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Abstract
We study mixed-strategy Nash equilibria in multiplayer deterministic concurrent games played
on graphs, with terminal-reward payoffs (that is, absorbing states with a value for each player).
We show undecidability of the existence of a constrained Nash equilibrium (the constraint requir-
ing that one player should have maximal payoff), with only three players and 0/1-rewards (i.e.,
reachability objectives). This has to be compared with the undecidability result by Ummels and
Wojtczak for turn-based games which requires 14 players and general rewards. Our proof has var-
ious interesting consequences: (i) the undecidability of the existence of a Nash equilibrium with
a constraint on the social welfare; (ii) the undecidability of the existence of an (unconstrained)
Nash equilibrium in concurrent games with terminal-reward payoffs.

1998 ACM Subject Classification F.3.1 (Specifying and Verifying and Reasoning about Pro-
grams); D.2.4 (Software/Program Verification); G.3 (Probability and statistics)

Keywords and phrases concurrent games, randomized strategy, Nash equilibria, undecidability

1 Introduction

Games (especially games played on graphs) have been intensively used in computer science as
a powerful way of modelling interactions between several computerised systems [10, 7]. Until
recently, more focus had been put on the study of purely antagonistic games (a.k.a. zero-
sum games, where the aim of one player is to prevent the other player from achieving her
objective), which conveniently model systems evolving in a (hostile) environment.

Over the last ten years, games with non-zero-sum objectives have come into the picture:
they allow for conveniently modelling complex infrastructures where each individual system
tries to fulfill its own objectives, while still being subject to actions of the surrounding
systems. As an example, consider (a simplified version of) the team formation problem [3],
an example of which is presented in Figure 1: several agents are trying to achieve tasks; each
task requires some resources, which are shared by the players. Achieving a task thus requires
the formation of a team that have all required resources for that task: each player selects the
task she wants to achieve (and so proposes her resources for achieving that task), and if a
task receives enough resources, the associated team receives the corresponding payoff (to be
divided among the players in the team). In such a game, there is a need of cooperation
(to gather enough resources), and an incentive to selfishness (to maximise the payoff).

1
2 ,

1
2 1, 0

A1 → T1, A2 → T1
A1 → T2, A2 → T2

A1 → T1, A2 → T2
A1 → T2, A2 → T1

player A1 has resources {r1, r2, r3}
player A2 has resources {r2, r3}

task T1 requires resources {r1, r2}
task T2 requires resources {r1, r3}

Figure 1 An instance of the team-formation problem. For any deterministic choice of actions,
one of the players has an incentive to change her choice: there is no pure Nash equilibrium. However
there is one mixed Nash equilibrium, where each player plays T1 and T2 uniformly at random.
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2 Mixed Nash Equilibria in Concurrent Games

In that setting, focusing only on optimal strategies for one single agent is not relevant.
In game theory, several solution concepts have been defined, which more accurately repre-
sents rational behaviours of these multi-player systems; Nash equilibrium [8] is the most
prominent such concept: a Nash equilibrium is a strategy profile (that is, one strategy to
each player) where no player can improve her own payoff by unilaterally changing her strat-
egy. In other terms, in a Nash equilibrium, each individual player has a satisfactory strategy
with regards to the other players’ strategies. Notice that Nash equilibria need not exist or be
unique, and are not necessarily optimal: Nash equilibria where all players lose may coexist
with more interesting Nash equilibria. Therefore, looking for constrained Nash equilibria
(e.g. equilibria in which some players are required to win, or equilibria with maximal social
welfare) is an interesting and important problem to study, which has been suggested both
in the game-theory community [4] and in the computer-science community [11].

In this paper, we study (deterministic) concurrent games played on graphs. Such games
are indeed a general and relevant model for interactive systems, where the agents take their
decision simultaneously (which is the case for instance in distributed systems). Concurrent
games subsume turn-based games, where in each state, only one player has the decision for
the next move, and which have attracted more focus until now in the computer science com-
munity. Notice also that in game theory, models are almost exclusively based on concurrent
actions (e.g. games in normal form given as matrices indicating the payoff of each player
for each concurrent choice of actions, and extensions thereof, such as repeated games).

