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Abstract. In formal verification, monitoring monitoring consists of ob-
serving the execution of a system in order to decide as quickly as possible
whether or not it satisfies a given property. We consider monitoring in
a distributed setting, for properties given as reachability timed automata.
In such a setting, the system is made of several components, each equipped
with its own local clock and monitor. The monitors observe events oc-
curring on their associated component, and receive timestamped events
from other monitors through FIFO channels. Since clocks are local, they
cannot be perfectly synchronized, resulting in imprecise timestamps. Con-
sequently, they must be seen as intervals, leading monitors to consider pos-
sible reorderings of events. In this context, each monitor aims to provide,
as early as possible, a verdict on the property it is monitoring, based on its
potentially incomplete and imprecise knowledge of the current execution.
In this paper, we propose an on-line monitoring algorithm for timed prop-
erties, robust to time imprecision and partial information from distant
components. We first identify the date at which a monitor can safely
compute a verdict based on received events. We then propose a moni-
toring algorithm that updates this date when new information arrives,
maintains the current set of states in which the property can reside, and
updates its verdict accordingly.

1 Introduction

Runtime verification. Formal verification is a branch of computer science that
aims to check whether computer systems satisfy their requirements. This includes
in particular model checking [10,3] and deductive verification [20,15], which
work offline and check properties of all behaviours of the system under study.
In contrast, runtime verification [23,4] is a set of efficient techniques to monitor
the behaviour of a running system, and to detect, as early as possible during
the execution, whether some properties are satisfied or violated. This domain
of formal verification has been extensively studied over the last 25 years, and is
now mature enough to be applied in various application domains.

As real-life systems typically comprise several connected components, runtime
verification techniques must be adapted to handle situations where the behaviours
of the components are only partially known and may be imprecise: each component
is equipped with a monitor, and monitors exchange information asynchronously
with each other.



Because the system is distributed, we assume that each monitor only has
access to a local clock, which may slightly drift w.r.t a reference clock. Hence the
dates of the events are only known with a limited precision, and the exact order
of the events occurring on different subsystems may be unknown. We assume
that communications between local monitors are FIFO; this way, when a monitor
receives the information that some event took place on some subsystem, it also
knows all the events that have occurred earlier on that subsystem.

Thanks to these hypotheses, each monitor can determine a time in the past
for which it currently has enough information to decide whether the property it
is checking already held, or failed to hold, at that time. We consider real-time
properties modelled as timed automata (TA) [1]; the expressiveness of these
models allows to account for the precise timing of events, which magnifies the
impact of the lack of an observable global clock.

Example 1. Consider a private (e.g., enterprise, university) network with a set
of terminals and servers containing user account data logged in and a router con-
nected to them. Properties of interest can be that (1) all machines should remain
connected to the network and (2) no account should be logged in more than one
terminal at a time. Even if two terminals signal that they are connected to a given
account, a monitor has to wait to ensure that no ”log out” message is pending from
one of the two terminals. Plus, once such signals are received, the approximate
timings may lead to situations where two terminals may or may not have been
connected to the same user session at the same time, with no ability to conclude.

Our contributions. We present a monitoring algorithm for properties expressed as
(deterministic) TAs in a distributed setting without a global clock. Each monitor
keeps track of the most recent date at which it has collected the full history
(relying on the assumption that communications with other monitors are FIFO).
The prefix of the collected trace at this time already contains uncertainty, due to
the absence of a global clock, which entails that reordering events from distinct
components must be considered. The computation of a verdict is based on the
incremental update of a structure that encodes the set of states compatible with
the prefix of the collected trace up to the time of interest. We show that the
monitoring algorithm is sound and complete.

Related works. This paper studies distributed runtime verification for timed
properties described as timed automata [1]. Several related approaches have been
developed in the literature. Extensions of Linear-time Temporal Logic (LTL)
integrating dense time have been explored for runtime verification and monitor
synthesis [6]. Among them, Metric Temporal Logic (MTL) is of particular in-
terest as it is directly related to TAs [25] and is equipped with a progression
function allowing to evaluate formulas at runtime [28]. Similarly, Timed Reg-
ular Expressions are as expressive as TAs and can be translated to TAs [2].
The tool Montre [29] monitors them using timed pattern matching. Monitoring
TA models has been realized in the case of one-clock non-deterministic TAs [19].
Pinisetty et al. [26] introduce a predictive setting for runtime verification of timed
properties, leveraging reachability analysis to anticipate the detection of verdicts.



The aforementioned approaches consider that the monitored system is cen-
tralized and the decision procedure is fed with a unique trace containing complete
observations. Decentralized runtime verification [7] (see also a recent overview
in [13]) handles separate traces corresponding to each monitor. Decentralized
(also called synchronous) methods however assume the existence of a global
clock shared by all components and monitors. We relax this assumption here,
and consider asynchronous distributed monitoring (or distributed monitoring
for short). For a discussion on the links and differences between synchronous and
asynchronous methods, see [16].

Most approaches in decentralized runtime verification take as input Linear-
time Temporal Logic formulas [7,11,17] or finite-state automata [14,12]. These
approaches monitor specifications of discrete time, which does not account for the
physical time that impacts the evaluation of the specifications nor the moment at
which monitors perform their evaluation and deliver their verdicts. An approach
close to ours is [5], in which properties are specified in an extension of Metric
Temporal Logic to tackle both timing and data values. Similar to us, the authors
also deal with out-of-order messages, but also failures and lost messages. However,
they consider that local clocks are accurate.

Distributed runtime verification exhibits similarities with diagnosis [30,31] ([9]
for TAs), which aims to identify the occurrence of a fault and the component(s)
responsible for it after a finite number of discrete steps, and has to cope with
partial observation. Our approach differs from diagnosis, as we assume that
monitors’(combined) local information suffices to detect violations; diagnosis
does not aim to check membership to an arbitrary timed regular expression. The
approach of [21] for robust diagnosis shares several common aspects with ours.
While centralized, it considers diagnosis where communication between the
system and the diagnoser is subject to varying latency, clock drift and out-of-
order observation. The problem is different but is similar in spirit: incrementally
building a verdict based on approximate and partial timed observations. Moreover
some constructions have clear similarities, which is not surprising: in both cases the
language of runs compatible with the current partial and approximate observation
has to be considered. Other approaches comparable to ours perform monitoring
on timed properties in a decentralized [27] or distributed [18] fashion. Our own
approach discusses distributed monitoring directly on timed automata models.

2 Preliminaries

We present the basic hypotheses about our formalization of the distributed
monitoring problem in Section 2.1, the notions of words and languages at play in
Sections 2.2 and 2.3, and timed automata in Section 2.4.

2.1 Distributed timed systems

We consider systems made of n independent components (Ci)1≤i≤n. Each Ci is
observed by a local monitor Mi. The components being independent, we assume



that each Ci has its own finite alphabet of actions Acti, disjoint from the alphabets
of the other components. We write Act =

⊔
1≤i≤n Acti for the alphabet of all

actions. For an action a ∈ Acti, we write Comp(a) = i. An action a fired by
component Ci is observed and timestamped by its monitor Mi, giving rise to an
event (a, t) in Acti × R≥0. We assume the following about the system:

Respective knowledge: monitors know each others’ alphabets of actions;
Communication: monitors send messages to their peers, carrying the times-

tamped events they observed (and events they learnt about from other
monitors) in the order in which they observed them. We assume that local
events can be strictly ordered.

Communication channels: communications between monitors obey a FIFO
policy with no message loss: messages are received in the order they were
sent, and any sent message is eventually received, although no upper bound
on communication delays is assumed.

Communication topology: the connectivity is such that a monitor Mi can
receive messages (either directly or indirectly) from any monitor Mj managing
some action appearing in Mi’s property.

Local liveness: at any given time, each monitor will eventually have a local
observation in the future, and will eventually send it to the other monitors.

Time approximation: monitors do not share a global clock, but one can assume
that each local clock has a maximal skew ε with respect to a global reference
clock4. We suppose that clocks are non-decreasing.

