we can also consider dominance of a pure strategy by a
mixed strategy. Given a finite strategic game G := (S1, . . . , Sn, p1, . . . , pn),
we say that a (pure) strategy si of player i is strictly dominated by a
mixed strategy mi if

∀s−i ∈ S−i pi(mi, s−i) > pi(si, s−i),

and that si is weakly dominated by a mixed strategy mi if

∀s−i ∈ S−i pi(mi, s−i) ≥ pi(si, s−i) and ∃s−i ∈ S−i pi(mi, s−i) > pi(si, s−i).

In what follows we discuss for these two forms of dominance the counter-
parts of the results presented in Section 1.3.

1.5.1 Elimination of strictly dominated strategies

Strict dominance by a mixed strategy leads to a stronger notion of strategy
elimination. For example, in the game

L R
T 2, 1 0, 1

M 0, 1 2, 1
B 0, 1 0, 1

the strategy B is strictly dominated neither by T nor M but is strictly
dominated by 1

2 · T + 1
2 ·M .

We now focus on iterated elimination of pure strategies that are strictly
dominated by a mixed strategy. As in Section 1.3 we would like to clar-
ify whether it affects the Nash equilibria, in this case equilibria in mixed
strategies.

Instead of the lengthy wording ‘the iterated elimination of strategies strict-
ly dominated by a mixed strategy’ we write IESDMS . We have then the
following counterpart of the IESDS Theorem 1.3, where we refer to Nash
equilibria in mixed strategies. Given a restriction G′ of G and a joint mixed

A Primer on Strategic Games 17

strategy m of G, when we say that m is a Nash equilibrium of G′ we implicitly
stipulate that each strategy used (with positive probability) in m is a strategy
in G′.

Theorem 1.16 (IESDMS) Suppose that G is a finite strategic game.

(i) If G′ is an outcome of IESDMS from G, then m is a Nash equilibrium
of G iff it is a Nash equilibrium of G′.

(ii) If G is solved by IESDMS, then the resulting joint strategy is a unique
Nash equilibrium of G (in, possibly, mixed strategies).

Exercise 1.6 Provide the proof. �

To illustrate the use of this result let us return to the Beauty Contest
game discussed in Example 1.8. We explained there why (1, . . . , 1) is a Nash
equilibrium. Now we can draw a stronger conclusion.

Example 1.17 One can show that the Beauty Contest game is solved by
IESDMS in 99 rounds. In each round the highest strategy of each player is
removed and eventually each player is left with the strategy 1. On account
of the above theorem we now conclude that (1, . . . , 1) is a unique Nash
equilibrium. �

Exercise 1.7 Show that the Beauty Contest game is indeed solved by
IESDMS in 99 rounds. �

As in the case of strict dominance by a pure strategy we now address the
question of whether the outcome of IESDMS is unique. The answer, as before,
is positive. The following result was established by Osborne and Rubinstein
[1994].

Theorem 1.18 (Order independence III) All iterated eliminations of strat-
egies strictly dominated by a mixed strategy yield the same outcome.

1.5.2 Elimination of weakly dominated strategies

Next, we consider iterated elimination of pure strategies that are weakly
dominated by a mixed strategy.

As already noticed in Subsection 1.3.2 an elimination by means of weakly
dominated strategies can result in a loss of Nash equilibria. Clearly, the
same observation applies here. We also have the following counterpart of the
IEWDS Theorem 1.7, where we refer to Nash equilibria in mixed strategies.
Instead of ‘the iterated elimination of strategies weakly dominated by a
mixed strategy’ we write IEWDMS .

18 Krzysztof R. Apt

Theorem 1.19 (IEWDMS) Suppose that G is a finite strategic game.

(i) If G′ is an outcome of IEWDMS from G and m is a Nash equilibrium
of G′, then m is a Nash equilibrium of G.

(ii) If G is solved by IEWDMS, then the resulting joint strategy is a Nash
equilibrium of G.

Here is a simple application of this theorem.

Corollary 1.20 Every mixed extension of a finite strategic game has a
Nash equilibrium such that no strategy used in it is weakly dominated by a
mixed strategy.

Proof It suffices to apply Nash’s Theorem 1.14 to an outcome of IEWDMS
and use item (i) of the above theorem.

Finally, observe that the outcome of IEWMDS does not need to be unique.
In fact, Example 1.9 applies here, as well.

1.5.3 Rationalizability

Finally, we consider iterated elimination of strategies that are never best
responses to a joint mixed strategy of the opponents. Following Bernheim
[1984] and Pearce [1984], strategies that survive such an elimination process
are called rationalizable strategies.3

Formally, we define rationalizable strategies as follows. Consider a restric-
tion R of a finite strategic game G. Let

RAT (R) := (S′
1, . . . , S

′
n),

where for all i ∈ {1, . . . , n}

S′
i := {si ∈ Ri | ∃m−i ∈ ×j �=iΔRj si is a best response to m−i in G}.

Note the use of G instead of R in the definition of S′
i. We shall comment on

it below.
Consider now the outcome GRAT of iterating RAT starting with G. We

call then the strategies present in the restriction GRAT rationalizable .
We have the following counterpart of the IESDMS Theorem 1.16, due to

Bernheim [1984].

Theorem 1.21 Assume a finite strategic game G.
3 More precisely, in each of these papers a different definition is used; see Apt [2007] for an

analysis of the conditions for which these definitions coincide.

A Primer on Strategic Games 19

(i) Then m is a Nash equilibrium of G iff it is a Nash equilibrium of GRAT .
(ii) If each player has in GRAT exactly one strategy, then the resulting joint

strategy is a unique Nash equilibrium of G.

Exercise 1.8 Provide the proof. �

In the context of rationalizability a joint mixed strategy of the opponents
is referred to as a belief . The definition of rationalizability is generic in
the class of beliefs w.r.t. which best responses are collected. For example,
we could use here joint pure strategies of the opponents, or probability
distributions over the Cartesian product of the opponents’ strategy sets,
so the elements of the set ΔS−i (extending in an expected way the payoff
functions). In the first case we talk about point beliefs and in the second
case about correlated beliefs.

In the case of point beliefs we can apply the elimination procedure entailed
by RAT to arbitrary games. To avoid discussion of the outcomes reached in
the case of infinite iterations we focus on a result for a limited case. We refer
here to Nash equilibria in pure strategies.

Theorem 1.22 Assume a strategic game G. Consider the definition of the
RAT operator for the case of point beliefs and suppose that the outcome
GRAT is reached in finitely many steps.

(i) Then s is a Nash equilibrium of G iff it is a Nash equilibrium of GRAT .
(ii) If each player is left in GRAT with exactly one strategy, then the

resulting joint strategy is a unique Nash equilibrium of G.

Exercise 1.9 Provide the proof. �

A subtle point is that when G is infinite, the restriction GRAT may have
empty strategy sets (and hence no joint strategy).

Example 1.23 Bertrand competition , originally proposed by Bertrand
[1883], is a game concerned with a simultaneous selection of prices for the
same product by two firms. The product is then sold by the firm that chose
a lower price. In the case of a tie the product is sold by both firms and the
profits are split.

Consider a version in which the range of possible prices is the left-open
real interval (0, 100] and the demand equals 100 − p, where p is the lower
price. So in this game G there are two players, each with the set (0, 100] of
strategies and the payoff functions are defined by:

20 Krzysztof R. Apt

p1(s1, s2) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s1(100− s1) if s1 < s2

s1(100− s1)
2

if s1 = s2

0 if s1 > s2

p2(s1, s2) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s2(100− s2) if s2 < s1

s2(100− s2)
2

if s1 = s2

0 if s2 > s1.

Consider now each player’s best responses to the strategies of the opponent.
Since s1 = 50 maximises the value of s1(100 − s1) in the interval (0, 100],
the strategy 50 is the unique best response of the first player to any strategy
s2 > 50 of the second player. Further, no strategy is a best response to
a strategy s2 ≤ 50. By symmetry the same holds for the strategies of the
second player.

So the elimination of never best responses leaves each player with a single
strategy, 50. In the second round we need to consider the best responses
to these two strategies in the original game G. In G the strategy s1 = 49
is a better response to s2 = 50 than s1 = 50 and symmetrically for the
second player. So in the second round of elimination both strategies 50 are
eliminated and we reach the restriction with the empty strategy sets. By
Theorem 1.22 we conclude that the original game G has no Nash equilibrium.

�

Note that if we defined S′
i in the definition of the operator RAT using

the restriction R instead of the original game G, the iteration would stop in
the above example after the first round. Such a modified definition of the
RAT operator is actually an instance of the IENBR (iterated elimination
of never best responses) in which at each stage all never best responses are
eliminated. So for the above game G we can then conclude by the IENBR
Theorem 1.10(i) that it has at most one equilibrium, namely (50, 50), and
then check separately that in fact it is not a Nash equilibrium.

1.5.4 A comparison between the introduced notions

We introduced so far the notions of strict dominance, weak dominance,
and a best response, and related them to the notion of a Nash equilibrium.

A Primer on Strategic Games 21

To conclude this section we clarify the connections between the notions of
dominance and of best response.

Clearly, if a strategy is strictly dominated, then it is a never best response.
However, the converse fails. Further, there is no relation between the notions
of weak dominance and never best response. Indeed, in the game considered
in Subsection 1.3.3 strategy C is a never best response, yet it is neither
strictly nor weakly dominated. Further, in the game given in Example 1.9
strategy M is weakly dominated and is also a best response to B.

The situation changes in the case of mixed extensions of two-player finite
games. Below, by a totally mixed strategy we mean a mixed strategy with
full support, i.e., one in which each strategy is used with a strictly positive
probability. The following results were established by Pearce [1984].

Theorem 1.24 Consider a finite two-player strategic game.

(i) A pure strategy is strictly dominated by a mixed strategy iff it is not a
best response to a mixed strategy.

(ii) A pure strategy is weakly dominated by a mixed strategy iff it is not a
best response to a totally mixed strategy.

We only prove here part (i). Pearce [1984] provides a short, but a bit
tricky proof based on Nash’s Theorem 1.14. The proof we provide, due to
Fudenberg and Tirole [1991], is a bit more intuitive.

We shall use the following result, see, e.g., Rockafellar [1996].

Theorem 1.25 (Separating Hyperplane) Let A and B be disjoint convex
subsets of Rk. Then there exists a non-zero c ∈ Rk and d ∈ R such that

c · x ≥ d for all x ∈ A,

c · y ≤ d for all y ∈ B.

Proof of Theorem 1.24(i).
Clearly, if a pure strategy is strictly dominated by a mixed strategy, then

it is not a best response to a mixed strategy. To prove the converse, fix a
two-player strategic game (S1, S2, p1, p2). Also fix i ∈ {1, 2} and abbreviate
3− i to −i.

Suppose that a strategy si ∈ Si is not strictly dominated by a mixed
strategy. Let

A := {x ∈ R|S−i| | ∀s−i ∈ S−i xs−i > 0}

and

B := {(pi(mi, s−i)− pi(si, s−i))s−i∈S−i | mi ∈ ΔSi}.

22 Krzysztof R. Apt

By the choice of si the sets A and B are disjoint. Moreover, both sets are
convex subsets of R|S−i|.

By the Separating Hyperplane Theorem 1.25 for some non-zero c ∈ R|S−i|

and d ∈ R

c · x ≥ d for all x ∈ A, (1.1)

c · y ≤ d for all y ∈ B. (1.2)

But 0 ∈ B, so by (1.2) d ≥ 0. Hence by (1.1) and the definition of A for
all s−i ∈ S−i we have cs−i ≥ 0. Again by (1.1) and the definition of A this
excludes the contingency that d > 0, i.e., d = 0. Hence by (1.2)∑

s−i∈S−i
cs−ipi(mi, s−i) ≤

∑
s−i∈S−i

cs−ipi(si, s−i) for all mi ∈ ΔSi. (1.3)

Let c̄ :=
∑

s−i∈S−i
cs−i . By the assumption c̄ �= 0. Take

m−i :=
∑

s−i∈S−i

cs−i

c̄
s−i.

Then (1.3) can be rewritten as

pi(mi, m−i) ≤ pi(si, m−i) for all mi ∈ ΔSi,

i.e., si is a best response to m−i. �

1.6 Variations on the definition of strategic games

The notion of a strategic game is quantitative in the sense that it refers
through payoffs to real numbers. A natural question to ask is: do the payoff
values matter? The answer depends on which concepts we want to study. We
mention here three qualitative variants of the definition of a strategic game
in which the payoffs are replaced by preferences. By a preference relation

on a set A we mean here a linear order on A.
In Osborne and Rubinstein [1994] a strategic game is defined as a sequence

(S1, . . . , Sn,
1, . . . ,
n),

where each
i is player’s i preference relation defined on the set S1 ×
· · · × Sn of joint strategies.

In Apt et al. [2008] another modification of strategic games is consid-
ered, called a strategic game with parametrised preferences. In this
approach each player i has a non-empty set of strategies Si and a preference

relation
s−i on Si parametrised by a joint strategy s−i of his opponents.

A Primer on Strategic Games 23

In Apt et al. [2008] only strict preferences were considered and so defined
finite games with parametrised preferences were compared with the concept
of CP-nets (Conditional Preference nets), a formalism used for representing
conditional and qualitative preferences, see, e.g., Boutilier et al. [2004].

Next, in Roux et al. [2008] conversion/preference games are intro-
duced. Such a game for n players consists of a set S of situations and for
each player i a preference relation
i on S and a conversion relation

→ i on S. The definition is very general and no conditions are placed on the
preference and conversion relations. These games are used to formalise gene
regulation networks and some aspects of security.

Finally, let us mention another generalisation of strategic games, called
graphical games, introduced by Kearns et al. [2001]. These games stress
the locality in taking a decision. In a graphical game the payoff of each player
depends only on the strategies of its neighbours in a given in advance graph
structure over the set of players. Formally, such a game for n players with the
corresponding strategy sets S1, . . . , Sn is defined by assuming a neighbour
function N that given a player i yields its set of neighbours N(i). The payoff
for player i is then a function pi from ×j∈N(i)∪{i}Sj to R.

In all mentioned variants it is straightforward to define the notion of a
Nash equilibrium. For example, in the conversion/preferences games it is
defined as a situation s such that for all players i, if s→ is

′, then s′ ��i s.
However, other introduced notions can be defined only for some variants.
In particular, Pareto efficiency cannot be defined for strategic games with
parametrised preferences since it requires a comparison of two arbitrary
joint strategies. In turn, the notions of dominance cannot be defined for the
conversion/preferences games, since they require the concept of a strategy
for a player.

Various results concerning finite strategic games, for instance the IESDS
Theorem 1.3, carry over directly to the strategic games as defined in Osborne
and Rubinstein [1994] or in Apt et al. [2008]. On the other hand, in the
variants of strategic games that rely on the notion of a preference we cannot
consider mixed strategies, since the outcomes of playing different strategies
by a player cannot be aggregated.

1.7 Mechanism design

Mechanism design is one of the important areas of economics. The 2007 Nobel
Prize in Economics went to three economists who laid its foundations. To
quote from The Economist [2007], mechanism design deals with the problem

24 Krzysztof R. Apt

of ‘how to arrange our economic interactions so that, when everyone behaves
in a self-interested manner, the result is something we all like’. So these
interactions are supposed to yield desired social decisions when each agent is
interested in maximising only his own utility.

In mechanism design one is interested in the ways of inducing the players
to submit true information. This subject is closely related to game theory,
though it focuses on other issues. In the next section we shall clarify this
connection. To discuss mechanism design in more detail we need to introduce
some basic concepts.

Assume a set {1, . . . , n} of players with n > 1, a non-empty set of deci-

sions D, and for each player i

• a non-empty set of types Θi, and
• an initial utility function vi : D ×Θi → R.

In this context a type is some private information known only to the player,
for example, in the case of an auction, the player’s valuation of the items for
sale.

When discussing types and sets of types we use then the same abbreviations
as in Section 1.2. In particular, we define Θ := Θ1 × · · · ×Θn and for θ ∈ Θ
we have (θi, θ−i) = θ.

A decision rule is a function f : Θ→ D. We call the tuple

(D,Θ1, . . . ,Θn, v1, . . . , vn, f)

a decision problem .
Decision problems are considered in the presence of a central authority

who takes decisions on the basis of the information provided by the play-
ers. Given a decision problem the desired decision is obtained through the
following sequence of events, where f is a given, publicly known, decision
rule:

• each player i receives (becomes aware of) his type θi ∈ Θi,
• each player i announces to the central authority a type θ′i ∈ Θi; this yields

a joint type θ′ := (θ′1, . . . , θ
′
n),

• the central authority then takes the decision d := f(θ′) and communicates
it to each player,

• the resulting initial utility for player i is then vi(d, θi).

The difficulty in taking decisions through the above described sequence
of events is that players are assumed to be rational, that is they want to
maximise their utility. As a result they may submit false information to

A Primer on Strategic Games 25

manipulate the outcome (decision). To better understand the notion of a
decision problem consider the following two natural examples.

Example 1.26 [Sealed-bid Auction]
We consider a sealed-bid auction in which there is a single object for

sale. Each player (bidder) simultaneously submits to the central authority
his type (bid) in a sealed envelope and the object is allocated to the highest
bidder.

Given a sequence a := (a1, . . . , aj) of reals denote the least l such that
al = maxk∈{1,...,j} ak by argsmax a. Then we can model a sealed-bid auction
as the following decision problem (D,Θ1, . . . , Θn, v1, . . . , vn, f):

• D = {1, . . . , n},
• for all i ∈ {1, . . . , n}, Θi = R+; θi ∈ Θi is player’s i valuation of the object,
• for all i ∈ {1, . . . , n}, vi(d, θi) := (d = i)θ, where d = i is a Boolean

expression with the value 0 or 1,
• f(θ) := argsmax θ.

Here decision d ∈ D indicates to which player the object is sold. Further,
f(θ) = i, where

θi = maxj∈{1,...,n} θj and ∀j ∈ {1, . . . , i− 1} θj < θi.

So we assume that in the case of a tie the object is allocated to the highest
bidder with the lowest index.

�

Example 1.27 [Public project problem]
This problem deals with the task of taking a joint decision concerning

construction of a public good ,4 for example a bridge. Each player reports
to the central authority his appreciation of the gain from the project when
it takes place. If the sum of the appreciations exceeds the cost of the project,
the project takes place and each player has to pay the same fraction of the
cost. Otherwise the project is cancelled.

This problem corresponds to the following decision problem, where c, with
c > 0, is the cost of the project:

• D = {0, 1} (reflecting whether a project is cancelled or takes place),
• for all i ∈ {1, . . . , n}, Θi = R+,
• for all i ∈ {1, . . . , n}, vi(d, θi) := d(θi − c

n),

4 In Economics public goods are so-called not excludable and non-rival goods. To quote from
Mankiw [2001]: ‘People cannot be prevented from using a public good, and one person’s
enjoyment of a public good does not reduce another person’s enjoyment of it.’

26 Krzysztof R. Apt

• f(θ) :=

{
1 if

∑n
i=1 θi ≥ c

0 otherwise.

If the project takes place (d = 1), c
n is the cost share of the project for

each player. �

Let us return now to the decision rules. We call a decision rule f efficient

if for all θ ∈ Θ and d′ ∈ D
n∑

i=1

vi(f(θ), θi) ≥
n∑

i=1

vi(d′, θi).

Intuitively, this means that for all θ ∈ Θ, f(θ) is a decision that maximises
the initial social welfare from a decision d, defined by

∑n
i=1 vi(d, θi). It

is easy to check that the decision rules used in Examples 1.26 and 1.27 are
efficient.

Let us return now to the subject of manipulations. As an example, con-
sider the case of the public project problem. A player whose type (that is,
appreciation of the gain from the project) exceeds the cost share c

n should
manipulate the outcome and announce the type c. This will guarantee that
the project will take place, irrespective of the types announced by the other
players. Analogously, a player whose type is lower than c

n should submit the
type 0 to minimise the chance that the project will take place.

To prevent such manipulations we use taxes, which are transfer payments
between the players and central authority. This leads to a modification of the
initial decision problem (D,Θ1, . . . ,Θn, v1, . . . , vn, f) to the following one:

• the set of decisions is D × Rn,

• the decision rule is a function (f, t) : Θ→D × Rn, where t : Θ→ Rn and
(f, t)(θ) := (f(θ), t(θ)),

• the final utility function of player i is the function ui : D×Rn×Θi → R

defined by

ui(d, t1, . . . , tn, θi) := vi(d, θi) + ti.

We call then (D × Rn,Θ1, . . . ,Θn, u1, . . . , un, (f, t)) a direct mechanism

and refer to t as the tax function .
So when the received (true) type of player i is θi and his announced type

is θ′i, his final utility is

ui((f, t)(θ′i, θ−i), θi) = vi(f(θ′i, θ−i), θi) + ti(θ′i, θ−i),

where θ−i are the types announced by the other players.
In each direct mechanism, given the vector θ of announced types, t(θ) :=

A Primer on Strategic Games 27

(t1(θ), . . . , tn(θ)) is the vector of the resulting payments. If ti(θ) ≥ 0, player
i receives from the central authority ti(θ), and if ti(θ) < 0, he pays to the
central authority |ti(θ)|.

The following definition then captures the idea that taxes prevent manip-
ulations. We say that a direct mechanism with tax function t is incentive

compatible if for all θ ∈ Θ, i ∈ {1, . . . , n} and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi).

Intuitively, this means that for each player i announcing one’s true type (θi)
is better than announcing another type (θ′i). That is, false announcements,
i.e., manipulations, do not pay off.

From now on we focus on specific incentive compatible direct mechanisms.
Each Groves mechanism is a direct mechanism obtained by using a tax
function t(·) := (t1(·), . . . , tn(·)), where for all i ∈ {1, . . . , n}

• ti : Θ→ R is defined by ti(θ) := gi(θ) + hi(θ−i), where
• gi(θ) :=

∑
j �=i vj(f(θ), θj),

• hi : Θ−i → R is an arbitrary function.

Note that, not accidentally, vi(f(θ), θi) + gi(θ) is simply the initial social
welfare from the decision f(θ).

The importance of Groves mechanisms is then revealed by the following
crucial result due to Groves [1973].

Theorem 1.28 (Groves) Consider a decision problem (D,Θ1, . . . ,Θn, v1,

. . . , vn, f) with an efficient decision rule f . Then each Groves mechanism is
incentive compatible.

Proof The proof is remarkably straightforward. Since f is efficient, for all
θ ∈ Θ, i ∈ {1, . . . , n} and θ′i ∈ Θi we have

ui((f, t)(θi, θ−i), θi) =
n∑

j=1

vj(f(θi, θ−i), θj) + hi(θ−i)

≥
n∑

j=1

vj(f(θ′i, θ−i), θj) + hi(θ−i)

= ui((f, t)(θ′i, θ−i), θi).

When for a given direct mechanism for all θ ∈ Θ we have
∑n

i=1 ti(θ) ≤ 0,

28 Krzysztof R. Apt

the mechanism is called feasible , which means that it can be realised without
external financing.

Each Groves mechanism is uniquely determined by the functions h1, . . .,
hn. A special case, called the pivotal mechanism , is obtained by using

hi(θ−i) := −max
d∈D

∑
j �=i

vj(d, θj).

So then

ti(θ) =
∑
j �=i

vj(f(θ), θj)−max
d∈D

∑
j �=i

vj(d, θj).

Hence for all θ and i ∈ {1, . . . , n} we have ti(θ) ≤ 0, which means that
the pivotal mechanism is feasible and that each player needs to make the
payment |ti(θ)| to the central authority.

We noted already that the decision rules used in Examples 1.26 and 1.27 are
efficient. So in each example Groves’ Theorem 1.28 applies and in particular
the pivotal mechanism is incentive compatible. Let us see now the details.

Re: Example 1.26 Given a sequence θ of reals we denote by θ∗ its reordering
from the largest to the smallest element. So for example, for θ = (1, 5, 4, 3, 2)
we have (θ−2)∗2 = 3 since θ−2 = (1, 4, 3, 2).

To compute the taxes in the sealed-bid auction in the case of the pivotal
mechanism we use the following observation.

Note 1.29 In the sealed-bid auction we have for the pivotal mechanism

ti(θ) =

{
−θ∗2 if i = argsmax θ

0 otherwise.

Exercise 1.10 Provide the proof. �

So the highest bidder wins the object and pays for it the amount maxj �=i θj .
The resulting sealed-bid auction was introduced by Vickrey [1961] and is

called a Vickrey auction . To illustrate it suppose there are three players,
A, B, and C whose true types (bids) are respectively 18, 21, and 24. When
they bid truthfully the object is allocated to player C whose tax (payment)
according to Note 1.29 is 21, so the second price offered. Table 1.1 summarises
the situation.

This explains why this auction is alternatively called a second-price

auction . By Groves’ Theorem 1.28 this auction is incentive compatible. In
contrast, the first-price auction , in which the winner pays the price he

A Primer on Strategic Games 29

Table 1.1 The pivotal mechanism for the sealed-bid auction

player type tax ui

A 18 0 0
B 21 0 0
C 24 −21 3

offered (so the first, or the highest price), is not incentive compatible. Indeed,
reconsider the above example. If player C submits 22 instead of his true type
24, he then wins the object but needs to pay 22 instead of 24. More formally,
in the direct mechanism corresponding to the first-price auction we have

uC((f, t)(18, 21, 22), 24) = 24− 22 = 2 > 0 = uC((f, t)(18, 21, 24), 24),

which contradicts incentive compatibility for the joint type (18, 21, 24). �

Re: Example 1.27 To compute the taxes in the public project problem in
the case of the pivotal mechanism we use the following observation.

Note 1.30 In the public project problem we have for the pivotal mechanism

ti(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if

∑
j �=i θj ≥ n−1

n c and
∑n

j=1 θj ≥ c∑
j �=i θj − n−1

n c if
∑

j �=i θj < n−1
n c and

∑n
j=1 θj ≥ c

0 if
∑

j �=i θj ≤ n−1
n c and

∑n
j=1 θj < c

n−1
n c−

∑
j �=i θj if

∑
j �=i θj > n−1

n c and
∑n

j=1 θj < c.

Exercise 1.11 Provide the proof. �

To illustrate the pivotal mechanism suppose that c = 30 and that there
are three players, A, B, and C whose true types are respectively 6, 7, and
25. When these types are announced the project takes place and Table 1.2
summarises the taxes that players need to pay and their final utilities. The
taxes were computed using Note 1.30.

Suppose now that the true types of players are respectively 4, 3 and 22
and, as before, c = 30. When these types are also the announced types, the
project does not take place. Still, some players need to pay a tax, as Table 1.3
illustrates. One can show that this deficiency is shared by all feasible incentive
compatible direct mechanisms for the public project, see [Mas-Collel et al.,
1995, page 861-862].

30 Krzysztof R. Apt

Table 1.2 The pivotal mechanism for the public project problem

player type tax ui

A 6 0 −4
B 7 0 −3
C 25 −7 8

Table 1.3 The pivotal mechanism for the public project problem

player type tax ui

A 4 −5 −5
B 3 −6 −6
C 22 0 0

1.8 Pre-Bayesian games

Mechanism design, as introduced in the previous section, can be explained
in game-theoretic terms using pre-Bayesian games, introduced by Ashlagi
et al. [2006] (see also Hyafil and Boutilier [2004] and Aghassi and Bertsimas
[2006]). In strategic games, after each player selected his strategy, each player
knows the payoff of every other player. This is not the case in pre-Bayesian
games in which each player has a private type on which he can condition
his strategy. This distinguishing feature of pre-Bayesian games explains why
they form a class of games with incomplete information. Formally, they are
defined as follows.

Assume a set {1, . . . , n} of players, where n > 1. A pre-Bayesian game

for n players consists of

• a non-empty set Ai of actions,
• a non-empty set Θi of types,
• a payoff function pi : A1 × . . .×An ×Θi → R,

for each player i.
Let A := A1× . . .×An. In a pre-Bayesian game Nature (an external agent)

moves first and provides each player i with a type θi ∈ Θi. Each player
knows only his type. Subsequently the players simultaneously select their
actions. The payoff function of each player now depends on his type, so after

A Primer on Strategic Games 31

all players selected their actions, each player knows his payoff but does not
know the payoffs of the other players. Note that given a pre-Bayesian game,
every joint type θ ∈ Θ uniquely determines a strategic game, to which we
refer below as a θ-game.

A strategy for player i in a pre-Bayesian game is a function si : Θi →Ai.
The previously introduced notions can be naturally adjusted to pre-Bayesian
games. In particular, a joint strategy s(·) := (s1(·), . . . , sn(·)) is called an
ex-post equilibrium if

∀θ ∈ Θ ∀i ∈ {1, . . . , n} ∀ai ∈ Ai pi(si(θi), s−i(θ−i), θi) ≥ pi(ai, s−i(θ−i), θi),

where s−i(θ−i) is an abbreviation for the sequence of actions (sj(θj))�=i.
In turn, a strategy si(·) for player i is called dominant if

∀θi ∈ Θi ∀a ∈ A pi(si(θi), a−i, θi) ≥ pi(ai, a−i, θi).

So s(·) is an ex-post equilibrium iff for every joint type θ ∈ Θ the sequence
of actions (s1(θ1), . . . , sn(θn)) is a Nash equilibrium in the corresponding
θ-game. Further, si(·) is a dominant strategy of player i iff for every type
θi ∈ Θi, si(θi) is a dominant strategy of player i in every (θi, θ−i)-game.

We also have the following immediate counterpart of the Dominant Strategy
Note 1.1.

Note 1.31 (Dominant Strategy) Consider a pre-Bayesian game G. Suppose
that s(·) is a joint strategy such that each si(·) is a dominant strategy. Then
it is an ex-post equilibrium of G.

Example 1.32 As an example of a pre-Bayesian game, suppose that

• Θ1 = {U, D}, Θ2 = {L, R},
• A1 = A2 = {F,B},

and consider the pre-Bayesian game uniquely determined by the following
four θ-games. Here and below we marked the payoffs in Nash equilibria in
these θ-games in bold.

U

L

F B
F 2,1 2, 0
B 0, 1 2, 1

R

F B
F 2, 0 2,1
B 0, 0 2, 1

D

F B
F 3, 1 2, 0
B 5,1 4, 1

F B
F 3, 0 2, 1
B 5, 0 4,1

32 Krzysztof R. Apt

This shows that the strategies s1(·) and s2(·) such that

s1(U) := F, s1(D) := B, s2(L) = F, s2(R) = B

form here an ex-post equilibrium. �
However, there is a crucial difference between strategic games and pre-

Bayesian games.

Example 1.33 Consider the following pre-Bayesian game:

• Θ1 = {U, B}, Θ2 = {L, R},
• A1 = A2 = {C, D}.

U

L

C D
C 2, 2 0, 0
D 3, 0 1,1

R

C D
C 2, 1 0, 0
D 3, 0 1,2

B

C D
C 1,2 3, 0
D 0, 0 2, 1

C D
C 1,1 3, 0
D 0, 0 2, 2

Even though each θ-game has a Nash equilibrium, they are so ‘positioned’
that the pre-Bayesian game has no ex-post equilibrium. Even more, if we
consider a mixed extension of this game, then the situation does not change.
The reason is that no new Nash equilibria are then added to the ‘constituent’
θ-games. (Indeed, each of them is solved by IESDS and hence by the IESDMS
Theorem 1.16(ii) has a unique Nash equilibrium.) This shows that a mixed
extension of a finite pre-Bayesian game does not need to have an ex-post
equilibrium, which contrasts with the existence of Nash equilibria in mixed
extensions of finite strategic games. �

To relate pre-Bayesian games to mechanism design we need one more
notion. We say that a pre-Bayesian game is of a revelation-type if Ai = Θi

for all i ∈ {1, . . . , n}. So in a revelation-type pre-Bayesian game the strategies
of a player are the functions on his set of types. A strategy for player i is
called then truth-telling if it is the identity function πi(·) on Θi.

Now, as explained in Ashlagi et al. [2006] mechanism design can be viewed
as an instance of the revelation-type pre-Bayesian games. Indeed, we have
the following immediate, yet revealing observation.

Theorem 1.34 Given a direct mechanism

(D × Rn, Θ1, . . . ,Θn, u1, . . . , un, (f, t))

A Primer on Strategic Games 33

associate with it a revelation-type pre-Bayesian game, in which each payoff
function pi is defined by

pi((θ′i, θ−i), θi) := ui((f, t)(θ′i, θ−i), θi).

Then the mechanism is incentive compatible iff in the associated pre-Bayesian
game for each player truth-telling is a dominant strategy.

By Groves’s Theorem 1.28 we conclude that in the pre-Bayesian game
associated with a Groves mechanism, (π1(·), . . . , πn(·)) is a dominant strategy
ex-post equilibrium.

1.9 Conclusions

1.9.1 Bibliographic remarks

Historically, the notion of an equilibrium in a strategic game occurred first
in Cournot [1838] in his study of production levels of a homogeneous product
in a duopoly competition. The celebrated von Neumann’s Minimax Theorem
proved by von Neumann [1928] establishes an existence of a Nash equilibrium
in mixed strategies in two-player zero-sum games. An alternative proof of
Nash’s Theorem, given in Nash [1951], uses Brouwer’s Fixed Point Theorem.

Ever since Nash established his celebrated theorem, a search has continued
to generalise his result to a larger class of games. A motivation for this
endeavour has been the existence of natural infinite games that are not
mixed extensions of finite games. As an example of such an early result
let us mention the following theorem due to Debreu [1952], Fan [1952] and
Glicksberg [1952].

Theorem 1.35 Consider a strategic game such that

• each strategy set is a non-empty compact convex subset of a complete
metric space,

• each payoff function pi is continuous and quasi-concave in the ith argu-
ment.5

Then a Nash equilibrium exists.

More recent work in this area focused on the existence of Nash equilibria
in games with non-continuous payoff functions, see in particular Reny [1999]
and Bich [2006].
5 Recall that the function pi : S → R is quasi-concave in the ith argument if the set

{s′i ∈ Si | pi(s
′
i, s−i) ≥ pi(s)} is convex for all s ∈ S.

34 Krzysztof R. Apt

The issue of complexity of finding a Nash equilibrium has been a long
standing open problem, clarified only recently, see Daskalakis et al. [2009]
for an account of these developments. Iterated elimination of strictly domi-
nated strategies and of weakly dominated strategies was introduced by Gale
[1953] and Luce and Raiffa [1957]. The corresponding results summarised in
Theorems 1.3, 1.7, 1.16 and 1.19 are folklore results.

Apt [2004] provides uniform proofs of various order independence results,
including the Order Independence Theorems 1.5 and 1.18. The computational
complexity of iterated elimination of strategies has been studied starting with
Knuth et al. [1988], and with Brandt et al. [2009] as a recent contribution.

There is a lot of work on formal aspects of common knowledge and of its
consequences for game theory. see, e.g., Aumann [1999] and Battigalli and
Bonanno [1999].

1.9.2 Suggestions for further reading

Strategic games form a large research area and we have barely scratched its
surface. There are several other equilibria notions and various other types of
games.

Many books provide introductions to various areas of game theory, in-
cluding strategic games. Most of them are written from the perspective of
applications to Economics. In the 1990s the leading textbooks were Myer-
son [1991], Binmore [1991], Fudenberg and Tirole [1991] and Osborne and
Rubinstein [1994].

Moving to the next decade, Osborne [2005] is an excellent, broad in its
scope, undergraduate level textbook, while Peters [2008] is probably the best
book on the market on the graduate level. Undeservedly less known is the
short and lucid Tijs [2003]. An elementary, short introduction, focusing on
the concepts, is Shoham and Leyton-Brown [2008]. In turn, Ritzberger [2001]
is a comprehensive book on strategic games that also extensively discusses
extensive games, i.e., games in which the players choose actions in turn.
Finally, Binmore [2007] is a thoroughly revised version of Binmore [1991].

Several textbooks on microeconomics include introductory chapters on
game theory, including strategic games. Two good examples are Mas-Collel
et al. [1995] and Jehle and Reny [2000]. Finally, Nisan et al. [2007] is a
recent collection of surveys and introductions to the computational aspects
of game theory, with a number of articles concerned with strategic games
and mechanism design.

A Primer on Strategic Games 35

References

M. Aghassi and D. Bertsimas. Robust game theory. Mathematical Programming,
107(1-2):231–273, 2006.

K. R. Apt. Uniform proofs of order independence for various strategy elimination
procedures. The B.E. Journal of Theoretical Economics, 4(1), 2004. (Contri-
butions), Article 5, 48 pages. Available from http://xxx.lanl.gov/abs/cs.
GT/0403024.

K. R. Apt. Order independence and rationalizability. In Proceedings 10th Conference
on Theoretical Aspects of Reasoning about Knowledge (TARK ’05), pages 22–38.
The ACM Digital Library, 2005. Available from http://portal.acm.org.

K. R. Apt. The many faces of rationalizability. The B.E. Journal of Theoretical
Economics, 7(1), 2007. (Topics), Article 18, 39 pages. Available from http:
//arxiv.org/abs/cs.GT/0608011.

K. R. Apt, F. Rossi, and K. B. Venable. Comparing the notions of optimality in
CP-nets, strategic games and soft constraints. Annals of Mathematics and
Artificial Intelligence, 52(1):25–54, 2008.

I. Ashlagi, D. Monderer, and M. Tennenholtz. Resource selection games with
unknown number of players. In AAMAS ’06: Proceedings 5th Int. Joint Conf.
on Autonomous Agents and Multiagent Systems, pages 819–825. ACM Press,
2006.

R. Aumann. Interactive epistemology I: Knowledge. International Journal of Game
Theory, 28(3):263–300, 1999.

P. Battigalli and G. Bonanno. Recent results on belief, knowledge and the epistemic
foundations of game theory. Research in Economics, 53(2):149–225, June 1999.

B. D. Bernheim. Rationalizable strategic behavior. Econometrica, 52(4):1007–1028,
1984.

J. Bertrand. Théorie mathematique de la richesse sociale. Journal des Savants, 67:
499–508, 1883.

P. Bich. A constructive and elementary proof of Reny’s theorem. Cahiers de la MSE
b06001, Maison des Sciences Economiques, Université Paris Panthéon-Sorbonne,
Jan. 2006. Available from http://ideas.repec.org/p/mse/wpsorb/b06001.
html.

K. Binmore. Playing for Real: A Text on Game Theory. Oxford University Press,
Oxford, 2007.

K. Binmore. Fun and Games: A Text on Game Theory. D.C. Heath, 1991.
C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: A

tool for representing and reasoning with conditional ceteris paribus preference
statements. J. Artif. Intell. Res. (JAIR), 21:135–191, 2004.

F. Brandt, M. Brill, F. A. Fischer, and P. Harrenstein. On the complexity of iterated
weak dominance in constant-sum games. In Proceedings of the 2nd Symposium
on Algorithmic Game Theory, pages 287–298, 2009.

A. Cournot. Recherches sur les Principes Mathématiques de la Théorie des Richesses.
Hachette, 1838. Republished in English as Researches Into the Mathematical
Principles of the Theory of Wealth.

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of
computing a Nash equilibrium. Commun. ACM, 52(2):89–97, 2009.

G. Debreu. A social equilibrium existence theorem. Proceedings of the National
Academy of Sciences, 38:886–893, 1952.

36 Krzysztof R. Apt

M. Dufwenberg and M. Stegeman. Existence and uniqueness of maximal reductions
under iterated strict dominance. Econometrica, 70(5):2007–2023, 2002.

The Economist. Intelligent design. The Economist, 18 October 2007.
K. Fan. Fixed point and minimax theorems in locally convex topological linear

spaces. Proceedings of the National Academy of Sciences, 38:121–126, 1952.
D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge, Massachusetts,

1991.
D. Gale. Theory of n-person games with perfect information. Proceedings of the

National Academy of Sciences of the United States of America, 39:496–501,
1953.

I. Gilboa, E. Kalai, and E. Zemel. On the order of eliminating dominated strategies.
Operation Research Letters, 9:85–89, 1990.

I. L. Glicksberg. A further generalization of the Kakutani fixed point theorem,
with application to Nash equilibrium points. Proceedings of the American
Mathematical Society, 3:170–174, 1952.

T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.
H. Hotelling. Stability in competition. The Economic Journal, 39:41–57, 1929.
N. Hyafil and C. Boutilier. Regret minimizing equilibria and mechanisms for games

with strict type uncertainty. In Proceedings of the 20th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-04), pages 268–27, Arlington,
Virginia, 2004. AUAI Press.

G. Jehle and P. Reny. Advanced Microeconomic Theory. Addison Wesley, Reading,
Massachusetts, second edition, 2000.

S. Kakutani. A generalization of Brouwer’s fixed point theorem. Duke Journal of
Mathematics, 8:457–459, 1941.

M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In
Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence
(UAI ’01), pages 253–260. Morgan Kaufmann, 2001.

D. E. Knuth, C. H. Papadimitriou, and J. N. Tsitsiklis. A note on strategy elimination
in bimatrix games. Operations Research Letters, 7(3):103–107, 1988.

R. D. Luce and H. Raiffa. Games and Decisions. John Wiley and Sons, New York,
1957.

N. G. Mankiw. Principles of Economics. Harcourt College Publishers, Orlando,
Florida, second edition, 2001.

A. Mas-Collel, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford
University Press, Oxford, 1995.

H. Moulin. Game Theory for the Social Sciences. NYU Press, New York, second,
revised edition, 1986.

R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press,
Cambridge, Massachusetts, 1991.

J. F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, USA, 36:48–49, 1950.

J. F. Nash. Non-cooperative games. Annals of Mathematics, 54:286–295, 1951.
N. Nisan, T. Roughgarden, E. Tardos, and V. J. Vazirani, editors. Algorithmic

Game Theory. Cambridge University Press, 2007.
M. J. Osborne. An Introduction to Game Theory. Oxford University Press, 2005.
M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press,

Cambridge, Massachusetts, 1994.
D. G. Pearce. Rationalizable strategic behavior and the problem of perfection.

Econometrica, 52(4):1029–1050, 1984.

A Primer on Strategic Games 37

H. Peters. Game Theory: A Multi-Leveled Approach. Springer, Berlin, 2008.
P. Reny. On the existence of pure and mixed strategy nash equilibria in discontinuous

games. Econometrica, 67(5):1029–1056, 1999.
K. Ritzberger. Foundations of Non-cooperative Game Theory. Oxford University

Press, Oxford, 2001.
R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1996.
S. L. Roux, P. Lescanne, and R. Vestergaard. Conversion/preference games. CoRR,

abs/0811.0071, 2008.
Y. Shoham and K. Leyton-Brown. Essentials of Game Theory: A Concise, Multi-

disciplinary Introduction. Morgan and Claypool Publishers, Princeton, 2008.
M. Stegeman. Deleting strictly eliminating dominated strategies. Working Paper

1990/6, Department of Economics, University of North Carolina, 1990.
S. Tijs. Introduction to Game Theory. Hindustan Book Agency, Gurgaon, India,

2003.
W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal

of Finance, 16:8–27, 1961.
J. von Neumann. Zur theorie der gesellsschaftsspiele. Mathematische Annalen, 100:

295–320, 1928.
J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.

Princeton University Press, 1944.

2

Infinite Games and Automata Theory
Christof Löding

RWTH Aachen University

Abstract

This chapter gives an introduction to the connection between automata
theory and the theory of two player games of infinite duration. We illustrate
how the theory of automata on infinite words can be used to solve games
with complex winning conditions, for example specified by logical formulae.
Conversely, infinite games are a useful tool to solve problems for automata
on infinite trees such as complementation and the emptiness test.

2.1 Introduction

The aim of this chapter is to explain some interesting connections between
automata theory and games of infinite duration. The context in which
these connections have been established is the problem of automatic circuit
synthesis from specifications, as posed by Church [1962]. A circuit can be
viewed as a device that transforms input sequences of bit vectors into output
sequences of bit vectors. If the circuit acts as a kind of control device, then
these sequences are assumed to be infinite because the computation should
never halt.

The task in synthesis is to construct such a circuit based on a formal
specification describing the desired input/output behaviour. This problem
setting can be viewed as a game of infinite duration between two players:
The first player provides the bit vectors for the input, and the second player
produces the output bit vectors. The winning condition of the game is given
by the specification. The goal is to find a strategy for the second player such
that all pairs of input/output sequences that can be produced according

Infinite Games and Automata Theory 39

to the strategy satisfy the specification. Such a strategy can be seen as a
realisation of the specification.

This approach using games as a model for the synthesis problem has
been taken by Büchi and Landweber [1969], where it is shown that the
synthesis problem can be solved by an algorithm for specifications that
are written in monadic second-order logic. As a tool they use automata
on infinite words: The formula defining the specification is translated into
a deterministic automaton over infinite words that accepts precisely those
pairs of input/output sequences that satisfy the formula. This reduces the
synthesis problem to the computation of a strategy on a finite game graph
(composed of the transition structure of the automaton and the choices of
the bit vectors by the two players) with a winning condition derived from
the acceptance condition of the automaton, usually expressed in terms of
the vertices that occur infinitely often during a play on the graph.

Another approach to solve the synthesis problem for monadic second-order
logic has been taken by Rabin [1972] using automata on infinite trees. The
idea is that the behaviour of a circuit can be represented by an infinite
ordered labelled tree of a suitable branching degree: The input sequences
are coded by the paths through the tree, where the direction the path takes
determines the next input bit vector, and the labels of the nodes along the
path determine the outputs produced by the circuit. The key result shows that
a monadic second-order specification of admissible input/output sequences
can be translated into a finite automaton running on infinite trees such that
precisely those trees are accepted that represent circuit behaviours which
are admissible w.r.t. the specification. In this way the synthesis problem is
reduced to the emptiness problem for automata on infinite trees. It turns
out that games are a useful tool to solve these kinds of emptiness problems.

The above descriptions illustrate the interplay between games of infinite
duration and different types of automata. The goal of this chapter is to study
this relationship in more depth, in particular the following two aspects:

1 How can we use automata to solve problems that arise in the theory of
infinite duration games?

2 How can we use games to solve problems that arise in automata theory?

After having introduced the central objects of this chapter, namely games
and strategies, in Section 2.2, we consider the first question in Section 2.3:
We show how to use automata on infinite words to compute strategies in
games with complex winning conditions, e.g., defined in logical formalisms.
Section 2.4 is dedicated to the second question: We explain how results on
infinite games can help us to obtain results for automata on infinite trees. In

40 Christof Löding

Section 2.5 we give an outlook beyond finite automata, and in Section 2.6
we conclude.

This chapter is written as a gentle introduction to the subject of infinite
games and automata theory. Many concepts, techniques, and proofs are
explained using examples without being formally rigorous. For the interested
reader who wants to learn more about the subject we give some pointers to
the literature in the conclusion.

2.2 Basic notations and definitions

For a set X we denote by X∗ the set of finite sequences and by Xω the set
of infinite sequences over X. For α ∈ Xω let

Inf(α) = {x ∈ X | x occurs infinitely often in α}.

We can view an infinite sequence α ∈ Xω as a mapping α : N → X.
Consequently, we write α(i) to denote the element at position i in α, i.e.,

α = α(0)α(1)α(2) · · ·

Infinite sequences are also called infinite words or ω-words.
A game graph (also called arena) is a tuple G = (VE, VA, E, c) with

• VE: vertices of Eva (player 1, circle),
• VA: vertices of Adam (player 2, box),
• E ⊆ V × V : edges with V = VE ∪ VA,
• c : V → C with a finite set of colours C.

The sets VE and VA are disjoint (each vertex belongs to exactly one of the
players). We are interested in plays of infinite duration played on such graphs.
Therefore, we assume that each vertex has at least one successor. Most of
the time we consider games on finite arenas but in Section 2.4 we also use
games on infinite graphs.

Example 2.1 Figure 2.1 shows a simple game graph with VE = {x1, x2}
and VA = {y1, y2}. We assume that C = V and that the colouring is the
identity function. Whenever we consider game graphs without specifying the
colouring, then we implicitly identify the vertices with the colours.

A play in G is an infinite sequence α = v0v1v2 · · · of vertices such that
(vi, vi+1) ∈ E for all i ≥ 0. By c(α) we denote the corresponding sequence of
colours c(v0)c(v1)c(v2) · · ·

A game is a pair of a game graph and a winning condition G = (G,Win)
with Win ⊆ Cω. Eva wins a play α if c(α) ∈Win. Otherwise Adam wins.

Infinite Games and Automata Theory 41

y1

y2

x1

x2

Figure 2.1 A game graph

Example 2.2 We can specify the following winning condition for Eva over
the game graph from Figure 2.1, where the colours are identified with the
vertices: y2 ∈ Inf(α) ⇔ {x1, x2} ⊆ Inf(α). This means that Win contains all
those plays

• in which x1, x2, and y2 appear infinitely often, or
• in which y2 and at least one of x1 or x2 appear only finitely often.

Now let us think of a play being built up by the two players by moving a
token along the edges of the graph: Eva chooses the next move from vertices
in VE and Adam from vertices of VA. Then we are interested in the question
of whether Eva has a way to play such that she is sure to win, no matter
how Adam plays, i.e., we are interested in the question of whether Eva has a
winning strategy. This is formalised in the following definitions.

A strategy for Eva is a function σ : V ∗VE → V such that σ(xv) = v′

implies (v, v′) ∈ E. A play v0v1v2 · · · is played according to σ if

∀i : vi ∈ VE → σ(v0 · · · vi) = vi+1.

Strategies for Adam are defined similarly with VA instead of VE.
Given an initial vertex v0 and a strategy σ (for Eva or Adam), the set

Out(σ, v0) contains all plays starting in v0 that are played according to σ

(the possible outcomes of σ).
A strategy σ for Eva in a game G = (G,Win) is a winning strategy from

vertex v0 if Eva wins all plays α that start in v0 and are played according to
σ, i.e., c(α) ∈Win for all α ∈ Out(σ, v0). Similarly, a strategy σ for Adam
is winning from v0 if c(α) /∈Win for all α ∈ Out(σ, v0).

Example 2.3 We continue Example 2.2 and define a winning strategy for
Eva. Note that the only choice that Eva can make is in x1, where she can
choose to move to y1 or to y2. If she always decides to move to y2, then
Adam could win by never moving to x2: the resulting play would contain
y2 infinitely often but x2 only finitely often and thus would be winning for
Adam.

If Eva always decides to move to y1, then Adam could win by alternating

42 Christof Löding

between x1 and x2. This would result in a game that contains y2 only finitely
often but x1 and x2 infinitely often.

From these considerations we see that Eva has to make her choices depend-
ing on the behaviour of Adam. A possible way for her to win is to always
remember which of the xi was visited before. When she has to make a choice
at x1, then she moves to y1 if the previous xi was also x1, and she moves
to y2 if the previous xi was x2. Playing according to this strategy, Eva can
ensure that the infinity sets of the possible plays are {y1, x1}, {y1, x2}, or
{y1, y2, x1, x2} and thus winning for her.

Note that this strategy is winning from every vertex, i.e., it does not
depend on the initial vertex of the play.

The winning area for Eva is the set WE of all vertices from which Eva
has a winning strategy:

WE = {v ∈ V | Eva has a winning strategy from v}.

The winning area for Adam is denoted WA and is defined in the same way.
A game G = (G,Win) is determined if from each vertex either Eva or

Adam has a winning strategy, i.e., if WE ∪WA = V . The games that we
consider in this tutorial are all determined.

The notion of strategy is very general because it allows the players to base
their decision of the next move on the whole history of the play. This means
that strategies are infinite objects in general. Very often simpler types of
strategies are sufficient. The simplest are positional strategies, which only
depend on the current vertex. For Eva a positional strategy corresponds to a
function σ : VE → V with (v, σ(v)) ∈ E for each v ∈ VE (and similarly for
Adam). The analysis in Example 2.3 has shown that Eva does not have a
positional winning strategy for the considered game.

A generalisation of positional strategies are finite memory strategies.
These are given by a deterministic finite automaton (Q, C, qin , δ, σ) with input
alphabet C, state set Q, initial state qin , transition function δ, and (instead
of final states) the strategy function σ : Q× VE → V with (v, σ(q, v)) ∈ E

for each v ∈ VE and q ∈ Q. The idea is that the finite automaton reads
the (colour sequence of the) history of the play, and the strategy function
chooses the next move depending on the current vertex and the state of the
automaton. In this way Eva can use a bounded amount of information on
the history of the play.

Example 2.4 The strategy we have defined in Example 2.3 is a finite
memory strategy. The corresponding automaton is shown in Figure 2.2. An

Infinite Games and Automata Theory 43

m0 m1

x1, y1, y2 x2, y1, y2

x2

x1

σ(m0, x1) = y1

σ(m1, x1) = y2

σ(·, x2) = y1

Figure 2.2 Finite memory strategy

example play together with the sequence of memory states could look as
follows, where the moves that are determined by σ are marked:

y1

m0

x1

m0

y1

m0

x1

m0

y1

m0

x2

m0

y1

m1

x1

m1

y2

m0

x1

m0

y1

m0
· · ·

σ σ σ σ σ

We have defined winning conditions to be given by some set Win ⊆ Cω.
Usually, this set Win is defined in terms of the colours that appear infinitely
often during a play. Some of the most common winning conditions are listed
below:

• A Büchi condition is given by a set F ⊆ C of colours. The set Win
contains all sequences γ ∈ Cω such that Inf(γ) ∩ F �= ∅, i.e., Eva wins a
play α if at least one colour from F occurs infinitely often in α.

• A Muller condition is given by a family F ⊆ 2C of sets of colours. The
set Win contains all sequences γ ∈ Cω such that Inf(γ) ∈ F , i.e., Eva wins
if the set of colours that occur infinitely often in α is a set that is listed
in F .

• A parity condition is specified over a finite set of natural numbers as
colours: C ⊆ N. The set Win contains all sequences γ ∈ Cω for which the
maximal number that occurs infinitely often is even.

Clearly, Büchi conditions and parity conditions are special cases of Muller
conditions. For a Büchi condition defined by F the equivalent Muller condition
is F = {D ⊆ C | D ∩ F �= ∅}. For a parity condition defined over C ⊆ N the
equivalent Muller condition is F = {D ⊆ C | max(D) is even}.

The central role of parity conditions in the theory of infinite games on
graphs is due to the following result.

Theorem 2.5 (Emerson and Jutla [1988], Mostowski [1991]) Parity games
are determined with positional strategies.

We make use of this result throughout this chapter. A proof is given in
chapter 3, Algorithms for Solving Parity Games by Marcin Jurdziński in this

44 Christof Löding

a

c

b

d

C∗c(a + b)∗cC∗ + C∗d(a + b)∗dC∗

Figure 2.3 Eva wins a play if none of its prefixes matches the regular
expression

volume. Other good presentations of can be found in Zielonka [1998] and
Thomas [1997].

2.3 Transformation of winning conditions

The goal of this section is to show how to use automata theory to transform
complex winning conditions into simpler ones such that solving the simpler
game also allows us to solve the original game.

We start with an illustrative example. Consider a game graph with colours
C = {a, b, c, d}. The winning condition is specified by a regular expression r

(over the alphabet C): Eva wins a play if none of its prefixes matches the
regular expression r. An example for such a game is shown in Figure 2.3.
The regular expression in this example defines all words such that there exist
two occurrences of c without any occurrence of c or d in between, or two
occurrences of d without an occurrence of c or d in between. Eva wins if no
prefix of the play satisfies this property. In the depicted game graph she can
achieve this goal by the following strategy σ:

• from the d vertex she always moves to b, and
• from the b vertex she moves

– to c if b was reached from d, and
– to a if b was reached from a or c.

We now illustrate a general method to compute such strategies. Instead of
developing a direct algorithm, we use the fact that regular expressions can
be translated into equivalent deterministic finite automata, abbreviated as
DFA.1 Given such an automaton A we can build the product of the game
graph G and A in such a way that A reads the play in G. This is illustrated
in Figure 2.4, where on the left-hand side the game graph G and the DFA A
1 For background on finite automata we refer the reader to Hopcroft and Ullman [1979].

Infinite Games and Automata Theory 45

a

c

b

d

0

1 2

3

c d

a, b

a, b a, b

a, b, c, d

d

c

dc

a, 0

c, 0

b, 0

d, 0

a, 1

c, 1

b, 1

d, 1

a, 2

c, 2

b, 2

d, 2

3

Figure 2.4 Product of the game graph with a DFA yields an equivalent
safety game

are shown, and on the right-hand side the product game graph. The meaning
of the grey vertices and the dashed edges is explained below. For the moment
they can be considered as normal edges and vertices. Formally, the vertices
of the product graph are pairs of a vertex of the original graph and a state
of A. From a pair (v, q) there is an edge to (v′, q′) if there is an edge (v, v′)
in G, and a transition in A from q to q′ with input c(v). So in a play over
the product graph the current vertex always encodes the vertex of G and
the state that A would have reached after reading the colour sequence of the
current play prefix in G.

Now the goal of Eva is to avoid the final state of A because this would
mean that the play prefix matches the regular expression. In the game graph
this event is represented by the bottom vertex labelled 3 (in the full product
there would be vertices (a, 3), . . . , (d, 3) but since Adam wins as soon as one
of these vertices is reached they are collapsed into a single vertex).

So the goal of Eva in the new game is to avoid the vertex 3. Such a game
is called a safety game because Eva has to remain in the safe area of the
game (corresponding to the states 0, 1, 2 of A). To solve such a game we can
simply compute the vertices from which Adam can force to reach the bad
vertex. The set of these vertices is called AttrA(3), the attractor for Adam
of the vertex 3. In general, for a set R of vertices, the attractor AttrA(R) is

46 Christof Löding

computed in iterations as follows:

Attr0
A(R) = R

Attr i+1
A (R) = Attr i

A(R) ∪
{v ∈ VA | ∃u ∈ Attr i

A(R) : (v, u) ∈ E}
{v ∈ VE | ∀u : (v, u) ∈ E → u ∈ Attr i

A(R)}.

The set Attr i
A(R) contains those vertices from which Adam can ensure to

reach a vertex in R after at most i moves. For a finite game graph there exists
an index i such that Attr i

A(R) = Attr i+1
A (R) and we set AttrA(R) = Attr i

A(R)
for this index i.

From the vertices that are not inside AttrA(R) Eva has a simple winning
strategy to avoid a visit of R: She always moves to a vertex outside of
AttrA(R). The definition of the attractor ensures that such a move is always
possible. Furthermore, from outside the attractor Adam does not have the
possibility to move inside (again by definition of the attractor).

In the product game graph from the example in Figure 2.4 the attractor
for Adam of vertex 3 consists of the grey vertices (c, 1), (d, 2) (in the first
iteration), and (a, 2) (in the second iteration). A strategy for Eva to avoid
the attractor is given by the dashed arrows.

In the original game, Eva can realise the strategy by running the DFA
A on the play and making her decision based on the current vertex of G,
the current state of A, and the strategy from the product game. These are
precisely the components required for a strategy automaton as defined in
the previous section.

Exercise 2.1 The method illustrated above uses a translation of regular
expressions into deterministic finite automata. Analyse the method when
using non-deterministic finite automata instead and show that it does not
work in general.

For the above example we used a translation from regular expressions
to DFAs. For infinitary conditions (something happens infinitely/finitely
often) standard DFAs are not enough. To treat such conditions we can use
ω-automata.

2.3.1 ω-automata

Automata on infinite words are defined in a similar way to automata on
finite words. The main difference is that a run of such an automaton does not
have a last state because the input is infinite. For automata on finite words,
acceptance of a word by a run is defined in terms of the last state of the run:

Infinite Games and Automata Theory 47

it has to be a final state. The definition is replaced by other mechanisms for
acceptance, similar to the winning conditions in infinite games.

An ω-automaton is of the form A = (Q, Σ, q0, Δ,Acc), where Q, Σ, q0, Δ
are as for standard finite automata, i.e., Q is a finite set of states, Σ is
the input alphabet, q0 is the initial state, and Δ ⊆ Q × Σ × Q is the
transition relation. The component Acc defines the acceptance condition and
is explained below.

For an infinite word α ∈ Σω, a run of A on α is an infinite sequence of
states ρ ∈ Qω that starts in the initial state, ρ(0) = q0, and respects the
transition relation, (ρ(i), α(i), ρ(i + 1)) ∈ Δ for all i ≥ 0.

It remains to define when such a run is accepting. We are mainly interested
in two types of acceptance conditions:

• In a Büchi automaton Acc is given as a set F ⊆ Q of states. A run is
accepting if it contains infinitely often a state from F .

• In a parity automaton Acc is given as a priority mapping pri : Q→ N.
A run is accepting if the maximal priority appearing infinitely often is
even.

Deterministic automata are defined as usual: there is at most one transition
per state and letter.

Figure 2.5 shows a non-deterministic Büchi automaton (on the left-hand
side) accepting the language of infinite words over Σ = {a, b} that contain
finitely many b. A simple argument shows that there is no deterministic
Büchi automaton for this language (Landweber [1969]):

Exercise 2.2 Show that no deterministic Büchi automaton can accept the
language of infinite words over Σ = {a, b} that contain finitely many b.

Hint: Long sequences of a would always lead such an automaton into an
accepting state. Hence, there is some n such that the infinite word (anb)ω

consisting of long a-blocks separated by b would be accepted.

But it is very easy to construct a deterministic parity automaton for this
language using the priorities 0 and 1. Such an automaton is shown on the
right-hand side of Figure 2.5.

One can show that the two models of non-deterministic Büchi automata
and deterministic parity automata are in fact equivalent in expressive power.
The difficult direction is the construction of a deterministic parity automaton
from a non-deterministic Büchi automaton. The classical subset construction
that is used to determinise automata on finite words does not work as
illustrated by the following example: Consider the Büchi automaton on
the left-hand side of Figure 2.5 and the two inputs aω = aaaaaa · · · , and

48 Christof Löding

q0 q1

a, b

a, b

a

q0

0

q1

1

a

b

b

a

Figure 2.5 A non-deterministic Büchi automaton and a deterministic parity
automaton accepting the words containing finitely many b

(ab)ω = ababab · · · . Both inputs induce the following sequence of sets of
states (the labels above the arrows correspond to the first input, the ones
below the arrows to the second one):

{q0} a−→
a
{q0, q1} a−→

b
{q0, q1} a−→

a
{q0, q1} a−→

b
{q0, q1} · · ·

The first input should be accepted, and the second one should be rejected.
But since both induce the same sequence of state sets, the subset construction
does not carry enough information for determinisation, no matter which
acceptance condition we use.

The known determinisation constructions that are of optimal complexity
generalise the subset construction by keeping track of several sets that are
usually arranged in a tree. The first one was proposed by Safra in 1988. The
determinisation theorem itself was already shown by McNaughton in 1966
using a doubly exponential construction.

Theorem 2.6 (McNaughton [1966], Safra [1988]) For each non-deterministic
Büchi automaton with n states there is an equivalent deterministic parity
automaton with 2O(n log n) states.

For some recent work on upper and lower bounds for the determinisation
of Büchi automata we refer the reader to Piterman [2006], Kähler and Wilke
[2008], Schewe [2009], and Colcombet and Zdanowski [2009].

The other direction of the equivalence between deterministic parity and
non-deterministic Büchi automata is left as an exercise.

Exercise 2.3 Show that each deterministic parity automaton can be trans-
formed into an equivalent non-deterministic Büchi automaton.

Hint: The Büchi automaton guesses an even priority at some point and
verifies that it occurs infinitely often and that it is the maximal priority from
this point onwards.

We call languages that can be accepted by non-deterministic Büchi au-
tomata (or equivalently by deterministic parity automata) ω-regular .

Infinite Games and Automata Theory 49

(G,Win)
parity game
G ×AWin

product

game

positional
winning strategy

compute

winning strategy
with memory AWin

translate

Figure 2.6 Schema for game reductions

2.3.2 Game reductions

The general idea for game reductions is to transform games with a complicated
winning condition into games with a simpler winning condition (over a bigger
game graph) such that a winning strategy for the simpler but bigger game
can be transformed into a winning strategy for the original game (using
additional memory).

At the beginning of this section we have already seen how to translate a
winning condition that specifies forbidden prefixes by a regular expression
into a safety game. The general translation scheme that we apply is as follows
(illustrated in Figure 2.6):

• Start from a game G = (G,Win) with some ω-regular winning condition
Win ⊆ Cω.

• Construct a deterministic ω-automaton AWin for Win.
• Take the product of G and AWin (the automaton reads the labels of the

vertices in G).
• The new winning condition is the acceptance condition of AWin (e.g., a

parity condition).
• Winning strategies on the product game are winning strategies on the

original game with (additional) memory AWin .

We show how to use this technique to reduce Muller games to parity games.
For this purpose we construct a deterministic parity automaton that reads
sequences α from Cω and accepts if α satisfies the given Muller condition.

The construction is based on the data structure of ‘latest appearance record’
(LAR) Büchi [1983], Gurevich and Harrington [1982].2 The underlying idea
is to recall the order in which the colours of the play appeared (starting
with an arbitrary order). An LAR is thus a permutation of the colours over
which the Muller condition is defined. When reading the next colour of the
2 In Büchi [1983] LARs are called order vectors and they are attributed to McNaughton.

50 Christof Löding

a
b
c
d

7

d

d
a
b
c

7

b

b
d
a
c

5

b

b
d
a
c

1

d

d
b
a
c

4

c

c
d
b
a

7

b

b
c
d
a

5

a

a
b
c
d

7

b

b
a
c
d

3

a

a
b
c
d

3

c

c
a
b
d

6

b

b
c
a
d

6

a

a
b
c
d

6

b

b
a
c
d

3

a

a
b
c
d

3

c

c
a
b
d

6

input

LARs

priorities

Figure 2.7 Latest appearance records for a given sequence of colours from
{a, b, c, d} for the Muller condition F = {{b, d}, {a, b, c}}

sequence, it is moved to the first position in the ordering. To define the
parity condition of the automaton we additionally mark the old position of
the colour that has been moved. This idea is illustrated in Figure 2.7 for
the colour set C = {a, b, c, d}. The LARs are written vertically, and when
reading the next colour it is moved to the top. The numbers below the LARs
are the assigned priorities and are explained later.

The marked positions are underlined. We point out that it is not the
underlined colour that is marked, but the position. For example, in the fifth
LAR in the picture, it is not b that is marked but the second position because
this LAR was obtained by moving d from the second position to the front.

Note that in this way the colours that appear only finitely often gather at
the end (bottom) of the LAR and that the marker eventually stays in the
part of the LAR that keeps changing.

Formally, a latest appearance record (LAR) over C is an ordering
d1 · · · dn of the elements of C with one marked position h:

LAR(C) = {[d1 · · · dn, h] | di ∈ C, di �= dj for all i �= j, and 1 ≤ h ≤ n}.

The set of LARs serves as the set of states for the parity automaton. The
transition function (update of the LARs) is defined as explained above:

δLAR([d1 · · · dn, h], d) = [dd1 · · · di−1di+1 · · · dn, i]

for the unique i with d = di. Note that the LARs and their update do not
depend on the Muller condition F .

It remains to assign the priorities to the states, i.e., to the LARs. This
is done depending on the size of the part of the LAR that has changed in
the last transition. As explained above, the biggest part of the LAR that
changes infinitely often represents the set of colours that appear infinitely
often and hence the parity automaton should accept if this set belongs to
the Muller condition.

Infinite Games and Automata Theory 51

If C contains n colours, then we assign the priorities as follows:

cLAR([d1 · · · dn, h]) =

{
2h− 1 {d1, . . . , dh} /∈ F ,

2h {d1, . . . , dh} ∈ F .

In the example from Figure 2.7 this is shown for the Muller condition
F = {{b, d}, {a, b, c}}.

Combining all this we obtain the LAR automaton

ALAR = (LAR(C), C, q0, δLAR, cLAR)

and the following theorem:3

Theorem 2.7 (Büchi [1983], Gurevich and Harrington [1982]) For a Muller
condition F over C the corresponding deterministic parity automaton ALAR

accepts precisely those α ∈ Cω that satisfy the Muller condition F .

Now, given a Muller game, we can take the product with the LAR automa-
ton. This results in a parity game for which we can compute the winner and
a positional winning strategy. This winning strategy can be implemented
over the Muller game using the LAR automaton as memory.

Theorem 2.8 (Büchi [1983], Gurevich and Harrington [1982]) Muller
games are determined with the LAR automaton as memory.

2.3.3 Logical winning conditions

In this section we show examples for game reductions where the winning
conditions of the games are given by logical formulae. We consider two logics:
the linear time temporal logic LTL introduced by Pnueli [1981], and monadic
second-order logic over infinite words (Büchi [1962]). LTL is widely used in
verification, for example the model checker SPIN can verify LTL properties
on finite systems (Holzmann [2003]). The interest in monadic second-order
logic is more of a theoretical nature. This logic is often used as a yardstick
for expressive power because it subsumes many specification logics.

Linear temporal logic

The formulae of LTL are defined over a set P = {p1, . . . , pn} of atomic
propositions, and are evaluated over infinite sequences of vectors of size n.
The ith entry of such a vector codes the truth value of pi (1 = true, 0 =
false).

LTL formulae are built up from
3 The parity condition is not used by Büchi [1983], Gurevich and Harrington [1982] because it

has been introduced later but the statement can easily be derived from these papers.

52 Christof Löding

• atomic formulae of the form pi,
• Boolean combinations, and
• temporal operators:

Fϕ · · ·
ϕ

· · · ‘eventually ϕ’

Gϕ
ϕ ϕ ϕ

· · ·
ϕ ϕ ϕ

· · · ‘always ϕ’

Xϕ
ϕ

· · · · · · ‘next ϕ’

ϕUψ ϕ ϕ ϕ
· · ·

ϕ ψ
· · · ‘ϕ until ψ’

The semantics of the operators is already illustrated in the drawings. We do
not give the formal definition here but prefer to explain the semantics using
some examples. An atomic formula pi is true if pi is true at the beginning
of the word, i.e., if the ith entry of the first vector is 1. A formula Xϕ is
true if ϕ is true in the model starting from the second position. For example,
p1 ∧X¬p2 is true in (

1
1

)(
1
0

)(
0
1

)(
0
0

)
· · ·

as witnessed by the underlined entries.
A formula Fϕ is true if there exists some position i ≥ 0 in the word such

that ϕ is true in this position (i.e. in the suffix of the word starting at this
position i). A formula Gϕ is true if ϕ is true at each position of the word.
For example, Gp2 ∧ Fp1 is true in(

0
1

)(
0
1

)(
0
1

)
· · ·
(

0
1

)(
1
1

)(
0
1

)(
0
1

)(
1
1

)
· · ·

again witnessed by the underlined entries.
A formula ϕUψ is true if there is some position where ψ is true, and ϕ is

true in all previous positions. Consider the formula F(p3 ∧ X(¬p2Up1)). It
states that there is some position where p3 is true such that from the next
position p2 is false until a position is reached where p1 is true. The words
satisfying this formula are of the following shape, where again the underlined
entries are those making the formula true:⎛⎝0

1
0

⎞⎠⎛⎝0
0
1

⎞⎠ · · ·
⎛⎝1

0
1

⎞⎠⎛⎝0
0
1

⎞⎠⎛⎝0
0
1

⎞⎠⎛⎝0
0
0

⎞⎠⎛⎝1
1
0

⎞⎠ · · ·
We are interested in games with LTL winning conditions, i.e., games of the

form (G, ϕ) for an LTL formula ϕ. Eva wins the game if the play satisfies ϕ.

Infinite Games and Automata Theory 53

α =

0
@

1
0
1

1
A

0
@

0
1
0

1
A

0
@

0
0
1

1
A

0
@

0
0
1

1
A

0
@

1
1
1

1
A

0
@

0
1
0

1
A · · ·

¬p2

¬p2Up1

X(¬p2Up1)

p3 ∨ X(¬p2Up1)

G(p3 ∨ X(¬p2Up1))

1

1

0

1

1?

0

0

1

1

1?

1

1

1

1

1?

1

1

1

1

1?

0

1

0

1

1?

0

0

1?

1?

1?

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 2.8 A Büchi automaton guesses valuations for sub-formulae

To be able to interpret LTL formulae in infinite plays we assume that the
set C of colours of the game graph is {0, 1}n.

To apply the method of game reduction it suffices to construct an equiv-
alent automaton for a given formula. We explain the underlying idea for
transforming an LTL formula into an equivalent (non-deterministic) Büchi
automaton. The automaton ‘guesses’ for each sub-formula of the given for-
mula ϕ its truth value at the current position and verifies its guesses. Thus,
the states of the automaton are mappings that associate to each sub-formula
of ϕ a truth value 0 or 1. Figure 2.8 illustrates how the Büchi automaton
works. The question marks in the table indicate that the truth value of the
corresponding formulae cannot be verified within the shown prefix of α but
depend on the continuation of α.

The verification of guesses works as follows:

• Atomic formulae and Boolean combinations can be verified directly because
the truth values of the atomic formulae are coded in the input letter by
definition.

• The operators X, G can be verified using the transitions. If the automaton
guesses that a formula Xψ is true at the current position, then ψ has to
be true at the next position. If a formula Gψ is guessed to be true, then ψ

also needs to be true, and Gψ has to be true in the next position.
• The operators F, U are verified using the acceptance condition. We explain

the principle for the operator F. This can easily be generalised to U.
If Fψ is guessed to be true, then either Fψ has to be true again in the

next position, or ψ itself has to be true in the current position. Using
the acceptance condition, the automaton has to ensure that the second
option is taken at some point, i.e., that ψ indeed becomes true eventually.
For this purpose, we use a slight generalisation of Büchi automata that

54 Christof Löding

have several sets F1, . . . , Fk of final states. A run is accepting if all sets
are visited infinitely often. Now, for each formula Fψ we introduce one
set of final states that contains all states in which ψ is true or Fψ is false.
This way, once Fψ is guessed to be true, ψ has to become true eventually,
because otherwise the set of final states for Fψ will not be visited anymore.

The same principle applies to sub-formulae with the until operator: A
formula ψ1Uψ2 is true if either ψ1 is true now and ψ1Uψ2 is true again in
the next position, or if ψ2 is true now.

In the first position the automaton has to guess that the whole formula ϕ is
true because it is supposed to accept exactly those words which satisfy the
formula.

Exercise 2.4 In the same way as for formulae Fψ we introduce a set of
final states for each sub-formula ψ1Uψ2. What should the definition of this
set of states look like?

Exercise 2.5 The construction from LTL formulae to automata explained
above yields a generalised Büchi automaton with several sets of states.
Find a construction that transforms a generalised Büchi automaton into an
equivalent Büchi automaton with only one set of final states.

Hint: Cycle through the different sets of final states by introducing copies
of the Büchi automaton.

Using the idea illustrated above, we obtain the following theorem:

Theorem 2.9 (Vardi and Wolper [1986]) For each LTL formula ϕ one can
construct an equivalent Büchi automaton Aϕ of size exponential in ϕ.

Using the determinisation theorem for ω-automata and the method of
game reduction, we obtain the following theorem.

Theorem 2.10 Games (G, ϕ) with a winning condition given by an LTL
formula can be solved in doubly exponential time.

The theorem has been shown first by Pnueli and Rosner [1989] in a slightly
different formulation in the context of synthesising reactive programs. In
this setting the goal is to construct a program (such as a controller or
circuit) that reads inputs and produces outputs, as already explained in the
introduction. A specification is given that relates the input sequences to the
output sequences and the task is to synthesise the program automatically
from the specification. If this specification is given by an LTL formula, then
one can reformulate the problem as a game with LTL winning condition. The

Infinite Games and Automata Theory 55

program then corresponds to a winning strategy for Eva. In Rosner [1991] it
is shown that the doubly exponential complexity is also a lower bound.

In a more general setting the synthesis problem has been posed by Church
[1962]. For the case of monadic second-order specifications it has been solved
by Büchi and Landweber [1969] as explained in the following.