In this paper we are interested in randomized (a.k.a. mixed) strategies for the players.
A mixed strategy consists in choosing, at each step of the game, a probability distribution
over the set of available actions; the game then proceeds following the product distribution
of the strategies of all players. Strategies may depend on the history of the game, i.e.,
the sequence of visited states, but do not require to see the actions played by the other
agents. In previous works, the first two authors have focused on pure strategies, where at
each step, each player proposes exactly one action, and developed algorithms for deciding the
existence of constrained Nash equilibria in various settings [1]. In the present paper, we focus
on terminal-reward payoffs (where some designated states are absorbing, and each player
has a value—or reward—attached to each of these states): the payoff of a player is then
her expected reward. We will also consider the subclass of games with terminal-reachability
objectives, where the reward in each absorbing state is either 0 or 1 (hence the expected
reward for a player is the probability to reach her winning states). The game in Figure 1
has terminal-reward payoffs: they are given by the values labelling the two absorbing states
(1 for player A1 and 0 for player A2 in the right-most state). This game can be shown to
have no pure-strategy Nash equilibria, but it has a mixed-strategy one.

Our results. Our main result is the undecidability of the existence of a 0-optimal Nash
equilibrium in concurrent games with terminal-reachability payoff functions, with only three
players and strategies insensitive to actions. A 0-optimal Nash equilibrium is a Nash equi-
librium in which one designated player is required to have maximal payoff (that is, 1 in
the case of terminal-reachability payoffs). A corollary of our result is the undecidability of
the existence of unconstrained Nash equilibria in concurrent games with terminal payoffs.
We believe that these results are important, as they solve natural questions for basic ob-
jectives. Moreover, our constructions give new insight in the understanding of concurrent
games and their algorithmics, and contain several intermediary tools that can be interesting
on their own in different contexts.

Several results already exist in related settings:
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our result should first be compared with the undecidability of the existence of a 0-optimal
Nash equilibrium in turn-based games with terminal-reward payoffs[12], which requires
14 players and general rewards. It should be noticed that this result requires more than
0/1 rewards (contrary to our result), since the existence of a 0-optimal equilibrium can
be decided in polynomial time in turn-based games with terminal-reachability payoffs
(by combining the reduction to pure 0-optimal Nash equilibria of [11] and the algorithm
in [12] for computing such equilibria);
our result should also be compared with polynomial-time algorithm for deciding the
existence of a 0-optimal pure Nash equilibrium in concurrent games with terminal-reward
payoffs [14];
our result has several corollaries, that we develop at the end of the paper:

the existence of a (unconstrained) Nash equilibrium in terminal-reward games with
three players; on the opposite, stationary ε-Nash equilibria do always exist in concur-
rent games for terminal-reachability (and terminal-reward) games [2];
the existence of a Nash equilibrium that maximizes the social welfare in games with
terminal-reachability payoffs is undecidable with three players. This should be com-
pared with the NP-completeness of the existence of such equilibria for two-player
normal-form games [5];
the existence of a constrained finite-memory Nash equilibrium in terminal-reachability
games is undecidable with three players;
the existence of a constrained Nash equilibrium in safety games is undecidable with
three players. This can be compared to the result of [9], which states that there always
exists a Nash equilibrium (with little memory) in a safety game.

For the sake of readability, all proofs have been put in a separate appendix at the end
of the paper.

2 Definitions

I Definition 1. A concurrent arena A is a tuple A = 〈States,Agt,Act,Tab, (Allowi)i∈Agt〉
where States is a finite set of states; Agt is a finite set of players; Act is a finite set of actions;
For all i ∈ Agt, Allowi : States −→ 2Act\{∅} is a function describing authorized actions in a
given state for Player i; Tab : States× ActAgt → States is the transition function.