Most of these assumptions are easy to satisfy. A FIFO policy can be achieved
by numbering the events exchanged between one monitor and another, ensuring
that a monitor can handle events in the order they were sent. Local liveness
can be ensured by adding empty events that are sent when no events have been
observed for a long duration. The main practical constraints are the absence of
message losses, and the bound on clock skews. However, even these assumptions
can be mitigated. Message losses can be detected using the message numbering,
while a mechanism such as Network Time Protocol (NTP) can be used to limit
the skew to ε.

We consider that each monitor is in charge of verifying some property (given as
a timed automaton, see Sect. 2.4). As the monitoring algorithms and properties
are symmetric for each such monitor, we restrict our dissertation to a fixed
monitor Mi and assume that the entire set Act of actions is necessary for its
property (some of these actions are still observed by other monitors).

2.2 Timed words and languages

We consider intervals in R, denoted I(R). For an interval I = ⟨l, u⟩, with ⟨ ∈ {(, [}
and ⟩ ∈ {), ]}, we write lb(I) = l, ub(I) = u for its lower and upper bounds.
For two intervals I1, I2 of R, we write I1 ≺ I2 if ub(I1) ≤ lb(I2); when this

4 Our approach can be easily generalized to different ε for each monitor, with our
theorems depending on the greatest one.



condition is met, the intervals intersect in at most one point. We also consider
intervals of natural numbers and write J1;mK for {k ∈ N | 1 ≤ k ≤ m}.

Timed Words and Languages. We consider timed words built on the alphabet of ac-
tions Act as (finite or infinite) sequences σ = (ak, tk)k∈J1;mK

5 of events in Act×R≥0

whose sequence of dates (tk)k∈J1;mK is non-decreasing. We write σ[k] = (ak, tk)
for its k-th event. For any interval I of R≥0, we write σ|I for the subword of σ
restricted to dates in I, and σ|t as a shorthand for σ|[0,t] with t ∈ R≥0. For a finite
timed word σ = (ak, tk)k∈J1;mK, we write |σ| = m for its length, firstt(σ) = t1
and lastt(σ) = tm respectively for the dates of its first and last events; for the
empty word γ, we let firstt(γ) = lastt(γ) = 0. Two timed words σ1 and σ2

can be concatenated into σ1 · σ2 if, and only if, lastt(σ1) ≤ firstt(σ2). For any
interval I ⊆ R≥0, we write TTI(Act) for the set of timed words in (Act× I)∗, and
TT(Act) = TTR≥0

(Act). A language of timed words is any subset of TT(Act).
For two languages of timed words L1 and L2, their concatenation L1 · L2 is

defined and equal to {σ1 · σ2 | σ1 ∈ L1, σ2 ∈ L2} if, and only if, supp{lastt(σ1) |
σ1 ∈ L1} ≤ inf{firstt(σ2) | σ2 ∈ L2}. The restriction to an interval naturally
generalizes to languages: for a language L ⊆ TT(Act) and an interval I of R,
L|I = {σ|I | σ ∈ L}.

Projections on monitors. In our setting, Act is the disjoint union of alphabets Acti.
For a timed word σ, we write pi(σ) for the projection on the actions monitored
by Mi, defined by induction as pi(γ) = γ for the empty word, and pi(σ · (a, t)) =
pi(σ) · (a, t) if a ∈ Acti and pi(σ · (a, t)) = pi(σ) otherwise.

Conversely, we define a tensor operation on timed words σ1 ⊗ σ2 that merges
the events while re-ordering them by ascending timestamps. This operation is
such that σ = ⊗i∈J1;nK pi(σ).

2.3 Approximate Timed Words

If we had perfect clocks, timed words as defined above would be the model of
choice for representing the knowledge of the monitors; restriction to intervals
would be used to identify the part of the knowledge that each monitor knows
is complete (as opposed to the part of the knowledge where informations from
some of the components did not arrive yet).

In the context of distributed monitoring, we consider that the clocks of the
monitors may be imprecise, resulting in a potential drift of up to a uniform
bound ε w.r.t. a reference clock. Because of this, we have to rely on a notion of
approximate timed words, and to define restriction to intervals for this new model.

Because of timing imprecisions, an event (a, t), made of action a timestamped
with t by the monitor that observed it, may have happened anywhere in the
interval [t − ε, t + ε] ∩ R≥0 with respect to the reference clock6. Thus, while
the information collected by a monitor has the form of a timed word σ =

5 We abusively use such a notation for both finite and infinite sequences.
6 Intersection with R≥0 is used to rule out events with negative dates.



(ak, tk)k∈J1;mK, the real date of each event (ak, tk) lies in the interval Ik =
[tk − ε, tk + ε]∩R≥0. We call approximate timed word of σ, the sequence ν(σ) =
(ak, Ik)k∈J1;mK.

Approximate timed words. An approximate timed word (ATW for short) is a
sequence of pairs ν = (ak, Ik)k∈J1;mK such that, for all k ∈ J1;mK, ak ∈ Act and
Ik ∈ I(R) is an interval (open or closed for generality). We denote by ATW(Act)
the set of approximate timed words on Act.

With any approximate timed word, we associate two languages: its ordered
language and its non-ordered language. Intuitively, the ordered language of ν is
the language of timed words that respect the order of the events and the intervals
given by ν, while the non-ordered language will be the union of the ordered
languages for all possible reoderings of the events.

The ordered semantics defines a “tube” of timed words with the same untimed
projection. It is defined as follows:

J(ak, Ik)k∈J1;mKKord =
{
(ak, tk)k∈J1;mK ∈ TT(Act) | ∀k ∈ J1;mK. tk ∈ Ik

}
By definition of TT(Act), the sequence (tk)k∈J1;mK is non-decreasing, which
induces constraints on subsequent tk’s. Notice that JνKord = ∅ when Ik = ∅
for some k, or if no increasing sequences of dates can be found in the se-
quence (Ik)k∈J1;mK.

In order to define the non-ordered language of ν, we introduce the subset F(ν)
of permutations of events in ν that respect the strict order of events sharing
the same component (each monitor knows the order of events occurring in the
component it supervises). We define it as follows, with Perms(J1;mK) being the
set of permutations of J1;mK:

F((ak, Ik)k∈J1;mK) =
{
f ∈ Perms(J1;mK) | ∀k, l ∈ J1;mK.

(Comp(ak) = Comp(al) ∧ k < l) ⇒ f(k) < f(l)
}
.

Then for f ∈ F(ν), we abuse the notation and write f(ν) for the ATW
(af(k), If(k))k∈J1;mK. Finally, we define the (non-ordered) language of ν as the set
of timed words that respect both the intervals given by ν, and the strict local
order on each component:

JνK =
⋃

f∈F(ν)

Jf(ν)Kord.

Intuitively, this language includes commutations of events that occurred at
sufficiently close dates on different components: indeed, if ν = ν1 ·(bk, t) ·(bl, t′) ·ν2
with Comp(bk) ̸= Comp(bl) and |t− t′| ≤ 2ε, then JνK contains timed words with
form σ1 · (bk, t) · (bl, t′) · σ2 and σ1 · (bl, t′ − ε) · (bk, t+ ε) · σ2.

Back to the monitoring problem, given some monitor and an observation
prefix σ that is sufficient (in some sense clarified later), considering the imprecision
due to the skew ε in the approximate timed word ν(σ), the non-ordered language
Jν(σ)K is the set of executions that could produce this observation prefix, hence
that has to be considered for monitoring.



Operations on approximate timed words. We now focus on defining a restriction
of approximate timed words to an interval of dates. This will be useful for the
incremental update of the monitor’s knowledge (see Sect. 3.3). Semantically,
the restriction of an ATW ν to an interval I is the set of restrictions to I of
all the timed words contained in JνK. In this section, we present a syntactic
definition, which will be the basis of an effective computation.