Monadic second-order logic

We now consider monadic second-order logic over the natural numbers with
the successor function. Monadic second-order logic is the extension of first-
order logic by the ability to quantify over sets of elements. We do not give
the precise definition but only illustrate the syntax with an example. For a
more precise treatment of the subject we refer the reader to Thomas [1997].

The underlying structure (N, +1) consists of the natural numbers as domain
and the successor function. The corresponding theory, i.e., the sentences that
are true in (N, +1), is called the ‘second-order theory of one successor’ (S1S)
by Büchi [1962]. We slightly abuse the terminology here and also refer to the
logic itself as S1S.

We use small letters x, y, . . . as first-order variables denoting elements, and
capital letters X, Y, . . . for set variables denoting sets of natural numbers.

Consider the formula

ϕ(X) = ∃Y
(

0 ∈ Y ∧
∀x(x ∈ Y ↔ x + 1 /∈ Y) ∧
∀x(x ∈ X → x ∈ Y)

)
.

It has one free set variable X denoting a set of natural numbers. We can
view a set of natural numbers as an ω-word over the alphabet {0, 1} by
labelling the positions in X by 1, and the other positions by 0.

Using this interpretation, ϕ defines the set of all ω-words over {0, 1} such
that 1 can only occur on even positions: The formula states that there is a set
Y that contains position 0, and it contains exactly every second position (i.e.,
Y contains exactly the even positions), and it contains X. Thus, this formula
is true for each interpretation of the free variable X by a set containing only
even positions.

In general, we consider formulae ϕ(X1, . . . , Xn) with n free set variables
defining ω-languages over {0, 1}n. We have already seen that LTL formulae
(which also define languages over the alphabet {0, 1}n) can be translated
into automata. For S1S formulae we even have a stronger result that the two
formalisms are equivalent.

Theorem 2.11 (Büchi [1962]) A language L ⊆ ({0, 1}n)ω is definable by an
S1S formula iff it can be accepted by a non-deterministic Büchi automaton.

56 Christof Löding

Proof A detailed version of this proof can be found in Thomas [1997]. We
only give a brief sketch of the ideas.

From formulae to automata one uses an inductive translation, based
on the closure properties of automata. To make this approach work, one
first introduces a variant of S1S that uses only set variables (and has a
predicate saying that a set is a singleton and a predicate for set inclusion).
Atomic formulae are easily translated into equivalent automata. For the
Boolean combinations one uses the closure properties of automata, and for
the existential quantification the projection.

From Büchi automata to formulae one writes a formula that describes
the existence of an accepting run. For each state q one uses a set Xq that
contains the positions of the run where the automaton is in state q. Then one
can easily express that the run starts in the initial state, that infinitely many
final states occur, and that the transitions are respected in each step.

As for LTL winning conditions, we can now consider games with win-
ning conditions specified by S1S formulae. Using the translation into non-
deterministic Büchi automata and the determinisation theorem we can solve
such games.

Theorem 2.12 For games (G, ϕ) with a winning condition given by an
S1S formula ϕ one can decide the winner and can compute a corresponding
winning strategy.

The complexity of the inductive translation of formulae into automata is
rather high because each negation in the formula requires a complementation
of the automaton, which is exponential. Thus, the complexity of our algorithm
is non-elementary in the size of the formula. From lower bounds on the
complexity of deciding S1S presented in Meyer [1975] it follows that we
cannot hope for an improvement.

Based on lower bound results for the translation of formulae into automata
(see Reinhardt [2002]) one can show that this also applies to the memory
required for winning strategies in S1S games. The size of the memory required
for a winning strategy in a game with an S1S winning condition cannot be
bounded by a function of the form

222··
·2n }

k

for a fixed k.

Infinite Games and Automata Theory 57

b

a

b

a a

b

a a

b

b

b a

b

a a

...

t(ε) = b

t(0) = a

t(01) = b

t(110) = a

Figure 2.9 The initial part of an infinite tree over the alphabet {a, b}

2.4 Tree automata

Infinite trees are a useful tool to model the behaviour of discrete systems
(circuits, protocols, etc.). These can be described by transition graphs, and
the possible behaviours or executions of such a system are captured by an
infinite tree: the unravelling of the transition graph. Properties of the system
behaviour can thus be specified as properties of infinite trees.

For simplicity we restrict ourselves to complete binary trees. The nodes
are labelled by symbols from a finite alphabet Σ. When modelling system
executions by infinite trees this alphabet captures properties of the system
we are interested in.

Formally, a tree is a mapping t : {0, 1}∗ → Σ. The root of the tree
corresponds to the empty string ε. For some node u ∈ {0, 1}∗ the left

successor is u0, and the right successor is u1. This is illustrated in
Figure 2.9 showing the initial part of a tree over the alphabet {a, b}. The
name of a node corresponds to the sequence of left (0) and right (1) moves
that lead to this node from the root.

We now introduce an automaton model that defines sets (languages) of
such infinite trees. This model can be seen as an extension of ω-automata to
trees, and it is also an extension of the model of automata on finite trees. As
for ω-automata, one can study different models that are distinguished by the
form of their acceptance condition. We focus here on parity tree automata,
which are defined as follows.

A parity tree automaton (PTA) is of the form A = (Q,Σ, qin ,Δ, pri)
with a finite set Q of states, a label alphabet Σ, an initial state qin , a
transition relation Δ ⊆ Q×Σ×Q×Q, and a priority function pri : Q→ N.

A run ρ of a PTA on a tree t is a mapping ρ : {0, 1}∗ → Q (a Q-
labelled tree) that starts in the initial state, ρ(ε) = qin , and that respects

58 Christof Löding

b
qin

(qin , b, q1, q2) ∈ Δ

a
q1

(q1, a, q3, q4) ∈ Δ

b
q3

a a

b
q4

a a

b
q2

(q2, b, q5, q6) ∈ Δ

b
q5

b a

b
q6

a a

...

Figure 2.10 A run of a PTA has to respect the transition relation

the transitions, (ρ(u), t(u), ρ(u0), ρ(u1)) ∈ Δ for all u ∈ {0, 1}∗. This is
illustrated in Figure 2.10.

The acceptance condition of a PTA is defined via the priority mapping.
From games and ω-automata we already know that a sequence of states is
accepting if the maximal priority that appears infinitely often is even. We
extend this to trees by defining a run to be accepting if the state sequence
on each infinite path through the run is accepting, i.e., if on each infinite
path the maximal priority that occurs infinitely often is even.

As usual, a tree is accepted if there is an accepting run on this tree. The
language of trees accepted by A is denoted by T (A). We call a language of
infinite trees regular if it can be accepted by a parity tree automaton.

Before we come to the properties of PTAs, we make some remarks on other
acceptance conditions and give some examples:

• As for games or ω-automata we can define, e.g., tree automata with Muller
or Büchi acceptance conditions.

• The expressive power of Muller tree automata and parity tree automata is
the same. To transform Muller automata into parity automata one can
use the LAR construction presented in the previous section.

• One can show that Büchi tree automata are weaker than parity tree
automata. The language of all trees over {a, b} such that on each path
there are finitely many b cannot be accepted by a Büchi tree automaton
but by a PTA. The PTA can easily be obtained by running the parity
word automaton from Figure 2.5 on every branch of the tree using the
transitions (q0, a, q0, q0), (q0, b, q1, q1), (q1, a, q0, q0), and (q1, b, q1, q1). A
proof that a Büchi tree automaton cannot accept this language can be
found in Thomas [1997] and in Chapter 8 of Grädel et al. [2002].

• It is rather easy to see that deterministic tree automata are too weak. For
example, the set of all trees t over {a, b} such that t contains at least one

Infinite Games and Automata Theory 59

node labelled b is accepted by a PTA with two states Q = {qb, q}, with
initial state qb, priorities pri(qb) = 1, pri(q) = 2, and the transitions

(qb, a, qb, q), (qb, a, q, qb), (qb, b, q, q), (q, a, q, q), (q, b, q, q).

The state qb is used to non-deterministically select a path that leads to
a node with label b. This is done by the first two transitions. A simple
argument shows that this language cannot be accepted by a deterministic
parity tree automaton.

We now analyse algorithmic and closure properties of PTAs. Some closure
properties are rather easy to obtain.

Proposition 2.13 The class of regular languages of infinite trees is closed
under union, intersection, and projection (relabelling).

Proof For the closure under union and intersection one can use a classical
product construction where the two given automata are executed in parallel.
The acceptance condition becomes a Muller condition that expresses that
both automata accept for the intersection, or that at least one of the automata
accepts for the union. As mentioned above, one can use the LAR construction
to turn a Muller automaton into an equivalent parity automaton.

For the projection let h : Σ → Γ be a relabelling. It is applied to trees by
applying it to each label of the tree. Given a PTA A for a tree language T

we want to construct a PTA for the tree language h(T) = {h(t) | t ∈ T}.
For this purpose we simply replace every transition (q, a, q0, q1) in A by the
transition (q, h(a), q0, q1).

The connection to games is used for the closure under complementation
and the emptiness test, as explained in the following.

2.4.1 Complementation

Let us first analyse why the complementation problem for PTAs is a difficult
problem. By definition, a tree is accepted if

∃run∀path.(path satisfies acceptance condition).

By negation of this statement we obtain that a tree is not accepted if

∀run∃path.(path does not satisfy acceptance condition).

This exchange of quantifiers makes the problem difficult. But there are two
observations to make that lead towards the solution. First of all, statements
of the form ∃∀ · · · are very close to the nature of games and strategies: there

60 Christof Löding

exists a move of one player that ensures the win against all moves of the
other player. In this case the game has just two rounds: The first player picks
a run on the input tree, and the second player picks a path through the run.
The first player wins if the path satisfies the acceptance condition. We will
modify this game such that the players do not choose these objects in one
step but incrementally build them. This allows us to express the acceptance
of a tree in the form

∃strategy for Eva ∀strategies for Adam (...).

Then we use determinacy of these games allowing us to express non-
acceptance of a tree as

∃strategy for Adam ∀strategies for Eva (...).

This statement is in the form of ∃∀ · · · and we show how to construct an
automaton that checks this property.

We start by defining the membership game that characterises the mem-
bership of a tree t in the language of a given PTA A = (Q,Σ, qin ,Δ, pri).
Since one player tries to construct an accepting run and the other player
tries to show that the run is not accepting by selecting a path through the
run, we call the players Constructor and Spoiler. This game has been
proposed by Gurevich and Harrington [1982], where the players are called
Automaton and Pathfinder.

The rules of the game are as follows:

• The game starts at the root of the tree in the initial state of A, i.e., in the
position (qin , ε).

• The moves of the game from a position (u, q) where u ∈ {0, 1}∗ is a node
of t, and q is a state of A are:

1 Constructor picks a transition (q, a, q0, q1) that matches q and the
label a of t at u, i.e., a = t(u).

2 Spoiler chooses a direction and the game moves on to position (u0, q0)
or (u1, q1).

• A play of this game is an infinite sequence of states and transitions together
with the nodes in the tree. For the winning condition only the sequence of
states is interesting: Constructor wins if this state sequence satisfies
the acceptance condition of A.

The shape of this game is illustrated in Figure 2.11. The dashed lines
represent the tree nodes. For each tree node the circles represent states, i.e.,
the positions of Constructor, and the triangles transitions. The arrows

Infinite Games and Automata Theory 61

...

Figure 2.11 Shape of the membership game

from the circles to the triangles indicate that Constructor chooses for a
given state a possible transition, and the arrows exiting from the triangles
correspond to the choices of Spoiler who moves either to the left or to the
right into the corresponding state of the transition.

One should note here that the shape of the game reminds one of a tree but
that the game graph itself is not a tree, it is an acyclic graph. For example,
in the illustration in Figure 2.11 the leftmost circle in the bottom row can be
reached via two different paths. Hence, the existence of positional strategies
is not obvious (for game graphs that are trees all strategies are positional
because a vertex encodes the full history of the play).

With the picture from Figure 2.11 in mind it is rather easy to see that
there is a correspondence between the runs of A on t and the strategies for
Constructor:

• Fixing the transition to be used at the root is the same as defining the
first move of Constructor.

• Then Spoiler can only move to the left or to the right. The states at
these successors are already fixed by the transition. Defining the strategy
for Constructor at these successors is again the same as fixing the
transitions for a run, and so on.

By the definition of the winning condition and positional determinacy of
parity games we obtain the following lemma.

Lemma 2.14 A tree t is in T (A) iff there is a positional winning strategy
for Constructor in the membership game.

62 Christof Löding

...

Figure 2.12 Shape of positional strategies for Spoiler in the membership
game

Applying the positional determinacy for the negation of the statement, we
obtain:

Lemma 2.15 A tree t is not in T (A) iff there is a positional winning
strategy for Spoiler in the membership game.

The next goal is to construct an automaton that checks for a tree t if
there is a positional winning strategy for Spoiler in the membership game.
By Lemma 2.15 such an automaton suffices to recognise the complement
language of A. We start by analysing positional strategies for Spoiler.

A move for Spoiler consists in choosing a direction for a given pair of
tree node and transition, as illustrated by the thick edges in Figure 2.12.

Such a positional strategy for Spoiler can be written as a mapping

σ : {0, 1}∗ → (Δ → {0, 1})

that defines for each tree node how the choices of Spoiler for the different
transitions are. Let us denote the finite set Δ → {0, 1} of mappings from
transitions to directions 0, 1 by Γ. Then a positional strategy for Spoiler

is simply a tree over the alphabet Γ, and hence can be processed by a tree
automaton.

Now the next steps in the construction of the complement automaton C
are the following:

• Construct an automaton Astrat that reads trees of the form t × σ, i.e.,
annotated with a positional strategy for Spoiler such that Astrat accepts
t× σ if σ is winning for Spoiler in the membership game for A and t.

Infinite Games and Automata Theory 63

0

1

..

.

Figure 2.13 A single path through a coding of a positional strategy of
Spoiler

• Obtain C from Astrat by omitting the strategy annotation in the labels.
This operation corresponds to a simple projection that removes the Γ
component of the labels. This can be seen as C non-deterministically
guessing the strategy for Spoiler.

Looking at Figure 2.12, Astrat has to check that the plays obtained by
following the thick edges (the strategy of Spoiler) do not satisfy the accep-
tance condition (the strategy is winning for Spoiler). For this task we first
focus on single paths of the tree.

We code these paths by adding to the labels on the path the next direction 0
or 1 taken by the path. In this way we obtain infinite words over Σ×Γ×{0, 1}.
This is indicated in Figure 2.13, where a single path from the tree shown in
Figure 2.12 is selected.

Now we construct an ω-automaton that checks whether on such paths the
strategy is winning for Spoiler. This ω-automaton has to check whether
all plays that can be obtained by following the thick arrows (the strategy of
Spoiler) along the given path do not satisfy the acceptance condition of A.
We obtain this ω-automaton as follows:

• Construct a non-deterministic Büchi automaton that guesses a play along
the strategy edges of Spoiler and accepts if it does satisfy the acceptance
condition of A.

• Determinise (see Theorem 2.6) and complement this Büchi automaton, and
obtain a deterministic parity word automaton Apath

strat that accepts those
paths of a tree on which Spoiler’s strategy is winning.

Now we can run this deterministic parity word automaton Apath
strat in parallel

along all paths of the given tree by merging the transitions of Apath
strat for the

64 Christof Löding

two directions 0 and 1 into a single transition of a tree automaton as follows:

Apath
strat : δ(q, (a, γ, 0)) = q′ δ(q, (a, γ, 1)) = q′′

Astrat : (q, (a, γ), q′, q′′)

for all q ∈ Q, a ∈ Σ, and γ ∈ Γ.
The automaton C is obtained by omitting the strategy encoding:

(q, (a, γ), q′, q′′) becomes (q, a, q′, q′′).

From the explanations above it follows that C indeed accepts the complement
language of A, resulting in the following theorem.

Theorem 2.16 (Rabin [1969]) For a given tree automaton one can con-
struct a tree automaton for the complement language.

The main steps of the construction described in this section are summarised
as follows:

• Characterise acceptance in terms of winning strategies in the membership
game.

• Positional determinacy for parity games yields: a tree t is not accepted iff
Spoiler has a positional winning strategy in the membership game.

• Construct an automaton that checks if a given strategy of Spoiler is
winning. This construction is based on the determinisation of ω-automata.

• Obtain the desired automaton by projection (removing the strategy anno-
tations).

This proof scheme was proposed by Gurevich and Harrington [1982] (see also
Thomas [1997]). It is a nice illustration of how determinacy of infinite games
can help to solve problems in automata theory. Note that the positional
determinacy or winning strategies are not used inside the construction
but only to prove the correctness of the construction. The main step in
the construction itself is the use of the determinisation theorem for Büchi
automata.

In Muller and Schupp [1995] a different proof is presented that only
relies on the determinacy of the membership game without making any
assumptions on the type of the strategies. From the construction one can
derive a finite memory determinacy result for game graphs that have the
shape of a membership game.

The size of the complement automaton is determined by the complexity
of the determinisation construction for word automata. If A is a PTA with
n states and k priorities, then the Büchi word automaton that has to be

Infinite Games and Automata Theory 65

determinised is of size O(nk), and thus the resulting PTA C is of size
2O(nk log(nk)). The construction presented by Muller and Schupp [1995] slightly
improves this to 2O(nk log(n)).

As an application one can now use the closure properties of PTAs to show
their equivalence to monadic second-order logic over the infinite tree, i.e.,
over the structure ({0, 1}∗, S0, S1) consisting of the domain {0, 1}∗ and the
two successor relations S0 and S1 for moving left or right in the tree. As for
S1S the corresponding theory is referred to as S2S (second-order theory of
two successors). Again we abuse notation and also refer to the logic as S2S.

In analogy to the results for ω-automata and S1S presented in Section 2.3.3
we obtain the equivalence of S2S and tree automata.

Theorem 2.17 (Rabin [1969]) A tree language L over the alphabet {0, 1}n

is definable by an S2S formula iff it can be accepted by a parity tree automaton.

If we want to check the satisfiability of S2S formulae, we can translate
them into tree automata and check these for emptiness. This latter problem
is the subject of the next section.

2.4.2 Emptiness

We now want to develop a method that checks for a given PTA A whether
T (A) is empty or not. For the complementation construction we have used the
membership game to characterise the acceptance of a tree by the automaton.
The idea is that Constructor builds a run and Spoiler chooses a path
through this run. The resulting game arena is infinite because the moves
available at a certain node depend on the label of the tree at this node. For
the emptiness problem we want to know whether there is a tree on which
there is a run such that the acceptance condition is satisfied on each path:

∃tree∃run∀path.(path satisfies acceptance condition).

Accordingly, we modify the membership game such that Constructor now
builds a tree t and a run ρ on t at the same time. This allows us to remove
the tree nodes from {0, 1}∗ from the game positions because the moves do
not depend on these nodes anymore. This makes the game graph finite.

The emptiness game for a PTA A has the following rules:

• The game positions are Q ∪Δ (states and transitions of A).
• The initial position is qin .
• From a position q (a state of A) the game proceeds as follows:

1 Constructor picks a transition (q, a, q0, q1),

66 Christof Löding

q1

1

q2

2

q′1
1

q+

2

(q1, a, q1, q+) (q1, a, q2, q+)

(q2, a, q1, q
′
1)

(q′1, a, q+, q′1)

(q′1, b, q+, q+)(q+, a, q+, q+) (q+, b, q+, q+)

Figure 2.14 The emptiness game for the example PTA. The thick arrows
define a winning strategy for Constructor

2 Spoiler chooses a direction and the game moves on to position q0 or q1.

• A play of this game is an infinite sequence of states and transitions. For
the winning condition only the sequence of states is relevant: The winning
condition for Constructor is the acceptance condition of A.

This is a parity game on a finite game graph. In the same way as for the
membership game we get the following lemma.

Lemma 2.18 The language of the PTA A is not empty iff Constructor

has a winning strategy in the emptiness game for A.

Consider the following example PTA A over the alphabet {a, b} with state
set {q1, q

′
1, q2, q+}, initial state q1, and the following transitions and priorities:

(q1, a, q1, q+) (q′1, a, q+, q′1) (q+, a, q+, q+) c(q1) = c(q′1) = 1
(q1, a, q2, q+) (q′1, b, q+, q+) (q+, b, q+, q+) c(q2) = c(q+) = 2
(q2, a, q1, q

′
1)

The emptiness game together with a winning strategy for Constructor

is shown in Figure 2.14. The nodes of Constructor are labelled with the
name of the state and the corresponding priority. The transitions do not
have a priority in the game because they are not considered for the winning
condition.

Since Constructor has a winning strategy we can deduce that there
is a tree that is accepted by A. Furthermore, from a positional winning
strategy one can construct a finitely generated tree that is accepted by A.
The idea is that the strategy of Constructor associates to each state a

Infinite Games and Automata Theory 67

(q1, a, q2, q+)

(q2, a, q1, q
′
1)

(q′1, b, q+, q+)

(q+, a, q+, q+)

0

1 0

1
0, 1

0, 1

a

a

a

a

a

a a

b

a

b

a a

a

a

a a

a

a a

...

Figure 2.15 A finitely generated (regular) tree corresponding to the winning
strategy depicted in Figure 2.14

unique transition to use. At the root we choose the transition associated to
the initial state of A. For a given transition Spoiler can choose the left or
the right state. At the corresponding next node in the tree we choose the
transition associated to this state. A compact representation of the resulting
tree is shown on the left-hand side of Figure 2.15. Each transition has two
outgoing edges, one labelled 0 for moving to the left successor in the tree, and
one labelled 1 for moving to the right successor. The transition associated to
the initial state of A is marked with the small incoming arrow. This graph
can be seen as a finite automaton that reads names of tree nodes (words over
{0, 1}) and outputs the transitions to be used in the run on the accepted
tree. If we only output the label used in the transition, then we obtain the
tree itself, which is shown on the right-hand side of Figure 2.15. It is labelled
a everywhere except every second step to the right from the leftmost path.

Trees that are labelled in a regular way in the sense explained above are
called regular trees.

Theorem 2.19 (Rabin [1969]) The emptiness problem for parity tree
automata is decidable. If the language is not empty, then one can construct
a finite representation of a tree in the language.

Using the translation from S2S to tree automata we obtain the decidability
of the theory S2S, or more generally the decidability of the satisfiability for
S2S formulae.

Corollary 2.20 (Rabin [1969]) The satisfiability problem for S2S formulae
is decidable.

68 Christof Löding

2.5 Beyond finite automata

In the previous sections we have considered games with winning conditions
that can be described by finite automata. In this section we briefly discuss
what happens if we move to non-regular winning conditions. A widely used
extension of regular languages are the context-free languages, which can
be defined in terms of context-free grammars or pushdown automata (see
Hopcroft and Ullman [1979], Sipser [1997]). Even though we are interested
in specifications over infinite words, we can use context-free languages of
finite words, for example, we can declare a play winning for Eva if it does
not contain a prefix that belongs to a given context-free language. Let us
refer to this kind of winning condition as a context-free safety condition.

Proposition 2.21 The problem of finding the winner in a game (G,Win),
where Win is a context-free safety condition is undecidable.

Proof We can give a reduction to the universality problem for context-free
languages, i.e., the question of whether a given context-free language contains
all words. This problem is known to be undecidable (e.g., Theorem 5.10 of
Sipser [1997] or Theorem 8.11 of Hopcroft and Ullman [1979]).

Let L be a context-free language over some alphabet Σ. We aim at con-
structing a context-free safety game such that Eva has a winning strategy iff
L = Σ∗. The game graph consists only of vertices for Adam, one for each
symbol from Σ. The edge relation contains all possible edges. This means
that Adam can freely choose a sequence over Σ. If we now consider the
context-free safety condition defined by L, then one can easily see that Eva
has a winning strategy iff L = Σ∗. Otherwise Adam can simply play the
sequence corresponding to a word not in L.

At the beginning of Section 2.3 we have considered the same kind of
winning condition for regular languages. There we could easily solve the
games by constructing a DFA for the given language and then solving a
simple safety game on a finite graph. For context-free languages this does
not work for two reasons. First of all, context-free languages are accepted by
pushdown automata, and therefore taking the product with a finite graph
will result in an infinite graph. Furthermore, we have seen that the method
does not work if we use non-deterministic automata instead of DFAs (see
Exercise 2.1). For the class of context-free languages deterministic pushdown
automata are not enough, the non-determinism is required.

What happens if we avoid the second problem by considering winning
conditions specified by deterministic pushdown automata? In fact, we can
consider deterministic pushdown automata over infinite words by simply

Infinite Games and Automata Theory 69

equipping a standard pushdown automaton with a parity condition on the
state set. Acceptance is defined as before.

Assume Win is specified by a deterministic pushdown ω-automaton with
parity condition. Taking the product of a game graph G with the pushdown
automaton (in the same way as in Section 2.3) results in a parity game on a
pushdown graph. These games can be solved and winning strategies can be
implemented by pushdown automata.

Theorem 2.22 (Walukiewicz [1996]) Parity games on pushdown graphs
can be solved in exponential time and winning strategies can be implemented
by pushdown automata.

Note that as opposed to Proposition 2.21 the winning condition is spec-
ified directly as a parity condition on the pushdown graph. The proof of
Theorem 2.22 that is given in Walukiewicz [1996] uses a reduction to games
on finite graphs. A construction based on tree automata can be found in
Vardi [1998].

As a consequence we obtain that specifications given by deterministic
pushdown automata admit an algorithmic solution.

Corollary 2.23 The problem of deciding the winner in a game (G,Win)
for a finite game graph, where Win is defined by a deterministic pushdown
ω-automaton (with parity condition), is decidable.

The result from Theorem 2.22 on pushdown parity games has been extended
to the model of higher-order pushdown automata (Cachat [2003]) which
use nested stacks, and to the even more expressive model of collapsible
higher-order pushdown automata (Hague et al. [2008]), which have a tight
relationship to higher-order recursion schemes.

Instead of considering more complex game graphs it is also possible to
study more complex winning conditions. This research has been initiated by
Cachat et al. [2002], where it was shown that pushdown games with a winning
condition of the following form are decidable: ‘there exists some configuration
(vertex of the game graph) that is visited infinitely often’. This condition
has the flavour of a Büchi condition because it asks for some configuration
to be visited infinitely often. But since the game graph is infinite and the
configuration to be visited infinitely often is quantified existentially, this adds
an extra level of complexity. Further results in this direction can be found in
Bouquet et al. [2003], Serre [2004], Löding et al. [2004].

70 Christof Löding

2.6 Conclusion

In this chapter we have introduced automata on infinite words and on infinite
trees and have illustrated how they are connected to the theory of infinite
games. In particular, automata on infinite words are useful for transforming
complex winning conditions of infinite games into simpler ones (at the
price of increasing the size of the game graph). For automata on infinite
trees one can use results from game theory to prove the correctness of the
complementation construction, and also to solve algorithmic problems like
the emptiness problem. When going beyond finite automata, the problems
become more difficult, but we have seen that some decidability results can be
retained if the specifications are given by deterministic pushdown automata
on infinite words.

The presentation in this chapter is given on a rather informal level. Many
constructions are explained using examples without giving precise definitions
and proofs. For the interested reader we give some references to other surveys
that cover material presented in this chapter: A survey on infinite games
and their connection to tree automata is given by Zielonka [1998], containing
many algorithms for solving infinite games and problems for tree automata,
and a precise analysis of memory requirements for different types of winning
conditions. The survey by Thomas [1997] has already been mentioned several
times in this chapter. It gives a nice overview of the main constructions
in the theory of automata on infinite words and trees, the connections to
logic, and also some basics on infinite games. The seminar volume by Grädel
et al. [2002] contains many articles on various topics concerning automata
on infinite objects, infinite games, and logic. The textbook by Perrin and
Pin [2004] covers many aspects of the theory of automata on infinite words.
Furthermore, similar to the theory of regular languages of finite words, the
book also explains the basics of the algebraic theory of languages of infinite
words. Finally, we mention the recent and very detailed survey on automata
and logics for infinite words and trees that is given by Vardi and Wilke [2007].

References

A.-J. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unboundedness
and regular conditions. In Proceedings of FST TCS 2003: Foundations of Soft-
ware Technology and Theoretical Computer Science, 23rd Conference, volume
2914 of Lecture Notes in Computer Science, pages 88–99. Springer, 2003.

J. R. Büchi. On a decision method in restricted second order arithmetic. In
International Congress on Logic, Methodology and Philosophy of Science, pages
1–11. Stanford University Press, 1962.

Infinite Games and Automata Theory 71

J. R. Büchi. State-strategies for games in Fσδ ∩Gδσ. The Journal of Symbolic Logic,
48(4):1171–1198, December 1983.

J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311,
1969.

T. Cachat. Higher order pushdown automata, the Caucal hierarchy of graphs
and parity games. In Proceedings of Automata, Languages and Programming,
30th International Colloquium, ICALP 2003, volume 2719 of Lecture Notes in
Computer Science, pages 556–569. Springer, 2003.

T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3

winning condition. In Proceedings of the Annual Conference of the European
Association for Computer Science Logic, CSL 2002, volume 2471 of Lecture
Notes in Computer Science, pages 322–336. Springer, 2002.

A. Church. Logic, arithmetic and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35, 1962.

T. Colcombet and K. Zdanowski. A tight lower bound for determinization of
transition labeled Büchi automata. In Proceedings of Automata, Languages
and Programming, 36th Internatilonal Collogquium, ICALP 2009, volume 5556
of Lecture Notes in Computer Science, pages 151–162. Springer, 2009.

E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of
programs (exteded abstract). In Proceedings of the 29th Annual Symposium
on Foundations of Computer Science, FoCS ’88, pages 328–337, Los Alamitos,
California, October 1988. IEEE Computer Society Press.

E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

Y. Gurevich and L. Harrington. Trees, automata and games. In Proceedings of
the 14th Annual ACM Symposium on Theory of Computing, STOC ’82, pages
60–65, 1982.

M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown
automata and recursion schemes. In Proceedings of the Twenty-Third Annual
IEEE Symposium on Logic in Computer Science, LICS 2008, pages 452–461.
IEEE Computer Society, 2008.

G. J. Holzmann. The Spin Model Checker – Primer and Reference Manual. Addison-
Wesley, 2003.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, 1979.

D. Kähler and T. Wilke. Complementation, disambiguation, and determinization of
Büchi automata unified. In Proceedings of the 35th International Colloquium
on Automata, Languages and Programming, ICALP 2008, Part I, volume 5125
of Lecture Notes in Computer Science, pages 724–735. Springer, 2008.

L. H. Landweber. Decision problems for ω-automata. Mathematical Systems Theory,
3:376–384, 1969.

C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proceedings
of the 24th Conference on Foundations of Software Technology and Theoretical
Computer Science, FST TCS 2004, volume 3328 of Lecture Notes in Computer
Science, pages 408–420. Springer, 2004.

R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9(5):521–530, 1966.

72 Christof Löding

A. R. Meyer. Weak monadic second order theory of succesor is not elementary-
recursive. In Logic Colloquium, volume 453 of Lecture Notes in Mathematics,
pages 132–154. Springer, 1975.

A. W. Mostowski. Games with forbidden positions. Technical Report 78, Uniwersytet
Gdański, Instytut Matematyki, 1991.

D. E. Muller and P. E. Schupp. Simulating alternating tree automata by nonde-
terministic automata: New results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theoretical Computer Science, 141(1&2):69–107, 1995.

D. Perrin and J.-É. Pin. Infinite words, volume 141 of Pure and Applied Mathematics.
Academic Press, London, 2004.

N. Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. In Proceedings of the 21st IEEE Symposium on Logic in
Computer Science (LICS 2006), pages 255–264. IEEE Computer Society, 2006.

A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13:45–60, 1981.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings
of the Symposium on Principles of Programming Languages, POPL’89, pages
179–190, 1989.

M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, July 1969.

M. O. Rabin. Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Boston, MA, USA, 1972.

K. Reinhardt. The complexity of translating logic to finite automata. In Automata,
Logics, and Infinite Games, volume 2500 of Lecture Notes in Computer Science,
pages 231–238. Springer, 2002.

R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute
of Science, Rehovot, Israel, 1991.

S. Safra. On the complexity of omega-automata. In Proceedings of the 29th Annual
Symposium on Foundations of Computer Science, FoCS ’88, pages 319–327,
Los Alamitos, California, October 1988. IEEE Computer Society Press.

S. Schewe. Tighter bounds for the determinisation of Büchi automata. In Proceed-
ings of Foundations of Software Science and Computational Structures, 12th
International Conference, FOSSACS 2009, volume 5504 of Lecture Notes in
Computer Science, pages 167–181. Springer, 2009.

O. Serre. Games with winning conditions of high Borel complexity. In Proceedings of
Automata, Languages and Programming: 31st International Colloquium, ICALP
2004, volume 3142 of Lecture Notes in Computer Science, pages 1150–1162.
Springer, 2004.

M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
Boston, 1997.

W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Language Theory, volume III, pages 389–455.
Springer, 1997.

M. Y. Vardi. Reasoning about the past with two-way automata. In K. G. Larsen,
S. Skyum, and G. Winskel, editors, Proceedings of the 25th International
Colloquium on Automata, Languages and Programming, ICALP’98, volume
1443 of Lecture Notes in Computer Science, pages 628–641. Springer, 1998.

M. Y. Vardi and T. Wilke. Automata: from logics to algorithms. In Logic and
Automata – History and Perspectives, volume 2 of Texts in Logic and Games,
pages 629–724. Amsterdam University Press, Amsterdam, 2007.

Infinite Games and Automata Theory 73

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In Proceedings, Symposium on Logic in
Computer Science, 16-18 June 1986, Cambridge, Massachusetts, USA, pages
332–344. IEEE Computer Society, 1986.

I. Walukiewicz. Pushdown processes: Games and model checking. In Proceedings of
the 8th International Conference on Computer Aided Verification, CAV ’96,
volume 1102 of Lecture Notes in Computer Science, pages 62–74. Springer,
1996.

W. Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

3

Algorithms for Solving Parity Games
Marcin Jurdziński
University of Warwick

Abstract

This is a selective survey of algorithms for solving parity games, which are
infinite games played on finite graphs. Parity games are an important class of
omega-regular games, i.e., games whose payoff functions are computable by a
finite automaton on infinite words. The games considered here are zero-sum,
perfect-information, and non-stochastic. Several state-of-the-art algorithms
for solving parity games are presented, exhibiting disparate algorithmic
techniques, such as divide-and-conquer and value iteration, as well as hybrid
approaches that dovetail the two. While the problem of solving parity games
is in NP and co-NP, and also in PLS and PPAD, and hence unlikely to
be complete for any of the four complexity classes, no polynomial time
algorithms are known for solving it.

3.1 Games on graphs

A game graph (V,E, V0, V1) consists of a directed graph (V,E), with a set
of vertices V and a set of edges E, and a partition V0 � V1 = V of the set
of vertices. For technical convenience, and without loss of generality, we
assume that every vertex has at least one outgoing edge. An infinite game
on the game graph is played by two players, called player 0 and player 1,
player Even and player Odd, or player Min and player Max, etc., depending
on the context. A play of the game is started by placing a token on a starting
vertex v0 ∈ V , after which infinitely many rounds follow. In every round, if
the token is on a vertex v ∈ V0 then player 0 chooses an edge (v, w) ∈ E going
out of vertex v and places the token on w, and if the token is on a vertex

Algorithms for Solving Parity Games 75

v ∈ V1 then player 1 moves the token in the same fashion. The outcome of
such a play is then an infinite path 〈v0, v1, v2, . . .〉 in the game graph.

An infinite game on a graph consists of a game graph and a payoff function
π : V ω → R. A payoff function assigns a payoff π(v) to every infinite
sequence of vertices v = 〈v0, v1, v2, . . .〉 in the game graph. In this chapter we
consider only zero-sum games, i.e., if the outcome of a play is the infinite path
v ∈ V ω then player 0 (player Min) has to pay π(v) to player 1 (player Max).
We call a game on a graph a qualitative game if the payoff function
is Boolean, i.e., if π(V ω) ⊆ { 0, 1 }. In qualitative games, we say that an
outcome v is winning for player 0 if π(v) = 0, and it is losing for player 0
otherwise; and vice versa for player 1. An alternative, and popular, way
of formalising qualitative games is to specify a set W ⊆ V ω of outcomes
that are winning for player 1, which in our formalisation is π−1(1), i.e., the
indicator set of the Boolean payoff function π.

A strategy for player 0 is a function μ : V + → V , such that if v ∈
V ∗ and w ∈ V0 then (w, μ(vw)) ∈ E. Strategies for player 1 are defined
analogously. Both players follow their strategies μ and χ, respectively, to
produce an outcome Outcome(v0, μ, χ) = 〈v0, v1, v2, . . .〉 if for all i ≥ 0, we
have that vi ∈ V1 implies vi+1 = μ(v0v1 · · · vi), and that vi ∈ V2 implies
vi+1 = χ(v0v1 · · · vi). A strategy μ : V ω → V for player 0 is a positional

strategy if for all w, u ∈ V ∗ and v ∈ V0, we have μ(wv) = μ(uv), i.e., the
values of μ are uniquely determined by the last element of its argument. It
follows that a function μ : V0 → V uniquely determines a positional strategy
for player 0, and we often do not distinguish between the two. Positional
strategies for player 1 are defined analogously.

We say that a game, with a game graph (V,E, V0, V1) and a payoff function
π : V ω → R, is determined if:

sup
χ

inf
μ

π(Outcome(v, μ, χ)) = inf
μ

sup
χ

π(Outcome(v, μ, χ)), (3.1)

for all v ∈ V , where μ and χ range over the sets of strategies for player 0
and player 1, respectively. Note that the inequality

sup
χ

inf
μ

π(Outcome(v, μ, χ)) ≤ inf
μ

sup
χ

π(Outcome(v, μ, χ)) (3.2)

always, and trivially, holds. One interpretation of determinacy , i.e., when
the converse of inequality (3.2) holds, is that player 0 (player Min) does
not undermine her objective of minimising the payoff if she announces her
strategy to player 1 (player Max) before the play begins, rather than keeping
it secret and acting ‘by surprise’ in every round. An analogous interpretation
holds for player 1.

76 Marcin Jurdziński

The following fundamental theorem establishes that determinacy of games
on graphs holds for a rich class of payoff functions.

Theorem 3.1 (Martin [1998]) If the payoff function is bounded and Borel
measurable then the game is determined.

A game is positionally determined if the equality (3.1) holds for all
v ∈ V , where χ on the left hand side of the equality, and μ on the right-hand
side of the equality, respectively, are restricted to range over the sets of
positional strategies for player 0 and player 1, respectively. In other words, if
a game is positionally determined then players can announce their positional
strategies with impunity. We say that a class of games enjoys positional

determinacy if all games in this class are positionally determined.
If a game is determined then we define the game value Val(v) at vertex v ∈

V to be the value of either side of equation (3.1). We say that a strategy μ

of player 0 is an optimal strategy if supχ Outcome(v, μ, χ) = Val(v) for all
v ∈ V . Optimal strategies of player 1 are defined analogously. If the value of
a qualitative game at a vertex v is 1 and player 1 has an optimal strategy
then we say that the strategy is winning for player 1 from v. Similarly, if the
value of a qualitative game at a vertex v is 0 and player 0 has an optimal
strategy then we say that the strategy is a winning strategy for player 0
from v. We define the winning sets win0(G) and win1(G) to be the sets of
vertices from which players 0 and 1, respectively, have winning strategies.

All games G considered in this chapter are determined, the payoff functions
are Boolean, and both players have optimal strategies from every starting
vertex. It follows that game values at all vertices are well defined, and
from every vertex exactly one of the players has a winning strategy, i.e.,
win0(G) � win1(G) = V .

The central algorithmic problem studied in this chapter is the computation
of the values and optimal strategies for both players in games on graphs. The
corresponding decision problem is, given a game graph, a starting vertex v,
and a number t, to determine whether Val(v) ≥ t. For the special case of
qualitative games, the problem of deciding the winner is, given a starting
vertex v, to determine whether v ∈ win1(G).

In order to formalise such algorithmic problems we have to agree on finitary
representations of relevant classes of payoff functions. In this chapter we only
consider Boolean payoff functions that can be uniquely specified by their
indicator sets, i.e., the sets of outcomes winning for player 1.

Given a set of target vertices T ⊆ V , we define the reachability payoff

Algorithms for Solving Parity Games 77

function by setting its indicator set to:

Reach(T) = {〈v0, v1, v2, . . .〉 : vi ∈ T for some i ≥ 0}.

Similarly, for a set of safe vertices S ⊆ V , we define the safety payoff

function by setting its indicator set to:

Safe(S) = {〈v0, v1, v2, . . .〉 : vi ∈ S for all i ≥ 0}.

Observe that Reach(T) = V ω \Safe(V \T). It implies that from a reachabil-

ity game with the target set T ⊆ V , by swapping the roles of players 0 and 1
and their payoff functions, we get a safety game with the safe set V \ T ,
and vice versa.

Given a set of target vertices T ⊆ V , we define the repeated reachability

payoff function, also referred to as Büchi payoff , by setting its indicator
set to:

Büchi(T) = {〈v0, v1, v2, . . .〉 : vi ∈ T for infinitely many i ≥ 0},

and for a set S ⊆ V of safe vertices, we define the eventual safety payoff

function, also known as co-Büchi payoff , function by setting its indicator
set to:

co-Büchi(S) = {〈v0, v1, v2, . . .〉 : vi ∈ S for all but finitely many i ≥ 0}.

Again, the repeated reachability and eventual safety payoffs are dual in the
sense that from a repeated reachability game with a set of target vertices T ⊆
V , by swapping the roles of players 0 and 1 and their payoff functions, we get
an eventual safety game with the set of safe vertices V \ T , and vice versa.

For an infinite sequence a = 〈a0, a1, a2, . . .〉 ∈ Aω, we define its infinity

set Inf(a) by:

Inf(a) = {a ∈ A : ai = a for infinitely many i ≥ 0}.

Note that the infinity set of every infinite sequence must be non-empty if the
set A is finite. For a priority function p : V → { 1, 2, . . . , d }, we define
the parity payoff function by setting its indicator set to:

Parity(p) = {〈v0, v1, v2, . . .〉 ∈ V ω : max Inf(〈p(v0), p(v1), p(v2), . . .〉) is odd}.

3.2 Solving repeated reachability and eventual safety games

The main results presented in this section are positional determinacy of
repeated reachability games and of eventual safety games, and a simple
divide-and-conquer algorithm for solving them that runs in time O(nm).

78 Marcin Jurdziński

While the algorithm is simple and efficient, its design provides a blueprint
for a divide-and-conquer algorithm for solving parity games discussed in
Section 3.3.

Before we present the algorithm for solving repeated reachability games
we establish positional determinacy of reachability and safety games, and we
describe the structure of the winning sets in reachability and safety games.
For a set T ⊆ V of target vertices, we define the 1-reachability set by
reach1(T) =

⋃∞
i=0 reachi

1(T), where:

reach0
1(T) = T

reachi+1
1 (T) = reachi

1(T)

∪ {v ∈ V1 : there is (v, w) ∈ E, such that w ∈ reachi
1(T)}

∪ {v ∈ V0 : for all (v, w) ∈ E, we have w ∈ reachi
1(T)}.

A positional strategy for player 1 that maps each of his vertices in a set
reachi+1

1 (T)\reachi
1(T) to its successor in reachi

1(T) will be referred to as a T -

reachability strategy . The 0-reachability set reach0(T), and positional
T -reachability strategies for player 0, are defined in an analogous way.

Exercise 3.1 Argue that if player 1 follows a T -reachability strategy from
a vertex in reachi

1(T) then a vertex in T is reached in at most i rounds.
Conclude that if G is a reachability game with a target set T ⊆ V , then
reach1(T) ⊆ win1(G).

A set U ⊆ V is said to be a 1-closed set if for every vertex u ∈ U ,
if u belongs to player 0 then it has a successor in U , and if u belongs to
player 1 then all its successors are in U . A positional strategy for player 0
that maps each of her vertices in a 1-closed set U to a successor in U is called
a U-trapping strategy . Sets that are 0-closed , and positional trapping
strategies for player 1, are defined analogously.

Exercise 3.2 Argue that the set S = V \ reach1(T) is 1-closed, and that
if player 0 follows an S-trapping strategy from a vertex in S then no vertex
in T is ever reached. Conclude that if G is a reachability game with a target
set T ⊆ V , then V \ reach1(T) ⊆ win0(G), and that reachability and safety
games are positionally determined.

In the following exercise the reader is asked to provide vital implementation
details of an efficient algorithm for solving reachability and safety games.

Exercise 3.3 Give a detailed description of an algorithm for computing
the set reach1(T) that runs in time O(m), where m = |E| is the number of
edges in the game graph. Devise an appropriate data structure for directed

Algorithms for Solving Parity Games 79

graphs, that for every vertex maintains the number of outgoing edges, to
achieve this running time bound.

Theorem 3.2 Reachability and safety games are positionally determined.
The winning sets and positional winning strategies of both players can be
computed in time O(m).

In Figure 3.1 we present a divide-and-conquer algorithm for solving re-
peated reachability, and hence also for eventual safety, games. The algorithm
takes a repeated reachability game G with the target set T as input, and it
returns the pair (win0(G), win1(G)) of the winning sets of both players. The
main insight behind the design of this algorithm is that the solution of a
repeated reachability game can be obtained from the solution of a subgame
that is also a repeated reachability game, and that has fewer vertices.

algorithm Büchi-win(G)
if reach1(T) = V
then (W0, W1) ← (∅, V)
else

W ′
0 ← V \ reach1(T)

G′′ ← G \ reach0(W ′
0)

(W ′′
0 , W ′′

1) ← Büchi-win(G′′)
(W0, W1) ← (V \W ′′

1 , W ′′
1)

endif

return (W0, W1)

Figure 3.1 A divide-and-conquer algorithm for repeated reachability and
eventual safety games

In a series of exercises we provide the detailed structure of an inductive
correctness proof for the algorithm, and we invite the reader to fill in the
details.

Exercise 3.4 Assume that reach1(T) = V . Argue that if player 1 follows
a positional T -reachability strategy from an arbitrary starting vertex v ∈ V ,
then a vertex in T occurs infinitely many times. Conclude that in this case
win1(G) = V .

We say that a set D ⊆ V is a 0-dominion if it is 1-closed and player 0
has a D-trapping strategy that is winning for her from every starting vertex
in D; the latter is called a 0-dominion strategy on D. The definitions of
a 1-dominion and a 1-dominion strategy are analogous.

80 Marcin Jurdziński

Exercise 3.5 Assume that reach1(T) �= V , i.e., that W ′
0 �= ∅. Observe that

the set W ′
0 is 1-closed and that if player 0 follows a positional W ′

0-trapping
strategy μ′ from a vertex in W ′

0 then no vertex in T is ever reached.
Argue that the set reach0(W ′

0) is 1-closed, and that a positional strategy μ′

that is the union of strategy μ′ (on W ′
0) and a W ′

0-reachability strategy
(on reach0(W ′

0)\W ′
0) is a reach0(W ′

0)-trapping strategy. Prove that if player 0
follows strategy μ′ from a starting vertex in reach0(W ′

0) then vertices in T

occur only finitely many times.
Conclude that reach0(W ′

0) ⊆ win0(G), that sets W ′
0 and reach0(W ′

0) are
0-dominions, and that μ′ and μ′ are 0-dominion strategies.

Let G′′ = G \ reach0(W ′
0) be a repeated reachability game that is obtained

from game G by removing vertices in the set reach0(W ′
0) and edges adjacent

to them. Assume that the game G′′ is positionally determined, and that
there are positional 0-dominion and 1-dominion strategies μ′′ and χ′′ on the
winning sets W ′′

0 = win0(G′′) and W ′′
1 = win1(G′′) respectively, in game G′′.

Exercise 3.6 Observe that positional determinacy of game G′′ implies that
reach0(W ′

0) ∪W ′′
0 = V \W ′′

1 . Prove that the positional strategy that is the
union of μ′ and μ′′ is a 0-dominion strategy on V \W ′′

1 in game G. Conclude
that V \W ′′

1 ⊆ win0(G).
Prove that χ′′ is a 1-dominion strategy on W ′′

1 in game G. Conclude that
W ′′

1 ⊆ win1(G), that repeated reachability and eventual safety games are
positionally determined, and that the algorithm Büchi-win(G) is correct.

Theorem 3.3 Repeated reachability and eventual safety games are posi-
tionally determined.

Note that the algorithm Büchi-win(G) solves two reachability games, and it
makes one recursive call on a repeated reachability game G′′ = G\reach0(W ′

0)
whose number of vertices is strictly smaller than that of G. It follows that
its worst-case running time can be characterised by the recurrence:

T (n) ≤ T (n− 1) + O(m),

T (1) = O(1),

where n = |V | and m = |E| are the numbers of vertices and edges, respectively,
of the game graph, and hence T (n) = O(nm).

Theorem 3.4 The winning sets and positional winning strategies of both
players in repeated reachability and eventual safety games can be computed
in time O(nm).

Algorithms for Solving Parity Games 81

3.3 Solving parity games

This is the main technical part of this chapter, where we establish positional
determinacy of parity games, we discuss the computational complexity of
deciding the winner in parity games, and we present several state-of-the-art
algorithms for solving them.

In Section 3.3.1 we present a natural generalisation of the divide-and-
conquer procedure, presented in Section 3.2 for repeated reachability and
eventual safety games, to parity games. While the idea of an inductive
argument for construction of winning strategies in omega-regular games
can be attributed to McNaughton [1993], here we follow the presentation
of McNaughton’s algorithm for parity games due to Zielonka [1998]. A by-
product of the design and analysis of the algorithm is the fundamental result
that parity games are positionally determined (Emerson and Jutla [1991]).
We use positional determinacy to infer the result of Emerson et al. [1993] that
the problem of deciding the winner in parity games is in NP and in co-NP. We
also argue that the running time of the algorithm is O(m · ((n + d)/d)d)) =
O(nd+O(1)), where n is the number of vertices in the game graph, m is the
number of edges, and d = max(p(V)) is the biggest priority of a vertex in
the parity game.

In Section 3.3.2 we present a refinement of the classical divide-and-conquer
procedure, due to Jurdziński et al. [2008]. The innovation there is to dovetail
the recursive divide-and-conquer procedure with a brute-force search for
dominions, i.e., sets of vertices inside which a player can trap the oppo-
nent forever and win. It turns out that if the size of dominions sought is
appropriately chosen then the overall running time of the divide-and-conquer
algorithm is nO(

√
n), which is better than O(nd+O(1)) if d = Ω(n(1/2)+ε).

In Section 3.3.3 we present an altogether different algorithm for solving
parity games, the progress measure lifting algorithm due to Jurdziński [2000].
The design of the algorithm is based on the concept of a game parity progress
measure that witnesses the existence of a winning strategy for one of the
players. We establish that relatively small such witnesses exist and that
they can be computed in time O(dm · (n/(d/2))d/2) = O(nd/2+O(1)), that is
better than the divide-and-conquer algorithms of Sections 3.3.1 and 3.3.2 if
d = O(

√
n). The procedure for computing progress measures can be viewed as

a value iteration procedure that is approximating the least progress measure
from below.

Finally, in Section 3.3.4 we present a refinement of the dovetailing divide-
and-conquer scheme of Section 3.3.2 due to Schewe [2007]. Schewe’s insight
is that the dovetailing divide-and-conquer technique can be successfully

82 Marcin Jurdziński

combined with an appropriately modified progress measure lifting algorithm
to achieve running time O(nd/3+O(1)), which is the best currently known
running time bound for solving parity games with d = O(

√
n).

3.3.1 Divide and conquer

In Figure 3.2 we present a divide-and-conquer algorithm for solving parity
games that generalises the algorithm for solving repeated reachability and
eventual safety games from Section 3.2. The algorithm takes a parity game G

with the priority function p : V → { 1, 2, . . . , d } as input, and it returns the
pair (win0(G), win1(G)) of the winning sets of both players. Without loss
of generality, we assume that the set p−1(d), of the vertices with highest
priority d, is not empty.

Similarly to the algorithm for solving repeated reachability games, a
solution of the parity game is obtained from solutions of subgames that are
also parity games, and that have strictly smaller size. In contrast to the case of
repeated reachability games, the divide-and-conquer procedure parity-win(G)
may make two recursive calls, one on the subgame G′ = G \ reachj(p−1(d))
and the other on the subgame G′′ = G \ reachi(W ′

i), where the identity of
player j is determined by the parity of the highest priority d, player i is the
opponent of player j, and W ′

i is the winning set of player i in subgame G′.

algorithm parity-win(G)
j ← d mod 2 ; i← 1− j

if reachj(p−1(d)) = V
then (Wi, Wj) ← (∅, V)
else

G′ ← G \ reachj(p−1(d))
(W ′

0, W
′
1) ← parity-win(G′)

if W ′
i = ∅

then (Wi, Wj) ← (∅, V)
else

G′′ ← G \ reachi(W ′
i)

(W ′′
0 , W ′′

1) ← parity-win(G′′)
(Wi, Wj) ← (V \W ′′

j , W ′′
j)

endif
endif

return (W0, W1)

Figure 3.2 A divide-and-conquer algorithm for parity games

In a series of exercises similar to, and generalising, Exercises 3.4–3.6 we

Algorithms for Solving Parity Games 83

provide the detailed structure of an inductive correctness proof for the
algorithm, and we invite the reader to fill in the details.

Exercise 3.7 Assume that reachj(p−1(d)) = V . Argue that if player j

follows a positional p−1(d)-reachability strategy from an arbitrary starting
vertex v ∈ V , then a vertex in p−1(d) occurs infinitely many times. Conclude
that in this case winj(G) = V .

Assume that the games G′ and G′′ are positionally determined, and that
there are positional i-dominion and j-dominion strategies μ′ and χ′ on the
winning sets W ′

i = wini(G′) and W ′
j = winj(G′), respectively, in game G′, and

positional i-dominion and j-dominion strategies μ′′ and χ′′ on the winning
sets W ′′

i = wini(G′′) and W ′′
j = winj(G′′), respectively, in game G′′.

Exercise 3.8 Assume that W ′
i = ∅. Argue that the positional strategy

that is the union of χ′ and the p−1(d)-reachability strategy is a winning
strategy for j from every starting vertex in game G. Conclude that in this
case winj(G) = V .

Exercise 3.9 Assume that W ′
i �= ∅. Argue that the positional strategy μ′

that is the union of μ′ and the W ′
i -reachability strategy is a positional

i-dominion strategy on reachi(W ′
i) in game G.

Observe that positional determinacy of game G′′ implies that reachi(W ′
i)∪

W ′′
i = V \W ′′

j . Prove that the positional strategy that is the union of μ′

and μ′′ is a positional i-dominion strategy on V \W ′′
j in game G. Conclude

that V \W ′′
j ⊆ wini(G).

Prove that χ′′ is a j-dominion strategy on W ′′
j in game G. Conclude that

W ′′
j ⊆ winj(G), that parity games are positionally determined, and that the

algorithm parity-win(G) is correct.

Theorem 3.5 (Emerson and Jutla [1991]) Parity games are positionally
determined.

Before we carry out a detailed analysis of the worst-case running time
of the algorithm parity-win(G), we observe that positional determinacy of
parity games implies that the problem of deciding the winner in parity games
is in NP and in co-NP.

A one-player parity game is a parity game in which either V0 = ∅ or
V1 = ∅, i.e., one of the players owns all vertices in the game graph; in the
former case we have a player 1 one-player parity game, and in the latter
case we have a player 0 one-player parity game. An alternative, and for
all purposes equivalent, definition of a one-player game requires that every

84 Marcin Jurdziński

vertex of one of the players has exactly one outgoing edge. A typical example
of a one-player parity game of the latter kind is the strategy subgraph of a
positional strategy: given a positional strategy μ : V0 → V of player 0, its
strategy subgraph is obtained by removing all edges (v, w) ∈ V0 × V , such
that w �= μ(v); strategy subgraphs of positional strategies of player 1 are
defined analogously. Naturally, a strategy subgraph of a positional strategy
of player 0 is a player 1 one-player game, and a strategy subgraph of a
positional strategy of player 1 is a player 0 one-player game.

Exercise 3.10 Consider a player 1 one-player parity game with a starting
vertex v. We say that a cycle in the game graph of a parity game is odd if the
highest priority of a vertex on that cycle is odd; the cycle is even otherwise.
Argue that player 1 is the winner in the game if and only if an odd cycle is
reachable from v in the game graph.

Design a polynomial time algorithm for deciding the winner in one-player
parity games.

It is now easy to establish that deciding the winner in parity games is
in NP: by positional determinacy it suffices to guess a positional strategy χ

for player 1, and that can be done in non-deterministic polynomial time,
and then to run the polynomial time algorithm from Exercise 3.10 on the
strategy subgraph of χ to verify that χ is a winning strategy for player 1. A
co-NP procedure for parity games is analogous: it suffices to swap players 1
and 0 in the above argument, mutatis mutandis.

Corollary 3.6 (Emerson et al. [1993]) The problem of deciding the winner
in parity games is in NP and in co-NP.

Now we are going to carry out a detailed analysis of the worst-case running
time of the algorithm parity-win(G). Note that the algorithm solves two
reachability games by computing sets reachj(p−1(d)) and reachi(W ′

i), and
it makes two recursive calls on parity games G′ = G \ reachj(p−1(d)) and
G′′ = G \ reachi(W ′

i), whose numbers of vertices are strictly smaller than
that of parity game G. It follows that its worst-case running time can be
characterised by the recurrence

T (n) ≤ 2 · T (n− 1) + O(m),

T (1) = O(1),

where n = |V | and m = |E| are the numbers of vertices and edges, respectively,
of the game graph, and hence T (n) = O(2n).

In the following exercise we ask the reader to carry out a better analysis
of the worst-case running time of the algorithm parity-win(G), that takes

Algorithms for Solving Parity Games 85

into account the maximum priority d = max(p(V)) that occurs in the game
graph. Let nd = |p−1(d)| be the number of vertices with priority d.

Exercise 3.11 Observe that the maximum priority in the parity game
G′ = G \ reachj(p−1(d)) is strictly smaller than d.

Assume that the procedure parity-win(G) makes its second recursive
call parity-win(G′′). Prove that if reachi(W ′

i) does not contain a vertex of
priority d then reachi(W ′

i) = W ′
i , and that the procedure parity-win(G′′)

does not make any recursive calls (because the condition in the second
if-statement obtains).

Argue that the worst-case running time of the procedure parity-win(G)
can be characterised by the recurrence:

T (n, d, nd) ≤ T (n, d− 1, nd−1) + T (n, d, nd − 1) + O(m),

T (n, d, 1) ≤ 2 · T (n, d− 1, nd−1) + O(m),

T (n, 1, nd) = O(n),

and hence also by the recurrence:

T (n, d) ≤ (nd + 1) · T (n, d− 1) + O(ndm),

T (n, 1) = O(n).

Prove that T (n, d) = O(m · ((n + d)/d)d) = O(nd+O(1)).

Theorem 3.7 (Emerson and Lei [1986], Emerson and Jutla [1991], Zielonka
[1998]) The winning sets of both players in parity games can be computed
in time O(m · ((n + d)/d)d) = O(nd+O(1)).

3.3.2 Divide and conquer with dominion preprocessing

In this section we present a refinement of the divide-and-conquer algorithm
for solving parity games from Section 3.3.1. The purpose of the refinement
is to improve the worst-case running time of the algorithm for games with
many priorities. More specifically, we present an algorithm for solving parity
games that runs in time nO(

√
n), and hence has better worst-case running

time than the algorithm from Section 3.3.1 if d = Ω(n(1/2)+ε), i.e., if the
number of priorities in parity games asymptotically exceeds the square root
of the number of vertices.

In Figure 3.3 we present an algorithm for solving parity games that dovetails
the divide-and-conquer approach of Section 3.3.1 with preprocessing of parity
game graphs based on detecting and removing dominions of moderate size.

86 Marcin Jurdziński

algorithm parity-win-dominion(G)

n ← |V |; �← �
√

2n�
(D, i) ← dominion(G, �); j ← 1− i
G∗ ← G \ reachi(D)
if D = ∅
then (W0, W1) ← parity-win†(G∗)
else

(W ∗
0 , W ∗

1) ← parity-win-dominion(G∗)
(Wi, Wj) ← (V \W ∗

j , W ∗
j)

endif

return (W0, W1)

Figure 3.3 A divide-and-conquer algorithm for parity games with dominion
preprocessing

The procedure parity-win-dominion(G) takes a parity game G as input, and
it returns the pair (win0(G), win1(G)) of the winning sets of both players.

Assume that the procedure dominion(G, �) takes a parity game G and a
number � as input, and it returns a pair (D, i) such that D is an i-dominion of
size at most � if any such 0-dominion or 1-dominion exists, and it returns (∅,⊥)
otherwise. Moreover, the procedure parity-win†(G) is a copy of the procedure
parity-win(G) from Section 3.3.1 in which both recursive calls parity-win(G′)
and parity-win(G′′) have been replaced by calls parity-win-dominion(G′)
and parity-win-dominion(G′′), respectively.

Exercise 3.12 Prove that the algorithm parity-win-dominion(G) is correct.
Note that the procedures parity-win-dominion(G) and parity-win†(G) are
mutually recursive, and then use an inductive argument similar to that
for the algorithm parity-win(G) in Section 3.3.1. In particular, in order to
justify the else-case in procedure parity-win-dominion(G), the arguments
similar to those applied to game G′′ in Exercise 3.9 may be applied to
game G∗ = G \ reachi(D).

The rationale for dovetailing the divide-and-conquer approach and prepro-
cessing based on detection and removal of dominions is that, if an appropriate
trade-off is chosen between the size of dominions detected and removed, and
the cost of detecting them, then the analysis of the worst-case running time
of the divide-and-conquer algorithm carried out in Exercise 3.11 can be
improved.

Exercise 3.13 Argue that procedure dominion(G, �) can be implemented

Algorithms for Solving Parity Games 87

to have worst-case running time O(n�). Note that in order to achieve this
running time it is sufficient to consider a naive brute-force search solution that
(i) generates all

(
n
�

)
sets of vertices of size at most �, and (ii) for each of them

verifies if they are 0-closed or 1-closed, and runs the O(2�) divide-and-conquer
algorithm to check if they are a 0-dominion or a 1-dominion.

Exercise 3.14 Assume that a brute-force search O(n�)-time implementa-
tion of procedure dominion(G, �) is used. Argue that the worst-case running
time of the algorithm parity-win-dominion(G) can be characterised by the
recurrence:

T (n) ≤ T (n− 1) + T (n− �(n)) + O(n�(n)), (3.3)

T (1) = O(1).

First, argue that the worst case is when the parity-win†(G) call is made in
procedure parity-win-dominion(G), and then both parity-win-dominion(G′)
and parity-win-dominion(G′′) calls are made in procedure parity-win†(G).
Then, argue that since the set reachi(W ′

i) is an i-dominion in game G, and
since there is no dominion of size at most � in G, it must be the case that
the number of vertices in game G′′ = G \ reachi(W ′

i) is at most n− �(n).

It turns out that if the maximum size �(n) of dominions sought is chosen
to be �

√
2n�, where n = |V | is the number of vertices, then the size of the

tree of recursive calls of algorithm parity-win-dominion(G) can be bounded
by nO(

√
n). It then follows that T (n) = nO(

√
n).

Exercise 3.15 For every positive integer n, construct a labelled binary
tree τn in the following way. The root of τn is labelled by n. A node labelled
by a number k > 3 has two children: a left child labelled by k − 1 and a
right child labelled by k− �

√
2k�. Nodes labelled by numbers 1, 2, and 3 are

leaves.
Prove that on every path from the root of τn to one of its leaves there are

at most �
√

2n� right turns. Use induction and the fact that if 1
2j2 < n ≤

1
2(j + 1)2 then n−�

√
2n� ≤ 1

2j2. Conclude that the number of leaves of τn is
nO(

√
n), and that if the function T (n) satisfies (3.3) for �(n) = �

√
2n� then

T (n) = nO(
√

n).

Theorem 3.8 (Jurdziński et al. [2008]) The winning sets and positional
winning strategies of both players in parity games can be computed in time
nO(

√
n).

88 Marcin Jurdziński

3.3.3 Value iteration: progress measure lifting

The divide-and-conquer algorithm from Section 3.3.1 solves parity games in
time O(m · (n/d)d) = O(nd+O(1)), and if d = Ω(n(1/2)+ε) then the dovetail-
ing algorithm from Section 3.3.2 improves it to nO(

√
n). In this section we

present an altogether different algorithm, called the progress measure lifting
algorithm, that runs in time O(dm · (n/(d/2))d/2) = O(nd/2+O(1)), which is
better than either of the other two algorithms if d = O(

√
n).

The design of the progress measure lifting algorithm is based on the
concept of a progress measure that is a labelling of vertices in a parity
game, which witnesses the existence of a positional dominion strategy in a
parity game. Let p : V → { 1, 2, . . . , d } be a priority function, and without
loss of generality, assume that d is even. In what follows we identify a
function ξ : V → Nd/2 with a sequence of functions ξd−1, . . . , ξ3, ξ1 : V → N,
and hence ξ(v) = (ξd−1(v), . . . , ξ3(v), ξ1(v)) for every v ∈ V . For a number
q ∈ { 1, 2, . . . , d }, we write ξ[q](v) for the tuple (ξd−1(v), . . . , ξq+2(v), ξq(v))
if q is odd, and for the tuple (ξd−1(v), . . . , ξq+3(v), ξq+1(v)) if q is even. We
use the lexicographic order for comparisons between tuples of numbers,
e.g., (2, 3, 0) > (2, 2, 4) holds, but (4, 0, 2, 1) ≤ (4, 0, 1, 6) does not.

We say that a function ξ : V → Nd/2 is a parity progress measure if
for every edge (v, w) ∈ E, we have that ξ[p(v)](v) ≥ ξ[p(v)](w), and if p(v) is
odd then the inequality is strict. Observe that an equivalent definition of a
parity progress measure requires that for every vertex v ∈ V , we have that
ξ[p(v)](v) ≥ max(v,w)∈E ξ[p(v)](w), and if p(v) is odd then the inequality is
strict, where the maxima are taken with respect to the lexicographic order.

Exercise 3.16 Let ξ : V → Nd/2 be a parity progress measure and let
q ∈ { 1, 3, . . . , d − 1 }. Argue that on every infinite path, starting from an
arbitrary vertex v ∈ V , the number of vertices of the odd priority q that
occur before an occurrence of a vertex of priority bigger than q is bounded
from above by ξq(v). Conclude that for every infinite path, the maximum
vertex priority that occurs infinitely many times is even.

We say that a function ξ : V → Nd/2 is a game parity progress measure

if for every vertex v ∈ V , the following conditions hold:

if v ∈ V0, then ξ[p(v)](v) ≥ min(v,w)∈E ξ[p(v)](w),

and if p(v) is odd then the inequality is strict;

and

if v ∈ V1, then ξ[p(v)](v) ≥ max(v,w)∈E ξ[p(v)](w),

and if p(v) is odd then the inequality is strict.

Algorithms for Solving Parity Games 89

Exercise 3.17 Let ξ : V → Nd/2 be a game parity progress measure.
Consider the positional strategy μ for player 0 that maps every vertex v ∈ V0

to a successor w that minimises ξ[p(v)](w).
Use Exercise 3.16 to argue that for every infinite path in the strategy

subgraph of μ, the maximum vertex priority that occurs infinitely many
times is even. Conclude that the positional strategy μ is winning for player 0
from every starting vertex.

The above exercise establishes that the existence of a game parity progress
measure in a parity game G implies that player 0 has a positional winning
strategy from every starting vertex, and hence that win0(G) = V . The
following slight refinement of the concept of a game parity progress measure
gives us a more flexible tool for witnessing the existence of 0-dominion
strategies on arbitrary 0-dominions.

For every positive integer i, consider an extension of the set of i-tuples
of numbers by the top element � that is strictly bigger than every i-tuple.
Moreover, let us adopt the notational convention that if ξ : V → Nd/2 ∪{�}
then ξ(v) = � implies that ξ[q](v) = � for every q. We say that a function
ξ : V → Nd/2 ∪ {�} is a (partial) game parity progress measure if for
every vertex v ∈ V , we have:

if v ∈ V0 and ξ(v) �= �, then ξ[p(v)](v) ≥ min(v,w)∈E ξ[p(v)](w),

and if p(v) is odd then the inequality is strict; (3.4)

and

if v ∈ V1 and ξ(v) �= �, then ξ[p(v)](v) ≥ max(v,w)∈E ξ[p(v)](w),

and if p(v) is odd then the inequality is strict. (3.5)

For a game parity progress measure ξ : V → Nd/2 ∪ {�}, we write dom(ξ)
for the domain of function ξ, i.e., the set ξ−1(Nd/2) of the vertices for which
the value of function ξ is not �.

Exercise 3.18 Let ξ : V → Nd/2∪{�} be a game parity progress measure.
Prove that the set dom(ξ) is a 0-dominion by exhibiting a positional 0-
dominion strategy on dom(ξ). Conclude that if ξ : V → Nd/2∪{�} is a game
parity progress measure on a parity game G then dom(ξ) ⊆ win0(G).

Exercise 3.18 implies that the existence of a game parity progress measure
with a non-empty domain is a sufficient condition for the existence of a
0-dominion strategy. In the following we establish that this condition is also
necessary. Moreover, we argue that the range of a game parity progress
measure can be bounded by a function of the size of a 0-dominion for which

90 Marcin Jurdziński

it serves as a witness. The explicit bound obtained plays a key role in the
design and analysis of the (game parity) progress measure lifting algorithm.

For a set D ⊆ V and for every odd q, let nD
q be the number of vertices

of priority q in D, and let MD be the set of tuples (xd−1, . . . , x3, x1) ∈ Nd/2,
such that xq ∈ { 0, 1, . . . , nD

q }. For simplicity, we write nq for the number nV
q

of vertices of priority q in the whole game graph. Note that the set MD∪{�}
is totally ordered by the lexicographic order.

Exercise 3.19 Assume that D ⊆ V is a 0-dominion. Prove that there is a
game parity progress measure ξ : V → MD ∪ {�}, such that D ⊆ dom(ξ).

One way to approach this task is to first invoke positional determinacy of
parity games, and then to formalise the insight that the bounds, considered in
Exercise 3.16, for the numbers of occurrences of vertices of an odd priority q

before a vertex of priority higher than q occurs, can be ‘optimised’ not to
exceed nD

q . Another approach is to construct a progress measure ξ : D → MD

by induction on the size of D, similar to that employed in the design and
the proof of correctness of algorithm parity-win(G).

We now use the insight from Exercise 3.19, that game parity progress
measures with ‘small’ ranges exist, to devise an efficient algorithm for
finding such progress measures, and hence for finding 0-dominions if any
exist. In fact, we argue that the pointwise-lexicographic least game

parity progress measure ξ∗ exists, and that its domain dom(ξ∗) is the
greatest possible, i.e., dom(ξ∗) = win0(G). Moreover, the algorithm com-
putes this pointwise-lexicographic least progress measure, and it returns the
pair (win0(G), win1(G)) of the winning sets of both players. The algorithm
progress-measure-lifting(G), shown in Figure 3.4 can be viewed as a value

iteration procedure that computes the least solution ξ∗ of the system of
constraints expressed by conditions (3.4) and (3.5).

algorithm progress-measure-lifting(G)
for all v ∈ V do ξ(v) ← (0, 0, . . . , 0) ∈ Nd/2

while ξ < lift(ξ, v) for some v ∈ V
do ξ ← lift(ξ, v)

endwhile

return (dom(ξ), V \ dom(ξ))

Figure 3.4 The progress measure lifting algorithm for parity games

The algorithm progress-measure-lifting(G) uses operators lift(·, v), for all

Algorithms for Solving Parity Games 91

v ∈ V . In order to define this family of operators we recall the definition of the
set MD, and observe that MD ⊆ MV for every D ⊆ V . In particular, the latter
holds for D = win0(G) and hence, by Exercise 3.19, there is a game parity
progress measure ξ : V → MV ∪ {�}, such that dom(ξ) = win0(G). For a
function ξ : V → MV ∪ {�} and a vertex w ∈ V , we define lift(ξ, w) = ξ(w)
if w �= v, and we set lift(ξ, v) to be the least element of MV ∪{�} that makes
the thus-defined function lift(ξ, ·) : V → MV ∪{�} satisfy the condition (3.4)
or (3.5), respectively, at v.

The condition ξ < lift(ξ, v) of the while-loop in the algorithm progress-

measure-lifting(G) uses the strict inequality symbol < to compare functions.
It should be interpreted as the pointwise-lexicographic order , in which
for every vertex the lexicographic order on MV is used, and for the strict
pointwise-lexicographic inequality to hold it suffices that the strict lexico-
graphic inequality holds for at least one vertex.

Exercise 3.20 Argue that for all v ∈ V , the operator lift(·, v) is monotone
with respect to the pointwise-lexicographic order. Use the Knaster–Tarski
theorem for complete lattices to conclude that the least game parity progress
measure ξ∗ exists in every parity game, and that the while-loop in algorithm
progress-measure-lifting(G) computes it.

Conclude that win0(G) = dom(ξ∗), and hence that the algorithm progress-

measure-lifting(G) is correct.

Finally, we analyse the worst-case running time of algorithm progress-

measure-lifting(G). The key element of the analysis of the algorithm is an
upper bound on the size of the set MV .

Exercise 3.21 Prove that |MV | =
∏

q∈{ 1,3,...,d−1 }(nq + 1) ≤ (n/(d/2))d/2.
Provide implementation details of the algorithm progress-measure-lifting(G)
that make its worst-case running time O(dm · (n/(d/2))d/2). In order to
establish this worst-case running time bound, use the property that the sum
of all vertex out-degrees in a directed graph is O(m), and that lexicographic
comparison of (d/2)-tuples of numbers can be carried out in time O(d).

Theorem 3.9 (Browne et al. [1997], Seidl [1996], Jurdziński [2000]) The
winning sets and positional winning strategies of both players in parity games
can be computed in time O(dm · (n/(d/2))d/2) = O(nd/2+O(1)).

92 Marcin Jurdziński

3.3.4 Divide and conquer with dominion preprocessing by

progress measure lifting

The algorithms in Sections 3.3.2 and 3.3.3 apply very distinct techniques to
efficiently solve parity games with a large and small, respectively, number
of priorities relative to the number of vertices. In this section we show
that the two techniques can be successfully combined to improve the worst-
case running time from O(dm · (n/(d/2))d/2) = O(nd/2+O(1)) of the latter
algorithm to O(nd/3+O(1)), which is the best currently known for parity
games with d = O(

√
n). The improvement requires a vital modification of

the progress measure lifting algorithm from Section 3.3.3.
In Section 3.3.3 we have introduced sets MD of (d/2)-tuples of non-negative

integers (xd−1, . . . , x3, x1), where for each odd q the component xq is bounded
by the number nD

q of vertices of priority q in a set D ⊆ V . We argued that this
set was sufficiently large to express the values of the pointwise-lexicographic
least game parity progress measure, and the algorithm progress-measure-

lifting(G) computed the least progress measure by iterative application of
the lift(·, v) operators.

In this section, for all integers b > 0, we consider an alternative set Nb

of (d/2)-tuples of non-negative integers (xd−1, . . . , x3, x1) that satisfy the
condition

∑
odd q xq ≤ b. Note that for every b > 0, the set Nb ∪ {�} is

totally ordered by the lexicographic order on (d/2)-tuples of numbers, and
the lift(·, v) operators can be appropriately modified to select only values in
the set Nb ∪ {�}.

We argue that using sets Nb, for appropriately chosen numbers b, instead
of using the set MV , turns the algorithm progress-measure-lifting(G) into
an efficient procedure for computing 0-dominions of moderate size, or estab-
lishing that no small 0-dominions exist. It is routine and straightforward to
adapt the algorithm progress-measure-lifting(G) to compute 1-dominions of
moderate size, or establishing lack thereof, too.

