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61 av. du Président Wilson, F-94235 Cachan Cedex

firstname.lastname@ens-cachan.fr

Abstract. We present a correct-by-design method of state-dependent
control synthesis for linear discrete-time switching systems. Given an
objective region R of the state space, the method builds a capture set S
and a control which steers any element of S into R. The method works
by iterated backward reachability from R. More precisely, S is given as
a parametric extension of R, and the maximum value of the parameter
is solved by linear programming. The method can also be used to syn-
thesize a stability control which maintains indefinitely within R all the
states starting at R. We explain how the synthesis method can be per-
formed in a distributed manner. The method has been implemented and
successfully applied to the synthesis of a distributed control of a concrete
floor heating system with 11 rooms and 211 = 2048 switching modes.

1 Introduction

The importance of switched systems has grown up considerably these last years
because of their ease of implementation for controlling cyber-physical systems.
A switched system is a family of sub-systems, each with its own dynamics char-
acterized by a parameter mode u whose values are in a finite set U (see [12]).
However, due to the composition of many switched systems together, the global
switched system has a number of modes and dynamics which increases exponen-
tially. Take for example a heating system for a building of 11 rooms (see [9]): each
room i has a heater with two modes values {off, on}. This makes a combination
of 211 = 2048 mode values. If we want to analyze the evolution of a trajectory
on a horizon of K units of discrete time, we have to consider the dynamics cor-
responding to 211K possible sequences of modes, which is intractable even for
small values of K. It is therefore essential to design compositional methods in
order to obtain control methods of switched systems that give formal guarantees
on the correct behavior of the cyber physical systems.

In this paper, we give a symbolic compositional method which allows to syn-
thesize a control of linear discrete-time switched systems that is guaranteed to
satisfy reachability and stability properties. The method starts from an objective

? Partly supported by EU project Cassting (FP7-601148).
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region R of the state space, which is rectangular (i.e., is a product of closed inter-
vals of reals). It then generates in a backward manner, using linear programming
techniques, an increasing sequence of nested rectangles {R(i)}i≥0 such that every
trajectory issued from R(i) is guaranteed to reach R(i−1) in a bounded number
of time units. Once R(0) = R is reached, the trajectory is also guaranteed to stay
in R indefinitely (stability). The method relies on a simple operation of tiling of
the rectangles R(i) in a finite number of sub-rectangles (tiles), using a standard
operation of bisection. Although the method works in a backward fashion, it
does not require to inverse the linear dynamics of the system (via matrix in-
version), and does not compute predecessors of symbolic states (tiles), but only
successors using the forward dynamics. This is useful in order to avoid numerical
imprecisions, especially when the dynamics are contractive, which happens often
in practical systems (see [14]).

Another contribution of this paper is a technique of state over-approximation
which allows a distributed control synthesis: this over-approximation allows sub-
system 1 to infer a correct value for its next local mode u1 without knowing the
exact value of the state of sub-system 2. This distributed synthesis method is
computationally efficient, and works in presence of partial observability. This is
at the cost of the performance of the control which usually makes the trajectories
reach the objective area in more steps than with a centralized approach.

Related Work. In symbolic analysis and control synthesis methods for hybrid sys-
tems, the method of backward reachability and the use of polyhedral symbolic
states, as used here, is classical (see, e.g., [2,5]). The use of tiling or partitioning
the state-space using bisection is also classical (see, e.g., [7,6]). The main original
contribution of this paper is to give a simple technique of over-approximation,
which allows one component to estimate the symbolic state of the other compo-
nent, in presence of partial information. This is similar in spirit to an assume-
guarantee reasoning where the controller synthesis for each sub-systems assumes
that some safety properties are are satisfied by the others [1,13]. In contrast to [3],
we do not need, for the mode selection of a sub-system, to explore blindly all
the possible mode choices made by the other sub-system. This yields a drastic
reduction of the complexity4. This approach allows us to treat a real case study
which is intractable with a centralized approach. This case study comes from [9],
and we use the same decomposition of the system in two parts (rooms 1-5 and
rooms 6-11). In contrast to the work of [9] which uses an on-line and heuristic
approach with no formal guarantees, we use here an off-line formal method which
guarantees reachability and stability properties.

Implementation. The methods of control synthesis both in the centralized con-
text and in the distributed context have been integrated to the tool MINIMA-
TOR [8,4] written in Octave. All the computation times given in the paper have
been performed on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of memory.