To this aim, we first define intersection: for ν = (ak, Ik)k∈J1;mK and an
interval I, the intersection of ν with I is the ATW ν∩I = (ak, Ik ∩ I)k∈J1;mK.
Notice that Jν∩IKord = Jν∩IK = ∅ if Ik ∩ I = ∅ for some k ∈ J1;mK.

Our syntactic definition of restriction adapts the notion of subword. For any
interval I of R≥0, and two ATW ν′ and ν′′, we say that ν′ = ν′1 · · · ν′n is a subword
of ν′′ = ν′′1 · ν′1 · · · ν′′n · ν′n · ν′′n+1 conditioned by I, written ν′ ⪯I ν′′, if, and only if,

– for all l ∈ J1;n+ 1K, for any (ak, Ik) in ν′′l , ¬(Ik ⊆ I): all events in ν′′l (which
are dropped) may occur outside of I;

– for all l ∈ J1;nK, for any (a′k′ , I ′k′) in ν′l , I
′
k′ ∩ I ̸= ∅: all events in ν′l (which

are not dropped) may occur in I;
– there is f ∈ F(ν′′) s.t. f(ν′′) = ν1 · ν′ · ν3 for some ν1 and ν3: this encodes

the fact that two events in the same component can not be permuted.

We can now define the (syntactic) restriction of an approximate timed word ν
to an interval I as ν|I = {ν′∩I | ν′ ⪯I ν}. As a shorthand, for a timestamp T ,
we write ν|[0,T ] = ν|T . We overload the term restriction of ν to I because of
the characterization of Lemma 1 below: the syntactic restriction corresponds to
the semantic approach of taking the language of timed words associated with ν,
and restricting each of its words. This provides us with a way of representing,
manipulating and computing restriction of ATW to intervals:

Lemma 1. For any approximate timed word ν and any timestamp T , it holds
∪ν′∈ν|T Jν′K = JνK|T .

Following this, we write Jν|T K for ∪ν′∈ν|T Jν′K.

Example 2. Consider the approximate timed word ν = (a, [1, 3])(b, [2, 4])(c, [3, 5]),
and I = [0, 3] with the components of the actions being pair-wise different. Then:

– ν∩I is the approximate timed word (a, [1, 3])(b, [2, 3])(c, {3}).
– assuming that all three events occur on different components (and can then

be freely swapped), the set {ν′ | ν′ ⪯I ν} is

{ϵ, (a, [1, 3]), (a, [1, 3])(b, [2, 4]), (a, [1, 3])(c, [3, 5]),
(a, [1, 3])(b, [2, 4])(c, [3, 5]), (b, [2, 4]), (b, [2, 4])(c, [3, 5]), (c, [3, 5])}

(in other terms, all subwords are allowed, since all intervals intersect I
and none of them are included in I). It follows that ν|I is the union of
ϵ, (a, [1, 3]), (a, [1, 3])(b, [2, 3]), (a, [1, 3])(c, [3, 3]), (a, [1, 3])(b, [2, 3])(c, [3, 3]),
(b, [2, 3]), (b, [2, 3])(c, [3, 3]) and (c, [3, 3]).
Now, assume that b and c relate to the same component, so that they cannot
be swapped. In this case, (a, [1, 3])(c, [3, 5]) is no longer a subword of ν for I,
because the third condition is no longer fulfilled.



2.4 Formalism for timed systems

We monitor properties given as TAs, which are standard formalism for expressing
properties of time-constrained systems: the aim of our monitoring procedure is to
decide if the execution we are (partially and imprecisely) observing is (or will be)
accepted by a given timed automaton. We introduce the formalism of timed
automata in thie section.

Let X be a finite set of clocks. A clock valuation is a function v : X → R≥0.
We write V(X) for the set of valuations. The initial valuation is 0 : x ∈ X 7→ 0;
a time elapse for a delay t ∈ R≥0 maps valuation v to v + t : x 7→ v(x) + t, and
a clock reset for a subset X ′ ⊆ X maps v to v[X′] such that v[X′](x) = v(x) if
x /∈ X ′, and v[X′](x) = 0 otherwise.

A zone is a finite conjunction of clock constraints of the forms x1 ▷◁ n and
x1 − x2 ▷◁ n, with x1, x2 ∈ X, ▷◁ ∈ {<,≤,=,≥, >} and n ∈ N. We write Z(X)
for the set of zones of X. We write v |= z and say that v satisfies z when the
values of the clocks in v satisfy the constraints in z.

Definition 2. A timed automaton (TA) is a tuple A = (L, ℓinit,Act, X,E)
where L is a finite set of locations containing the initial location ℓinit, Act and
X are finite sets of actions and clocks respectively, and E ⊆ L×Z(X)× Act×
2X × L is the set of transitions. For a transition (ℓ, g, a, z, ℓ′) ∈ E, we call ℓ its
source, ℓ′ its target, g and a its guard and action and z its reset set. We call
configurations of A the triples (ℓ, v, t) ∈ L × V × R≥0, and initial configuration
the configuration (ℓinit,0, 0).

Remark 1. We add to the usual notion of configuration a date representing the
instant at which the system is in this configuration (after a given behaviour).
We do this because our reasoning is based on timestamps, not delays, following the
definition of timed words based on observations. This can be readily implemented
by giving an additional clock (which is never reset) to the TA.

A timed word σ = (ai, ti)1≤i is a trace of a timed automaton if, start-
ing from the initial configuration (ℓinit,0, 0), one can find a sequence ρ =

((ℓi−1, vi−1, ti−1)
δi−→ (ℓi−1, vi−1 + δi, ti−1 + δi)

ei−→ (ℓi, vi, ti−1 + δi))1≤i with
ei = (ℓi−1, gi, ai, zi, ℓi) ∈ E, δi = ti − ti−1 (with t0 = 0), and at each step
vi−1 + δi |= gi and vi = (vi−1 + δi)[zi]. Such a sequence ρ is called a (finite or
infinite) run, and we write trace(ρ) = σ. A timed word σ is a partial trace if
there exists a timed word σ′ such that σ′ · σ is a trace. A partial trace thus
corresponds to a partial run that does not (necessarily) start from (ℓinit,0, 0).

For a (partial) trace σ with firstt(σ) ≥ t, we write (ℓ, v, t) ⇝
σ

t
(ℓ′, v′, t′) when σ

leads from configuration (ℓ, v, t) to configuration (ℓ′, v′, t′).
A timed automaton is said deterministic if for any two transitions (ℓ, g, a, z, ℓ′)

and (ℓ, g′, a, z′, ℓ′) such that g ∩ g′ ≠ ∅, it holds g = g′ and z = z′. It is said
complete when for any configuration (ℓ, v, t) and action a ∈ Act, there is at least a
transition (ℓ, g, a, z, ℓ′) such that v |= g. When considering complete deterministic
automata, the trace function defined above is a bijection, and we identify traces



with their associated runs. In this context, we add the possibility of having a
final delay after a trace: for a configuration (ℓ, v, t), a date t′′ and a (partial)

trace σ such that firstt(σ) ≥ t and lastt(σ) = t′ ≤ t′′ we write (ℓ, v, t) aftert
′′

t σ

for the unique configuration (ℓ′, v′′, t′′) such that (ℓ, v, t) ⇝
σ

t
(ℓ′, v′, t′)

t′′−t′−−−→
(ℓ′, v′′, t′′), i.e., reached from (ℓ, v, t) after the trace σ followed by the delay t′′− t′.
This can be generalized to sets of configurations and languages: for a set of
configurations S and a language of timed words L, such that inf{firstt(σ) | σ ∈
L} ≥ t and supp{lastt(σ) | σ ∈ L} ≤ t′′, S aftert

′′

t L = {(ℓ′, v′, t′′) | ∃(ℓ, v, t) ∈
S,∃σ ∈ L, (ℓ′, v′, t′′) = (ℓ, v, t) aftert

′′

t σ}. Finally, we define the corresponding
notion when no date is given: S after L = {(ℓ′, v′, t′) | ∃(ℓ, v, t) ∈ S, ∃σ ∈
L,∃t′, (ℓ′, v′, t′) = (ℓ, v, t) aftert

′

t σ}. Notice that in this last definition, t and t′

are not bound and can range on all values such that aftert
′

t is defined.