These combined procedures for computing 0-dominions and 1-dominions
of moderate size are then used in a modification of the dovetailing algorithm
parity-win-dominion(G) from Section 3.3.2, instead of using the brute-force
search procedure dominion(G, �). We will refer to this modification of pro-
cedure parity-win-dominion(G) as procedure parity-win-dominion†(G), the
details of which are presented in Figure 3.5. Note that the procedure parity-

win‡(G), that is used in procedure parity-win-dominion†(G), is a copy of
the procedure parity-win(G) from Section 3.3.1 in which both recursive calls
parity-win(G′) and parity-win(G′′) have been replaced by calls parity-win-

dominion†(G′) and parity-win-dominion†(G′′), respectively.

Algorithms for Solving Parity Games 93

algorithm parity-win-dominion†(G)
(D0, D1) ← progress-measure-lifting†(G, b)
D∗ ← reach0(D0) ∪ reach1(D1)
G∗ ← G \D∗

if |D∗| < b/2
then (W ∗

0 , W ∗
1) ← parity-win‡(G∗)

else (W ∗
0 , W ∗

1) ← parity-win-dominion†(G∗)
endif

(W0, W1) ← (reach0(D0) ∪W ∗
0 , reach1(D1) ∪W ∗

1)
return (W0, W1)

Figure 3.5 A divide-and-conquer algorithm for parity games with dominion
preprocessing using modified progress measure lifting

For every integer b > 0, we define ξ(b) to be the game parity progress
measure computed by the procedure progress-measure-lifting(G) that uses
the set Nb ∪ {�} instead of MV ∪ {�}. We also write ζ(b) for the analogous
game parity progress measure for player 1 defined mutatis mutandis. In
what follows, we write progress-measure-lifting†(G, b) for the procedure that
combines the above-described modified versions of the progress measure
lifting procedures for computing 0-dominions and 1-dominions, respectively,
and that returns the pair of sets (dom(ξ(b)), dom(ζ(b))).

An important property of procedure dominion(G, �) used in Section 3.3.2
was that if it failed to produce a dominion of size at most � then there
was no dominion of size at most � in game G, and hence it followed that
the argument G′′ of the call parity-win-dominion(G′′) in procedure parity-

win†(G) had at most n− � vertices. Unsurprisingly, a similar property holds
for the procedure progress-measure-lifting†(G, b): if dom(ξ(b)) = ∅ then every
0-dominion in game G is of size strictly larger than b. However, in order to
achieve the improved O(nd/3+O(1)) upper bound for the running time of the
algorithm parity-win-dominion†(G), we need a stronger property that allows
us to carry out analysis similar to that used in Exercise 3.11. We formulate
this stronger property in the following exercise.

Exercise 3.22 Let b > 0 be even, and assume that |dom(ξ(b))| < b/2. Argue
that then dom(ξ(b)) = dom(ξ(b/2)), and that reach0(dom(ξ(b))) = dom(ξ(b)).

Prove that there is no 0-dominion of size at most b/2 in the game G \
reach0(dom(ξ(b))), using the property that the set of 0-dominions is closed
under union.

94 Marcin Jurdziński

In order to achieve the worst-case running time bound O(nd/3+O(1)) for
the modified divide-and-conquer algorithm parity-win-dominion†(G), we
have to make an appropriate choice of the parameter b for the calls to the
preprocessing procedure progress-measure-lifting†(G, b). It turns out that a
good choice for the analysis of the modified algorithm is b = 2�n2/3�, where
n is the number of vertices of the parity game in the top-level call of the
algorithm parity-win-dominion†(G).

Note that in order to facilitate the running-time analysis of the algorithm,
the choice of the parameter b is fixed globally for all recursive calls. This is
unlike procedure parity-win-dominion(G), in which the parameter � has been
always the function of the number of vertices in the actual argument G of
each recursive call. It is worth noting that the analysis of the running time
of the algorithm parity-win-dominion(G) carried out in Section 3.3.2 could
have also been done with the parameter � fixed at the top level throughout
all recursive calls.

In the following exercise we analyse the worst-case running time of the
preprocessing procedure progress-measure-lifting†(G, b).

Exercise 3.23 Argue that |Nb| =
(b+(d/2)

d/2

)
=
∏d/2

i=1
b+i
i . Prove that for all

sufficiently large integers n, if b = 2�n2/3� then we have b+1
1 · b+2

2 · b+3
3 · b+4

4 ≤
(n2/3)4, and b+i

i ≤ n2/3 for all i ≥ 3, and hence that |Nb| ≤ nd/3 for all d ≥ 8.
Conclude that if b(n) = 2�n2/3� then the worst-case running time of the

procedure progress-measure-lifting†(G, b(n)) is O(nd/3+O(1)).

We are now ready to complete the analysis of the worst-case running
time of the divide-and-conquer algorithm parity-win-dominion†(G). Observe
that if the else-case in the algorithm parity-win-dominion†(G) obtains then
the argument of the only recursive call parity-win-dominion†(G∗) is clearly
a game with no more than n − �n2/3� vertices. On the other hand, if the
then-case obtains instead, then within the call parity-win‡(G∗) two recursive
calls parity-win-dominion†(G′) and parity-win-dominion†(G′′) are made, the
argument G′ of the former has at most d− 1 priorities if G had d, and the
number of vertices of the argument G′′ of the latter is, by Exercise 3.22, at
most n−�n2/3�. In either case, for every �n2/3� decrease in size of game G∗ or
of G′′, at most one recursive call is made to a game with at most d−1 priorities.
Finally, each recursive call of procedure parity-win-dominion†(G) leads to
one call of procedure progress-measure-lifting†(G, b) which, by Exercise 3.23,
runs in time O(nd/3+O(1)).

Exercise 3.24 Argue that the worst-case running time of the procedure

Algorithms for Solving Parity Games 95

parity-win-dominion†(G) can be characterised by the recurrence:

T (n, d) ≤ T (n, d− 1) + T (n− �n2/3�, d) + O(nd/3+O(1)),

T (n, 1) = O(n),

and hence also by the recurrence:

T (n, d) ≤ n1/3 · T (n, d− 1) + O(nd/3+O(1)),

T (n, 1) = O(n).

Prove that T (n, d) = O(nd/3+O(1)).

Theorem 3.10 (Schewe [2007]) The winning sets and positional win-
ning strategies of both players in parity games can be computed in time
O(nd/3+O(1)).

3.4 Related work

This survey of algorithms for solving parity games is not exhaustive. In
particular, an important class of local search algorithms has not been
included here. This class includes strategy improvement algorithms,
inspired by policy iteration algorithms for Markov decision processes

(Howard [1960], Puterman [2005]) and stochastic games (Filar and Vrieze
[1997]), and various pivoting algorithms adapted from the theory of the
linear complementarity problem (Cottle et al. [2009]).

The initial impulse for exploring applications of such local search algorithms
to parity games has been the observation by Puri [1995] and Stirling [1995]
that there is a polynomial time reduction from parity games to mean-

payoff games and to simple stochastic games. The reduction has also
been exploited by Jurdziński [1998] to show that the problems of deciding
the winner in parity, mean-payoff, discounted, and simple stochastic games
are in UP and in co-UP.

Vöge and Jurdziński [2000] have been inspired by the reduction from parity
games to discounted games to devise a discrete strategy improvement

algorithm for parity games. This algorithm has been conjectured to have
worst-case polynomial running time, but in a recent breakthrough Friedmann
[2009] has dashed those hopes by exhibiting a family of parity games with
O(n) vertices on which the algorithm performs Ω(2n) iterations. Intriguingly,
working with parity games and the discrete strategy improvement algorithm
has enabled Friedmann to devise examples of mean-payoff, discounted, and
simple stochastic games that make the strategy improvement algorithm

96 Marcin Jurdziński

take exponentially many steps, a feat which had remained elusive ever
since Howard [1960] proposed policy iteration algorithms for Markov

decision processes. Fearnley [2010b] has adapted Friedmann’s examples
to make Howard’s policy iteration take exponentially many iterations also
on Markov decision processes, and hence exhibiting a surprising weakness of
policy iteration and strategy improvement algorithms, even on (stochastic)
one-player games. On the other hand, the proposal of Fearnley [2010a] to
consider non-oblivious strategy improvement algorithms is a promising
new way to explore strategy improvement in the quest for polynomial time
algorithms, despite the damage inflicted to this line of research by Friedmann’s
examples.

Randomised variations of the strategy improvement technique, sometimes
referred to as the Random Facet algorithms, have been proposed for simple
stochastic games by Ludwig [1995] and Björklund and Vorobyov [2007].
They were inspired by a subexponential randomised simplex algorithm

of Matoušek et al. [1996], and they were the first subexponential (randomised)
algorithms for solving parity, mean-payoff, discounted, and simple stochastic
games. A recent result of Friedmann et al. [2010] establishes that the Random
Facet algorithm requires super-polynomial time on parity games.

An important corollary of the applicability of strategy improvement algo-
rithms to solving games on graphs is that the search problems of com-

puting optimal strategies in parity, mean-payoff, discounted, and simple
stochastic games are in PLS (Johnson et al. [1988]). Moreover, those search
problems are also known to be in PPAD (Papadimitriou [1994]) because they
can be reduced in polynomial time (Gärtner and Rüst [2005], Jurdziński
and Savani [2008]) to the P-matrix linear complementarity problem

(Cottle et al. [2009]). The latter is in PPAD since it is processed by Lemke’s
algorithm (Lemke [1965], Papadimitriou [1994], Cottle et al. [2009]). It follows
that the problems of computing optimal strategies in games on graphs are
unlikely to be complete for either of the two important complexity classes of
search problems, unless one of them is included in the other.

The reductions from games on graphs to the P-matrix linear complemen-
tarity problem have recently facilitated applications of classical algorithms for
the linear complementarity problem to solving games. Fearnley et al. [2010]
and Jurdziński and Savani [2008] have considered Lemke’s algorithm ,
the Cottle–Danzig algorithm , and Murty’s algorithm for discounted
games, and they have shown that each of those pivoting algorithms may
require exponential number of iterations on discounted games. Randomised
versions of these algorithms require further study.

Algorithms for Solving Parity Games 97

References

H. Björklund and S. Vorobyov. A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Applied Mathematics,
155(2):210–229, 2007.

A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. R. Marrero. An improved
algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci., 178
(1–2):237–255, 1997.

R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem,
volume 60 of Classics in Applied Mathematics. Society for Industrial & Applied
Mathematics, 2009.

E. A. Emerson and C. Jutla. Tree automata, μ-calculus and determinacy. In
Foundations of Computer Science (FOCS), pages 368–377. IEEE Computer
Society Press, 1991.

E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the proposi-
tional mu-calculus (Extended abstract). In Logic in Computer Science (LICS),
pages 267–278. IEEE Computer Society Press, 1986.

E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments
of μ-calculus. In Computer-Aided Verification (CAV), volume 697 of LNCS,
pages 385–396. Springer, 1993.

J. Fearnley. Non-oblivious strategy improvement. In Logic for Programming,
Artificial Intelligence, and Programming (LPAR), 2010a. To appear.

J. Fearnley. Exponential lower bounds for policy iteration. In International Collo-
quium on Automata, Languages and Programming (ICALP), volume 6199 of
LNCS, pages 551–562. Springer, 2010b.

J. Fearnley, M. Jurdziński, and R. Savani. Linear complementarity algorithms for
infinite games. In Current Trends in Theory and Practice of Computer Science
(SOFSEM), volume 5901 of Lecture Notes in Computer Science, pages 382–393.
Springer, 2010.

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, Berlin,
1997.

O. Friedmann. An exponential lower bound for the parity game strategy improvement
algorithm as we know it. In Logic in Computer Science (LICS), pages 145–156.
IEEE Computer Society Press, 2009.

O. Friedmann, T. D. Hansen, and U. Zwick. A subexponential lower bound for the
Random Facet algorithm for parity games. Manuscript, April 2010.

B. Gärtner and L. Rüst. Simple stochastic games and P-matrix generalized linear
complementarity problems. In Fundamentals of Computation Theory (FCT),
volume 3623 of Lecture Notes in Computer Science, pages 209–220. Springer,
2005.

R. A. Howard. Dynamic Programming and Markov Process. MIT Press, Cambridge,
Massachusetts, 1960.

D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?
J. Comput. Syst. Sci., 37(1):79–100, 1988.

M. Jurdziński. Small progress measures for solving parity games. In Symposium
on Theoretical Aspects of Computer Science (STACS), volume 1770 of Lecture
Notes in Computer Science, pages 358–369. Springer, 2000.

M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett., 63(3):119–124, 1998.

98 Marcin Jurdziński

M. Jurdziński and R. Savani. A simple P-matrix linear complementarity problem for
discounted games. In Computability in Europe (CiE), volume 5028 of LNCS,
pages 283–293. Springer, 2008.

M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput., 38(4):1519–1532, 2008.

C. E. Lemke. Bimatrix equilibrium points and mathematical programming. Man-
agement Science, 11:681–689, 1965.

W. Ludwig. A subexponential randomized algorithm for the simple stochastic game
problem. Inf. Comput., 117(1):151–155, 1995.

D. A. Martin. The determinacy of Blackwell games. J. Symb. Log., 63(4):1565–1581,
1998.

J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear program-
ming. Algorithmica, 16:498–516, 1996.

R. McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65
(2):149–184, 1993.

C. H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48:498–532, 1994.

A. Puri. Theory of Hybrid Systems and Discrete Event Systems. PhD thesis,
University of California, Berkeley, 1995.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Blackwell, 2005.

S. Schewe. Solving parity games in big steps. In FSTTCS 2007, volume 4855 of
Lecture Notes in Computer Science, pages 449–460. Springer, 2007.

H. Seidl. Fast and simple nested fixpoints. Inf. Process. Lett., 59(6):303–308, 1996.
C. Stirling. Local model checking games (Extended abstract). In Concurrency

Theory (CONCUR), volume 962 of Lecture Notes in Computer Science, pages
1–11. Springer, 1995.

J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving
parity games (Extended abstract). In Computer Aided Verification (CAV),
volume 1855 of Lecture Notes in Computer Science, pages 202–215. Springer,
2000.

W. Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1–2):135–183, 1998.

4

Back and Forth Between Logic and Games
Erich Grädel

RWTH Aachen University

Abstract

In this chapter we discuss relationships between logic and games, focusing on
first-order logic and fixed-point logics, and on reachability and parity games.
We discuss the general notion of model-checking games. While it is easily
seen that the semantics of first-order logic can be captured by reachability
games, more effort is required to see that parity games are the appropriate
games for evaluating formulae from least fixed-point logic and the modal
μ-calculus. The algorithmic consequences of this result are discussed. We
also explore the reverse relationship between games and logic, namely the
question of how winning regions in games are definable in logic. Finally the
connections between logic and games are discussed for more complicated
scenarios provided by inflationary fixed-point logic and the quantitative
μ-calculus.

4.1 Introduction

The idea that logical reasoning can be seen as a dialectic game, where a
proponent attempts to convince an opponent of the truth of a proposition
is very old. Indeed, it can be traced back to the studies of Zeno, Socrates,
and Aristotle on logic and rhetoric. Modern manifestation of this idea are
the presentation of the semantics of logical formulae by means of model-

checking games and the algorithmic evaluation of logical statements via
the synthesis of winning strategies in such games.

model-checking games are two-player games played on an arena which is
formed as the product of a structure A and a formula ψ where one player,
called the Verifier, attempts to prove that ψ is true in A while the other

100 Erich Grädel

player, the Falsifier, attempts to refute this. In contrast to common definitions
of the meaning of logical formulae which proceed bottom-up, from atomic
formulae through the application of logical operators (such as connectives
and quantifiers) to more complicated ones, game-theoretic semantics proceed
top-down. Starting with a complicated sentence, Verifier and Falsifier try to
justify their claims by moves to supposedly simpler assertions. By playing
such an evaluation game the two players thus produce a sequence of formulae
that ends when they reach an atomic statement, which cannot be simplified
further. The Verifier has succeeded to justify her original claim if the atomic
formula reached at the end of the sequence of is true, and Falsifier has won
if it is false. We thus assume that the truth of atomic statements can be
readily determined, for instance by a look-up in a table.

model-checking games permit us to evaluate logical formulae by solving
algorithmic problems on games such as the computation of winning

regions and the construction of winning strategies. For the most common
logical systems, such as first-order logic (FO) or propositional modal

logic (ML), the construction of the associated model-checking games is
straightforward, and the games are simple in several senses. First of all, the
goals of the players are the simplest conceivable objectives in such games,
namely reachability objectives: each player tries to force the play to a
terminal position where she has won (like check mate). Secondly, it is the
case that in each move, the formula is strictly simplified, so that every play
terminates after a number of moves that is bounded by the nesting depth of
logical operators in the formula. In particular there are no infinite plays, and
this holds no matter whether the structure on which the formula is evaluated
is finite or infinite. Finally, in the case of finite game graphs, the winner
of such a reachability game can be determined in linear time (with respect
to the size of the game graph). Thus, algorithms for solving reachability
games can be applied to evaluate first-order formulae, and give us a detailed
complexity analysis for the model-checking problem of first-order logic on
finite structures.

But life is not always that simple. For expressing properties of finite
structures, and for defining combinatorial problems on classes of structures
(such as graphs), first-order logic is rather limited. For many tasks arising
in computer science there is thus a need of other kinds of logical systems,
such as temporal logics, dynamic logics, game logics, transitive closure logics,
fixed-point logics and so on, which extend a basic formalism like FO and ML
by more powerful operators.

The natural model-checking games for such logics are more complicated
than reachability games. In particular, they admit infinite plays. Essential

Back and Forth Between Logic and Games 101

ingredients in the description of such games are the winning conditions
for infinite plays. Among the simplest of these are recurrence (or Büchi)
conditions, which require that certain good states must occur infinitely often
in a play, or eventual safety conditions, which impose that from some point
onwards the play must stay outside a bad region. Of special importance for
us are parity games. These are games of possibly infinite duration where
we assign to each position a natural number, and the winner of an infinite
play is determined according to whether the least number seen infinitely
often in the play is even or odd. The importance of parity games is due to
several reasons.

(1) Many classes of games arising in practical applications admit reductions

to parity games (over larger game graphs). This is the case for games
modelling reactive systems, with winning conditions specified in some
temporal logic or in monadic second-order logic over infinite paths (S1S),
for Muller games, but also for games with partial information appearing
in the synthesis of distributed controllers.

(2) Parity games are positionally determined . This means that from
every position, one of the two players has a winning strategy whose
moves depend only on the current position, not on the history of the play.
This property is fundamental for the algorithmic synthesis of winning
strategies.

(3) Parity games arise as the model-checking games for fixed-point logics

such as the modal μ-calculus or LFP, the extension of first-order logic
by least and greatest fixed-points. Conversely, winning regions of parity
games (with a bounded number of priorities) are definable in both LFP
and the μ-calculus. Parity games are also of crucial importance in the
analysis of structural properties of fixed-point logics.

The last point, the intimate relationship between parity games and fixed-
point logic is a central theme of this chapter.

We shall start with an introduction to basic notions on reachability and
parity games, explain the notions of winning strategies and winning regions
and discuss algorithmic questions related to games. We study connections
between logic and games for the special case of reachability games. In
particular, we shall present in detail the model-checking games for first-
order logic. After that, we introduce logics with least and greatest fixed
points, such as LFP and the modal μ-calculus, and explain why parity games
are appropriate evaluation games for these logics. We shall also discuss
the algorithmic consequences of this result. Then, the reverse relationship

102 Erich Grädel

between games and logic is explored, namely the question of how winning
regions in games are definable in logic. We shall see that for parity games with
a bounded number of priorities, winning regions are definable in both LFP
and the modal μ-calculus. For parity games with an unbounded number of
priorities it is not known whether the winning regions are LFP-definable. We
show that this problem is intimately related to the open question of whether
parity games are solvable in polynomial time. In the last two sections we
shall discuss the relationship between logic and games for more complicated
scenarios provided by inflationary fixed-point logic and the quantitative

μ-calculus. In both cases, we can indeed find generalisations of parity games
with a balanced two-way relationship to the associated fixed-point logic. On
the one hand, we obtain appropriate evaluation games for all formulae in the
logic, and on the other hand, the winning regions in the games are definable
in the logic

4.2 Reachability games and parity games

We consider turn-based games where two players move a token through a
directed graph, tracing out a finite or infinite path. Such a graph game is
specified by a directed graph G = (V,E), with a partition V = V0 ∪V1 of the
nodes into positions of Player 0 and positions of Player 1. In case (v, w) ∈ E

we call w a successor of v and we denote the set of all successors of v by vE.
A play in G is a finite or infinite path v0v1 . . . formed by the two players
starting from a given initial position v0. Whenever the current position vi

belongs to V0, then Player 0 chooses a successor vi+1 ∈ viE, if vi ∈ V1, then
vi+1 ∈ viE is selected by Player 1.

For reachability games we define the winning condition either by saying
that Player σ loses at positions v ∈ Vσ where no moves are possible, or by
explicitly including the sets T0, T1 of winning terminal positions for each
player into the description of the game. A play that is not won by any of the
two players is called a draw . In reachability games, infinite plays are draws.

It is often convenient to have games without draws, so that Player 1 wins
every play that is not won by Player 0, and vice versa. As the complement of
a reachability condition is a safety condition this leads to a reachability-

safety game : the winning condition is given by a set T ⊆ V ; Player 0 wins
a play if it reaches T , and Player 1 wins if it remains inside V \ T .

There is an extensive theory of games with more general winning conditions
for infinite plays that are specified either by logical formulae from some logic
on infinite sequences such as temporal logic (LTL), first-order logic (FO), or

Back and Forth Between Logic and Games 103

monadic second-order logic (S1S), or by automata-theoretic conditions such
as Muller conditions, Streett–Rabin conditions, or parity conditions (see the
contributions by Christof Löding and Marcin Jurdziński to this book). In
this chapter, only parity conditions will be used.

A parity game is given by a game graph G = (V, V0, V1, E) together
with a priority function Ω : V → ω assigning to each position a natural
number. An infinite play π = v0v1 . . . is won by Player 0 if the least priority
appearing infinitely often in π is even, or no priority appears infinitely often
(which may only happen if the range of Ω is infinite).

Winning strategies, winning regions, and determinacy. A (deter-
ministic) strategy for Player σ is a partial function f : V ∗Vσ → V that
assigns to finite paths through G ending in a position v ∈ Vσ a successor
w ∈ vE. A play v0v1 · · · ∈ V ω is consistent with f if, for each initial seg-
ment v0 . . . vi with vi ∈ Vσ, we have that vi+1 = f(v0 . . . vi). We say that
such a strategy f is winning from position v0 if every play that starts at
v0 and that is consistent with f is won by Player σ. The winning region

of Player σ, denoted Wσ, is the set of positions from which Player σ has a
winning strategy.

A game G, without draws, is called determined if W0 ∪W1 = V , i.e., if
from each position one of the two players has a winning strategy. For games
with draws, it is appropriate to define determinacy in a slightly different way:
we call a game with draws determined if from each position, either one of the
two players has a winning strategy, or both players have a strategy to achieve
at least a draw. To put it differently, this means that from every position
v ∈ V \Wσ, Player 1 − σ has a strategy to guarantee that Player σ does
not win. It has been known for almost 100 years that chess is determined
in this sense, see Zermelo [1913]. However, we still do not know which of
the three possibilities holds for the initial position of chess: whether White
has a winning strategy, whether Black has one, or whether both players can
guarantee a draw.

There is a large class of games that are known to be determined, including
all games for which the winning condition is a Borel set (Martin [1975]). One
can show (based on the Boolean Prime Ideal Theorem, which is a weak form
of the the Axiom of Choice) that non-determined games exist. However, all
games considered in this chapter are determined in a strong sense.

Computing winning regions of reachability games. To solve a game
algorithmically means to compute the winning regions for the two players.
When considering algorithmic problems of this kind, we always assume that
game graphs are finite. For reachability games, the winning regions can easily

104 Erich Grädel

be computed in polynomial time. Denote by Wn
σ the set of positions from

which Player σ has a strategy to win the game in at most n moves. Then
W 0

σ = {v ∈ V1−σ : vE = ∅} is the set of winning terminal positions for
Player σ, and we can compute the sets Wn

σ inductively by using

Wn+1
σ := Wn

σ ∪ {v ∈ V0 : vE ∩Wn
σ �= ∅} ∪ {v ∈ V1 : vE ⊆Wn

σ }

until Wn+1
σ = Wn

σ .

With a more sophisticated algorithm, which is a clever variant of depth-
first search, one can actually compute the winning regions of both players in
linear time O(|V |+ |E|) (see e.g., Grädel [2007]).

Theorem 4.1 Winning regions of finite reachability games, and hence also
reachability-safety games, can be computed in linear time.

Further, the problem of computing winning regions of reachability games
is complete for Ptime (see Greenlaw et al. [1995]).

Positional determinacy and complexity of parity games. Winning
strategies can be very complicated objects since they may depend on the
entire history of a play. However, for many important games, including
reachability, safety, and parity games, it suffices to consider positional

strategies, which are strategies that depend only on the current position,
not on the history of the play. A game is positionally determined , if it is
determined, and each player has a positional winning strategy on her winning
region.

The positional determinacy of reachability games – and reachability-safety
games – is obvious since the winning condition itself is purely positional. For
parity games the positional determinacy is a non-trivial and fundamental
result. It has been established independently by Emerson and Jutla [1991]
and Mostowski [1991] for parity games with a finite game graph. This is
generalised by Zielonka [1998] to infinite game graphs with a finite number
of priorities. Finally positional determinacy has been extended by Grädel
and Walukiewicz [2006] to parity games with rng(Ω) = ω.

Theorem 4.2 Every parity game is positionally determined.

In a parity game G = (V, V0, V1, E,Ω), a positional strategy for Player σ,
defined on W ⊆ V , can be represented by a subgraph H = (W, S) ⊆ (V,E)
such that there is precisely one outgoing S-edge from each node v ∈ Vσ ∩W

and vS = vE for each node v ∈ V1−σ ∩W . On a finite game graph, such a
strategy is winning on W if, and only if, the least priority on every cycle in
(W, S) has the same parity as σ.

Back and Forth Between Logic and Games 105

Hence, given a finite parity game G and a positional strategy (W, S) it can
be decided in polynomial time, whether the strategy is winning on W . To
decide winning regions we can therefore just guess winning strategies, and
verify them in polynomial time.

Corollary 4.3 Winning regions of parity games (on finite game graphs)
can be decided in NP ∩ Co-NP.

In fact, Jurdziński [1998] proved that the problem is in UP ∩ Co-UP,
where UP denotes the class of NP-problems with unique witnesses. The
best known deterministic algorithm has complexity nO(

√
n)) (Jurdziński et al.

[2006]). For parity games with a number d of priorities the progress measure
lifting algorithm by Jurdziński [2000] computes winning regions in time
O(dm · (2n/(d/2))d/2) = O(nd/2+O(1)), where m is the number of edges,
giving a polynomial-time algorithm when d is bounded. The two approaches
can be combined to achieve a worst-case running time of O(nn/3+O(1)) for
solving parity games with d priorities. These, and other, algorithms, are
explained in detail in Jurdziński’s contribution to this book.

4.3 Reachability games and logic

We now discuss connections between logic and games for the special case of
reachability games. We assume that the reader is familiar with first-order
logic.

(1) Computing winning regions of reachability games is equivalent, under
very simple reductions, to computing minimal models for propositional
Horn formulae.

(2) The model-checking games for first-order logic are reachability games.

We will then discuss the definability problem for winning regions of reach-
ability games and see that more powerful formalisms than first-order logic
are needed.

4.3.1 Games and Horn formulae

Recall that a propositional Horn formula is a conjunction of implication
clauses of the form Z ← X1 ∧ · · · ∧Xk where X1, . . . Xk are propositional
variables, forming the body of the clause, and Z, the head of the clause, is
either also a propositional variable, or the constant 0. Notice that the body
of the clause can also be empty, in which case the clause takes the form

106 Erich Grädel

Z ← 1. (Indeed if a Horn formula contains no clause of this form, then it is
trivially satisfiable by setting all variables to false.)

It is well known that Sat-Horn, the satisfiability problem for propositional
Horn formulae, is Ptime-complete (see Greenlaw et al. [1995]) and solvable
in linear time (Dowling and Gallier [1984], Itai and Makowsky [1987]). Hence
its computational properties are very similar to those of reachability games.
Actually there is a simple way of going back and forth between solving
reachability games and finding satisfying assignments for Horn formulae, so
that the two problems are solved by essentially the same algorithms.

From reachability games to Horn formulae: Given a finite game graph G =
(V, V0, V1, E), we can construct in linear time a propositional Horn formula
ψG consisting of the clauses u ← v for all edges (u, v) ∈ E with u ∈ V0, and
the clauses u ← v1 ∧ · · · ∧ vm for all nodes u ∈ V1, where uE = {v1, . . . , vm}.
It is easy to see that the winning region W0 for Player 0 in G coincides with
the minimal model for ψG . Hence v ∈W0 if the Horn formula ψG ∧ (0← v)
is unsatisfiable.

From Horn formulae to reachability games: With a Horn formula ψ =
∧

i∈I Ci

with propositional variables X1, . . . , Xn and Horn clauses Ci of the form
Zi ← Xi1 ∧ · · ·Xim we associate a game Gψ as follows. The positions of
Player 0 are the initial position 0 and the propositional variables X1, . . . , Xn,
and the positions of Player 1 are the clauses Ci of ψ. Player 0 can move from
a position X to any clause Ci with head X, and Player 1 can move from a
clause Ci to any variable occurring in the body of Ci. Formally, Gψ = (V,E),
V = V0 ∪ V1 with V0 = {0} ∪ {X1, . . . , Xn}, V1 = {Ci : i ∈ I}, and

E ={(X, C) ∈ V0 × V1 : X = head(C)}∪
{(C, X) ∈ V1 × V0 : X ∈ body(C)}.

Player 0 has a winning strategy for Gψ from position X if, and only if, ψ |= X.
In particular, ψ is unsatisfiable if, and only if, Player 0 wins from position 0.

4.3.2 model-checking games for first-order logic

For a logic L and a domain D of structures, the model-checking problem

asks, given a structure A ∈ D and a formula ψ ∈ L, whether it is the
case that A |= ψ. Model-checking problems can be reformulated in game-
theoretic terms using appropriate model-checking games. With a sentence ψ,
a structure A (of the same vocabulary as ψ), we associate a model-checking

game G(A, ψ). It is played by two players, Verifier and Falsifier . Verifier
(also called Player 0) tries to prove that A |= ψ, whereas Falsifier (also called

Back and Forth Between Logic and Games 107

Player 1) tries to establish that the sentence is false. For first-order logic,
the evaluation games are simple, in the sense that (1) all plays are finite
(regardless of whether the input structure is finite or infinite) and (2) winning
conditions are defined in terms of reachability.

Let us assume that A = (A, R1, . . . , Rm) is a relational structure and ψ

is a first-order sentence in negation normal form, i.e., built up from atoms
and negated atoms by means of the propositional connectives ∧,∨ and the
quantifiers ∃,∀. Obviously, any first-order formula can be converted in linear
time into an equivalent one in negation normal form. The model-checking
game G(A, ψ) has positions ϕ(a) where ϕ(x) is a subformula of ψ which is
instantiated by a tuple a of elements of A. The initial position of the game
is the formula ψ.

Verifier (Player 0) moves from positions associated with disjunctions and
with formulae starting with an existential quantifier. From a position ϕ ∨ ϑ,
she moves to either ϕ or ϑ. From a position ∃yϕ(a, y), Verifier can move to any
position ϕ(a, b), where b ∈ A. Dually, Falsifier (Player 1) makes corresponding
moves for conjunctions and universal quantifications. At atoms or negated
atoms, i.e., positions ϕ(a) of the form a = a′, a �= a′, Ra, or ¬Ra, the game
is over. Verifier has won the play if A |= ϕ(a); otherwise, Falsifier has won.

Model-checking games are a way of defining the semantics of a logic. The
equivalence to the standard definition can be proved by a simple induction.

Theorem 4.4 Verifier has a winning strategy from position ϕ(a) in the
game G(A, ψ) if, and only if, A |= ϕ(a).

This suggests a game-based approach to model-checking: given A and
ψ, construct the game G(A, ψ) and decide whether Verifier has a winning
strategy from the initial position.

4.3.3 Complexity of first-order model-checking

A model-checking problem has two inputs: a structure and a formula. We
can measure the complexity in terms of both inputs, and this is what is
commonly referred to as the combined complexity of the model-checking
problem (for L and D). However, in many cases, one of the two inputs is
fixed, and we measure the complexity only in terms of the other. If we fix
the structure A, then the model-checking problem for L on this structure
amounts to deciding ThL(A) := {ψ ∈ L : A |= ψ}, the L-theory of A. The
complexity of this problem is called the expression complexity of the
model-checking problem (for L on A). Especially in finite model theory, one
often considers model-checking problems for a fixed formula ψ, which amounts

108 Erich Grädel

to deciding the model class of ψ inside D, ModD(ψ) := {A ∈ D : A |= ψ}.
Its complexity is the structure complexity of the model-checking problem
(for ψ on D).

Since reachability games can be solved in linear time, the size of the game
graph directly gives us an upper bound for the time complexity for first-order
model-checking. The size of the model-checking game G(A, ψ) is the number
of different instantiations of the subformulae of ψ with elements from A. It
depends on several parameters, including the cardinality of the structure
A, the number of subformulae of ψ (which is of course bounded by the
length ψ) and the width of ψ which is defined as the maximal number of
free variables in subformulae of ψ. Clearly, |G(A, ψ)| ≤ |ψ| · |A|width(ψ), so
the crucial parameter is the width of the formula: if we have subformulae
with many free variables, then the number of instantiations, and thus the
size of the game, becomes very large. In general the combined complexity
and the expression complexity of first-order model-checking problem are
Pspace-complete. In turn, the game graphs have polynomial size for any
class of first-order formulae with bounded width.

Theorem 4.5 The model-checking problem for first-order logic is Pspace-
complete. For any fixed k ≥ 2, the model-checking problem for first-order
formulae of width at most k is Ptime-complete.

Exercise 4.1 Prove the hardness results. Reduce QBF, the problem of
evaluating quantified Boolean formulae, to the model-checking problem for
first-order logic on a fixed structure with two elements. Reduce the problem
of solving reachability games to the model-checking problem for formulae of
width 2.

By applying the game-based analysis of model-checking to the case of a
fixed sentence ψ, we see that the structure complexity of first-order logic
is much lower than the expression or combined complexity. In particular,
the evaluation problem for any fixed first-order sentence can be computed
deterministically in logarithmic space.

For a detailed study of the complexity of first-order model-checking, giv-
ing precise complexity bounds in terms of deterministic and alternating
complexity classes, the reader may consult Grädel [2007].

4.3.4 Definability of winning regions

Let S be a class of games, represented as structures of some fixed vocabulary.
We say that winning regions on S are definable in a logic L if there

Back and Forth Between Logic and Games 109

exist formulae ψ0(x) and ψ1(x) of L that define, on each game G ∈ S, the
winning regions W0 and W1 for the two players. This means that, for each
game G ∈ S, and σ = 0, 1

Wσ = {v ∈ G : G |= ψσ(v)}.

We can view a logic L and class S of games as balanced , if on the one
hand, S provides model-checking games for L, and on the other hand, the
winning regions for games in S are definable in L.

While reachability games are appropriate model-checking games for first-
order logic, the reverse relationship does not hold. Indeed it is well-known
that the expressive power of first-order logic, for defining properties of finite
or infinite structures, is rather limited. A general result making this precise
is Gaifman’s Theorem , saying that first-order logic can express only local

properties. For an exact statement and proof of this fundamental result,
we refer to Ebbinghaus and Flum [1999]. Perhaps the simplest query that
is not local, and hence not first-order definable, is reachability : Given a
directed graph G = (V,E) and a starting node v, determine the set of all
nodes that are reachable from v. This also implies that first-order logic is too
weak for reachability games; indeed the reachability problem can be viewed
as the problem of computing winning regions in the special case of one-player
reachability games.

Theorem 4.6 Winning regions of reachability games are not first-order
definable.

Thus, already for reachability games, and even more so for parity games,
more powerful logics are required to define the winning regions. Appropriate
logics for this are fixed-point logics that we are going to study in the next
section. In particular, we shall see that LFP and parity games (with a
bounded number of priorities) are balanced.

4.4 Logics with least and greatest fixed-points

Consider a formula ψ(R, x) of vocabulary τ ∪ {R} where x is a tuple of
variables whose length matches the arity of R. Such a formula defines, for
every τ -structure A, an update operator Fψ : P(Ak) → P(Ak) on the class
of k-ary relations on A, by

Fψ : R �→ {a : (A, R) |= ψ(R, a)}.

A fixed-point of Fψ is a relation R for which Fψ(R) = R. Fixed-point

logics extend a basic logical formalism (such as first-order logic, conjunctive

110 Erich Grädel

queries, or propositional modal logic) by formulae defining fixed-points of
relational operators. Notice that, in general, fixed-points of Fψ need not exist,
or there may exist many of them. We therefore consider special kinds of
fixed-points, such as least and greatest, and later inflationary and deflationary
fixed-points, and we impose additional conditions on the relational operators
to guarantee that these fixed-points exist.

We shall now describe some basic facts of fixed-point theory for powerset
lattices (P(B),⊆), where B is an arbitrary (finite or infinite) set. An operator
F : P(B) → P(B) is monotone , if it preserves inclusion, i.e., F (X) ⊆ F (Y)
whenever X ⊆ Y . A fixed-point X of F is called the least fixed-point of F

if X ⊆ Y for all fixed-points Y of F . Similarly, if all fixed-points of F are
subsets of a fixed-point X, then X is the greatest fixed-point of F .

Theorem 4.7 (Knaster–Tarski) Every monotone operator F : P(B) →
P(B) has a least fixed-point lfp(F) and a greatest fixed-point gfp(F). Further,
these fixed-points may be written in the form

lfp(F) =
⋂
{X : F (X) = X} =

⋂
{X : F (X) ⊆ X}

gfp(F) =
⋃
{X : F (X) = X} =

⋃
{X : F (X) ⊇ X}.

A proof can be found in any standard exposition on fixed-point theory
or fixed-point logics (see e.g., Grädel [2007]). Least fixed-points can also be
constructed inductively. We call an operator F : P(B) → P(B) inductive if
the sequence of its stages Xα (where α ranges over the ordinals), defined by

X0 := ∅,
Xα+1 := F (Xα), and

Xλ :=
⋃
α<λ

Xα for limit ordinals λ,

is increasing, i.e., if Xβ ⊆ Xα for all β < α. Obviously, monotone operators
are inductive. The sequence of stages of an inductive operator eventually
reaches a fixed-point, which we denote by X∞. The least ordinal β for which
Xβ = Xβ+1 = X∞ is called the closure ordinal of F .

Exercise 4.2 Prove that the cardinality of the closure ordinal of every
inductive operator F : P(B) → P(B) is bounded by the cardinality of B.
However, the closure ordinal itself can be larger than |B|. Prove this by an
example.

Theorem 4.8 For monotone operators, the inductively constructed fixed-
point coincides with the least fixed-point: X∞ = lfp(F).

Back and Forth Between Logic and Games 111

Proof As X∞ is a fixed-point, lfp(X) ⊆ X∞. For the converse, we show
by induction that Xα ⊆ lfp(F) for all α. As lfp(F) =

⋂
{Z : F (Z) ⊆ Z}, it

suffices to show that Xα is contained in all Z for which F (Z) ⊆ Z.
For α = 0, this is trivial. By monotonicity and the induction hypothesis,

we have Xα+1 = F (Xα) ⊆ F (Z) ⊆ Z. For limit ordinals λ with Xα ⊆ Z for
all α < λ we also have Xλ =

⋃
α<λ ⊆ Z.

The greatest fixed-point can be constructed by a dual induction, starting
with Y 0 = B, by setting Y α+1 := F (Y α) and Y λ =

⋂
α<λ Y α for limit

ordinals. The decreasing sequence of these stages then eventually converges
to the greatest fixed-point Y ∞ = gfp(F).

The least and greatest fixed-points are dual to each other. For every
monotone operator F , the dual operator F d : X �→ F (X) (where X denotes
the complement of X) is also monotone, and we have that

lfp(F) = gfp(F d) and gfp(F) = lfp(F d).

4.4.1 Least fixed-point logic and reachability games

Least fixed-point logic (LFP) is defined by adding to the syntax of first-
order logic the following least fixed-point formation rule: If ψ(R, x) is a
formula of vocabulary τ ∪ {R} with only positive occurrences of R, if x is a
tuple of variables, and if t is a tuple of terms (such that the lengths of x and
t match the arity of R), then also

[lfpRx . ψ](t) and [gfpRx . ψ](t)

are formulae of vocabulary τ . The free first-order variables of these formulae
are those in (free(ψ)− {x : x in x}) ∪ free(t).

Semantics. Since R occurs only positive in ψ, the update operator Fψ, defined
by ψ on any τ -structure A (providing interpretations for all free variables in
the formula) is monotone. We define that A |= [lfpRx . ψ](t) if, and only if,
t
A (the tuple of elements of A interpreting t) is contained in lfp(Fψ). The

definition for greatest fixed-points is analogous.

Obviously, LFP is a fragment of second-order logic. Indeed, by the Tarski–
Knaster Theorem,

[lfpRx . ψ(R, x)](y) ≡ ∀R((∀x(ψ(R, x) → Rx)) → Ry)

[gfpRx . ψ(R, x)](y) ≡ ∃R((∀x(Rx→ ψ(R, x)) ∧Ry).

Perhaps the simplest example of a problem that is expressible in LFP, but
not in first-order logic, is reachability : Given a graph G = (V,E) and a

112 Erich Grädel

starting point v, find the set of nodes that are reachable by a path from v.
It is definable in LFP, by the formula

ψ(x) := [lfpRx . x = v ∨ ∃z(Rz ∧ Ezx)](x).

Indeed, in any graph (G, v), the set ψG,v := {w : G, v |= ψ(w)} is precisely
the set of nodes reachable from w.

Exercise 4.3 Prove that the LFP-sentence

ψ := ∀y∃zFyz ∧ ∀y[lfpRy . ∀x(Fxy → Rx)](y)

is an infinity axiom, i.e., it is satisfiable but does not have a finite model.

We have noticed above that winning regions of reachability and safety
games are not first-order definable. However it not difficult to generalise
the LFP-definition of reachability to LFP-definitions for the winning

regions of reachability (and safety) games . Consider reachability-safety
games G = (V, V0, V1, E, T) where Player 0 wants to reach T and Player 1
tries to stay outside of T . On such games, the winning region W0 of Player 0
is uniformly definable by the LFP-formula ψ0(x) := [lfpWx . ϕ](x) with

ϕ(W, x) := Tx ∨ (V0x ∧ ∃y(Exy ∧Wy)) ∨ (V1 ∧ ∀y(Exy → Wy)).

The complement of W0, which is the winning region for Player 1 for her
associated safety condition, is defined by a greatest fixed-point formula
ψ1(x) := [gfpWx . η(W, x)](x) with

η(W, x) := ¬Tx ∧ (V0x→ ∀y(Exy → Wy)) ∧ (V1 → ∃y(Exy ∧Wy)).

This is just a special case of the duality between least and greatest

fixed-points which implies that for any formula ϕ,

[gfpRx . ϕ](t) ≡ ¬[lfpRx . ¬ϕ[R/¬R]](t),

where ϕ[R/¬R] is the formula obtained from ϕ by replacing all occurrences of
R-atoms by their negations. (As R occurs only positively in ϕ, the same is true
for ¬ϕ[R/¬R].) Because of this duality, greatest fixed-points are sometimes
omitted in the definition of LFP. However, for studying the relationship
between LFP and games it is much more convenient to keep the greatest
fixed-points, and to use the duality (and De Morgan’s laws) to translate
LFP-formulae to negation normal form, i.e., to push negations all the way
to the atoms.

Back and Forth Between Logic and Games 113

4.4.2 Capturing polynomial time

Let ϕ be a formula such that, for any given structure A, the update operator
Fϕ : P(Ak) → P(Ak) is monotone and computable in polynomial time
(with respect to |A|). Then also the fixed-points lfp(Fϕ) and gfp(Fϕ) are
polynomial-time computable since the inductive constructions of least and
greatest fixed points terminate after at most |A|k iterations of Fϕ. Together
with the fact that first-order operations are polynomial-time computable
we can conclude, by induction, that every LFP-definable property of finite
structures is computable in polynomial time.

Theorem 4.9 Let ψ be a sentence in LFP. It is decidable in polynomial time
whether a given finite structure A is a model of ψ. In short, LFP ⊆ Ptime.

Further, we have already seen that LFP can define properties that are
actually Ptime-complete, such as winning regions in reachability games.
This leads to the question of whether LFP can express all properties of finite
structures that are computable in polynomial time.

This is indeed the case when we consider ordered finite structures. We say
that a logic L captures a complexity class C on a domain D of finite
structures, if (1) for every fixed sentence ψ ∈ L, the complexity of evaluating
ψ on structures from D is a problem in the complexity class C, and (2)
every property of structures in D that can be decided with complexity C

is definable in the logic L. For any finite vocabulary τ , we write Ord(τ)
for the class of all structures (A, <), where A is a finite τ -structure and <

is a linear order on (the universe of) A. It is one of the most influential
results of finite model theory that for every model class K ⊆ Ord(τ) that
is decidable in polynomial time, there exists a sentence ψ ∈ LFP such that
K = {A ∈ Ord(τ) : A |= ψ}.

Theorem 4.10 (Immerman and Vardi) On ordered finite structures, least
fixed-point logic captures polynomial time.

However, in the absence of a linear ordering, LFP fails to express all
Ptime-properties. Indeed, there are quite trivial queries on unordered finite
structures that are not LFP-definable. A simple example is the question of
whether a given finite structure has an even number of elements.

The question of whether there exists a logic that captures Ptime on arbi-
trary finite structures, originally posed by Chandra and Harel [1982], is the
most important open problem of finite model theory. The most promising
candidates are suitable extensions of LFP (or other fixed-point logics). How-
ever, many people conjecture that no logic whatsoever can capture Ptime

114 Erich Grädel

on the domain of arbitrary finite structures. Since there exist logics for NP
this would imply that P �= NP.

4.4.3 model-checking games for least fixed-point logic

We now construct evaluation games for LFP-formulae. We make the following
assumptions:

(1) Fixed-point formulae do not contain parameters. This means that in a
subformula [fpRx . ϕ] (where fp means either lfp or gfp), the formula
ϕ(R, x) contains no free first-order variables besides those in x. This is
no loss of generality since one can always eliminate parameters, but it
may affect the complexity of model-checking algorithms.

(2) Formulae are in negation normal form, i.e., negations apply to atoms only.
Due to the standard dualities of first-order operators and the duality of
least and greatest fixed points, this is no loss of generality.

(3) Every fixed-point variable is bound only once and the free relation
variables are distinct from the fixed-point variables. For every fixed-point
variable T occurring in ψ, we write ϕT for the unique subformula in ψ

of the form [fpTx . η(T, x)].
(4) Finally, we require that each occurrence of a fixed-point variable T in

ϕT is inside the scope of a quantifier. Again, this is no loss of generality.

For two fixed-point variables S, T , we say that S depends on T if T

occurs free in ϕS . The transitive closure of this dependency relation is called
the dependency order , denoted by �ψ. The alternation level alψ(T) of
T in ψ is the maximal number of alternations between least and greatest
fixed-point variables on the �ψ-paths from T . The alternation depth ad(ψ)
of a fixed-point formula ψ is the maximal alternation level of its fixed-point
variables.

For a structure A and an LFP-sentence ψ, the arena of the model-checking
game G(A, ψ) is defined as for first-order model-checking games, with ad-
ditional moves for fixed-point formulae. The positions are subformulae of
ψ instantiated by elements of A. The moves are as in the first-order game,
except for the positions associated with fixed-point formulae and with fixed-
point atoms. At such positions there is a unique move (by Falsifier, say)
to the formula defining the fixed-point. For each fixed-point variable T in
ψ, there is a unique subformula [fp Tx . ϕ(T, x)](y) of ψ. From position
[fp Tx . ϕ(T, x)](b), Falsifier moves to ϕ(T, b), and from any fixed-point atom
Tc, she moves to the position ϕ(T, c).

Back and Forth Between Logic and Games 115

Notice that if ψ does not contain fixed-points, this game is the model-
checking game for first-order logic. However, if we have fixed-points the
games may now admit infinite plays. The winning condition for infinite plays
will be a parity condition. To motivate the priority assignment let us discuss
some special cases:

Consider a formula with just one lfp-operator, applied to a first-order
formula. The intuition is that from position [lfp Tx . ϕ(T, x)](b), Verifier
tries to establish that b enters T at some stage α of the fixed-point induction
defined by ϕ on A. The game goes to ϕ(T, b) and from there, as ϕ is a
first-order formula, Verifier can either win the ϕ-game in a finite number of
steps, or force it to a position Tc, where c enters the fixed-point at some
stage β < α. The game then resumes at position ϕ(c). As any descending
sequence of ordinals is finite, Verifier will win the game in a finite number
of steps. If the formula is not true, then Falsifier can either win in a finite
number of steps or force the play to go through infinitely many positions of
the form Tc. Hence, these positions should be assigned priority 1 (and all
other positions higher priorities) so that such a play will be won by Falsifier.
For gfp-formulae, the situation is reversed. Verifier wants to force an infinite
play, going infinitely often through positions Tc, so gfp-atoms are assigned
priority 0.

In the general case, we have a formula ψ with nested least and greatest
fixed-points, and in an infinite play of G(A, ψ) one may see different fixed-
point variables infinitely often. But one of these variables is then the smallest
with respect to the dependency order �ψ. It can be shown that A |= ψ if,
and only if, this smallest variable is a gfp-variable (provided the players play
optimally).

Hence, the priority labelling is defined as follows.

(1) Even priorities are assigned to gfp-atoms and odd priorities to lfp-atoms.
(2) If S �ψ T and S, T are fixed-point variables of different kinds, then

S-atoms should get a lower priority than T -atoms.
(3) All positions that are not fixed-point atoms, get a maximal (i.e., most

irrelevant) priority.

This completes the definition of the game G(A, ψ). Note that the number
of priorities in G(A, ψ) is essentially the alternation depth of ψ.

We want to prove that G(A, ψ) is indeed a correct model-checking game for
ψ in A. The proof proceeds by induction on A. The interesting case concerns
fixed-point formulae ψ(a) := [gfpTx . ϕ(x)](a). By the inductive construction
of greatest fixed-points, A |= [gfpTx . ϕ(x)](a) if, and only if, (A, Tα) |= ϕ(a)
for all stages Tα of the gfp-induction of ϕ on A. Further, by the induction

116 Erich Grädel

hypothesis, we know that, for every interpretation T0 of T , (A, T0) |= ϕ(a) if,
and only if, Player 0 has a winning strategy for the game G((A, T0), ϕ(a)).

It suffices therefor to show that Player 0 wins the game G := G(A, ψ(a))
if, and only if, she wins all games G((A, Tα), ϕ(a). But this follows from a
general fact on parity game, the so-called Unfolding Lemma .

The unfolding of a parity game. Let G = (V, V0, V1, E,Ω) be a parity
game that has at least one node with priority 0 and in which every node v

with priority 0 has a unique successor s(v) (i.e., vE = {s(v)}). This condition
holds for the game Gg(A, ψ(a)), since the positions of minimal priority are
the fixed-point atoms Tb which have unique successors ϕ(b).

Let Z be the set of nodes with priority 0 and let G− be the game obtained
by deleting from G all edges (v, s(v)) ∈ E ∩ (Z × V) so that the nodes
in Z become terminal positions. The unfolding of G is a sequence Gα

(where α ranges over the ordinals) which all coincide with G− up to the
winning conditions for the terminal positions v ∈ Z. For every α, we define
a decomposition Z = Zα

0 ∪ Zα
1 , where Zα

σ is the set of terminal positions
v ∈ Z at which we declare, for the game Gα, that Player σ has won. Further,
for every α, we define Wα

σ to be winning region of Player σ in the game Gα.
Note that Wα

σ depends of course on the decomposition Z = Zα
0 ∪ Zα

1 (also
for positions outside Z). In turn, the decomposition of Z for α + 1 depends
on the winning sets Wα

σ in Gα. We set

Z0
0 := Z

Zα+1
0 := {v ∈ Z : s(v) ∈Wα

0 }

Zλ
0 :=

⋂
α<λ

Zα
0 for limit ordinals λ.

By determinacy, V = Wα
0 ∪ Wα

1 for all α, and with increasing α, the
winning sets of Player 0 are decreasing and the winning sets of Player 1 are
increasing:

W 0
0 ⊇ W 1

0 ⊇ · · ·Wα
0 ⊇ Wα+1

0 ⊇ · · ·
W 0

1 ⊆ W 1
1 ⊆ · · ·Wα

1 ⊆ Wα+1
1 ⊆ · · · .

Hence there exists an ordinal α (whose cardinality is bounded by the
cardinality of V) for which Wα

0 = Wα+1
0 =: W∞

0 and Wα
1 = Wα+1

1 =: W∞
1 .

The crucial result on unfoldings of parity games states that these fixed-points
coincide with the winning regions W0 and W1 of the original game G.

Lemma 4.11 (Unfolding Lemma) W0 = W∞
0 and W1 = W∞

1 .

For a proof, see Grädel [2007].

Back and Forth Between Logic and Games 117

By ordinal induction, one can easily see that the games G((A, Tα), ϕ(a))
associated with the gfp-induction of ϕ in A coincide with the unfolding of the
game G = G(A, ψ(a)). By the Unfolding Lemma, we conclude that Player 0
wins the game G(A, ψ(a)) if, and only if, she wins all games G((A, Tα), ϕ(a)).
By the induction hypothesis this holds if, and only if, (A, Tα) |= ϕ(a) for all
α, which is equivalent to A |= ψ(a).

For least fixed-point formulae we can dualize the arguments.

Theorem 4.12 Let ψ be a well-named and parameter-free LFP-formula in
negation normal form, and let A be a relational structure. Then Player 0 has
a winning strategy from position ψ(a) in the game G(A, ψ(a)) if, and only if,
A |= ψ(a).

For future reference we note that the model-checking games ψ(A, ψ) can not
only be easily constructed from A and ψ, but are also easily (i.e., first-order)
definable inside A.

Theorem 4.13 For every structure A with at least two elements, and
every formula ϕ(x̄) ∈ LFP the model-checking game G(A, ϕ) is first-order
interpretable in A.

For finite structures, the size of the game G(A, ψ(a)) (and the time complex-
ity of its construction) is bounded by |ψ|·|A|width(ψ). Hence, for LFP-formulae
of bounded width, the size of the game is polynomially bounded.

Corollary 4.14 The model-checking problem for LFP-formulae of bounded
width (and without parameters) is in NP ∩ Co-NP, in fact in UP ∩ Co-UP.

By the complexity results for parity games mentioned at the end of
Section 4.2, we obtain complexity bounds for LFP model-checking which are
polynomial with respect to the size of the structure, but exponential in the
width and the alternation depth of the formula.

Corollary 4.15 The model-checking problem for LFP-formulae of bounded
width and bounded alternation depth is solvable in polynomial time.

We have imposed the condition that the fixed-point formulae do not contain
parameters. If parameters are allowed, then, at least with a naive definition
of width, Corollary 4.14 is no longer true (unless UP = Pspace). The
intuitive reason is that with parameters one can ‘hide’ first-order variables in
fixed-point variables. Indeed, by Dziembowski [1996] the evaluation problem
for quantified Boolean formulae can be reduced to the evaluation of LFP-
formulae with two first-order variables (but an unbounded number of monadic

118 Erich Grädel

fixed-point variables) on a fixed structure with three elements. Hence the
expression complexity of evaluating such formulae is Pspace-complete.

For LFP-formulae of unbounded width, our analysis in terms of model-
checking games only gives only exponential time bound. This cannot be
improved, even for very simple LFP-formulae (Vardi [1982]).

Theorem 4.16 The model-checking problem for LFP-formulae (of un-
bounded width) is Exptime-complete, even for formulae with only one fixed-
point operator, and on a fixed structure with only two elements.

4.4.4 The modal μ-calculus

A fragment of LFP that is of fundamental importance in many areas of com-
puter science (e.g., controller synthesis, hardware verification, and knowledge
representation) is the modal μ-calculus Lμ. It is obtained by adding least
and greatest fixed-points to propositional modal logic (ML) rather than to
FO. In other words Lμ relates to ML in the same way as LFP relates to FO.

Modal logics such as ML and the μ-calculus are evaluated on transition
systems (alias Kripke structures, alias coloured graphs) at a particular
node. Given a formula ψ and a transition system G, we write G, v |= ψ

to denote that G holds at node v of G. Recall that formulae of ML, for
reasoning about transition systems G = (V, (Ea)a∈A, (Pb)b∈B), are built
from atomic propositions Pb by means of the usual propositional connectives
and the modal operators 〈a〉 and [a]. That is, if ψ is a formula and a ∈ A is
an action, then we can build the formulae 〈a〉ψ and [a]ψ, with the following
semantics:

G, v |= 〈a〉ψ iff G, w |= ψ for some w such that (v, w) ∈ Ea,

G, v |= [a]ψ iff G, w |= ψ for all w such that (v, w) ∈ Ea.

If there is only one transition relation, i.e., A = {a}, then we simply write �
and ♦ for [a] and 〈a〉, respectively.

ML can be viewed as an extension of propositional logic. However, in our
context it is more convenient to view it as a simple fragment of first-order
logic. A modal formula ψ defines a query on transition systems, associating
with G a set of nodes ψG := {v : G, v |= ψ}, and this set can be defined
equivalently by a first-order formula ψ∗(x). This translation maps atomic
propositions Pb to atoms Pbx, it commutes with the Boolean connectives,

Back and Forth Between Logic and Games 119

and it translates the modal operators by use of quantifiers as follows:

(〈a〉ψ)∗(x) := ∃y(Eaxy ∧ ψ∗(y))

([a]ψ)∗(x) := ∀y(Eaxy → ψ∗(y)).

Note that the resulting formula has width 2 and can thus be written with
only two variables.

Theorem 4.17 For every formula ψ ∈ ML, there exists a first-order
formula ψ∗(x) of width 2, which is equivalent to ψ in the sense that G, v |= ψ

iff G |= ψ∗(v).

The modal μ-calculus Lμ extends ML by the following rule for building
fixed-point formulae: If ψ is a formula in Lμ and X is a propositional variable
that only occurs positively in ψ, then μX.ψ and νX.ψ are also Lμ-formulae.

The semantics of these fixed-point formulae is completely analogous to
that for LFP. The formula ψ defines on G (with universe V , and with
interpretations for other free second-order variables that ψ may have besides
X) the monotone operator Fψ : P(V) → P(V) assigning to every set X ⊆ V

the set ψG(X) := {v ∈ V : (G, X), v |= ψ}. Now,

G, v |= μX.ψ iff v ∈ lfp(Fψ)

G, v |= νX.ψ iff v ∈ gfp(Fψ).

Example 4.18 The formula μX.ϕ ∨ 〈a〉X asserts that there exists a path
along a-transitions to a node where ϕ holds. The formula νX.μY.〈a〉((ϕ ∧
X) ∨ Y) says that there exists a path from the current node on which ϕ

holds infinitely often.

Exercise 4.4 Prove that the formulae in Example 4.18 do indeed express
the stated properties.

The translation from ML into FO extends to a translation from Lμ into
LFP.

Theorem 4.19 Every formula ψ ∈ Lμ is equivalent to a formula ψ∗(x) ∈
LFP of width two.

Further the argument proving that LFP can be embedded into second-
order logic also shows that Lμ is a fragment of monadic second-order

logic (MSO).

The model-checking games for LFP easily translate into games for the

μ-calculus. Given a formula ψ ∈ Lμ and a transition system K, we obtain a
parity game G(K, ψ), with positions (ϕ, v) where ϕ is a subformula of ψ and

120 Erich Grädel

v is a node of K, such that K, v |= ϕ if, and only if, Player 0 has a winning
strategy in G(K, ψ) from position (ϕ, v). As a consequence, an efficient
algorithm for solving parity games would also solve the model-checking
problem for Lμ.

Since Lμ-formulae can be seen as LFP-formulae of width two, the bounds
established in the previous section apply: The model-checking problem for
Lμ is in UP ∩ Co-UP, and it is a major open problem whether it can be
solved in polynomial time. For Lμ-formulae of bounded alternation depths,
the associated parity games have a bounded number of priorities and can
therefore be solved in polynomial time.

Also the structure complexity can be settled easily. Since Lμ is a fragment
of LFP, all properties expressible in Lμ are decidable in polynomial time.
Further, there exist ψ ∈ Lμ for which the model-checking problem is Ptime-
complete. Indeed, winning regions of reachability games are definable not only
in LFP, but also in the μ-calculus. In a game G = (V, V0, V1, E), Player 0 has
a winning strategy from v if, and only if, G, v |= μX.((V0∧♦X)∨ (V1∧�X)).

Despite this result, the μ-calculus is far away from a logic that would
capture Ptime. Since Lμ is a fragment of MSO, all word languages definable
in Lμ are regular languages, and of course, not all Ptime-languages are
regular.

4.5 Definability of winning regions in parity games

We have seen that the model-checking problem for the LFP and the modal
μ-calculus can be reduced to the problem of computing winning regions
in parity games. We now discuss the question of whether, and under what
conditions, winning regions of parity games are definable in LFP and the
μ-calculus.

To study questions of logical definability for parity games (V, V0, V1, E, Ω)
we need to represent the games as relational structures. We distinguish
between two cases.

For fixed d, we consider parity games where the range of the priority
function Ω is in {0, . . . , d− 1} as structures G = (V, V0, V1, E, P0, . . . , Pd−1)
where P0, . . . , Pd−1 are pairwise disjoint unary relations such that Pi is the
set of positions v with Ω(v) = i. We denote this class of structures by PGd.

On the other hand, to consider classes of parity games with an unbounded
number of priorities, we consider them as structures

G = (V, V0, V1, E,≺, Odd)

Back and Forth Between Logic and Games 121

where u ≺ v means that u has a smaller priority than v, and Odd is the set
of nodes with an odd priority. We denote this class of structures by PG.

In each case, when we say that winning regions of parity games are definable
in a logic L, we mean that there is is a formula ψ0 and ψ1 of L such that
for any structure G ∈ PG (resp. PGd), ψσ is true in exactly those nodes in G
from which Player σ has a winning strategy.

4.5.1 Parity games with a bounded number of priorities

For any fixed d, the winning regions of parity games in PGd are definable by
LFP-formulae with d nested fixed-point operators. For Player 0, the formula
is

ψd
0(x) := [gfp R0x . [lfp R1x [fp Rd−1x . ϕ(x, R0, . . . , Rd−1)](x) . . .](x),

where
ϕ(x, R0, . . . , Rd−1) :=

∨
i<d

((V0x ∧ Pix ∧ ∃y (Exy ∧Riy))∨

(V1x ∧ Pix ∧ ∀y (Exy → Riy))).

The fixed-point operators alternate between gfp and lfp, and hence fp =
gfp if d is odd, and fp = lfp if d is even.

Theorem 4.20 For every d ∈ N, the formula ψd
0 defines the winning region

of Player 0 in parity games with priorities 0, . . . , d− 1.

Proof In general, LFP-formulae are hard to understand, especially if they
have many alternations between least and greatest fixed-points. However, in
this case have an elegant argument based on model-checking games to prove
that, for every parity game G = (V, V0, V1, P0, . . . , Pd−1) and every position
v ∈ V ,

G |= ψd
0(v) ⇐⇒ Player 0 has a winning strategy for G from v.

Let G∗ be the model-checking game for the formula ψd
0(v) on G and identify

Verifier with Player 0 and Falsifier with Player 1. Hence, Player 0 has a
winning strategy for G∗ if, and only if, G |= ψd

0(v).
By the construction of model-checking games, G∗ has positions of the form

η(u), where u ∈ V and η is a subformula of ψd
0 . The priority of a position

Riu is i, and when η(u) is not of this form, then its priority is d.
We claim that the game G∗ is essentially, i.e., up to elimination of stupid

moves (which would lead to a loss within one or two moves) and up to
contraction of several consecutive moves into one, the same as the original

122 Erich Grädel

game G. To see this, we compare playing G from a current position u ∈ V0∪Pi

with playing G∗ from any position ϑk(u), where ϑk(x) is the subformula
[gfp Rk . . .] or [lfp Rk . . .] of ψd

0(x). In G, Player 0 selects at position u

a successor w ∈ uE, and the play proceeds from w. In G∗, the play goes
from ϑk(u) through the positions ϑk+1(u), . . . , ϑd−1(u) to the inner formula
ϕ(u, R0, . . . , Rd−1).

This formula is a disjunction, so Verifier (Player 0) decides how to proceed.
But her only reasonable choice at this point is to move to the position
(V0u ∧ Piu ∧ ∃y(Euy ∧Riy), since with any other choice she would lose one
move later. But from there, the only reasonable move of Falsifier (Player 1)
is to go to position ∃y(Euy ∧ Riy), and it is now the turn of Player 0 to
select a successor w ∈ vE and move to (Euw ∧Riw). This forces Player 1 to
move to Riw from which the play proceeds to ϑi(w)).

Thus one move from u to w in G corresponds to a sequence of moves
in G∗ from ϑk(u) to ϑi(w), but the only genuine choice is the move from
∃y(Euy ∧ Riy) to (Euw ∧ Riw), i.e., the choice of a successor w ∈ uE. In
G, the position u has priority i, and in G∗ the minimal, and hence relevant,
priority that is seen in the sequence of moves from ϑk(u) to ϑi(w) is that of
Riw which is also i. The situation for positions u ∈ V1∩Pi is the same, except
that the play in G∗ now goes through ∀y(Exy → Riy) and it is Player 1 who
selects a successor w ∈ uE and forces the play to Riw.

Hence the (reasonable) choices that have to be made by the players in G∗

and the relevant priorities that are seen are the same as in a corresponding
play of G. Thus, Player 0 has a winning strategy for G from v if, and only
if, Player 0 has a winning strategy for G∗ from position ψd

0(v). But since G∗

is the model-checking game for ψd
0(v) on G this is the case if, and only if,

G |= ψd
0(v).

The formula ψd
1 defining the winning region for Player 1 is defined similarly.

Notice that the formula ψd
σ has width two. An analogous construction can

be carried out in the μ-calculus. The corresponding formulae are

Wind = νX0μX1νX2 . . . λXd−1

d−1∨
j=0

(
(V0 ∧ Pj ∧ ♦Xj) ∨ (V1 ∧ Pj ∧�Xj)

)
.

Corollary 4.21 The following three problems are algorithmically equivalent,
in the sense that if one of them admits a polynomial-time algorithm, then all
of them do.

(1) Computing winning regions in parity games.

Back and Forth Between Logic and Games 123

(2) The model-checking problem for LFP-formulae of width at most k, for
any k ≥ 2.

(3) The model-checking problem for the modal μ-calculus.

4.5.2 Alternation hierarchies

The formulae Wind also play an important role in the study of the alter-

nation hierarchy of the modal μ-calculus. Clearly, Wind has alternation
depth d and it has been shown that this cannot be avoided. As a consequence
the alternation hierarchy of the μ-calculus is strict, a result due to Bradfield
[1998] and Arnold [1999].

Sometimes, a slightly stronger formulation of this result is needed, for
parity games on finite and strongly connected graphs. This easily follows
from the general result by the finite model property of the μ-calculus and by
a straightforward reduction to strongly connected games.

Theorem 4.22 Winning regions in parity games in PGd are not definable
by formulae in the μ-calculus with alternation depth < d, even under the
assumption that the game graphs are finite and strongly connected.

For LFP the strictness of the alternation hierarchy also applies, even on
certain fixed infinite structures, such as arithmetic N = (N, +, ·).

However, on finite structures, the interleaving of least and greatest fixed
points (or of lfp-operators and negation) can be completely avoided, at the
expense of increasing the arity of fixed-point operators. Indeed, a single
application of an lfp-operator to a first-order formula suffices to express
any LFP-definable property (see Immerman [1986] or Ebbinghaus and Flum
[1999]).

Theorem 4.23 On finite structures, every LFP-formula is equivalent to a
formula of the form ∃y[lfpRx . ϕ(R, x)](y, . . . , y).

This result can be strengthened further. Notice that the model-checking
game of a formula ∃y[lfpRx . ϕ(R, x)](y, . . . , y) is actually a reachability-
safety game. The winning region for Player 0 is this definable by an LFP-
formula of a particularly simple form, where the lfp-operator is applied to a
Δ2-formula.

Theorem 4.24 (Dahlhaus [1987]) Every LFP-definable property of finite
structures can be reduced, by a quantifier-free translation, to the problem of
computing winning regions in reachability games.

124 Erich Grädel

Hence even the problem of computing winning regions in reachability
games is complete for LFP via this logical notion of reduction.

4.5.3 Parity games with an unbounded number of priorities

We now show that winning regions of parity games are not definable in LFP
when the game graph may be infinite.

Theorem 4.25 Winning regions in PG are not definable in LFP, even
under the assumptions that the game graph is countable and the number of
priorities is finite.

Proof Suppose that Win(x) ∈ LFP defines the winning region of Player 0
on PG. We use this formula to solve the model-checking problem for LFP on
N = (ω, +, ·).

Recall that, for any ϕ(x) ∈ LFP, we have a parity game G(N, ϕ) such that,
for all n

N |= ϕ(n) ⇐⇒ G(N, ϕ) |= Win(vn)

(where vn is the initial position associated with ϕ(n))
Further, the model-checking game G(N, ϕ) is first-order interpretable in N.

Hence the formula Win(x) is mapped, via a first-order translation Iϕ, into
another LFP-formula Winϕ(x) such that

G(N, ϕ) |= Win(vn) ⇐⇒ N |= Winϕ(n).

The first-order translation Win(x) �→ Winϕ(x) depends on ϕ, but does
not increase the alternation depth. Hence, on arithmetic, every formula ϕ(x)
would be equivalent to one of fixed alternation depth:

N |= ϕ(n) ⇐⇒ N |= Winϕ(n).

However, it is known that the alternation hierarchy of LFP on arithmetic
is strict.

Definability on finite graphs. On finite game graphs, the definability
issues are different and closely related to complexity. One of the most inter-
esting questions is whether the winning regions are definable in fixed-point
logics such as LFP or the μ-calculus.

It is not difficult to see that the μ-calculus is not sufficient (no matter how
one would precisely define a μ-calculus on PG). Again, this is a consequence
of the strictness of the alternation hierarchy. A μ-calculus formula defining

Back and Forth Between Logic and Games 125

the winning region of Player 0 on PG could be translated to formulae of the
usual μ-calculus on structures PGd (for any fixed d) with just a bounded
increase of the alternation depth. But this would mean that, for any d, the
winning regions of parity games with d priorities can be expressed by a
μ-calculus formula with a fixed alternation level, which would contradict the
strictness of the alternation hierarchy of Lμ. For details, we refer to Dawar
and Grädel [2008]

We now turn to the least fixed-point logic LFP. Clearly, a proof that
winning regions of parity games in PG are LFP-definable would imply that
parity games are solvable in polynomial time. Surprisingly, it turns out that
also the converse direction holds, despite the fact that LFP is weaker than
Ptime.

To prove this, we use a result by Otto [1999] saying that the multi-
dimensional μ-calculus, which is a fragment of LFP, captures precisely the
bisimulation-invariant part of Ptime. See also [Grädel et al., 2007, Section
3.5.3] for an exposition of this result.

Winning positions in parity games are of course invariant under the usual
notion of bisimulation (e.g., as structures in PGd). However, to apply Otto’s
Theorem for parity games with an unbounded number of priorities, we have to
consider bisimulation on structures of the form G = (V, V0, V1, E,≺, Odd). Let
τ = {V0, V1, E,≺, Odd, v} be the vocabulary of parity games with a starting
node, and let Str(τ) denote the class of all structures of this vocabulary. If
we have two such structures that are indeed parity games, then bisimilarity
as τ -structures coincides with the usual notion of bisimilarity in PGd, for
appropriate d. However, not all structures in Str(τ) are parity games, and the
class of parity games is not closed under bisimulation. An efficient procedure
for deciding whether a structure is bisimilar to a parity game is to compute
its quotient under bisimulation and checking whether it is a parity game.

For a structure (G, v) ∈ Str(τ) consider the bisimulation relation a ∼ b on
elements of G defined with respect to the binary relations E, ≺ and ≺−1.
That is to say ∼ is the largest relation satisfying:

• if a ∼ b then a and b agree on the unary relations V0, V1 and Odd;
• for every x ∈ aE there is a y ∈ bE such that x ∼ y, and conversely;
• for every x with a ≺ x there is a y with b ≺ y and x ∼ y and conversely;

and finally
• for every x ≺ a there is a y ≺ b such that x ∼ y, and conversely.

We write (G, v)∼ for the bisimulation quotient of (G, v), i.e., the structure
whose elements are the equivalence classes in G with respect to ∼ with the

126 Erich Grädel

relations V0, V1, E,≺, Odd defined in the natural way and [v] as the starting
vertex.

Exercise 4.5 Prove that a structure (G, v) ∈ Str(τ) is bisimilar to a
parity game if, and only if, its bisimulation quotient is a parity game, i.e.,
(G, v)∼ ∈ PG.

Theorem 4.26 Let C be any class of parity games on finite game graphs,
such that winning positions on its bisimulation quotients are decidable in
polynomial time. Then, on C, winning positions are LFP-definable.

Proof Let WinC be the class of parity games (G, v), such that (G, v) ∈ C, and
Player 0 wins from initial position v. It suffices to construct a bisimulation-
invariant class X of structures (H, u) such that

(1) X is decidable in polynomial time,
(2) X ∩ C = WinC.

Indeed, by Otto’s Theorem X is then definable by an LFP-formula ψ(x),
such that, given any parity game (G, v) ∈ C we have

G, v ∈ WinC ⇐⇒ G, v ∈ X ⇐⇒ G |= ψ(v).

By assumption, there exists a polynomial time algorithm A which, given a
parity game (G, v) ∈ C∼, decides whether Player 0 wins G from v. It is not
important what the algorithm returns for quotients outside C∼, as long as
it is isomorphism-invariant and halts in polynomial time. Finally, let B be
the algorithm which, given any finite structure in Str(τ), first computes its
bisimulation quotient, and then applies algorithm A.

Clearly B is a polynomial time algorithm, since bisimulation quotients
are efficiently computable. Further the class X of structures accepted by
B is invariant under bisimulation. Indeed, let H and H′ be two bisimilar
structures. Then their bisimulation quotients are isomorphic and are therefore
either both accepted or both rejected by A. Finally, X ∩ C = WinC. Indeed,
given a parity game G, v ∈ C, then it has the same winner as its bisimulation
quotient which is therefore correctly decided by the algorithm B.

Corollary 4.27 On the class PG of all finite parity games, winning regions
are LFP-definable if, and only if, they are computable in polynomial time.

For further results on the definability of winning regions in parity games,
we refer to Dawar and Grädel [2008].

Back and Forth Between Logic and Games 127

4.6 Inflationary fixed-point logic and backtracking games

LFP and the modal μ-calculus are not the only logics based on fixed-point
operators. In the context of finite model theory, a rich variety of fixed-point
operators has been studied due to the close connection that the resulting
logics have with complexity classes. One of the most prominent fixed-point
logics is IFP, the logic of inflationary fixed points. In finite model theory
the logics IFP and LFP have often been used interchangeably as it has long
been known that they have equivalent expressive power on finite structures.
More recently, it has been shown by Kreutzer [2004] that the two logics are
equally expressive even without the restriction to finite structures. However,
it has also been proved by Dawar et al. [2004] that MIC, the extension
of propositional modal logic by inflationary fixed-points, is vastly more
expressive than the modal μ-calculus Lμ and that LFP and IFP have very
different structural properties even when they have the same expressive
power. This exploration of the different nature of the fixed-point operators
leads naturally to the question of what an appropriate model-checking game
for IFP might look like.