4 This separability technique is made possible by the fact that the difference equation
x1(t+1) = f1(x1(t), x2(t), u1) (see Section 2.1) does not involve the control mode u2.
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Plan. The structure of this paper is as follows. The class of systems considered
and some preliminary definitions are given in Section 2. Our symbolic approach,
which is based on the tiling of the state space and backward reachability, is ex-
plained in Section 3. In Section 4, we present a centralized method to synthesize
a controller based on a “generate-and-test” tiling procedure. A distributed ap-
proach is then given in Section 5 where we introduce a state over-approximation
technique in order to avoid the use of non-local information by the subsystem
controllers. For both methods, we provide reachability and stability guarantees
on the controlled trajectories of the system. We present a case study in Sec-
tion 6: the aim of this case is to control the temperature of an eleven rooms
house, heated by geothermal energy. We manage to apply our technique, and to
synthesize a correct-by-construction control for this example.

2 State-dependent Switching Control

2.1 Control modes

Consider the discrete-time system with finite control :

x1(t+ 1) = f1(x1(t), x2(t), u1) x2(t+ 1) = f2(x1(t), x2(t), u2)

where x1 (resp. x2) is the first (resp. second) component of the state vector
variable, which takes its values in Rn1 (resp. Rn2), and u1 (resp. u2) is the first
(resp. second) component of the control mode variable, which takes its values in
the finite set U1 (resp. U2). We will often use x for (x1, x2), u for (u1, u2), and n
for n1 +n2. We will also abbreviate the set U1×U2 as U . Let N be the cardinal
of U , and N1 (resp. N2) the cardinal of U1 (resp. U2). We have N = N1 ·N2.

More generally, we abbreviate the discrete-time system under the form:

x(t+ 1) = f(x(t), u)

where x is a vector state variable which takes its values in Rn = Rn1 ×Rn2 , u is
of the form (u1, u2) where u1 takes its values in U1 and u2 in U2. In this context,
we are interested by the following centralized control synthesis problem: at each
discrete-time t, select the appropriate mode u ∈ U in order to satisfy a given
property. In this paper we focus on state-dependent control, which means that,
at each time t, the selection of the value of u is done by considering only the
values of x(t).

In the distributed context, the control synthesis problem consists in concur-
rently selecting the value of u1 in U1 according to the value of x1(t) only, and
the value of u2 in U2 according to the value of x2(t) only.

The properties that we consider are reachability properties: given a set S and
a set R, we look for a control which will steer any element of S to R in a bounded
number of steps. We will also consider stability properties, which means, that
once the state x of the system is in R at time t, the control will maintain it in R
indefinitely at t + 1, t + 2, . . . Actually, given a state set R, we will present a
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method which does not start from a given set S, but constructs it, together with
a control which steers all the elements of S to R within a bounded number of
steps (S can be seen as a “capture set” of R).

In this paper, we consider that R and S are “rectangles” of the state space.
More precisely, R = R1 × R2 is a rectangle of reals, i.e., R is a product of n
closed intervals of reals, and R1 (resp. R2) is a product of n1 (resp. n2) closed
intervals of reals. Likewise, we assume that S = S1×S2 is a rectangular sub-area
of the state space.

Example 1. The centralized and distributed approaches will be illustrated by the
example of a two rooms apartment, heated by two heaters located in each room
(adapted from [6]). In this example, the objective is to control the temperature
of the two rooms. There is heat exchange between the two rooms and with the
environment. The continuous dynamics of the system is given by the equation:

˙(
T1
T2

)
=

(
−α21 − αe1 − αfu1 α21

α12 −α12 − αe2 − αfu2

)(
T1
T2

)
+

(
αe1Te + αfTfu1
αe2Te + αfTfu2

)
.

Here T1 and T2 are the temperatures of the two rooms, and the state of the sys-
tem corresponds to T = (T1, T2). The control mode variable u1 (respectively u2)
can take the values 0 or 1 depending on whether the heater in room 1 (respec-
tively room 2) is switched off or switched on (hence U1 = U2 = {0, 1}). Hence,
here n1 = n2 = 1, N1 = N2 = 2 and n = 2, N = 4. Te corresponds to the temper-
ature of the environment, and Tf to the temperature of the heaters. The values
of the different parameters are the following: α12 = 5 × 10−2, α21 = 5 × 10−2,
αe1 = 5× 10−3, αe2 = 5× 10−3, αf = 8.3× 10−3, Te = 10 and Tf = 35.

We suppose that the heaters can be switched periodically at sampling instants
τ, 2τ, . . . (here, τ = 5s). By integration of the continuous dynamics between t
and t+ τ , the system can be easily put under the desired discrete-time form:

T1(t+ 1) = f1(T1(t), T2(t), u1) T2(t+ 1) = f2(T1(t), T2(t), u2)

where f1 and f2 are affine functions.
Given an objective rectangle for T = (T1, T2) of the form R = [18.5, 22] ×

[18.5, 22], the control synthesis problem is to find a rectangular capture set S
as large as possible, from which one can steer the state T to R (“reachability”),
then maintain T within R for ever (“stability”).