Modelling properties. The property associated with monitor Mi is defined by
a deterministic and complete TA Ai and a subset Fi of locations specifying a
reachability property7: we write JAi,FiK for the set of (runs of) finite traces σ
that end in some location of Fi when applied to Ai from its initial configura-
tion (ℓinit,0, 0); we extend JAi,FiK (abusively keeping the same notation) to
include runs of infinite traces σ for which there is a length k such that all prefixes
of σ of length larger than k are in JAi,FiK.

Given a property specified by Ai and Fi, a finite trace σ is a good prefix
(resp. bad prefix ) if for all infinite continuations σ · σ′ ∈ (Act × R≥0)

ω of σ,
σ · σ′ ∈ JAi,FiK (resp. σ · σ′ /∈ JAi,FiK). In terms of automata, this means that
the prefix reached some configuration in Li × V × R≥0 from which it will always
eventually stay in Fi×V×R≥0 (resp. it never visited and will never visit Fi). We
note this set of configurations Inev(Fi) (resp. Never(Fi)). Good prefixes (resp. bad
prefixes) are then traces of runs in JAi, Inev(Fi)K (resp. JAi,Never(Fi)K). Starting
from Fi, the state sets Inev(Fi) and Never(Fi) can be computed off-line by a
zone-based co-reachability analysis [8]. Thanks to this, we restrict our focus to the
reachability of pairs of locations and zones without loss of generality. These notions
can be extended to languages, thus to approximate timed words. A language
L ∈ TTAct is a good (resp. bad) language prefix if L ⊆ JAi, Inev(Fi)K (resp.
L ⊆ JAi,Never(Fi)K). These can also be computed using Inev(Fi) and Never(Fi).

3 Monitoring with complete information

The role of monitoring algorithms is to provide us with verdicts when analyzing
executions of the system. Since we want this to be performed online, verdicts
should be given as soon as possible, based on the observation of a finite execution
prefix. However, in the context of distributed systems, the observation collected by
a monitor at a given date may be imperfect, with missing events and approximate

7 We here restrict to deterministic and complete TAs for simplicity, but generalization
to non-deterministic and incomplete TAs is easy.



dates. We first identify the points in time where we have enough information to
decide a verdict in Sect. 3.1, and then define our verdicts of interest in Sect. 3.2.
Using this, we explain the data structure we use and its related operations
in Sect. 3.3, and explain how to compute a verdict in Sect. 3.4.

3.1 Point of Certainty

When the components of the system perform actions, their corresponding monitors
(Mj)j∈J1;nK instantly observe these actions and timestamp them with the value
of their (local) clock. However, they need to wait for the communication of other
monitors in order to collect the information about the other components’ events.

Communication policy. We consider the simple policy in which each monitor Mj

instantly sends its observations (action performed and timestamp) to every other
monitor Mi that needs it for checking its property, grouping in the same message
all the events that occurred at the same instant8. As there are no bounds in
communication delays, monitors still have to deal with partial and out-of-order
information. Moreover, local time approximation induces imprecision in event
dates. To make monitoring sound, we first determine the time point at which we
can safely monitor with no missing event.

Formally, consider the global observation σo such that at a given global time
tg, the observation collected by all monitors is hence σo

|tg . We know that the

global trace σg of the run of the system is such that σg ∈ Jν(σo)K. This trace can
not be observed, yet it is the one we want to monitor, hence we will start our
reasoning from (prefixes of) the language Jν(σo)K.

Moreover, no single monitor has access to σo
|tg at time tg due to the need

for synchronization. Let the collected trace at t by Mi, written σi(t), be the
monitoring information gathered by a monitor Mi at the Mi-local time t. It is
composed of a subset of the global observation σo

|t+ε, containing at least its own

local observation pi(σ
o)|t and events received from other monitors, forming for

each monitor Mj a timed word pj(σ
o)|tj with tj ≤ t+2ε. Indeed, communication

being FIFO, Mi receives the information from each individual Mj in order, but
potentially with Mj-local timestamps up to t+ 2ε, as both the Mi-local time t
and the Mj-local time can skew by a maximum of ε from the global time.

For Mi at Mi-local date t, consider the set

{(j, tj) ∈ J1;nK × R≥0 | j ̸= i ∧
(
lastt(pj(σi(t))) = tj

)
} ∪ {(i, t)}

of pairs made of the index j of each monitor coupled with the timestamp of the last
observation received from Mj by Mi. Let (jtmink)k∈J1;nK = (jmink, tmink)k∈J1;nK
be the sequence obtained by ordering this set of pairs by ascending timestamp 9.

8 This technical detail is useful for Prop. 3 to ensure that all events of same date issued
from the same component are collected simultaneously. It can be implemented by
waiting any non null delay before sending a message aggregating the observations.

9 We should write (jtmink(t))k∈J1;nK = (jmink(t), tmink(t))k∈J1;nK, i.e., parametrize by t,
but we will often forget t when clear from the context.
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Fig. 1: A global finite trace σg (top), its corresponding global observation σo

at local Mi-time t (below) with rectangles figuring global time approximation
(ε = 0.7), the collected trace σ1(t) = (a, 1)(c, 2)(b, 3)(b, 5)(c, 5.5)(a, 7)(a, 10)
(middle), i.e., observation of M1 completed with some events received from M2

and M3, the projections observed locally by three monitors M1, M2, M3 at t
(bottom). Dashed lines represent information uncertainty, e.g., M1 ignores what
happened after the last event received from each of the other monitors.

Initially, those timestamps are all 0, and any order may be chosen. Then, this
sequence with its ordering can be easily maintained on-the-fly when new events
are observed or received by Mi. Clearly, (jmin1, tmin1) identifies the monitor Mj

for which Mi is aware of the earliest timestamp (in its local time). In the absence
of a skew, Mi would be sure to have complete information from all other monitors
at time tmin1, with jmin1 being the monitor for which the last event known by Mi

(if any) is the oldest. However, as time is approximated, and since verdicts should
be given on global traces, knowing all events at local times up to tmin1 only
certifies that all events have been recorded for global time up to tmin1 − ε, as
seen in Ex. 3. Notice that this also entails that the verdict can be given at t only
if t ≥ ε.

Example 3. In Fig. 1, for monitor M1, jmin1 = 2 at time t. Yet, if the verdict
was given with respect to observations after the last event from M2, the last
event from M3, which happened before it but was marked with a later timestamp,
would be missed. The verdict should thus restrict to the earliest possible global
date for the last event of M2, namely tmin1 − ε.

Conversely, we are sure that for all monitors, we collected some event with
timestamp at least tmin1. As local times are non-decreasing and communications
are FIFO, no monitor can send a new observation with global time below tmin1−ε.
Thus, we know that all events of global time below tmin1 − ε have already been
collected by Mi. The set of possible traces of the system corresponding to that
observation is ν(σi(t))|tmin1−ε. This is the purpose of the first part of the following
proposition. The second part claims that, indeed, the observation at tmin1(t)− ε
is in the set of “tubes” of possible observations of σg restricted to tmin1(t)− ε.
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Fig. 2: Hasse diagram of the verdict preorder

Proposition 3. For any monitor Mi, at any local time t ≥ ε, σg
|tmin1(t)−ε belongs

to Jν(σi(t))|tmin1(t)−εK. Similarly, σi(t)|tmin1(t)−ε belongs to Jν(σg)|tmin1(t)−εK.

3.2 Verdicts at tmin1 − ε

As demonstrated by Prop. 3, at global time tmin1 − ε the global trace σg
|tmin1−ε

necessarily belongs to the language of traces compatible with the collected trace
for Mi at local time t, restricted to tmin1 − ε. Consequently, this is a sufficient
language to ensure safe monitoring, in the sense that a definitive verdict (True,
False or Inconclusive) for this language built from a current observed trace cannot
be changed by future observations.