Our analysis of why parity games are the appropriate model-checking games
for LFP logics relied on the well-foundedness of the inductive definition of
a least fixed-point. The Verifier who is trying to prove that a certain tuple
a belongs to a least fixed-point relation R, needs to present a well-founded
justification for its inclusion. That is, the inclusion of a in R may be based
on the inclusion of other elements in R whose inclusion in turn needs to be
justified but the entire process must be well-founded. On the other hand, the
justification for including an element in a greatest fixed-point may well be
circular. This interaction between sequences that are required to be finite and
those that are required to be infinite provides the structural correspondence
with parity games.

A key difference that arises when we consider inflationary fixed points
(and, dually, deflationary fixed-points) is that the stage at which a tuple a

enters the construction of the fixed-point R may be an important part of the
justification for its inclusion. In the case of least and greatest fixed-points,
the operators involved are monotone. Thus, if the inclusion of a can be
justified at some stage, it can be justified at all later stages. In contrast, in
constructing an inflationary fixed-point, if a is included in the set, it is on the
basis of the immediately preceding stage of the iteration. It may be possible
to reflect this fact in the game setting by including the iteration stage as an
explicit component of the game position. However, this would blow up the
game enormously, since we would have to take a separate copy of the arena

128 Erich Grädel

for each ordinal. Our aim is to leave the notion of the game arena unchanged
as the product of the structure and the formula. We wish only to change
the rules of the game to capture the nature of the inflationary fixed-point
operator.

The change we introduce to parity games is that either player is allowed to
backtrack to an earlier position in the game, effectively to force a countback
of the number of stages. That is, when a backtracking move is played, the
number of positions of a given priority that are backtracked are counted
and this count plays an important role in the succeeding play. The precise
definition is given in Section 4.6.2 below. The backtracking games we define
are more complex than parity games. Winning strategies are necessarily more
complicated, requiring unbounded memory, in contrast to the positional
strategies that work for parity games. Furthermore, deciding the winner is
Pspace-hard and remains hard for both NP and Co-NP even when games
have only two priorities. In contrast, parity games are known to be decidable
in NP∩Co-NP and in Ptime when the number of priorities is fixed. We will
explain how the model-checking problem for IFP can be represented in the
form of backtracking games. The construction allows us to observe that a
simpler form of backtracking game suffices which we call simple backtracking
games, and we will see that the winning regions of simple backtracking games
are definable in IFP. Thus, we obtain a tight correspondence between the
game and the logic, as exists between LFP and parity games.

4.6.1 Inflationary fixed-point logic

The inflationary fixed-point of any operator F . P(Ak) → P(Ak) is
defined as the limit of the increasing sequence of sets (Rα)α∈Ord defined as
R0 := ∅, Rα+1 := Rα ∪ F (Rα), and Rλ :=

⋃
α<λ Rα for limit ordinals λ.

The deflationary fixed-point of F is constructed in the dual way starting
with Ak as the initial stage and taking intersections at successor and limit
ordinals.

Inflationary fixed-point logic (IFP) is obtained from FO by allowing
formulae of the form [ifpRx .ϕ(R, x)](x) and [dfpRx .ϕ(R, x)](x), for arbi-
trary ϕ, defining the inflationary and deflationary fixed-point of the operator
induced by ϕ.

To illustrate the power of IFP, we present here a few examples of situations
where inflationary and deflationary fixed-points arise.

Bisimulation. Let K = (V,E, P1, . . . , Pm) be a transition system with a
binary transition relation E and unary predicates Pi. Bisimilarity on K is

Back and Forth Between Logic and Games 129

the maximal equivalence relation ∼ on V such that any two equivalent nodes
satisfy the same unary predicates Pi and have edges into the same equivalence
classes. To put it differently, ∼ is the greatest fixed-point of the refinement
operator F : P(V × V) → P(V × V) with

F : Z �→
{

(u, v) ∈ V × V :
∧

i≤m
Piu ↔ Piv

∧ ∀u′(Euu′ → ∃v′(Evv′ ∧ Zu′v′))

∧ ∀v′(Evv′ → ∃u′(Euu′ ∧ Zu′v))
}

.

For some applications (one of which will appear in Section 4.6.4) one is
interested in having not only the bisimulation relation ∼ but also a linear
order on the bisimulation quotient K/∼. That is, we want to define a pre-
order % on K such that u ∼ v iff u % v and v % u. We can again do this via
a fixed-point construction, by defining a sequence %α of pre-orders (where α

ranges over ordinals) such that %α+1 refines %α and %λ, for limit ordinals λ,
is the intersection of the pre-orders %α with α < λ. Let

u %1 v :⇐⇒
∧
i≤m

Piu →
(
Piv ∨

∨
j<i

(¬Pju ∧ Piv)
)

(i.e., if the truth values of the Pi at u are lexicographically smaller than or
equal to those at v), and for any α, let

u ∼α v :⇐⇒ u %α v ∧ v %α u.

To define the refinement, we say that the ∼α-class C separates two nodes u

and v, if precisely one of the two nodes has an edge into C. Now, let u %α+1 v

if, and only if, u %α v and there is an edge from v (and hence none from u)
into the smallest ∼α-class (w.r.t. %α) that separates u from v (if it exists).
Since the sequence of the pre-orders %α is decreasing, it must indeed reach a
fixed-point %, and it is not hard to show that the corresponding equivalence
relation is precisely the bisimilarity relation ∼.

The point that we want to stress here is that % is a deflationary fixed-point
of a non-monotone induction. Indeed, the refinement operator on pre-orders
is not monotone and does not, in general, have a greatest fixed-point. We
remark that is not difficult to give an analogous definition of this order by
an inflationary, rather than deflationary induction.

The lazy engineer: iterated relativisation. Let ϕ(x) be a specification that
should be satisfied by all states a of a system, which we assume to be
described as a relational structure A. Now, suppose that the engineer notices
that the system he designed is faulty, i.e., that there exist elements a ∈ A

130 Erich Grädel

where ϕ does not hold. Rather than redesigning the system, he tries to just
throw away all bad elements of A, i.e., he relativises A to the substructure
A|ϕ induced by {a : A |= ϕ(a)}. Unfortunately, it need not be the case that
A|ϕ |= ∀xϕ(x). Indeed, the removal of some elements may have the effect
that others no longer satisfy ϕ. But the lazy engineer can of course iterate
this relativisation procedure and define a (possibly transfinite) sequence of
substructures Aβ, with A0 = A, Aβ+1 = Aβ|ϕ and Aλ =

⋂
β<λ Aβ for limit

ordinals λ. This sequence reaches a fixed-point A∞ which satisfies ∀xϕ(x) –
but it may be empty.

This process of iterated relativisation is definable by a fixed-point induction
in A. Let ϕ|Z be the syntactic relativisation of ϕ to a new set variable Z,
obtained by replacing inductively all subformulae ∃yα by ∃y(Zy ∧ α) and
∀yα by ∀y(Zy → α). Iterated relativisation means repeated application of
the operator

F : Z �→ {a : A|Z |= ϕ(a)} = {a : A |= Za ∧ ϕ|Z(a)}

starting with Z = A (the universe of A). Note that F is deflationary but not
necessarily monotone.

In logics with inflationary and deflationary fixed points (the universe of)
A∞ is uniformly definable in A by a formula of the form [dfpZx . ϕ|Z](x).
Since IFP and LFP have the same expressive power, A∞ is also LFP-definable.
However, the only known way to provide such a definition is by going through
the proof of Kreutzer’s Theorem (see Kreutzer [2004]). There seems to be no
simple direct definition based on least and greatest fixed-points only.

4.6.2 Parity games with backtracking

Backtracking games are essentially parity games with the addition that,
under certain conditions, players can jump back to an earlier position in the
play. This kind of move is called backtracking. A backtracking move from
position v to an earlier position u is only possible if v belongs to a given set
B of backtrack positions, if u and v have the same priority and if no position
of smaller priority has occurred between u and v. With such a move, the
player who backtracks not only resets the play back to u, she also commits
herself to a backtracking distance d, which is the number of positions of
priority Ω(v) that have been seen between u and v. After this move, the play
ends when d further positions of priority Ω(v) have been seen, unless this
priority is “released” by a lower priority.

For finite plays we have the winning condition that a player wins if her
opponent cannot move. For infinite plays, the winner is determined according

Back and Forth Between Logic and Games 131

to the parity condition, i.e., Player 0 wins a play π if the least priority seen
infinitely often in π is even, otherwise Player 1 wins.

Thus the arena G := (V,E, V0, V1, B, Ω) of a backtracking game is a defined
as for parity games, extended by a subset B ⊆ V of backtrack positions. A
play of G from initial position v0 is formed as follows. If, after n steps the
play has gone through positions v0v1 . . . vn and reached a position vn ∈ Vσ,
then Player σ can select a successor vn+1 ∈ vnE; this is called an ordinary
move. But if vn ∈ B is a backtrack position, of priority Ω(vn) = q, say,
then Player σ may also choose to backtrack; in that case she selects a
number i < n subject to the conditions that Ω(vi) = q and Ω(vj) ≥ q

for all j with i < j < n. The play then proceeds to position vn+1 = vi

and we set d(q) = |{k : i ≤ k < n ∧ Ω(vk) = q}|. This number d(q) is
relevant for the rest of the game, because the play ends when d(q) further
positions of priority q have been seen without any occurrence of a priority
< q. Therefore, a play is not completely described by the sequence v0v1 . . .

of the positions that have been visited. For instance, if a player backtracks
from vn in v0 . . . vi . . . vj . . . vn, it matters whether she backtracks to i or j,
even if vi = vj because the associated numbers d(p) are different. For a more
formal description of how backtracking games are played we refer to Dawar
et al. [2006].

It is easy to see that backtracking games are Borel games, so by Martin’s
Theorem, they are determined. Since parity games are positionally determined
the question arises whether this also holds for backtracking games. However,
simple examples show that this is not the case and, indeed, no fixed amount
of finite memory suffices for winning strategies.

Theorem 4.28 Backtracking games in general do not admit finite-memory
winning strategies.

Exercise 4.6 Find an example proving this.

Thus, winning strategies for backtracking games are more complex than
the strategies needed for parity games. Also the computational complexity of
computing winning regions is higher for backtracking games than for parity
games. While it is known that winning regions of parity games can be decided
in NP ∩ Co-NP (and it is conjectured by many that this problem is actually
solvable in polynomial time), the corresponding problem for backtracking
games is Pspace-hard. Further, for any fixed number of priorities, parity
games can be decided in Ptime, but backtracking games with just two
priorities are already NP-hard (see Dawar et al. [2006]).

132 Erich Grädel

4.6.3 Games for IFP

We restrict attention to finite structures. The model-checking game for an
IFP-formula ψ on a finite structure A is a backtracking game G(A, ψ) =
(V,E, V0, V1, B,Ω). As in the games for LFP, the positions are subformulae
of ψ, instantiated by elements of A. We only describe the modifications.

We always assume that formulae are in negation normal form, and write
ϑ for the negation normal form of ¬ϑ. Consider any ifp-formula ϕ∗(x) :=
[ifpTx . ϕ(T, x)](x) in ψ. In general, ϕ can have positive or negative occur-
rences of the fixed-point variable T . We use the notation ϕ(T, T) to separate
positive and negative occurrences of T . To define the set of positions we in-
clude also all subformulae of Tx∨ϕ and Tx∧ϕ. Note that an ifp-subformula
in ϕ is translated into a dfp-subformula in ϕ, and vice versa. To avoid
conflicts we have to change the names of the fixed-point variables when
doing this, i.e., a subformula [ifpRy . ϑ(R,R, y)](y) in ϕ will correspond to a
subformula [dfpR′y . ϑ(R′, R′, y)](y) of ϕ where R′ is a new relation variable,
distinct from R.

From a position ϕ∗(a) the play proceeds to Ta ∨ ϕ(T, a). When a play
reaches a position Tc or Tc the play proceeds back to the formula defining
the fixed-point by a regeneration move. More precisely, the regeneration of
an ifp-atom Tc is Tc∨ϕ(T, c), the regeneration of Tc is Tc∧ϕ(T, c). Verifier
can move from Tc to its regeneration, Falsifier from Tc. For dfp-subformulae
ϑ∗(x) := [dfpRx . ϑ(R, x)](x), dual definitions apply. Verifier moves from
Rc to its regeneration Rc ∨ ϑ(R, c), and Falsifier can make regeneration
moves from Rc to Rc∧ ϑ(R, c). The priority assignment associates with each
ifp-variable T an odd priority Ω(T) and with each dfp-variable R an even
priority Ω(R), such that for any two distinct fixed-point variables S, S′, we
have Ω(S) �= Ω(S′), and whenever S′ depends on S, then Ω(S) < Ω(S′).
Positions of the form Sc and Sc are called S-positions. All S-positions get
priority Ω(S), all other formulae get a higher priority. The set B of backtrack
positions is the set of S-positions, where S is any fixed-point variable.

Let us focus on IFP-formulae with a single fixed-point, ψ := [ifpTx . ϕ](a)
where ϕ(T, x) is a first-order formula. When the play reaches a position Tc

Verifier can make a regeneration move to Tc ∨ ϕ(T, c) or backtrack. Dually,
Falsifier can regenerate from positions Tc or backtrack. However, since we
have only one fixed-point, all backtrack positions have the same priority and
only one backtrack move can occur in a play.

In this simple case, the rules of the backtracking game ensure that infinite
plays (which are plays without backtracking moves) are won by Falsifier,
since ifp-atoms have odd priority. However, if one of the players backtracks

Back and Forth Between Logic and Games 133

after the play has gone through α T -positions, then the play ends when α

further T -positions have been visited. Falsifier has won, if the last of these is
of form Tc, and Verifier has won if it is of form Tc.

The differences between IFP model-checking and LFP model-checking are
in fact best illustrated with this simple case. We claim that Verifier has a
winning strategy for the game G(A, ψ) if A |= ψ and Falsifier has a winning
strategy if A �|= ψ.

We look at the first-order formulae ϕα defining the stages of the induction.
Let ϕ0(a) = false and ϕα+1(a) = ϕα(a) ∨ ϕ[T/ϕα, T/ϕα](x). On finite
structures ψ(a) ≡

∨
α<ω ϕα(a).

The first-order game G(A, ϕα(a)) can be seen as an unfolding of the game
G(A, ψ(a)). Every position in G(A, ϕα(a)) corresponds to a unique position
in G(A, ψ(a)), and conversely, for a pair (p, β) where p is a position of
G(A, ϕα(a)) and β ≤ α is an ordinal, there is a unique associated position
pβ of the unfolded game G(A, ϕα(a)). When a play in G(A, ϕα(a)) reaches
a position Tc, it is regenerated to either Tc or ϕ(T, c) and such a regener-
ation move decrements the associated ordinal. The corresponding play in
G(A, ϕα(a)) proceeds to position ϕβ(c) or ϕ[T/ϕβ, T/ϕβ](c). We can use this
correspondence to translate strategies between the two games. Notice that
the lifting of a positional strategy f in the unfolded game G(A, ϕα(a)) will
produce a non-positional strategy f∗ in the original game G(A, ψ): start with
β = α and, for any position p, let f∗(p) := f(pβ); at regeneration moves, the
ordinal β is decremented.

Consider now a play in G(A, ψ) after a backtracking move prior to which
β T -positions have been visited, and suppose that A |= ϕβ(a). Then Verifier
has a winning strategy in the first-order game G(A, ϕβ(a)) (from position
ϕβ(a)) which translates into a (non-positional) strategy for the game G(A, ψ)
with the following properties: Any play that is consistent with this strategy
will either be winning for Verifier before β T -positions have been seen, or
the β-th T -position will be negative.

Similarly, if A �|= ϕβ(a) then Falsifier has a winning strategy for G(A, ϕβ(a)),
and this strategy translates into a strategy for the game G(A, ψ) by which
Falsifier forces the play (after backtracking) from position ψ(a) to a positive
β-th T -position, unless she wins before β T -positions have been seen. We
hence have established the following fact.

Lemma 4.29 Suppose that a play on G(A, ψ) has been backtracked to the
initial position ψ(a) after β T -positions have been visited. Verifier has a
winning strategy for the remaining game if, and only if, A |= ϕβ(a).

From this we obtain the desired result.

134 Erich Grädel

Theorem 4.30 If A |= ψ(a), then Verifier wins the game G(A, ψ(a)) from
position ψ(a). If A �|= ψ(a), then Falsifier wins the game G(A, ψ(a)) from
position ψ(a).

Proof Suppose first that A |= ψ(a). Then there is some ordinal α < ω such
that A |= ϕα(a). We construct a winning strategy for Verifier in the game
G(A, ψ(a)) starting at position ψ(a).

From ψ(a) the game proceeds to (Ta ∨ ϕ(a)). At this position, Verifier
repeatedly chooses the node Ta until this node has been visited α-times.
After that, she backtracks and moves to ϕ(a). By Lemma 4.29 and since
A |= ϕα(a), Verifier has a strategy to win the remaining play.

Now suppose that A �|= ψ(a). If, after α T -positions, one of the players
backtracks, then Falsifier has a winning strategy for the remaining game, since
A �|= ϕα(a). Hence, the only possibility for Verifier to win the game in a finite
number of moves is to avoid positions Tb where Falsifier can backtrack. Con-
sider the formulae ϕα

f , with ϕ0
f = false and ϕα+1

f (x) = ϕ[T/ϕα
f , T/false](x).

They define the stages of [ifpTx . ϕ[T, false](x)], obtained from ψ by replac-
ing negative occurrences of T by false. If Verifier could force a finite winning
play, with α − 1 positions of the form Tc and without positions Tc, then
she would in fact have a winning strategy for the model-checking game
G(A, ϕα

f (a)). Since ψα
f implies ϕα, it would follow that A |= ϕα(a). But this

is impossible.

The extension of the proof of Theorem 4.30 to arbitrary IFP-formulae
poses no major difficulties. Proceeding by induction on the number of nested
fixed-point formulae, one has to combine the argument just given (applied
to the outermost fixed-point) with the correctness proof for the LFP-model-
checking games. Notice that the essential differences between backtracking
games and parity games are in the effects of backtracking moves. Backtracking
moves impose a finiteness condition on one priority (unless it is later released
by smaller priority) and the effect of such a move remains essentially the
same in the general case as in the case of formulae with a single fixed-point.
On the other hand, an infinite play in an IFP-model-checking game is a play
in which the backtracking moves do not play a decisive role. The winner of
such a play is determined by the parity condition and the analysis of such
plays closely follows the proof that parity games are the model-checking
games for LFP-formulae.

Back and Forth Between Logic and Games 135

4.6.4 Definability of winning regions in backtracking games

We have seen that backtracking games can be used as model-checking games
for IFP. We will now identify a natural subclass of backtracking games,
which we call simple which is balanced with IFP. This means that for every
formula ϕ ∈ IFP and finite structure A, the game G(A, ϕ) can trivially be
modified to fall within this class and, on the other hand, for every d ∈ N

there is a formula ϕ ∈ IFP defining the winning region for Player 0 in any
simple backtracking game with at most d priorities. In this sense, simple
backtracking games precisely capture IFP model-checking.

Consider the model-checking game G(A, ϕ) and the way backtracking was
used there: if Player 0 wanted to backtrack it was always after opening a
fixed-point, say [ifpRx .Rx ∨ ϕ]. She then looped α times through the Rx

sub-formula and backtracked. By choosing the α she essentially picked a
stage of the fixed-point induction on ϕ and claimed that x ∈ ϕα. From this
observation we can derive two important consequences. As every inflationary
fixed-point induction must close after polynomially many steps in the size of
the structure A and therefore in linearly many steps in terms of the game
graph, there is no need for Player 0 to backtrack more than n steps, where
n is the size of the game graph. Further, the game can easily be modified
such that instead of having the nodes for the disjunction Rx ∨ ϕ and the
sub-formula Rx, we simply have a node for ϕ with a self-loop. In this modified
game graph, not only is it sufficient for Player 0 to backtrack no more than
n steps, we can, in addition, require that whenever she backtracks from
a node v, it must be to v again, i.e., when she decides to backtrack from
a node corresponding to the formula ϕ, she loops α times through ϕ and
then backtracks α steps to ϕ again. The same is true for Player 1 and her
backtracking.

We call a strategy in a backtracking game G local if all backtracking
moves from any node v are to a previous occurrence of v. Given a function
f . N → N, we call a strategy f -backtracking if all backtracking moves made
by the strategy have distance at most f(|G|). The strategy is called linear

in case f(n) = n and polynomial if f is a polynomial in n.
A backtracking game G := (V,E, V0, V1, B,Ω) is simple , if every node in

B has a self-loop and both players have local linear winning strategies on
their winning regions.

Theorem 4.31 For any IFP-formula ψ and every finite structure A, the
model-checking game G(A, ϕ), as defined in Section 4.6.3, is simple.

We now want to show that the logic IFP is balanced with the class of

136 Erich Grädel

simple backtracking games, i.e., the winning regions of simple backtracking
games are IFP-definable.

Since backtracking games are extensions of parity games we start with
the formula defining winning regions in parity games. We take this formula
as a starting point for defining an IFP-formula deciding the winner of
backtracking games. To define strategies involving backtracking, we first need
some preparation. In particular, in order to measure distances we need an
ordering on the arenas.

It is easily seen that backtracking games are invariant under bisimulation.
Thus, it suffices to consider arenas where no two distinct nodes are bisimilar
(we refer to such arenas as bisimulation minimal). The next step is to
define an ordering on the nodes in an arena. This is done by ordering the
bisimulation types realised in it.

Indeed, we have seen above that there is a formula ϕord(x, y) ∈ IFP
defining on every bisimulation minimal arena a linear order. As a result,
we can assume that the backtracking games are ordered and that we are
given an arithmetical predicate for addition with respect to the order defined
above.

Theorem 4.28, saying that there exist backtracking games whose winning
strategies require infinite memory, also applies to games with local strategies.
In general, the reason for the increased memory consumption is that when
the decision to backtrack is made, it is necessary to know which nodes
have been seen in the past, i.e., to which node a backtracking move is
possible. Furthermore, after a backtracking move occurred, both players
have to remember the backtracking distance, as this determines their further
moves. However, since here we consider strategies with local backtracking
only, it suffices to know the distance of the backtracking moves that are still
active, i.e., have not yet been released, whereas the history of the play in
terms of nodes visited may safely be forgotten. Thus we can capture all the
relevant information about a partial play π ending in position v by the tuple
(v, dπ(0), . . . , dπ(k − 1)), where dπ denotes the distance function.

In a backtracking game with priorities 0, . . . , k − 1, a configuration is
a pair (v, d) consisting of a node v and a tuple d ∈ (N ∪ {∞})k. Let π be
a (partial) play ending in node v. The configuration of π is defined as the
tuple (v, dπ(0), . . . , dπ(k)).

Recall that in a simple backtracking game the distance of all backtracking
moves is at most n := |G|. Furthermore we can assume that we are given a
linear order on the nodes of the game graph. Thus the configuration of any
(partial) play π in a simple game can be represented by a pair (v, d) where

Back and Forth Between Logic and Games 137

d ∈ {0, . . . , n,∞}k and we can use nodes in the game graph to represent the
values of the di.

The structure of the formulae ψk
0 defining the winning region for Player 0

in backtracking games with priorities < k is similar to the structure of the
corresponding LFP-formula for parity games. It has the form

ψk
0 (x) := [gfp R0xd . [lfp R1xd [fpRk−1xd . ϕ(R, x, d)] . . .](x,∞, . . .∞)

with k nested fixed-points, applied to a formula ϕ which is first-order, up
to the IFP-subformula defining the order of the bisimulation types. In its
various nested fixed-points the formula builds up sets of configurations
(x, d0, . . . , dk−1) such that if (x, d0, . . . , dk) ∈ RΩ(x), then Player 0 can extend
any partial play π, ending in node x with dπ(j) = dj for all j < k, to a
winning play.

We do not give an explicit construction here, but explain the idea. For
details, we refer to Dawar et al. [2006].

First of all the formula ϕ(R, x, d) states that for some i, the priority of x

is i and the tuple (d0, . . . , dk−1) has ∞ at all positions greater than i (which
corresponds to the fact that a node of priority i releases all backtracking
moves on higher priorities). Further, if x is a position of Player 0, then she
can win from configuration (x, d) if she can move to a successor y of x from
which she wins the play. Winning from y means that the configuration (y, d

′)
reached from (x, d) by moving to y is in RΩ(y). Thus the formula must define
what it means for (y, d

′) to be the configuration reached from x when moving
to y.

This involves a case distinction.
If di = ∞, Player 0 can either do an ordinary move or, in case x ∈ B,

a backtracking move. After an ordinary move to a successor node y of
priority j the play will have the configuration (y, d

′) which satisfies d
′ =

(d0, . . . , dj ,∞, . . . ,∞)) and which must be in Rj . After a backtracking move,
we will have, for some m �= ∞, a configuration (x, d0, . . . , di−1, m,∞, . . . ,∞)
which must be in Ri

In the case that di = m ≤ |G|, the formulae must express that Player 0
wins the m-step game on priority i from x. This game is won by Player 0 if
there is a successor y of x from which she wins and either the priority j of
y is less than i, i.e., all backtracking moves on priorities greater than j are
released (dl = ∞ for all l > j), or the priority j of y equals i and Player 0
wins the m− 1 step game from y (and all dl with l < i are left unchanged),
or the priority j of y is greater than i, in which case the play continues with
the configuration (y, d0, . . . , di,∞, . . . ,∞), i.e., all active backtracking moves

138 Erich Grädel

(whose distances are stored in d0, . . . , di) remain unchanged and the play
continues on priority j without any active backtracking moves on priorities
greater than i.

It is not difficult to express all this in first-order logic, provided an ordering
on priorities is available. For nodes where Player 1 moves the construction is
very similar.

Exercise 4.7 Make the construction of the formulae ψk
σ explicit, and prove

that they indeed define the winning region for Player σ.

Theorem 4.32 Winning regions of simple backtracking games are definable
in IFP.

4.7 Logic and games in a quantitative setting

Common logical formalisms are two-valued and express qualitative properties.
There have been a number of proposals to extend logics such as propositional
modal logic ML, the temporal logics LTL and CTL, and the modal μ-calculus
Lμ to quantitative formalisms where formulae can take, at a given state
of a system, not just the values true and false, but quantitative values, for
instance real numbers. There are several scenarios and applications where
it is desirable to replace purely qualitative statements by quantitative ones
which can be of very different nature: we may be interested in the probability
of an event, the value that we assign to an event may depend on to how
late it occurs, we can ask for the number of occurrences of an event in a
play, and so on. We can consider transition structures, where already the
atomic propositions take numeric values, or we can ask about the ‘degree of
satisfaction’ of a property.

While there certainly is ample motivation to extend qualitative specification
formalisms to quantitative ones, there are also problems. It has been observed
in many areas of mathematics, engineering and computer science where logical
formalisms are applied, that quantitative formalisms in general lack the clean
and clear mathematical theory of their qualitative counterparts, and that
many of the desirable mathematical and algorithmic properties tend to get
lost. Also, the definitions of quantitative formalisms are often ad hoc and do
not always respect the properties that are relevant for logical methodologies.

Here we discuss to what extent the relationship between the μ-calculus and
parity games can be extended to a quantitative μ-calculus and appropriate
quantitative model-checking games. The extension is not straightforward
and requires that one defines the quantitative μ-calculus in the ‘right’ way,

Back and Forth Between Logic and Games 139

so as to ensure that it has appropriate closure and duality properties (such
as closure under negation, De Morgan equalities, quantifier and fixed-point
dualities) to make it amenable to a game-based approach. But once this is
done, one can indeed construct a quantitative variant of parity games, and
prove that they are the appropriate model-checking games for the quantitative
μ-calculus. As in the classical setting the correspondence goes both ways: The
value of a formula in a structure coincides with the value of the associated
model-checking game, and conversely, the value of quantitative parity games
(with a bounded number of priorities) are definable in the quantitative μ-
calculus. However, the mathematical properties of quantitative parity games
are different from their qualitative counterparts. In particular, they are, in
general, not positionally determined, not even up to approximation, and
the proof that the quantitative model-checking games correctly describe the
value of the formulae is considerably more difficult than for the classical case.

As in the classical case, model-checking games lead to a better understand-
ing of the semantics and expressive power of the quantitative μ-calculus.
Further, the game-based approach also sheds light on the consequences of
different choices in the design of the quantitative formalism, which are far
less obvious than for classical logics.

4.7.1 Quantitative transition systems and quantitative μ-calculus

We write R+ for the set of non-negative real numbers, and R+
∞ := R+ ∪{∞}.

Quantitative transition systems (QTS) are directed graphs equipped
with quantities at states and with discounts of edges. They have the form
K = (V,E, δ, {Pi}i∈I) where (V,E) is a directed graph, with a discount
function δ : E → R+ \ {0} and functions Pi : V → R+

∞, that assign to
each state the values of the predicates at that state. A transition system is
qualitative if all functions Pi assign only the values 0 or ∞, where 0 stands
for false and ∞ for true, and it is non-discounted if δ(e) = 1 for all e ∈ E.

Given predicate functions {Pi}i∈I , discount factors d ∈ R+ and constants
c ∈ R+, the quantitative μ-calculus Qμ is built in a similar way to the
modal μ-calculus, with the following two modifications.

(1) Atomic formulae have the form |Pi − c|.
(2) If ϕ is a Qμ-formula, then so is d · ϕ,

Boolean connectives ∧, ∨, modal operators ♦ and �, and fixed-point
operators μ, ν are used as in the syntax of Lμ. The semantics, however, is
quite different.

Formulae of Qμ are interpreted over quantitative transition systems K =

140 Erich Grädel

(V,E, δ, (Pi)i∈I). The meaning of a formula ϕ in K is a function [[ϕ]]K :
V → R+

∞. We write F for the set of functions f : V → R+
∞, with f1 ≤ f2

if f1(v) ≤ f2(v) for all v. Then (F ,≤) forms a complete lattice with the
constant functions f = ∞ as f = 0 as top and bottom elements.

The interpretation [[ϕ]]K : V → R+
∞ is defined as follows:

(1) [[|Pi − c|]]K(v) := |Pi(v)− c|,
(2) [[ϕ1 ∧ ϕ2]]K := min{[[ϕ1]]K, [[ϕ2]]K} and

[[ϕ1 ∨ ϕ2]]K := max{[[ϕ1]]K, [[ϕ2]]K},
(3) [[♦ϕ]]K(v) := supv′∈vE δ(v, v′) · [[ϕ]]K(v′) and

[[�ϕ]]K(v) := infv′∈vE
1

δ(v,v′) [[ϕ]]K(v′),

(4) [[d · ϕ]]K(v) := d · [[ϕ]]K(v),
(5) [[μX.ϕ]]K := inf{f ∈ F : f = [[ϕ]]K[X←f]}, and

[[νX.ϕ]]K = sup{f ∈ F : f = [[ϕ]]K[X←f]}.

When interpreted over qualitative transition systems Qμ coincides with
the classical μ-calculus and we say that K, v is a model of ϕ, K, v |= ϕ if
[[ϕ]]K(v) = ∞. For discounted systems we take the natural definition for ♦
and use the dual one for � which motivates the 1

δ factor. It has been proved
by Fischer et al. [2009] that this is the only definition for which there is a
well-behaved negation operator (with [[¬ϕ]]K = 1/[[ϕ]]K) and which gives us
the dualities that are needed for natural model-checking games.

Note that all operators in Qμ are monotone. This guarantees the existence
of the least and greatest fixed-points, and their inductive definition according
to the Knaster–Tarski Theorem: Given a formula μX.ϕ and a quantitative
transition system K, we obtain the inductive sequence of functions gα (for
ordinals α) where g0 := 0, gα+1 := [[ϕ]]K[X←gα], and gλ := limα<λ[[ϕ]]K[X←gα]

for limit ordinals λ. Then [[μX.ϕ]]K = gγ for the minimal ordinal γ with
gγ = gγ+1. For νX.ϕ the dual induction applies, starting with g0 := ∞.

4.7.2 Quantitative parity games

Quantitative parity games are modest modifications of classical parity games.
Quantitative values are assigned to final positions, where they are interpreted
as the payoff for Player 0 at that position, and to moves, where they are
interpreted as discounts to the payoff when the play goes through that move.

A quantitative parity game is a tuple G = (V, V0, V1, E, δ, λ, Ω) extend-
ing a classical parity game by two functions δ : E → R+, assigning to every
move a discount factor , and λ : {v ∈ V : vE = ∅} → R+

∞ assigning to
every terminal position a payoff value . The outcome p(π) of a finite play

Back and Forth Between Logic and Games 141

π = v0 . . . vk, ending at a terminal position vk is computed by multiplying
all discount factors seen in the play with the payoff value at the final node,

p(v0v1 . . . vk) = δ(v0, v1) · δ(v1, v2) · . . . · δ(vk−1, vk) · λ(vk).

The outcome of an infinite play depends only on the lowest priority seen
infinitely often. We assign the value 0 to every infinite play in which the
lowest priority seen infinitely often is odd, and ∞ to those in which it is
even. Player 0 wants to maximise the outcome whereas Player 1 wants to
minimise it.
Determinacy. A quantitative game is determined if, for each position v,
the highest outcome that Player 0 can enforce from v and the lowest outcome
Player 1 can assure converge,

sup
σ∈Γ0

inf
ρ∈Γ1

p(πσ,ρ(v)) = inf
ρ∈Γ1

sup
σ∈Γ0

p(πσ,ρ(v)) =: valG(v),

where Γ0, Γ1 are the sets of all possible strategies for Player 0, Player 1. The
outcome defined in this way is the value of G at v.

One of the fundamental properties of qualitative parity games is the posi-

tional determinacy . Unfortunately, this does not generalise to quantitative
parity games. Example 4.33 shows that there are simple quantitative games
where no player has a positional winning strategy. In the depicted game there
is no optimal strategy for Player 0, and even if one fixes an approximation of
the game value, Player 0 needs infinite memory to reach this approximation,
because she needs to loop in the second position as long as Player 1 looped
in the first one to make up for the discounts. (By convention, we depict
positions of Player 0 with a circle and of Player 1 with a square and the
number inside is the priority for non-terminal positions and the payoff in
terminal ones.)

Example 4.33

0 1 1

1
2

2

4.7.3 model-checking games for Qμ

Given a quantitative transition system K = (S, T, δS , Pi) and a Qμ-formula
ψ in negation normal form, we define the model-checking game MC[K, ψ] =
(V, V0, V1, E, δ, λ, Ω), as a quantitative parity game.

Positions and moves. As in games for Lμ, positions are the pairs (ϕ, s),

142 Erich Grädel

where ϕ is a subformula of ϕ, and s ∈ S is a state of the K; in addition we
have two special positions (0) and (∞). Positions (|Pi − c|, s), (0), and (∞)
are terminal positions. Moves are defined as in the games for Lμ, with the
following modifications: positions of the form (♦ψ, s) have either a single
successor (0), in case s is a terminal state in K, or one successor (ψ, s′)
for every s′ ∈ sT . Analogously, positions of the form (�ψ, s) have a single
successor (∞), if sT = ∅, or one successor (ψ, s′) for every s′ ∈ sT otherwise.
Positions of the form (d · ψ, s) have a unique successor (ψ, s′). Priorities are
assigned in the same way as in the model-checking games for Lμ.
Discounts and payoffs. The discount of an edge is d for transitions from
positions (d · ψ, s), it is δS(s, s′) for transitions from (♦ψ, s) to (ψ, s′), it
is 1/δS(s, s′) for transitions from (�ψ, s) to (ψ, s′), and 1 for all outgoing
transitions from other positions. The payoff function λ assigns |[[Pi]](s)− c|
to all positions (|Pi − c|, s), ∞ to position (∞), and 0 to position (0).

To prove that MC(K, ψ) is indeed an appropriate model-checking game
it must be shown that the value of the game starting from v coincides with
the value of the formula evaluated on K at v′. In the qualitative case, that
means, that ψ holds in K, v′ if Player 0 wins in G from v.

Theorem 4.34 For every formula ψ in Qμ, every quantitative transition
system K, and v ∈ K, the game MC[K, ψ] is determined and

valMC[K, ψ](ψ, v) = [[ψ]]K(v).

This is shown by Fischer et al. [2009] using a generalisation of the unfolding
method for parity games.

Example 4.35 A model-checking game for ϕ = μX.(P ∨ 2 · ♦X) on the
QTS Q shown in Figure 4.1(a), with P (1) = 0, P (2) = 1, is depicted in
Figure 4.1(b). The nodes are labelled with the corresponding subformulae of
ϕ, and the state of Q. Only the edges with discount factor different from 1
are labelled.

Note that in this game only Player 0 is allowed to make any choices. When
we start at the top node, corresponding to an evaluation of ϕ at 1 in Q, the
only choice she has to make is either to keep playing (by looping), or to end
the game by moving to a terminal position.

4.7.4 Defining game values in Qμ

As in the case of parity games and LFP (and Lμ), also the connection
between quantitative parity games and quantitative μ-calculus goes back

Back and Forth Between Logic and Games 143

Q = 1 2
(
a)

(
b)

μX.(P ∨ ♦2X), 1

P ∨ ♦2X, 1P, 1

♦2X, 1X, 2 X, 1

P ∨ ♦2X, 2

P, 2 ♦2X, 2 0

μX.(P ∨ ♦2X), 2

2 2

Figure 4.1 Example (a) QTS and (b) model-checking game for
μX.(P ∨ 2 · ♦X)

and forth. We have seen that quantitative parity games are appropriate
model-checking games for the evaluation of Qμ-formulae on quantitative
transition systems. For the other direction, we now show that values of
positions in quantitative parity games (with a bounded number of priorities)
are definable in Qμ. It is convenient to describe a quantitative parity game
G = (V, V0, V1, E, δG, λ, ΩG) with priorities in {0, . . . d− 1} by a quantitative
transition system QG = (V,E, δ, V0, V1, Λ, Ω), where Vi(v) = ∞ for positions
of Player i, and Vi(v) = 0 otherwise, where Ω(v) = ΩG(v) when vE �= ∅ and
Ω(v) = d otherwise, with discount function

δ(v, w) =

{
δG(v, w) for v ∈ V0,

(δG(v, w))−1 for v ∈ V1

and with payoff predicate Λ(v) := λ(v) in case vE = ∅ and is Λ(v) = 0
otherwise.

We then modify the Lμ-formulae Wind constructed in Section 4.5.1 to
quite similar Qμ-formulae

QWind = νX0μX1νX2 . . . λXd−1

d−1∨
j=0

((V0∧Pj ∧♦Xj)∨ (V1∧Pj ∧�Xj))∨Λ,

where Pi := ¬(μX.(2 ·X ∨ |Ω − i|)). Note that Pi(v) = ∞ when Ω(v) = i

and Pi(v) = 0 otherwise. The formula QWind is therefore analogous to the
formula Wind in the qualitative case.

Theorem 4.36 For every d ∈ N, the value of any quantitative parity game
with priorities in {0, . . . d − 1} coincides with the value of QWind on the
associated transition system.

144 Erich Grädel

Exercise 4.8 Adapt the proof of Theorem 4.20 to get a proof of Theo-
rem 4.36.

References

A. Arnold. The mu-calculus alternation-depth is strict on binary trees. RAIRO
Informatique Théorique et Applications, 33:329–339, 1999.

J. Bradfield. The modal μ-calculus alternation hierarchy is strict. Theoretical
Computer Science, 195:133–153, 1998.

A. Chandra and D. Harel. Structure and complexity for relational queries. Journal
of Computer and System Sciences, 25:99–128, 1982.

E. Dahlhaus. Skolem normal forms concerning the least fixed point. In E. Börger, ed-
itor, Computation Theory and Logic, number 270 in Lecture Notes in Computer
Science, pages 101–106. Springer Verlag, 1987.

A. Dawar and E. Grädel. The descriptive complexity of parity games. In Proceedings
of 22th Annual Conference of the European Association for Computer Science
Logic CSL 2008, pages 354–368, 2008.

A. Dawar, E. Grädel, and S. Kreutzer. Inflationary fixed points in modal logic.
ACM Transactions on Computational Logic, 5:282 – 315, 2004.

A. Dawar, E. Grädel, and S. Kreutzer. Backtracking games and inflationary fixed
points. Theoretical Computer Science, 350:174–187, 2006.

W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. Journal of Logic Programming, 1(3):267–284,
1984.

S. Dziembowski. Bounded-variable fixpoint queries are PSPACE-complete. In
10th Annual Conference on Computer Science Logic CSL 96. Selected papers,
Lecture Notes in Computer Science Nr. 1258, pages 89–105. Springer, 1996.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.
A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In Proc.

32nd IEEE Symp. on Foundations of Computer Science, pages 368–377, 1991.
D. Fischer, E. Grädel, and L. Kaiser. Model checking games for the quantitative

μ-calculus. Theory of Computing Systems, 2009.
E. Grädel. Finite Model Theory and Descriptive Complexity. In Finite Model

Theory and Its Applications. Springer-Verlag, 2007.
E. Grädel and I. Walukiewicz. Positional determinacy of games with infinitely many

priorities. Logical Methods in Computer Science, 2006.
E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema,

and S.Weinstein. Finite Model Theory and Its Applications. Springer, Berlin,
2007.

R. Greenlaw, J. Hoover, and W. Ruzzo. Limits to Parallel Computation. P-
Completeness Theory. Oxford University Press, Oxford, 1995.

N. Immerman. Relational queries computable in polynomial time. Information and
Control, 68:86–104, 1986.

A. Itai and J. Makowsky. Unification as a complexity measure for logic programming.
Journal of Logic Programming, 4:105–117, 1987.

M. Jurdziński. Small progress measures for solving parity games. In Proceedings of
17th Annual Symposium on Theoretical Aspects of Computer Science, STACS

Back and Forth Between Logic and Games 145

2000, Lecture Notes in Computer Science Nr. 1770, pages 290–301. Springer,
2000.

M. Jurdziński. Deciding the winner in parity games is in UP ∩ Co-UP. Information
Processing Letters, 68:119–124, 1998.

M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm
for solving parity games. In Proceedings of ACM-SIAM Proceedings on Discrete
Algorithms, SODA 2006, pages 117–123, 2006.

S. Kreutzer. Expressive equivalence of least and inflationary fixed point logic. Annals
of Pure and Applied Logic, 130:61–78, 2004.

D. Martin. Borel determinacy. Annals of Mathematics, 102:336–371, 1975.
A. Mostowski. Games with forbidden positions. Technical Report 78, University of

Gdańsk, 1991.
M. Otto. Bisimulation-invariant Ptime and higher-dimensional mu-calculus. Theo-

retical Computer Science, 224:237–265, 1999.
M. Vardi. The complexity of relational query languages. In Proceedings of the 14th

ACM Symposium on the Theory of Computing, pages 137–146, 1982.
E. Zermelo. über eine Anwendung der Mengenlehre auf die Theorie des Schach-

piels. In Proc. 5th Internat. Congr. Mathematicians, volume 2, pages 501–504,
Cambridge, 1913.

W. Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200:135–183, 1998.

5

Turn-Based Stochastic Games
Antońın Kučera
Masaryk University

Abstract

In this chapter, we give a taxonomy of winning objectives in stochastic
turn-based games, discuss their basic properties, and present an overview
of the existing results. Special attention is devoted to games with infinitely
many vertices.

5.1 Introduction

Turn-based stochastic games are infinitely long sequential games of perfect
information played by two ‘ordinary’ players and a random player. Such
games are also known as simple stochastic games and are a special type
of (simultaneous-choice) stochastic games considered by Shapley [1953].
Intuitively, a turn-based stochastic game is a directed graph with a finite
or countably infinite set of vertices, where each vertex ‘belongs’ either to
player �, player ♦, or the random player ©. An example of a turn-based
stochastic game with finitely many vertices is given below.

v1

s1

s2

v2

u

s3

0.2

0.7

0.6
0.4 0.9

0.10.1

The outgoing transitions of stochastic vertices (drawn as circles) are selected
randomly according to fixed probability distributions. In the other vertices
(boxes and diamonds), the outgoing transitions are selected by the respective

Turn-Based Stochastic Games 147

player according to his strategy, which may be randomised and history-
dependent. Thus, every pair of strategies for both players determines a play
of the game, which is a Markov chain obtained by applying the strategies to
the original game. The aim of player � is to maximise the expected payoff
associated to runs in plays, or to play so that a certain property is satisfied.
Player ♦ usually (but not necessarily) aims at the opposite.

In computer science, turn-based stochastic games are used as a natural
model for discrete systems where the behaviour in each state is either con-
trollable, adversarial, or stochastic. The main question is whether there is
a suitable controller (strategy of player �) such that the system satisfies a
certain property no matter what the environment and unpredictable users
do. For a successful implementation of a controller, it is also important what
kind of information about the computational history is required and whether
the controller needs to randomise. This is the main source of motivation for
considering the abstract problems presented in the next sections.

Since real-world computational systems are usually very large and complex,
they can be analysed only indirectly by constructing a simplified formal
model. A formal model of a given system is an abstract computational device
which faithfully reflects the important behavioural aspects of the system.
For purposes of formal modeling, the expressive power of finite-state devices
is often insufficient, and some kind of unbounded data storage (such as
counters, channels, stacks, queues, etc.) is needed to obtain a sufficiently
precise model. Hence, in the computer science context, the study of turn-
based stochastic games is not limited just to finite-state games, but also
includes certain classes of infinite-state games which correspond to various
types of computational devices such as pushdown automata, channel systems,
vector addition systems, or process calculi.

5.1.1 Preliminaries

We start by recalling some notation and basic concepts that are necessary
for understanding the material presented in subsequent sections.

Words, paths, and runs

In this chapter, the set of all real numbers is denoted by R, and we also use
the standard way of writing intervals of real numbers (e.g., (0, 1] abbreviates
{x ∈ R | 0 < x ≤ 1}).

Let M be a finite or countably infinite alphabet. A word over M is a
finite or infinite sequence of elements of M . The empty word is denoted
by ε, and the set of all finite words over M is denoted by M∗. Sometimes

148 Antońın Kučera

we also use M+ to denote the set M∗ \ {ε}. The length of a given word w

is denoted by len(w), where len(ε) = 0 and the length of an infinite word
is ∞. The individual letters in w are denoted by w(0), w(1), . . ., and for
every infinite word w and every i ≥ 0 we use wi to denote the infinite word
w(i), w(i+1), . . .

A transition system is a pair T = (S,−→), where S is a finite or countably
infinite set of states and −→ ⊆ S × S a transition relation such that for
every s ∈ S there is at least one outgoing transition (i.e., a transition of the
form s −→ t). We say that T is finitely branching if every s ∈ S has only
finitely many outgoing transitions. A path in T is a finite or infinite word
w over S such that w(i) −→ w(i+1) for every 0 ≤ i < len(w). A run is an
infinite path. The sets of all finite paths and all runs in T are denoted by
Fpath(T) and Run(T), respectively. Similarly, for a given w ∈ Fpath(T), we
use Fpath(T , w) and Run(T , w) to denote the sets of all finite paths and all
runs that start with w, respectively. When T is clear from the context, it is
usually omitted (for example, we write just Run instead of Run(T)).

Probability spaces

Let A be a finite or countably infinite set. A probability distribution on
A is a function μ : A → [0, 1] such that

∑
a∈A μ(a) = 1. A distribution μ is

rational if μ(a) is rational for every a ∈ A, positive if μ(a) > 0 for every
a ∈ A, and Dirac if μ(a) = 1 for some a ∈ A. A Dirac distribution μ where
μ(a) = 1 is also denoted by μa or just a.

Let Ω be a set of elementary events . A σ-field over Ω is a set F ⊆ 2Ω

that includes Ω and is closed under complement and countable union.
A measurable space is a pair (Ω,F) where F is a σ-field over Ω. An
F-measurable function over (Ω,F) is a function f : Ω → R such that
f−1(I) ∈ F for every interval I in R.

Example 5.1 Let T = (S,−→) be a transition system. Let B be the least
σ-field over Run containing all basic cylinders Run(w) where w ∈ Fpath
(i.e., B is the Borel σ-field generated by open sets in the Cantor topology
on Run). Then (Run,B) is a measurable space, and the elements of B are
called Borel sets of runs.

The Borel σ-field B contains many interesting elements. For example,
let s, t ∈ S and let Reach(s, t) be the set of all runs initiated in s which
visit t. Obviously, Reach(s, t) is the union of all basic cylinders Run(w) where
w ∈ Fpath(s) and w visits t, and hence Reach(s, t) ∈ B. Similarly, one can
show that the set of all runs initiated in s that visit t infinitely often is Borel.

Turn-Based Stochastic Games 149

Actually, most of the ‘interesting’ sets of runs are Borel, although there exist
also subsets of Run that are not in B.

Let A ∈ B, and let f : Run → {0, 1} be a function which to a given
w ∈ Run assigns either 1 or 0, depending on whether w ∈ A or not, respec-
tively. Then f is B-measurable, because for every interval I in R we have
that f−1(I) is equal either to Run, A, Run \A, or ∅, depending on whether
I ∩ {0, 1} is equal to {0, 1}, {1}, {0}, or ∅, respectively.

A probability measure over a measurable space (Ω,F) is a function
P : F → [0, 1] such that, for each countable collection {Ai}i∈I of pairwise
disjoint elements of F , we have that P(

⋃
i∈I Ai) =

∑
i∈I P(Ai), and moreover

P(Ω) = 1. A probability space is a triple (Ω,F ,P) where (Ω,F) is a
measurable space and P is a probability measure over (Ω,F).

A random variable over a probability space (Ω,F ,P) is an F-measurable
function X : Ω → R. The expected value of X, denoted by E(X), is defined
as the Lebesgue integral

∫
Ω X dP . A random variable X is discrete if there

is a finite or countably infinite subset N of R such that P(X−1(N)) = 1. The
expected value of a discrete random variable X is equal to

∑
n∈N n ·P(X=n),

where X=n denotes the set X−1({n}).

Markov chains

A Markov chain is a tupleM = (S,−→,Prob, μ) where (S,−→) is a transition
system, Prob is a function which to each s ∈ S assigns a positive probability
distribution over the outgoing transitions of s, and μ : S → [0, 1] is an
initial probability distribution. We write s

x−→ t to indicate that s −→ t and
Prob(s)((s, t)) = x.

Consider the measurable space (Run,B) introduced in Example 5.1,
i.e., B is the least σ-field containing all Run(w) such that w ∈ Fpath. By
Carathéodory’s extension theorem (see, e.g., Billingsley [1995], Kemeny et al.
[1976]), there is a unique probability measure Pμ over (Run,B) such that
for every basic cylinder Run(w) we have that Pμ(Run(w)) is defined in
the ‘natural’ way, i.e., by multiplying μ(w(0)) with the probabilities of all
transitions in w. Thus, we obtain the probability space (Run,B,Pμ).

Example 5.2 Consider the finite-state Markov chain M of Figure 5.1
with the initial distribution μs (recall that μs is a Dirac distribution where
μs(s) = 1). Let Reach(s, t) be the set of all runs initiated in s which visit t.
Obviously, Reach(s, t) =

⋃∞
i=1 Reachi(s, t), where Reachi(s, t) consists of

all w ∈ Reach(s, t) that visit t for the first time after exactly i transitions.
Further, every Reachi(s, t) can be partitioned into 2i−1 pairwise disjoint basic
cylinders according to the first i− 1 transitions. Each of these cylinders has

150 Antońın Kučera

s u

t

1
3

1
3

1

1
3

1
3

1
3 1

3

Figure 5.1 A finite-state Markov chain M

the probability (1
3)i, hence P(Reachi(s, t)) = (2

3)i−1 · 1
3 . Since Reachi(s, t) ∩

Reachj(s, t) = ∅ whenever i �= j, we obtain

P(Reach(s, t)) = P
(∞⋃

i=1

Reachi(s, t)
)

=
∞∑

i=1

P(Reachi(s, t)) =
∞∑

i=1

(
2
3

)i−1

· 1
3

= 1

as expected. Also note that Run(s) \ Reach(t) is uncountable but its proba-
bility is zero.

Turn-based stochastic games and Markov decision processes

A (turn-based) stochastic game is a tuple G = (V, �→, (V�, V♦, V©),Prob)
where (V, �→) is a transition system, (V�, V♦, V©) is a partition of V , and Prob
is a function which to each v ∈ V© assigns a positive probability distribution
on the set of its outgoing transitions. We say that G is finitely branching

if (V, �→) is finitely branching. A Markov decision process (MDP) is a
stochastic game where V♦ = ∅ or V� = ∅. Note that Markov chains can be
seen as stochastic games where V� = V♦ = ∅.

A stochastic game is played by two players, � and ♦, who select transi-
tions in the vertices of V� and V♦, respectively. Let (∈ {�,♦}. A strategy

for player (is a function which to each wv ∈ V ∗V� assigns a probability
distribution on the set of outgoing transitions of v. The sets of all strategies
for player � and player ♦ are denoted by ΣG and ΠG (or just by Σ and Π
if G is understood), respectively. We say that a strategy τ is memoryless

(M) if τ(wv) depends just on the last vertex v, and deterministic (D) if
τ(wv) is Dirac for all wv. Strategies that are not necessarily memoryless are
called history-dependent (H), and strategies that are not necessarily de-
terministic are called randomised (R). A special type of history-dependent
strategies are finite-memory (F) strategies. A strategy τ of player (is a
finite-memory strategy if there is a finite set C = {c1, . . . , cn} of colours, a
colouring ν : V −→ C, and a deterministic finite-state automaton M over the
alphabet C such that for every wv ∈ V ∗V� we have that τ(wv) depends only

Turn-Based Stochastic Games 151

on v and the control state entered by M after reading the (unique) word ν(wv)
obtained by replacing each vertex in wv with its associated colour. Infinite-

memory strategies are strategies which are not finite-memory. To sum up,
we consider the following six types of strategies: MD, MR, FD, FR, HD,
and HR, where XD ⊆ XR for every X ∈ {M, F, H} and MY ⊆ FY ⊆ HY for
every Y ∈ {D, R}. The sets of all XY strategies of player � and player ♦ are
denoted by ΣXY and ΠXY, respectively (note that Σ = ΣHR and Π = ΠHR).

Every pair of strategies (σ, π) ∈ Σ × Π and every initial probability
distribution μ : V → [0, 1] determine a unique play of the game G, which
is a Markov chain G

(σ,π)
μ where V + is the set of states, and wu

x−→ wuu′ iff
u �→ u′, x > 0, and one of the following conditions holds:

• u ∈ V� and σ(wu) assigns x to u �→ u′;
• u ∈ V♦ and π(wu) assigns x to u �→ u′;
• u ∈ V© and u

x�→ u′.

The initial distribution of G
(σ,π)
μ assigns μ(v) to all v ∈ V , and zero to the

other states. Note that every run w in G
(σ,π)
μ naturally determines a unique

run wG in G, where wG(i) is the last vertex of w(i) for every i ≥ 0.

5.2 Winning objectives in stochastic games

In this section we give a taxonomy of winning objectives in turn-based
stochastic games and formulate the main problems of the associated algo-
rithmic analysis. For the rest of this section, we fix a turn-based stochastic
game G = (V, �→, (V�, V♦, V©),Prob).

Let plays(G) be the set of all plays of G (i.e., plays(G) consists of all Markov
chains of the form G

(σ,π)
μ). For every (∈ {�,♦}, let yield� : plays(G) → R

be a function which to every play of G assigns the yield of player (.

Remark In the standard terminology of game theory, the yield of a given
player under a given strategy profile is usually called a payoff . However, in
the context of turn-based stochastic games, the word ‘payoff’ usually refers
to a function f� : Run(G) → R whose expected value is to be maximised by
player ((see Section 5.2.1 for more details).

The objective of each player is to maximise his yield. For turn-based
stochastic games, most of the studied yield functions are zero-sum , i.e., for
every play G

(σ,π)
μ of G we have that

yield�(G(σ,π)
μ) + yield♦(G(σ,π)

μ) = 0.

152 Antońın Kučera

For zero-sum games, it suffices to specify just yield�, which is denoted simply
by yield . Then, the objective of player � and player ♦ is to maximise and
minimise the value of yield , respectively.

There are two major classes of zero-sum turn-based stochastic games,
which can be characterised as follows:

(1) Games with Borel measurable payoffs. Every B-measurable func-
tion over Run(G) determines a unique random variable over the runs of
a given play of G. The yield assigned to the play is the expected value
of this random variable.

(2) Win–lose games. A win–lose yield is either 1 or 0 for every play of
G, depending of whether the play satisfies a certain property or not,
respectively. Typically, the property is encoded as a formula of some
probabilistic temporal logic.

These two classes of games are formally introduced and discussed in the next
subsections.

Let us note that there are also results about non-zero-sum turned-based
stochastic games, where the objectives of the (two or more) players are
not necessarily conflicting. The main question is the existence and effective
computability of Nash equilibria for various classes of players’ objectives. The
problem has been considered also in the more general setting of simultaneous-
choice stochastic games. We refer to Secchi and Sudderth [2001], Chatterjee
et al. [2004c, 2006] and Ummels and Wojtczak [2009] for more details.

5.2.1 Games with Borel measurable payoffs

A payoff is a bounded1 B-measurable function f : Run(G) → R. Observe
that for every pair of strategies (σ, π) ∈ Σ × Π and every initial probabil-
ity distribution μ on V , the function fσ,π

μ : Run(G(σ,π)
μ) → R defined by

fσ,π
μ (w) = f(wG) is a random variable. Thus, every payoff f determines the

associated yield defined by

yieldf (G(σ,π)
μ) = E(fσ,π

μ).

As observed by Maitra and Sudderth [1998], the determinacy result for
Blackwell games achieved by Martin [1998] implies that for every vertex
v ∈ V we have the following:

sup
σ∈Σ

inf
π∈Π

E(fσ,π
v) = inf

π∈Π
sup
σ∈Σ

E(fσ,π
v). (5.1)

1 A real-valued function f is bounded if there is b ∈ R such that −b ≤ f(x) ≤ b for every x in the
domain of f .

Turn-Based Stochastic Games 153

Hence, every vertex v ∈ V has its f-value , denoted by valf (v, G) (or just
by valf (v) if G is understood), which is defined by Equality (5.1). Note that
this result holds without any additional assumptions about the game G. In
particular, G may have infinitely many vertices and some (or all) of them
may have infinitely many outgoing transitions.

Remark It is worth noting that the result presented by Maitra and Sud-
derth [1998] is even more general and holds also for concurrent stochastic
games (where both players make their choice simultaneously) with an arbi-
trary (not necessarily countable) action and state spaces. The only require-
ment is that f is a bounded B-measurable function and both players choose
their actions at random according to finitely additive probability measures on
the power sets of their respective action sets. This can be used, e.g., to show
that vertices in various types of timed stochastic games have an f -value.

An important subclass of payoff functions are qualitative payoffs which
simply classify each run as good or bad according to some criteria. The good
runs are assigned 1, and the bad ones are assigned 0. General (not necessarily
qualitative) payoffs are also called quantitative payoffs.

Note that a qualitative payoff f is just a characteristic function of some
Borel set Bf ⊆ Run(G). For every pair of strategies (σ, π) ∈ Σ×Π and every
initial distribution μ we have that

E(fσ,π
μ) = Pμ({w ∈ Run(G(σ,π)

μ) | wG ∈ Bf}).

Hence, player � and player ♦ in fact try to maximise and minimise the
probability of all runs in Bf , respectively.

Observe that Equality (5.1) does not guarantee the existence of optimal

strategies for player � and player ♦ which would achieve the yield valf (v)
or better against every strategy of the opponent. As we shall see, optimal
strategies do not exist in general, but they may exist in some restricted cases.
On the other hand, Equality (5.1) does imply the existence of ε-optimal
strategies for an arbitrarily small ε > 0.

Definition 5.3 Let ε ≥ 0. A strategy σ̂ ∈ Σ is an ε-optimal maximising

strategy in a vertex v ∈ V if infπ∈Π E(f σ̂,π
v) ≥ valf (v) − ε. Similarly, a

strategy π̂ ∈ Π is an ε-optimal minimising strategy in a vertex v ∈ V if
supσ∈Σ E(fσ,π̂

v) ≤ valf (v) + ε. Strategies that are 0-optimal are optimal .

Qualitative payoffs

Let C = {c1, . . . , cn} be a finite set of colours, and ν : V → 2C a valuation .
An important and well-studied class of qualitative payoffs are characteristic

154 Antońın Kučera

functions of ω-regular subsets of Run(G). The membership in an ω-regular
set of runs is determined by one of the acceptance conditions listed below.
These conditions correspond to acceptance criteria of finite-state automata
over infinite words (see Section 5.2.2 for more details).

• Reachability and safety. A run w ∈ Run(G) satisfies the reachability
condition determined by a colour c ∈ C if c ∈ ν(w(i)) for some i ≥ 0. The
safety condition determined by c is dual, i.e., c �∈ ν(w(i)) for all i ≥ 0.

• Büchi and co-Büchi. A run w ∈ Run(G) satisfies the Büchi condition
determined by a colour c ∈ C if c ∈ ν(w(i)) for infinitely many i ≥ 0. The
co-Büchi condition is dual, i.e., there are only finitely many i ≥ 0 such
that c ∈ ν(w(i)).

• Rabin, Rabin-chain, and Street. Let Pairs = {(c1, d1), . . . , (cm, dm)}
be a finite set of pairs of colours. A run w ∈ Run(G) satisfies the Rabin
condition determined by Pairs if there is (c, d) ∈ Pairs such that w

satisfies the Büchi condition determined by d and the co-Büchi condition
determined by c. The Street condition determined by Pairs is dual to
Rabin, i.e., for every (c, d) ∈ Pairs we have that w satisfies the co-Büchi
condition determined by d or the Büchi condition determined by c.

For a given colour c, let V (c) be the set of all v ∈ V such that c ∈ ν(v).
The Rabin-chain (or parity) condition is a special case of the Rabin
condition where Pairs and ν satisfy V (c1) ⊂ V (d1) ⊂ · · · ⊂ V (cm) ⊂
V (dm).

• Muller. Let M ⊆ 2C be a set of subsets of colours. A run w ∈ Run(G)
satisfies the Muller condition determined by M if the set of all c ∈ C such
w satisfies the Büchi condition determined by c is an element of M .

Let us note that ω-regular sets of runs are relatively simple in the sense that
they are contained in the first two levels of the Borel hierarchy (the sets of
runs satisfying the reachability and safety conditions are in the first level).

Quantitative payoffs

Quantitative payoff functions can capture more complicated properties of
runs that are particularly useful in performance and dependability analysis
of stochastic systems.

Let r : V → R be a bounded function which to every vertex v assigns the
reward r(v), which can be intuitively interpreted as a price paid by player ♦
to player � when visiting v. The limit properties of rewards that are paid
along a given run are captured by the following payoff functions:

• Limit-average payoff (also mean-payoff) assigns to each w ∈ Run(G)

Turn-Based Stochastic Games 155

the average reward per vertex visited along w. For every n ≥ 1, let
avgn(w) = 1

n

∑n−1
i=0 r(w(i)). Since limn→∞ avgn(w) may not exist for a

given run w, the mean-payoff function appears in two flavours, defined as
follows:

avg sup(w) = lim sup
n→∞

avgn(w) avg inf (w) = lim inf
n→∞

avgn(w).

Let us note that if the players play in a sufficiently ‘weird’ way, it may
happen that avg sup(w) �= avg inf (w) for all runs w in a given play, even
if the underlying game G has just two vertices.

Mean-payoff functions were introduced by Gillette [1957]. For finite-state
games, it is sometimes stipulated that the aim of player � is to maximise
the expectation of avg sup and the aim of player ♦ is to minimise the
expectation of avg inf . For finite-state games, we have that

sup
σ∈Σ

inf
π∈Π

E(avg supσ,π
v) = inf

π∈Π
sup
σ∈Σ

E(avg inf σ,π
v) (5.2)

and there are MD strategies σ̂ ∈ Σ and π̂ ∈ Π such that
infπ∈Π E(avg supσ̂,π

v) and supσ∈Σ E(avg inf σ,π̂
v) are equal to the value de-

fined by Equality (5.2) (see Gillette [1957], Liggett and Lippman [1969]).
Note that Equality (5.2) does not follow from Equality (5.1) and is

invalid for infinite-state games. To see this, consider an arbitrary sequence
(ai)∞i=0 such that ai ∈ {0, 1} and

Ainf = lim inf
n→∞

1
n

n−1∑
i=0

ai < lim sup
n→∞

1
n

n−1∑
i=0

ai = Asup.

This sequence can be encoded as a game with countably many vertices
v0, v1, . . . where vi �→ vi+1 and r(vi) = ai for all i ≥ 0. Obviously, for all
(σ, π) ∈ Σ×Π we have that

E(avg inf σ,π
v0

) = Ainf < Asup = E(avg supσ,π
v0

)

which means that Equality (5.2) does not hold. Also observe that
valavg inf (v0) �= valavg sup(v0).

• Discounted payoff assigns to each w ∈ Run(G) the sum of discounted
rewards

∞∑
i=0

di · r(w(i))

where 0 < d < 1 is a discount factor. Discounting formally captures the
natural idea that the far-away future is not as important as the near future.

156 Antońın Kučera

Observe that the above series converges absolutely which is mathematically
convenient.

• Weighted reachability payoff assigns to every run w either 0 (if w does
not visit a target vertex) or the reward of the first target vertex visited
by w. Here, it is usually assumed that r is positive. One can also consider
a discounted reachability payoff which is a variant of discounted payoff
where r(v) is either 1 or 0 depending on whether v is a target vertex or
not.

• lim-max and lim-min payoffs, which assigns to each w ∈ Run(G) ei-
ther the maximal or the minimal reward which appears infinitely often
along w. More precisely, we assume that r takes only finitely many values,
and define lim-max (w) and lim-min(w) as the max and min of the set
{x ∈ R | r(w(i)) = x for infinitely many i ≥ 0}, respectively.

The presented list of Borel measurable payoffs contains only selected concep-
tual representatives and it is surely not exhaustive.

The problems of interest

For a given class of turn-based stochastic games G and a given class of payoff
functions F , we are interested in answering the following basic questions:

(1) Do optimal strategies exist for all G ∈ G and f ∈ F?
(2) What is the type of optimal and ε-optimal strategies?
(3) Can we compute/approximate valf (v)?
(4) Can we compute optimal and ε-optimal strategies?

If the answer to Question (1) is negative, we also wonder whether the
existence of an optimal strategy in a given vertex is decidable and what is
the complexity of this problem.

Optimal strategies (if they exist) may require memory and/or randomisa-
tion. A full answer to Question (2) should provide an optimal upper bound
on the size of the required memory. It can also happen that optimal strategies
require memory or randomisation, but not necessarily both.

Question (3) can also be reformulated as a decision problem. For a given
rational constant �, we ask whether valf (v) is bounded by � (from above or
below). In particular, if f is a qualitative payoff, it is often important to know
whether valf (v) is positive or equal to one, and this special qualitative variant
of the problem tends to be computationally easier. If G is a class of infinite-
state games, valf (v) can be irrational even if all transition probabilities
are rational and f is reachability payoff (a simple example is presented in

Turn-Based Stochastic Games 157

Section 5.3). In such cases, all we can hope for is an efficient algorithm which
approximates valf (v) up to an arbitrarily small given precision.

Question (4) also requires special attention in the case of infinite-state
games, because then even MD strategies do not necessarily admit a finite
description. Since the vertices of infinite-state games typically carry some
algebraic structure, optimal strategies may depend just on some finite infor-
mation gathered by analysing the structure of vertices visited along a run in
a play.

The existing results

In this section we give a short summary of the existing results about turn-
based stochastic games with Borel measurable payoffs. We start with finite-
state games.

In general, optimal strategies in finite-state games with the Borel mea-
surable payoff functions introduced in the previous sections exist, do not
need to randomise, and are either memoryless or finite-memory. In some
cases, memory can be ‘traded’ for randomness (see Chatterjee et al. [2004a]).
The values are rational (assuming that transition probabilities in games are
rational) and computable. The main techniques for establishing these results
are the following:

• Strategy improvement. This technique was originally developed for
general stochastic games (see Hoffman and Karp [1966]). An initial strategy
for one of the players is successively improved by switching it at positions
at which the current choices are not locally optimal.

• Value iteration. The tuple of all values is computed/approximated
by iterating a suitable functional on some initial vector. For example,
the Bellman functional Γ defined in Section 5.3.1 can be used to com-
pute/approximate the values in games with reachability payoffs.

• Convex optimisations. These methods are particularly useful for MDPs
(see Puterman [1994], Filar and Vrieze [1996]). For example, the tuple of
values in MDPs with reachability payoffs is computable in polynomial time
by a simple linear program (see below).

• Graph-theoretic methods. Typically, these methods are used to design
efficient (polynomial-time) algorithms deciding whether the value of a
given vertex is equal to one (see, e.g., Chatterjee et al. [1994]).

The individual payoff functions are discussed in greater detail below.
Reachability. Turn-based stochastic games with reachability payoffs were

first considered by Condon [1992] where it was shown that the problem of
whether val(v) > 1

2 for a given vertex v is in NP∩coNP. It was also observed

158 Antońın Kučera

that both players have optimal MD strategies. The algorithm proposed by
Condon [1992] requires transformation of the original game into a stopping

game where local optimality equations admit a unique solution (i.e., the
functional Γ defined in Section 5.3.1 has a unique fixed-point) which is a
tuple of rational numbers of linear size. The tuple can then be guessed and
verified (which leads to the NP ∩ coNP upper bound), or computed by a
quadratic program with linear constraints. This algorithm is exponential
even if the number of random vertices is fixed. Randomised algorithms with
sub-exponential expected running time were proposed by Halman [2007]
and Ludwig [1995]. A deterministic algorithm for computing the values and
optimal strategies with O(|V©|! · (|V | · |�→|+ |p|)) running time, where |p| is
the maximum bit length of a transition probability, was recently proposed
by Gimbert and Horn [2008]. This algorithm is polynomial for every fixed
number of random vertices.

Let us note that the exact complexity of the problem of whether val(v) > 1
2

remains unsettled, despite substantial effort of the community. Since the
problem belongs to NP∩coNP, it is not likely to be NP or coNP complete.
At the same time, it is not known to be in P. On the other hand, the
qualitative variant of the problem (i.e., the question whether val(v) = 1) is
solvable in polynomial time (this follows, e.g., from a more general result
about Büchi objectives achieved by de Alfaro and Henzinger [2000]). For
MDPs, the values and optimal strategies are computable in polynomial time
(both in the maximising and minimising subcase) by linear programming.
Given a MDP G = (V, �→, (V�, V©),Prob) where V = {v1, . . . , vn} and vn is
the only target vertex, the tuple of all val(vi) is computable by the following
program (a correctness proof can be found in, e.g., Filar and Vrieze [1996]):

minimise y1 + · · ·+ yn

subject to
yn = 1
yi ≥ yj for all vi �→ vj where vi ∈ V� and i < n

yi =
∑

vi
x�→vj

x · yj for all vi ∈ V©, i < n

yi ≥ 0 for all i ≤ n.

An optimal maximising strategy can be constructed in polynomial time even
naively (i.e., for each v ∈ V� we successively identify a transition v �→ v′ such
that the tuple of values does not change when the other outgoing transitions
of v are removed).

(co-)Büchi. In turn-based stochastic games with Büchi and co-Büchi
payoffs, both players have optimal MD strategies, the problem of whether
val(v) ≥ � for a given rational � ∈ [0, 1] is in NP ∩ coNP, and the problem

Turn-Based Stochastic Games 159

of whether val(v) = 1 is P-complete (see Chatterjee et al. [2004b], de Alfaro
and Henzinger [2000]).

Rabin-chain (parity). In turn-based stochastic games with Rabin-chain
(parity) payoffs, both players still have optimal MD strategies (see McIver and
Morgan [2002], Chatterjee et al. [2004b]). The problem of whether val(v) ≥ �

for a given rational � ∈ [0, 1] is in NP ∩ coNP, and this is currently the
best upper bound also for the problem of whether val(v) = 1 (see Chatterjee
et al. [2004b]).

Rabin and Street. In turn-based stochastic games with Rabin payoffs,
player � has an optimal MD strategy (see Chatterjee et al. [2005]). This
does not hold for player ♦, as demonstrated by the following simple example:

ua v ub

Consider the Rabin condition {(a, b), (b, a)}, where ν(ua) = {a}, ν(ub) = {b},
and ν(v) = ∅. Obviously, val(v) = 0, but an optimal minimising strategy
must ensure that both ua and ub are visited infinitely often, which is not
achievable by a MD strategy.

Consequently, the problem of whether val(v) ≥ � is in NP for Rabin payoffs.
Since the problem of whether val(v) = 1 is NP-hard (see Emerson and
Jutla [1988]), both problems are NP-complete. Since the Street acceptance
condition is dual to Rabin, this also implies coNP-completeness of the two
problems for Street payoffs.

Muller. In turn-based stochastic games with Muller payoffs, both players
have optimal FD strategies, and the memory cannot be traded for randomness
(i.e., the players do not necessarily have MR optimal strategies). To see
this, consider the following game, where ν(ua) = {a}, ν(v) = ν(u) = ∅,
ν(ub) = {b}, ν(uc) = {c}, and the Muller condition is {{b}, {a, c}, {a, b, c}}
(the example is taken from Chatterjee et al. [2004a]):

ua v u

ub

uc

It is easy to check that val(v) = 1, and player � has a FD optimal strategy
which in every state wv selects either v �→ ua or v �→ u, depending on
whether the last vertex of w is uc or not, respectively. It is also easy to see
that player � does not have a MR optimal strategy.

For Muller payoffs, the problem of whether val(v) ≥ � is

160 Antońın Kučera

PSPACE-complete, and the same holds for the problem of whether
val(v) = 1 (see Chatterjee [2007], Hunter and Dawar [2005]).

Mean-payoff and discounted payoff. In mean-payoff and discounted payoff
turn-based stochastic games, both players have optimal MD strategies (see
Gillette [1957], Liggett and Lippman [1969]), and the problem of whether
val(v) ≥ � is in NP∩coNP. We refer to Filar and Vrieze [1996], Neyman and
Sorin [2003] for more comprehensive expositions of algorithms for mean-payoff
and discounted payoff turn-based stochastic games.

Basic properties of the other quantitative payoffs (in particular, lim-min
and lim-max payoffs) are carefully discussed in Chatterjee et al. [2009].

Finally, we give a brief overview of the existing results about infinite-state
turn-based stochastic games. There are basically three types of such games
studied in the literature.

• Recursive stochastic games , also known as stochastic BPA games.
These are games defined over stateless pushdown automata or (equivalently)
1-exit recursive state machines. Roughly speaking, a stochastic BPA game
is a finite system of rules of the form X ↪→ α, where X is a stack symbol
and α is a (possibly empty) sequence of stack symbols. The finitely many
stack symbols are split into three disjoint subsets of symbols that ‘belong’
to player �, player ♦, or the virtual random player. A configuration

is a finite sequence of stack symbols. The leftmost symbol of a given
configuration is rewritten according to some rule, which is selected by the
respective player (for every stochastic stack symbol Y , there is a fixed
probability distribution over the rules of the form Y ↪→ β).

A termination objective is a special type of reachability objective
where the only target vertex is ε (i.e., the empty stack). BPA MDPs and
stochastic BPA games with termination objectives were studied by Etes-
sami and Yannakakis [2005, 2006]. Some of these results were generalised
to reachability objectives by Brázdil et al. [2008] and Brázdil et al. [2009a].
BPA MDPs and stochastic BPA games with positive rewards were studied
by Etessami et al. [2008]. Here, each rule is assigned some fixed reward
r > 0 which is collected whenever the rule is executed, and the objective of
player � is to maximise the expected total reward (which can be infinite).