A state s ∈ States is said terminal (or final) if Tab(s, ·) ≡ s. We write FA (or simply F
when the underlying arena is clear from the context) for the set of terminal states of A.

A history of such an arena A is a finite, non-empty word h ∈ States+. We denote
by first(h) and last(h) respectively the first and last states of the word h. During a play,
players in Agt choose their next moves concurrently and independently from each others,
according to the current history h and what they are allowed to do in the current state last(h).

I Definition 2. A strategy for Player i is a function σi : States+ → Dist(Act) with the
requirement that σi(h)−1(R>0) ⊆ Allowi(last(h)) for all history h.

Let α ∈ Act. We write σi(α | h) for the probability mass σi(h)(α) of action α in the
distribution σi(h). In the sequel, we sometimes write σi(h) = α when σi(α | h) = 1. When
σi(h) ∈ Act for all h, the strategy σi for player i is said to be pure. Otherwise it is said to
be mixed. We denote by Si (resp. Si) the set of pure (resp. mixed) strategies of Player i.
A strategy profile σ is a mapping assigning one strategy to each player. We write S for the
set of all strategy profiles, and for σ ∈ S, we will write σi in place of σ(i) for the strategy of
Player i.
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I Remark. While strategies are aware of the sequence of actions played in a turn-based game,
we can notice this is generally not the case in the concurrent setting depicted here, since
strategies only depend on the sequence of visited states. This is realistic when considering
multi-agent systems, where only the global effect of the actions of the players is assumed to
be observable. However this partial-information hypothesis makes the detection of strategy
deviations (and therefore the computation of Nash equilibria) harder.

Consider a strategy profile σ ∈ S and an initial state s0. For any history h ∈ States+ and
any player i ∈ Agt, we construct the random variable αi(h) ∈ Act with distribution σi(h)
such that (αi(h))i∈Agt,h∈States+ is a family of independent random variables.

We define the stochastic process (Xn)n∈N inductively by X0 = s0 and for every n,
Xn+1 = Xn · Tab (last(Xn), (αi(Xn))i). For each n, the random variable Xn takes value in
Statesn+1: (Xn)n is an increasing sequence of prefixes whose limit is an infinite random run
X∞ ∈ Statesω.

We now consider the standard Borel σ-algebra over Statesω from s0, and define the
probability measure Pσ as the probability distribution induced byX∞, that is, if B is a Borel
subset of Statesω, Pσ(B) = P(X∞ ∈ B). It coincides with the standard construction based
on cylinders. In the following, to make explicit the initial state, we may write Pσ(B | s0)
instead of simply Pσ(B). In the sequel, we sometimes also abusively write h for the cylinder
h · Statesω: then, when we write Pσ(h | s0), we mean Pσ(X|h| = h). If Pσ(h | s0) > 0,
we say that σ enables h from s0: in that case we can define the conditional probability
Pσ(B | h) = Pσ(B | X|h| = h).

Finally we say that a node n is activated by a strategy profile whenever it is visited with
positive probability under that profile.

I Definition 3. A terminal-reward game G = 〈A, s, (φi)i∈Agt〉 is given by an arena A,
an initial state s, and for every player i ∈ Agt, a real-valued function φi ranging over
terminal states of A. In the following, we extend φi to every r ∈ Statesω, by φi(r) = φi(s)
if r is an infinite path ending in a state s ∈ F, and φi(r) = 0 otherwise.

The game G will be said a terminal-reachability game whenever each function φi only
takes values 0 or 1.