To go a step further, we add transient verdicts to the definitive verdicts:
Poss.True (resp. Poss.False) means that the property can not be falsified (resp.
verified), although it is still possible to reach an Inconclusive verdict instead of
a True (resp. False) one. The induced pre-order of verdicts ≲ is displayed in
Fig. 2. The verdict function V (t) then links at each date t the compatible traces
Jν(σi(t))|tmin1(t)−εK with the property specified by Ai. Formally V (t) is

– True when Jν(σi(t))|tmin1(t)−εK is a good language prefix;
– False when Jν(σi(t))|tmin1(t)−εK is a bad language prefix;
– Inconclusive when Jν(σi(t))|tmin1(t)−εK intersects both languages JAi, Inev(Fi)K

and JAi,Never(Fi)K;
– Poss.True when Jν(σi(t))|tmin1(t)−εK intersects JAi, Inev(Fi)K but no higher

verdict (True or Inconclusive) applies;
– Poss.False when Jν(σi(t))|tmin1(t)−εK intersects JAi,Never(Fi)K but no higher

verdict (False or Inconclusive) applies;
– ⊥ by default, if none of these conditions holds.

Because properties are specified by complete TAs, all traces and their contin-
uations are traces of the TA, and since good/bad prefixes are closed under
continuation, verdicts can only progress to higher verdicts in the above pre-order:

Lemma 4. For a fixed monitor Mi with a property (Ai,Fi), for any t′ > t, we
have V (t) ≲ V (t′).

In particular, definitive verdicts remain true eternally as soon as they hold.
We say that σ is ε-conclusive when ν(σ) yields a definitive non-Inconclusive verdict
(recall that ν(σ) depends on ε for the size of its intervals). Equivalently:

Definition 5. For a fixed monitor Mi with a property (Ai,Fi) and a skew ε, we
say that a timed word σ is ε-conclusive when Jν(σ)K is either a good or a bad
language prefix.



3.3 Data structure

So far, we have defined verdicts with respect to the language Jν(σi(t))|tmin1(t)−εK.
However, in order to incrementally compute verdicts when new observations
arrive, it will be more adequate to manipulate sets of configurations reached after
this language. The next proposition justifies the adequacy of this approach.

Proposition 6. The verdict V (t) at Mi-local date t can be computed by check-

ing whether the set of configurations (ℓinit,0, 0) after
tmin1(t)−ε
0 Jν(σi(t))|tmin1(t)−εK

intersects or is included in Inev(Fi) or Never(Fi).

In the following, we proceed in steps to define the computation of the above
set of configurations: first, we decompose the computation on unordered lan-
guages into computations on ordered ones, where permutations of events are
fixed (Prop. 8). We encode them in a data structure R(t) that represents both
the set of configurations reached after some trace in Jν(σi(t))|tmin1(t)−εK, and the
remaining events necessary for incremental computation. Then, we intersect the
sets of configurations with the precise time of interest (tmin1 − ε) to obtain the
equality with the above set (Prop. 10). Finally, we show how to incrementally
update the proposed data structure when new observations are collected.

Decomposition of {(ℓinit,0, 0)} after Jν(σi(t))|tmin1(t)−εK. The separation of an
unordered language into a union of ordered ones requires considering permutations
of the restriction ν(σi(t))|tmin1(t)−ε. For this, we define the decomposition of an
ATW ν at some date T , as the set of all possible prefixes of ν|T paired with the
set of events that are yet to be accounted for, as this set will be necessary to
incrementally update the data structure.

Definition 7. The decomposition of ν ∈ ATW(Act) at global time T is

D(ν, T ) = {(f(ν1); ν2) | ν = ν1 ⊗ ν2 ∧ ν1 ⪯[0,T ] ν ∧ f ∈ F(ν1)}.

For a pair (ν1; ν2) in D(ν, T ), ν1 corresponds to a permutation of an element
in ν|T , while ν2 lists the remaining events that are not taken into account in ν1.
We can then use the decomposition to express the unordered language of a
restriction as a union of ordered ones as follows.

Proposition 8. Jν|T K =
⋃

(ν1;ν2)∈D(ν,T )Jν1∩[0,T ]Kord

We are now ready to define our data structure R(t) (we should write Ri(t) but
the monitor is clear from the context), which encodes the configurations reached
through each ν1 in the decomposition, associated with its remainder ν2:

Definition 9. For a monitor Mi and a local time t, we define R(t), as

R(t) =
{
({(ℓinit,0, 0)} after Jν1Kord; ν2)

∣∣ (ν1; ν2) ∈ D(ν(σi(t)), tmin1(t)− ε)
}
.



The set R(t) represents a set of configurations in which the system can
be after some sequence of events in ν(σi(t))|tmin1(t)−ε. A restriction to dates
before tmin1(t)− ε is still necessary (see the intersection with [0, T ] in Prop. 8).
In order to add this constraint, we call state of R(t) the set of configurations
state(R(t)) =

⋃
(S,ν2)∈R(t){(ℓ, v, t) ∈ S | t = tmin1(t) − ε} and get the desired

equality:

Proposition 10. state(R(t)) = {(ℓinit,0, 0)} aftertmin1(t)−ε
0 Jν(σi(t))|tmin1(t)−εK

Example 4. Let us consider the example from Fig. 1 with the collected trace at
time t = 10 being σi(t) = (a, 1)(c, 2)(b, 3)(b, 5)(c, 5.5)(a, 7)(a, 10) and the skew
ε = 0.7. We have tmin1 − ε = 4.8. We first have to consider the set C of all
possible configurations reached by an interleaving of the first three observations
(a, 1)(c, 2)(b, 3). Then, we have to consider every case for the events (b, 5)(c, 5.5)
that can occur before or after tmin1 − ε. R(10) is then composed of the following
elements, for each c ∈ C:

– (c; ν((b, 5)(c, 5.5)(a, 7)(a, 10))), meaning that all events occur after time 4.8;
– (c after J(b, [4.3, 5.7])Kord; ν((c, 5.5)(a, 7)(a, 10))), considering that the event b

happened before time 4.8;
– (c after J(c, [4.8, 6.2])Kord; ν((b, 5)(a, 7)(a, 10))), considering that c occured be-

fore time 4.8.
– the two elements (c after J(b, [4.3, 5.7])(c, [4.8, 6.2])Kord; ν((a, 7)(a, 10))) and
(c after J(c, [4.8, 6.2])(b, [4.3, 5.7])Kord; ν((a, 7)(a, 10))) considering that both b
and c occurred before time 4.8, thus both orderings should be considered.

Note that R(10) contains configurations that can only be reached if the
collected events occur after tmin1 − ε, but they do not appear in state(R(10)),
since we only consider configurations that are reached at time tmin1− ε, meaning
that the events leading to these configurations must have occurred before this time.

Updates of R. When time passes, new events may be collected. If they do not
change tmin1, the only updates to R is their addition to ν2. If tmin1 changes
at t′ > t because of newly collected events ν′, then the combination of R(t)
and ν′ contains all the necessary information to update R, as each element of R(t)
encodes all of ν(σi(t))|tmin1(t)−ε. Thus, updating the structure is only a matter of
selecting, for each (S, ν2) ∈ R(t), the possible sub-words of ν2 · ν′ to apply after S.

Proposition 11. Let t′ ≥ t and ν′ be the sequence of events received in the
interval (t, t′] ( i.e., such that σi(t

′) = σi(t)⊗ ν′), then

R(t′) =
{
(S after Jν′1Kord; ν

′
2)

∣∣ (S; ν2) ∈ R(t), (ν′1, ν
′
2) ∈ D(ν2⊗ν′, tmin1(t

′)−ε)
}
.