2.2 Control patterns

It is often easier to design a control of the system using several applications of
f in a row rather than using just a single application of f at each time. We
are thus led to the notion of “macro-step”, and “control pattern”. A (control)
pattern π = (π1, π2) of length k is a sequence of modes defined recursively by:

1. π is of the form (u1, u2) ∈ U1 × U2 if k = 1,
2. π is of the form (u1 · π′1, u2 · π′2), where u1 (resp. u2) is in U1 (resp. U2), and

(π′1, π
′
2) is a (control) pattern of length k − 1 if k ≥ 2.
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The set of patterns of length k is denoted by Πk (for length k = 1, Π1 = U).
Likewise, for k ≥ 1, we denote byΠk

1 (resp.Πk
2 ) the set of sequences of k elements

of U1 (resp. U2). For a system defined by x(t+1) = f(x(t), (u1, u2)) and a pattern
π = (π1, π2) of length k, one can define recursively x(t + k) = f(x(t), (π1, π2))
with (π1, π2) ∈ Πk, by:

1. f(x(t), (π1, π2)) = f(x(t), (u1, u2)), if (π1, π2) is a pattern of length k = 1 of
the form (u1, u2) ∈ U ,

2. f(x(t), (π1, π2)) = f(f(x(t), (π′1, π
′
2)), (u1, u2)), if (π1, π2) is a pattern of

length k ≥ 2 of the form (u1·π′1, u2·π′2) with (u1, u2) ∈ U and (π′1, π
′
2) ∈ Πk−1.

One defines (f(x, π))1 ∈ Rn1 and (f(x, π))2 ∈ Rn2 to be the first and second
components of f(x, π) ∈ Rn1 × Rn2 = Rn, i.e: f(x, π) = ((f(x, π))1, f(x, π)2).

In the following, we suppose that K ∈ N is an upper bound of the length of
patterns. The value of K can be seen as a maximum number of time steps, for
which we compute the future behavior of the system (“horizon”). We denote by

Π≤K1 (resp. Π≤K2 ) the expression
⋃

1≤k≤K Π
k
1 (resp.

⋃
1≤k≤K Π

k
2 ). Likewise, we

denote by Π≤K the expression
⋃

1≤k≤K Π
k.

3 Control Synthesis Using Tiling

3.1 Tiling

Fig. 1. Mapping of tile s2,3 to R via pat-
tern π2,3, and mapping of tile s3,1 via π3,1.

LetR = R1×R2 be a rectangle. We say
that R is a (finite rectangular) tiling of
R if R is of the form {ri1,i2}i1∈I1,i2∈I2 ,
where I1 and I2 are given finite sets of
positive integers, each ri1,i2 is a sub-
rectangle of R of the form ri1×ri2 , and
ri1 , ri2 are closed sub-intervals of R1

and R2 respectively. Besides, we have⋃
i1∈I1 ri1 = R1 and

⋃
i2∈I2 ri2 = R2

(hence R =
⋃
i1∈I1,i2∈I2 ri1,i2). We will

refer to ri1 , ri2 and ri1,i2 as “tiles” of
R1, R2 and R respectively. The same
notions hold for rectangle S.

In the centralized context, given a rectangle R, the macro-step (backward
reachability) control synthesis problem with horizon K consists in finding a rect-
angle S and a tiling S = {si1,i2}i1∈I1,i2∈I2 of S such that, for each (i1, i2) ∈
I1 × I2, there exists π ∈ Π≤K such that: f(si1,i2 , π) ⊆ R (i.e., for all x ∈ si1,i2 ,
it holds f(x, π) ∈ R). This is illustrated in Fig. 1.

3.2 Parametric extension of tiling

In the following, we assume that the set S we are looking for is a parametric
extension of R, denoted by R+ (a, a), which is defined in the following.
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Suppose that R = R1 × R2 is given as well as a tiling R = R1 × R2 =
{ri1×ri2}i1∈I1,i2∈I2 = {ri1,i2}i1∈I1,i2∈I2 . R1 can be seen as a product of n1 closed
intervals of the form [`,m]. Consider a non negative real parameter a. Let (R1+a)
denote the corresponding product of n1 intervals of the form [`− a,m+ a].5 We
define (R2 + a) similarly. Finally, we define R+ (a, a) as (R1 + a)× (R2 + a).

We now consider that S is a (parametric) superset of R of the form R+(a, a).
We define a tiling S = S1 × S2 of S of the form {si1 × si2}i1∈I1,i2∈I2 , which is
obtained from R = R1 × R2 = {ri1 × ri2}i1∈I1,i2∈I2 by a simple extension, as
follows: a tile ri1 (resp. ri2) of R1 (resp. R2) in “contact” with ∂R1 (resp. ∂R2)
is prolonged as a tile si1 (resp. si2) in order to be in contact with ∂(R1 + a)
(resp. ∂(R2 + a)); a tile “interior” to R1 (i.e., with no contact with ∂R1) is kept
unchanged, and coincides with si1 , and similarly for R2.