• Stochastic games with lossy channels. A lossy channel system is a
finite-state automaton equipped with a finite number of unbounded but
unreliable (lossy) channels. A transition may change a control state and
read/write from/to a channel. Since the channels are lossy, an arbitrary
number of messages may be lost from the channels before and after each
transition. A probabilistic variant of lossy channel systems defines a proba-

Turn-Based Stochastic Games 161

bilistic model for message losses. Usually, it is assumed that each individual
message is lost independently with probability λ > 0 in every step. A
stochastic game with lossy channels (SGLC) is obtained by splitting the
control states into two disjoint subsets that are controlled by player � and
player ♦, respectively. However, message losses still occur randomly.

In Baier et al. [2006], it was shown that SGLC with qualitative reach-
ability objectives are decidable. MDPs with lossy channels and various
ω-regular objectives were examined by Baier et al. [2007]. SGLC with
Büchi objectives were studied recently by Abdulla et al. [2008].

• One-counter stochastic games. These are stochastic games generated
by one-counter machines, i.e., finite-state automata equipped with an
unbounded counter which can store non-negative integers. The set of
control states is split into three disjoint subsets controlled by player �,
player ♦, or the random player, who are responsible for selecting one of
the available transitions. One-counter MDPs with various reachability
objectives were recently studied by Brázdil et al. [2010].

5.2.2 Win–lose games

Another important class of zero-sum stochastic turned-based games are
win–lose games where the objective of player � is to satisfy some property
which is either valid or invalid for every play of G (the associated yield
assigns 1 to the plays where the property is valid, and 0 to the other plays).
An important subclass of such properties are temporal objectives that can
be encoded as formulae of suitable temporal logics.

Let ϕ be a formula which is either valid or invalid in every state of every
play of G. We say that a strategy σ ∈ Σ is ϕ-winning in v if for every
strategy π ∈ Π we have that the state v of G

(σ,π)
v satisfies ϕ. Similarly, a

strategy π ∈ Π is ¬ϕ-winning in v if for every σ ∈ Σ we have that the state
v of G

(σ,π)
v does not satisfy ϕ. We say that G (with ϕ) is determined if for

every v ∈ V either player � has a ϕ-winning strategy in v or player ♦ has a
¬ϕ-winning strategy in v.

Temporal logics can be classified as linear-time or branching-time, de-
pending on whether they ‘ignore’ the branching structure of transition systems
or not, respectively (see, e.g., Emerson [1991]). The syntax of these logics
is built upon a countable set Ap = {a, b, c, . . .} of atomic propositions. A
valuation is a function ν : V → 2Ap which to every vertex v assigns the set
ν(v) ⊆ Ap of all atomic propositions that are valid in v. Note that ν can be
naturally extended to the states of a play of G (for every state wv ∈ V ∗V

162 Antońın Kučera

of a play G
(σ,π)
μ we put ν(wv) = ν(v)). For the rest of this section, we fix a

valuation ν.

Linear-time logics

Linear-time logics specify properties of runs in transition systems. For a
given linear-time formula ψ, the associated temporal property is specified by
a constraint on the probability of all runs that satisfy ψ. This constraint is
written as a probabilistic operator P��, where � ∈ {>,≥} and � ∈ [0, 1] is
a rational constant. Thus, we obtain a linear-time objective P��ψ whose
intuitive meaning is ‘the probability of all runs satisfying ψ is �-related to �’.
An important subclass of linear-time objectives are qualitative linear-time

objectives where the constant � is either 0 or 1.
An example of a widely used linear-time logic is LTL, introduced in Pnueli

[1977]. The syntax of LTL formulae is specified by the following abstract
syntax equation:

ψ ::= tt | a | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψ1Uψ2

Here a ranges over Ap. Note that the set Ap(ψ) of all atomic propositions that
appear in a given LTL formula ψ is finite. Every LTL formula ψ determines its
associated ω-language Lψ consisting of all infinite words u over the alphabet
2Ap(ψ) such that u |= ψ, where the relation |= is defined inductively as
follows (recall that the symbol ui, where i ≥ 0, denotes the infinite word
u(i), u(i+1), . . .):

u |= tt
u |= a iff a ∈ u(0)
u |= ¬ψ iff u �|= ψ

u |= ψ1 ∧ ψ2 iff u |= ψ1 and u |= ψ2

u |= Xψ iff u1 |= ψ

u |= ψ1Uψ2 iff uj |= ψ2 for some j ≥ 0 and ui |= ψ1 for all 0 ≤ i < j.

For a given run w of G (or a play of G), we put w |=ν ψ iff ŵ |= ψ, where ŵ

is the infinite word defined by ŵ(i) = ν(w(i)) ∩ Ap(ψ). In the following we
also use Fψ and Gψ as abbreviations for ttUψ and ¬F¬ψ, respectively.

Another important formalism for specifying properties of runs in transition
systems are finite-state automata over infinite words with various acceptance
criteria, such as Büchi, Rabin, Street, Muller, etc. We refer to Thomas [1991]
for a more detailed overview of the results about finite-state automata over
infinite words. Let M be such an automaton with an input alphabet 2Ap(M),
where Ap(M) is a finite subset of Ap. Then M can also be understood as
a ‘formula’ interpreted over the runs of G (or a play of G) by stipulating

Turn-Based Stochastic Games 163

that w |=ν M iff ŵ is accepted by M , where ŵ is the infinite word defined
by ŵ(i) = ν(w(i)) ∩Ap(M). Let us note that every LTL formula ψ can be
effectively translated into an equivalent finite-state automaton Mψ which
accepts the language Lψ. If the acceptance condition is Rabin-chain (or
more powerful), the automaton Mψ can be effectively transformed into an
equivalent deterministic automaton with the same acceptance condition. In
general, the cost of translating ψ into Mψ is at least exponential. On the
other hand, there are properties expressible by finite-state automata that
cannot be encoded as LTL formulae. We refer to Thomas [1991] for more
details.

There is a close connection between linear-time objectives and the ω-regular
payoffs introduced in the previous section. Since this connection has several
subtle aspects that often lead to confusion, it is worth an explicit discussion.
Let M = (Q, 2Ap(M),−→, q0,Acc) be a deterministic finite-state automaton,
where Q is a finite set of control states, 2Ap(M) is the input alphabet, −→ ⊆
Q × 2Ap(M) × Q is a total transition function, and Acc some acceptance
criterion. Then we can construct a synchronous product of the game G and
M , which is a stochastic game G ×M where V × Q is the set of vertices
partitioned into (V�×Q, V♦×Q, V©×Q) and (v, q) �→ (v′, q′) iff v �→ v′ and

q
A−→ q′ where A = ν(q)∩Ap(M). Since M is deterministic and the transition

function of M is total, the probability assignment is just inherited from
G (i.e., (v, q) x�→ (v′, q′) only if v

x�→ v′). Further, the acceptance criterion
of M is translated into the corresponding ω-regular payoff over the runs
of G × M in the natural way. Note that G × M is constructed so that
M just observes the runs of G and the constructed ω-regular payoff just
reflects the accepting/rejecting verdict of this observation. Thus, we can
reduce the questions about the existence and effective constructibility of a
(P��M)-winning strategy for player � in a vertex v of G to the questions
about the value and effective constructibility of an optimal maximising
strategy in the vertex (v, q0) of G ×M . However, this reduction does not
always work completely smoothly, particularly for infinite-state games. Some
of the reasons are mentioned below.

• For infinite-state games, the product G×M is not necessarily definable
in the same formalism as the original game G. Fortunately, most of the
studied formalisms correspond to abstract computational devices equipped
with a finite-state control, which can also encode the structure of M .
However, this does not necessarily work if the finite-state control is trivial
(i.e., it has just one or a fixed number of control states) or if it is required
to satisfy some special conditions.

164 Antońın Kučera

• For infinite-state games, the reduction to ω-regular payoffs described above
can be problematic also because optimal maximising/minimising strategies
in infinite-state games with ω-regular payoffs (even reachability payoffs)
do not necessarily exist. For example, even if we somehow check that the
value of (v, q0) in G ×M is 1, this does yet mean that player � has a
(P=1M)-winning strategy in v.

• For finite-state games, the two problems discussed above usually disappear.
However, there are still some issues related to complexity. In particular,
the results about the type of optimal strategies in G×M do not carry over
to G. For example, assume that we are given a linear-time objective P=1M

where M is a deterministic Rabin-chain automaton. If G has finitely many
states, then G×M is also finite-state and hence we can rely on the results
presented by McIver and Morgan [2002] and Chatterjee et al. [2004b] and
conclude that the value of (v, q0) is computable in time polynomial in
the size of G ×M and there is an optimal maximising MD strategy σ

computable in polynomial time. From this we can deduce that the existence
of a (P=1M)-winning strategy for player � in v is decidable in polynomial
time. However, since the optimal MD strategy σ may depend both on the
current vertex of G and the current state of M , we cannot conclude that
if player � has some (P=1M)-winning strategy in v, then he also has an
MD (P=1M)-winning strategy in v (still, the strategy σ can be translated
into a FD (P=1M)-winning strategy which simulates the execution of M

on the history of a play).

To sum up, linear-time objectives are closely related to ω-regular payoffs,
but the associated problems cannot be seen as ‘equivalent’ in general.

Branching-time logics

Branching-time logics such as CTL, CTL∗, or ECTL∗ (see, e.g., Emerson
[1991]) allow explicit existential/universal quantification over runs. Thus,
one can express that a given path formula holds for some/all runs initiated
in a given state.

In the probabilistic setting, the existential/universal path quantifiers are
replaced with the probabilistic operator P�� introduced in the previous
section. In this way, every (non-probabilistic) branching-time logic determines
its probabilistic counterpart. The probabilistic variants of CTL, CTL∗, and
ECTL∗ are denoted by PCTL, PCTL∗, and PECTL∗, respectively (see
Hansson and Jonsson [1994]).

The syntax of PCTL∗ path and state formulae is defined by the following

Turn-Based Stochastic Games 165

equations:

ψ ::= ϕ | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψ1Uψ2

ϕ ::= tt | a | ¬ϕ | ϕ1 ∧ ϕ2 | P��ψ

Note that all LTL formulae are PCTL∗ path formulae. In the case of PCTL,
the syntax of path formulae is restricted to ψ ::= ϕ | Xψ | ψ1Uψ2. Since the
expressive power of LTL is strictly smaller than that of finite-state automata
over infinite words (see the previous section), the logic CTL∗ can be further
enriched by allowing arbitrary automata connectives in path formulae (see
Wolper [1981]). The resulting logic is known as extended CTL∗ (ECTL∗),
and its probabilistic variant as PECTL∗.

Let G
(σ,π)
μ be a play of G. For every run w ∈ Run(G(σ,π)

μ) and every path
formula ψ we define the relation w |=ν ψ in the same way as in the previous
section, where w |=ν ϕ iff w(0) |=ν ϕ (see below). For every state s of G

(σ,π)
μ

and every state formula ϕ we define the relation s |=ν ϕ inductively as
follows:

s |=ν tt
s |=ν a iff a ∈ ν(s)
s |=ν ¬ϕ iff s �|= ϕ

s |=ν ϕ1 ∧ ϕ2 iff s |=ν ϕ1 and s |=ν ϕ2

s |=ν P��ψ iff Ps({w ∈ Run(s) | w |=ν ψ}) � �

A state formula ϕ is qualitative if each occurrence of the probabilistic operator
in ϕ is of the form P�0 or P�1. General (not necessarily qualitative) state
formulae are also called quantitative.

A branching-time objective is a state formula ϕ of a branching-time
probabilistic temporal logic. Important subclasses of branching-time objec-
tives are PCTL, PCTL∗, and PECTL∗ objectives.

Let us note that state formulae of branching-time probabilistic logics
are sometimes interpreted directly on vertices of Markov decision processes
(see Bianco and de Alfaro [1995]) and stochastic games (see de Alfaro and
Majumdar [2004]). Path formulae are interpreted over the runs of G in
the same way as above, and all state formulae except for P��ψ are also
interpreted in the natural way. Due to the presence of non-determinism
in G, it is not possible to measure the probability of runs in G, and the
probabilistic operator P�� has a different meaning defined as follows:

v |=ν P��ψ iff ∃σ ∈ Σ ∀π ∈ Π : Pv({w ∈ Run(G(σ,π)
v , v) | w |=ν ψ}) � �.

If G is a Markov decision process, then v |=ν P��ψ iff for every strategy τ

166 Antońın Kučera

of the only player we have that

Pv({w ∈ Run(G(τ)
v , v) | w |=ν ψ}) � �. (5.3)

For finite-state MDPs, condition (5.3) is equivalent to

inf
τ
{Pv({w ∈ Run(G(τ)

v , v) | w |=ν ψ})} � � (5.4)

which is exactly the semantics proposed by Bianco and de Alfaro [1995]. For
general (infinite-state) MDPs, conditions (5.3) and (5.4) are not equivalent.

At first glance, one might be tempted to think that v |=ν ψ iff player �
has a ϕ-winning strategy in v. A straightforward induction on the structure
of ϕ reveals that ‘⇒’ holds, but the opposite direction is invalid. To see
this, consider the formula ϕ ≡ (P>0Fa) ∨ (P>0Fb) and the vertex v of the
following game, where ν(ua) = {a} and ν(ub) = {b}:

ua v ub

Intuitively, the formula ϕ says ‘a state satisfying a is reachable, or a state
satisfying b is reachable’. Note that player � has a ϕ-winning strategy in v (in
fact, every strategy of player � is ϕ-winning). However, v �|=ν P>0Fa, because
player ♦ has a strategy which makes the vertex ua unreachable. Similarly,
v �|=ν P>0Fb, and hence v �|=ν ϕ. This means that the model-checking problem
for stochastic games and formulae of probabilistic branching-time logics (i.e.,
the question of whether v |=ν ϕ) is different from the problem of deciding
the winner in stochastic games with branching-time objectives. As we shall
see, this difference is substantial.

The problems of interest

Let G be a class of turn-based stochastic games and Φ a class of temporal
objectives. The most important questions about the games of G and the
objectives of Φ include the following:

(1) Are all games of G determined for all objectives of Φ?
(2) What is the type of winning strategies if they exist?
(3) Who wins in a given vertex?
(4) Can we compute winning strategies?

As we shall see in Section 5.3.2, stochastic games with temporal objectives
are not necessarily determined (even for linear-time objectives). This means
that ‘nobody’ is an eligible answer to Question (3). Since randomisation and
memory can help the players to win, Question (3) can be refined into ‘Does
player � (or player ♦) have a winning strategy of type XY in a given vertex

Turn-Based Stochastic Games 167

v?’ This problem can be decidable even if the existence of some (i.e., HR)
winning strategy in v is undecidable.

The existing results

Finite-state stochastic games with linear-time objectives are rarely studied
explicitly because most of the results can be deduced from the corresponding
results about stochastic games with ω-regular payoffs (see Section 5.2.1). For
infinite-state stochastic games, the relationship between linear-time objectives
and ω-regular payoffs is more subtle. For example, even for reachability
payoffs, the question of whether val(v) = 1 is not the same as the question
of whether player � has a P=1Ft-winning strategy in v, where the atomic
proposition t is satisfied exactly in the target vertices (the details are given
in Section 5.3).

Finite-state turn-based stochastic games with branching-time objectives
were first considered by Baier et al. [2004], where it was shown that winning
strategies for PCTL objectives may require memory and/or randomisation.
Consider the following game, where ν(ua) = {a}, ν(ub) = {b}, and ν(v) = ∅.

ua v ub

Let

• ϕ1 ≡ (P=1Xa) ∧ (P=1Fb)
• ϕ2 ≡ (P>0Xa) ∧ (P>0Xb)
• ϕ3 ≡ (P>0Xa) ∧ (P>0Xb) ∧ (P=1F(P=1Ga)).

Obviously, player � has a ϕi-winning strategy for every i ∈ {1, 2, 3}, and
each such strategy must inevitably use memory for ϕ1, randomisation for
ϕ2, and both memory and randomisation for ϕ3.

In Baier et al. [2004], it was also shown that for PCTL objectives, the
problem of whether player � has a MD ϕ-winning strategy in a given vertex of
a given finite-state MDP is NP-complete. MR strategies for PCTL objectives
were considered by Kučera and Stražovský [2008], where it was shown that
the existence of a ϕ-winning MR strategy in a given vertex is in EXPTIME
for finite-state turn-based stochastic games, and in PSPACE for finite-state
MDPs.

In Brázdil et al. [2006], it was noted that turn-based stochastic games with
PCTL objectives are not determined (for any strategy type). To see this,
consider the following game, where ν(ua) = {a}, ν(ub) = {b}, ν(uc) = {c},
ν(ud) = {d}, and ν(v) = ν(v1) = ν(v2) = ∅.

168 Antońın Kučera

ua v1 ub uc v2 ud

v

1 11 1

1
2

1
2

Let

ϕ ≡
(
P=1F(a ∨ c)

)
∨
(
P=1F(b ∨ d)

)
∨
(
(P>0Fc) ∧ (P>0Fd)

)
.

Assume that player � has a ϕ-winning strategy σ in v. The strategy σ

cannot randomise at v1, because then both of the subformulae P=1F(a ∨ c)
and P=1F(b ∨ d) become invalid in v, and player ♦ can always falsify the
subformula (P>0Fc)∧(P>0Fd). Hence, the strategy σ must choose one of the
transitions v1 �→ ua, v1 �→ ub with probability one. For each of these choices,
player ♦ can falsify the formula ϕ, which means that σ is not ϕ-winning.
Similarly, one can show that player ♦ does not have a ¬ϕ-winning strategy
in v (in particular, note that player ♦ cannot randomise at v2, because this
would make the subformula (P>0Fc) ∧ (P>0Fd) valid).

In Brázdil et al. [2006], it was also shown that for PCTL objectives, the
existence of a ϕ-winning MD strategy for player � in a given vertex of
a finite-state stochastic turn-based game is Σ2 = NPNP-complete, which
complements the aforementioned result for MDPs. Further, it was shown that
the existence of a ϕ-winning HR (or HD) strategy in a given vertex of a finite-
state MDP is highly undecidable (i.e., beyond the arithmetical hierarchy). The
proof works even for a fixed quantitative PCTL formula ξ. The use of a non-
qualitative probability constraint in ξ is in fact unavoidable –as it was shown
later by Brázdil et al. [2008], the existence of a ϕ-winning HR (or HD) strategy
in finite-state MDPs with qualitative PCTL and PECTL∗ objectives is
EXPTIME-complete and 2-EXPTIME-complete, respectively. It is worth
noting that these algorithms are actually polynomial for every fixed qualitative
PCTL or PECTL∗ formula. A HR (or HD) ϕ-winning strategy for player �
may require infinite memory, but it can always be implemented by an
effectively constructible one-counter automaton which reads the history of a
play. To get some intuition, consider the following game, where ν(ua) = {a}
and ν(y) = ∅ for all vertices y different from ua.

Turn-Based Stochastic Games 169

� v r

ua u

d

1
4

3
4

1
4

3
4

Let ϕ ≡ P>0G(¬a ∧ (P>0Fa)), and let σ be a HD strategy which in every
wv selects either v �→ � or v �→ r, depending on whether #d(w)−#u(w) ≤ 0
or not, respectively. Here #d(w) and #u(w) denote the number of occurrences
of d and u in w, respectively. Obviously, the strategy σ can be implemented
by a one-counter automaton. The play G

(σ)
v initiated in v closely resembles a

one-way infinite random walk where the probability of going right is 3
4 and

the probability of going left is 1
4 . More precisely, the play G

(σ)
v corresponds

to the unfolding of the following infinite-state Markov chain (the initial state
is grey):

ua v � d v r d v r

u u

3
4

1
4

3
4

1
4

3
4

1
4

A standard calculation shows that the probability of all w ∈ Run(G(σ)
v)

initiated in v such that w visits a state satisfying a is equal to 1
3 . Note that

for every w ∈ Run(G(σ)
v) initiated in v which does not visit a state satisfying

a we have that w(i) |=ν ¬a ∧ (P>0Fa) for every i ≥ 0. Since the probability
of all such runs is 2

3 , we obtain that the formula ϕ is valid in the state v

of G
(σ)
v . On the other hand, there is no finite-memory ϕ-winning strategy σ̂

in v, because then the play G
(σ̂)
v corresponds to an unfolding of a finite-state

Markov chain, and the formula ϕ does not have a finite-state model (see,
e.g., Brázdil et al. [2008]).

The memory requirements of ϕ-winning strategies for various fragments of
qualitative branching-time logics were analysed by Brázdil and Forejt [2007]
and Forejt [2009]. The decidability/complexity of the existence of HR (or
HD) ϕ-winning strategies in turn-based stochastic games with qualitative
branching-time objectives is still open.

170 Antońın Kučera

5.3 Reachability objectives in games with finitely and
infinitely many vertices

As we have already mentioned, the properties of stochastic games with finitely
and infinitely many vertices are different in many respects. To illustrate this,
we examine the properties of turn-based stochastic games with reachability
objectives in greater detail. Most of the negative results presented in this
section are valid also for the other objectives introduced in Section 5.2.

For the rest of this section, we fix a turn-based stochastic game
G = (V, �→, (V�, V♦, V©),Prob) and a set T ⊆ V of target vertices. The
set of all w ∈ Run(G) which visit a vertex of T is denoted by Reach(T).
Further, for every pair of strategies (σ, π) ∈ Σ×Π and every initial vertex v,
we use P(σ,π)

v (Reach(T)) to denote the probability Pv({w ∈ Run(G(σ,π)
v) |

wG ∈ Reach(T)}).

5.3.1 The existence of a value revisited

Recall that every vertex v of G has a value val(v) defined by Equality 5.1
which now takes the following simple form:

sup
σ∈Σ

inf
π∈Π

P(σ,π)
v (Reach(T)) = inf

π∈Π
sup
σ∈Σ

P(σ,π)
v (Reach(T)). (5.5)

A direct proof of Equality (5.5) is actually simple and instructive. Consider
the following (Bellman) functional Γ : [0, 1]|V | → [0, 1]|V | defined as follows:

Γ(α)(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if v ∈ T ;

sup {α(v′) | v �→ v′} if v �∈ T and v ∈ V�;

inf {α(v′) | v �→ v′} if v �∈ T and v ∈ V♦;∑
v

x�→v′ x · α(v′) if v �∈ T and v ∈ V©.

Since Γ is a monotonic function over a complete lattice ([0, 1]|V |,*), where
* is a component-wise ordering, we can apply the Knaster–Tarski Theorem
(see Tarski [1955]) and conclude that Γ has the least fixed-point μΓ. Observe
that for every v ∈ V we have that

μΓ(v) ≤ sup
σ∈Σ

inf
π∈Π

P(σ,π)
v (Reach(T)) ≤ inf

π∈Π
sup
σ∈Σ

P(σ,π)
v (Reach(T)).

The second inequality follows directly from definitions and it is actually valid
for arbitrary Borel measurable payoffs. The first inequality is obtained by
demonstrating that the tuple of all supσ∈Σ infπ∈Π P(σ,π)

v (Reach(T)) is a
fixed-point of Γ, which is also straightforward. So, it remains to show that

Turn-Based Stochastic Games 171

the inequality

μΓ(v) ≤ inf
π∈Π

sup
σ∈Σ

P(σ,π)
v (Reach(T)) (5.6)

cannot be strict.
Let us first assume that every vertex u ∈ V♦ has a locally optimal

outgoing transition u
a�→ u′ where μΓ(u) = μΓ(u′) (in particular, note that

if u has finitely many outgoing transitions, some of them must be locally
optimal because μΓ is a fixed-point of Γ). Now consider a MD strategy π̂

which in every u ∈ V♦ selects some (fixed) locally optimal outgoing transition
of u. One can easily show that μΓ(v) = supσ∈Σ P

(σ,π̂)
v (Reach(T)) for every

v ∈ V , which implies that Inequality (5.6) is an equality. Further, observe
that π̂ is an optimal minimising strategy in every vertex of G. Thus, we
obtain the following:

Proposition 5.4 If every u ∈ V♦ has a locally optimal outgoing transition,
then there is a MD strategy of player ♦ which is optimal minimising in every
vertex of G.

In the general case when the vertices of V♦ do not necessarily have locally
optimal outgoing transitions (this can of course happen only if G is infinitely
branching), Inequality (5.6) is proven as follows. We show that for every
ε > 0 and every v ∈ V there is a HD strategy π̂ε ∈ Π such that

sup
σ∈Σ

P(σ,π̂ε)
v (Reach(T)) ≤ μΓ(v) + ε.

This implies that Inequality (5.6) cannot be strict. Intuitively, in a given
state wu ∈ V ∗V♦, the strategy π̂ε selects a transition u �→ u′ whose error

μΓ(u) − μΓ(u′) is ‘sufficiently small’. Observe that the error can be made
arbitrarily small because μΓ is a fixed point of Γ. The strategy π̂ε selects
transitions with progressively smaller and smaller error so that the ‘total
error’ P(σ,π̂ε)

v (Reach(T))−μΓ(v) stays bounded by ε no matter what player �
does. A detailed proof can be found in, e.g., Brázdil et al. [2009a].

If G is finitely branching, then Γ is not only monotonic but also contin-

uous, i.e., Γ(
∨∞

i=0 �yi) =
∨∞

i=0 Γ(�yi) for every infinite non-decreasing chain
�y1 * �y2 * �y3 * · · · in ([0, 1]|V |,*). By the Kleene fixed-point theorem, we
have that μΓ =

∨∞
i=0 Γi(�0), where �0 is the vector of zeros. For every n ≥ 1,

let Reachn(G) be the set of all w ∈ Run(G) such that w(i) ∈ T for some
0 ≤ i < n. A straightforward induction on n reveals that

Γn(�0)(v) = sup
σ∈Σ

inf
π∈Π

P(σ,π)
v (Reachn(T)) = inf

π∈Π
sup
σ∈Σ

P(σ,π)
v (Reachn(T)).

172 Antońın Kučera

Further, for every n ≥ 1 we define HD strategies σn ∈ Σ and πn ∈ Π as
follows:

• The strategies σ1 and π1 are defined arbitrarily.
• For all n ≥ 2 and wv ∈ V ∗V� such that len(wv) < n, the strategy σn

selects a transition v �→ v′ such that Γk(�0)(v′) = max{Γk(�0)(v′′) | v �→ v′′}
where k = n− len(wv).

• For all n ≥ 2 and wv ∈ V ∗V♦ such that len(wv) < n, the strategy πn

selects a transition v �→ v′ such that Γk(�0)(v′) = min{Γk(�0)(v′′) | v �→ v′′}
where k = n− len(wv).

It is easy to prove that for every n ≥ 1

Γn(�0)(v) = inf
π∈Π

P(σn,π)
v (Reachn(T)) = sup

σ∈Σ
P(σ,πn)

v (Reachn(T)).

A direct corollary to these observations is the following:

Proposition 5.5 If G is finitely branching, then for all v ∈ V and ε > 0
there are n ≥ 0 and a HD strategy σ̂ ∈ Σ such that P(σ̂,π)

v (Reachn(T)) ≥
val(v)− ε for every π ∈ Π.

Finally, let us note that the values in infinite-state games can be irrational,
even if all transition probabilities are equal to 1

2 . To see this, consider the
following Markov chain M, where t is the only target vertex.

t v1
1
2

1
2

1
2

1
2

1
2

1
2

1
2

Obviously, val(v) is equal to the probability of all w ∈ Run(v) which visit t,
where μv is the initial probability distribution. By inspecting the structure
of M, it is easy to see that val(v) has to satisfy the equation x = 1

2 + 1
2x3.

Actually, val(v) is the least solution of this equation in the interval [0, 1],
which is

√
5−1
2 (the ‘golden ratio’).

5.3.2 Optimal strategies and determinacy

In this section we classify the conditions under which optimal strategies exist,
analyse the type of optimal strategies, and resolve the determinacy of games
with P��Ft objectives.

The properties of optimal minimising strategies are summarised in the
next proposition.

Turn-Based Stochastic Games 173

uv

tt′

11

1

1
2

1
2

s1
1
2

1
2

s2
1
2

1
2

s3
1
2

1
2

s4
1
2

1
2

si
1
2

1
2

Figure 5.2 An optimal minimising strategy does not necessarily exist.

Proposition 5.6 Let G be a stochastic game with a reachability objective
associated to a set of target vertices T . Let v be a vertex of G. Then

(a) an optimal minimising strategy in v does not necessarily exist; and if it
exists, it may require infinite memory;

(b) an ε-optimal minimising strategy in v may require infinite memory for
every fixed ε ∈ (0, 1);

(c) if G is finitely branching, then there is a MD strategy which is optimal
minimising in every vertex of G.

A counterexample for claims (a) and (b) is given in Figure 5.2, where t, t′

are the only target vertices. Observe that val(u) = 0, but there is no optimal
minimising strategy in u. Further, observe that for each fixed ε ∈ (0, 1),
every ε-optimal minimising strategy π in u must employ infinitely many
transitions of the form u �→ si (otherwise, the target vertex t would be
inevitably reached with probability 1). Hence, π requires infinite memory.
Finally, note that val(v) = 1

2 and there is an optimal minimising strategy π′

in v which requires infinite memory (the strategy π′ must ensure that the
probability of reaching a target vertex from u is at most 1

2 , because then
player � does not gain anything if she uses the transition v �→ u; hence, π′

requires infinite memory). Claim (c) follows directly from Proposition 5.4.
The properties of optimal maximising strategies are remarkably different

from those of optimal minimising strategies. The most notable (and perhaps
somewhat surprising) difference is that an optimal maximising strategy may
require infinite memory, even in finitely branching games.

Proposition 5.7 Let G be a stochastic game with a reachability objective
associated to a set of target vertices T . Let v be a vertex of G. Then

(a) an optimal maximising strategy in v does not necessarily exist even if G

is finitely branching;

174 Antońın Kučera

v

1

1
2

1
2

1

1
2

1
2

1

1
2

1
2

1

1
2

1
2

1

1
2

Figure 5.3 An optimal maximising strategy does not necessarily exist

(b) an optimal maximising strategy in v (if it exists) may require infinite
memory even if G is finitely branching;

(c) if G has finitely many vertices, then there is a MD strategy which is
optimal maximising in every vertex of G.

A counterexample for claim (a) is given in Figure 5.3 (target vertices are grey).
Observe that val(v) = 1 but there is no optimal maximising strategy in v.
An example demonstrating that an optimal maximising strategy may require
infinite memory (originally due to Brožek [2009]) is given in Figure 5.4. The
outgoing transitions of the vertex v̂ are the same as the outgoing transitions
of the vertex v in Figure 5.3 and they are not shown in the picture. Observe
that val(v̂) = 1 and hence val(ei) = 1 for all i ≥ 1. Further, we have that
val(si) = 1 − (1

2)i for all i ≥ 1, and hence also val(di) = 1 − (1
2)i for all

i ≥ 1. From this we get val(v) = 2
3 . Also observe that player � has a HD

optimal maximising strategy σ which simply ensures that player ♦ cannot
gain anything by using transitions di �→ ei. That is, whenever the vertex v̂ is
visited, the strategy σ finds a di stored in the history of a play, and starts to
behave as an ε-optimal maximising strategy in v̂, where ε < (1

2)i. Thus, σ

achieves the result 2
3 or better against every strategy of player ♦. However,

for every finite-memory strategy σ̂ of player � there is a fixed constant
P σ̂ < 1 such that P(σ̂,π)

v̂ (Reach(T)) ≤ P σ̂ for every π ∈ Π. Since P σ̂ < 1,
there surely exists j ≥ 1 such that P σ̂ < 1− (1

2)k for all k > j. Now let π̂ be
a MD strategy of player ♦ which in di selects either the transition di �→ ei or
di �→ si, depending on whether i ≥ j or not, respectively. Now one can easily
check that P(σ̂,π̂)

v (Reach(T)) < 2
3 , which means that σ̂ is not an optimal

maximising strategy in v.
Let us note that Claim (b) of Proposition 5.7 does not hold for MDPs. By

applying Theorem 7.2.11 of Puterman [1994], we can conclude that if there
is some optimal maximising strategy in a vertex v of a (possibly infinitely

Turn-Based Stochastic Games 175

v

d1

e1

s1

1
2

1
2

d2

e2

s2

1
2

1
2

d3

e3

s3

1
2

1
2

d4

e4

s4

1
2

1
2

d5

e5

s5

1
2

1
2

v̂

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure 5.4 An optimal maximising strategy may require infinite memory

branching) MDP G, then there is also an MD optimal maximising strategy
in v.

Claim (c) is not as trivial as it might seem. A naive idea of constructing
an optimal maximising MD strategy just by selecting some value-maximising
transition in every vertex does not work. To see this, consider the following
MDP, where t is the only target vertex:

v u

t

Obviously, val(v) = val(u) = val(t) = 1, but the MD strategy which selects
the transitions v �→ u and u �→ v in the vertices v and u, respectively, is not
optimal maximising. Nevertheless, it is not hard to show that for every vertex
of v ∈ V� there is a transition v �→ v′ such that the other outgoing transitions
of v can be safely removed without influencing the value in any vertex. This
result actually holds for all finitely branching stochastic games. Claim (c)
then follows immediately because if V� is finite, then we can successively fix
such a transition in every v ∈ V�.

Proposition 5.8 Let G = (V, �→, (V�, V♦, V©),Prob) be a finitely branching
stochastic game with a reachability objective associated to a set T ⊆ V . For
every v ∈ V� there is a transition v �→ v′ such that the value of all u ∈ V

176 Antońın Kučera

remains unchanged when all outgoing transitions of v except for v �→ v′ are
deleted from G.

Proof Let v ∈ V�. If v ∈ T , the transition v �→ v′ can be chosen arbitrarily.
Now assume that v �∈ T . For every strategy τ ∈ Σ∪Π we define the (unique)
strategy τ [v] such that τ [v](w) = τ(w′), where w′ is the shortest suffix of w

which is either equal to w or starts with v. Intuitively, τ [v] behaves identically
to τ until the vertex v is revisited. Then, τ [v] ‘forgets’ the history and behaves
as if the play just started in v.

Let us define two auxiliary Borel sets of runs ¬T U v and ¬v UT where

• ¬T U v consists of all w ∈ Run(G) such that w(j) = v for some j > 0 and
w(i) �∈ T for all 1 ≤ i < j;

• ¬v UT consists of all w ∈ Run(G) such that w(j) ∈ T for some j > 0 and
w(i) �= v for all 1 ≤ i < j.

Observe that for all (σ, π) ∈ Σ × Π such that P(σ,π)
v (¬T U v) < 1 we have

that P(σ[v],π[v])
v (Reach(T)) is equal to

∞∑
i=0

(
P(σ,π)

v (¬T U v)
)i · P(σ,π)

v (¬v UT) =
P(σ,π)

v (¬v UT)

1− P(σ,π)
v (¬T U v)

.

For the moment, assume the following equality:

sup
σ∈Σ

inf
π∈Π

P(σ,π)
v (Reach(T)) = sup

σ∈Σ
inf

π∈ΠMD
P(σ[v],π)

v (Reach(T)). (5.7)

Note that for every π ∈ ΠMD we have that π = π[v]. For every σ ∈ Σ and
every transition v �→ v′, let σv �→v′ be the strategy which agrees with σ on all
arguments except for v where σv �→v′(v) selects the transition v �→ v′ with
probability 1. It is easy to check that for every σ ∈ Σ there must be some
σ-good transition v �→ v′ satisfying

inf
π∈ΠMD

P(σ[v],π)
v (Reach(T)) ≤ inf

π∈ΠMD
P(σv �→v′ [v],π)

v (Reach(T)).

For every i ≥ 1, let us fix a strategy σi ∈ Σ such that

inf
π∈ΠMD

P(σi[v],π)
v (Reach(T)) ≥ val(v)− 1

2i
.

Since G is finitely branching, there is a transition v �→ v′ which is σi-good
for infinitely many i’s, and hence the value of v (and therefore also the value
of the other vertices of V) does not change if all outgoing transitions of v

except for v �→ v′ are deleted from G.
So, it remains to prove Equality (5.7). We start with the ‘≥’ direction. Let

Turn-Based Stochastic Games 177

π̂ be the MD optimal minimising strategy which exists by Proposition 5.6.
Then

sup
σ∈Σ

inf
π∈Π

P(σ,π)
v (Reach(T)) = sup

σ∈Σ
P(σ,π̂)

v (Reach(T))

≥ sup
σ∈Σ

P(σ[v],π̂)
v (Reach(T))

≥ sup
σ∈Σ

inf
π∈ΠMD

P(σ[v],π)
v (Reach(T)).

Now assume that the ‘≤’ direction of Equality (5.7) does not hold. Then
there is some ε > 0 such that

(1) there is an ε-optimal maximising strategy σ̂ in v;
(2) for every σ ∈ Σ there is π ∈ ΠMD s.t. P(σ[v],π)

v (Reach(T)) ≤ val(v)−2ε.

Note that condition (2) implies that for every σ ∈ Σ there is π ∈ ΠMD such
that either P(σ,π)

v (¬T U v) = 1, or P(σ,π)
v (¬T U v) < 1 and

P(σ,π)
v (¬v UT)

1− P(σ,π)
v (¬T U v)

≤ val(v)− 2ε.

Now consider the strategy σ̂ of condition (1) and a play initiated in v.
Using condition (2) repeatedly, we obtain a strategy π̂ ∈ Π such that
whenever a state of the form wv is visited in the play G

(σ̂,π̂)
v , then either

P(σ̂,π̂)
wv (¬T U v) = 1, or P(σ̂,π̂)

wv (¬T U v) < 1 and

P(σ̂,π̂)
wv (¬v UT)

1− P(σ̂,π̂)
wv (¬T U v)

≤ val(v)− 2ε.

From this we obtain P(σ̂,π̂)
v (Reach(T)) ≤ val(v)− 2ε which is a contradiction.

Finally, let us consider a temporal objective P��Ft where the atomic
proposition t is valid exactly in the target vertices of T . The next proposi-
tion (taken from Brázdil et al. [2009a]) answers the associated determinacy
question. Again, the answer seems somewhat unexpected.

Proposition 5.9 Let G = (V, �→, (V�, V♦, V©),Prob) be a stochastic
game with a temporal objective P��Ft associated to a subset of target ver-
tices T ⊆ V . Then G is not necessarily determined. However, if G is finitely
branching, then it is determined.

Proof A counterexample for the first part of Proposition 5.9 is easy to
construct. Let Gu and Gv be the games of Figure 5.2 and Figure 5.3, where

178 Antońın Kučera

u and v are the initial vertices of Gu and Gv, and Tu and Tv are the sets
of target vertices of Gu and Gv, respectively. Consider a game G obtained
by taking the disjoint union of Gu and Gv extended with a fresh stochastic
vertex s with two outgoing transitions s

0.5−−→ u and s
0.5−−→ v. The set of target

vertices of G is Tu ∪ Tv, and the initial vertex is s. Since val(u) = 0 and
val(v) = 1, we obtain that val(s) = 1

2 . Now consider the temporal objective
P≥0.5Ft. First, assume that player � has a winning strategy σ̂ in s. Since
player � has no optimal maximising strategy in v, there is a constant P σ̂ < 1

2

such that P(σ̂,π)
s (Reach(Tv)) ≤ P σ̂ for every π ∈ Π. Since val(u) = 0, there

is a strategy π̂ of player ♦ such that P(σ,π̂)
s (Reach(Tu)) < 1

2 − P σ̂ for every
σ ∈ Σ. Hence, P(σ̂,π̂)

s (Reach(Tu ∪ Tv)) < 1
2 which contradicts the assumption

that σ̂ is a winning strategy for player �. Similarly, one can show that there
is no winning strategy for player ♦ which would achieve the negated objective
P<0.5Ft against every strategy of player �.

Now let us assume that G is finitely branching, and let us fix a vertex v

of G. For technical convenience, assume that every target vertex t has only
one outgoing transition t �→ t. The second part of Proposition 5.9 is not
completely trivial, because player � does not necessarily have an optimal
maximising strategy in v even if G is finitely branching. Observe that if
� > val(v), then player � has a (P��Ft)-winning strategy in v (he may use,
e.g., an ε-optimal maximising strategy where ε = (�−val(v))/2). Similarly, if
� < val(v), then player ♦ has a (¬P��Ft)-winning strategy in v. Now assume
that � = val(v). Obviously, it suffices to show that if player ♦ does not have
a (¬P��Ft)-winning strategy in v, then player � has a (P��Ft)-winning
strategy in v. This means to show that

∀π ∈ Π ∃σ ∈ Σ : Pσ,π
v (Reach(T)) � � (5.8)

implies

∃σ ∈ Σ ∀π ∈ Π : Pσ,π
v (Reach(T)) � �. (5.9)

Observe that if � is >, then (5.8) does not hold because player ♦ has an
optimal minimising strategy by Proposition 5.6. For the constraint ≥0, the
statement is trivial. Hence, it suffices to consider the case when � is ≥ and
� = val(v) > 0. Assume that (5.8) holds. We say that a vertex u ∈ V is good
if

∀π ∈ Π ∃σ ∈ Σ : Pσ,π
u (Reach(T)) ≥ val(u). (5.10)

Further, we say that a transition u �→ u′ of G is optimal if either u ∈ V©, or
u ∈ V� ∪ V♦ and val(u) = val(u′). Observe that for every u ∈ V� ∪ V♦ there
is at least one optimal transition u �→ u′, because G is finitely branching.

Turn-Based Stochastic Games 179

Further, note that if u ∈ V� is a good vertex, then there is at least one
optimal u �→ u′ where u′ is good. Similarly, if u ∈ V♦ is good then for every
optimal transition u �→ u′ we have that u′ is good, and if u ∈ V© is good
and u �→ u′ then u′ is good. Hence, we can define a game Ḡ, where the
set of vertices V̄ consists of all good vertices of G, and for all u, u′ ∈ V̄ we
have that (u, u′) is a transition of Ḡ iff u �→ u′ is an optimal transition of G.
The transition probabilities in Ḡ are the same as in G. Now we prove the
following three claims:

(a) For every u ∈ V̄ we have that val(u, Ḡ) = val(u, G).
(b) ∃σ̄ ∈ ΣḠ ∀π̄ ∈ ΠḠ : P σ̄,π̄

v (Reach(T, Ḡ)) ≥ val(v, Ḡ) = �.
(c) ∃σ ∈ ΣG ∀π ∈ ΠG : Pσ,π

v (Reach(T, G)) ≥ �.

Note that Claim (c) is exactly (5.9). We start by proving Claim (a). Let
u ∈ V̄ . Due to Proposition 5.6, there is a MD strategy π ∈ ΠG which is
optimal minimising in every vertex of G (particularly in u) and selects
only the optimal transitions. Hence, the strategy π can also be used in the
restricted game Ḡ and thus we obtain val(u, Ḡ) ≤ val(u, G). Now suppose
that val(u, Ḡ) < val(u, G). By applying Proposition 5.6 to Ḡ, there is an
optimal minimising MD strategy π̄ ∈ ΠḠ. Further, for every vertex t of
G which is not good there is a strategy πt ∈ ΠG such that for every σ ∈
ΣG we have that Pσ,πt

t (Reach(T, G)) < val(u, G) (this follows immediately
from (5.10)). Now consider a strategy π′ ∈ ΠG which for every play of G

initiated in u behaves in the following way:

• As long as player � uses only the transitions of G that are preserved in Ḡ,
the strategy π′ behaves exactly like the strategy π̄.

• When player � uses a transition r �→ r′ which is not a transition in Ḡ

for the first time, then the strategy π′ starts to behave either like the
optimal minimising strategy π or the strategy πr′ , depending on whether
r′ is good or not (observe that if r′ is good, then val(r′, G) < val(r, G)
because r �→ r′ is not a transition of Ḡ).

Now it is easy to check that for every σ ∈ ΣG we have that
Pσ,π′

u (Reach(T, G)) < val(u, G), which contradicts the assumption that u is
good.

Now we prove Claim (b). Due to Proposition 5.5, for every u ∈ V̄ we
can fix a strategy σ̄u ∈ ΣḠ and nu ≥ 1 such that for every π̄ ∈ ΠḠ we
have that P σ̄u,π̄

u (Reachnu(T, Ḡ)) > val(u, Ḡ)/2. For every k ≥ 0, let B(k)
be the set of all vertices u reachable from v in Ḡ via a path of length
exactly k which does not visit T . Observe that B(k) is finite because Ḡ is
finitely branching. Further, for every i ≥ 0 we define a bound mi inductively

180 Antońın Kučera

as follows: m0 = 1, and mi+1 = mi + max{nu | u ∈ B(mi)}. Now we
define a strategy σ̄ ∈ ΣḠ which turns out to be (P≥�Ft)-winning in the
vertex v of Ḡ. For every w ∈ V̄ ∗V̄� such that mi ≤ |w| < mi+1 we put
σ̄(w) = σ̄u(uw2), where w = w1uw2, |w1| = mi − 1 and u ∈ V̄ . Now it
is easy to check that for every i ≥ 1 and every strategy π̄ ∈ ΠḠ we have
that P σ̄,π̄

v (Reachmi(T, Ḡ)) > (1 − 1
2i)�. This means that the strategy σ̄ is

(P≥�Ft)-winning in v.
It remains to prove Claim (c). Consider a strategy σ ∈ ΣG which for every

play of G initiated in v behaves as follows:

• As long as player ♦ uses only the optimal transitions, the strategy σ

behaves exactly like the strategy σ̄.
• When player ♦ uses a non-optimal transition r �→ r′ for the first time, the

strategy σ starts to behave like an ε-optimal maximising strategy in r′,
where ε = (val(r′, G)− val(r, G))/2. Note that since r �→ r′ is not optimal,
we have that val(r′, G) > val(r, G).

It is easy to check that σ is (P≥�Ft)-winning in v.

5.4 Some directions of future research

There are many challenging open problems and emerging lines of research in
the area of stochastic games. Some of them have already been mentioned
in the previous sections. We close by listing a few attractive topics (the
presented list is of course far from being complete).

• Infinite-state games. The existing results about infinite-state games
concern mainly games and MDPs generated by pushdown automata, lossy
channel systems, or one-counter automata (see Section 5.2 for a more
detailed summary). As indicated in Section 5.3, even in the setting of simple
reachability objectives, many questions become subtle and require special
attention. There is a plethora of automata-theoretic models with specific
advantages, and the corresponding games can have specific objectives
relevant to the chosen model. When compared to finite-state games, this
field of research appears unexplored and offers many open problems.

• Games with non-conflicting objectives. It has been argued that
non-zero-sum stochastic games are also relevant for purposes of formal
verification of computer systems (see, e.g., Chatterjee et al. [2004c]). In
this case, the main problem is the existence and computability of Nash
equilibria (see Nash [1950]). Depending on the concrete objectives of the
players, a Nash equilibrium may or may not exist, and there can be several

Turn-Based Stochastic Games 181

equilibrium points. Some existing literature about non-zero-sum stochastic
games is mentioned in Section 5.2. The current knowledge is still limited.

• Games with time. The modelling power of continuous-time stochastic
models such as continuous-time (semi)Markov chains (see, e.g., Norris
[1998], Ross [1996]) or the real-time probabilistic processes of Alur et al.
[1991] can be naturally extended by the element of choice. Thus, we obtain
various types of continuous-time stochastic games. Stochastic games and
MDPs over continuous-time Markov chains were studied by Baier et al.
[2005], Neuhäußer et al. [2009], Brázdil et al. [2009b] and Rabe and
Schewe [2010]. In this context, it makes sense to consider various types
of strategies that measure or ignore the elapsed time, and study specific
types of objectives that can be expressed by, e.g., the timed automata of
Alur and Dill [1994].

The above discussed concepts are to a large extent orthogonal and can be
combined almost arbitrarily. Thus, one can model very complex systems of
time, chance, and choice. Many of the fundamental results are still waiting
to be discovered.

Acknowledgements: I thank Václav Brožek and Tomáš Brázdil for reading a
preliminary draft of this chapter. The work has been supported by the Czech
Science Foundation, grant No. P202/10/1469.

References

P. Abdulla, N. Henda, L. de Alfaro, R. Mayr, and S. Sandberg. Stochastic games
with lossy channels. In Proceedings of FoSSaCS 2008, volume 4962 of Lecture
Notes in Computer Science, pages 35–49. Springer, 2005.

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994. Fundamental Study.

R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time
systems. In Proceedings of ICALP’91, volume 510 of Lecture Notes in Computer
Science, pages 115–136. Springer, 1991.

C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis
for probabilistic systems. In Proceedings of IFIP TCS’2004, pages 493–506.
Kluwer, 2004.

C. Baier, H. Hermanns, J.-P. Katoen, and B. Haverkort. Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov
decision processes. Theoretical Computer Science, 345:2–26, 2005.

C. Baier, N. Bertrand, and P. Schnoebelen. On computing fixpoints in well-structured
regular model checking, with applications to lossy channel systems. In Pro-
ceedings of LPAR 2006, volume 4246 of Lecture Notes in Computer Science,
pages 347–361. Springer, 2006.

182 Antońın Kučera

C. Baier, N. Bertrand, and P. Schnoebelen. Verifying nondeterministic probabilistic
channel systems against ω-regular linear-time properties. ACM Transactions
on Computational Logic, 9(1), 2007.

A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proceedings of FST&TCS’95, volume 1026 of Lecture Notes in
Computer Science, pages 499–513. Springer, 1995.

P. Billingsley. Probability and Measure. Wiley, Hoboken, New Jersey, 1995.
T. Brázdil and V. Forejt. Strategy synthesis for Markov decision processes and

branching-time logics. In Proceedings of CONCUR 2007, volume 4703 of Lecture
Notes in Computer Science, pages 428–444. Springer, 2007.

T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with branching-
time winning objectives. In Proceedings of LICS 2006, pages 349–358. IEEE
Computer Society Press, 2006.

T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Reachability in recursive Markov
decision processes. Information and Computation, 206(5):520–537, 2008.

T. Brázdil, V. Forejt, J. Křet́ınský, and A. Kučera. The satisfiability problem
for probabilistic CTL. In Proceedings of LICS 2008, pages 391–402. IEEE
Computer Society Press, 2008.

T. Brázdil, V. Forejt, and A. Kučera. Controller synthesis and verification for Markov
decision processes with qualitative branching time objectives. In Proceedings
of ICALP 2008, Part II, volume 5126 of Lecture Notes in Computer Science,
pages 148–159. Springer, 2008.

T. Brázdil, V. Brožek, A. Kučera, and J. Obdržálek. Qualitative reachability in
stochastic BPA games. In Proceedings of STACS 2009, volume 3 of Leibniz Inter-
national Proceedings in Informatics, pages 207–218. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2009a. A full version is available at arXiv:1003.0118
[cs.GT].

T. Brázdil, V. Forejt, J. Krčál, J. Křet́ınský, and A. Kučera. Continuous-time
stochastic games with time-bounded reachability. In Proceedings of FST&TCS
2009, volume 4 of Leibniz International Proceedings in Informatics, pages 61–72.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2009b.

T. Brázdil, V. Brožek, K. Etessami, A. Kučera, and D. Wojtczak. One-counter
Markov decision processes. In Proceedings of SODA 2010, pages 863–874.
SIAM, 2010.

V. Brožek. Basic Model Checking Problems for Stochastic Games. PhD thesis,
Masaryk University, Faculty of Informatics, 2009.

K. Chatterjee. Stochastic ω-regular Games. PhD thesis, University of California,
Berkeley, 2007.

K. Chatterjee, M. Jurdziński, and T. Henzinger. Simple stochastic parity games.
In Proceedings of CSL’93, volume 832 of Lecture Notes in Computer Science,
pages 100–113. Springer, 1994.

K. Chatterjee, L. de Alfaro, and T. Henzinger. Trading memory for randomness. In
Proceedings of 2nd Int. Conf. on Quantitative Evaluation of Systems (QEST’04),
pages 206–217. IEEE Computer Society Press, 2004a.

K. Chatterjee, M. Jurdziński, and T. Henzinger. Quantitative stochastic parity
games. In Proceedings of SODA 2004, pages 121–130. SIAM, 2004b.

K. Chatterjee, R. Majumdar, and M. Jurdziński. On Nash equilibria in stochastic
games. In Proceedings of CSL 2004, volume 3210 of Lecture Notes in Computer
Science, pages 26–40. Springer, 2004c.

Turn-Based Stochastic Games 183

K. Chatterjee, L. de Alfaro, and T. Henzinger. The complexity of stochastic Rabin
and Streett games. In Proceedings of ICALP 2005, volume 3580 of Lecture
Notes in Computer Science, pages 878–890. Springer, 2005.

K. Chatterjee, T. Henzinger, and M. Jurdziński. Games with secure equilibria.
Theoretical Computer Science, 365(1–2):67–82, 2006.

K. Chatterjee, L. Doyen, and T. Henzinger. A survey of stochastic games with
limsup and liminf objectives. In Proceedings of ICALP 2009, volume 5556 of
Lecture Notes in Computer Science, pages 1–15. Springer, 2009.

A. Condon. The complexity of stochastic games. Information and Computation, 96
(2):203–224, 1992.

L. de Alfaro and T. Henzinger. Concurrent omega-regular games. In Proceedings of
LICS 2000, pages 141–154. IEEE Computer Society Press, 2000.

L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games.
Journal of Computer and System Sciences, 68:374–397, 2004.

E. Emerson. Temporal and modal logic. Handbook of Theoretical Computer Science,
B:995–1072, 1991.

E. Emerson and C. Jutla. The complexity of tree automata and logics of programs.
In Proceedings of FOCS’88, pages 328–337. IEEE Computer Society Press,
1988.

K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive
stochastic games. In Proceedings of ICALP 2005, volume 3580 of Lecture Notes
in Computer Science,pages 891–903. Springer, 2005.

K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of recursive
Markov decision processes and simple stochastic games. In Proceedings of
STACS 2006, volume 3884 of Lecture Notes in Computer Science, pages 634–
645. Springer, 2006.

K. Etessami, D. Wojtczak, and M. Yannakakis. Recursive stochastic games with
positive rewards. In Proceedings of ICALP 2008, Part I, volume 5125 of Lecture
Notes in Computer Science, pages 711–723. Springer, 2008.

J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, Berlin,
1996.

V. Forejt. Controller Synthesis for Markov Decision Processes with Branching-Time
Objectives. PhD thesis, Masaryk University, Faculty of Informatics, 2009.

G. Gillette. Stochastic games with zero stop probabilities. Contributions to the
Theory of Games, vol III, pages 179–187, 1957.

H. Gimbert and F. Horn. Simple stochastic games with few random vertices are
easy to solve. In Proceedings of FoSSaCS 2008, volume 4962 of Lecture Notes
in Computer Science, pages 5–19. Springer, 2005.

N. Halman. Simple stochastic games, parity games, mean payoff games and dis-
counted payoff games are all LP-type problems. Algorithmica, 49(1):37–50,
2007.

H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

A. Hoffman and R. Karp. On nonterminating stochastic games. Management
Science, 12:359–370, 1966.

P. Hunter and A. Dawar. Complexity bounds for regular games. In Proceedings of
MFCS 2005, volume 3618 of Lecture Notes in Computer Science, pages 495–506.
Springer, 2005.

J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov Chains. Springer, 1976.

184 Antońın Kučera

A. Kučera and O. Stražovský. On the controller synthesis for finite-state Markov
decision processes. Fundamenta Informaticae, 82(1–2):141–153, 2008.

T. Liggett and S. Lippman. Stochastic games with perfect information and time
average payoff. SIAM Review, 11(4):604–607, 1969.

W. Ludwig. A subexponential randomized algorithm for the simple stochastic game
problem. Information and Computation, 117(1):151–155, 1995.

A. Maitra and W. Sudderth. Finitely additive stochastic games with Borel measur-
able payoffs. International Journal of Game Theory, 27:257–267, 1998.

D. Martin. The determinacy of Blackwell games. Journal of Symbolic Logic, 63(4):
1565–1581, 1998.

A. McIver and C. Morgan. Games, probability, and the quantitative μ-calculus. In
Proceedings of LPAR 2002, volume 2514 of Lecture Notes in Computer Science,
pages 292–310. Springer, 2002.

J. Nash. Equilibrium points in N -person games. Proceedings of the National Academy
of Sciences, 36:48–49, 1950.

M. Neuhäußer, M. Stoelinga, and J.-P. Katoen. Delayed nondeterminism in
continuous-time Markov decision processes. In Proceedings of FoSSaCS 2009,
volume 5504 of Lecture Notes in Computer Science, pages 364–379. Springer,
2009.

A. Neyman and S. Sorin. Stochastic Games and Applications. Kluwer, Dordrecht,
2003.

J. Norris. Markov Chains. Cambridge University Press, Cambridge, 1998.
A. Pnueli. The temporal logic of programs. In Proceedings of 18th Annual Symposium

on Foundations of Computer Science, pages 46–57. IEEE Computer Society
Press, 1977.

M. Puterman. Markov Decision Processes. Wiley, Hoboken, New Jersey, 1994.
M. Rabe and S. Schewe. Optimal time-abstract schedulers for CTMDPs and Markov

games. In Eighth Workshop on Quantitative Aspects of Programming Languages,
2010.

S. Ross. Stochastic Processes. Wiley, Hoboken, New Jersey, 1996.
P. Secchi and W. Sudderth. Stay-in-a-set games. International Journal of Game

Theory, 30:479–490, 2001.
L. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39:

1095–1100, 1953.
A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal

of Mathematics, 5(2):285–309, 1955.
W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer

Science, B:135–192, Elsevier, Amsterdam, 1991.
M. Ummels and D. Wojtczak. Decision problems for Nash equilibria in stochastic

games. In Proceedings of CSL 2009, volume 5771 of Lecture Notes in Computer
Science, pages 515–529. Springer, 2009.

P. Wolper. Temporal logic can be more expressive. In Proceedings of 22nd An-
nual Symposium on Foundations of Computer Science, pages 340–348. IEEE
Computer Society Press, 1981.

6

Games with Imperfect Information:
Theory and Algorithms

Laurent Doyen
CNRS and ENS Cachan

Jean-François Raskin
Université Libre de Bruxelles

Abstract

We study observation-based strategies for two-player turn-based games
played on graphs with parity objectives. An observation-based strategy
relies on imperfect information about the history of a play, namely, on the
past sequence of observations. Such games occur in the synthesis of a con-
troller that does not see the private state of the plant. Our main results are
twofold. First, we give a fixed-point algorithm for computing the set of states
from which a player can win with a deterministic observation-based strategy
for a parity objective. Second, we give an algorithm for computing the set
of states from which a player can win with probability 1 with a randomised
observation-based strategy for a reachability objective. This set is of interest
because in the absence of perfect information, randomised strategies are
more powerful than deterministic ones.

6.1 Introduction

Games are natural models for reactive systems. We consider zero-sum two-
player turn-based games of infinite duration played on finite graphs. One
player represents a control program, and the second player represents its
environment. The graph describes the possible interactions of the system,
and the game is of infinite duration because reactive systems are usually not
expected to terminate. In the simplest setting, the game is turn-based and
with perfect information, meaning that the players have full knowledge of
both the game structure and the sequence of moves played by the adversary.
The winning condition in a zero-sum graph game is defined by a set of plays
that the first player aims to enforce, and that the second player aims to avoid.

Figure 6.5 is taken from the final version of Berwanger et al. [2008] that appeared in Information
and Computation 208(10), pp. 1206-1220, ISSN: 0890-5401. It is republished here by permission of
Elsevier.

186 Laurent Doyen and Jean-François Raskin

H

T

H

1

2

3

#
H
:2

#
T
:1

flip

1

2

3

Figure 6.1 The 3-coin game

We focus on ω-regular sets of plays expressed by the parity condition (see
Section 6.2) and we briefly present properties and algorithmic solutions for
such games. The theory and algorithms for games with perfect information
has been extensively studied by Martin [1975], Emerson and Jutla [1991],
Thomas [1995, 2002] and Henzinger [2007].

Turn-based games of perfect information make the strong assumption that
the players can observe the state of the game and the previous moves before
playing. This is however unrealistic in the design of reactive systems because
the components of a system have an internal state that is not visible to the
other components, and because their execution is concurrent, each compo-
nent choosing moves independently of the others. Such situations require
us to introduce games with imperfect information where the players have
partial information about the play. We illustrate the games with imperfect
information with the 3-coin game, shown in Figure 6.1.

Three coins c1, c2, c3 are arranged on a table, either head or tail up.
Player 1 does not see the coins, but he is informed of the number of
heads (H) and tails (T). The coins are manipulated by Player 2. The
objective of Player 1 is to have all coins head up (HHH) while avoiding
at all cost a configuration where all coins show tail (TTT). The game is
played as follows. Initially, Player 2 chooses a configuration of the coins
with two heads and one tails. Then, the following rounds are played:
Player 1 can choose one coin in the set {c1, c2, c3} and ask Player 2 to
toggle that coin. Player 2 must execute the choice of Player 1 and he
may further decide to exchange the positions of the two other coins. The
game stops whenever the three coins are all head up (Player 1 wins) or
all tail up (Player 2 wins). Otherwise Player 2 announces the number of
heads and tails, and the next round starts.

This is a game with imperfect information for Player 1 as she does not know

Games with Imperfect Information: Theory and Algorithms 187

the exact position of the coins, but only the number of heads and tails. In this
game, does Player 1 have a strategy such that for all strategies of Player 2,
the game reaches HHH and avoids TTT? We are interested in observation-

based strategies which rely on the information available to Player 1. In fact,
Player 1 has no deterministic observation-based strategy to win the 3-coin

game, because Player 2 can always find a spoiling counter-strategy using his
ability to exchange coins after Player 1’s move. If we do not allow Player 2
to exchange the coins, then Player 1 has a deterministic observation-based
winning strategy consisting in successively trying to toggle every coin. This
strategy requires memory and it is easy to see that memory is necessary to
win this game. On the other hand, if we allow Player 1 to take his decision
using a source of randomisation, then she would be able to win the original
3-coin game with probability 1. This shows that randomised strategies are
in general more powerful than deterministic strategies.

We study in this chapter mathematical models and algorithms for games
with imperfect information. The model that we consider is asymmetric in
the sense that Player 1 has imperfect information about the state while
Player 2 has perfect knowledge (Reif [1984], Chatterjee et al. [2007], De
Wulf et al. [2006]). This model is useful for the design of control programs
embedded in an environment that provides observations about its state via
shared variables or sensors. We discuss the asymmetry of the definition
in Section 6.3.1 and we argue that the existence of deterministic winning
strategies for Player 1 does not depend on the ability or not for Player 2 to
see the exact position of the game. In the rest of Section 6.3, we present the
theory and algorithms to decide the existence of observation-based winning
strategies. We use a reduction of games with imperfect information to games
with perfect information, and we exploit the structure of this reduction
to obtain a tailored data-structure and symbolic algorithms. We focus on
reachability and safety objectives which ask Player 1 to respectively reach
and avoid a designated set of target configurations. For parity objectives,
we choose to provide a reduction to safety games. We also briefly present
algorithms to construct winning strategies.

In Section 6.4, we introduce randomised observation-based strategies and
we present an algorithmic solution for reachability and Büchi objectives. The
algorithm computes the set of winning positions of the game and constructs
a randomised observation-based winning strategy.

188 Laurent Doyen and Jean-François Raskin

6.2 Games with perfect information

Game graphs A game graph is a tuple G = 〈L, lI ,Σ,Δ〉, where L is a
finite set of states, lI ∈ L is the initial state, Σ is a finite alphabet of actions,
and Δ ⊆ L × Σ × L is a set of labelled transitions. We require the game
graph G to be total, i.e., for all � ∈ L and all σ ∈ Σ, there exists �′ ∈ L such
that (�, σ, �′) ∈ Δ.

The turn-based game on G is played by two players for infinitely many
rounds. The first round starts in the initial location lI of the game graph. In
each round, if the current location is �, Player 1 chooses an action σ ∈ Σ,
and then Player 2 chooses a location �′ such that (�, σ, �′) ∈ Δ. The next
round starts in �′.

Plays and strategies A play in G is an infinite sequence π = �0�1 . . . such
that �0 = lI , and for all i ≥ 0, there exists σi ∈ Σ such that (�i, σi, �i+1) ∈ Δ.
We denote by Inf(π) the set of locations that occur infinitely often in π. A
history is a finite prefix π(i) = �0 . . . �i of a play, and its length is |π(i)| = i.
We denote by Last(π(i)) = �i the last location in π(i).

A deterministic strategy in G for Player 1 is a function α : L+ → Σ that
maps histories to actions, and for Player 2 it is a function β : L+ × Σ → L

such that for all π ∈ L+ and all σ ∈ Σ, we have (Last(π), σ, β(π, σ)) ∈ Δ.
We denote by AG and BG the set of all Player 1 and Player 2 strategies in
G, respectively. A strategy α ∈ AG is memoryless if Last(π) = Last(π′)
implies α(π) = α(π′) for all π, π′ ∈ L+, that is the strategy only depends on
the last location of the history. We define memoryless strategies for Player 2
analogously.

The outcome of deterministic strategies α (for Player 1) and β (for
Player 2) in G is the play π = �0�1 . . . such that σi = α(π(i)) and �i+1 =
β(π(i), σi) for all i ≥ 0. This play is denoted outcome(G, α, β). A play π is
consistent with a deterministic strategy α for Player 1 if π = outcome(G, α, β)
for some deterministic strategy β for Player 2. We denote by Outcome1(G, α)
the set of plays that are consistent with α. Plays that are consistent with a
deterministic strategy for Player 2 and the set Outcome2(G, β) are defined
analogously.

Objectives An objective for a game graph G = 〈L, lI , Σ, Δ〉 is a set ϕ ⊆ Lω.
We denote by ϕ = Lω \ ϕ the complement of ϕ. A deterministic strategy
α for Player 1 (resp. β for Player 2) is surely-winning for an objective ϕ

in G if Outcome1(G, α) ⊆ ϕ (resp. if Outcome2(G, β) ⊆ ϕ). We consider the
following objectives:

Games with Imperfect Information: Theory and Algorithms 189

• Reachability and safety objectives. Given a set T ⊆ L of target locations,
the reachability objective Reach(T) = {�0�1 . . . | ∃k ≥ 0 : �k ∈ T }
requires that an observation in T is visited at least once. Dually, the
safety objective Safe(T) = {�0�1 . . . | ∀k ≥ 0 : �k ∈ T } requires that
only locations in T are visited.

• Büchi and co-Büchi objectives. Given a set T ⊆ L of target locations,
the Büchi objective Buchi(T) = {π | Inf(π) ∩ T �= ∅} requires that at
least one location in T is visited infinitely often. Dually, the co-Büchi

objective coBuchi(T) = {π | Inf(π) ⊆ T } requires that only locations in
T are visited infinitely often.

• Parity objectives. For d ∈ N, let pr : L → {0, 1, . . . , d} be a priority

function that maps each location to a non-negative integer priority.
The parity objective Parity(pr) = {π | min{pr(�) | � ∈ Inf(π)} is even}
requires that the minimal priority occurring infinitely often is even.

Given a location �̂, we also say that Player i (i = 1, 2) is surely-winning
from �̂ (or that �̂ is surely-winning) for an objective ϕ in G if Player i has
a surely-winning strategy in for ϕ in the game Ĝ = 〈L, �̂,Σ,Δ〉 where �̂ is
the initial location. A game is determined if when player i does not have a
surely-winning strategy from a location � for an objective ϕ, then Player 3− i

has a surely-winning strategy from � for the complement objective ϕ.

Exercise 6.1 Prove the following:

(a) Büchi and co-Büchi objectives are special cases of parity objectives.
(b) The complement of a parity objective is again a parity objective.

The following result shows that (i) parity games are determined and (ii)
memoryless strategies are sufficient to win parity games.

Theorem 6.1 (Memoryless determinacy, Emerson and Jutla [1991]) In all
game graphs G with parity objective ϕ, the following hold:

• either Player 1 has a surely-winning strategy in 〈G, ϕ〉, or Player 2 has a
surely-winning strategy in 〈G, ϕ̄〉;

• Player 1 has a surely-winning strategy in 〈G, ϕ〉 if and only if she has a
memoryless surely-winning strategy in 〈G, ϕ〉;

• Player 2 has a surely-winning strategy in 〈G, ϕ〉 if and only if he has a
memoryless surely-winning strategy in 〈G, ϕ〉.

Exercise 6.2 Consider a game graph G = 〈L, lI , Σ, Δ〉 which is not total,
and assume that we modify the rules of the game as follows: if in a round
where the current location is �, Player 1 chooses an action σ ∈ Σ such that

190 Laurent Doyen and Jean-François Raskin

there exists no transition (�, σ, �′) ∈ Δ, then Player 1 is declared losing the
game. Given a non-total game graph G and parity objective ϕ in G, define a
generic construction of a total game graph G′ along with a parity objective
ϕ′ such that Player 1 has a surely-winning strategy in 〈G, ϕ〉 if and only if
he has a surely-winning strategy in 〈G′, ϕ′〉.

Exercise 6.3 Traditionally, a two-player game is a directed graph 〈V, vI , E〉
where V is partitioned into V1, V2 the sets of vertices of Player 1 and Player 2
respectively, vI ∈ V is the initial vertex, and E ⊆ V ×V is a set of edges. We
call this model an edge-game . A parity objective is defined by a priority
function pr : V → {0, 1, . . . , d} as above. A (memoryless) strategy for player i

(i = 1, 2) is a function γi : Vi → E such that (v, γi(v)) ∈ E for all v ∈ Vi.
The definition of plays and outcomes is adapted accordingly. Show that
the edge-games are equivalent to our game graphs by defining a generic
transformation (a) from parity edge-games to parity game graphs, and (b)
from parity game graphs to parity edge-games, such that player 1 has a
surely-winning strategy in one game if and only if he has a surely-winning
strategy in the other game.

Hint: for (a), first define an equivalent bipartite graph 〈V ′, v′I , E
′〉 such

that for all edges (v, v′) ∈ E′, v ∈ V ′
1 if and only if v′ ∈ V ′

2 .

Algorithms We present an algorithmic solution to the problem of deciding,
given a game graph G and an objective ϕ, if Player 1 has a surely-winning
strategy for ϕ in G. The set of locations in which Player 1 has a surely-
winning strategy can be computed symbolically as the solution of certain
nested fixpoint formulas, based on the controllable predecessor operator

Cpre : 2L → 2L which, given a set of locations s ⊆ L, computes the set of
locations � ∈ L from which Player 1 can force the game to be in a location
of s in the next round, i.e., she has an action σ ∈ Σ such that all transitions
from � labelled by σ lead to s. Formally,

Cpre(s) = {� ∈ L | ∃σ ∈ Σ · ∀�′ ∈ L : if (�, σ, �′) ∈ Δ then �′ ∈ s}.

Exercise 6.4 (a) Show that Cpre is a monotone operator for the subset
ordering i.e., s ⊆ s′ implies Cpre(s) ⊆ Cpre(s′) for all s, s′ ⊆ L.
(b) Define the controllable predecessor operator for the two-player edge-games
of Exercise 6.3.

Consider a game with safety objective Safe(T). To win such a game,
Player 1 has to be able to maintain the game in the set T for infinitely many
rounds. For all i ≥ 0, let W i ⊆ L be the set of locations from which Player 1
can maintain the game in the set T for at least the next i rounds. Clearly

Games with Imperfect Information: Theory and Algorithms 191

W i+1 ⊆ W i ⊆ T for all i ≥ 0, and therefore the sequence of sets (W i)i≥0 is
decreasing and eventually stabilises. The limit of this sequence is defined as

W =
⋂
i≥0

W i

and this is the set of surely-winning locations for Player 1. This result follows
from the facts that for all i ≥ 0 and from all locations � ∈ W i+1, Player 1
can force the game to be in a location of W i in the next round, and that
W = W j+1 = W j for some j ≥ 0. We can compute the sets W i as follows:

W 0 = T
W i+1 = T ∩ Cpre(W i) for all i ≥ 0.

Note that the limit W is obtained after at most n iterations where n = |T | is
the number of target locations. The set W can also be viewed as the greatest
solution of the equation W = T ∩Cpre(W), denoted νW · T ∩Cpre(W). The
argument showing that a unique greatest fixpoint exists is not developed
in this chapter. We simply mention that it relies on the theory of complete
lattices and Kleene’s fixpoint theorem.

Theorem 6.2 (Safety games) The set of surely-winning positions for
Player 1 in safety games with perfect information can be computed in linear
time.

For reachability objectives, the algorithmic solution based on Cpre com-
putes a sequence of sets W i (i ≥ 0) such that from every � ∈ W i, Player 1
can force the game to reach some location � ∈ T within the next i rounds. It
can be computed as follows:

W 0 = T
W i+1 = T ∪ Cpre(W i) for all i ≥ 0.

The necessary number of iterations is at most |L \ T |. In terms of fixpoint,
the set W is the least solution of the equation W = T ∪ Cpre(W), denoted
μW · T ∪ Cpre(W).

Theorem 6.3 (Reachability games) The set of surely-winning positions
for Player 1 in reachability games with perfect information can be computed
in linear time.

For parity objectives, several algorithms have been proposed in the litera-
ture (see, e.g., Zielonka [1998], Jurdziński [2000], Schewe [2008], and Fried-
mann and Lange [2009] for a survey). Using the result of memoryless deter-
minacy (Theorem 6.1), it is easy to show that parity games can be solved in

192 Laurent Doyen and Jean-François Raskin

NP ∩ coNP. A major open problem is to know whether parity games with
perfect information can be solved in polynomial time.

We present an algorithmic solution for parity games using a reduction to
safety games. A variant of this reduction has been presented by Bernet et al.
[2002]. In the worst case, it yields safety games of size exponentially larger
than the parity game. Such a blow-up is not surprising since safety games
can be solved in polynomial time. The reduction gives some insight into the
structure of parity games.

Consider a game graph G = 〈L, lI , Σ, Δ〉 and a priority function pr : L →
{0, 1, . . . , d} defining the parity objective Parity(pr) that requires the minimal
priority occurring infinitely often to be even. We extend the locations of G

with tuples 〈c1, c3, . . . , cd〉 of counters associated with the odd priorities (we
assume that d is odd). The counters are initialised to 0, and each visit to a
state with odd priority p increments the counter cp. Intuitively, accumulating
visits to an odd priority is potentially bad, except if a smaller even priority
is also eventually visited. Therefore, each visit to a state with even priority
p resets all counters cp′ with p′ > p.

Under these rules, if player 1 has a surely-winning strategy in G for the
objective Parity(pr), then player 1 also has a memoryless surely-winning
strategy, and thus can enforce that each counter cp remains bounded by np,
the number of locations with priority p. On the other hand, if Player 1 has
no strategy that maintains all counter cp below np, then it means that no
matter the strategy of Player 1, there exists a strategy of Player 2 such that
the outcome of the game visits some location with odd priority p at least
twice, without visiting a location of smaller priority. Since we can assume
that Player 1 uses a memoryless strategy, this shows that Player 2 can force
infinitely many visits to an odd priority without visiting a smaller priority,
thus Player 1 cannot win the parity game.

Formally, we define G′ = 〈L′, l′I , Σ, Δ′〉 where

• L′ = L×[n1]×[n3]×. . .×[nd] where [ni] denotes the set {0, 1, . . . , ni}∪{∞},
and ni is the number of locations with priority i in G;

• l′I = (lI , 0, 0, . . . , 0);

• Δ′ = {((�1, c), σ, (�2, update(c, p))) | (�1, σ, �2) ∈ Δ and p = pr(q)} where

update(〈c1, c3, . . . , cd〉, p) =

{
〈c1, . . . , cp−1, 0, . . . , 0〉 p even

〈c1, . . . , cp−1, cp + 1, cp+1, . . . , cd〉 p odd

where we let cp + 1 = ∞ for cp ∈ {np,∞}.

The safety objective for G′ is Safe(T G
pr) where T G

pr = L′ ∩ (L× N� d
2
�) is the

Games with Imperfect Information: Theory and Algorithms 193

set of locations in which no overflow occurred. The following lemma states
the correctness of the construction.