Intuitively, for each pair (S, ν2) in R(t), the extension of ν2 with the newly
collected events ν′ is decomposed at tmin1(t

′) − ε. For each possible element
(ν′1, ν

′
2) in this decomposition, R(t′) builds the pair made of the set S after Jν′1Kord

associated with the remainder ν′2. We call next(R(t), t′) the function that com-
putes R(t′) at the time t′ when tmin1(.) changes according to Prop. 11. We now
have a data structure that can be used to compute the set of configurations
needed to infer verdicts (Prop. 10) and can be updated incrementally based on
the new collected observations and tmin1(·)− ε (Prop. 11).



3.4 Monitoring at tmin1(.) − ε

The previous discussions lead to the monitoring algorithm presented in Algo-
rithm 1. It uses a triple of boolean values (I,N,C) encoding the intersection of
state(R) respectively with Inev(Fi), Never(Fi) and the complement of their union.
The algorithm starts with R being the initial state with no remaining events, the
minimal time for monitoring tmin = ε, jtmin initially set to (k, 0)k∈J1;nK. Each new
collected sequence of observations from a monitor Mj (recall that monitors group
all events with same date in a unique message) is added to all continuations ν
in R, and jtmin is updated. If tmin1 has changed, tmin and R are updated (as dis-
cussed above). The update of (I,N,C) determines the verdict which is returned if
definitive (a lazy evaluation of (I,N,C) optimizes the update, I and N being non-
decreasing, while C is non-increasing). We do not detail here the communication
of verdicts between monitors which could help anticipate their termination.

Algorithm 1: The monitor Mi’s algorithm to monitor at tmin1(.)− ε.

Init: R = {((ℓinit,0, 0); [])}; tmin = ε; jtmin = (k, 0)k∈J1;nK; verdict(i) := ⊥;
(I,N,C) := ((ℓinit,0, 0) ∈ Inev(Fi), (ℓinit,0, 0) ∈ Never(Fi),¬(I ∨N));

1 while True do
2 Receive sequence (a1, ta) . . . (an, ta) from monitor Mj , j ∈ J1;nK;
3 R := {(S, ν ⊗ ν((a1, ta) . . . (an, ta))) | (S, ν) ∈ R};
4 update jtmin ;
5 if tmin1 > tmin then
6 tmin := tmin1;
7 R := next(R, tmin1 − ε) ;
8 I := I ∨ (state(R) ∩ Inev(Fi) ̸= ∅);
9 N := N ∨ (state(R) ∩Never(Fi) ̸= ∅);

10 C := C ∧ (state(R) ∩ Inev(Fi) ∪Never(Fi)) ̸= ∅;
11 switch (I,N,C) do
12 case (1, 1, ∗) do return (verdict (i):=Inconclusive);
13 case (1, 0, 0) do return (verdict (i):=True) ;
14 case (0, 1, 0) do return (verdict (i):=False);
15 case (1, 0, 1) do verdict (i):=Poss.True;
16 case (0, 1, 1) do verdict (i):=Poss.False;

Proposition 12. Algorithm 1 sets the verdict to V (t).

We can prove the following soundness and completeness of the monitoring
algorithm. Notice that completeness is limited to 2ε-conclusive executions.

Theorem 13. Monitoring at tmin1(.)− ε is sound and complete where, for any
local monitor Mi and its property (Ai,Fi):

soundness means that for any global trace σg ∈ TT(Act) produced at date
T ∈ R≥0, if verdict(i) = True at time T , then σg is a good prefix of (Ai,Fi)



(respectively, if verdict(i) = False at time T , then σg is a bad prefix of
(Ai,Fi)). Furthermore, if verdict(i) = Inconclusive, then neither σg nor its
possible continuations are 2ε-conclusive on (Ai,Fi).

completeness means that for any global trace σg ∈ TT(Act), if a prefix of σg is
2ε-conclusive and good (respectively, bad) on (Ai,Fi) then there exists some
date T ∈ R≥0 such that verdict(i) = True (respectively, verdict(i) = False).

4 Conclusion

This paper presents a distributed approach to monitor properties specified as
deterministic timed automata when faced with approximation on events dates.
The approach relies on the identification of the point in time at which sufficient
information has been gathered by the local monitor to compute a verdict and
the incremental computation of the set of states of the property compatible with
the collected observation at this point in time This requires the careful account
of potential permutations of events emanating from distant components.

This method allows to apply monitoring on complex systems that are dis-
tributed in space and whose behaviours depend strongly on time, further increasing
the reach of this popular runtime verification method. It is interesting to notice
the timely nature of this contribution, as the interest for distributed systems is
developing not only in verification (see related works) but also in model learning
([24,22] discrete time), which could soon allow to automatically generate mod-
els of systems and specifications, allowing—at longer term—for fully black-box
distributed tools requiring no expert knowledge.

While we ensured the soundness and completeness of our algorithm, its
efficiency still needs to be experimented. Future works should include the imple-
mentation and test of this algorithm against realistic models and properties. This
implementation could be then compared to the one presented in [27] that allows
decentralized monitoring of regular timed expressions (but without clock skew),
which can be generated from a timed automaton. Additionally, our algorithm
could be extended in several ways. First, with additional hypotheses (e.g., maxi-
mal throughput of components), we could issue verdicts earlier by anticipating the
occurrence of events. This would require an extension of the structure R, adding
a level of uncertainty. The balance between the gain of anticipation and the cost
of updating this structure would certainly be an issue and requires experimental
tuning. Using similar techniques, we believe we can handle properties defined by
non-deterministic timed automata, at least for one-clock automata [19]. Finally,
we can also try to reduce the communication overhead. Indeed, we assumed that
all the local observations are forwarded to every other monitor, which can be
improved in several ways, depending on the system topology.
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A Proof of Section 2

Lemma 1. For any approximate timed word ν and any timestamp T , it holds
∪ν′∈ν|T Jν′K = JνK|T .

Proof. We write I = [0, T ] Consider σ2 ∈ JνK|I . By definition σ2 is a sub-word of
a word σ in JνK with all events dated outside of I cut out. Formally, there is a
permutation f ∈ F(ν) and σ = σ2 · σ3 ∈ Jf(ν)Kord. We write ν1 · ν2 · ν3 for the
corresponding decomposition of f(ν).

As all dates in σ2 are in I, Ik ∩ I ̸= ∅ for all (ak, Ik) in ν2. Similarly, as all
dates in σ3 are outside of I, ¬(Ik ⊆ I) for all (ak, Ik) in ν3. Furthermore, if you
consider f−1

|ν2
the restriction of f−1 to the indices of ν2, f

−1
|ν2

∈ F(ν2) (because

the constraints arising from components in ν2 are the same in as a subword of ν
and as a word in itself). Thus f−1(ν2) is a subword of ν such that f−1(ν2) ⪯I ν.
Moreover, clearly σ2 ∈ J(f−1(ν2))∩IK. This proves that JνK|I ⊆ ∪ν′∈ν|I Jν

′K.

Conversely, consider ν′ ∈ ν|I and σ2 ∈ Jν′K. By definition of J.K, there is a
permutation f ′ ∈ F(ν′) s.t. σ2 ∈ Jf ′(ν′)Kord. By definition of ν|I , there is f ∈ F(ν)
such that f(ν) = ν2 ·ν3 with ν′ = ν2∩I . The constraints linked to the components
are the same in ν′ and ν2, as they share the same untimed projection. Thus
f ′ ∈ F(ν2) and we can construct f ′′ ∈ F(ν) such that f ′′(ν) = f(ν2) · ν3.