I Remark. In the sequel, we represent terminal-reward games as graphs with circle states
representing non-terminal states, and rectangle states representing terminal states, decorated
with the associated rewards for all players. The self-loop on terminal states will be omitted.
The transition table of the underlying arena is encoded by decorating the transitions with
the move vectors that trigger it. Move vectors are written as words over Act, by identifying
Agt with the subset J0, |Agt| − 1K. We will use · as a special symbol representing any action.
Also, for a set S of words in (Act ∪ {·})k, with k < |Agt|, and for a letter a ∈ Act ∪ {·},
we write aS for the words {aw | w ∈ S}. See Figure 2 (and the subsequent figures) for an
example.

Consider a terminal-reward game G, a strategy profile σ, and an enabled history h.
One can easily check that φi is a mesurable function under Pσ. The expected payoff of
Player i under σ after h is defined as

Eσ(φi | h) =
∑

x∈Img(φi)

x · Pσ
(
φ−1
i ({x}) | h

)
.

In case G is a terminal-reachability game, the expected payoff of Player i is the probability
of reaching terminal states with value 1 under φi.
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Let G be a terminal-reward game. Let σ ∈ S be a (mixed) strategy profile in G, and h be
a history. A single-player deviation (simply called deviation hereafter, as we only consider
deviations of a single player at a time) of σ for Player i after history h is another strategy
profile σ′ for which there exists σ′′i ∈ Si satisfying

∀h′ ∈ States+.

{
h v h′ ⇒ σ′i(h′) = σ′′i (h′)

∀j ∈ Agt. (h 6v h′ ∨ j 6= i)⇒ σ′j(h′) = σj(h′)

where v is the prefix relation. We then write σ′ = σ[i/σ′′i ]h. The deviation σ[i/σ′′i ]h is said
deterministic if σ′′i is.

I Definition 4. Let G be a terminal-reward game. A strategy profile σ forms a Nash
equilibrium after a history h when the following conditions are met:

h ∈ States+ is enabled by σ from first(h);
No player has a profitable deviation; in other terms, for all i ∈ Agt and for all σ′i ∈ Si,
it holds Eσ[i/σ′i]

h(φi | h) ≤ Eσ(φi | h).
We then write that 〈σ, h〉 is a Nash equilibrium.

A Nash equilibrium 〈σ, h〉 is said 0-optimal whenever the expected payoff of Player 0 is
optimal, that is, Eσ(φi | h) = max(Img(φ0)). In case of a terminal-reachability game, it
amounts to saying that the payoff of Player 0 is 1.

The following result will be useful all along the paper:

I Lemma 5. Let G be a terminal-reward game, and 〈σ, h〉 be a Nash equilibrium. If 〈σ, h〉
enables h′, then 〈σ, h′〉 is a Nash equilibrium.

In general, several Nash equilibria may coexist (see e.g. Figure 12a). It is therefore
very relevant to look for constrained Nash equilibria, that is, Nash equilibria that satisfy
a constraint on the expected payoff. In this paper, we only consider 0-optimality as the
constraint, and we prove that the existence of a 0-optimal Nash equilibrium in a three-
player terminal-reachability game is undecidable. To prove this result, we will first show
undecidability in the case of terminal-reward games, and then extend the result to terminal-
reachability games. Those results will have interesting corollaries, like the undecidability of
the existence of a Nash equilibrium (with no constraint) in terminal-reward games, when the
rewards are in {−1, 0, 1}, or the existence of a Nash equilibrium with optimal social welfare.

3 Tools

In this section, we develop several intermediary results that will be useful for our reduction.
We first show that we can equivalently define Nash equilibria by considering only deter-
ministic deviations (for non-negative terminal-reward games). We then study a few simple
games and constructions which will be used in the encoding.

3.1 Deterministic deviations
We explain in this section that it is enough to consider deterministic deviations in the
characterization of a Nash equilibrium.

I Proposition 6. Let G be a terminal-reward game with non-negative rewards. Pick a history
h ∈ States+, and a strategy profile σ. Then 〈σ, h〉 is a Nash equilibrium if, and only if, for
all i ∈ Agt and all deterministic deviation σ′′i ∈ Si, it holds Eσ[i/σ′′i ]h(φA | h) ≤ Eσ(φi | h).