Lemma 6.4 For all game graphs G and priority functions pr, Player 1
is surely-winning in G for the objective Parity(pr) if and only if Player 1 is
surely-winning in G′ for the objective Safe(T G

pr).

Proof First, let α be a winning strategy for Player 1 in G for the parity
objective Parity(pr). We construct a strategy α′ for Player 1 in the game G′

and we show that this strategy is surely-winning for the objective Safe(T G
pr).

First, without loss of generality we can assume that α is memoryless. We
define α′ as follows, for all histories π in G′, let (�, c) = Last(π), and we take
α′(π) = α(�). We show that α′ is winning for the objective Safe(T G

pr). Towards
a contradiction, assume that it is not the case. Then there exists a strategy
β′ of Player 2 such that outcome(G′, α′, β′) = (�0, c0)(�1, c1) . . . (�n, cn) . . .

leaves T G
pr . Let 0 ≤ k1 < k2 be such that (�k2 , ck2) is the first location where

a counter (say cp) reaches the value ∞ (p is the odd priority associated with
this counter), and k1 is the last index where this counter has been reset (k1 is
equal to 0 if the counter has never been reset). As cp overflows, we know that
the subsequence (�k1 , ck1)(�k1+1, ck1+1) . . . (�k2 , ck2) visits np + 1 locations
with priority p. As there are np locations with priority p in G, we know
that there is at least one location with priority p which is repeating in the
subsequence. Let i1 and i2 be the two indexes associated with such a repeating
location. Between i1 and i2, there is no visit to an even priority smaller than
p. Because Player 1 is playing a memoryless strategy in G, Player 2 can spoil
the strategy of Player 1 by repeating his sequence of choices between i1 and
i2. This contradicts our hypothesis that α is a winning strategy in G for the
parity objective Parity(pr).

Second, let us consider the case where Player 1 is not surely-winning in G

for the objective Parity(pr). By determinacy, we know that Player 2 has a
surely-winning strategy β for the parity objective Parity(pr). Using a similar
argument as above we can construct a strategy β′ for Player 2 for surely-
winning the reachability objective Reach(T G

pr). By determinacy, this shows
that Player 1 is not surely-winning in G′ for the objective Safe(T G

pr).

Note that since Büchi and co-Büchi objectives are parity objectives (see
Exercise 6.1), the above reduction to safety games applies and yields a game
G′ of quadratic size, thus a quadratic-time algorithm for solving Büchi and
co-Büchi games.

194 Laurent Doyen and Jean-François Raskin

6.3 Games with imperfect information: surely-winning

In a game with imperfect information, the set of locations is partitioned
into information sets called observations. Player 1 is not allowed to see
what is the current location of the game, but only what is the current
observation. Observations provide imperfect information about the current
location. For example, if a location encodes the state of a distributed system,
the observation may disclose the value of the shared variables, and hide the
value of the private variables; or in a physical system, an observation may
give a range of possible values for parameters such as temperature, modelling
sensor imprecision. Note that the structure of the game itself is known to
both players, imperfect information arising only about the current location
while playing the game.

6.3.1 Game structure with imperfect information

A game structure with imperfect information is a tuple G =
〈L, lI , Σ, Δ,O〉, where 〈L, lI , Σ, Δ〉 is a game graph (see Section 6.2) and O is
a set of observations that partitions the set L of locations. For each location
� ∈ L, we denote by obs(�) the unique observation o ∈ O such that � ∈ o. For
each play π = �0�1 . . ., we denote by obs(π) the sequence obs(�0)obs(�1) . . .

and we analogously extend obs(·) to histories, sets of plays, etc.
The game on G is played in the same way as in the perfect information

case, but now only the observation of the current location is revealed to
Player 1. The effect of the uncertainty about the history of the play is formally
captured by the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ
such that α(π) = α(π′) for all histories π, π′ ∈ L+ with obs(π) = obs(π′). We
often use the notation αo to emphasise that α is observation-based. Outcome
and consistent plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays
as before, but we require that ϕ is observable by Player 1, i.e., for all
π ∈ ϕ, for all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel,
we often view objectives as sets of infinite sequences of observations, i.e.,
ϕ ∈ Oω, and we also call them observable objectives. For example, we assume
that reachability and safety objectives are specified by a union of target
observations, and parity objectives are specified by priority functions of the
form p : O → {0, . . . , d}. The definition of surely-winning strategies is adapted
accordingly, namely, a deterministic observation-based strategy α for player 1
is surely-winning for an objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ.

Games with Imperfect Information: Theory and Algorithms 195

�1

�2

�′2

�3

�′3 �4 a, b

a, b

a, b

a

a

b

b

a, b

a, bo1

o2 o3 o4

Figure 6.2 A game structure with imperfect information G

Note that games with perfect information can be obtained as the special
case where O = {{�} | � ∈ L}.

Example Consider the game structure with imperfect information in Fig-
ure 6.2. The observations are o1 = {�1}, o2 = {�2, �

′
2}, o3 = {�3, �

′
3}, and

o4 = {�4}. The transitions are shown as labelled edges, and the initial state
is �1. The objective of Player 1 is ϕ = Reach(o4), i.e., to reach location
�4. We argue that the game is not surely-winning for Player 1. Let α be
an arbitrary deterministic strategy for Player 1. Consider the strategy β

for Player 2 as follows: for all π ∈ L+ such that Last(π) ∈ o2, if α(π) = a,
then in the previous round β chooses the state �2, and if α(π) = b, then
in the previous round β chooses the state �′2. Given α and β, the play
outcome(G, α, β) never reaches �4. Similarly, Player 2 has no strategy β to
ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}) is the
complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs (see Exercise 6.3),
locations are partitioned into locations of Player 1 and locations of Player 2,
and the players choose edges from the locations they own. It can be shown
that for perfect information games, this model is equivalent to our definition
(see Exercise 6.3). When extending the classical game model to imperfect
information, we need to remember that Player 1 does not see what is the
current location, and therefore he could not in general choose an edge from
the current location. Instead, one may ask Player 1 to choose in each round
one edge per location, thus to be prepared to all situations. This would
require an alphabet of actions of the form L→ Δ which is of exponential size.
We prefer a simpler definition where an alphabet Σ of actions is fixed, and

196 Laurent Doyen and Jean-François Raskin

each action selects some outgoing edges. In this definition, all locations belong
to Player 1 and the choices of Player 2 are modelled by non-determinism.

Another point of interest is the fact that games with imperfect information
sound asymmetric, as only Player 1 has a partial view of the play. It should be
noted however that for surely-winning, it would be of no help to Player 1 that
Player 2 also has imperfect information. Indeed, a surely-winning strategy
of Player 1 has to ensure that all outcomes are in the objective, and this
requirement is somehow independent of the ability or not of Player 2 to see
the current location. In terms of strategies, one can show that to spoil a not
surely-winning strategy of Player 1, Player 2 does not need to remember the
history of the play, but only needs to count the number of rounds that have
been played. We say that a deterministic strategy β : L+×Σ → L for Player 2
is counting if for all π, π′ ∈ L+ such that |π| = |π′| and Last(π) = Last(π′),
and for all σ ∈ Σ, we have β(π, σ) = β(π′, σ).

Theorem 6.5 (Chatterjee et al. [2007]) Let G be a game structure with
imperfect information and ϕ be an observable objective. There exists an
observation-based strategy αo ∈ AG such that for all β ∈ BG we have
outcome(G, αo, β) ∈ ϕ if and only if there exists an observation-based strategy
αo ∈ AO

G such that for all counting strategies βc ∈ BG we have
outcome(G, αo, βc) ∈ ϕ.

Exercise 6.5 Prove Theorem 6.5.

The requirement that observations partition the set of locations of the
games may seem to be restrictive. For example, in a system using sensors,
it would be more natural to allow overlapping observations. For instance,
if a control program measures the temperature using sensors, the values
that are obtained have finite precision ε. When the sensor returns a value
t, the actual temperature lies within the interval [t− ε, t + ε]. Clearly, for a
measure t′ such that |t′− t| < ε, we have that [t− ε, t+ ε]∩ [t′− ε, t′ + ε] �= ∅.
As a consequence, the temperature observations overlap and do not form a
partition of the space of values.

Exercise 6.6 Show that a game structure with imperfect information
in which the observations do not partition the state space can be trans-
formed into an equivalent game structure with imperfect information with
partitioning observations in polynomial time.

Consider the game structure with imperfect information in Figure 6.3.
The alphabet of actions is Σ = {a, b} and the objective for Player 1 is to
reach location �′4. The partition induced by the observations is represented

Games with Imperfect Information: Theory and Algorithms 197

�1

�2

�′2

�3

�′3

�4

�′4

a, b

a, b

a, b

a, b

a, b

a, b

b

a

a

b

Figure 6.3 Memory is necessary for Player 1 to surely-win the objective
Reach(�′4)

by the dashed sets. We claim that Player 1 has no memoryless observation-
based surely-winning strategy in this game. This is because from locations
�3 and �′3, different actions need to be played to reach �′4, but since �3 and
�′3 have the same observation, Player 1 has to play the same action in a
memoryless observation-based strategy. However, if Player 1 remembers the
previous observation, then he has a surely-winning strategy, namely if {�2}
was observed in the previous round, then play a, and if {�′2} was observed in
the previous round, then play b. This shows that memory may be necessary for
surely-winning in a game with imperfect information even for a reachability
objective. Intuitively, a sequence of past observations provides more precise
knowledge about the current location of the game than the current observation
only. Therefore, Player 1 should store and update this knowledge along the
play to maintain the most precise information possible. Initially, his knowledge
is the singleton {lI} (we assume that the structure of the game is known to
both players), and if the current knowledge is a set s ⊆ L, Player 1 chooses
action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated knowledge
is postGσ (s) ∩ o where postGσ (s) = {�′ ∈ L | ∃� ∈ s : (�, σ, �′) ∈ Δ}, i.e., the set
of all locations reachable from locations in s by playing σ.

6.3.2 Reduction to games with perfect information

Given a game structure with imperfect information G =
〈L, lI , Σ, Δ,O〉 with observable parity objective ϕ, we construct an equivalent
game structure (with perfect information) GK = 〈S, sI , Σ, ΔK〉 with a parity
objective ϕK which, intuitively, monitors the knowledge that Player 1 has
about the current location of the play. The game GK is called knowledge-

based subset construction . The structure GK = 〈S, sI ,Σ,ΔK〉 is defined
as follows.

198 Laurent Doyen and Jean-François Raskin

• The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel,
we call a set s ∈ S a cell.

• The initial location is sI = {lI}.
• The set of labelled transitions ΔK ⊆ S × Σ× S contains all (s, σ, s′) for

which there exists o ∈ O such that s′ = postGσ (s) ∩ o.

Note that since the game graph G is total and the observations form a
partition of the locations, the game graph GK is also total.

To complete the reduction, we show how to translate the objectives. Given
a priority function pr : O → {0, . . . , d} defining the parity objective ϕ in G,
we define the parity objective ϕK in GK using the priority function prK such
that prK(s) = pr(o) for all s ∈ S and o ∈ O such that s ⊆ o.

Theorem 6.6 (Chatterjee et al. [2007]) Player 1 has an observation-based
surely-winning strategy in a game structure G with imperfect information for
an observable parity objective ϕ if and only if Player 1 has a surely-winning
strategy in the game structure GK with perfect information for the parity
objective ϕK.

Exercise 6.7 Write a proof of Theorem 6.6.

Observable safety and reachability objectives are defined by sets T ⊆ L of
target locations that are a union of observations. Hence for all cells s ∈ S,
either s ∩ T = ∅ or s ⊆ T . In the above reduction, such an objective is
transformed into an objective of the same type with the set of target cells
T K = {s ∈ S | s ⊆ T }.

Exercise 6.8 Consider a game structure with imperfect information G =
〈L, lI , Σ, Δ,O〉 and a non-observable reachability objective defined by T ⊆ L.
Construct an equivalent game structure with imperfect information G′ with
an observable reachability objective Reach(T ′), i.e., such that Player 1 has
an observation-based surely-winning strategy in G for Reach(T) if and only if
Player 1 has an observation-based surely-winning strategy in G′ for Reach(T ′).
Hint: take G′ = 〈L, lI , Σ, Δ,O′〉 where O′ = {o ∩ T | o ∈ O} ∪ {o ∩ (L \ T) |
o ∈ O}.

Note that non-observable Büchi objectives are more difficult to handle. For
such objectives and more generally for non-observable parity objectives, our
knowledge-subset construction is not valid and techniques related to Safra’s
determinisation need to be used (Safra [1988]).

Games with Imperfect Information: Theory and Algorithms 199

6.3.3 Symbolic algorithms and antichains

Theorem 6.6 gives a natural algorithm for solving games with imperfect
information with observable objective: apply the algorithms for solving
games with perfect information to the knowledge-based subset construction
presented above.1 The symbolic algorithms presented in Section 6.2 are based
on the controllable predecessor operator Cpre : 2S → 2S whose definition can
be rewritten for all q ⊆ S as:

Cpre(q) = {s ∈ S | ∃σ ∈ Σ · ∀s′ ∈ S : if (s, σ, s′) ∈ ΔK then s′ ∈ q}
= {s ∈ S | ∃σ ∈ Σ · ∀o ∈ O : if s′ = postGσ (s) ∩ o �= ∅ then s′ ∈ q}.

A crucial property of this operator is that it preserves downward-closedness of
sets of cells. Intuitively, Player 1 is in a better situation when her knowledge
is more precise, i.e., when her knowledge is a smaller cell according to set
inclusion. A set q of cells is downward-closed if s ∈ q implies s′ ∈ q for all
s′ ⊆ s. If Player 1 can force the game GK to be in a cell of a downward-closed
set of cells q in the next round from a cell s, then she is also able to do so
from all cells s′ ⊆ s. Formally, if q is downward-closed, then so is Cpre(q).
It is easy to show that ∩ and ∪ also preserve downward-closedness, and
therefore all sets of cells that are computed for solving games of imperfect
information are downward-closed.

As the symbolic algorithms are manipulating downward closed sets, it is
valuable to design a data-structure to represent them compactly. We define
such a data-structure here. The idea is to represent a set of cells by a set
of sets of locations and interpret this set as defining all the cells that are
included in one of its element. Clearly, in such a representation having a set
of sets with two ⊆-comparable element is not useful, so we can restrict our
symbolic representations to be antichains, i.e., a set of sets of locations
that are ⊆-incomparable.

Antichains for representing downward-closed sets Let us denote by
A the set of ⊆-antichains of sets of locations, that is

A = {{s1, s2, . . . , sn} ⊆ 2L | ∀1 ≤ i, j ≤ n : si ⊆ sj → i = j}.

Note that an antichain is a set of subsets of locations that are not necessarily
cells. We denote by A the set of antichains. The set A is partially ordered
as follows. For q, q′ ∈ A, let q * q′ iff ∀s ∈ q · ∃s′ ∈ q′ : s ⊆ s′. The least
upper bound of q, q′ ∈ A is q + q′ = �{s | s ∈ q or s ∈ q′}�, and their greatest
1 Note that the symbolic algorithm can be applied without explicitly constructing the

knowledge-based construction.

200 Laurent Doyen and Jean-François Raskin

lower bound is q , q′ = �{s ∩ s′ | s ∈ q and s′ ∈ q′}�. We view antichains
as a symbolic representation of ⊆-downward-closed sets of cells. Given an
antichain q ∈ A, let q↓ = {s ∈ S | ∃s′ ∈ q : s ⊆ s′} be the downward

closure of q, i.e., the set of cells that it represents.

Exercise 6.9 Show that + and , are indeed the operators of least upper
bound and greatest lower bound respectively. By establishing this, you have
shown that the set of antichains forms a complete lattice. What are the least
and greatest elements of this complete lattice ?

To define a controllable predecessor operator CpreA over antichains, we
observe that for all q ∈ A,

Cpre(q↓) = {s ∈ S | ∃σ ∈ Σ · ∀o ∈ O · ∃s′ ∈ q : postGσ (s) ∩ o ⊆ s′}
= {s ∈ S | ∃σ ∈ Σ · ∀o ∈ O · ∃s′ ∈ q : s ⊆ p̃reG

σ (s′ ∪ o)}

where o = L \ o and p̃reG
σ (s) = {� ∈ L | postGσ ({�}) ⊆ s}. Hence, we define

CpreA(q) =
⊔
σ∈Σ

�

o∈O

⊔
s′∈q

{
p̃reσ(s′ ∪ o)

}
and this operator computes a symbolic representation of the controllable
predecessors of the downward-closed set of cells symbolically represented
by q.

Lemma 6.7 For all antichains q ∈ A, we have CpreA(q)↓ = Cpre(q↓).

Exercise 6.10 Prove Lemma 6.7.

In the definition of CpreA, the operations p̃re,
⊔

σ∈Σ and
⊔

s′∈q can be
computed in polynomial time, while

�
o∈O can be computed in exponential

time by simple application of the definitions. Unfortunately, it turns out that
a polynomial-time algorithm is unlikely to exist for computing

�
o∈O as the

NP-complete problem IndependentSet can be reduced to it.
Consider a graph G = (V,E) where V is a set of vertices and E ⊆ V × V

is a set of edges. An independent set of G is a set W ⊆ V of vertices such
that for all (v, v′) ∈ E, either v �∈ W or v′ �∈ W , i.e., there is no edge of
G connecting vertices of W . The IndependentSet problem asks, given a
graph G and size k, to decide if there exists an independent set of G of size
larger than k. This problem is known to be NP-complete. We show that
IndependentSet reduces to computing ,.

Let G = (V,E) be a graph, and for each e = (v, v′) ∈ E let qe =
{
V \

{v}, V \ {v′}
}
. The set qe↓ contains all sets of vertices that are independent

of the edge e. Therefore, the antichain q = �
⋂

e∈E qe↓� contains the maximal

Games with Imperfect Information: Theory and Algorithms 201

init

0

HTH

1

HHT

2

THH

3

HTT

4

TTH

5

THT

6

HHH

7

TTT

8

Σ

Σ

Σ

Σ

Σ

c3

c1,
c3

c1

c3

c2

c2,
c3

c2

c3

c1

c1

c3

c2

o1 o2 o3

o4

o5

Figure 6.4 The 3-coin game graph with alphabet Σ = {c1, c2, c3}. The
transitions between states 2, 3, 5, and 6 are omitted for the sake of clarity

independent sets of G, and an algorithm to compute q would immediately solve
IndependentSet, showing that such an algorithm running in polynomial
time cannot exist unless P = NP . The idea of this reduction can be extended
to show that CpreA requires exponential time (Berwanger et al. [2008], Filiot
et al. [2009]).

Exercise 6.11 Compute the winning cells in the two versions of the 3-coin

game with the symbolic algorithm using the antichain representation. The
3-coin game graph is given in Figure 6.4. We give here the solutions to this
exercise.

• We first consider the version in which Player 2 is allowed to exchange the
positions of the coins that are not toggled. To compute the winning cells
of the game with imperfect information, we compute the set of all cells
that are able to force the cell {7}. We give here the sequence of antichains
computed by our algorithm:

X0 = {{7}},
X1 = X0 + Cpre(X0) = {{1}, {2}, {3}, {7}},
X2 = X1 + Cpre(X1) = {{1}, {2}, {3}, {4}, {5}, {6}, {7}} = X1

and the fixed-point is reached. As {0} �∈ X1↓, this shows that Player 1
does not have a deterministic winning strategy in this game.

• We now consider the version where Player 2 is not allowed to exchange the
position of the coins that are not toggled. To compute the winning cells
of the game with imperfect information, we compute the set of all cells

202 Laurent Doyen and Jean-François Raskin

that are able to force the cell {7}. We give here the sequence of antichains
computed by our algorithm.

X0 = {{7}},
X1 = X0 + Cpre(X0) = {{1}, {2}, {3}, {7}},
X2 = X1 + Cpre(X1) = {{1}, {2}, {3}, {4}, {5}, {6}, {7}},
X3 = X2 + Cpre(X2) = {{1, 2}, {2, 3}, {1, 3}, {4}, {5}, {6}, {7}},
X4 = X3 + Cpre(X3) = {{1, 2}, {2, 3}, {1, 3}, {4, 6}, {5, 6}, {4, 5}, {7}},
X5 = X4 + Cpre(X4) = {{1, 2, 3}, {4, 6}, {5, 6}, {4, 5}, {7}},
X6 = X5 + Cpre(X5) = {{0, 1, 2, 3}, {0, 4, 6}, {0, 5, 6}, {0, 4, 5}, {0, 7}},
X7 = X6.

As {0} ∈ X7↓, this shows that Player 1 has a deterministic winning strategy
in this version of the 3-coin game.

6.3.4 Strategy construction

The algorithms presented in Section 6.2 for safety and reachability games
compute the set of winning positions for Player 1. We can use these algorithms
to compute the set of winning cells in a game with imperfect information,
using the controllable predecessor operator CpreA. This gives a compact
representation (an antichain) of the downward-closed set of winning cells.
However, it does not construct surely-winning strategies. We show that in
general, there is a direct way to construct a surely-winning strategy for safety
games, but not for reachability and parity games.

For safety games with perfect information, the fixed-point computation
shows that the set of winning positions satisfies the equation W = T ∩
Cpre(W). Therefore, W ⊆ Cpre(W), and thus for each � ∈W , there exists an
action σ� ∈ Σ such that postGσ�

({�}) ⊆ W . Since, W ⊆ T , it is easy to see that
the memoryless strategy playing σ� in each location � ∈W is surely-winning.

For safety games with imperfect information, the fixed-point W is repre-
sented by an antichain qwin such that W = qwin↓. The strategy construction
for safety games with perfect information can be extended as follows. By
definition of CpreA, for each s ∈ qwin there exists σs ∈ Σ such that for all
o ∈ O, we have postGσs

(s) ∩ o ⊆ s′ for some s′ ∈ qwin. It is easy to see that
the strategy playing σs in every cell s′′ ⊆ s is surely-winning.

Thus, we can define a surely-winning strategy by the Moore machine
〈M, mI , update, μ〉 where M = qwin, mI = s such that sI ⊆ s for some
s ∈ qwin, μ : M → Σ is an output function such that μ(s) = σs as defined

Games with Imperfect Information: Theory and Algorithms 203

above for all s ∈M , and update : M×O → M is such that if update(s, o) = s′,
then postGσ (s)∩ o ⊆ s′ for σ = μ(s) (note that such an s′ exists by the above
remark). The automaton A defines the observation-based strategy α such
that α(π) = σ where σ = μ(s) and s = update(mI , obs(π)) for all π ∈ L+

(where the update function is extended to sequences of observations in the
usual way, i.e., update(m, o1 . . . on) = update(update(m, o1), o2 . . . on)).

For reachability games, the information contained in the fixpoint of winning
positions is not sufficient to extract a surely-winning strategy. Intuitively, a
surely-winning strategy needs to stay in the winning set (as in safety games),
and moreover should ensure some kind of progress with respect to the target
set T to guarantee that T is eventually reached. The notion of progress can
be formalised by a number rank(s) associated to each cell s such that Player
1 can enforce to reach the target from cell s within at most rank(s) rounds.

In a reachability game with perfect information, the rank of a location
� in the set of winning positions W is the least i such that � ∈ W i. From
a location � ∈ W with rank r > 0, a surely-winning strategy can play an
action σ� ∈ Σ such that postGσ�

({�}) ⊆ W r−1.

In a game with imperfect information, knowing the rank of the cells in the
antichain qwin may still not be sufficient to obtain a surely-winning strategy.
Consider the game G in Figure 6.5, with reachability objective Reach({�2})
and observations {�0, �1} and {�2}. Since Cpre({{�2}}) = {{�1}} (by playing
action b) and Cpre({{�1}, {�2}}) = {{�0, �1}} (by playing action a), the fixed-
point computed by the antichain algorithm is {{�2}, {�0, �1}}. However, from
{�0, �1}, after playing a, Player 1 reaches the cell {�1} which is not in the
fixed-point (however, it is subsumed by the cell {�0, �1}). Intuitively, the
antichain algorithm has forgotten which action is to be played next from
{�1}. Note that playing a again (and thus forever) is not winning.

This example illustrates the fact that the rank of a cell s is not necessarily
the same as the rank of a cell s′ ⊆ s. Therefore, for the purpose of strategy
construction, the fixpoint computation needs to store the rank associated
with a cell, and refine the rule of eliminating the cells that are subsumed
by larger cells to take ranks into account (Berwanger et al. [2009]). In fact,
it can be shown that for some family of reachability games with imperfect
information, the fixpoint computed in the antichain representation (without
rank) is of polynomial size while any finite-memory surely-winning strategy
is of exponential size (Berwanger et al. [2008]).

204 Laurent Doyen and Jean-François Raskin

�0 �1 �2

b a a, b

a b

Figure 6.5 A reachability game G

6.4 Games with imperfect information:
almost-surely-winning

We revisit the 3-coin game. In Exercise 6.11, we have seen that Player 1
does not have an observation-based deterministic winning strategy in this
game when Player 2 is allowed to exchange the position of the coins that are
not toggled. This is because Player 2 can guess the choice that Player 1 will
make in the next round. When a deterministic strategy for Player 1 is fixed,
this information is formally available to Player 2 but this is not realistic in
practice. Player 1 should use a source of randomisation in order to avoid
the possibility that Player 2 can guess the choice she will make in the next
round. Whenever the game is in a configuration with two heads, Player 1
chooses uniformly at random one of the three coins. Clearly the probability
to choose the coin showing tail is 1

3 no matter if Player 2 has decided to
exchange the coins or not at the previous step. Otherwise, she should play
the same coin a second time to make sure she comes back to a configuration
with two heads. She then repeats the same randomised strategy. Every two
rounds, Player 1 has a 1

3 probability to reach the winning configuration.
Note also that she is sure to avoid the losing configuration (all coins on
tails). This simple strategy is thus winning the reachability objective with
probability one. This illustrates the power of randomised strategies in games
with imperfect information.

6.4.1 Playing with randomised strategies

Before going into the formalisation, let us take a look at the example of
Figure 6.3. From the initial location �1, we have seen that Player 1 has no
surely-winning strategy for reaching �4. This is because for all strategies α

of Player 1, there exists a play π ∈ Outcome1(G, α) that visits �3 infinitely
often, and therefore never visits �4. However, the strategy β of Player 2 such
that π = outcome(G, α, β) chooses the successor �̂ of �1 in a way that depends
on the next move of Player 1, namely �̂ = �2 if α plays action a next, and
�̂ = �′2 if α plays action b next. In a concrete implementation of the system,
this means that Player 2 needs to predict the behaviour of Player 1 infinitely

Games with Imperfect Information: Theory and Algorithms 205

often in order to win. In practice, since one wrong guess make Player 1 win,
this suggests that the probability that Player 2 wins (making infinitely many
right guesses) is 0, and thus Player 1 can win with probability 1.

We now formally define a notion of probabilistic winning. First, a ran-

domised strategy for Player 1 is a function α : (L× Σ)∗L→ D(Σ) where
D(Σ) denotes the set of probability distributions over Σ, i.e., the set of all
functions f : Σ → [0, 1] such that

∑
σ∈Σ f(σ) = 1. Intuitively, if Player 1

uses distribution f , then he plays each action σ with probability f(σ). We
assume that Player 1 is informed about which actual actions he played.
Hence, strategies are mappings from interleaved sequences of states and
actions of the form ρ = �0σ0�1σ1 . . . σn−1�n that we call labelled histories.
We denote by L(ρ) = �0�1 . . . �n the projection of ρ onto L∗. A strategy α

is observation-based if for all pairs of labelled histories ρ, ρ′ of the form
ρ = �0σ0�1σ1 . . . σn−1�n and ρ′ = �′0σ0�

′
1σ1 . . . σn−1�

′
n such that for all i,

1 ≤ i ≤ n, obs(�i) = obs(�′i), we have that α(ρ) = α(ρ′).
A randomised strategy for Player 2 is a function β : (L×Σ)+ → D(L) such

that for all labelled histories ρ = �0σ0�1σ1 . . . σn−1�n and σ ∈ Σ, for all � such
that β(ρ, σ)(�) > 0, we have (�n, σ, �) ∈ Δ. We extend in the expected way
(using projection of labelled histories onto L∗ when necessary) the notions of
observation-based randomised strategies for Player 2, memoryless strategies,
consistent plays, outcome, etc.

Given strategies α and β for Player 1 and Player 2, respectively, and an
initial location �0, the probability of a labelled history ρ = �0σ0�1σ1 . . . σn−1�n

is P(ρ) =
∏n−1

i=0 α(�0σ0 . . . σi−1�i)(σi)·β(�0σ0 . . . σi−1�iσi)(�i). The probability
of a history π = �0�1 . . . �n is P(π) =

∑
ρ∈L−1(π) P(ρ), which uniquely defines

the probabilities of measurable sets of (infinite) plays (Vardi [1985]). The
safety, reachability, and parity objectives being Borel objectives, they are
measurable (Kechris [1995]). We denote by Prα,β

� (ϕ) the probability that an
objective ϕ is satisfied by a play starting in � in the game G played with
strategies α and β. A randomised strategy α for Player 1 in G is almost-

surely-winning for the objective ϕ if for all randomised strategies β of
Player 2, we have Prα,β

lI
(ϕ) = 1. A location �̂ ∈ L is almost-surely-winning

for ϕ if Player 1 has an almost-surely-winning randomised strategy α in the
game Ĝ = 〈L, �̂,Σ, Δ〉 where �̂ is the initial location.

Note that our definition is again asymmetric in the sense that Player 1
has imperfect information about the location of the game while Player 2
has perfect information. While having perfect information does not help
Player 2 in the case of surely-winning, it makes Player 2 stronger in the
probabilistic case. Recent works (Bertrand et al. [2009], Gripon and Serre
[2009]) study a symmetric setting where the two players have imperfect

206 Laurent Doyen and Jean-François Raskin

{�1} {�2, �′2} {�3, �′3} {�4} a, b
a, b a, b

a, b

a, b

Figure 6.6 The knowledge-based subset construction for the game of Fig-
ure 6.3

information. The decision problems are computationally harder to solve
(deciding if a location is almost-surely-winning is EXPTIME-complete in our
setting, and it becomes 2EXPTIME-complete in the symmetric setting). We
choose to present the asymmetric setting for the sake of consistency with
the first part of this chapter, because it is a simpler setting, and because the
techniques that we present can be adapted to solve the more general case.

6.4.2 An algorithm for reachability objectives

We present an algorithm for computing the locations of a reachability game
with imperfect information G from which Player 1 has an almost-surely-
winning strategy. The algorithm can be extended to solve Büchi objectives
(Chatterjee et al. [2007]). The case of co-Büchi and parity objectives remains
open.

Extended subset construction First, note that the reduction to games
with perfect information GK of Section 6.3 does not preserve the notion of
almost-surely-winning. The knowledge-based subset construction for the the
game of Figure 6.3 is given in Figure 6.6. It is easy to see that for all strategies
of Player 1, Player 2 can avoid {�4} by always choosing from {�3, �

′
3} the

transition back to {�1}. In the original game, this amounts to allow Player 2
to freely ‘switch’ between location �3 and �′3. However, against Player 1’s
strategy of playing a and b uniformly at random, Player 2 cannot really
decide which location of �3 or �′3 is reached, since both have probability 1

2

to be reached regardless of Player 2’s strategy. So, we have to enrich the
knowledge-based subset construction to take this phenomenon into account.
In the new construction, locations are pairs (s, �) consisting of a cell s and
a location � ∈ s. To reduce ambiguity, we call such pairs states. The cell s

encodes the knowledge of Player 1, and the location � keeps track of the
choice of Player 2, forcing Player 2 to stick to his choice. Of course, we need
to take care that the decisions of Player 1 do not depend on the location �,
but only on the cell s.

Games with Imperfect Information: Theory and Algorithms 207

Given a game structure with imperfect information G = 〈L, lI ,Σ,Δ,O〉,
we construct the game structure (with perfect information) H = Knw(G) =
〈Q, qI , Σ, ΔH〉 as follows:

• Q = {(s, �) | ∃o ∈ O : s ⊆ o and � ∈ s};
• the initial state is qI = ({ lI }, lI);
• the transition relation ΔH ⊆ Q× Σ×Q is defined by ((s, �), σ, (s′, �′)) ∈

ΔH iff there is an observation o ∈ O such that s′ = postGσ (s) ∩ o and
(�, σ, �′) ∈ Δ.

The structure H is called the extended knowledge-based subset construction
of G. Intuitively, when H is in state (s, �), it corresponds to G being in
location � and the knowledge of Player 1 being s. The game H = Knw(G)
is given in Figure 6.7 for the game G of Figure 6.2. Reachability and safety
objectives defined by a target set T ⊆ L are transformed into an objective
of the same type where the target set of states is T ′ = {(s, �) ∈ Q | � ∈ T }.
A parity objective ϕ in G defined by a priority function pr : L → N is
transformed into a parity objective ϕKnw in H using the priority function
prKnw such that prKnw(s, �) = pr(o) for all (s, �) ∈ Q and o ∈ O such that
s ⊆ o.

Equivalence preserving strategies Since we are interested in observa-
tion-based strategies for Player 1 in G, we require that the strategies of
Player 1 in H only depend on the sequence of knowledge s0 . . . si in the
sequence of previously visited states (s0, �0) . . . (si, �i). Two states q = (s, �)
and q′ = (s′, �′) of H are equivalent, written q ≈ q′, if s = s′, i.e., when the
knowledge of Player 1 is the same in the two states. For a state q ∈ Q, we
denote by [q]≈ = {q′ ∈ Q | q ≈ q′} the ≈-equivalence class of q. Equivalence
and equivalence classes for plays and labelled histories are defined in the
expected way. A strategy α for Player 1 in H is equivalence-preserving if
α(ρ) = α(ρ′) for all labelled histories ρ, ρ′ of H such that ρ ≈ ρ′.

Theorem 6.8 (Chatterjee et al. [2007]) For all game structures G with
imperfect information, Player 1 has an observation-based almost-surely-
winning strategy in G for a parity objective ϕ if and only if Player 1 has an
equivalence-preserving almost-surely-winning strategy in H = Knw(G) for
the parity objective ϕKnw.

Solving reachability objectives It can be shown that for reachability
and Büchi objectives, memoryless strategies are sufficient for Player 1 to
almost-surely win the game with perfect information H = Knw(G). Let

208 Laurent Doyen and Jean-François Raskin

H = Knw(G) = 〈Q, qI ,Σ,ΔH〉, let Reach(T) with T ⊆ Q be an observable
reachability objective in H, and ≈ the equivalence relation between states
of H as defined above. Player 1 almost-surely wins from the set of states
W ⊆ Q if there exist functions Allow : Q → 2Σ and Good : Q → Σ such that
for all q ∈W :

1 for all q′ ≈ q and for all σ ∈ Allow(q), postHσ (q′) ⊆ W ,
2 in the graph (W, E) with E = {(q, q′) ∈ W ×W | (q, Good(q), q′) ∈ ΔH},

all infinite paths visit a state in T ,
3 Good(q) ∈ Allow(q).

Condition 1 ensures that the set W of winning states is never left. This
is necessary because if there was a positive probability to leave W , then
Player 1 would not win the game with probability 1. Condition 2 ensures
that from every state q ∈ W , the target T is entered with some positive
probability (remember that the action Good(q) is played with some positive
probability). Note that if all infinite paths in (W, E) eventually visit T , then
all finite paths of length n = |W | do so. Therefore, the probability to reach
T within n rounds can be bounded by a constant κ > 0, and thus after
every n rounds the target set T is reached with probability at least κ. Since
Condition 1 ensures the set W is never left, the probability that the target
set has not been visited after m · n rounds is at most (1 − κ)m. Since the
game is played for infinitely many rounds, the probability to reach T is
limm→∞ 1− (1− κ)m = 1. By Condition 3, the actions that ensure progress
towards the target set can be safely played.

The algorithm to compute the set of states W ⊆ Q from which Player 1
has an equivalence-preserving almost-surely-winning strategy for Reach(T)
is the limit of the following computations:

W 0 = Q

W i+1 = PosReach(W i) for all i ≥ 0

where the PosReach(W i) operator is the limit of the sequence Xj defined by

X0 = T
Xj+1 = Xj ∪ Apre(W i, Xj) for all j ≥ 0

where

Apre(W, X) = {q ∈W | ∃σ ∈ Σ :

postHσ (q) ⊆ X and ∀q′ ≈ q : postHσ (q′) ⊆ W}.

The operator Apre(W, X) computes the set of states q from which Player 1
can ensure that some state of X is visited in the next round with positive

Games with Imperfect Information: Theory and Algorithms 209

{�1}, �1

{�2, �′2}, �2

{�2, �′2}, �′2

{�3, �′3}, �3

{�3, �′3}, �′3 {�4}, �4

a, b

a, b

a, b

a

a

b

b

a, b

a, b

≈ ≈

Figure 6.7 Game structure H = Knw(G) (for G of Figure 6.2)

probability, while ensuring that W is not left, even if the current state is
q′ ≈ q (because if the game is actually in q, then it means that Player 1
cannot be sure that the game is not in q′ with some positive probability).

Note that for W = Q, the condition postHσ (q′) ⊆ W is trivial. Hence,
for W 0 = Q the set W 1 = PosReach(W 0) contains all states from which
Player 1 can enforce to reach T with positive probability. Clearly, this set
is an over-approximation of the almost-surely-winning states, since from
Q \W 1 and no matter the strategy of Player 1, the probability that T is
reached is 0. Therefore, we compute in W 2 = PosReach(W 1) the set of states
from which Player 1 can enforce to reach T with positive probability without
leaving W 1, giving a better over-approximation of the set of almost-surely-
winning states. The iteration continues until a fixpoint is obtained. Note that
W 0 ⊇ W 1 ⊇ W 2 ⊇ · · · is a decreasing sequence, and X0 ⊆ X1 ⊆ X2 ⊆ · · · is
an increasing sequence for each computation of PosReach(W i). This algorithm
is thus quadratic in the size of H, and exponential in the size of G.

Theorem 6.9 The problem of deciding whether Player 1 is almost-surely-
winning in a reachability game with imperfect information is EXPTIME-
complete.

It can be shown that the problem is EXPTIME-hard, see Chatterjee et al.
[2007], and thus the algorithm developed above is worst-case optimal. For
Büchi objectives, an EXPTIME algorithm can be obtained by substituting
the first line of the PosReach(W i) operator by X0 = T ∩ Spre(W i) where

Spre(W i) = Apre(W i, W i) = {q ∈W i | ∃σ ∈ Σ · ∀q′ ≈ q : postHσ (q′) ⊆ W i}.

Intuitively, we start the iteration in PosReach(W i) with those target states
from which Player 1 can force to stay in W i in the next round. This ensures
that whenever a target state is reached (which will happen with probability
one), Player 1 can continue to play and will again force a visit to the target set
with probability one, thus realising the objective Buchi(T) with probability 1.

210 Laurent Doyen and Jean-François Raskin

Antichains for randomised strategies When computing the set of
surely-winning locations of a game with imperfect information, we have
shown that antichains of sets of locations are a well-suited data-structure.
This idea can be extended for computing the sets of almost-surely-winning
locations of a game with imperfect information.

Let G = 〈L, lI ,Σ,Δ,O〉 be a game structure with imperfect information,
and let H be its extended knowledge based construction, i.e., H = Knw(G) =
〈Q, qI ,Σ,ΔH〉. We define %⊆ Q×Q as (s, �) % (s′, �′) iff s ⊆ s′ and � = �′.
This order has the following properties:

• if a state q in H is almost-surely-winning for the observable reachability
objective Reach(T), then for all q′ % q in H, q′ is almost-surely-winning
for the objective Reach(T);

• given an observable reachability objective T , all the sets W 0, W 1, . . . , and
X0, X1, . . . are %-downward closed.

Exercise 6.12 Define the operations ,, + for the order %. Define the
operations PosReach and Apre so that they operate directly on %-antichains.

Exercise 6.13 Apply the fixed-point algorithm above to compute the
almost-surely-winning positions in the 3-coin example when Player 2 is
allowed to switch coins. Make sure to use antichains during your computations.
Extract from the fixed-point an almost-surely-winning observation-based
randomised strategy.

We give the solution to the exercise below. To determine the set of cells
in our 3-coin game from which Player 1 has a randomised strategy that
allows her to win the game with probability one, we execute our fixed-point
algorithm. In the computations, we may denote sets of locations by the
sequence of their elements, e.g., 〈01235〉 denotes the set {0, 1, 2, 3, 5}.

W 0 = {〈012345678〉} × {0, 1, 2, 3, 4, 5, 6, 7, 8}. W 1 = PosReach(W 0) is
obtained by the following fixed-point computation. X0 = (〈7〉, 7), X1 =
X0 + Apre(W 0, X0) = {〈01234578〉} × {0, 1, 2, 3, 4, 5, 7} + {〈01235678〉} ×
{0, 1, 2, 3, 5, 6, 7} + {〈01234678〉} × {0, 1, 2, 3, 4, 6, 7} = X2. W 2 = W 1. This
fixed-point tells us that Player 1 has a randomised strategy to win the 3-coin
game with probability one. The randomised strategy can be extracted from
the antichain W 1 and is as follows. In the first round, all choices of Player 1
are equivalent, so she can play c1. Then she receives the observation o2 and
updates her knowledge to {1, 2, 3} which is subsumed by all the elements of
the antichain. Then, she plays any action which is associated to those elements
with positive probability. The action c1 is associated with {〈01235678〉} ×
{0, 1, 2, 3, 5, 6, 7}, action c2 is associated with {〈01234578〉}×{0, 1, 2, 3, 4, 5, 7},

Games with Imperfect Information: Theory and Algorithms 211

and action c3 is associated with {〈01234678〉} × {0, 1, 2, 3, 4, 6, 7}. Let us
consider the different cases:

• If the action c1 is played then the knowledge of Player 1 becomes {5, 6}. This
knowledge is subsumed by all the elements in {〈01235678〉} ×
{0, 1, 2, 3, 5, 6, 7} and the action associated with those element is 1. After
playing 1 the knowledge of Player 1 is now {1, 2}. Again this knowledge
is subsumed by all the elements of the fixed-point so Player 1 can play
each action in {c1, c2, c3} with positive probability. Note that with this
knowledge, it is sufficient to choose play with positive probability in the
set of actions {c2, c3}, but this optimisation is not necessary if we want to
win with probability one, it only reduces the expected time for winning.

• If the action c2 is played then the knowledge of Player 1 becomes {4, 5}. This
knowledge is subsumed by all the elements in {〈01234578〉} ×
{0, 1, 2, 3, 4, 5, 7} and the action associated with those element is c2. After
playing c2 the knowledge of Player 1 is now {2, 3}. And we can start again
playing all actions in {c1, c2, c3} with positive probability.

• The reasoning is similar for action c3.

So we see that our algorithm proposes at each even round to play an action
at random then to replay the same action. With this strategy, if Player 1
plays each action with probability 1

3 when her knowledge is subsumed by
{1, 2, 3}, she has a probability 1

3 to reach 7 every two rounds and so she wins
with probability 1.

References

J. Bernet, D. Janin, and I. Walukiewicz. Permissive strategies: from parity games
to safety games. Inf. Théorique et Applications, 36(3):261–275, 2002.

N. Bertrand, B. Genest, and H. Gimbert. Qualitative determinacy and decidability
of stochastic games with signals. In Proc. of LICS: Logic in Computer Science.
IEEE Computer Society Press, 2009. To appear.

D. Berwanger, K. Chatterjee, L. Doyen, T. A. Henzinger, and S. Raje. Strategy
construction for parity games with imperfect information. In Proc. of CONCUR:
Concurrency Theory, Lecture Notes in Computer Science 5201, pages 325–339.
Springer-Verlag, 2008.

D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A. Henzinger. Alpaga:
A tool for solving parity games with imperfect information. In Proc. of TACAS:
Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science 5505, pages 58–61. Springer-Verlag, 2009.

K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-
regular games of incomplete information. Logical Methods in Computer Science,
3(3:4), 2007.

212 Laurent Doyen and Jean-François Raskin

M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of
imperfect information. In Proc. of HSCC 2006: Hybrid Systems—Computation
and Control, Lecture Notes in Computer Science 3927, pages 153–168. Springer-
Verlag, 2006.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. of FoCS: Foundations of Computer Science, pages 368–377. IEEE, 1991.

E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL realizability. In
Proc. of CAV: Computer-aided verification, Lecture Notes in Computer Science
5643, pages 263–277. Springer, 2009.

O. Friedmann and M. Lange. The PGSolver collection of parity game solvers.
Technical report, Ludwig-Maximilians-Universität München, 2009.

V. Gripon and O. Serre. Qualitative concurrent games with imperfect information.
In Proc. of ICALP: Automata, Languages and Programming, 2009. To appear.

T. A. Henzinger. Games, time, and probability: Graph models for system design and
analysis. In Proc. of SOFSEM (1): Theory and Practice of Computer Science,
Lecture Notes in Computer Science 4362, pages 103–110. Springer, 2007.

M. Jurdziński. Small progress measures for solving parity games. In Proc. of STACS:
Theor. Aspects of Comp. Sc., LNCS 1770, pages 290–301. Springer, 2000.

A. Kechris. Classical Descriptive Set Theory. Springer, Berlin, 1995.
D. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
J. H. Reif. The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences, 29(2):274–301, 1984.
S. Safra. On the complexity of omega-automata. In Proc. of FOCS: Foundations of

Computer Science, pages 319–327. IEEE, 1988.
S. Schewe. An optimal strategy improvement algorithm for solving parity and payoff

games. In Proc. of CSL: Computer Science Logic, Lecture Notes in Computer
Science 5213, pages 369–384. Springer, 2008.

W. Thomas. Infinite games and verification. In Proc. of CAV: Computer Aided
Verification, Lecture Notes in Computer Science 2404, pages 58–64. Springer,
2002.

W. Thomas. On the synthesis of strategies in infinite games. In Proc. of STACS:
Symposium on Theoretical Aspects of Computer Science, volume 900 of Lecture
Notes in Computer Science, pages 1–13. Springer, 1995.

M. Vardi. Automatic verification of probabilistic concurrent finite-state systems.
In Proc. of FOCS: Foundations of Computer Science, pages 327–338. IEEE
Computer Society Press, 1985.

W. Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200:135–183, 1998.

7

Graph Searching Games
Stephan Kreutzer
University of Oxford

Abstract

This chapter provides an introduction to graph searching games, a form of
one- or two-player games on graphs that have been studied intensively in
algorithmic graph theory. The unifying idea of graph searching games is that
a number of searchers wants to find a fugitive on an arena defined by a graph
or hypergraph. Depending on the precise definition of moves allowed for the
searchers and the fugitive and on the type of graph the game is played on,
this yields a huge variety of graph searching games.

The objective of this chapter is to introduce and motivate the main concepts
studied in graph searching and to demonstrate some of the central ideas
developed in this area.

7.1 Introduction

Graph searching games are a form of two-player games where one player,
the Searcher or Cop, tries to catch a Fugitive or Robber. The study of graph
searching games dates back to the dawn of mankind: running after one
another or after an animal has been one of the earliest activities of mankind
and surely our hunter-gatherer ancestors thought about ways of optimising
their search strategies to maximise their success.

Depending on the type of games under consideration, more recent studies
of graph searching games can be traced back to the work of Pierre Bouger,
who studied the problem of a pirate ship pursuing a merchant vessel, or more
recently to a paper by Parsons [1978] which, according to Fomin and Thilikos
[2008], was inspired by a paper by Breisch in the Southwestern Cavers Journal
where a problem similar to the following problem was considered: suppose

214 Stephan Kreutzer

after an accident in a mine some workers are lost in the system of tunnels
constituting the mine and a search party is sent into the mine to find them.
The problem is to devise a strategy for the searchers which guarantees that
the lost workers are found but tries to minimise the number of searchers
that need to be sent into the mine. Graph-theoretically, this leads to the
following formulation in terms of a game played on a graph which is due to
Golovach [1989]. The game is played on a graph which models the system of
tunnels, where an edge corresponds to a tunnel and a vertex corresponds to
a crossing between two tunnels. The two players are the Fugitive and the
Searcher. The Fugitive, modelling the lost worker, hides in an edge of the
graph. The Searcher controls a number of searchers which occupy vertices of
the graph. The Searcher knows the graph, i.e., the layout of the tunnels, but
the current position of the fugitive is unknown to the Searcher. In the course
of the game the searchers search edges by moving along an edge from one
endpoint to another trying to find the fugitive.

This formulation of the game is known as edge searching. More popular
in current research on graph searching is a variant of the game called node
searching which we will describe now in more detail.

Node searching

In node searching, both the fugitive and the searchers occupy vertices of
the graph. Initially, the fugitive can reside on any vertex and there are no
searchers on the graph. In each round of the play, the Searcher can lift some
searchers up or place new searchers on vertices of the graph. This can happen
within one move, so in one step the searcher can lift some searchers up and
place them somewhere else. However, after the searchers are lifted from the
graph but before they are placed again the fugitive can move. He can move
to any vertex in the graph reachable from his current position by a path
of arbitrary length without going through a vertex occupied by a searcher
remaining on the board. In choosing his new position, the fugitive knows
where the searchers want to move. This is necessary to prevent ‘lucky’ moves
by the searchers where they accidentally land on a fugitive. The fugitive’s
goal is to avoid capture by the searchers. In our example above, the fugitive
or lost miner would normally not try to avoid capture. But recall that we
want the search strategy to succeed independent of how the lost miner moves,
and this is modelled by the fugitive trying to escape. If at some point of the
game the searchers occupy the same vertex as the fugitive then they have
won. Otherwise, i.e., if the fugitive can escape forever, then he wins. The
fact that the fugitive tries to avoid capture by a number of searchers has
led to these kinds of games being known as Cops and Robber games in the

Graph Searching Games 215

literature and we will at various places below resort to this terminology. In
particular, we will refer to the game described above as the Invisible Cops
and Robber Game. The name ‘Cops and Robber Game’, however, has also
been used for a very different type of games. We will describe the differences
in Section 7.3.1.

Optimal strategies

Obviously, by using as many searchers as there are vertices we can always
guarantee to catch the fugitive. The main challenge with any graph searching
game therefore is to devise an optimal search strategy. There are various
possible optimisation goals. One is to minimise the number of searchers used
in the strategy. Using as few searchers as possible is clearly desirable in many
scenarios, as deploying searchers may be risky for them, or it may simply be
costly to hire the searchers. Closely related to this is the question of whether
with a given bound on the number of searches the graph can be searched at
all.

Another very common goal is to minimise the time it takes to search the
graph or the number of steps taken in the search. In particular, often one
would want to avoid searching parts of the graph multiple times. Think for
instance of the application where the task is to clean a system of tunnels of
some pollution which is spreading through the tunnels. Hence, every tunnel,
once cleaned, must be protected from recontamination which can only be
done by sealing off any exit of the tunnel facing a contaminated tunnel. As
cleaning is likely to be expensive, we would usually want to avoid having to
clean a tunnel twice. Search strategies which avoid having to clean any edge
or vertex twice are called monotone.

On the other hand, sealing off a tunnel might be problematic or costly
and we would therefore aim at minimising the number of tunnels that have
to be sealed off simultaneously. In the edge searching game described above,
sealing off a tunnel corresponds to putting a searcher on a vertex incident
to the edge modelling the tunnel. Hence, minimising this means using as
few searchers as possible. Ideally, therefore, we aim at a search strategy that
is monotone and at the same time minimises the number of searchers used.
This leads to one of the most studied problems with graph searching games,
the monotonicity problem, the question of whether for a particular type of
game the minimal number of searchers needed to catch the fugitive is the
same as the minimal number of searchers needed for a monotone winning
strategy. Monotonicity of a type of game also has close connections to the
complexity of deciding whether k searchers can catch a fugitive on a given
graph – monotone strategies are usually of length linear in the size of the

216 Stephan Kreutzer

graph – and also to decompositions of graphs. As we will see below, for
the node searching game considered above this is indeed the case. The first
monotonicity proof, for the edge searching variant, was given by LaPaugh
[1993] and since then monotonicity has been established for a wide range of
graph searching games.

Monotonicity of graph searching games will play an important part of this
chapter and we will explore this in detail in Section 7.4.

Applications

The goal of graph searching games is to devise a winning strategy for the
searchers that uses as few searchers as possible. The minimal number of
searchers needed to guarantee capture of the fugitive on a particular graph
thereby yields a complexity measure for the graph, which we call the search
width. This measure, obviously, depends on the type of game being considered.
The search width of a graph measures the connectivity of a graph in some way
and it is therefore not surprising that there is a close relationship between
width measures defined by graph searching games and other complexity or
width measures for graphs studied in the literature, such as the tree-width
or the path-width of a graph. This connection is one of the driving forces
behind graph searching games and we will explore it in Section 7.6 below.

Graph searching games have found numerous applications in computer
science. One obvious application of graph searching games is to all kinds of
search problems and the design of optimal search strategies. In games with
an invisible fugitive, searching can also be seen as conquering and an optimal
search strategy in this context is a strategy to conquer a country so that at
each point of time the number of troops needed to hold the conquered area
is minimised.

Furthermore, graph searching games have applications in robotics and the
planning of robot movements, as it is explored, for instance, by Guibas et al.
[1996]. Another example of this type is the use of graph searching games
to network safety as explored by Franklin et al. [2000] where the fugitive
models some information and the searchers model intruders, or infected
computers, trying to learn this information. The goal here is not to design
an optimal search strategy but to improve the network to increase the search
number. Graph searching games have also found applications in the study of
sequential computation through a translation from pebbling games. We will
give more details in Section 7.3.2.

Other forms of graph searching games are closely related to questions
in logic. For instance the entanglement of a graph is closely related to

Graph Searching Games 217

questions about the variable hierarchy in the modal μ-calculus, as explored
by Berwanger and Grädel [2004].

See the annotated bibliography of graph searching by Fomin and Thilikos
[2008] for further applications and references.

As different applications require different types of games, it is not surprising
that graph searching games come in many different forms. We will give an
overview of some of the more commonly used variants of games in the
Section 7.3.

Organisation. This chapter is organised as follows. In Section 7.2 we first
define graph searching games in an abstract setting and we introduce formally
the concept of monotonicity. We also explore the connection between graph
searching and reachability games and derive a range of general complexity
results about graph searching games. In Section 7.3 we present some of the
more commonly used variants of graph searching games. The monotonicity
problem and some important tools to show monotonicity are discussed in
Section 7.4. Formalisations of winning strategies for the fugitive in terms of
obstructions are discussed in Section 7.5. We will explore the connections
between graph searching and graph decompositions in Section 7.6. Finally,
in Section 7.7 we study the complexity of deciding the minimal number of
searchers required to search a graph in a given game and we close this chapter
by stating open problems in Section 7.8. Throughout the chapter we will
use some concepts and notation from graph theory which we recall in the
appendix.

7.2 Classifying graph searching games

In the previous section we have described one particular version of graph
searching, also known as the Invisible Cops and Robber games. Possible
variants of this game arise from whether or not the fugitive is invisible, from
the type of graph the game is played on, i.e., undirected or directed, a graph
or a hypergraph, whether the searchers can move freely to any position or
whether they can only move along one edge at a time, whether searchers only
dominate the vertex they occupy or whether they dominate other vertices as
well, whether the fugitive or the searchers can move in every round or only
once in a while, and many other differences. The great variations in graph
searching games has made the field somewhat confusing. The fact that the
same names are often used for very different games does not help either. In

218 Stephan Kreutzer

this section we will introduce some of the main variants of the game and
attempt a classification of graph searching games.

Most variations do not fundamentally change the nature of the game. The
notable exception is between games with a visible fugitive and those where
the fugitive is invisible. Essentially, the game with a visible fugitive is a two-
player game of perfect information whereas games with an invisible fugitive
are more accurately described as one-player games on an (exponentially)
enlarged game graph or as two-player games of imperfect information. This
difference fundamentally changes the notion of strategies and we therefore
introduce the two types of games separately.

7.2.1 Abstract graph searching games

We find it useful to present graph searching games in their most abstract
form and then explain how some of the variants studied in the literature can
be derived from these abstract games. This will allow us to introduce abstract
notions of strategies which then apply to all graph searching games. We will
also derive general complexity results for variants of graph searching games.
Similar abstract definitions of graph searching games have very recently
be given by Amini et al. [2009], Adler [2009] and Lyaudet et al. [2009] for
proving very general monotonicity results. Our presentation here only serves
the purpose to present the games considered in this paper concisely and
in a uniform way and we therefore choose a presentation of abstract graph
searching games which is the most convenient for our purpose.

Definition 7.1 An abstract graph searching game is a tuple G :=
(V,S,F , c) where

• V is a set
• S ⊆ Pow(V)× Pow(V) is the Searcher admissibility relation, and
• F : Pow(V)3 → Pow(V) is the Fugitive admissibility function, and
• c : Pow(V) → N is the complexity function.

In the following we will always assume that for every X ∈ Pow(V) there is
an X ′ ∈ Pow(V) such that (X, X ′) ∈ S. This is not essential but will avoid
certain notational complications in the definition of strategies below as they
otherwise would have to be defined as partial functions.

To give a first example, the Invisible Cops and Robber Game on a graph
G introduced in the introduction can be rephrased as an abstract graph
searching game G := (V,S,F , c) as follows.

Graph Searching Games 219

The set V contains the positions the searchers and the fugitive can occupy.
In our example, this is the set V (G) of vertices of G.

The Searcher admissibility relation defines the possible moves the searchers
can take. As in our example the searchers are free to move from any position to
any other position, the Searcher admissibility relation is just S := Pow(V)×
Pow(V).

The fugitive admissibility function models the possible moves of the fugitive:
if the searchers currently reside on X ⊆ V (G), the fugitive currently resides
somewhere in R ⊆ V and the searchers announce to move to X ′ ⊆ V , then
F(X, R, X ′) is the set of positions available to the fugitive during the move of
the searchers. In the case of the Invisible Cops and Robber Game described
above F(X, R, X ′) is defined as

{v ∈ V : there is u ∈ R and a path in G \ (X ∩X ′) from v to u }

the set of positions reachable from a vertex in R by a path that does not
run through a searcher remaining on the board, i.e., a searcher in X ∩X ′.

Finally, the complexity function c is defined as c(X) := |X| – the number
of vertices in X. The complexity function tells us how many searchers are
needed to occupy a position X of the Searcher. On graph searching games
played on graphs this is usually the number of vertices in X. However, on
games played on hypergraphs searchers sometimes occupy hyper-edges and
then the complexity would be the number of edges needed to cover the set
X of vertices.

Based on the definition of abstract graph searching games we can now
present the rules for invisible and visible games.

7.2.2 Invisible abstract graph searching games

Let G := (V,S,F , c) be an abstract graph searching game. In the variant of
graph searching with an invisible fugitive, the searchers occupy vertices in
V . The Fugitive, in principle, also occupies a vertex in V but the searchers
do not know which one. It is therefore much easier to represent the position
of the Fugitive not by the actual position v ∈ V currently occupied by the
fugitive but by the set R of all positions where the fugitive could currently
be. This is known as the fugitive space , or robber space . The goal of the
searchers in such a game therefore is to systematically search the set V so
that at some point the robber space will be empty.

The rules of the invisible abstract graph searching game on G are
defined as follows. The initial position of the play is (X0 := ∅, R0 := V), i.e.,

220 Stephan Kreutzer

initially there are no searchers on the board and the Fugitive can reside on
any position in V .

Let Xi ⊆ V be the current position of the searchers and Ri ⊆ V be the
current fugitive space. If Ri = ∅ then the Searcher has won and the game is
over. Otherwise, the Searcher chooses Xi+1 ⊆ V such that (Xi, Xi+1) ∈ S.
Afterwards, Ri+1 := F(Xi, Ri, Xi+1) and the play continues at (Xi+1, Ri+1).
If the fugitive can escape forever, then he wins.

Formally, a play in G := (V,S,F , c) is a finite or infinite sequence P :=
(X0, R0), . . . such that, for all i, (Xi, Xi+1) ∈ S and Ri+1 := F(Xi, Ri, Xi+1).
Furthermore, if P is infinite then Ri �= ∅, for all i ≥ 0, and if P :=
(X0, R0), . . . , (Xk, Rk) is finite then Rk = ∅ and Ri �= ∅ for all i < k. Hence,
the Searcher wins all finite plays and the Fugitive wins the infinite plays.

Note that as R0 := V and Ri+1 := F(Xi, Ri, Xi+1), the entire play is
determined by the actions of the Searcher and we can therefore represent
any play P := (X0, R0), . . . by the sequence X0, X1, ... of searcher positions.
Hence, invisible graph searching games are essentially one-player games of
perfect information. Alternatively, we could have defined invisible graph
searching games as a game between two players where the fugitive also
chooses a particular vertex vi ∈ Ri at each round but this information is
not revealed to the searchers. This would yield a two-player game of partial
information. For most applications, however, it is easier to think of these
games as one-player games.

We now formally define the concept of strategies and winning strategies.
As we are dealing with a one-player game, we will only define strategies for
the Searcher.

Definition 7.2 A strategy for the Searcher in an invisible abstract graph
searching game G := (V,S,F , c) is a function f : Pow(V) × Pow(V) →
Pow(V) such that (X, f(X,R)) ∈ S for all X,R ⊆ V .

A finite or infinite play P := (X0, R0), ... is consistent with f if Xi+1 :=
f(Xi, Ri), for all i.

The function f is a winning strategy if every play P which is consistent
with f is winning for the Searcher.

If in a play the current position is (X, R), i.e., the searchers are on the
vertices in X and the Fugitive space is R, then a strategy for the Searcher
tells the Searcher what to do next, i.e., to move the searchers to the new
position X ′.

Note that implicitly we have defined our strategies to be positional strategies
in the sense that the action taken by a player depends only on the current
position in the play but not on the history. We will see in Section 7.2.6 that

Graph Searching Games 221

this is without loss of generality as graph searching games are special cases
of reachability games for which such positional strategies suffice.

Example: The Invisible Cops and Robber Game

We have already seen how the Invisible Cops and Robber Game on a graph
G described in the introduction can be formulated as an abstract Invisible
Cops and Robber Game (V,S,F , c) where V := V (G) is the set of positions,
S := Pow(V)×Pow(V) says that the cops can move freely from one position
to another and F(X, R, X ′) := {v ∈ V : there is a path in G \ (X ∩X ′) from
some u ∈ R to v }. This game was first described as node searching by
Kirousis and Papadimitriou [1986]. Here the searchers try to systematically
search the vertices of the graph in a way that the space available to the
fugitive shrinks until it becomes empty.

9

7 8

1 3 4 6

2 5

Figure 7.1 Example for an Invisible Cops and Robber Game

To give an example, consider the graph depicted in Figure 7.1. We will
describe a winning strategy for four cops in the Invisible Cops and Robber
Game. The first row contains the cop positions and the second row the
corresponding robber space.

Xi : {1, 2, 3} {3, 4} {3, 4, 5, 6} {3, 4, 7} {4, 7, 8} {7, 8, 9}
Ri : {4, 5, 6, 7, 8, 9} {5, 6, 7, 8, 9} {7, 8, 9} {8, 9} {9} ∅

Note that we have used all four cops only once, at position {3, 4, 5, 6}. It is
not too difficult to see that we cannot win with three cops. For, consider the
edge 3, 4 and assume that cops are placed on it. The graph G\{3, 4} contains
three components, {1, 2}, {5, 6} and {7, 8, 9}. Each of these requires at least
three cops for clearing but as soon as one of them is cleared the vertices of
the edge {3, 4} adjacent to a vertex in the component must be guarded until
at least a second component of G \ {3, 4} is cleared. For instance, if we first
clear the triangle {1, 2, 3} then the vertex 3 needs to be guarded until 4 and

222 Stephan Kreutzer

7 are clear but then there are not enough cops left to clear the rest of the
graph.

To formally prove that we cannot search the graph with only three cops we
will exhibit structural properties of graphs, called blockages, which guarantee
the existence of a winning strategy for the robber. This leads to the concept
of obstructions and corresponding duality theorems which we will study in
more detail in Section 7.5.

7.2.3 Visible abstract graph searching games

In this section we describe a variant of graph searching games where the
fugitive is visible to the searchers. This fundamentally changes the nature of
the game as now the searchers can adapt their strategy to the move of the
fugitive. Such graph searching games are now truly two-player games which
necessitates some changes to the concepts of strategies.

In particular, it no longer makes sense to represent the position of the
fugitive as a fugitive space. Instead we will have to consider individual
positions of the fugitive.

Given an abstract game G := (V,S,F , c), the rules of the visible abstract

graph searching game on G are defined as follows. Initially, the board is
empty.1 In the first round the Searcher first chooses a set X0 ⊆ V and then
the Fugitive chooses a vertex v0 ∈ V .

Let Xi ⊆ V and vi ∈ V be the current positions of the searchers and the
Fugitive respectively. If vi ∈ Xi then the Searcher has won and the game is
over. Otherwise, the Searcher chooses Xi+1 ⊆ V such that (Xi, Xi+1) ∈ S.
Afterwards, the Fugitive can choose any vertex vi+1 ∈ F(Xi, {vi}, Xi+1). If
there is none or if F(Xi, {vi}, Xi+1) ⊆ Xi+1, then again the Searcher wins.
Otherwise, the play continues at (Xi+1, vi+1). If the Fugitive can escape
forever, then he wins.

Formally, a play in G is a finite or infinite sequence P := (X0, v0), . . . such
that (Xi, Xi+1) ∈ S and vi+1 ∈ F(Xi, {vi}, Xi+1), for all i ≥ 0. Furthermore,
if P is infinite then vi �∈ Xi, for all i ≥ 0, and if P := (X0, v0), . . . , (Xk, vk)
is finite then vk ∈ Xk and vi �∈ Xi for all i < k. Hence, the Searcher wins all
finite plays and the Fugitive wins the infinite plays.

We now define strategies and winning strategies for the Searcher. In
contrast to the invisible case, there is now also a meaningful concept of
strategies for the Fugitive. However, here we are primarily interested in

1 There are some variants of games where the robber chooses his position first, but this is not
relevant for our presentation.

Graph Searching Games 223

Searcher strategies but we will come back to formalisations of Fugitive
strategies later in Section 7.5.

Definition 7.3 A strategy for the Searcher in a visible abstract graph
searching game G := (V,S,F , c) is a function f : Pow(V) × V → Pow(V)
such that for all X ⊆ V and v ∈ V , (X, f(X, v)) ∈ S.

A finite or infinite play P := (X0, v0), ... is consistent with f if Xi+1 :=
f(Xi, vi), for all i.

f is a winning strategy if every play P which is consistent with f is
winning for the Searcher.

If in a play the current position is (X, v), i.e., the Searchers are on the
vertices in X and the Fugitive is on v, then a strategy for the Searcher tells
the Searcher what to do next, i.e., to move the Searchers to the new position
X ′.

Note that implicitly we have defined our strategies to be positional strategies
in the sense that the action taken by a player depends only on the current
position in the play but not on the history. We will see below that this
is without loss of generality as graph searching games are special cases of
reachability games for which such positional strategies suffice. Furthermore,
the determinacy of reachability games implies that in any visible graph
searching game exactly one of the two players has a winning strategy (see
Corollary 7.11).

It is worth pointing out the fundamental difference between strategies for
the visible and invisible case. In the invisible case, a strategy for the Searcher
uniquely defines a play. Therefore, as we have done above, we can represent a
strategy for the Searcher in an invisible graph searching game as a sequence
X0, X1, . . . or Searcher positions.

In the visible case, however, the next searcher position may depend on
the choice of the fugitive. Therefore, a Searcher strategy f in the visible
case can be described by a rooted directed tree T as follows. The nodes
t ∈ V (T) are labelled by cops(t) ⊆ V and correspond to Searcher positions.
The individual edges correspond to the possible robber moves. More formally,
the root r ∈ V (T) of T is labelled by cops(r) := X0 the initial cop position.
For every v ∈ V \X0 there is a successor tv such that cops(tv) := f(cops(t), v).
The edge (t, tv) is labelled by v. Now, for every u ∈ F(X0, v, cops(tv)) there
is a successor tu of tv labelled by cops(tu) := f(cops(tv), u). Continuing in
this way we can build up a strategy tree which is finite if, and only if, f is a
winning strategy. More formally, we define a strategy tree as follows.

Definition 7.4 Let (V,S,F , c) be an abstract visible graph searching game.

224 Stephan Kreutzer

An abstract strategy tree is a rooted directed tree T whose nodes t are
labelled by cops(t) ⊆ V and whose edges e are labelled by search(e) ∈ V as
follows.

1 search(e) �∈ cops(s) for all edges e := (s, t) ∈ E(T).
2 If r is the root of T then for all v ∈ V \ cops(r) there is a successor tv of r

in T and search(r, tv) := v.
3 If t is a node with predecessor s and v := search((s, t)) then for each u ∈
F(cops(s), v, cops(t)) there is a successor tu of t in T so that search(t, vu) :=
u.

Often this tree can be further simplified. Suppose for instance that there
is an edge (s, t) ∈ E(T) and that there are vertices u1, u2 ∈ F(cops(s),
v, cops(t)) \ cops(t) such that F(cops(t), u1, X) = F(cops(t), u2, X), for all
X ⊆ V (G). In this case the two vertices u1 and u2 are equivalent in the
sense that it makes no sense for the Searcher to play differently depending
on whether the fugitive moves to u1 or u2 and likewise for the robber. We
therefore do not need to have separate sub-trees corresponding to the two
different moves.

Example: The Visible Cops and Robber Game

Let us illustrate the definition of abstract graph searching games. In Seymour
and Thomas [1993], a graph searching game called the Cops and Robber

Game is considered, where searchers and the fugitive reside on vertices of a
graph G = (V,E). From a position (X, v), where X ⊆ V are the positions of
the searchers and v ∈ V is the current fugitive position, the game proceeds
as follows. The searchers can move freely from position X ⊆ V to any other
position X ′ ⊆ V . But they have to announce this move publicly and while
the searchers move from X to X ′ the fugitive can choose his new position
from all vertices v′ such that there is a path in G from v to v′ not containing
a vertex from X ∩X ′.

Formulated as an abstract graph searching game, G := (V,S,F , c) we
let V := V (G) and S := Pow(V) × Pow(V), indicating that there is no
restriction on the moves of the searchers. The function F is then defined as

F(X, {v}, X ′) := {u ∈ V : there is a path in G \ (X ∩X ′) from v to u }.

The complexity function c is defined as c(X) := |X|.
To illustrate the game we will show a winning strategy for three cops

in the visible Cops and Robber game played on the graph G depicted in
Figure 7.1. Initially the cops go on the vertices {3, 4}. Now the robber has
a choice to go in one of the three components of G \ {3, 4}. If he chooses

Graph Searching Games 225

a vertex in {1, 2} then the next cop move is to play {3, 1, 2}. As the cop 3
remains on the board the robber cannot escape and is trapped. Analogously,
if the robber chooses a vertex in {5, 6} then the cops go to {4, 5, 6}. Finally,
suppose the robber chooses a vertex in {7, 8, 9}. Now the cops have to be a
little more careful. If they were to lift up a cop on the board, say the cop
on vertex 3 to place it on 7, then the robber could escape through a path
from his current vertex over the vertex 3 to the component {1, 2, 3}. So the
cop on 3 has to remain on the board and the same for 4. To continue with
the winning strategy for the cops we place the third cop on the vertex 7.
Now the robber can only move to one of 8, 9. We can now lift the cop from 3
and place it on 8, as the cops remaining on 7 and 4 block all exits from the
component containing the robber. Putting the cop on 7 leaves only vertex 9
for the robber and in the next move he will be caught by moving the cop
from 4 to 9.

Recall that in the invisible graph searching game we needed 4 cops to
catch the invisible robber whereas here, knowing the robber position, allows
us to save one cop. This example also shows that strategies for the cops are
trees rather than just simple sequences of cop positions.

7.2.4 Complexity of strategies

We now define the complexity of a strategy for the Searcher.

Definition 7.5 Let P := (X0, R0), . . . , where Ri := {vi} in case of visible
games, be a finite or infinite play in a graph searching game G := (V,S,F , c).
The complexity of P is defined as

comp(P) := max{c(Xi) : (Xi, Ri) ∈ P}.

The complexity of a winning strategy f for the Searcher is

comp(f) := max{comp(P) : P is an f -consistent play}.

As outlined in the introduction, the computational problem associated
with a graph searching game is to determine a winning strategy for the
Searcher that uses as few searchers as possible, i.e., is of lowest complexity.

Definition 7.6 Let G := (V,S,F , c) be an abstract graph searching game.
The search-width of G is the minimal complexity of all winning strategies
for the Searcher, or ∞ if the Searcher does not have any winning strategies.

A natural computational problem, therefore, is to compute the search-width
of a graph searching game. More often we are interested in the corresponding

226 Stephan Kreutzer

decision problem to decide, given an abstract graph searching game G :=
(V,S,F , c) and k ∈ N, if there is a winning strategy in G for the Searcher of
complexity at most k. We will usually restrict this problem to certain classes
of graph searching games, such as Visible Cops and Robber Games. In these
cases we will simply say ‘the Visible Cops and Robber Game has complexity
C’. Furthermore, often this problem is further restricted to games with a
fixed number of Searchers.

Definition 7.7 Let k ∈ N. The k-searcher game on G := (V,S,F , c) is
defined as the graph searching game G′ := (V,S ′,F , c) on the restriction of
G to S ′ := {(X, X ′) : (X, X ′) ∈ S and c(X), c(X ′) ≤ k}.

7.2.5 Monotonicity

In this section we formally define the concept of monotone strategies. Let
G := (V,S,F , c) be an abstract graph searching game.

Definition 7.8 A play P := (X0, R0), . . . , where Ri := {vi} in case of
visible graph searching games, is cop-monotone if for all v ∈ V and
i ≤ l ≤ j: if v ∈ Xi and v ∈ Xj then v ∈ Xl.
P is robber-monotone if F(Xi, Ri, Xi+1) ⊇ F(Xi+1, Ri+1, Xi+2), for all

i ≤ 0.
A strategy is cop- or robber-monotone if any play consistent with the

strategy is cop- or robber-monotone.

As outlined above, monotone winning strategies have the advantage of
being efficient in the sense that no part of the graph is searched more than
once. In most games, this also means that the strategies are short, in the
sense that they take at most a linear number of steps.

Lemma 7.9 Let G := (V,S,F , c) be an abstract graph searching game with
the property that the robber space does not decrease if the cops do not move.
Then every play consistent with a cop-monotone winning strategy f will end
after at most |V | steps.

Proof Note that by definition of Searcher strategies the move of the searchers
only depends on the current searcher position and the fugitive space or
position. Hence, from the assumption that no part of the graph is cleared
if the searchers do not move, we can conclude that if at some point the
searchers do not move and the fugitive stands still, the play would be infinite
and hence losing for the searchers.

Therefore, the cops have to move at every step of the game and as they

Graph Searching Games 227

can never move back to a position they left previously, they can only take a
linear number of steps.

Almost all games considered in this chapter have the property that no
player is forced to move and therefore, if the searchers do not move, the
fugitive space does not decrease. An exception is the game of entanglement
studied by Berwanger and Grädel [2004] where the fugitive has to move at
every step and therefore it can be beneficial for the searchers not to move.

A similar lemma as before can often be shown for robber monotone
strategies as the robber space is non-increasing. However, this would require
the game to be such that there is a bound on the number of steps the cops
have to make to ensure that the robber space actually becomes smaller. In
almost all games such a bound can easily be found, but formalising this in
an abstract setting does not lead to any new insights.