We then extend σ2 into σ = σ2 · σ3 ∈ Jf ′′(ν)Kord such that σ|I = σ2. This is
possible because all dates in σ2 are by definition in I and for all intervals Ik
in ν3, ¬(Ik ⊆ I). Thanks to this σ we know that σ2 ∈ JνK|I . This proves that
∪ν′∈ν|I Jν

′K ⊆ JνK|I . ⊓⊔

B Proof of Section 3

B.1 Update of jtmin

Algorithm 2: Macro for updating jtmin when receiving a sequence of
events with same date (a1, ta) . . . (an, ta) from Mj

1 Let k be such that jmink = j;
2 foreach (a, ta) in (a1, ta) . . . (an, ta) do
3 while k < n− 1 ∧ tmink+1 < ta do
4 jtmink := jtmink+1;
5 k := k + 1

6 jtmink := (j, ta)



B.2 Proof of Section 3.1

Proposition 3. For any monitor Mi, at any local time t ≥ ε, σg
|tmin1(t)−ε belongs

to Jν(σi(t))|tmin1(t)−εK. Similarly, σi(t)|tmin1(t)−ε belongs to Jν(σg)|tmin1(t)−εK.

Proof. At any Mi-local time t > ε, by definition of tmin1(t) and because all
simultaneous observations from a given monitor are sent simultaneously, Mi

can only collect or observe events with a date t′ > tmin1(t). Because of this,
for any T ≤ tmin1(t), σi(t)|T = σo

|T (recall that σo is the global observation,

i.e., all events equipped with their local times). As the skew is bounded to ε at
any time, we know that any event with a global timing lesser than or equal to
tmin1(t)− ε appears in σo

|tmin1(t)
, together with (potentially) some events with a

larger global timing. Hence, σg
|tmin1(t)−ε ∈ Jν(σo)K|tmin1(t)−ε = Jν(σi(t))K|tmin1(t)−ε.

By Lemma 1, we then have that σg
|tmin1(t)−ε ∈ Jν(σi(t))|tmin1(t)−εK.

Similarly, for any local time T , because the skew is bounded to ε, we know
that σo ∈ Jν(σg)K and, by Lemma 1, σo

|T ∈ Jν(σg)|T K. In particular, at any

local time t > ε, σo
|tmin1(t)−ε ∈ Jν(σg)|tmin1(t)−εK. As we know that σo

|tmin1(t)−ε =

σ(i)|tmin1(t)−ε, we have our result. ⊓⊔

B.3 Proof of Section 3.2

Lemma 4. For a fixed monitor Mi with a property (Ai,Fi), for any t′ > t, we
have V (t) ≲ V (t′).

Proof. This lemma relies on the underlying fact that Ai is complete and Inev(Fi)
and Never(Fi) are attractor sets (as clear per their definition). Hence, all con-
tinuations of traces that exist up to a time t exist up to any greater time t′ > t
(by completeness), and if the trace at time t is in one of these sets, all of its
continuations are too.

Keeping this in mind, we make the proof verdict by verdict. For ⊥, the result
is trivial, as any other verdict is greater.

When V (t) = Poss.True holds, Jν(σi(t))|tmin1(t)−εK ∩ JAi, Inev(Fi)K ̸= ∅.
From the above remark, we know that for any t′ > t, Jν(σi(t

′))|tmin1(t′)−εK ∩
JAi, Inev(Fi)K ̸= ∅. Thus the three only possible verdicts are Poss.True, True and
Inconclusive, which are all greater than Poss.True in ≲.

The result for V (t) = Poss.False follows the same ideas for Never(Fi) instead
of Inev(Fi).

The result for V (t) = Inconclusive follows the same logic by applying the
above idea to both Never(Fi) and Inev(Fi), as there is no other verdict than
Inconclusive that allows both intersections to be non-empty.

For V (t) = True, we know that Jν(σi(t))|tmin1(t)−εK ⊆ JAi, Inev(Fi)K. From the
above remark, we know that for any t′ > t, Jν(σi(t

′))|tmin1(t′)−εK ⊆ JAi, Inev(Fi)K.
It follows that V (t′) = True. Finally, V (t) = False follows the same idea for
Never(Fi) instead of Inev(Fi).



B.4 Proof of Section 3.3

Proposition 6. The verdict V (t) at Mi-local date t can be computed by check-

ing whether the set of configurations (ℓinit,0, 0) after
tmin1(t)−ε
0 Jν(σi(t))|tmin1(t)−εK

intersects or is included in Inev(Fi) or Never(Fi).

Proof. By definition, a language is a good (resp. bad) language prefix if and only
if all of its words are in JAi, Inev(Fi)K (resp. JAi,Never(Fi)K). It is then enough
to notice, for all verdicts, that the language JAi, Inev(Fi)K (resp. JAi,Never(Fi)K)
is the set of words whose runs end in Inev(Fi) (resp. Never(Fi)), which is
exactly what is computed by after. Following the definition of V (t) and letting

Q = (ℓinit,0, 0) after
tmin1(t)−ε
0 Jν(σi(t))|tmin1(t)−εK it is then easy to check the

following. V (t) = True (resp. False) if Q ⊆ Inev(Fi) (resp. Q ⊆ Never(Fi)),
V (t) = Inconclusive when Q intersects both Inev(Fi) and Never(Fi), V (t) =
Poss.True (resp. Poss.False) if Q intersects Inev(Fi) (resp. V (t) ̸= False and Q
intersects Never(Fi)) but not greater verdict applies, and V (t) = ⊥ if no other
verdict applies. ⊓⊔

Proposition 8. Jν|T K =
⋃

(ν1;ν2)∈D(ν,T )Jν1∩[0,T ]Kord

To prove this property, we first state and prove the following technical lemma
rewriting the permutations of a restriction ν|T as functions of the ν1 in D(νT ).

Lemma 14. For an approximate timed word ν and a time T , {f(ν′) | ν′ ∈
ν|T , f ∈ F(ν′)} = {ν1∩[0,T ] | (ν1, ν2) ∈ D(ν, T )}

Proof. This can be shown by expending the definition of ν|T in both sides. On the
left-hand side: {f(ν′) | ν′ ∈ ν|T , f ∈ F(ν′)} = {f(ν′) | ν′ = ν′′∩[0,T ] ∧ ν′′ ⪯[0,T ] ν}.
We can see that this corresponds exactly to the definition of the ν1∩[0,T ] in D(ν, T ).

⊓⊔

Proof (Proposition 8). By definition of ν|T and the unordered language: Jν|T K =⋃
ν′∈ν|T

Jν′K =
⋃

ν′∈ν|T

⋃
f∈F(ν)Jν

′Kord. By Lemma 14 (and the linearity of or-

dered languages),
⋃

ν′∈ν|T

⋃
f∈F(ν)Jν

′Kord =
⋃

(ν1,ν2)∈D(ν,T )Jν1∩[0,T ]Kord. With all

of these equalities together we have our result. ⊓⊔

Proposition 10. state(R(t)) = {(ℓinit,0, 0)} aftertmin1(t)−ε
0 Jν(σi(t))|tmin1(t)−εK

Proof. By Proposition 8 and the linearity of J·Kord we have:

{(ℓinit,0, 0)} after
tmin1(t)−ε
0 Jν(σi(t))|tmin1(t)−εK =

{(ℓinit,0, 0)} after
tmin1(t)−ε
0 (

⋃
(ν1,ν2)∈D(ν(σi(t)),tmin1(t)−ε)

Jν1∩[0,tmin1(t)−ε]Kord)

By definition, writing Stmin1(t)−ε = {(ℓ, v, t) ∈ S | t = tmin1(t)− ε} for any set of
configurations S:



state(R(t)) =
⋃

(S,ν)∈R(t)

Stmin1(t)−ε

=
⋃

(ν1,ν2)∈D(ν(σi(t)),tmin1(t)−ε)

({(ℓinit,0, 0)} afterJν1Kord)tmin1(t)−ε

=
⋃

(ν1,ν2)∈D(ν(σi(t)),tmin1(t)−ε)

{(ℓinit,0, 0)} after
tmin1(t)−ε
0 Jν1Kord .