Fig. 2. Tiling of R + (a, a) induced
by tiling R of R.

We denote the resulting tiling S by R+
(a, a). We also denote si1 (resp. si2) as ri1+a
(resp. ri2 + a) even if ri1 (resp. ri2) is “in-
terior” to R1 (resp. R2). Likewise, we will
denote si,j as ri,j +(a, a). Note that a tiling
of R of index set I1 × I2 induces a tiling of
R + (a, a) with the same index set I1 × I2,
hence the same number of tiles as R, for any
a ≥ 0. This is illustrated in Fig. 2, where
the tiling of R is represented with black
continuous lines, and the extended tiling of
R+ (a, a) with red dashed lines.

3.3 Generate and test tilings

By replacing S with R+ (a, a) in the notions defined in Section 3.1 the problem
of macro-step control synthesis can now be reformulated as finding a tiling R
of R which induces a macro-step control of R+(a, a) towards R, for some a ≥ 0;
besides, if we find such R, we want to compute the maximum value of a for which
the induced control exists. This problem can be solved by a simple “generate
and test” procedure: one generates a candidate tiling, then one tests if it satisfies
the control property (the control test procedure is explained in Section 4.1);
if the test fails, one generate another candidate, and so on iteratively.

In practice, the generation of a candidate R is done, starting from the trivial
tiling (made of one tile equal to R), then using successive bisections of R until,
either the control test succeeds (“success”), or the depth of bisection of the new
candidate is greater than a given upper bound D (“failure”). See details of this
procedure in [10].

Remark 1. Note that, if the generate-and-test process stops with “success” for
a tiling R, then the tiling RD,uniform also solves the problem, where RD,uniform
5 Actually, we will consider in the examples that (R1 + a) is a product of intervals

of the form [` − a,m] where the interval is extended only at its lower end, but the
method is strictly identical.
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is the “finest” tiling obtained by bisecting D times all the n components of R.
Since RD,uniform has exactly 2nD tiles, it is in general impractical to perform
directly the control test on it. From a theoretical point of view however, it is
convenient to suppose that R = RD,uniform for reducing the worst case time
complexity of the control synthesis procedure to the complexity of the control
test part only (see Section 4.1).

4 Centralized control

4.1 Tiling test procedure

As seen in Section 3.2, the (macro-step) control synthesis problem with hori-
zon K consists in finding (the maximum value of) a ≥ 0, and a tiling R =
{ri1,i2}i1∈I1,i2∈I2 of R such that, for each (i1, i2) ∈ I1 × I2 , there exists some
π ∈ Π≤K with f(ri1,i2 + (a, a), π) ⊆ R. In order to test if a tiling candidate
R = {ri1,i2}i1∈I1,i2∈I2 of R satisfies the desired property, we define, for each
(i1, i2) ∈ I1 × I2:

Π≤Ki1,i2 = {π ∈ Π≤K | f(ri1,i2 , π) ⊆ R}.

When Π≤Ki1,i2 6= ∅, we define A = min(i1,i2)∈I1×I2{ai1,i2}, where

ai1,i2 = max
π∈Π≤K

i1,i2

max{a ≥ 0 | f(ri1,i2 + (a, a), π) ⊆ R}

πi1,i2 = argmax
π∈Π≤K

i1,i2

max{a ≥ 0 | f(ri1,i2 + (a, a), π) ⊆ R}

For each tile ri1,i2 of R and each π ∈ Π≤K , the inclusion test f(ri1,i2 , π) ⊆ R
can be done in time polynomial in n when f is affine. Hence the test Π≤Ki1,i2 6= ∅
can be done in O(NK ·nα) since Π≤K contains O(NK) elements. The computa-
tion of max{a ≥ 0 |f(ri1,i2 + (a, a), π) ⊆ R} can be done by linear programming
in time polynomial in n, the dimension of the state space. The computation time
of {ai1,i2}i1∈I,i2∈I2 , πi1,i2 , and A is thus in O(NK ·2nD), where D is the maximal
depth of bisection. Hence the complexity of testing a candidate tiling R is in
O(NK · 2nD). By Remark 1 above, the complexity of the control synthesis by
generate-and-test is also in O(NK · 2nD). We have:

Proposition 1. Assume that there exists a tiling R = {ri1,i2}i1∈I1,i2∈I2 of R

such that Π≤Ki1,i2 6= ∅ for any (i1, i2) ∈ I1 × I2. Then R induces a macro-step
control of horizon K of R+ (A,A) towards R with:

∀(i1, i2) ∈ I1 × I2. f(ri1,i2 + (A,A), πi1,i2) ⊆ R.