7.2.6 Connection to reachability games

In this section we rephrase graph searching games as reachability games
and derive some consequences of this. A reachability game is a game played
on an arena G := (A, V0, E, v0) where (A, E) is a directed graph, V0 ⊆ A

and v0 ∈ A. We define V1 := A \ V0. The game is played by two players,
Player 0 and Player 1, who push a token along edges of the digraph. Initially
the token is on the vertex v0. In each round of the game, if the token is
on a vertex vi ∈ V0 then Player 0 can choose a successor vi+1 of vi, i.e.,
(vi, vi+1) ∈ E, and push the token along the edge to vi+1 where the play
continues. If the token is on a vertex in V1 then Player 1 can choose the
successor. The winning condition is given by a set X ⊆ A. Player 0 wins if
at some point the token is on a vertex in X or if the token is on a vertex in
V1 which has no successors. If the token never reaches a vertex in X or if at
some point Player 0 cannot move anymore, then Player 1 wins. See [Grädel
et al., 2002, Chapter 2] for details of reachability games.

A positional strategy for Player i in a reachability game can be described
as a function fi : Vi → A assigning to each vertex v where the player moves a
successor f(v) such that (v, f(v)) ∈ E. fi is a winning strategy if the player
wins every play consistent with this strategy. For our purposes we need two
results on reachability games, positional determinacy and the fact that the
winning region for a player in a reachability game can be computed in linear
time.

228 Stephan Kreutzer

Lemma 7.10

1 Reachability games are positionally determined, i.e., in every reachability
game exactly one of the players has a winning strategy and this can be
chosen to be positional.

2 There is a linear time algorithm which, given a reachability game
(A, V0, E, v0) and a winning condition X ⊆ A, decides whether Player
0 has a winning strategy in the game.

Let G := (V,S,F , c) be a visible graph searching game. We associate with
G a game arena G := (A, V0, E, v0) where

A := Pow(V)× V ∪
{(X, v, X ′) ∈ Pow(V)× Pow(V)× V : (X,X ′) ∈ S}.

Nodes (X, v) ∈ Pow(V)×V correspond to positions in the graph searching
games. A node (X, v, X ′) ∈ Pow(V) × V × Pow(V) will correspond to the
intermediate position where the searchers have announced that they move
from X to X ′ and the fugitive can choose his new position v′ ∈ F(X, {v}, X ′).
There is an edge from (X, v) to (X, v, X ′) for all X ′ such that (X, X ′) ∈
S. Furthermore, there is an edge from (X, v, X ′) to (X ′, v′) for all v′ ∈
F(X, {v}, X ′).

All nodes of the form (X, v) belong to Player 0 and nodes (X, v, X ′) belong
to Player 1. Finally, the winning condition contains all nodes (X, v) for which
v ∈ X.

Now, it is easily seen that from any position (X, v) in the graph searching
game, the Searcher has a winning strategy if, and only if, Player 0 has a
winning strategy in G from the node (X, v). Lemma 7.10 implies the following
corollary.

Corollary 7.11 For every fixed k, in every visible graph searching game
exactly one of the two players has a winning strategy in the k-searcher game.

Similarly, for the invisible graph searching game, we define a game arena
G as follows. The vertices are pairs (X, R) where X, R ⊆ V and there is an
edge between (X, R) and (X ′, R′) if (X,X ′) ∈ S and R′ := F(X, R, X ′). All
nodes belong to Player 0. Again it is easily seen that Player 0 has a winning
strategy from node (X, R) in G if, and only if, the Searcher has a winning
strategy in the invisible graph searching game starting from (X, R).

Graph Searching Games 229

7.3 Variants of graph searching games

In this section we present some of the main variants of games studied in the
literature.

7.3.1 A different Cops and Robber game

Nowakowski and Winkler [1983] study a graph searching game, also called a
Cops and Robber game, where the two players take turns and both players
are restricted to move along an edge. More formally, starting from a position
(X, r), first the Searcher moves and can choose a new position X ′ obtained
from X by moving some searchers to neighbours of their current position.
Once the searchers have moved the fugitive can then choose a neighbour of
his current position, provided he has not already been caught. See Alspach
[2006] for a survey of this type of game.

In our framework of graph searching games, this game, played on a graph
G, can be formalised as G := (V,S,F , c) where

• V := V (G).
• A pair (X, X ′) is in S if there is a subset Y ⊆ X (these are the searchers

that move) and a set Y ′ which contains for each v ∈ Y a successor v′ of v,
i.e., a vertex with (v, v′) ∈ E(G), and X ′ ⊆ Y ′ ∪X \ Y .

• For a triple (X, v, X ′) we define F(X, v, X ′) to be empty if v ∈ X ′ and
otherwise the set of vertices u s.t. u �∈ X ′ and (v, u) ∈ E(G).

• Finally, c(X) := |X| for all X ⊆ V .

We will refer to this type of game as turn-based. Goldstein and Reingold
[1995] study turn-based Cops and Robber games on directed graphs and
establish a range of complexity results for variations of this game ranging from
Logspace-completeness to Exptime-completeness. Among other results
they show the following theorem.

Theorem 7.12 (Goldstein and Reingold [1995]) The turn-based Cops and
Robber game on a strongly connected digraph is Exptime-complete.

The study of this type of game forms a rich and somewhat independent
branch of graph searching games. To keep the presentation concise, we
will mostly be focusing on games where the two players (essentially) move
simultaneously and are not restricted to moves of distance one. See Alspach
[2006] and Fomin and Thilikos [2008] and references therein for a guide to
the rich literature on turn-based games.

230 Stephan Kreutzer

7.3.2 Node and edge searching with an invisible fugitive

We have already formally described the rules of the (non turn-based) Invisible
Cops and Robber Game in Section 7.2.2. This game has been introduced as
node-searching by Kirousis and Papadimitriou [1986] who showed that it is
essentially equivalent to pebbling games used to analyse the complexity of
sequential computation.

Pebble games are played on an acyclic directed graph. In each step of
a play we can remove a pebble from a vertex or place a new pebble on a
vertex provided that all its predecessors carry pebbles. The motivation for
pebble games comes from the analysis of register allocation for sequential
computation, for instance for computing arithmetical expressions. The ver-
tices of a directed acyclic graph corresponds to sub-terms that have to be
computed. Hence, to compute the value of a term represented by a node t

we first need to compute the value of its immediate sub-terms represented by
the predecessors of t. A pebble on a node means that the value of this node
is currently contained in a register of the processor. To compute a value of
a term in a register the values of its sub-terms must also be contained in
registers and this motivates the rule that a pebble can only be placed if its
predecessors have been pebbled.

Initially the graph is pebble free and the play stops once all vertices have
been pebbled at least once. The minimal number of pebbles needed for a
directed graph representing an expression t is the minimal number of registers
that have to be used for computing t. Kirousis and Papadimitriou [1986]
show that pebble games can be reformulated as graph searching games with
an invisible fugitive and therefore register analysis as described above can be
done within the framework of graph searching games.

In the same paper they show that edge searching and node searching are
closely related. Recall from the introduction that the edge searching game
is a game where the robber resides on edges of the graph. The searchers
occupy vertices. In each move, the searchers can clear an edge by sliding
along it, i.e., if a searcher occupies an endpoint of an edge then he can move
to the other endpoint and thereby clears the edge. As shown by Kirousis and
Papadimitriou [1986], if G is a graph and G′ is the graph obtained from G by
sub-dividing each edge twice, then the minimal number of cops required to
catch the fugitive in the node searching game on G, called the node search

number of G, is one more than the minimal number of searchers required
in the edge searching game on G′, called the edge search number of G′.
Conversely, if G is a graph and G′ is obtained from G by replacing each edge

Graph Searching Games 231

by three parallel edges, then the edge search number of G′ is one more than
the node search number of G.

LaPaugh [1993] proved that the edge searching game is monotone thereby
giving the first monotonicity proof for a graph searching game. Using the
correspondence between edge searching and node searching, Kirousis and
Papadimitriou [1986] establish monotonicity for the node searching game.
Bienstock and Seymour [1991] consider a version of invisible graph searching,
called mixed searching, where the searcher can both slide along an edge or
move to other nodes clearing an edge as soon as both endpoints are occupied.
They give a simpler monotonicity proof for this type of game which implies
the previous two results.

A very general monotonicity proof for games with an invisible robber
based on the concept of sub-modularity was given by Fomin and Thilikos
[2003]. We will present an even more general result using sub-modularity in
Section 7.4 below.

Using a reduction from the Min-Cut Into Equal-Sized Subsets prob-
lem, Megiddo et al. [1988] showed that edge searching is NP-complete. Using
the correspondence between edge and node searching outlined above, this
translates into NP-completeness of the node searching variant, i.e., the Invis-
ible Cops and Robber Game defined above.

7.3.3 Visible Robber games

We have already introduced the visible cops and robber game above. This
game was studied by Seymour and Thomas [1993] in relation to tree-width, a
connection which we will present in more depth in Section 7.6. In this paper
they introduce a formalisation of the robber strategies in terms of screens,
nowadays more commonly referred to as brambles, and use this to prove
monotonicity of the visible cops and robber game. A monotonicity proof
unifying this result and the results obtained for invisible robber games has
been given by Mazoit and Nisse [2008]. We will review this proof method in
Section 7.4 below.

Arnborg et al. [1987] proved by a reduction from the Minimum Cut

Linear Arrangement problem that determining for a given graph the
minimal k such that G can be represented as a partial k-tree is NP-complete.
This number is equal to the tree-width of G and therefore deciding the
tree-width of a graph is NP-complete. We will see in Section 7.6 that the
minimal number of searchers, called the visible search width of G, required
to catch a visible fugitive in the visible Cops and Robber game on a graph G

232 Stephan Kreutzer

is equal to the tree-width of G plus one. Hence, deciding the visible search
width of a graph is NP-complete.

7.3.4 Lazy or inert fugitives

In the games studied so far the fugitive was allowed to move at every step
of the game. The inert variant of visible and invisible graph searching is
obtained by restricting the fugitive so that he can only move if a searcher is
about to land on his position. More formally, the inert graph searching game
G := (V,S,F , c) is defined as an abstract graph searching game where for all
X, X ′ ⊆ V and v ∈ V , F(X, v, X ′) = v if v �∈ X ′.

Inert fugitive games can be defined for visible and invisible fugitives.
However, as often in life, being lazy and visible is usually not a good idea
wherefore the invisible game has received much more attention. Dendris et al.
[1997] study the invisible inert fugitive game and show it to be equivalent to
the visible cops and robber game. Richerby and Thilikos [2008] study the
inert case for a visible fugitive.

7.3.5 Games played on directed graphs

The games studied so far have been played on undirected graphs but many
have natural counterparts on directed graphs. Let us first consider the visible
Cops and Robber game played on an undirected graph. Suppose that the
current position for the searchers is X and the robber is on a vertex v. If the
searchers announce their intention to move to their new position X ′ then
the robber can move to any vertex u reachable in G \ (X ∩ X ′) from his
current position v. Obviously this formulation of the game is equivalent to the
formulation where the robber can move freely in the connected component
of G \ (X ∩X ′) containing v. While the two presentations are equivalent on
undirected graphs they yield two very different games when translated to
directed graphs.

Definition 7.13 Let G be a directed graph and let V := V (G), c(X) := |X|
for all X ⊆ V (G) and (X, X ′) ∈ S for all X, X ′ ⊆ V (G).

1 The reachability game on G is defined as the abstract graph searching
game G := (V,S,F , c), where the Fugitive admissibility function F is
defined as F(X,R, X ′) := {v ∈ V : there is an u ∈ R and a directed path
in G \ (X ∩X ′) from v to u}.

2 The strongly connected component (SCC) game on G is defined as
the abstract graph searching game G := (V,S,F , c), where the Fugitive

Graph Searching Games 233

Figure 7.2 A visible directed reachability game

admissibility function F is defined as F(X, R, X ′) := {v ∈ V : there is an
u ∈ R such that u and v are in the same strongly connected component of
G \ (X ∩X ′)}.

To demonstrate the games and the fundamental difference between games
on undirected and directed graphs, we give an example of a directed visible
reachability game.

Consider the directed graph depicted in Figure 7.3.5. An undirected edge
indicates a directed edge in both directions. The graph consists of two cliques
of three vertices each which we will call CL := {1, 2, 3} and CR := {7, 8, 9}.
An edge connecting a clique to a specific vertex means that every vertex
of the clique is connected to this vertex. That is, every vertex of Cl has
a directed edge to 4 and 5 and every vertex of CR has a directed edge to
every vertex in CL and also an undirected edge (two directed edges in either
direction) to the vertices 4, 5, 6 in the middle.

On this graph, five cops have a winning strategies against the robber as
follows. As every vertex in CR has an edge to every other vertex, the cops
must first occupy all vertices in CR, which takes three cops. In addition they
put two cops on 4 and 5. Now the robber has a choice to either move to 6 or
to a vertex in the clique CL. If he goes to CL we lift all cops from CR and
place them on CL capturing the robber, as the only escape route from CL is
through the vertices 4 and 5 which are both blocked.

If on the other hand the robber decides to move to 6 then we lift the two
cops from 4 and 5 and place one of them on 6. Now the robber can move to
one of 4 or 5 but whatever he does we can then place the space cop on the
chosen vertex capturing the robber.

Note that this strategy is non-monotone as the robber can reach the
vertices 4 and 5 after they have already been occupied by a cop. Kreutzer
and Ordyniak [2008] show that there is no monotone strategy with five cops
on this graph, showing that the directed reachability game is non-monotone.

This example also demonstrates the crucial difference between games

234 Stephan Kreutzer

played on undirected and directed graphs. For, let G be an undirected graph
with some cops being on position X and let R be the robber space, i.e., the
component of G \ X containing the robber. Now, for every Y ⊆ V (G), if
the Cop player places cops on X ∪ Y and then removes them from Y again,
i.e., moves back to position X, then the robber space is exactly the same
space R as before. Intuitively, this is the reason why non-monotone moves
are never necessary in the undirected cops and robber game. For a game
played on directed graphs, this is not the case as the example above shows.
If X := {6, 7} and Y := CR then once the cops go on X ∪ Y and the robber
has moved to CL, the cops can be lifted from CR without the robber being
able to regain control of the lost vertices.

To see that the two variants of directed graph searching games presented
above are very different consider the class of trees with backedges as studied,
e.g., by Berwanger et al. [2006]. The idea is to take a tree and add an edge
from every node to any of its (direct or indirect) predecessors up to the root.
Then it is easily seen that two searchers suffice to catch a visible fugitive in
the SCC game on these trees but to catch the fugitive in the reachability
game we need at least as many cops as the height of tree. (It might be a
good exercise to prove both statements.) Hence, the difference between the
two game variants can be arbitrarily large. On the other hand, we never need
more searchers to catch the fugitive in the SCC game than in the reachability
game as every move allowed to the fugitive in the latter is also a valid move
in the former.

The visible SCC game has been introduced in connection with directed

tree-width by Johnson et al. [2001]. Barát [2006] studies the invisible reach-
ability game and established its connection to directed path-width. Finally,
the visible reachability game was explored by Berwanger et al. [2006] and its
inert variant by Hunter and Kreutzer [2008]. See also Hunter [2007].

As we have seen above, the visible, invisible and inert invisible graph
searching games as well as their edge and mixed search variants are all
monotone on undirected graphs. For directed graphs the situation is rather
different. Whereas Barát [2006] proved that the invisible reachability game
is monotone, all other game variants for directed graphs mentioned here
have been shown to be non-monotone. For the SCC game this was shown
by Johnson et al. [2001] for the case of searcher monotonicity and by Adler
[2007] for fugitive monotonicity. However, Johnson et al. [2001] proved that
the visible SCC game is at least approximately monotone. We will review the
proof of this result in Section 7.4 below.

The visible reachability game as well as the inert reachability game were
shown to be non-monotone by Kreutzer and Ordyniak [2008].

Graph Searching Games 235

7.3.6 Games played on hypergraphs

Graph searching games have also found applications on hypergraphs. Gottlob
et al. [2003] study a game called the Robber and Marshal game on
hypergraphs. In the game, the fugitive, here called the robber, occupies
vertices of the hypergraph whereas the searchers, here called marshals, occupy
hyper-edges. The game is somewhat different from the games discussed above
as a marshal moving from a hyper-edge e to a hyper-edge h still blocks the
vertices in e ∩ h. In particular, one marshal is enough to search an acyclic
graph, viewed as a hypergraph in the obvious way, whereas we always need
at least two cops for any graph containing at least one edge in the visible
cops and robber game.

Formally, given a hypergraph H := (V (H), E(H)) the Robber and Marshal
game on H is defined as GH := (V,S,F , c) where

• V := V (H)∪̇E(H)
• (X, X ′) ∈ S if X, X ′ ⊆ E(H)
• F(X, R, X ′) := ∅ if R �⊆ V (H) or R ⊆ {v ∈ V (H) : ∃e ∈ X, v ∈ e} and

otherwise F(X, R, X ′) := {v ∈ V (H) : there is a path in H from a vertex
u ∈ R to v not going through any vertex in

⋃
X ∩

⋃
X ′}

• c(X) := |X|.

Robber and Marshal games have been studied in particular in connec-
tion to hypergraph decompositions such as hypertree-width and generalised
hypertree-width and approximate duality theorems similar to the one we will
establish in Sections 7.4.2 and 7.6 have been proved by Adler et al. [2005].

7.3.7 Further variants

Finally, we briefly comment on further variants of graph searching. Here we
concentrate on games played on undirected graphs, but some of the variants
translate easily to other types of graphs such as digraphs or hypergraphs.

An additional requirement sometimes imposed on the searchers is that at
every step in a play the set of vertices occupied by searchers needs to be
connected . This is, for instance, desirable if the searchers need to stay within
communication range. See, e.g., Fomin and Thilikos [2008] for references on
connected search.

Another variation is obtained by giving the searchers a greater radius of
visibility. For instance, we can consider the case where a searcher not only
dominates his own vertex but also all vertices adjacent to it. That is, to
catch the robber it is only necessary to trap the robber in the neighbourhood

236 Stephan Kreutzer

of a searcher. In particular in the invisible fugitive case, such games model
the fact that often searchers can see further than just their current position,
for instance using torch lights, but they still cannot see the whole system of
tunnels they are asked to search. Such games, called domination games,
were introduced by Fomin et al. [2003]. Kreutzer and Ordyniak [2009] study
complexity and monotonicity of these games and show domination games are
not only algorithmically much harder compared to classical cops and robber
games, they are also highly non-monotone (see Section 7.4.3 below).

Besides graph searching games inspired by applications related to graph
searching, there are also games which fall under the category of graph
searching games but were inspired by applications in logic. In particular,
Berwanger and Grädel [2004] introduce the game of entanglement and its
relation to the variable hierarchy of the modal μ-calculus.

7.4 Monotonicity of graph searching

As mentioned before, monotonicity features highly in research on graph
searching games for a variety of reasons. In this section we present some
of the most important techniques that have been employed for proving
monotonicity results in the literature.

In Section 7.4.1, we first introduce the concept of sub-modularity, which
has been used (at least implicitly) in numerous monotonicity results, and
demonstrate this technique by establishing monotonicity of the visible cops
and robber game discussed above.

Many graph searching games on undirected graphs have been shown to be
monotone. Other games, for instance many games on directed graphs, are
not monotone and examples showing that searchers can be saved by playing
non-monotonic have been given. In some cases, however, at least approximate
monotonicity can be retained in the sense that there is a function f : N → N

such that if k searchers can win by a non-monotone strategy then no more
then f(k) searchers are needed to win by a monotone strategy. Often f is
just a small constant. Many proofs of approximate monotonicity use the
concept of obstructions. We will demonstrate this technique in Section 7.4.2
for the case of directed graph searching.

7.4.1 Monotonicity by sub-modularity

The aim of this section is to show that the visible cops and robber game on
undirected graphs is monotone. The proof presented here essentially follows

Graph Searching Games 237

Mazoit and Nisse [2008]. We will demonstrate the various constructions in
this part by the following example.

Figure 7.3 Example graph G for monotonicity proofs

Recall the representation of winning strategies for the Cop player in terms
of strategy trees in Definition 7.4. In this tree, a node t corresponds to
a cop position cops(t) and an out-going edge e := (t, s) corresponds to a
robber move to a vertex search(e) := v. Clearly, if the cops are on vertices
X := cops(t) and u, v are in the same component of G \X, then it makes no
difference for the game whether the robber moves to u or v, because whatever
the cops do next, the robber can move to exactly the same positions. We
therefore do not need to have two separate sub-trees for u and v and can
combine vertices in the same component. Thus, we can rephrase strategy
trees for the visible cops and robber game as follows. To distinguish from
search trees defined below we deviate from the notation of Definition 7.4 and
use robber(e) instead of search(e).

Definition 7.14 Let G be an undirected graph. A strategy tree is a
rooted directed tree T whose nodes t are labelled by cops(t) ⊆ V (G) and
whose edges e ∈ E(T) are labelled by robber(e) ⊆ V (G) as follows.

1 If r is the root of T then for all components C of G \ cops(r) there is a
successor tC of r in T and robber(r, tC) := V (C).

2 If t is a node with predecessor s and C ′ := robber((s, t)) then for each
component C of G \ cops(t) contained in the same component of G \
(cops(s) ∩ cops(t)) as C ′ there is an edge eC := (t, tC) ∈ E(T) that
robber(eC) := V (C).

A strategy tree is monotone if for all (s, t), (t, t′) ∈ E(T) robber(s, t) ⊇
robber(t, t′).

Towards proving monotonicity of the game it turns out to be simpler to
think of the cops and the robber as controlling edges of the graph rather
than vertices. We therefore further reformulate strategy trees into what we
will call search trees. Here, a component housing a robber, or a robber space
in general, will be represented by the set of edges contained in the component

238 Stephan Kreutzer

Figure 7.4 Non-monotone strategy tree for the graph in Figure 7.3

plus the edges joining this component to the cop positions guarding the
robber space. We will next define the notion of a border for a set of edges.

Definition 7.15 Let E be a set. We denote the set of partitions P :=
(X1, . . . , Xk) of E by P(E), where we do allow degenerate partitions, i.e.,
Xi = ∅ for some i.

Definition 7.16 Let G be a graph and let F ⊆ E(G). By δ(F) we denote
the border of F , i.e., the set of vertices incident to an edge in F and also to
an edge in E(G) \ F .

We extend the definition to partitions P := {X1, . . . , Xr} ∈ P(E(G)) by
setting

δ(P) :=
{

v ∈ V (G) :
there are edges e ∈ Xi and f ∈ Xj ,

for some 1 ≤ i < j ≤ r, s.t. v ∈ e and v ∈ f

}
.

The intuition behind a border is that if the robber controls the edges in F

and the cops want to prevent the robber from escaping then they need to
guard the vertices in δ(F). For a partition P of the edge set, this means that if
the cops want to split the graph into the sub-graphs defined by the individual
sets of edges, they have to put cops on δ(P). For example, in the graph in
Figure 7.3 we get δ

(
{12, 13}, {24, 34, 46}, {35, 36, 56, 57, 67}

)
= {2, 3, 6}.

Definition 7.17 Let G be a graph. A search-tree of G is a tuple

(T,new, search, clear)

where

• T is finite a directed tree
• clear,new : V (T) → Pow(E(G))

Graph Searching Games 239

• search : E(T) → Pow(E(G))

such that

1 if t ∈ V (T) and e1, . . . , er are the out-going edges of t then

{new(t), clear(t), search(e1), . . . , search(er)}

form a (possibly degenerated) partition of E(G) and
2 search(e) ∩ clear(t) = ∅ for every edge e := (s, t) ∈ E(T).

Let t ∈ V (T) be a node with out-going edges e1, . . . , er. We define

guard(t) := V [new(t)] ∪ δ
(
search(e1), . . . , search(er), clear(t)

)
and the width w(t) of a node t as w(t) := |guard(t)|. The width of a search
tree is max{w(t) : t ∈ V (T)}.

An edge e := (s, t) ∈ V (T) is called monotone if search(e)∪clear(t) = E(G).
Otherwise it is called non-monotone. We call T monotone if all edges are
monotone.

It is not too difficult to see that any strategy tree (T, cops, robber) cor-
responds to a search tree (T,new, search, clear) over the same underlying
directed tree T , where

new(t) := {e = {u, v} ∈ E(G) : u, v ∈ cops(t)}
search(s, t) := {e = {u, v} ∈ E(G) : u ∈ robber(e) or v ∈ robber(e)}

clear(t) := E(G) \
(
new(t) ∪

⋃
(t,t′)∈E(T)

search(t, t′)
)
.

Figure 7.5 shows the search tree corresponding to the strategy tree in Fig-
ure 7.4. Here, the node labels correspond to new(t), e.g., the label ‘34,36,46’
of the root corresponds to the edges (3, 4), (3, 6) and (4, 6) cleared by initially
putting the cops on the vertices 3, 4, 6. The edge label in brackets, e.g.,
(35,36,X) corresponds to the clear label of their endpoint. Here, X is meant
to be the set 56, 57, 67 of edges and is used to simplify presentation. Finally,
the edge labels with a grey background denote the search label of an edge.

Note that for each node t ∈ V (T) the cop position cops(t) in the strategy
tree is implicitly defined by guard(t) in the search tree. While every strategy
tree corresponds to a search tree, not every search tree has a corresponding
strategy tree. For instance, if there is an edge e := (s, t) ∈ V (T) in the search
tree such that search(e) ∩ clear(t) �= E(G) then this means that initially the
cops are guard(s) with the robber being somewhere in search(e) and from
there the cops move to guard(t). By doing so the cops decide to give up some
part of what they have already searched and just consider clear(t) to be

240 Stephan Kreutzer

Figure 7.5 Search tree for the strategy tree in Figure 7.4

free of the robber. Everything else is handed over to the robber and will be
searched later. However, the corresponding move from guard(s) to guard(t)
may not be possible in the cops and robber game in the sense that if the cops
were to make this move the robber might have the chance to run to vertices
inside clear(t). Intuitively, the move from guard(s) to guard(t) corresponds
to a retreat move, where we allow the cops to retreat from a current position
to a new position inside their cleared area without allowing the robber to
change position during this move. See Ordyniak [2009] for a description
of search trees as strategy trees for the cops and robber game with retreat.
However, such a retreat move is not possible in the Cops and Robber game
and therefore not every search tree corresponds to a strategy tree. However,
if the search tree is monotone then it does not contain any retreat moves
and therefore monotone search trees have corresponding strategy trees.

The following lemma now follows immediately.

Lemma 7.18 If there is a strategy tree for k cops on a graph G then there
is a search tree of width k on G. Conversely, if there is a monotone search
tree on a graph G then there exists a monotone strategy tree of the same
width.

Essentially, our monotonicity proof for the cops and robber game now

Graph Searching Games 241

consists of showing that whenever there is a search tree of width k in a graph
G then there is a monotone search tree of the same width.

Sub-modularity

We begin by introducing the concept of sub-modularity and an extension
thereof.

Definition 7.19 Let E be a set and φ : Pow(E) → N be a function.

1 φ is symmetric if φ(X) = φ(E \X) for all X ⊆ E.
2 φ is sub-modular if φ(X)+φ(Y) ≥ φ(X∩Y)+φ(X∪Y) for all X, Y ⊆ E.

A symmetric and sub-modular function is called a connectivity function .

For our proof here we will work with an extension of sub-modularity to
partitions of a set E.

Definition 7.20 If P := {X1, . . . , Xk} ∈ P(E) is a partition of a set E

and F ⊆ E then we define PXi↑F as

PXi↑F := {X1 ∩ F, ...,Xi−1 ∩ F, Xi ∪ F c, Xi+1 ∩ F, . . . , Xk ∩ F},

where F c := E \ F .

Definition 7.21 Let E be a set. A partition function is a function
φ : P(E) → N. φ is sub-modular if for all P := {X1, . . . , Xk} ∈ P(E), Q :=
{Y1, . . . , Ys} ∈ P(E) and all i, j

φ(P) + φ(Q) ≥ φ(PXi↑Yj
) + φ(QYj↑Xi

).

It is worth pointing out that the definition of sub-modularity of partition
functions indeed extends the usual definition of sub-modularity as defined
above. For, if P := {X,Xc} and Q := {Y, Y c} are bipartitions of a set E

then

φ(P) + φ(Q) ≥ φ(PX↑Y c) + φ(QY c↑X)

= φ(X ∪ (Y c)c, Xc ∩ Y c) + φ(Y ∩X, Y c ∪Xc)

= φ(X ∪ Y, Xc ∩ Y c) + φ(Y ∩X, Y c ∪Xc)

= φ(X ∪ Y, (X ∪ Y)c) + φ(Y ∩X, (Y ∩X)c).

Hence, if we set Φ(X) := φ(X, Xc) then this corresponds to the usual notion
of sub-modularity of Φ as defined above.

We show next that the border function in Definition 7.16 is sub-modular.

Lemma 7.22 Let G be a graph and φ(P) := |δ(P)| for all partitions
P ∈ P(E(G)). Then φ is sub-modular.

242 Stephan Kreutzer

Proof Let P := {X1, . . . , Xr} and Q := {Y1, . . . , Ys} be partitions of E :=
E(G). Let 1 ≤ i ≤ r and q ≤ j ≤ s. By rearranging the sets P and Q we can
assume w.l.o.g. that i = j = 1. We want to show that

φ(P) + φ(Q) ≥ φ(PX1↑Y1) + φ(QY1↑X1)

= |δ(X1 ∪ Y c
1 , X2 ∩ Y1, . . . , Xr ∩ Y1}| +

|δ(Y1 ∪Xc
1, Y2 ∩X1, . . . , YS ∩X1}|.

We will prove the inequality by showing that if a vertex v ∈ V (G) is
contained in one of the sets δ(PX1↑Y1), δ(QY1↑X1) occurring on the right-hand
side, i.e., is contributing to a term on the right, then the vertex is also
contributing to a term on the left. And if this vertex contributes to both
terms on the right then it also contributes to both on the left.

Towards this aim, let v ∈ V (G) be a vertex. Suppose first that v is
contained in exactly one of δ(PX1↑Y1) or δ(QY1↑X1), i.e., contributes only to
one term on the right-hand side. W.l.o.g. we assume v ∈ δ(PX1↑Y1). If there
is 1 ≤ i < j < r such that v is contained in an edge e1 ∈ Xi and e2 ∈ Xj ,
then v ∈ δ(P). Otherwise, v must be incident to an edge e ∈ Y c

1 and also to
an edge f ∈ Xj ∩Y1, for some j > 1. But then v ∈ δ(Q) as the edge f occurs
in Y1 and the edge e must be contained in one of the Yl, l > 1.

Now, suppose v ∈ δ(PX1↑Y1) and v ∈ δ(QY1↑X1). But then, v is incident
to an edge in e ∈ Xi ∩ Y1, for some i > 1, and also to an edge f ∈ Yj ∩X1,
for some j > 1. Hence, f ∈ X1 and e ∈ Xi and therefore v ∈ δ(P) and,
analogously, e ∈ Y1 and f ∈ Yj and therefore v ∈ δ(Q). Hence, v contributes
2 to the left-hand side. This concludes the proof.

We will primarily use the sub-modularity of φ in the following form.

Lemma 7.23 Let G be a graph and P := {X1, . . . , Xk} ∈ P(E(G)) be a
partition of E(G). Let F ⊆ E(G) such that F ∩X1 = ∅.

If |δ(F)| ≤ |δ(X1)| then |δ(PX1↑F)| ≤ |δ(P)|
If |δ(F)| < |δ(E1)| then |δ(PX1↑F)| < |δ(P)|.

Proof By sub-modularity of φ(P) := |δ(P)| we know that

|δ(P)|+ |δ({F, F c})| ≥ |δ(PX1↑F)|+ |δ({F ∪Xc
1, F

c ∩X1)|.

But, as F ∩X1 = ∅ we have F ∪Xc
1 = Xc

1 and F c ∩X1 = X1. Hence, we
have

|δ(P)|+ |δ({F, F c})| ≥ |δ(PX1↑F)|+ |δ({X1, X
c
1)|

and therefore

|δ(P)| ≥ |δ(PX1↑F)|+
(
|δ({X1, X

c
1)| − |δ({F, F c})|

)

Graph Searching Games 243

from which the claim follows.

Monotonicity of the visible Cops and Robber Game

We are now ready to prove the main result of this section.

Theorem 7.24 The visible cops and robber game on undirected graphs is
monotone.

As discussed above, the theorem follows immediately from the following
lemma.

Lemma 7.25 Let G be a graph and T be a search tree of G of width k.
Then there is a monotone search tree of G of width k.

Proof Let m := |E(T)|. We define the weight of a search tree T :=
(T,new, search, clear) as

weight(T) :=
∑

t∈V (T)

|w(t)|

and its badness as

bn :=
∑

e∈E(T)
e non-monotone

m−dist(e)

where the distance dist(e) of an edge e := (s, t) is defined as the distance of
t from the root of T .

Given two search trees T1, T2 we say that T1 is tighter than T2 if w(T1) <

w(T2) or w(T1) = w(T2) and bn(T1) < bn(T2). Clearly, the tighter relation is
a well-ordering.

Hence, to prove the lemma, we will show that if T := (T,new, search, clear)
is a non-monotone search tree of G then there is tighter search tree of G of
the same width as T .

Towards this aim, let e := (s, t) ∈ E(T) be a non-monotone edge in T .
Case 1. Assume first that |δ(search(e))| ≤ |δ(clear(e))| and let e1, . . . , er be
the out-going edges of t. We define a new search tree T ′ := (T,new′, search′,
clear′) where new′(v) := new(v), clear′(v) := clear(v) for all v �= t and
search′(f) = search(f) for all f �= e and

clear′(t) := E(G) \ search(e)

new′(t) := new(t) ∩ search(e)

search′(ei) := search(ei) ∩ search(e).

By construction, {clear′(t),new′(t), search′(e1), . . . , search′(er)} form a par-
tition of E(G). Furthermore, for all f := (u, v) ∈ E(T) we still have

244 Stephan Kreutzer

clear(v) ∩ search(f) = ∅ and therefore T ′ is a search tree. We have to
show that it is tighter than T . Clearly, the weight of all nodes v �= t remains
unchanged. Furthermore, we get

|guard(t)| = |δ
(
clear(t), search(e1), . . . , search(er)

)
∪ V [new(t)]| (7.1)

= |δ(new(t), clear(t), search(e1), . . . , search(er)
)
∪(

V [new(t)] \ δ(new(t))
)
| (7.2)

= |δ(new(t), clear(t), search(e1), . . . , search(er)
)
| +

|
(
V [new(t)] \ δ(new(t))

)
| (7.3)

≥ |new′(t), δ(clear′(t), search′(e1), . . . , search′(er)
)
| +

|
(
V [new(t)] ∩ search(e) \ δ(new(t)) ∩ search(e)

)
| (7.4)

= |δ(clear′(t), search′(e1), . . . , search′(er)
)
∪(

V [new′(t)] ∩ search(e)
)
|

= |guard′(t)|.

The equality between (7.1) and (7.2) follows from the fact that V [new(t)] ∩
δ(new(t), clear(t), search(e1), . . . , search(er)

)
= δ(new(t)). The equality of

(7.2) and (7.3) then follows as the two sets are disjoint by construction. The
inequality in (7.4) follows from Lemma 7.23 above.

If |δ(search(e))| > |δ(clear(e))| then the inequality in (7.4) is strict and
therefore in this case we get wT ′(t) < wT (t) and therefore weight(T ′) <

weight(T).
Otherwise, if |δ(search(e))| = |δ(clear(e))| then the inequality in (7.4) may

not be strict and we therefore only get that wT ′(t) ≤ wT (t) and therefore
weight(T ′) ≤ weight(T). However, in this case the edge e is now monotone, by
construction, and the only edges which may now have become non-monotone
are e1, . . . , er whose distance from the root is larger than the distance of e

from the root. Therefore, the badness of T ′ is less than the badness of T .
This concludes the first case where |δ(search(e))| ≤ |δ(clear(e))|.
Case 2. Now assume |δ(search(e))| > |δ(clear(e))| and let e1, . . . , er be
the out-going edges of s other than e. We define a new search tree T ′ :=
(T,new′, search′) where new′(v) := new(v), clear′(v) := clear(v) for all v �= t

and search′(f) = search(f) for all f �= e and

search′(e) := E(G) \ clear(t)

new′(s) := new(s) ∩ clear(t)

search′(ei) := search(ei) ∩ clear(t) for all 1 ≤ i ≤ r

clear′(s) := clear(s) ∩ clear(t).

Graph Searching Games 245

Arguing as in the previous case, we see that the weight of T ′ is less than the
weight of T . This concludes the proof.

We demonstrate the construction in the proof by the search tree in Fig-
ure 7.5. Let s be the root of that tree, with new(s) := {34, 36, 46} and t be the
successor of s with new(t) := ∅. Let e := (s, t). Thus, search(e) := {12, 13, 24}
and clear(t) := {35, 36, X}, where X := {56, 57, 67}.

Clearly, the edge e is non-monotone as

search(e) ∪ clear(t) := {12, 13, 24, 35, 36, 56, 57, 67} � E(G).

For instance the edge 34 �∈ search(e) ∪ clear(t).
Now, δ(search(e)) := {3, 4} ⊆ V (G) and δ(clear(t)) := {3, 6} and therefore

we are in Case 1 of the proof above. Let e1 be the edge from t to the node
labelled {34, 46} and let e2 be the other out-going edge from t.

We construct the new search tree which is exactly as the old one except
that now

clear′(t) := E(G) \ search(e) = {34, 35, 36, 46, 56, 57, 67}
new′(t) := new(t) ∩ search(e) := ∅

search′(e1) := search(e1) ∩ search(e) := {24}
search′(e2) := search(e2) ∩ search(e) := {12, 13}.

The new search tree is shown in Figure 7.6. Note that guard′(t) is now

guard′(t) := V [new′(t)] ∪ δ(clear′(e)) ∪ δ(search′(e1)) ∪ δ(search′(e2))

= ∅ ∪ {3, 4} ∪ {2, 4} ∪ {2, 3}
= {2, 3, 4}.

That is, in the new search tree the cops start on the vertices 3, 4, 6 as before
but now, if the robber moves into the component {1, 2}, then they go to
{2, 3, 4} as might be expected. Continuing in this way we would gradually
turn the search tree into a monotone search tree corresponding to a monotone
strategy.

Further applications of sub-modularity

Sub-modularity has been used in numerous results establishing monotonicity
of graph searching games. A very general application of this technique
has been given by Fomin and Thilikos [2003] where it was shown that all
invisible graph searching games defined by a sub-modular border function
are monotone. The proof presented above has been given by Mazoit and

246 Stephan Kreutzer

Figure 7.6 Search tree for the strategy tree in Figure 7.4

Nisse [2008]. More recently, Amini et al. [2009], Lyaudet et al. [2009] and
Adler [2009] gave very abstract monotonicity proofs for games defined by
sub-modular borders which apply to a wide range of games played on graphs,
hypergraphs, matroids, etc. unifying many previous results.

7.4.2 Approximate monotonicity

In the previous section we have seen an important tool to establish mono-
tonicity for certain types of games whose border function is sub-modular.
However, not all games have sub-modular border functions and not all games
are monotone. In some cases where games are not monotone they are at least
approximately monotone in the following sense.

Definition 7.26 A class C of graph searching games is approximately

monotone if there is a function f : N → N such that for all games G ∈ C
and all k ∈ N, if k searchers have a winning strategy on G then at most f(k)
searchers have a monotone winning strategy on G.

An important tool for establishing approximate monotonicity is to use
obstructions. In this section we demonstrate this idea by showing the following
theorem whose proof is derived from Johnson et al. [2001]. We will say more
about obstructions in Section 7.5

Graph Searching Games 247

Theorem 7.27 The visible SCC Cops and Robber game on directed graphs
is approximately monotone. More formally, if G is a directed graph, then for
all k, if k cops can catch the robber on G then 3k + 2 cops can catch the
robber with a monotone strategy.

The proof of this theorem relies on the concept of a haven, which is a
representation of a winning strategy for the robber. Essentially, the proof
idea is to iteratively construct a monotone winning strategy for 3k + 2 cops,
starting from some initial position. If at some point of the construction we
cannot extend the monotone winning strategy then this will give us enough
information for constructing a haven of order k showing that the robber can
win against k cops even in the non-monotone game.

Definition 7.28 Let G be a directed graph. A haven of order k in G is
a function h : [V (G)]≤k → Pow(V) such that for all X ∈ [V (G)]≤k

1 h(X) is a (non-empty) strongly connected component of G−X and
2 if Y ⊆ X then h(Y) ⊇ h(X).

Let G be a directed graph. W.l.o.g. we assume that G is strongly connected.
Otherwise, we can search the components of G one by one.

Obviously, if G has a haven of order k then the robber wins against k cops
in the visible SCC game by always staying in the component h(X) whenever
the cops are on X. To prove the theorem it therefore suffices to show that
if there is no haven of order k then at most 3k + 2 cops have a monotone
winning strategy.

We are going to describe a monotone winning strategy for 3k + 2 cops.
Throughout the proof, W will always denote the current robber space.
Initially, therefore, we set W := V (G).

In their first move, the cops arbitrarily choose a set Y of 2k + 1 vertices
on which they place the searchers. If for every set Z ′ of ≤ k vertices there is
a strong component C(Z) of G \ Z such that |Y ∩ V (C)| ≥ k + 1, then the
function h mapping any set Z ′ with |Z ′| ≤ k to C(Z ′) is a haven of order k.
For, any two C(Z ′) and C(Z ′′) contain more than 1

2 of the vertices in Y and
therefore must share a vertex.

Hence, if there is no such haven, then there must be a Z ′ of ≤ k vertices
such that no component C ′ of G \ Z ′ contains more than k vertices of Y . To
define the next step of the monotone winning strategy for the cops we choose a
vertex w ∈W arbitrarily and place additional cops on Z := Z ′∪{w}. At this
stage, no more than 3k + 2 cops are on the board. Now let the robber choose
his next position, that is a strong component C of G \ (Y ∪ Z) contained in
W . Let C ′ be the strong component of G \Z containing C. Clearly, C is also

248 Stephan Kreutzer

a strong component of G\(Z∪(V (C ′)∩Y)). So we can safely remove all cops
from the board except for those on (Z ∪ (V (C ′)∩ Y). But by construction of
Z, |V (C ′) ∩ Y | ≤ k and therefore there are at most k + 1 + k = 2k + 1 cops
on the board. Furthermore, V (C) � W as Z ∩W �= ∅. Hence, the robber
space has become strictly smaller. We can therefore continue in this way to
define a monotone winning strategy for the cops unless at some point we
have found a haven of order k. This concludes the proof of Theorem 7.27 as
the existence of a haven of order k means that the robber wins against k

cops.

Further examples

Similar methods as in this example can be employed in a variety of cases.
For instance, for the Robber and Marshal Game on hypergraphs presented
in Section 7.3.6, Adler [2004] gave examples showing that these games are
non-monotone. But again, using a very similar technique as in the previous
proof, Adler et al. [2005] showed that if k Marshals have a winning strategy
on a hypergraph then 3k + 1 Marshals have a monotone winning strategy.

Open problems

We close this section by stating an open problem. Consider the visible directed
reachability game on a directed graph G as defined in Section 7.3.5. The
question of whether this game is monotone has been open for a long time.
Kreutzer and Ordyniak [2008] have exhibited examples of games where 3k−1
cops have a wining strategy but at least 4k−2 cops are needed for a monotone
strategy, for all values of k. We have seen an example for the special case of
k = 2 in Section 7.3.5 above.

Similarly, they give examples for the invisible inert directed reachability
game where 6k cops have a winning strategy but no fewer than 7k cops have
a monotone winning strategy, again for all values of k.

However, the problem of whether these games are at least approximately
monotone has so far been left unanswered.

Open Problem 7.29 Are the directed visible reachability and the inert
invisible directed reachability game approximately monotone?

7.4.3 Games which are strongly non-monotone

We close this section by giving an example for a class of games which is not
even approximately monotone. Recall the definition of domination games
given in Section 7.3.7. Domination games are played on undirected graphs.

Graph Searching Games 249

The searchers and the fugitive occupy vertices but a searcher not only controls
the vertex it occupies but also all of its neighbours. Again we can study the
visible and the invisible variant of the game.

Kreutzer and Ordyniak [2009] showed that there is a class C of graphs
such that for all G ∈ C 2 searchers have a winning strategy on G but for
every k ∈ N there is a graph Gk ∈ C such that no fewer than k searchers
are needed for a monotone winning strategy. A similar result has also been
shown for the visible case.

7.5 Obstructions

So far we have mostly studied strategies for the Searcher. However, if we want
to show that k searchers have no winning strategy in a graph searching game
G, then we have to exhibit a winning strategy for the fugitive. The existence
of a winning strategy for the fugitive on a graph searching game played
on an undirected graph G gives a certificate that the graph is structurally
fairly complex. Ideally, we would like to represent winning strategies for the
fugitive in a simple way so that these strategies can be characterised by
the existence of certain structures in the graph. Such structures have been
studied intensively in the area of graph decompositions and have come to be
known as obstructions.

In this section we will look at two very common types of obstructions,
called havens and brambles, which have been defined for numerous games.
We will present these structures for the case of the visible cops and robber
game played on an undirected graph.

We have already seen havens for the directed SCC game but here we will
define them for the undirected case.

Definition 7.30 Let G be a graph. A haven of order k in G is a function
h : [V (G)]≤k → Pow(V) such that for all X ∈ [V (G)]≤k f(X) is a component
of G−X and if Y ⊆ X then h(Y) ⊇ h(X).

It is easily seen that if there is a haven of order k in G then the robber
wins against k cops on G.

Lemma 7.31 If h is a haven bramble of order k in a graph G then the
robber wins against k cops on G and conversely if the robber has a winning
strategy against k cops then there is a haven of order k in G.

An alternative way of formalising a robber winning strategy is to define

250 Stephan Kreutzer

the strategy as a set of connected sub-graphs. This form of winning strategies
is known as a bramble .

Definition 7.32 Let G be a graph and B, B′ ⊆ V (G). B and B′ touch if
B ∩B′ �= ∅ or there is an edge {u, v} ∈ E(G) with u ∈ B and v ∈ B′.

A bramble in a graph G is a set B := {B1, . . . , Bl} of sets Bi ⊆ V (G)
such that

1 each Bi induces a connected sub-graph G[Bi] and
2 for all i, j, Bi and Bj touch.

The order of B is

min{|X| : X ⊆ V (G) s.t.X ∩B �= ∅ for all B ∈ B}.

The bramble width bw(G) of G is the maximal order of a bramble of G.

We illustrate the definition by giving a bramble of order 3 for the graph
depicted in Figure 7.1. In this graph, the set

B :=
{
{1, 2, 3}, {7, 8, 9}, {4, 5, 6}

}
forms a bramble of order 3.

It is easily seen that the existence of a bramble of order k yields a winning
strategy for the robber against k cops.

To give a more interesting example, consider the class of grids. A grid is a
graph as indicated in Figure 7.7 depicting a 4× 5-grid.

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3) (3,4) (3,5)

(4,1) (4,2) (4,3) (4,4) (4,5)

Figure 7.7 4× 5-grid

More generally, an n×m-grid is a graph with vertex set {(i, j) : 1 ≤ i ≤
n, 1 ≤ j ≤ m} and edge set

{
(
i, j), (i′, j′)

)
: |i− i′|+ |j − j′| = 1}.

If G is an n×m-grid then its i-th row is defined as the vertices {(i, j) : 1 ≤
j ≤ m} and its j-th column as {(i, j) : 1 ≤ i ≤ n}. A cross in a grid is the
union of one row and one column. For any n×n-grid we can define a bramble

Graph Searching Games 251

Bn consisting of all crosses {(s, j) : 1 ≤ j < n} ∪ {(i, t) : 1 ≤ i < n}, where
1 ≤ s, t < n, of the sub-grid induced by the vertices {(i, j) : 1 ≤ i, j ≤ n− 1}
together with the sets B := {(n, j) : 1 ≤ j ≤ n} and R := {(i, n) : 1 ≤ i < n}
containing the bottom-most row and the right-most column except the last
vertex of that column.

It is readily verified that this is a bramble. Clearly any pair of crosses
shares a vertex and therefore touches. On the other hand, every cross touches
the bottom row B and also the rightmost column R. Finally, B and L touch
also.

The order of Bn is n + 1. For, to cover every element of Bn we need two
vertices to cover B and R, and they are disjoint and also disjoint from the
other elements in Bn. But to cover the crosses we need at least n− 1 vertices
as otherwise there would be a row and a column in the sub-grid of Gn without
the bottom-row and right-most column from which no vertex would have
been chosen. But then the corresponding cross would not be covered.

Grids therefore provide examples of graphs with very high bramble width.
We will show now that this also implies that the number of cops needed
to search the graph is very high. The following is the easy direction of the
theorem below.

Lemma 7.33 If B is a bramble of order k + 1 in a graph G then the robber
wins against k cops on G.

Proof We describe a winning strategy for the robber against k cops. Let
X be the initial position of the cops. As the order of B is k + 1, there is at
least one set B ∈ B not containing any cops and the robber can choose any
vertex from this set. Now, suppose that after some steps, the cops are on X

and the robber is on a vertex in a set B ∈ B not containing any cop. Now
suppose the cops go from X to X ′. If X ′ does not contain a vertex from B

then the robber does not move. Otherwise, there is a B′ ∈ B not containing
any vertex from X ′ and while the cops move from X to X ′, the robber can
go from his current position in B to a new position in B′ as B and B′ are
connected and touch. This defines a winning strategy for the robber.

The converse of the previous result is also true but much more complicated
to show.

Theorem 7.34 (Seymour and Thomas [1993]) Let G be a graph and k ≥ 0
be an integer. G contains a bramble of order ≥ k if, and only if, no fewer
than k cops have a winning strategy in the visible Cops and Robber game on
G if, and only if, no fewer than k cops have a monotone winning strategy in
the visible Cops and Robber game on G.

252 Stephan Kreutzer

We refrain from giving the proof here and refer to Seymour and Thomas
[1993] (where brambles were called screens) or the excellent survey by Reed
[1997].

The previous result was stated in terms of tree-width rather than winning
strategies for the cops and is often referred to as the tree-width duality

theorem . A very general way of establishing duality theorems of this form
was studied by Amini et al. [2009], Adler [2009] and Lyaudet et al. [2009]
and by Fomin and Thilikos [2003] for the case of an invisible robber.

7.6 An application to graph-decompositions

As outlined in the introduction, graph searching games have found various
applications in a number of areas in computer science. Among those, their
application in structural graph theory has been a particularly driving force
behind developments in graph searching. We demonstrate this by deriving
a close connection between undirected cops and robber games and a graph
structural concept called tree-width.

The concept of tree-width was developed by Robertson and Seymour [1982
–] as part of their celebrated graph minor project, even though concepts such
as partial k-trees, which subsequently have been shown to be equivalent to
tree-width, were known before.

Definition 7.35 Let G be a graph. A tree-decomposition of G is a pair
T := (T, (Bt)t∈V (T)) where T is a tree and Bt ⊆ V (G) for all t ∈ V (T) such
that

1 for all v ∈ V (G) the set {t : v ∈ Bt} induces a non-empty sub-tree of T

and
2 for every edge e := {u, v} ∈ E(G) there is a t ∈ V (T) such that {u, v} ⊆ Bt.

The width w(T) of T is

w(T) := max{|Bt| : t ∈ V (T)} − 1.

The tree-width of G is the minimal width of a tree-decomposition of G.

We will frequently use the following notation: if S ⊆ T is a sub-tree of T

then B(S) := {v : v ∈ Bl for some l ∈ V (S)}.
From a graph structural point of view, the tree-width of a graph measures

the similarity of a graph to being a tree. However, the concept also has
immense algorithmic applications as from an algorithmic point of view a

Graph Searching Games 253

tree-decomposition yields a recursive decomposition of a graph into small sub-
graphs and this allows us to use the same dynamic programming approaches
to solve problems on graphs of small tree-width that can be employed on trees.
Determining the tree-width of a graph is NP-complete as shown by Arnborg
et al. [1987], but there is an algorithm, due to Bodlaender [1996], which, given
a graph G computes an optimal tree-decomposition in time O(2p(tw(G)) · |G|),
for some polynomial p. Combining this with dynamic programming yields a
powerful tool to solve NP-hard problems on graph classes of small tree-width.
See Bodlaender [1997, 1998, 2005] for surveys including a wide range of
algorithmic examples.

To help gain some intuition about tree-decompositions we establish some
simple properties and a normal form for tree-decompositions. We first agree
on the following notation. From now on we will consider the tree T of a tree-
decomposition to be a rooted tree, where the root can be chosen arbitrarily.
If T is a rooted tree and t ∈ V (T) then Tt is the sub-tree rooted at t, i.e., the
sub-tree containing all vertices s such that t lies on the path from the root
of T to s.

Lemma 7.36 If G has a tree-decomposition of width k then it has a
tree-decomposition (T, (Bt)t∈V (T)) of width k so that if {s, t} ∈ E(T) then
Bs �⊆ Bt and Bt �⊆ Bs.

Proof Let T := (T, (Bt)t∈V (T)) be a tree-decomposition such that Bs ⊆ Bt

for some edge {s, t} ∈ E(T). Then we can remove s from T and make all
neighbours of s other than t neighbours of t. Repeating in this way we generate
a tree-decomposition of the same width with the desired property.

Definition 7.37 Let G be a graph. A separation of G is a triple (A, S,B)
of non-empty sets such that A∪S ∪B = V (G) and there is no path in G \S

from a vertex in A to a vertex in B.

Lemma 7.38 Let T := (T, (Bt)t∈V (T)) be a tree-decomposition of a graph
G and let e := {s, t} ∈ E(T). Let Ts be the sub-tree of T − e containing s

and let Tt be the sub-tree of T − e containing t. Finally, let S := Bs ∩ Bt.
Then (B(Tt) \ S, S,B(Ts) \ S) is a separation in G.

Exercise. Prove this lemma.

Definition 7.39 A tree-decomposition T := (T, (Bt)t∈V (T)) of a graph G is
in normal form if whenever t ∈ V (T) is a node and C is a component of G\Bt

then there is exactly one successor tC of t in T such that V (C) =
⋃

s∈V (Tt)
Bs.

254 Stephan Kreutzer

Lemma 7.40 If G has a tree-decomposition of width k then it also has a
tree-decomposition of width k in normal form.

Proof Let T := (T, (Bt)t∈V (T)) be a tree-decomposition of G. Let t ∈ V (T).
By Lemma 7.38, for every component C of G \ Bt there is exactly one
neighbour s of t such that V (C) ⊆ B(Ts), where Ts is the component of
T − t containing s. So suppose that there are two components C, C ′ such that
C ∪ C ′ ⊆ B(Ts) for some neighbour s of t. Let T ′ be the tree-decomposition
obtained from T as follows. Take an isomorphic copy of Ts rooted at a vertex
s′ and add this as an additional neighbour of t. In the next step we replace
every B(l) by B(l)∩ V (C) if l ∈ V (Ts) and by B(l) \ V (C) if l ∈ V (Ts′). We
proceed in this way till we reach a tree-decomposition in normal form of the
same width.

The presence of a tree-decomposition of small width in a graph G is a
witness that the graph has a rather simple structure and that its tree-width
is small. But what would a certificate for large tree-width look like? If the
tree-width of a graph is very large than there should be some structure in it
that causes this high tree-width. Such structural reasons for width parameters
to be high are usually referred to as obstructions. It turns out that using a
graph searching game connection of tree-width, such obstructions can easily
be identified as we can use the formalisations of winning strategies for the
robber given in Section 7.5 above.

We aim next at establishing a game characterisation of tree-width in terms
of the visible Cops and Robber game. It is not difficult to see that strategy
trees for monotone winning strategies correspond to tree-decompositions.

Lemma 7.41 Let G be an undirected graph of tree-width at most k + 1.
Then k cops have a monotone winning strategy on G in the visible cops and
robber game. Conversely, if k + 1 cops have a monotone winning strategy in
the visible cops and robber game on G then the tree-width of G is at most k.

Proof Assume first that k + 1 cops have a monotone winning strategy
on G and let T := (T, cops, robber) be a strategy tree witnessing this as
defined in Definition 7.14. As T represents a monotone strategy, we can
w.l.o.g. assume that for each node t ∈ V (T), cops(t) only contains vertices
that can be reached by the robber. Formally, if t ∈ V (T) and t1, . . . , tr are its
out-neighbours, then if v ∈ cops(t) there must exist an edge {v, u} ∈ E(G)
with u ∈ robber((t, ti)) for at least one i. Clearly, it is never necessary to put
a cop on a vertex that has no neighbour in the robber space as these cops
cannot be reached by the robber. It is a simple exercise to show that under
this assumption (T, (cops(t))t∈V (T)) is a tree-decomposition of G.

Graph Searching Games 255

Towards the converse, let T := (T, (Bt)t∈V (T)) be a tree-decomposition of
G of width at most k. By Lemma 7.40, we can assume that T is in normal
form. But then it is easily seen that (T, cops, robber) with cops(t) := Bt and
robber((t, s)) := B(Ts) \ Bt is a monotone strategy tree, where Ts is the
component of T − (t, s) containing s.

The previous lemma together with the monotonicity of the visible Cops and
Robber game proved in Theorems 7.24 and 7.34 imply the following corollary.
Note that it is the monotonicity of the game that brings the different concepts
– winning strategies, tree-decompositions, obstructions – together to form a
uniform characterisation of tree-width and search numbers. This is one of
the reasons why monotonicity has been studied so intensively especially in
structural graph theory.

Corollary 7.42 For all graphs G: tw(G) = bw(G) = cw(G) − 1, where
bw(G) denotes the bramble width and cw(G) the minimal number of cops
required to win the visible cops and robber game.

A similar characterisation can be given for the invisible Cops and Rob-
ber Game. A path-decomposition of a graph G is a tree-decomposition
(T, (Bt)t∈V (T)) of G where T is a simple path. The path-width of a graph is
the minimal width of a path-decomposition of G. Similarly as above we can
show that the path-width pw(G) of a graph is just one less than the minimal
number of cops required to catch an invisible robber (with a monotone
strategy) on G. The obstructions for path-width corresponding to brambles
are called blockages. See Bienstock et al. [1991] for details.

7.7 Complexity of graph searching

In this section we study the complexity of computing the least number of
searchers required to win a given graph searching game. As usual we will
view this as a decision problem asking for a given game and a number k

whether k searchers can catch a fugitive or whether they can even do so with
a monotone strategy.

We have already stated a number of complexity results in Section 7.3. The
aim of this section is to establish much more general results valid for almost
all graph searching games within our framework.

Note that all variations of graph searching games described in this chapter
– as games played on undirected, directed or hypergraphs, inert variants,
etc. – can all be described by suitably defining the relation S and the
function F in a graph searching game (V,S,F , c). The only exception is the

256 Stephan Kreutzer

distinction between visible and invisible fugitives, which cannot be defined
in the description of the game. We can therefore speak about the class C of
the Cops and Robber games played on undirected graphs but have to say
explicitly whether we mean the visible or invisible variant.

We will study the complexity questions both within classical complexity
as well as parameterised complexity. But before that, we need to agree on
the size of a graph searching game. For this we need to following restriction
on games.

Definition 7.43 A class C of graph searching games is concise if

1 there is a polynomial p(n) such that for every G := (V,S,F , c) ∈ C and all
X ∈ Pow(V), c(X) ≤ p(|X|) and

2 given X, X ′ ⊆ V the relation S(X, X ′) can be decided in polynomial time
and

3 given X,X ′, R ⊆ V and v ∈ V we can decide in polynomial time whether
v ∈ F(X,R, X ′).

This condition rules out degenerate cases where, e.g., all Searcher positions
have complexity 1. But it also disallows games where deciding whether a move
is possible for any of the players is already computationally very complex.
All graph searching games studied in this chapter are concise.

Definition 7.44 The size |G| of a graph searching game G := (V,S,F , c)
is defined as |V |.

This definition is in line with the intuitive definition of size for, e.g., the
visible cops and robber game where the input would only be the graph, and
therefore the size would be the order or the size of the graph, whereas the
rules of the game are given implicitly.

7.7.1 Classical complexity bounds for graph searching games

In this section we present some general complexity bounds for graph searching
games in the framework of classical complexity.

Definition 7.45 Let C be a concise class of graph searching games. The
problem Vis-Search Width(C) is defined as

Vis Search Width(C)
Input: G ∈ C and k ∈ N

Problem: Is there a winning strategy for k searchers
on G against a visible fugitive?

Graph Searching Games 257

We define Mon Vis Search Width(C) as the problem to decide whether
k searchers have a monotone winning strategy on G.

The corresponding problems Invis Search Width(C) and Mon Invis

Search Width(C) for the invisible variant are defined analogously.

To simplify presentation we will refer to this problem simply as ‘the visible
graph searching game on C’ and likewise for the invisible variant.

Games with a visible fugitive

We first consider the case of arbitrary, non-monotone strategies.

Lemma 7.46 Let C be a class of graph searching games.

1 The visible graph searching game on C can be solved in exponential time.
2 The k-searcher visible graph searching game on C can be solved in polyno-

mial time.
3 There are examples of visible graph searching games which are Exptime-

complete.

Proof Given G ∈ C construct the game graph G of the corresponding
reachability game as defined in Section 7.2.6 above. As C is concise, this
graph is of exponential size and can be constructed in exponential time.
We can then use Lemma 7.10 to decide whether or not the Searcher has a
winning strategy.

If the complexity is restricted to some fixed k, then the game graph is of
polynomial size and therefore the game can be decided in polynomial time.

An example of a visible graph searching game which is complete for
Exptime has been given by Goldstein and Reingold [1995], see Theorem 7.12.

If we are only interested in the existence of monotone strategies, then we
can prove slightly better complexity bounds.

Lemma 7.47 Let C be a concise class of graph searching games.

1 The Searcher-monotone visible graph searching game on C can be solved
in polynomial space.

2 The Searcher-monotone k-searcher visible graph searching game on C can
be solved in polynomial time.

Proof In a Searcher-monotone strategy the Searcher can only make at most
polynomially many steps as he is never allowed to return to a vertex once
vacated. As C is concise, this means that a complete play can be kept in
polynomial space which immediately implies the result.

258 Stephan Kreutzer

If, in addition, the number of searchers is restricted to a fixed k, we can
use a straightforward alternating logarithmic space algorithm for it.

For Fugitive-monotone strategies we can obtain a similar result if the
searchers can move freely. In any Fugitive-monotone game the Fugitive
space can only decrease a linear number of times. However, a priori we
have no guarantee that in between two positions where the Fugitive space
does decrease, the searchers only need to make a linear number of steps. In
particular, in game variants where the cops can only move along an edge or
where their movement is restricted similar to the entanglement game, there
might be variants where they need a large number of steps before the robber
space shrinks again.

Games with an invisible fugitive

Lemma 7.48 Let C be a concise class of graph searching games.

1 The invisible graph searching game on C can be solved in polynomial space.
2 The k-searcher invisible graph searching game on C can be solved in poly-

nomial space.
3 There are examples of games which are Pspace-hard even in the case

where k is fixed.

Proof Recall that a winning strategy for the Searcher in an invisible graph
searching game can be described by the sequence X0, . . . , Xk of searcher
positions. As C is concise, any such position only consumes polynomial space.
We can therefore guess the individual moves of the searcher reusing space
as soon as a move has been made. In this way we only need to store at
most two Searcher positions and the fugitive space, which can all be done in
polynomial space.

Clearly, Part 1 implies Part 2. Kreutzer and Ordyniak [2009] show that
the invisible domination game is Pspace-complete even for two cops, which
shows Part 3.

Finally, we show that the complexity drops if we only consider monotone
strategies in invisible graph searching games.

Lemma 7.49 Let C be a concise class of graph searching games.

1 The Searcher-monotone invisible graph searching game on C can be solved
in NP.

2 The Searcher-monotone k-searcher visible graph searching game on C can
be solved in NP.

Graph Searching Games 259

3 There are examples of invisible graph searching games which are NP-
complete.

Proof In a Searcher-monotone strategy the cop-player can only make at
most polynomially many steps as he is never allowed to return to a vertex
once vacated. As C is concise, this means that a complete strategy for the
Searcher can be kept in polynomial space and therefore we can simply guess
a strategy and then check that it is a winning strategy by playing it. This,
clearly, can be done in polynomial time.

Megiddo et al. [1988] show that the invisible graph searching game is
NP-complete and as this game is monotone Part 3 follows.

The following table summarises the general results we can obtain.

variant visible invisible

k free
non-monotone Exptime Pspace

monotone Pspace NP

k-Searcher
non-monotone Ptime Pspace

monotone Ptime NP

7.7.2 Parametrised complexity of graph searching

Due to their close connection to graph decompositions, graph searching
games have been studied intensively with respect to parametrised complexity.
We refer to Downey and Fellows [1998] and Flum and Grohe [2006] for an
introduction to parameterised complexity.

Definition 7.50 Let C be a concise class of graph searching games. The
problem p-Vis Search Width(C) is defined as

p-Vis Search Width(C)
Input: G ∈ C and k ∈ N

Parameter: k

Problem: Is there a winning strategy for k searchers
on G in the visible fugitive game?

p-Vis Search Width(C) is fixed-parameter tractable (fpt) if there
is a computable function f : N → N, a polynomial p(n) and an algorithm
deciding the problem in time f(k) · p(|G|).

The problem is in the complexity class XP if there is a computable
function f : N → N and an algorithm deciding the problem in time |G|f(k).

Analogously we define p-Mon Vis Search Width(C) as the problem to

260 Stephan Kreutzer

decide whether k searchers have a monotone winning strategy on G and the
corresponding invisible fugitive variants.

The correspondence between visible graph searching games and reachability
games immediately implies the following theorem.

Theorem 7.51 Let C be a concise class of abstract graph searching games.
Then the visible graph searching game on C is in XP.

This, however, fails for the case of invisible graph searching games. For
instance, Kreutzer and Ordyniak [2009] show that deciding whether two
searchers have a winning strategy in the invisible domination game is Pspace-
complete and therefore the problem cannot be in XP unless Pspace =
Ptime.

Much better results can be obtained for the visible and invisible Cops and
Robber game on undirected graphs. Bodlaender [1996] presented a linear-time
parametrised algorithm for deciding the tree-width and the path-width of a
graph. As we have seen above, these parameters correspond to the visible
and invisible Cops and Robber Game on undirected graphs showing that the
corresponding decision problems are fixed-parameter tractable.

The corresponding complexity questions for directed reachability games,
on the other hand, are wide open.

7.8 Conclusion

The main objective of this chapter was to provide an introduction to the
area of graph searching games and the main techniques used in this context.
Graph searching has developed into a huge and very diverse area with
many problems still left to be solved. Besides specific open problems such as
the approximate monotonicity of directed reachability games in the visible
and invisible inert variant, there is the general problem of finding unifying
proofs for the various monotonicity and complexity results developed in the
literature. Another active trend in graph searching is to extend the framework
beyond graphs or hypergraphs to more general or abstract structures such
as matroids.

Acknowledgement: I would like to thank Isolde Adler for carefully proof
reading the manuscript.

Graph Searching Games 261

References

I. Adler. Marshals, monotone marshals, and hypertree-width. Journal of Graph
Theory, 47(4):275–296, 2004.

I. Adler. Directed tree-width examples. J. Comb. Theory, Ser. B, 97(5):718–725,
2007.

I. Adler. Games for width parameters and monotonicity. available from arXiv.org
as, abs/0906.3857, 2009.

I. Adler, G. Gottlob, and M. Grohe. Hypertree-width and related hypergraph
invariants. In Proceedings of the 3rd European Conference on Combinatorics,
Graph Theory and Applications (EUROCOMB’05), DMTCS Proceedings Series,
pages 5–10, 2005.

B. Alspach. Searching and sweeping graphs: a brief survey. Matematiche (Catania),
59:5–37, 2006.

O. Amini, F. Mazoit, N. Nisse, and S. Thomassé. Submodular partition functions.
Discrete Mathematics, 309(20):6000–6008, 2009.

S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in
a k-tree. SIAM Journal on Algebraic Discrete Methods, 8:277–284, 1987.

J. Barát. Directed path-width and monotonicity in digraph searching. Graphs and
Combinatorics, 22(2):161–172, 2006.

D. Berwanger and E. Grädel. Entanglement – a measure for the complexity of
directed graphs with applications to logic and games. In LPAR, pages 209–223,
2004.

D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. Dag-width and parity games.
In Symp. on Theoretical Aspects of Computer Science (STACS), 2006.

D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algo-
rithms, 12(2):239–245, 1991.

D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a
forest. J. Comb. Theory, Ser. B, 52(2):274–283, 1991.

H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
tree-width. SIAM Journal on Computing, 25:1305–1317, 1996.

H. Bodlaender. A partial k-aboretum of graphs with bounded tree-width. Theoretical
Computer Science, 209:1–45, 1998.

H. L. Bodlaender. Discovering treewidth. In SOFSEM, pages 1–16, 2005.
H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proc. of

Mathematical Foundations of Computer Science (MFCS), volume 1295 of
Lecture Notes in Computer Science, pages 19–36, 1997.

N. Dendris, L. Kirousis, and D. Thilikos. Fugitive search games on graphs and
related parameters. Theoretical Computer Science, 172(1–2):233–254, 1997.

R. Diestel. Graph Theory. Springer-Verlag, 3rd edition, 2005.
R. Downey and M. Fellows. Parameterized Complexity. Springer, Berlin, 1998.
J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin, 2006.
F. Fomin and D. Thilikos. On the monotonicity of games generated by symmetric

submodular functions. Discrete Applied Mathematics, 131(2):323–335, 2003.
F. Fomin, D. Kratsch, and H. Müller. On the domination search number. Discrete

Applied Mathematics, 127(3):565–580, 2003.
F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph

searching. Theoretical Computer Science, 399(3):236–245, 2008.
M. K. Franklin, Z. Galil, and M. Yung. Eavesdropping games: a graph-theoretic

approach to privacy in distributed systems. J. ACM, 47(2):225–243, 2000.

262 Stephan Kreutzer

A. S. Goldstein and E. M. Reingold. The complexity of pursuit on a graph. Theor.
Comput. Sci., 143(1):93–112, 1995.

P. Golovach. Equivalence of two formalizations of a search problem on a graph.
Vestnik Leningrad Univ. Math., 22(1):13–19, 1989.

G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and guards: game
theoretic and logical characterizations of hypertree width. Journal of Computer
and Systems Science, 66(4):775–808, 2003.

E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

L. J. Guibas, J.-C. Latombe, S. M. Lavalle, D. Lin, and R. Motwani. A visibility-based
pursuit-evasion problem. International Journal of Computational Geometry
and Applications, 9:471–494, 1996.

P. Hunter. Complexity and Infinite Games on Finite Graphs. PhD thesis, Computer
Laboratory, University of Cambridge, 2007.

P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games, and
ordering. Theoretical Computer Science (TCS), 399(3), 2008.

T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width. J.
Comb. Theory, Ser. B, 82(1):138–154, 2001.

L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theoretical
Computer Science, 47(3):205–218, 1986.

S. Kreutzer and S. Ordyniak. Digraph decompositions and monotonocity in digraph
searching). In 34th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG), 2008.

S. Kreutzer and S. Ordyniak. Distance-d-domination games. In 34th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG), 2009.

A. S. LaPaugh. Recontamination does not help to search a graph. Journal of the
ACM, 40:224–245, 1993.

L. Lyaudet, F. Mazoit, and S. Thomassé. Partitions versus sets : a case of duality.
available at arXiv.org, abs/0903.2100, 2009.

F. Mazoit and N. Nisse. Monotonicity of non-deterministic graph searching. Theor.
Comput. Sci., 399(3):169–178, 2008.

N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou.
The complexity of searching a graph. J. ACM, 35(1):18–44, 1988.

R. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph. Discrete
Mathematics, 43:235–239, 1983.

S. Ordyniak. Complexity and Monotonicity in Graph Searching. PhD thesis, Oxford
University Computing Laboratory, 2009.

T. Parsons. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture
Notes in Mathematics, 642:426–441, 1978.

B. Reed. Tree width and tangles: A new connectivity measure and some applications.
In R. Bailey, editor, Surveys in Combinatorics, pages 87–162. Cambridge
University Press, 1997.

D. Richerby and D. M. Thilikos. Searching for a visible, lazy fugitive. In Workshop
on Graph-Theoretical Methods in Computer Science, pages 348–359, 2008.

N. Robertson and P. Seymour. Graph minors I – XXIII, 1982 –. Appearing in
Journal of Combinatorial Theory, Series B since 1982.

P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for
tree-width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993.

Graph Searching Games 263

Appendix Notation

Our notation for graphs follows Diestel [2005] and we refer to this book
for more information about graphs. This book also contains an excellent
introduction to structural graph theory and the theory of tree-width or graph
decompositions in general.

If V is a set and k ∈ N we denote by [V]≤k the set of all subsets of V of
cardinality at most k. We write Pow(V) for the set of all subsets of V .

All structures and graphs in this section are finite. If G is a graph we
denote its vertex set by V (G) and its edge set by E(G). The size of a graph
is the number of edges in G and its order is the number of vertices.

If e := {u, v} ∈ E(G) then we call u and v adjacent and u and e incident .
H is a sub-graph of G, denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆

E(G). If G is a graph and X ⊆ V (G) we write G[X] for the sub-graph of G

induced by X, i.e., the graph (X,E′) where E′ := {{u, v} ∈ E(G) : u, v ∈
X}. We write G \X for the graph G[V (G) \X]. If e ∈ E(G) is a single edge
we write G − e for the graph obtained from G by deleting the edge e and
analogously we write G− v, for some v ∈ V (G), for the graph obtained from
G by deleting v and all incident edges.

The neighbourhood NG(v) of a vertex v ∈ V (G) in an undirected graph
G is defined as NG(v) := {u ∈ V (G) : {u, v} ∈ E(G)}.

A graph G is connected if G is non-empty and between any two u, v ∈
V (G) there exists a path in G linking u and v. A connected component

of a graph G is a maximal connected sub-graph of G.
A directed graph G is strongly connected if it is non-empty and between

any two u, v ∈ V (G) there is a directed path from u to v. A strongly

connected component , or just a component , of G is a maximal strongly
connected sub-graph of G.

A clique is an undirected graph G such that {u, v} ∈ E(G) for all u, v ∈
V (G), u �= v.

A tree is a connected acyclic undirected graph. A directed tree is a tree
T such that there is one vertex r ∈ V (T), the root of T , and every edge of
T is oriented away from r.

Finally, a hypergraph is a pair H := (V,E) where E ⊆ Pow(V) is a set
of hyperedges, where each hyperedge is a set of vertices. We write V (H)
and E(H) for the set of vertices and hyperedges of H.

8

Beyond Nash Equilibrium: Solution Concepts for
the 21st Century

Joseph Y. Halpern
Cornell University, Ithaca, NY

Abstract

Nash equilibrium is the most commonly-used notion of equilibrium in game
theory. However, it suffers from numerous problems. Some are well known
in the game theory community; for example, the Nash equilibrium of the
repeated prisoner’s dilemma is neither normatively nor descriptively reason-
able. However, new problems arise when considering Nash equilibrium from
a computer science perspective: for example, Nash equilibrium is not robust
(it does not tolerate ‘faulty’ or ‘unexpected’ behaviour), it does not deal
with coalitions, it does not take computation cost into account, and it does
not deal with cases where players are not aware of all aspects of the game.
Solution concepts that try to address these shortcomings of Nash equilibrium
are discussed.

8.1 Introduction

Nash equilibrium is the most commonly-used notion of equilibrium in game
theory. Intuitively, a Nash equilibrium is a strategy profile (a collection of
strategies, one for each player in the game) such that no player can do better
by deviating. The intuition behind Nash equilibrium is that it represents a
possible steady state of play. It is a fixed-point where each player holds correct
beliefs about what other players are doing, and plays a best response to those
beliefs. Part of what makes Nash equilibrium so attractive is that in games
where each player has only finitely many possible deterministic strategies,
and we allow mixed (i.e., randomised) strategies, there is guaranteed to be a
Nash equilibrium [Nash, 1950a] (this was, in fact, the key result of Nash’s
thesis).

c©ACM, 2010. This is a minor revision of the work published in Proceedings of the twenty-seventh
ACM symposium on Principles of Distributed Computing (PODC ’08). ACM, New York, NY,
USA, 1–10. http://doi.acm.org/10.1145/1400751.1400752. Republished here by permission of
ACM.