The last equation being true by definition of the after operator. Hence, to obtain
the desired equality, it suffices to show that

{(ℓinit,0, 0)} after
tmin1(t)−ε
0 (L ∪ L′) =

({(ℓinit,0, 0)} after
tmin1(t)−ε
0 L) ∪ ({(ℓinit,0, 0)} after

tmin1(t)−ε
0 L′)

which is clear by double inclusion. ⊓⊔

Proposition 11. Let t′ ≥ t and ν′ be the sequence of events received in the
interval (t, t′] ( i.e., such that σi(t

′) = σi(t)⊗ ν′), then

R(t′) =
{
(S after Jν′1Kord; ν

′
2)

∣∣ (S; ν2) ∈ R(t), (ν′1, ν
′
2) ∈ D(ν2⊗ν′, tmin1(t

′)−ε)
}
.

We first state a useful lemma that will be re-used in the main proof. It exhibits
the linearity of the after operation.

Lemma 15. Consider an approximate timed word ν · ν′ and the sets of con-
figurations S = {(ℓinit,0, 0)} after JνKord and S′ = S after Jν′Kord. Then S′ =
{(ℓinit,0, 0)} after Jν · ν′Kord

Proof. By definition of S′, a configuration c′ ∈ S′ can be reached from a configu-
ration c ∈ S through a timed word σ′ ∈ Jν′Kord starting at the date t associated
with c. In the same way, by definition of S, c can be reached from the initial
configuration through some timed word σ ∈ JνKord. By combining both, we obtain

that {(ℓinit,0, 0)}⇝
σ

0
c⇝

σ′

t
c′. Thus S′ ⊆ {(ℓinit,0, 0)}afterJν · ν′Kord.

Conversely, c′ ∈ {(ℓinit,0, 0)} after Jν · ν′Kord can be reached from the initial
configuration by a timed word in Jν ·ν′Kord. Because we are considering the ordered
language, we can cut this timed word as σ · σ′ with σ ∈ JνKord and σ′ ∈ Jν′Kord.
The configuration c reached after σ is in c and by decomposing the run we obtain
the other inequality. ⊓⊔

Proof (Proposition 11). We make the proof by double inclusion.

⊇: Consider an element of the right-hand side (S′ = S after Jν′1Kord, ν′2). S is
in state(R(t)), so by definition of R, S = {(ℓinit,0, 0) after Jν1Kord} for (ν1, ν2) ∈
D (ν(σi(t)), tmin1(t)− ε). By Lemma 15 we have that S′ = (ℓinit,0, 0) after Jν1 ·
ν′1Kord. We also have that ν(σi(t

′))|tmin1(t′)−ε = (ν1 · ν′1) ⊗ ν′2. We now show



that ν1 · ν′1 ⪯[0,tmin1(t′)−ε] ν(σi(t
′))|tmin1(t′)−ε. First, notice that any elements of

ν(σi(t
′))|tmin1(t′)−ε not in ν1 · ν′1 is in ν′2. Hence for any such (ak, Ik), ¬(Ik ⊆

[0, tmin1(t
′)− ε]) by definition of ν′2. Second, for any element (ak, Ik) of ν1 · ν′1,

Ik ∩ [0, tmin1(t
′) − ε] ̸= ∅ (we even have a stronger condition for elements

of ν1). Finally, by definition of ν1, there is a permutation f ∈ F(ν(σi(t)))
such that f(ν(σi(t))) = ν1 · ν2. Because no observation can be added before
tmin1(t)− ε, this permutation can be extended to ν(σi(t

′)) so that f(ν(σi(t
′))) =

ν1 · (ν2 ⊗ ν′). By definition of ν′1 there is a permutation f ′ ∈ F(ν2 ⊗ ν′) such that
f ′(ν2 ⊗ ν′) = ν′1 · ν′2. By combining the two permutations we can finish the proof
that ν1 · ν′1 ⪯[0,tmin1(t′)−ε] ν(σi(t

′))|tmin1(t′)−ε. Gathering all evidences together,
we have then proven this inclusion.

⊆ Consider (S′, ν′2) ∈ R(t′). By definition, S′ = {(ℓinit,0, 0)}afterJν′1Kord and
ν(σi(t

′)) = ν′1⊗ν′2. Now consider a separation ν′1 = ν1·ν2 such that ν1 ⪯[0,tmin1(t)−ε]

ν(σi(t)). Such prefix exists since (1) ν(σi(t)) contains all events that can occur
before tmin1(t) − ε so it is enough to construct ν1 ⪯[0,tmin1(t)−ε] ν(σi(t

′)) and
(2) this construction can be made iteratively by adding an increasingly large
prefix of events that must be in ν1: if it was not possible to construct such a
ν1, in particular Jν′1Kord = ∅ and S′ is empty. Now, ν1 ⪯[0,tmin1(t)−ε] ν(σi(t)), so
there is ν2,i such that ν(σi(t)) = ν1 ⊗ ν2,i. Notice that ν2,i ⊗ ν′ = ν2 ⊗ ν′2 is the
set of events in ν(σi(t

′)) but not in ν1. From this and the properties of ν′2 we
can deduce that (ν2, ν

′
2) ∈ D(ν2,i ⊗ ν′, tmin1(t

′)− ε). By Lemma 15 we also get
that S′ = {(ℓinit,0, 0)} after Jν1Kord after Jν2Kord. Thus (S′, ν′2) is an element of the
right-hand side of the equality of Proposition 11 and we get this inclusion. ⊓⊔

B.5 Proof of Section 3.4

Proposition 12. Algorithm 1 sets the verdict to V (t).

Proof. By Proposition 11, the algorithm maintains the data structure R(t) at
each time t since the beginning of each loop in the algorithm adds the new
sequence of observations to all ν2 in R. Then, by the definition of state(R), the
computation of (I,N,C) and Proposition 6, we have our result. ⊓⊔

Theorem 13. Monitoring at tmin1(.)− ε is sound and complete where, for any
local monitor Mi and its property (Ai,Fi):

soundness means that for any global trace σg ∈ TT(Act) produced at date
T ∈ R≥0, if verdict(i) = True at time T , then σg is a good prefix of (Ai,Fi)
(respectively, if verdict(i) = False at time T , then σg is a bad prefix of
(Ai,Fi)). Furthermore, if verdict(i) = Inconclusive, then neither σg nor its
possible continuations are 2ε-conclusive on (Ai,Fi).

completeness means that for any global trace σg ∈ TT(Act), if a prefix of σg is
2ε-conclusive and good (respectively, bad) on (Ai,Fi) then there exists some
date T ∈ R≥0 such that verdict(i) = True (respectively, verdict(i) = False).

Proof. We prove both properties.



Soundness: Suppose that verdict(i) = True (resp. verdict(i) = False) at time T .
Then, by Proposition 12, True(T ) (resp. False(T )) holds and Jν(σi(T ))|tmin1(T )−εK
is a good (resp. bad) language prefix. Then, by Proposition 3 σg

|tmin1(T )−ε is a

good (resp. bad) prefix, and so is σg.
In the case where verdict(i) = Inconclusive, as before, by Proposition 12,

Inconclusive(T ) holds and Jν(σi(T ))|tmin1(T )−εK intersects both good and bad
prefixes. Hence, σi(T ) is not ε-conclusive (because good and bad language prefixes
are suffix closed) and by Proposition 3, Jν(σi(T ))K ⊆ Jν(σg, 2ε)K, meaning that
σg is not 2ε-conclusive.

Completeness: Suppose σg ′ is 2ε-conclusive. Then, any σ ∈ ν(σg ′) is ε-conclusive.
By Proposition 3, as soon as σg ′ is contained in σg

|tmin1(t)−ε, σi|tmin1(t)−ε is ε-

conclusive. Then, by Proposition 12, we have our result. It then suffices to show
that there is a date T such that σg ′ is contained in σg

|tmin1(t)−ε, i.e., tmin1(t)−ε >

lastt(σg ′). This is ensured by our setting hypotheses: by local liveness each
component will always continue to see new events that will be sent to Mi by
messages by the communication topology hypothesis. As we make the hypothesis
that our communication channels do not lose messages (communication channels
hypothesis) we have our result. ⊓⊔
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