Once a candidate tiling R satisfying the control test property is found,
the generate-and-test procedure ends with success (see Section 3.3), and a set
S = R + (a(1), a(1)) with a(1) = A has been found. One can then iterate the
“generate and test” procedure in order to construct an increasing sequence of
nested rectangles of the form R + (a(1), a(1)), R + (a(1) + a(2), a(1) + a(2)), . . . ,
which can all be driven to R, as explained in [10].
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Fig. 3. Simulations of the centralized reachability controller for three different initial
conditions plotted in the state space plane (left); simulation of the centralized reacha-
bility controller for the initial condition (12, 12) plotted within time (right).

Example 2. Consider the specification of a two-rooms apartment given in Exam-
ple 1. Set R = [18.5, 22]× [18.5, 22]. Let D = 1 (the depth of bisection is at most
1), and K = 4 (the maximum length of patterns is 4). We look for a centralized
controller which will steer the rectangle S = [18.5 − a, 22] × [18.5 − a, 22] to R
with a as large as possible, and stay in R indefinitely. Using our implementation,
the computation of the control synthesis takes 4.14s of CPU time.

The method iterates successfully 15 times the macro-step control synthesis
procedure. We find S = R + (a, a) with a = 53.5, i.e. S = [−35, 22]× [−35, 22].
This means that any element of S can be driven to R within 15 macro-steps
of length (at most) 4, i.e., within 15 × 4 = 60 units of time. Since each unit
of time is of duration τ = 5s, any trajectory starting from S reaches R within
60× 5 = 300s. Once the trajectory x(t) is in R, it returns in R every macro-step
of length (at most) 4, i.e., every 4× 5 = 20s.

These results are consistent with the simulation given in Fig. 3 for the time
evolution of (T1, T2) starting from (12, 12). Simulations of the control, starting
from (T1, T2) = (12, 12), (T1, T2) = (12, 19) and (T1, T2) = (22, 12) are also given
in the state space plane in Fig. 3.

4.2 Stability as a special case of reachability

Instead of looking for a set of the form S = R+ (a, a) from which R is reachable
via a macro-step, let us consider the particular case where S = R (i.e., a = 0).

The problem is now to construct a tiling R = {ri1,i2}i1∈I1,i2∈I2 of R such
that, for all (i1, i2) ∈ I1 × I2, there exists a pattern πi1,i2 ∈ Π≤K verifying
f(ri1,i2 , πi1,i2) ⊆ R. If such a tiling R exists, then x(t) ∈ R implies x(t+ k) ∈ R
for some k ≤ K.6 Actually, we can slightly modify the procedure in order to
impose, additionally, that ∀k ≤ K x(t+ k) ∈ R + ε for some ε > 0 (see Section
5.2). It follows that R+ (ε, ε) is stable under the control induced by R. We can
thus treat the stability control of R as a special case of reachability control.

6 If x(t) ∈ R, then x(t) ∈ ri,j for some (i, j) ∈ I1 × I2, hence x(t+ k) = f(x, πi,j) ∈ R
for some k ≤ K.
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5 Distributed control

5.1 Background

In the distributed context, given a set R = R1×R2, the (macro-step) distributed
control synthesis problem with horizon K consists in finding (the maximum value
of) a ≥ 0, and a tilingR1 = {ri1}i1∈I1 of R1 which induces a (macro-step) control
on R1+a, a tilingR2 = {ri2}i2∈I2 which induces a (macro-step) control on R2+a.

More precisely, we seek tilings R1 and R2 such that: there exists ` ∈ N such
that, for each i1 ∈ I1 there exists a sequence π1 of ` modes in U1, and for each
i2 ∈ I2, a sequence π2 of ` modes in U2 such that:

f((ri1 +a)× (R2 +a), (π1, π2))|1 ⊆ R1 ∧ f((R1 +a)× (ri2 +a), (π1, π2))|2 ⊆ R2.

In order to synthesize a distributed strategy where the control pattern π1 is
determined only by i1 (regardless of the value of i2), and the control pattern π2
only by i2 (regardless of the value of i1), we now define an over-approximation
Xi1(a, π1) for f((ri1 + a) × (R2 + a), (π1, π2))|1, and an over-approximation
Xi2(a, π2) for f((R1 + a) × (ri2 + a), (π1, π2))|2. The correctness of these over-
approximations relies on the existence of a fixed positive value for parameter ε.
Intuitively, ε represents the width of the additional margin (around R + (a, a))
within which all the intermediate states lie when a macro-step is applied to a
point of R+ (a, a).

5.2 Tiling test procedure

Let πk1 (resp. πk2 ) denote the prefix of length k of π1 (resp. π2), and π1(k)
(resp. π2(k)) the k-th element of sequence π1 (resp. π2).