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 265

For quite a few games, thinking in terms of Nash equilibrium gives insight
into what people do (there is a reason that game theory is taught in business
schools!). However, as is well known, Nash equilibrium suffers from numerous
problems. For example, the Nash equilibrium in games such as the repeated
prisoner’s dilemma is to always defect (see Section 8.3 for more discussion
of the repeated prisoner’s dilemma). It is hard to make a case that rational
players ‘should’ play the Nash equilibrium in this game when ‘irrational’
players who cooperate for a while do much better! Moreover, in a game that
is only played once, why should a Nash equilibrium arise when there are
multiple Nash equilibria? Players have no way of knowing which one will be
played. And even in games where there is a unique Nash equilibrium (like
the repeated prisoner’s dilemma), how do players obtain correct beliefs about
what other players are doing if the game is played only once? (See [Kreps,
1990] for a discussion of some of these problems.)

Not surprisingly, there has been a great deal of work in the economics
community on developing alternative solution concepts. Various alternatives
to and refinements of Nash equilibrium have been introduced, including,
among many others, rationalizability, sequential equilibrium, (trembling hand)
perfect equilibrium, proper equilibrium, and iterated deletion of weakly domi-
nated strategies. (These notions are discussed in standard game theory texts,
such as [Fudenberg and Tirole, 1991] and [Osborne and Rubinstein, 1994].)
Despite some successes, none of these alternative solution concepts address
the following three problems with Nash equilibrium, all inspired by computer
science concerns.

• Although both computer science and distributed computing are concerned
with multiple agents interacting, the focus in the game theory literature
has been on the strategic concerns of agents – rational players choosing
strategies that are best responses to strategies chosen by the other player;
the focus in distributed computing has been on problems such as fault
tolerance and asynchrony, leading to, for example work on Byzantine
agreement [Fischer et al., 1985, Pease et al., 1980]. Nash equilibrium does
not deal with ‘faulty’ or ‘unexpected’ behaviour, nor does it deal with
colluding agents. In large games, we should expect both.

• Nash equilibrium does not take computational concerns into account.
We need solution concepts that can deal with resource-bounded players,
concerns that are at the heart of cryptography.

• Nash equilibrium presumes that players have common knowledge of the
structure of the game, including all the possible moves that can be made

266 Joseph Y. Halpern

in every situation and all the players in the game. This is not always
reasonable in, for example, the large auctions played over the internet.

• Nash equilibrium presumes that players know what other players are
doing (and are making a best response to it). But how do they gain this
knowledge in a one-shot game, particularly if there are multiple equilibria?

In the following sections, I discuss each of these issues in more detail, and
sketch solution concepts that can deal with them, with pointers to the relevant
literature.

8.2 Robust and resilient equilibrium

Nash equilibrium tolerates deviations by one player. It is perfectly consistent
with Nash equilibrium that two players could do much better by deviating in
a coordinated way. For example, consider a game with n > 1 players where
players must play either 0 or 1. If everyone plays 0, everyone gets a payoff of
1; if exactly two players play 1 and the rest play 0, then the two who play
1 get a payoff of 2, and the rest get 0; otherwise, everyone gets 0. Clearly
everyone playing 0 is a Nash equilibrium, but any pair of players can do
better by deviating and playing 1.

Say that a Nash equilibrium is k-resilient if it tolerates deviations by
coalitions of up to k players. The notion of resilience is an old one in the
game theory literature, going back to Aumann [1959]. Various extensions of
Nash equilibrium have been proposed in the game theory literature to deal
with coalitions [Bernheim et al., 1989, Moreno and Wooders, 1996]. However,
these notions do not deal with players who act in unexpected ways.

There can be many reasons that players act in unexpected ways. One, of
course, is that they are indeed irrational. However, often seemingly irrational
behaviour can be explained by players having unexpected utilities. For
example, in a peer-to-peer network like Kazaa or Gnutella, it would seem
that no rational agent should share files. Whether or not you can get a
file depends only on whether other people share files. Moreover, there are
disincentives for sharing (the possibility of lawsuits, use of bandwidth, etc.).
Nevertheless, people do share files. However, studies of the Gnutella network
have shown that almost 70 percent of users share no files and nearly 50
percent of responses are from the top 1 percent of sharing hosts [Adar and
Huberman, 2000]. Is the behaviour of the sharing hosts irrational? It is if
we assume appropriate utilities. But perhaps sharing hosts get a big kick
out of being the ones that provide everyone else with the music they play.
Is that so irrational? In other cases, seemingly irrational behaviour can be

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 267

explained by faulty computers or a faulty network (this, of course, is the
concern that work on Byzantine agreement is trying to address), or a lack of
understanding of the game.

To give just one example of a stylised game where this issue might be
relevant, consider a group of n bargaining agents. If they all stay and bargain,
then all get 2. However, if any agent leaves the bargaining table, those
who leave get 1, while those who stay get 0. Clearly everyone staying at
the bargaining table is a k-resilient Nash equilibrium for all k ≥ 0, and it
is Pareto optimal (everyone in fact gets the highest possible payoff). But,
especially if n is large, this equilibrium is rather ‘fragile’; all it takes is one
person to leave the bargaining table for those who stay to get 0.

Whatever the reason, as pointed out by Abraham et al. [2006], it seems
important to design strategies that tolerate such unanticipated behaviour, so
that the payoffs of the users with ‘standard’ utilities do not get affected by
the non-standard players using different strategies. This can be viewed as a
way of adding fault tolerance to equilibrium notions. To capture this intuition,
Abraham et al. [2006] define a strategy profile to be t-immune if a player
who does not deviate is no worse off if up to t players do deviate. Note the
difference between resilience and immunity. A strategy profile is resilient if
deviators do not gain by deviating; a profile is immune if non-deviators do not
get hurt by deviators. In the example above, although everyone bargaining
is a k-resilient Nash equilibrium for all k ≥ 0, it is not 1-immune.

Of course, we may want to combine resilience and immunity; a strategy
profile is (k, t)-robust if it is both k-resilient and t-immune. (All the informal
definitions here are completely formalised in [Abraham et al., 2006, 2008].)
A Nash equilibrium is just a (1,0)-robust equilibrium. Unfortunately, for
(k, t) �= (1, 0), a (k, t)-robust equilibrium does not exist in general, even if
we allow mixed strategies (i.e., even if players can randomise). Nevertheless,
there are a number of games of interest where they do exist; in particular,
they can exist if players can take advantage of a mediator , or trusted
third party. To take just one example, consider Byzantine agreement [Pease
et al., 1980]. Recall that in Byzantine agreement there are n soldiers, up
to t of which may be faulty (the t stands for traitor), one of which is the
general. The general has an initial preference to attack or retreat. We want
a protocol that guarantees that (1) all non-faulty soldiers reach the same
decision, and (2) if the general is non-faulty, then the decision is the general’s
preference. It is trivial to solve Byzantine agreement with a mediator: the
general simply sends the mediator his preference, and the mediator sends it
to all the soldiers.

The obvious question of interest is whether we can implement the medi-

268 Joseph Y. Halpern

ator. That is, can the players in the system, just talking among themselves
(using what economists call ‘cheap talk’), simulate the effects of the mediator.
This is a question that has been of interest to both the computer science
community and the game theory community. In game theory, the focus has
been on whether a Nash equilibrium in a game with a mediator can be imple-
mented using cheap talk (cf. [Barany, 1992, Ben-Porath, 2003, Forges, 1990,
Gerardi, 2004, Heller, 2005, Urbano and Vila, 2002, 2004]). In cryptography,
the focus has been on secure multiparty computation [Goldreich et al.,
1987, Shamir et al., 1981, Yao, 1982]. Here it is assumed that each agent i

has some private information xi (such private information, like the general’s
preference, is typically called the player’s type in game theory).

Fix a function f . The goal is to have agent i learn f(x1, . . . , xn) without
learning anything about xj for j �= i beyond what is revealed by the value of
f(x1, . . . , xn). With a trusted mediator, this is trivial: each agent i just gives
the mediator its private value xi; the mediator then sends each agent i the
value f(x1, . . . , xn). Work on multiparty computation provides general con-
ditions under which this can be done (see [Goldreich, 2004] for an overview).
Somewhat surprisingly, despite there being over 20 years of work on this
problem in both computer science and game theory, until recently, there has
been no interaction between the communities on this topic.

Abraham et al. [2006, 2008] essentially characterise when mediators can
be implemented. To understand the results, three games need to be con-
sidered: an underlying game Γ, an extension Γd of Γ with a mediator,
and a cheap-talk extension ΓCT of Γ. Γ is assumed to be a (normal-form)

Bayesian game : each player has a type from some type space with a known
distribution over types, and must choose an action (where the choice can
depend on his type). The utilities of the players depend on the types and
actions taken. For example, in Byzantine agreement, the possible types of
the general are 0 and 1, his possible initial preferences (the types of the
other players are irrelevant). The players’ actions are to attack or retreat.
The assumption that there is a distribution over the general’s preferences
is standard in game theory, although not so much in distributed comput-
ing. Nonetheless, in many applications of Byzantine agreement, it seems
reasonable to assume such a distribution. A cheap talk game implements a
Nash equilibrium �σ of a game with a mediator if the cheap talk game has a
Nash equilibrium �σ′ such that �σ and �σ′ induce the same distribution over
actions in the underlying game, for each type vector of the players. With
this background, I can summarise the results of Abraham et al.

• If n > 3k+3t, a (k, t)-robust strategy �σ with a mediator can be implemented

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 269

using cheap talk (that is, there is a (k, t)-robust strategy �σ′ in the cheap
talk game such that �σ and �σ′ induce the same distribution over actions in
the underlying game). Moreover, the implementation requires no knowledge
of other agents’ utilities, and the cheap talk protocol has bounded running
time that does not depend on the utilities.

• If n ≤ 3k + 3t then, in general, mediators cannot be implemented using
cheap talk without knowledge of other agents’ utilities. Moreover, even
if other agents’ utilities are known, mediators cannot, in general, be
implemented without having a (k + t)-punishment strategy (that is, a
strategy that, if used by all but at most k+ t players, guarantees that every
player gets a worse outcome than they do with the equilibrium strategy)
nor with bounded running time.

• If n > 2k + 3t, then mediators can be implemented using cheap talk if
there is a punishment strategy (and utilities are known) in finite expected
running time that does not depend on the utilities.

• If n ≤ 2k + 3t then mediators cannot, in general, be implemented, even if
there is a punishment strategy and utilities are known.

• If n > 2k + 2t and there are broadcast channels then, for all ε, mediators
can be ε-implemented (intuitively, there is an implementation where players
get utility within ε of what they could get by deviating) using cheap talk,
with bounded expected running time that does not depend on the utilities.

• If n ≤ 2k + 2t then mediators cannot, in general, be ε-implemented,
even with broadcast channels. Moreover, even assuming cryptography and
polynomially-bounded players, the expected running time of an implemen-
tation depends on the utility functions of the players and ε.

• If n > k + 3t then, assuming cryptography and polynomially-bounded
players, mediators can be ε-implemented using cheap talk, but if n ≤ 2k+2t,
then the running time depends on the utilities in the game and ε.

• If n ≤ k + 3t, then even assuming cryptography, polynomially-bounded
players, and a (k + t)-punishment strategy, mediators cannot, in general,
be ε-implemented using cheap talk.

• If n > k + t then, assuming cryptography, polynomially-bounded players,
and a public-key infrastructure (PKI), we can ε-implement a mediator.

All the possibility results showing that mediators can be implemented use
techniques from secure multiparty computation. The results showing that if
n ≤ 3k + 3t, then we cannot implement a mediator without knowing utilities
and that, even if utilities are known, a punishment strategy is required,
use the fact that Byzantine agreement cannot be reached if t < n/3; the
impossibility result for n ≤ 2k+3t also uses a variant of Byzantine agreement.

270 Joseph Y. Halpern

These results provide an excellent illustration of how the interaction between
computer science and game theory can lead to fruitful insights. Related work
on implementing mediators can be found in [Gordon and Katz, 2006, Halpern
and Teadgue, 2004, Izmalkov et al., 2005, Kol and Naor, 2008, Lepinski et al.,
2004, Lysyanskaya and Triandopoulos, 2006].

8.3 Taking computation into account

Nash equilibrium does not take computation into account. To see why this
might be a problem, consider the following example, taken from [Halpern
and Pass, 2010].

Example 8.1 You are given an n-bit number x. You can guess whether
it is prime, or play safe and say nothing. If you guess right, you get $10; if
you guess wrong, you lose $10; if you play safe, you get $1. There is only
one Nash equilibrium in this one-player game: giving the right answer. But
if n is large, this is almost certainly not what people will do. Even though
primality testing can be done in polynomial time, the costs for doing so
(buying a larger computer, for example, or writing an appropriate program),
will probably not be worth it for most people. The point here is that Nash
equilibrium is not taking the cost of computing whether x is prime into
account. �

There have been attempts in the game theory community to define solution
concepts that take computation into account, going back to the work of
Rubinstein [1986]. (See [Kalai, 1990] for an overview of the work in this area
in the 1980s, and [Ben-Sasson et al., 2007] for more recent work.) Rubinstein
assumed that players choose a finite automaton to play the game rather than
choosing a strategy directly; a player’s utility depends both on the move
made by the automaton and the complexity of the automaton (identified
with the number of states of the automaton). Intuitively, automata that use
more states are seen as representing more complicated procedures. Rafael
Pass and I [2010] provide a general game-theoretic framework that takes
computation into account. (All the discussion in this section is taken from
[Halpern and Pass, 2010].) Like Rubinstein, we view all players as choosing
a machine, but we use Turing machines, rather than finite automata. We
associate a complexity, not just with a machine, but with the machine and its
input. This is important in Example 8.1, where the complexity of computing
whether x is prime depends, in general, on the length of x.

The complexity could represent the running time of or space used by

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 271

the machine on that input. The complexity can also be used to capture the
complexity of the machine itself (e.g., the number of states, as in Rubinstein’s
case) or to model the cost of searching for a new strategy to replace one that
the player has been given. (This makes sense if the game comes along with a
recommended strategy, as is typically the case in mechanism design. One of
the reasons that players follow a recommended strategy is that there may be
too much effort involved in trying to find a new one.)

We again consider Bayesian games, where each player has a type. In a
standard Bayesian game, an agent’s utility depends on the type profile and
the action profile (that is, every player’s type, and the action chosen by
each player). In a computational Bayesian game , each player i chooses
a Turing machine. Player i’s type ti is taken to be the input to player i’s
Turing machine Mi. The output of Mi on input ti is taken to be player i’s
action. There is also a complexity associated with the pair (Mi, ti). Player i’s
utility again depends on the type profile and the action profile, and also on
the complexity profile. The reason we consider the whole complexity profile
in determining player i’s utility, as opposed to just i’s complexity, is that,
for example, i might be happy as long as his machine takes fewer steps than
j’s. Given these definitions, we can define Nash equilibrium as usual. With
this definition, by defining the complexity appropriately, it will be the case
that playing safe for sufficiently large inputs will be an equilibrium.

Computational Nash equilibrium also gives a plausible explanation of
observed behaviour in finitely-repeated prisoner’s dilemma.

Example 8.2 Recall that in the prisoner’s dilemma, there are two prisoners,
who can choose to either cooperate or defect. As described in the table below,
if they both cooperate, they both get 3; if they both defect, then both get 1; if
one defects and the other cooperates, the defector gets 5 and the cooperator
gets −5. (Intuitively, the cooperator stays silent, while the defector ‘rats out’
his partner. If they both rat each other out, they both go to jail.)

C D
C 3, 3 −5, 5
D 5,−5 −3,−3

It is easy to see that defecting dominates cooperating: no matter what
the other player does, a player is better off defecting than cooperating.
Thus, ‘rational’ players should defect. And, indeed, (D,D) is the only Nash
equilibrium of this game. Although (C, C) gives both players a better payoff
than (D,D), this is not an equilibrium.

Now consider the finitely repeated prisoner’s dilemma (FRPD), where
the prisoner’s dilemma is played for some fixed number N of rounds. The

272 Joseph Y. Halpern

only Nash equilibrium is to always defect; this can be seen by a backwards
induction argument. (The last round is like the one-shot game, so both
players should defect; given that they are both defecting at the last round,
they should both defect at the second-last round; and so on.) This seems quite
unreasonable. And, indeed, in experiments, people do not always defect. In
fact, quite often they cooperate throughout the game. Are they irrational? It
is hard to call this irrational behaviour, given that the ‘irrational’ players do
much better than supposedly rational players who always defect. There have
been many attempts to explain cooperation in FRPD in the literature (see,
for example, [Kreps et al., 1982]). Indeed, there have even been well-known
attempts that take computation into account; it can be shown that if players
are restricted to using a finite automaton with bounded complexity, then there
exist equilibria that allow for cooperation [Neyman, 1985, Papadimitriou
and Yannakakis, 1994]. However, the strategies used in those equilibria are
quite complex, and require the use of large automata; as a consequence this
approach does not seem to provide a satisfactory explanation of why people
choose to cooperate.

Using the framework described above leads to a straightforward explana-
tion. Consider the tit for tat strategy, which proceeds as follows: a player
cooperates at the first round, and then at round m + 1, does whatever his
opponent did at round m. Thus, if the opponent cooperated at the previous
round, then you reward him by continuing to cooperate; if he defected at
the previous round, you punish him by defecting. If both players play tit for
tat, then they cooperate throughout the game. Interestingly, tit for tat does
exceedingly well in FRPD tournaments, where computer programs play each
other [Axelrod, 1984].

Tit for tat is a simple program, which needs very little memory. Suppose
that we charge even a modest amount for memory usage, and that there is a
discount factor δ, with 0.5 < δ < 1, so that if the player gets a reward of rm

in round m, his total reward over the whole N -round game (not including
the cost of memory usage) is taken to be

∑N
m=1 δmrm. In this case, it is

easy to see that, no matter what the cost of memory is, as long as it is
positive, for a sufficiently long game, it will be a Nash equilibrium for both
players to play tit for tat. For the best response to tit for tat is to play tit
for tat up to the last round, and then to defect. But following this strategy
requires the player to keep track of the round number, which requires the
use of extra memory. The extra gain of $2 achieved by defecting at the last
round, if sufficiently discounted, will not be worth the cost of keeping track of
the round number. (A similar argument works without assuming a discount

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 273

factor (or, equivalently, taking δ = 1) if we assume that the cost of memory
increases unboundedly with N .)

Note that even if only one player is charged for memory, and memory is
free for the other player, then there is a Nash equilibrium where the bounded
player plays tit for tat, while the other player plays the best response of
cooperating up to (but not including) the last round of the game, and then
defecting in the last round. �

Although with standard games there is always a Nash equilibrium, this
is not the case when we take computation into account, as the following
example shows.

Example 8.3 Consider roshambo (rock-paper-scissors). We model playing
rock, paper, and scissors as playing 0, 1, and 2, respectively. The payoff to
player 1 of the outcome (i, j) is 1 if i = j⊕ 1 (where ⊕ denotes addition mod
3), −1 if j = i⊕ 1, and 0 if i = j. Player 2’s playoffs are the negative of those
of player 1; the game is a zero-sum game. As is well known, the unique Nash
equilibrium of this game has the players randomising uniformly between 0,
1, and 2.

Now consider a computational version of roshambo. Suppose that we take
the complexity of a deterministic strategy to be 1, and the complexity of a
strategy that uses randomisation to be 2, and take player i’s utility to be his
payoff in the underlying game minus the complexity of his strategy. Intuitively,
programs involving randomisation are more complicated than those that do
not randomise. With this utility function, it is easy to see that there is no
Nash equilibrium. For suppose that (M1, M2) is an equilibrium. If M1 uses
randomisation, then 1 can do better by playing the deterministic strategy j⊕1,
where j is the action that gets the highest probability according to M2 (or
one of them in the case of ties). Similarly, M2 cannot use randomisation. But,
as mentioned above, there is no equilibrium for roshambo with deterministic
strategies.

In practice, people do not play the (unique) Nash equilibrium (which
randomises uniformly among rock, paper, and scissors). It is well known that
people have difficulty simulating randomisation; we can think of the cost for
randomising as capturing this difficulty. Interestingly, there are roshambo
tournaments (indeed, even a Rock Paper Scissors World Championship –
see http://www.worldrps.com), and books written on roshambo strategies
[Walker and Walker, 2004]. Championship players are clearly not randomising
uniformly (they could not hope to get a higher payoff than an opponent
by randomising). The computational framework provides a psychologically
plausible account of this lack of randomisation. �

274 Joseph Y. Halpern

Is the lack of Nash equilibrium a problem? Perhaps not. For one thing, it
can be shown that if, in a precise sense, randomisation is free, then there is
always a Nash equilibrium (see [Halpern and Pass, 2010]; note that this does
not follow from Nash’s theorem [1950a] showing that every finite standard
game has a Nash equilibrium since it says, among other things, that the
Nash equilibrium is computable – it can be played by Turing machines).
Moreover, taking computation into account should cause us to rethink things.
In particular, we may want to consider other solution concepts. But, as
the examples above show, Nash equilibrium does seem to make reasonable
predictions in a number of games of interest. Perhaps of even more interest,
using computational Nash equilibrium lets us provide a game-theoretic
account of security.

The standard framework for multiparty security does not take into account
whether players have an incentive to execute the protocol. That is, if there
were a trusted mediator, would player i actually use the recommended
protocol even if i would be happy to use the services of the mediator to
compute the function f? Nor does it take into account whether the adversary
has an incentive to undermine the protocol.

Roughly speaking, the game-theoretic definition says that Π is a game-

theoretically secure (cheap-talk) protocol for computing f if, for all choices
of the utility function, if it is a Nash equilibrium to play with the mediator
to compute f , then it is also a Nash equilibrium to use Π to compute f . Note
that this definition does not mention privacy. It does not need to; this is
taken care of by choosing the utilities appropriately. Pass and I [2010] show
that, under minimal assumptions, this definition is essentially equivalent
to a variant of zero knowledge [Goldwasser et al., 1989] called precise

zero knowledge [Micali and Pass, 2006]. Thus, the two approaches used
for dealing with ‘deviating’ players in two game theory and cryptography –
Nash equilibrium and zero-knowledge ‘simulation’ – are intimately connected;
indeed, they are essentially equivalent once we take computation into account
appropriately.

8.4 Taking (lack of) awareness into account

Standard game theory models implicitly assume that all significant aspects of
the game (payoffs, moves available, etc.) are common knowledge among the
players. However, this is not always a reasonable assumption. For example,
sleazy companies assume that consumers are not aware that they can lodge
complaints if there are problems; in a war setting, having technology that an

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 275

enemy is unaware of (and thus being able to make moves that the enemy is
unaware of) can be critical; in financial markets, some investors may not be
aware of certain investment strategies (complicated hedging strategies, for
example, or tax-avoidance strategies).

To understand the impact of adding the possibility of unawareness to the
analysis of games, consider the game shown in Figure 8.1 (this example, and
all the discussion in this section, is taken from [Halpern and Rêgo, 2006]).
One Nash equilibrium of this game has A playing acrossA and B playing
downB. However, suppose that A is not aware that B can play downB. In
that case, if A is rational, A will play downA. Although A would play acrossA

if A knew that B were going to play downB , A cannot even contemplate this
possibility, let alone know it. Therefore, Nash equilibrium does not seem to
be the appropriate solution concept here.

(1,1) (2,3)

(0,2)

downB

acrossA acrossB

downA

BA

Figure 8.1 A simple game

To find an appropriate analogue of Nash equilibrium in games where players
may be unaware of some possible moves, we must first find an appropriate
representation for such games. The first step in doing so is to explicitly
represent what players are aware of at each node. We do this by using what
we call an augmented game .

Recall that an extensive game is described by a game tree. Each node
in the tree describes a partial history of the game – the sequence of moves
that led to that node. Associated with each node is the player that moves at
that node. Some nodes where a player i moves are grouped together into an
information set for player i. Intuitively, if player i is at some node in an
information set I, then i does not know which node of I describes the true
situation; thus, at all nodes in I, i must make the same move. An augmented
game is an extensive game with one more feature: associated with each node
in the game tree where player i moves is the level of awareness of player
i – the set of histories that player i is aware of. (The formal definition of an
augmented game can be found in [Halpern and Rêgo, 2006].)

276 Joseph Y. Halpern

We use the player’s awareness level as a way of keeping track of how
the player’s awareness changes over time. For example, perhaps A playing
acrossA will result in B becoming aware of the possibility of playing downB.
In financial settings, one effect of players using certain investment strategies
is that other players become aware of the possibility of using that strategy.
Strategic thinking in such games must take this possibility into account. We
would model this possibility by having some probability of B’s awareness
level changing.

For example, suppose that in the game shown in Figure 8.1

• players A and B are aware of all histories of the game;
• player A is uncertain as to whether player B is aware of run 〈acrossA,

downB〉 and believes that B is unaware of it with probability p; and
• the type of player B that is aware of the run 〈acrossA, downB〉 is aware

that player A is aware of all histories, and B knows that A is uncertain
about his (B’s) awareness level and knows the probability p.

Because A and B are actually aware of all histories of the underlying game,
from the point of view of the modeller, the augmented game is essentially
identical to the game described in Figure 8.1, with the awareness level of both
players A and B consisting of all histories of the underlying game. However,
when A moves at the node labelled A in the modeller’s game, she believes
that the actual augmented game is ΓA, as described in Figure 8.2. In ΓA,
nature’s initial move captures A’s uncertainty about B’s awareness level. At
the information set labelled A.1, A is aware of all the runs of the underlying
game. Moreover, at this information set, A believes that the true game is ΓA.

At the node labelled B.1, B is aware of all the runs of the underlying
game and believes that the true game is the modeller’s game; but at the
node labelled B.2, B is not aware that he can play downB, and so believes
that the true game is the augmented game ΓB described in Figure 8.3. At
the nodes labelled A.3 and B.3 in the game ΓB , neither A nor B is aware of
the move downB. Moreover, both players think the true game is ΓB.

As this example should make clear, to model a game with possibly unaware
players, we need to consider, not just one augmented game, but a collection
of them. Moreover, we need to describe, at each history in an augmented
game, which augmented game the player playing at that history believes is
the actual augmented game being played.

To capture these intuitions, starting with an underlying extensive-form
game Γ, we define a game with awareness based on Γ to be a tuple
Γ∗ = (G, Γm,F), where

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 277

(0,2)
acrossBB.2acrossA

downA downB

(1,1)

unaware
 (p)

c A.1

aware
(1-p)

(2,3)

(0,2)

downBdown

acrossBacross B.1

(1,1) (2,3)

A

A

Figure 8.2 The augmented game ΓA

(1,1)

downA

acrossBacrossA B.3A.3
(0,2)

Figure 8.3 The augmented game ΓB

• G is a countable set of augmented games based on Γ, of which one is Γm;
• F maps an augmented game Γ+ ∈ G and a history h in Γ+ such that

P+(h) = i to a pair (Γh, I), where Γh ∈ G and I is an information set for
player i in game Γh.

Intuitively, Γm is the game from the point of view of an omniscient modeller.
If player i moves at h in game Γ+ ∈ G and F(Γ+, h) = (Γh, I), then Γh is

278 Joseph Y. Halpern

the game that i believes to be the true game when the history is h, and
I consists of the set of histories in Γh he currently considers possible. For
example, in the examples described in Figures 8.2 and 8.3, taking Γm to be the
augmented game in Figure 8.1, we have F(Γm, 〈 〉) = (ΓA, I), where I is the
information set labelled A.1 in Figure 8.2, and F(ΓA, 〈unaware,acrossA〉) =
(ΓB, {〈acrossA〉}). There are a number of consistency conditions that have
to be satisfied by the function F ; the details can be found in [Halpern and
Rêgo, 2006].

The standard notion of Nash equilibrium consists of a profile of strategies,
one for each player. Our generalisation consists of a profile of strategies, one
for each pair (i, Γ′), where Γ′ is a game that agent i considers to be the true
game in some situation. Intuitively, the strategy for a player i at Γ′ is the
strategy i would play in situations where i believes that the true game is Γ′.
To understand why we may need to consider different strategies consider,
for example, the game of Figure 8.1. B would play differently depending on
whether or not he was aware of downB. Roughly speaking, a profile �σ of
strategies, one for each pair (i,Γ′), is a generalised Nash equilibrium if
σi,Γ′ is a best response for player i if the true game is Γ′, given the strategies
σj,Γ′ being used by the other players in Γ′. As shown by [Halpern and Rêgo,
2006], every game with awareness has a generalised Nash equilibrium.

A standard extensive-form game Γ can be viewed as a special case of a
game with awareness, by taking Γm = Γ, G = {Γm}, and F(Γm, h) = (Γm, I),
where I is the information set that contains h. Intuitively, Γ corresponds to
the game of awareness where it is common knowledge that Γ is being played.
We call this the canonical representation of Γ as a game with awareness.
It is not hard to show that a strategy profile �σ is a Nash equilibrium of Γ iff
it is a generalised Nash equilibrium of the canonical representation of Γ as a
game with awareness. Thus, generalised Nash equilibrium can be viewed as
a generalisation of standard Nash equilibrium.

Up to now, I have considered only games where players are not aware of
their lack of awareness. But in some games, a player might be aware that
there are moves that another player (or even she herself) might be able
to make, although she is not aware of what they are. Such awareness of
unawareness can be quite relevant in practice. For example, in a war setting,
even if one side cannot conceive of a new technology available to the enemy,
they might believe that there is some move available to the enemy without
understanding what that particular move is. This, in turn, may encourage
peace overtures. To take another example, an agent might delay making a
decision because she considers it possible that she might learn about more
possible moves, even if she is not aware of what these moves are.

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 279

Although, economists usually interpret awareness as ‘being able to con-
ceive about an event or a proposition’, there are other possible meanings
for this concept. For example, awareness may also be interpreted as ‘un-
derstanding the primitive concepts in an event or proposition’, or as ‘being
able to determine if an event occurred or not’, or as ‘being able to compute
the consequences of some fact’ [Fagin and Halpern, 1988]. If we interpret
‘lack of awareness’ as ‘unable to compute’ (note that this interpretation is
closely related to the discussion of the previous section!), then awareness of
unawareness becomes even more significant. Consider a chess game. Although
all players understand in principle all the moves that can be made, they are
certainly not aware of all consequences of all moves. A more accurate repre-
sentation of chess would model this computational unawareness explicitly.
We provide such a representation.

Roughly speaking, we capture the fact that player i is aware that, at a
node h in the game tree, there is a move that j can make she (i) is not aware
by having i’s subjective representation of the game include a ‘virtual’ move
for j at node h. Since i might have only an incomplete understanding of what
can happen after this move, i simply describes what she believes will be the
game after the virtual move, to the extent that she can. In particular, if she
has no idea what will happen after the virtual move, then she can describe
her beliefs regarding the payoffs of the game. Thus, our representation can
be viewed as a generalisation of how chess programs analyse chess games.
They explore the game tree up to a certain point, and then evaluate the
board position at that point. We can think of the payoffs following a virtual
move by j in i’s subjective representation of a chess game as describing the
evaluation of the board from i’s point of view. This seems like a much more
reasonable representation of the game than the standard complete game tree!

All the definitions of games with awareness can be generalised to accom-
modate awareness of unawareness. In particular, we can define a generalised
Nash equilibrium as before, and once again show that every game with
awareness (now including awareness of unawareness) has a generalised Nash
equilibrium [Halpern and Rêgo, 2006].

There has been a great deal of work recently on modelling unawareness
in games. The first papers on the topic were by Feinberg [2004, 2005]. My
work with Rêgo [2006] was the first to consider awareness in extensive games,
modelling how awareness changed over time. There has been a recent flurry on
the topic in the economics literature; see, for example, [Heifetz et al., 2006b,
Li, 2006a,b, Ozbay, 2007]. Closely related is work on logics that include
awareness. This work started in the computer science literature [Fagin and
Halpern, 1988], but more recently, the bulk of the work has appeared in the

280 Joseph Y. Halpern

economics literature (see, for example, [Dekel et al., 1998, Halpern, 2001,
Halpern and Rêgo, 2008, Heifetz et al., 2006a, Modica and Rustichini, 1994,
1999]).

8.5 Iterated regret minimisation

Consider the well-known traveller’s dilemma [Basu, 1994, 2007]. Suppose
that two travellers have identical luggage, for which they both paid the same
price. Their luggage is damaged (in an identical way) by an airline. The
airline offers to recompense them for their luggage. They may ask for any
dollar amount between $2 and $100. There is only one catch. If they ask for
the same amount, then that is what they will both receive. However, if they
ask for different amounts – say one asks for $m and the other for $m′, with
m < m′ – then whoever asks for $m (the lower amount) will get $(m + p),
while the other traveller will get $(m−p), where p can be viewed as a reward
for the person who asked for the lower amount, and a penalty for the person
who asked for the higher amount.

It seems at first blush that both travellers should ask for $100, the maximum
amount, for then they will both get that. However, as long as p > 1, one
of them might then realise that he is actually better off asking for $99 if
the other traveller asks for $100, since he then gets $(99+p). In fact, $99
weakly dominates $100, in that no matter what Traveller 1 asks for, Traveller
2 is always at least as well off asking for $99 than $100, and in one case
(if Traveller 2 asks for $100) Traveller 1 is strictly better off asking for $99.
Thus, it seems we can eliminate 100 as an amount to ask for. However, once
we eliminate 100, a similar argument shows that 98 weakly dominates 99.
And once we eliminate 99, then 97 weakly dominates 98. Continuing this
argument, both travellers end up asking for $2! In fact, it is easy to see that
(2,2) is the only Nash equilibrium. Indeed, with any other pair of requests,
at least one of the travellers would want to change his request if he knew
what the other traveller was asking. Since (2,2) is the only Nash equilibrium,
it is also the only sequential and perfect equilibrium. Moreover, it is the
only rationalizable strategy profile; and, once we allow mixed strategies, (2,2)
is the only strategy that survives iterated deletion of strongly dominated
strategies. (It is not necessary to understand these solution concepts in detail;
the only point that I am trying make here is that all standard solution
concepts lead to (2,2).)

This seems like a strange result. It seems that no reasonable person – even a
game theorist! – would ever play 2. Indeed, when the traveller’s dilemma was

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 281

empirically tested among game theorists (with p = 2) they typically did not
play anywhere close to 2. Becker, Carter, and Naeve [2005] asked members of
the Game Theory Society (presumably, all experts in game theory) to submit
a strategy for the game. Fifty-one of them did so. Of the 45 that submitted
pure strategies, 33 submitted a strategy of 95 or higher, and 38 submitted a
strategy of 90 or higher; only three submitted the ‘recommended’ strategy
of 2. The strategy that performed best (in pairwise matchups against all
submitted strategies) was 97, which had an average payoff of $85.09. The
worst average payoff went to those who played 2; it was only $3.92.

Another sequence of experiments by Capra et al. [1999] showed, among
other things, that this result was quite sensitive to the choice of p. For low
values of p, people tended to play high values, and keep playing them when
the game was repeated. By way of contrast, for high values of p, people
started much lower, and converged to playing 2 after a few rounds of repeated
play. The standard solution concepts (Nash equilibrium, rationalizability,
etc.) are all insensitive to the choice of p; for example, (2,2) is the only Nash
equilibrium for all choices of p > 1.

Arguably, part of the problem here is that Nash equilibrium presumes
that players know what other players are doing. I now consider a solution
concept that Rafael Pass and I [2009] recently introduced, iterated regret

minimisation , that attempts to deal with this problem, and exhibits the
same qualitative behaviour as that observed in experiments in many games of
interest. (The discussion in the rest of this section is taken almost verbatim
from [Halpern and Pass, 2009].)

The idea of minimising regret was introduced (independently) in decision
theory by Niehans [1948] and Savage [1951]. To explain how we use it in a
game-theoretic context, I first review how it works in a single-agent decision
problem. Suppose that an agent chooses an act from a set A of acts. The
agent is uncertain as to the true state of the world; there is a set S of possible
states. Associated with each state s ∈ S and act a ∈ A is the utility u(a, s)
of performing act a if s is the true state of the world. For simplicity, we take
S and A to be finite here. The idea behind the minimax regret rule is to
hedge the agent’s bets, by doing reasonably well no matter what the actual
state is.

Formally, for each state s, let u∗(s) be the best outcome in state s; that is,
u∗(s) = maxa∈A u(a, s). The regret of a in state s, denoted regretu(a, s), is
u∗(s)−u(a, s); that is, the regret of a in s is the difference between the utility
of the best possible outcome in s and the utility of performing act a in s.
Let regretu(a) = maxs∈S regretu(a, s). For example, if regretu(a) = 2, then
in each state s, the utility of performing a in s is guaranteed to be within 2

282 Joseph Y. Halpern

of the utility of any act the agent could choose, even if she knew that the
actual state was s. The minimax-regret decision rule orders acts by their
regret; the ‘best’ act is the one that minimises regret. Intuitively, this rule is
trying to minimise the regret that an agent would feel if she discovered what
the situation actually was: the ‘I wish I had chosen a′ instead of a’ feeling.

Despite having been used in decision making for over 50 years, up until
recently, there was little work on applying regret minimisation in the context
of game theory. Rather than giving formal definitions here, I explain how
regret can be applied in the context of the traveller’s dilemma. For ease of
exposition, I restrict attention to pure strategies.

The acts for each player are that player’s pure strategy choices; the states
are the other player’s pure strategy choices. Each act-state pair is then just a
strategy profile; the utility of the act-state pair for player i is just the payoff
to player i of the strategy profile. Intuitively, each agent is uncertain about
what the other agent will do, and tries to choose an act that minimises his
regret, given that uncertainty.

It is easy to see that, if the penalty/reward p is such that 2 ≤ p ≤ 49,
then the acts that minimise regret are the ones in the interval [100− 2p, 100];
the regret for all these acts is 2p − 1. For if player 1 asks for an amount
m ∈ [100− 2p, 100] and player 2 asks for an amount m′ ≤ m, then the payoff
to player 1 is at least m′ − p, compared to the payoff of m′ + p− 1 (or just
m′ if m′ = 2) that is achieved with the best response; thus, the regret is at
most 2p− 1 in this case. If, instead, player 2 asks for m′ > m, then player 1
gets a payoff of m + p, and the best possible payoff in the game is 99 + p, so
his regret is at most 99−m ≤ 2p− 1. On the other hand, if player 1 chooses
m < 100− 2p, then his regret will be 99−m > 2p− 1 if player 2 plays 100.
This proves the claim. If p ≥ 50, then the unique act that minimises regret
is asking for $2.

Suppose that 2 ≤ p ≤ 49. Applying regret minimisation once suggests
using a strategy in the interval [100 − 2p, 100]. But we can iterate this
process. If we assume that both players use a strategy in this interval, then
the strategy that minimises regret is that of asking for $(100− 2p + 1). A
straightforward check shows that this has regret 2p− 2; all other strategies
have regret 2p− 1. If p = 2, this approach singles out the strategy of asking
for $97, which was found to be the best strategy by Becker, Carter, and
Naeve [2005]. As p increases, the act that survives this iterated deletion
process goes down, reaching 2 if p ≥ 50. This matches (qualitatively) the
findings of Capra et al. [1999]. (Capra et al. actually considered a slightly
different game where the minimum bid was p (rather than 2). If we instead
consider their version of the game, we get an even closer qualitative match

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 283

to their experimental observations.) As we show in [Halpern and Pass, 2009],
iterated regret minimisation captures experimental behaviour in a number
of other game as well, including the Centipede Game [Rosenthal, 1982],
Nash bargaining [Nash, 1950b], and Bertrand competition [Dufwenberg and
Gneezy, 2000].

I conclude this discussion by making precise the sense in which iterated re-
gret minimisation does not require knowledge of the other players’ strategies
(or the fact that they are rational). Traditional solution concepts typically
assume common knowledge of rationality, or at least a high degree of mutual
knowledge of rationality. For example, it is well known that rationalizability
can be characterised in terms of common knowledge of rationality [Tan and
Werlang, 1988], where a player is rational if he has some beliefs according
to which what he does is a best response in terms of maximizing expected
utility; Aumann and Brandenburger [1995] show that Nash equilibrium re-
quires (among other things) mutual knowledge of rationality (where, again,
rationality means playing a utility-maximizing best response); and Branden-
burger, Friedenberg, and Keisler [2008] show that iterated deletion of weakly
dominated strategies requires sufficiently high mutual assumption of rational-
ity, where ‘assumption’ is a variant of ‘knowledge’, and ‘rationality’ means
‘does not play a weakly dominated strategy’. This knowledge of rationality
essentially also implies knowledge of the strategy used by other players.

But if we make this assumption (and identify rationality with minimising
regret), we seem to run into a serious problem with iterated regret minimi-
sation, which is well illustrated by the traveller’s dilemma. As we observed
earlier, the strategy profile (97, 97) is the only one that survives iterated
regret minimisation when p = 2. However, if agent 1 knows that player 2 is
playing 97, then he should play 96, not 97! That is, among all strategies, 97
is certainly not the strategy that minimises regret with respect to {97}.

Some of these difficulties also arise when dealing with iterated deletion of
weakly dominated strategies. The justification for deleting a weakly dom-
inated strategy is the existence of other strategies. But this justification
may disappear in later deletions. As Mas-Colell, Whinston, and Green [1995,
p. 240] put in their textbook when discussing iterated deletion of weakly
dominated strategies:

[T]he argument for deletion of a weakly dominated strategy for player i is that he
contemplates the possibility that every strategy combination of his rivals occurs
with positive probability. However, this hypothesis clashes with the logic of iterated
deletion, which assumes, precisely, that eliminated strategies are not expected to
occur.

284 Joseph Y. Halpern

Brandenburger, Friedenburg, and Kiesler [2008] resolve this paradox in the
context of iterated deletion of weakly dominated strategies by assuming that
strategies were not really eliminated. Rather, they assumed that strategies
that are weakly dominated occur with infinitesimal (but non-zero) probability.
Unfortunately, this approach does not seem to help in the context of iterated
regret minimisation. Assigning deleted strategies infinitesimal probability
will not make 97 a best response to a set of strategies where 97 is given very
high probability. Pass and I deal with this problem by essentially reversing
the approach taken by Brandenburger, Friedenberg, and Keisler. Rather
than assuming common knowledge of rationality, we assign successively
lower probability to higher orders of rationality. The idea is that now, with
overwhelming probability, no assumptions are made about the other players;
with probability ε, they are assumed to be rational, with probability ε2,
the other players are assumed to be rational and to believe that they are
playing rational players, and so on. (Of course, ‘rationality’ is interpreted
here as minimising expected regret.) Thus, players proceed lexicographically.
Their first priority is to minimise regret with respect to all strategies; their
next priority is to minimise regret with respect to strategies that a rational
player would use; and so on. For example, in the traveller’s dilemma, all the
choices between 96 and 100 minimise regret with respect to all strategies.
To choose among them, we consider the second priority: minimising regret
with respect to strategies that a rational player would use. Since a rational
player (who is minimising regret) would choose a strategy between 96 and
100, and 97 minimises regret with respect to these strategies, 97 is preferred
to the other strategies between 96 and 100. In [Halpern and Pass, 2009], this
intuition is formalised, and a formal epistemic characterisation is provided
for iterated regret minimisation. This characterisation emphasises the fact
that this approach makes minimal assumptions about the strategies used by
the other agent.

Of course, an agent may have some beliefs about the strategies used by
other agents. These beliefs can be accommodated by allowing the agent to
start the deletion process with a smaller set of strategies (the ones that he
considers the other players might actually use). The changes required to deal
with this generalisation are straightforward.

Example 8.4 The role of prior beliefs is particularly well illustrated in
the finitely repeated prisoner’s dilemma. Recall that always defecting is the
only Nash equilibrium of FRPD; it is also the only strategy that is rational-
izable, and the only one that survives iterated deletion of weakly dominated
strategies. Nevertheless, in practice, we see quite a bit of cooperation. We

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 285

have already seen, in Example 8.2, one approach to explaining cooperation,
in terms of memory costs. Here is another in terms of regret.

Suppose that prisoner’s dilemma is played for N rounds. There are 22N−1

pure strategies for each player in N -round FRPD; computing the regret of
each one can be rather complicated. Thus, when using regret, it is reasonable
for the players to focus on a much more limited set of strategies. Suppose that
each player believes that the other player is using a strategy where he plays
tit for tat for some number k of rounds, and then defects from then on. Call
this strategy sk. (So, in particular, s0 is the strategy of always defecting and
sN is tit for tat.) A straightforward argument shows that if a player believes
that the other player is playing a strategy of the form sk for some k with
0 ≤ k ≤ N , then the strategy that minimises player 1’s regret is either sN−1,
s1, or s0; see [Halpern and Pass, 2009] for details. Moreover, for sufficiently
large N (it turns out that N > ((u3 + u2 − u1)/(u2 − u1)) + 1 suffices), the
strategy that minimises regret is sN−1. Thus, if each player believes that
the other player is playing a strategy of the form sk – a reasonable set of
strategies to consider – then we get a strategy that looks much more like
what people do in practice. �

8.6 Conclusions

As I mentioned earlier, economists have considered quite a few alternatives to
Nash equilibrium, including ε-Nash equilibrium, subgame perfect equilibrium,
sequential equilibrium, rationalizability, and many other notions [Osborne
and Rubinstein, 1994]. But none of these directly addresses the concerns that
I have addressed here: fault tolerance, computation, lack of awareness, and
lack of knowledge of other players’ strategies. The results and approaches
of this chapter are are clearly only first steps. Here are some directions
for further research (some of which I am currently engaged in with my
collaborators):

• While (k, t)-robust equilibrium does seem to be a reasonable way of cap-
turing some aspects of robustness, for some applications, it does not go
far enough. I said earlier that in economics, all players were assumed to
be strategic, or ‘rational’; in distributed computing, all players were either
‘good’ (and followed the recommended protocol) or ‘bad’ (in which case
they could be arbitrarily malicious). Immunity takes into account the
bad players. The definition of immunity requires that the rational players
are not hurt no matter what the ‘bad’ players do. But this may be too
strong. As Ayer et al. [2005] point out, it is reasonable to expect a certain

286 Joseph Y. Halpern

fraction of players in a system to be ‘good’ and follow the recommended
protocol, even if it is not a best reply. In general, it may be hard to figure
out what the best reply is, so if following the recommended protocol is
not unreasonable, they will do that. (Note that this can be captured in a
computational model of equilibrium, by charging for switching from the
recommended strategy.)

There may be other standard ways that players act irrationally. For
example, Kash, Friedman, and I [2007] consider scrip systems, where
players perform work in exchange for scrip. There is a Nash equilibrium
where everyone uses a threshold strategy , performing work only when
they have less scrip than some threshold amount. Two standard ways of
acting ‘irrationally’ in such a system are to (a) hoard scrip and (b) provide
service for free (this is the analogue of posting music on Kazaa). A robust
solution should take into account these more standard types of irrational
behaviour, without perhaps worrying as much about arbitrary irrational
behaviour.

• The definitions of computational Nash equilibrium considered only Bayes-
ian games. What would appropriate solution concepts be for extensive-
form games? Some ideas from the work on awareness seem relevant here,
especially if we think of ‘lack of awareness’ as ‘unable to compute’.

• Where do the beliefs come from in an equilibrium with awareness? That
is, if I suddenly become aware that you can make a certain move, what
probability should I assign to you making that move? Ozbay [2007]
proposes a solution concept where the beliefs are part of the solution
concept. He considers only a simple setting, where one player is aware
of everything (so that revealing information is purely strategic). Can
his ideas be extended to a more general setting?

• Agents playing a game can be viewed participating in a concurrent,
distributed protocol. Game theory does not take the asynchrony into
account, but it can make a big difference. For example, all the results
from [Abraham et al., 2006, 2008] mentioned in Section 8.2 depend on the
system being synchronous. Things are more complicated in asynchronous
settings. Getting solution concepts that deal well with asynchrony is
clearly important.

• Another issue that plays a major role in computer science but has thus
far not been viewed as significant in game theory, but will, I believe,
turn out to be important to the problem of defining appropriate solution
concepts, is the analogue of specifying and verifying programs. Games
are typically designed to solve certain problems. Thus, for example,

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 287

economists want to design a spectrum auction so that the equilibrium
has certain features. As I pointed out in an earlier overview [Halpern,
2003], game theory has typically focused on ‘small’ games: games that
are easy to describe, such as the prisoner’s dilemma. The focus has been
on subtleties regarding basic issues such as rationality and coordination.
To the extent that game theory is used to tackle larger, more practical
problems, and especially to the extent that it is computers, or software
agents, playing games, rather than people, it will be important to specify
carefully exactly what a solution to the game must accomplish. For
example, in the context of a spectrum auction, a specification will have
to address what should happen if a computer crashes while an agent is
in the middle of transmitting a bid, how to deal with agents bidding on
slow lines, dealing with agents who win but then go bankrupt, and so
on.

Finding logics to reason about solutions, especially doing so in a way
that takes into account robustness and asynchrony, seems to me a difficult
and worthwhile challenge. Indeed, one desideratum for a good solution
concept is that it should be easy to reason about. Pursuing this theme,
computer scientists have learned that one good way of designing correct
programs is to do so in a modular way. Can a similar idea be applied in
game theory? That is, can games designed for solving smaller problems be
combined in a seamless way to solve a larger problem? If so, results about
composability of solutions will be needed; we might want solution concepts
that allow for such composability.

Acknowledgements: Work supported in part by NSF under under grants ITR-
0325453 and IIS-0534064, and by AFOSR under grant FA9550-05-1-0055.
Thanks to Krzysztof Apt for useful comments.

References

I. Abraham, D. Dolev, R. Gonen, and J. Y. Halpern. Distributed computing meets
game theory: robust mechanisms for rational secret sharing and multiparty
computation. In Proc. 25th ACM Symposium on Principles of Distributed
Computing, pages 53–62, 2006.

I. Abraham, D. Dolev, and J. Y. Halpern. Lower bounds on implementing robust
and resilient mediators. In Fifth Theory of Cryptography Conference, pages
302–319, 2008.

E. Adar and B. Huberman. Free riding on Gnutella. First Monday, 5(10), 2000.
R. J. Aumann. Acceptable points in general cooperative n-person games. In A. W.

Tucker and R. D. Luce, editors, Contributions to the Theory of Games IV,

288 Joseph Y. Halpern

Annals of Mathematical Studies 40, pages 287–324. Princeton University Press,
Princeton, N. J., 1959.

R. J. Aumann and A. Brandenburger. Epistemic conditions for Nash equilibrium.
Econometrica, 63(5):1161–1180, 1995.

R. Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.
A. S. Ayer, L. Alvisi, A. Clement, M. Dahlin, J. P. Martin, and C. Porth. BAR

fault tolerance for cooperative services. In Proc. 20th ACM Symposium on
Operating Systems Principles (SOSP 2005), pages 45–58, 2005.

I. Barany. Fair distribution protocols or how the players replace fortune. Mathematics
of Operations Research, 17:327–340, 1992.

K. Basu. The traveler’s dilemma. Scientific American, June:90–95, 2007.
K. Basu. The traveler’s dilemma: paradoxes of rationality in game theory. American

Economic Review, 84(2):391–395, 1994.
T. Becker, M. Carter, and J. Naeve. Experts playing the Traveler’s Dilemma.

Discussion paper 252/2005, Universität Hohenheim, 2005.
E. Ben-Porath. Cheap talk in games with incomplete information. Journal of

Economic Theory, 108(1):45–71, 2003.
E. Ben-Sasson, A. Kalai, and E. Kalai. An approach to bounded rationality. In

Advances in Neural Information Processing Systems 19 (Proc. of NIPS 2006),
pages 145–152. 2007.

B. D. Bernheim, B. Peleg, and M. Whinston. Coalition proof Nash equilibrium:
concepts. Journal of Economic Theory, 42(1):1–12, 1989.

A. Brandenburger, A. Friedenberg, and J. Keisler. Admissibility in games. Econo-
metrica, 76(2):307–352, 2008.

M. Capra, J. K. Goeree, R. Gomez, and C. A. Holt. Anamolous behavior in a
traveler’s dilemma. American Economic Review, 89(3):678–690, 1999.

E. Dekel, B. Lipman, and A. Rustichini. Standard state-space models preclude
unawareness. Econometrica, 66:159–173, 1998.

M. Dufwenberg and U. Gneezy. Price competition and market concentration: an
experimental study. International Journal of Industrial Organization, 18:7–22,
2000.

R. Fagin and J. Y. Halpern. Belief, awareness, and limited reasoning. Artificial
Intelligence, 34:39–76, 1988.

Y. Feinberg. Subjective reasoning—games with unawareness. Technical Report
Research Paper Series #1875, Stanford Graduate School of Business, 2004.

Y. Feinberg. Games with incomplete awareness. Technical Report Resarch Paper
Series #1894, Stanford Graduate School of Business, 2005.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty processor. Journal of the ACM, 32(2):374–382, 1985.

F. Forges. Universal mechanisms. Econometrica, 58(6):1341–64, 1990.
D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge, Mass., 1991.
D. Gerardi. Unmediated communication in games with complete and incomplete

information. Journal of Economic Theory, 114:104–131, 2004.
O. Goldreich. Foundations of Cryptography, Vol. 2. Cambridge University Press,

2004.
O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In

Proc. 19th ACM Symposium on Theory of Computing, pages 218–229, 1987.
S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive

proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

Beyond Nash Equilibrium: Solution Concepts for the 21st Century 289

D. Gordon and J. Katz. Rational secret sharing, revisited. In SCN (Security in
Communication Networks) 2006, pages 229–241, 2006.

J. Y. Halpern. Alternative semantics for unawareness. Games and Economic
Behavior, 37:321–339, 2001.

J. Y. Halpern. A computer scientist looks at game theory. Games and Economic
Behavior, 45(1):114–132, 2003.

J. Y. Halpern and R. Pass. Iterated regret minimization: a new solution concept.
In Proc. Twenty-First International Joint Conference on Artificial Intelligence
(IJCAI ’09), pages 153–158, 2009.

J. Y. Halpern and R. Pass. Game theory with costly computation. In Proc. First
Symposium on Innovations in Computer Science, 2010.

J. Y. Halpern and L. C. Rêgo. Interactive unawareness revisited. Games and
Economic Behavior, 62(1):232–262, 2008.

J. Y. Halpern and L. C. Rêgo. Extensive games with possibly unaware play-
ers. In Proc. Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 744–751, 2006. Full version available at
arxiv.org/abs/0704.2014.

J. Y. Halpern and V. Teadgue. Rational secret sharing and multiparty computation:
extended abstract. In Proc. 36th ACM Symposium on Theory of Computing,
pages 623–632, 2004.

A. Heifetz, M. Meier, and B. Schipper. Interactive unawareness. Journal of Economic
Theory, 130:78–94, 2006a.

A. Heifetz, M. Meier, and B. Schipper. Unawareness, beliefs and games. Unpublished
manuscript, available at www.econ.ucdavis.edu/faculty/schipper/unawprob.pdf,
2006b.

Y. Heller. A minority-proof cheap-talk protocol. Unpublished manuscript, 2005.
S. Izmalkov, S. Micali, and M. Lepinski. Rational secure computation and ideal

mechanism design. In Proc. 46th IEEE Symposium on Foundations of Computer
Science, pages 585–595, 2005.

E. Kalai. Bounded rationality and strategic complexity in repeated games. In Game
Theory and Applications, pages 131–157. Academic Press, San Diego, 1990.

I. Kash, E. J. Friedman, and J. Y. Halpern. Optimizing scrip systems: efficiency,
crashes, hoarders, and altruists. In Proc. Eighth ACM Conference on Electronic
Commerce, pages 305–315, 2007.

G. Kol and M. Naor. Cryptography and game theory: Designing protocols for
exchanging information. In Theory of Cryptography Conference, pages 320–339,
2008.

D. Kreps, P. Milgrom, J. Roberts, and R. Wilson. Rational cooperation in finitely
repeated prisoners’ dilemma. Journal of Economic Theory, 27(2):245–252,
1982.

D. M. Kreps. Game Theory and Economic Modeling. Oxford University Press,
Oxford, UK, 1990.

M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and coalition-
safe cheap talk. In Proc. 23rd ACM Symposium on Principles of Distributed
Computing, pages 1–10, 2004.

J. Li. Information structures with unawareness. Unpublished manuscript, 2006a.
J. Li. Modeling unawareness without impossible states. Unpublished manuscript,

2006b.
A. Lysyanskaya and N. Triandopoulos. Rationality and adveresarial behavior in

multi-party comptuation. In CRYPTO 2006, pages 180–197, 2006.

290 Joseph Y. Halpern

A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Theory. Oxford University
Press, Oxford, U.K., 1995.

S. Micali and R. Pass. Local zero knowledge. In Proc. 38th ACM Symposium on
Theory of Computing, pages 306–315, 2006.

S. Modica and A. Rustichini. Awareness and partitional information structures.
Theory and Decision, 37:107–124, 1994.

S. Modica and A. Rustichini. Unawareness and partitional information structures.
Games and Economic Behavior, 27(2):265–298, 1999.

D. Moreno and J. Wooders. Coalition-proof equilibrium. Games and Economic
Behavior, 17(1):80–112, 1996.

J. Nash. Equilibrium points in n-person games. Proc. National Academy of Sciences,
36:48–49, 1950a.

J. Nash. The barganing problem. Econometrica, 18:155–162, 1950b.
A. Neyman. Bounded complexity justifies cooperation in finitely repated prisoner’s

dilemma. Economic Letters, 19:227–229, 1985.
J. Niehans. Zur preisbildung bei ungewissen erwartungen. Scbweizerische Zietschrift

für Volkswirtschaft und Statistik, 84(5):433–456, 1948.
M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Cambridge,

Mass., 1994.
E. Ozbay. Unawareness and strategic announcements in games with uncertainty. In

Theoretical Aspects of Rationality and Knowledge: Proc. Eleventh Conference
(TARK 2007), pages 231–238, 2007.

C. H. Papadimitriou and M. Yannakakis. On complexity as bounded rationality. In
Proc. 26th ACM Symposium on Theory of Computing, pages 726–733, 1994.

M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228–234, 1980.

R. W. Rosenthal. Games of perfect information, predatory pricing, and the chain
store paradox. Journal of Economic Theory, 25:92–100, 1982.

A. Rubinstein. Finite automata play the repeated prisoner’s dilemma. Journal of
Economic Theory, 39:83–96, 1986.

L. J. Savage. The theory of statistical decision. Journal of the American Statistical
Association, 46:55–67, 1951.

A. Shamir, R. L. Rivest, and L. Adelman. Mental poker. In D. A. Klarner, editor,
The Mathematical Gardner, pages 37–43. Prindle, Weber, and Schmidt, Boston,
Mass., 1981.

T. Tan and S. Werlang. The Bayesian foundation of solution concepts of games.
Journal of Economic Theory, 45(45):370–391, 1988.

A. Urbano and J. E. Vila. Computational complexity and communication: coordi-
nation in two-player games. Econometrica, 70(5):1893–1927, 2002.

A. Urbano and J. E. Vila. Computationally restricted unmediated talk under
incomplete information. Economic Theory, 23(2):283–320, 2004.

G. Walker and D. Walker. The Official Rock Paper Scissors Strategy Guide. Simon
& Schuster, New York, 2004.

A. Yao. Protocols for secure computation (extended abstract). In Proc. 23rd IEEE
Symposium on Foundations of Computer Science, pages 160–164, 1982.

Index

abstract strategy tree, 224
action, 30
adjacent, 263
algorithm

Büchi-win(G), 79
dominion(G, �), 86
parity-win-dominion†(G), 93
parity-win-dominion(G), 86
parity-win(G), 82
Cottle-Danzig, 96
discrete strategy improvement, 95
divide-and-conquer, 77, 79, 82, 86, 93
eventual safety games, 80
Lemke’s, 96
local search, 95
Murty’s, 96
non-oblivious strategy improvement, 96
parity games, 82
parity-win-daggerparity-win†(G), 86
parity-win‡(G), 92
parity-win-dominion†(G), 92
pivoting, 95
policy iteration, 95, 96
progress measure lifting, 90
progress-measure-lifting(G), 90
progress-measure-lifting-daggerprogress-

measure-lifting†(G, b),
93

random facet, 96
randomised simplex, 96
repeated reachability games, 80
strategy improvement, 95
value iteration, 90

alternation depth, 114
alternation hierarchy, 123
alternation level, 114
antichain, 199
approximate monotonicity, 246
arena, 40
auction

first-price, 28

sealed-bid, 25
second-price, 28
Vickrey, 28

Büchi
automaton, 47
condition, 43
tree automaton, 58

Büchi objective, 189
basic cylinder, 148
Bayesian game, 268
belief, 19

correlated, 19
point, 19

Bertrand competition, 19
best response, 3
blockages, 255
body, 105
border, 238
Borel set, 148
bramble, 249, 250

bramble-width, 250
order, 250

canonical representation (of game with
awareness), 278

clique, 263
closure ordinal, 110
co-Büchi objective, 189
combined complexity, 107
common knowledge, 2
complexity

combined complexity, 107
expression complexity, 107
structure complexity, 108

complexity class
co-NP, 84
co-UP, 95
NP, 84
PLS, 96
PPAD, 96
UP, 95

292 Index

component, 263
computational Bayesian game, 271
connected, 263
connected component, 263
controllable predecessor operator, 190
cop-monotonicity, 226
CP-net, 23

deflationary fixed-point, 128
dependency order, 114
determinacy, 75

eventual safety games, 79, 80
parity games, 83
positional, 76, 79, 80, 83
repeated reachability games, 79, 80

determined, 42, 103
direct mechanism, 26

incentive compatible, 27
directed tree, 263
directed tree-width, 234
discount factor, 140
dominance, 4
domination games, 235
dominion

0-dominion, 79, 80, 86, 89
1-dominion, 79, 80, 86
closure under union, 93
preprocessing, 86, 93
witness for, 90

downward closure, 200
draw, 102

edge search number, 230
edge-game, 190
emptiness game, 65
entanglement, 236
equilibrium value, 153
ex-post equilibrium, 31
expected value, 149, 151
expression complexity, 107
extensive game, 275

F-measurable function, 148
Falsifier, 106
fixed-parameter tractable, 259
fixed-point, 109
Fixed-point logics, 109
fugitive space, 219
function

partition, 241
sub-modular, 241
symmetric, 241

game, 40
concurrent, 153
conversion/preference, 23
determined, 161, 177, 189
discounted, 95
eventual safety, 77
finitely branching, 150
graphical, 23

mean-payoff, 95
mixed extension of, 13
one-counter, 161
parity, 77, 82
positionally determined, 104
pre-Bayesian, 30
reachability, 77
recursive, BPA, 160
repeated reachability, 77
restriction of, 6
revelation-type pre-Bayesian, 32
safety, 77
simple stochastic, 95
stochastic, 95, 150
strategic, 2
strategic with parametrised preferences, 22
turn-based, 150
win–lose, 152, 161
with Borel measurable payoff, 152
with lossy channels, 160
zero-sum, 151

game graph, 40, 74, 188
game structure with imperfect information, 194,

197
game tree, 275
game value, 76
game with awareness based on Γ, 276
game-theoretically secure protocol, 274
generalised Nash equilibrium, 278
graph game, 102
graph searching games

k-searcher, 226
abstract, 218
connected, 235
domination, 235
inert, 231
invisible, 219
Robber and Marshal, 234
size, 256
visible, 222

greatest fixed-point, 110
grid, 250
Groves mechanism, 27

haven, 247, 249
head, 105
history, 188

labelled, 205
hyperedges, 263
hypergraph, 263

IENBR (iterated elimination of never best
responses), 12

IESDMS, 16
IESDS (iterated elimination of strictly

dominated strategies), 7
IEWDMS, 17
IEWDS (iterated elimination of weakly

dominated strategies), 9

Index 293

implement game, 268
implement mediator, 267
incident, 263
independent set, 200
infinity set, 77
inflationary fixed-point, 128
inflationary fixed-point logic, 128
information set, 275

k-resilient Nash equilibrium, 266
k-searcher game, 226
knowledge-based subset construction, 197
Kripke structure, 118

latest appearance record, 50
least fixed-point, 110
least fixed-point logic, 111
level of awareness, 275
LFP, 111
logic

capturing a complexity class, 113
inflationary fixed-point, 128
least fixed-point, 111
propositional modal, 118

LTL, 51

Markov chain, 149
Markov decision process, 95, 96, 150
measurable space, 148
mediator, 267
membership game, 60
ML, 118
modal

μ-calculus, 119
propositional logic, 118

model-checking
for first-order logic, 108

model-checking game, 106
model-checking games, 99
model-checking problem, 106
monotonicity

approximate, 246
cop, 226
robber, 226

μ-calculus, 119
Muller

condition, 43
tree automaton, 58

Nash equilibrium, 3, 264
in mixed strategies, 14
pure, 14

neighbourhood, 263
never best response, 11
node, 57
node search number, 230
node searching, 221
non-cooperative game, see strategic game

objective for a game graph, 188
observation, 194
ω-automaton, 47

ω-regular, 48
operator

inductive, 110
lift(·, v), 91
monotone, 91, 110

order
lexicographic, 88
pointwise-lexicographic, 91

order independence, 8
outcome, 75, 140, 188
outcome of IESDS, 7

Pareto efficient joint strategy, 3
parity

automaton, 47
condition, 43
tree automaton, 57

parity game, 103
unfolding of, 116

parity games, 101
parity objective, 189
partition function, 241
path, 148
path-decomposition, 255
path-width, 255
payoff, 151, 152

Büchi, 154
discounted, 155, 160
discounted reachability, 156
lim-max, 156
lim-min, 156
limit-average, 154, 160
Muller, 154, 159
parity, 154, 159
qualitative, 153
quantitative, 153, 154
Rabin, 154, 159
reachability, 154, 157
Street, 154, 159
weighted reachability, 156

payoff function, 2, 30, 75
Büchi, 77
Boolean, 76
co-Büchi, 77
eventual safety, 77
parity, 77
reachability, 77
repeated reachability, 77
safety, 77

payoff value, 140
pivotal mechanism, 28
play, 40, 102, 151, 188
precise zero knowledge, 274
preference relation, 22, 23
priority function, 77, 103, 189
probability distribution, 13, 148

Dirac, 148
initial, 151
positive, 148

294 Index

rational, 148
probability measure, 149
probability space, 149
problem

computing optimal strategies, 96
deciding the winner, 76, 84
linear complementarity, 95
P-matrix linear complementarity, 96
search, 96

progress measure
ξ(b), 93
ζ(b), 93
domain, 89
game parity progress measure, 88, 89
parity progress measure, 88
pointwise-lexicographic least, 90, 91
range, 89, 90

propositional Horn formula, 105
PTA, 57
public good, 25

qualitative, 139
quantitative μ-calculus, 139
quantitative parity game, 140
Quantitative transition systems (QTS), 139
quasi-concave function, 33

random variable, 149
discrete, 149

rational player, 2
reachability, 109
reachability games, 102
reachability objective, 189
reachability-safety game, 102
reward, 154
Robber and Marshal game, 234
robber space, 219
robber-monotonicity, 226
root, 57, 263
run, 47, 57, 148
running time

O(m), 79
O(n�), 87
O(nd+O(1)), 85
O(nd/2+O(1)), 88, 91
O(nd/3+O(1)), 92, 94, 95
O(nm), 80

nO(
√

n), 87
recurrence, 80, 84, 85, 87, 95

S1S, 55
S2S, 65, 67
safety, 102
safety objective, 189
scrip system, 286
search-tree, 238
search-width, 225
secure multiparty computation, 268
separation, 253
set

MD, 90
MV , 91
Nb, 92
0-closed, 78
0-reachability, 78
1-closed, 78
1-reachability, 78
compact, 15
convex, 15
winning, 76, 90

set of cells
downward-closed, 199

σ-field, 148
social welfare, 26
stage, 110
strategy, 2, 31, 41, 75, 103, 150

ε-optimal, 153
0-dominion, 79, 80, 89
1-dominion, 79, 80
complexity, 225
cop-monotone, 226
deterministic, 150, 188
dominant, 4, 31
finite-memory, 150
finite memory, 42
history-dependent, 150
infinite-memory, 151
joint, 3
memoryless, 150, 188
mixed, 13
observation-based, 187, 194
optimal, 76, 153, 172, 173
positional, 42, 75, 104
pure, 13
randomised, 150, 205
randomised, almost-surely-winning, 205
rationalizable, 18
reachability, 78
robber-monotone, 226
Searcher, 220, 223
strictly dominant, 4
support of, 13
surely-winning, 188, 194
totally mixed, 21
trapping, 78
truth-telling, 32
weakly dominant, 4
winning, 76, 83, 89, 161, 220, 223

strategy tree
abstract, 224
cops and robber, 237

strategy improvement, 157
strategy profile, 3, 264
strict dominance, 4
strongly connected, 263
strongly connected component, 263
sub-graph, 263
sub-modular function, 241

Index 295

successor, 57
symmetric function, 241

t-immune strategy profile, 267
tax, 26
tax function, 26
temporal logic

branching-time, 161, 164
linear-time, 161, 162

theorem
Borel determinacy, 76
Knaster–Tarski, 91, 110
Martin’s, 76
Nash, 15

threshold strategy, 286
tit for tat, 272
touching sets of vertices, 249
transition system, 118, 148

finitely branching, 148
tree, 57, 263

regular, 67
tree-decomposition, 252

width, 252
tree-width, 252
tree-width duality theorem, 252
type, 24, 30, 268

unfolding, 116
Unfolding Lemma, 116
update operator, 109
utility function, 24, 26

value, 141
value iteration, 157
Verifier, 106
visible search width, 231

weak dominance, 4
width, 108
winning area, 42
winning condition, 40
winning region, 103
winning strategy, 220, 223
word, 147

XP, 259

yield, 151

zero knowledge proof, 274

	Cover
	Half-title
	Title
	Copyright
	Contents
	Contributors
	Preface
	1 A Primer on Strategic Games
	Abstract
	1.1 Introduction
	1.2 Basic concepts
	1.3 Iterated elimination of strategies I
	1.3.1 Elimination of strictly dominated strategies
	1.3.2 Elimination of weakly dominated strategies
	1.3.3 Elimination of never best responses

	1.4 Mixed extension
	1.5 Iterated elimination of strategies II
	1.5.1 Elimination of strictly dominated strategies
	1.5.2 Elimination of weakly dominated strategies
	1.5.3 Rationalizability
	1.5.4 A comparison between the introduced notions

	1.6 Variations on the definition of strategic games
	1.7 Mechanism design
	1.8 Pre-Bayesian games
	1.9 Conclusions
	1.9.1 Bibliographic remarks
	1.9.2 Suggestions for further reading

	References

	2 Infinite Games and Automata Theory
	Abstract
	2.1 Introduction
	2.2 Basic notations and definitions
	2.3 Transformation of winning conditions
	2.3.1 ω-automata
	2.3.2 Game reductions
	2.3.3 Logical winning conditions
	Linear temporal logic
	Monadic second-order logic

	2.4 Tree automata
	2.4.1 Complementation
	2.4.2 Emptiness

	2.5 Beyond finite automata
	2.6 Conclusion
	References

	3 Algorithms for Solving Parity Games
	Abstract
	3.1 Games on graphs
	3.2 Solving repeated reachability and eventual safety games
	3.3 Solving parity games
	3.3.1 Divide and conquer
	3.3.2 Divide and conquer with dominion preprocessing
	3.3.3 Value iteration: progress measure lifting
	3.3.4 Divide and conquer with dominion preprocessing by progress measure lifting

	3.4 Related work
	References

	4 Back and Forth Between Logic and Games
	Abstract
	4.1 Introduction
	4.2 Reachability games and parity games
	4.3 Reachability games and logic
	4.3.1 Games and Horn formulae
	4.3.2 Model-checking games for first-order logic
	4.3.3 Complexity of first-order model-checking
	4.3.4 Definability of winning regions

	4.4 Logics with least and greatest fixed-points
	4.4.1 Least fixed-point logic and reachability games
	4.4.2 Capturing polynomial time
	4.4.3 Model-checking games for least fixed-point logic
	4.4.4 The modal μ-calculus

	4.5 Definability of winning regions in parity games
	4.5.1 Parity games with a bounded number of priorities
	4.5.2 Alternation hierarchies
	4.5.3 Parity games with an unbounded number of priorities

	4.6 Inflationary fixed-point logic and backtracking games
	4.6.1 Inflationary fixed-point logic
	4.6.2 Parity games with backtracking
	4.6.3 Games for IFP
	4.6.4 Definability of winning regions in backtracking games

	4.7 Logic and games in a quantitative setting
	4.7.1 Quantitative transition systems and quantitative μ-calculus
	4.7.2 Quantitative parity games
	4.7.3 Model-checking games for Qμ
	4.7.4 Defining game values in Qµ

	References

	5 Turn-Based Stochastic Games
	Abstract
	5.1 Introduction
	5.1.1 Preliminaries
	Words, paths, and runs
	Probability spaces
	Markov chains
	Turn-based stochastic games and Markov decision processes

	5.2 Winning objectives in stochastic games
	5.2.1 Games with Borel measurable payoffs
	Qualitative payoffs
	Quantitative payoffs
	The problems of interest
	The existing results

	5.2.2 Win–lose games
	Linear-time logics
	Branching-time logics
	The problems of interest
	The existing results

	5.3 Reachability objectives in games with finitely and infinitely many vertices
	5.3.1 The existence of a value revisited
	5.3.2 Optimal strategies and determinacy

	5.4 Some directions of future research
	References

	6 Games with Imperfect Information: Theory and Algorithms
	Abstract
	6.1 Introduction
	6.2 Games with perfect information
	6.3 Games with imperfect information: surely-winning
	6.3.1 Game structure with imperfect information
	6.3.2 Reduction to games with perfect information
	6.3.3 Symbolic algorithms and antichains
	6.3.4 Strategy construction

	6.4 Games with imperfect information: almost-surely-winning
	6.4.1 Playing with randomised strategies
	6.4.2 An algorithm for reachability objectives

	References

	7 Graph Searching Games
	Abstract
	7.1 Introduction
	Node searching
	Optimal strategies
	Applications

	7.2 Classifying graph searching games
	7.2.1 Abstract graph searching games
	7.2.2 Invisible abstract graph searching games
	7.2.3 Visible abstract graph searching games
	Example: The Visible Cops and Robber Game

	7.2.4 Complexity of strategies
	7.2.5 Monotonicity
	7.2.6 Connection to reachability games

	7.3 Variants of graph searching games
	7.3.1 A different Cops and Robber game
	7.3.2 Node and edge searching with an invisible fugitive
	7.3.3 Visible Robber games
	7.3.4 Lazy or inert fugitives
	7.3.5 Games played on directed graphs
	7.3.6 Games played on hypergraphs
	7.3.7 Further variants

	7.4 Monotonicity of graph searching
	7.4.1 Monotonicity by sub-modularity
	Sub-modularity
	Monotonicity of the visible Cops and Robber Game
	Further applications of sub-modularity

	7.4.2 Approximate monotonicity
	Further examples
	Open problems

	7.4.3 Games which are strongly non-monotone

	7.5 Obstructions
	7.6 An application to graph-decompositions
	7.7 Complexity of graph searching
	7.7.1 Classical complexity bounds for graph searching games
	Games with a visible fugitive
	Games with an invisible fugitive

	7.7.2 Parametrised complexity of graph searching

	7.8 Conclusion
	References
	Appendix Notation

	8 Beyond Nash Equilibrium: Solution Concepts for the 21st Century
	Abstract
	8.1 Introduction
	8.2 Robust and resilient equilibrium
	8.3 Taking computation into account
	8.4 Taking (lack of) awareness into account
	8.5 Iterated regret minimisation
	8.6 Conclusions
	References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