Definition 1. Consider an element ri1 (resp. ri2) of a tiling R1 (resp. R2) of R1

(resp. R2), and a sequence π1 ∈ Π≤K1 (resp. π2 ∈ Π≤K2 ) of length `1 (resp. `2).
The approximate first (resp. second) component sequence {Xk

i1
(a, π1)}0≤k≤`1

(resp. {Xk
i2

(a, π2)}0≤k≤`2) is defined as follows:

– X0
i1

(a, π1) = ri1 + a (resp. X0
i2

(a, π2) = ri2 + a);

– Xk
i1

(a, π1) = f1(Xk−1
i1

(a, π1), R2 + a + ε, π1(k)) for 1 ≤ k ≤ `1 (resp.

Xk
i2

(a, π2) = f2(R1 + a+ ε,Xk−1
i2

(a, π2), π2(k)) for 1 ≤ k ≤ `2).

We define the property Prop(a, i1, π1) of {Xk
i1

(a, π1)}0≤k≤`1 as:

Xk
i1(a, π1) ⊆ R1 + a+ ε for 1 ≤ k ≤ `1 − 1, and X`1

i1
(a, π1) ⊆ R1.

Likewise, we define the property Prop(a, i2, π2) of {Xk
i2

(a, π2)}0≤k≤`2 as:

Xk
i2(a, π2) ⊆ R2 + a+ ε for 1 ≤ k ≤ `2 − 1, and X`2

i2
(a, π2) ⊆ R2.

Given a tiling R1 = {ri1}i1∈I1 of R1, for each i1 ∈ I1, and each k ∈
{1, . . . ,K}: we let Πk

i1
= {π1 ∈ Πk

1 | Prop(0, i1, π1)}.
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When Πk
i1
6= ∅, we define:

aki1 = max
π1∈Πk

i1

max{a ≥ 0 | Prop(a, i1, π1)}

πki1 = argmaxπ1∈Πk
i1

max{a ≥ 0 | Prop(a, i1, π1)}

Given R2, we define similarly: Πk
i2

, aki2 and πki2 . Suppose now, that:

(H1) there exists k1 ∈ {1, . . . ,K} such that ∀i1 ∈ I1 : Πk1
i1
6= ∅.

(H2) there exists k2 ∈ {1, . . . ,K} such that ∀i2 ∈ I2 : Πk2
i2
6= ∅.

Then we define: ak11 = mini1∈I1{a
k1
i1
}, ak22 = mini2∈I2{a

k2
i2
}, A = min{ak11 , a

k2
2 }.

Remark 2. Given a tiling R = R1 ×R2, (H1) means that the points of R1 + A
can be (macro-step) controlled to R1 using patterns which all have the same
length k1; in other terms, all the macro-steps controlling R1 + A contain the
same number k1 of elementary steps. Symmetrically for (H2).

Remark 3. The determination of an appropriate value for ε is for the moment
done by hand, and is the result of a compromise: if ε is too small, then f1(ri1 +
a,R2 +a, u1) 6⊆ R1 +a+ε; if ε is too large, f1(Xk−1

i1
, R2 +a+ε, π1(k)) 6⊆ R1 +a.

Given a tiling R = R1 ×R2 of R and a real ε > 0, the problem of existence
and computation of k1, k2, {πk1i1 }i1∈I1 , {πk2i2 }i2∈I2 , and A can be solved by linear
programming since f1 and f2 are affine. Using the same kinds of calculation
as in the centralized case (see Section 4.1), one can see that the complexity of
testing Πk

i1
6= ∅ and Πk

i2
6= ∅ for 1 ≤ k ≤ K, checking (H1)-(H2), generating

k1, k2, A and {πi1}i1∈I1 , and {πi2}i2∈I2 is in O((max(N1, N2))K · 2max(n1,n2)D).
Hence the complexity of the control test procedure is also in O((max(N1, N2))K ·
2max(n1,n2)D).

Lemma 1. Consider a tiling R = R1 ×R2 of the form {ri1 × ri2}(i1,i2)∈I1×I2 .
Let a ≥ 0. We suppose that (H1) and (H2) hold, and that, for all i1 ∈ I1,
Prop(a, i1, π1) holds for some π1 ∈ Πk1

1 , and for all i2 ∈ I2, Prop(a, i2, π2)
holds for some π2 ∈ Πk2

2 , then we have:

– in case k1 ≤ k2:

f((ri1 + a)× (R2 + a), (πk1 , π
k
2 ))|1 ⊆ Xk

i1
(a, π1) ⊆ R1 + a+ ε and

f((R1 + a)× (ri2 + a), (πk1 , π
k
2 ))|2 ⊆ Xk

i2
(a, π2) ⊆ R2 + a+ ε,

for all 1 ≤ k ≤ k1, and

f((ri1 + a)× (R2 + a), (πk11 , π
k1
2 ))|1 ⊆ Xk1

i1
(a, π1) ⊆ R1,

– in case k2 ≤ k1:

f((ri1 + a)× (R2 + a), (πk1 , π
k
2 ))|1 ⊆ Xk

i1
(a, π1) ⊆ R1 + a+ ε and

f((R1 + a)× (ri2 + a), (πk1 , π
k
2 ))|2 ⊆ Xk

i2
(a, π2) ⊆ R2 + a+ ε,

for all 1 ≤ k ≤ k2, and

f((R1 + a)× (ri2 + a), (πk21 , π
k2
2 ))|2 ⊆ Xk2

i2
(a, π2) ⊆ R2.
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At t = 0, consider a point x(0) = (x1(0), x2(0)) of R+(A,A), and let us apply
concurrently the strategy induced by R1 on x1, and R2 on x2. After k1 steps,
by Lemma 1, we obtain a point x(k1) = (x1(k1), x2(k1)) ∈ R1 × (R2 + A + ε).
Then, after k1 steps, we obtain again a point x(2k1) ∈ R1 × (R2 + A + ε), and
so on iteratively. Likewise, we obtain points x(k2), x(2k2), . . . which all belong
to (R1 + A + ε) × R2. It follows that, after ` = lcm(k1, k2) steps, we obtain a
point x(`) which belongs to R1 ×R2 = R.

Theorem 1. Assume there are tilings R1 = {ri1}i1∈I1 of R1 and R2 = {ri2}i2∈I2
of R2, and a positive real ε such that (H1) and (H2) hold, and let k1, k2, A be
defined as above. Let ` = lcm(k1, k2) with ` = α1k1 = α2k2 for some α1, α2 ∈ N.

Then R1 induces a sequence of α1 macro-steps on R1+A, and R2 a sequence
of α2 macro-steps on R2 + A, such that, applied concurrently, we have, for all
i1 ∈ I1 and i2 ∈ I2:

f((ri1 +A)× (R2 +A), π)|1 ⊆ R1 ∧ f((R1 +A)× (ri2 +A), π)|2 ⊆ R2,

for some π = (π1, π2) ∈ Π` where π1 (resp. π2) is of the form π1
1 · · ·π

α1
1 (resp.

π1
2 · · ·π

α2
2 ) with πi1 ∈ Π

k1
1 for all 1 ≤ i ≤ α1 (resp. πi2 ∈ Π

k2
2 for all 1 ≤ i ≤ α2).

Besides, for all prefix π′ of π, we have

f((ri1+A)×(R2+A), π′)|1 ⊆ R1+A+ε ∧ f((R1+A)×(ri2+A), π′)|2 ⊆ R2+A+ε.

If (H1)-(H2) hold, there exists a control that steers R+(A,A) to R in ` steps.
Letting R′ = R+ (A,A), it is then possible to iterate the process on R′ and, in
case of success, generate a rectangle R′′ = R′ + (A′, A′) from which R′ would
be reachable in `′ steps, for some A′ ≥ 0 and `′ ∈ N. And so on, iteratively, one
generates an increasing sequence of nested control rectangles, as in Section 4.1.

Example 3. Consider again the specification of a two-rooms appartment given in
Example 1. We consider the distributed control synthesis problem where the first
(resp. second) state component corresponds to the temperature of the first (resp.
second) room T1 (resp. T2), and the first (resp. second) control mode component
corresponds to the heater u1 (resp. u2) of the the first (resp. second) room.

Set R = R1×R2 = [18.5, 22]× [18.5, 22]. Let D = 3 (the depth of bisection is
at most 3), and K = 10 (the maximum length of patterns is 10). The parameter ε
is set to value 1.5◦C. We look for a distributed controller which steers any
temperature state in S = S1 × S2 = [18.5− a, 22]× [18.5− a, 22] to R with a as
large as possible, then maintain it in R indefinitely.

Using our implementation, the computation of the control synthesis takes
220s of CPU time. The method iterates 8 times the macro-step control synthesis
procedure. We find S = [18.5 − a, 22] × [18.5 − a, 22] with a = 6.5, i.e. S =
[12, 22]× [12, 22]. This means that any element of S can be driven to R within 8
macro-steps of length (at most) 10, i.e., within 8× 10 = 80 units of time. Since
each unit of time is of duration τ = 5s, any trajectory starting from S reaches R
within 80× 5 = 400s. The trajectory is then guaranteed to always stay (at each
discrete time t) in R+ (ε, ε) = [17, 23.5]× [17, 23.5].
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Fig. 4. Simulations of the distributed reachability controller for three different initial
conditions plotted in the state space plane (left); simulation of the distributed reacha-
bility controller for the initial condition (12, 12) plotted within time (right).

These results are consistent with the simulation given in Fig. 4 showing the
time evolution of (T1, T2) starting from (12, 12). Simulations of the control are
also given in the state space plane, in Fig. 4, for initial states (T1, T2) = (12, 12),
(T1, T2) = (12, 19) and (T1, T2) = (22, 12). Not surprisingly, the performance
guaranteed by the distributed approach (a = 6.5, reachability of R in 400s) are
worse than those guaranteed by the centralized approach of Example 2 (a = 53.5,
reachability of R in 300s). However, unexpectedly, the CPU computation time
in the distributed approach (220s) is here worse than the CPU time of the cen-
tralized approach (4.14s). This relative inefficiency is due to the small size of the
example.

6 Case Study

This case study, proposed by the Danish company Seluxit, aims at controlling
the temperature of an eleven rooms house, heated by geothermal energy.

The continuous dynamics of the system is the following:

d

dt
Ti(t) =

n∑
j=1

Adi,j(Tj(t)− Ti(t)) +Bi(Tenv(t)− Ti(t)) +Hv
i,j .vj (1)

The temperatures of the rooms are the Ti. The matrix Ad contains the heat
transfer coefficients between the rooms, matrix B contains the heat transfer
coefficients betweens the rooms and the external temperature, set to Tenv =
10◦C for the computations. The control matrix Hv contains the effects of the
control on the room temperatures, and the control variable is here denoted by
vj . We have vj = 1 (resp. vj = 0) if the heater in room j is turned on (resp.
turned off). We thus have n = 11 and N = 211 = 2048 switching modes.

Note that the matrix Ad is parametrized by the open of closed state of the
doors in the house. In our case, the average between closed and open matrices
was taken for the computations. The exact values of the coefficients are given
in [9]. The controller has to select which heater to turn on in the eleven rooms.
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Due to a limitation of the capacity supplied by the geothermal device, the 11
heaters cannot be turned on at the same time. In our case, we set to 4 the
maximum number of heaters turned on at the same time.

We consider the distributed control synthesis problem where the first (resp.
second) state component corresponds to the temperatures of rooms 1 to 5 (resp.
6 to 11), and the first (resp. second) control mode component corresponds to the
heaters of rooms 1 to 5 (resp. 6 to 11). Hence n1 = 5, n2 = 6, N1 = 25, N2 = 26.
We impose that at most 2 heaters are switched on at the same time in the first
sub-system, and at most 2 in the second sub-system.

Let D = 1 (the depth of bisection is at most 1), and K = 4 (the maximum
length of patterns is 4). The parameter ε is set to value 0.5◦C. The sampling time
is τ = 15 min. We look for a distributed controller which steers any temperature
state in the rectangle S = [18 − a, 22]11 to R = [18, 22]11 with a as large as
possible, then maintain the temperatures in R indefinitely.

Using our implementation, the computation of the control synthesis takes
around 20 hours of CPU time. The method successfully iterates the macro-step
control synthesis procedure 15 times. We find S = [18−a, 22]11 with a = 4.2, i.e.
S = [13.8, 22]11. This means that any element of S can be driven into R within
15 macro-steps of length (at most) 4, i.e., within 15×4 = 60 units of time. Since
each timeunit has duration τ = 15 min, any trajectory starting from S reaches R
within 60×15 = 900 min. The trajectory is then guaranteed to stay in R+(ε, ε) =
[17.5, 22.5]11. These results are consistent with the simulation of Fig. 5, showing
the time evolution of the temperature of the rooms, starting from 1411.

Fig. 5. Simulation of the Seluxit case
study plotted with time (in min) for
Tenv = 10◦C.

We also performed the same simula-
tions as in Fig. 5, except that the en-
vironment temperature is not fixed at
10◦C but follows scenarios of soft win-
ter and spring (Fig. 6). The environ-
ment temperature is plotted in green
in the figures. The spring scenario is
taken from [9], and the soft winter sce-
nario is the winter scenario of [9] with
5 additional degrees. We see that our
controller, which has been designed for
Tenv = 10◦C, still satisfies the proper-
ties of reachability and stability. These
simulations are very close those ob-
tained in [9].

7 Final Remarks

In this paper, we have proposed a distributed approach for control synthesis
and applied it to a real floor heating system. To our knowledge, this is the first
time that reachability and stability properties are guaranteed for a case study
of this size. The method can be extended to take into account obstacles and
safety constraints. We are currently investigating an extension of the method to
systems with non linear dynamics and varying parameters, see [11].
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Fig. 6. Simulation of the Seluxit case study in the soft winter scenario (left), and in
the spring scenario (right).
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