6 Mixed Nash Equilibria in Concurrent Games

I Remark. A similar result was proven in [14, Proposition 3.1] for turn-based games with
qualitative Borel objectives (the payoff is 1 if the run belongs to the designed objective, and
it is 0 otherwise).

3.2 One-stage games
We analyse two-player two-action one-stage games (that is, games that end up in a terminal
state in one step), and obtain useful properties of their Nash equilibria. Such games can
be represented by a graph as shown in Figure 2a. Alternatively, these games, also known
as one-shot games, can be represented as a matrix as in Table 2b (this is the standard
representation in the game-theory community).

s0

c0, b1 a0, a1 d0, d1 b0, c1

mn

mm

nm

nn

(a) A generic two-player two-action one-stage game

m

n

m n0
1

a0, a1 b0, c1

c0, b1 d0, d1

(b) Associated matrix representation

Figure 2 Representations of a one-shot game

I Lemma 7. Consider the two-player two-action one-shot concurrent game G of Figure 2,
and pick some strategy profile σ. If 〈σ, s0〉 is a Nash equilibrium, then for every player
i ∈ {0, 1}, it holds{

σi(m | s0) < 1 ⇒ [(di − ci) + (ai − bi)] · σ1−i(m | s0) ≤ di − ci
σi(m | s0) > 0 ⇒ [(di − ci) + (ai − bi)] · σ1−i(m | s0) ≥ di − ci

3.3 k-action matching-pennies games

s0

a0, a1 b0, b1

6=k=k

Figure 3 Matching-pennies game

The classical matching-pennies games are a special
case of one-stage games, where ai = di and bi =
ci: basically, there are two outcomes, depending on
whether the players propose the same action or not.
This game can be generalized to k (≥ 2) actions, as
depicted on Figure 3. In this figure (and in the se-
quel), =k (resp. 6=k) is a shorthand for pairs of iden-
tical (resp. different) actions taken from a set of k

actions Σk = {c1, . . . , ck}. In other terms, =k represents the set of words {cici | 1 ≤ i ≤ k},
and 6=k is the complement in Σ2

k.

I Lemma 8. In the k-action matching-pennies game, playing uniformly at random for both
players defines a Nash equilibrium. Moreover, this is the unique Nash equilibrium of the
game if, and only if, either a0 < b0 and a1 > b1, or a0 > b0 and a1 < b1. The payoff of this
Nash equilibrium is

( 1
k · a0 +

(
1− 1

k

)
· b0,

1
k · a1 +

(
1− 1

k

)
· b1
)
.

3.4 Games without equilibrium
In this section, we show that there are games that admit no Nash equilibria. We then explain
how these games can be used to impose constraints on payoffs.
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1,−1 −1, 1
hs, rw rs

hw

(a) H has no Nash equilibria

2, 0 0, 2
hs, rw rs

hw

(b) H′ does have a Nash equilibrium

Figure 4 Hide-or-run games

s′0 GH
continue s0

stop

Figure 5 A game that has a Nash equilibrium if, and only if, G has a 0-optimal Nash equilibrium

Consider the game hide-or-run, depicted in Figure 4a. Player 0 can either hide (h) or
run home (r), while Player 1 can either shoot him (s), or wait (w). If Player 1 shoots while
Player 0 is hiding, she loses her bullet and loses the game. If Player 1 shoots when Player 0
is running, she wins. This game has been shown to have no optimal almost-sure strategy [6],
and we adapt the proof to show that it has no Nash equilibria.

I Lemma 9. The game H has no Nash equilibria.

The payoff function of H takes negative value. In order to only have nonnegative payoffs,
we could shift the values by 1, which yields the game H′ depicted on Figure 4b. But then
one easily sees that the strategies σ0(h | sn0 ) = 1 and σ1(s | sn0 ) = 1 form a Nash equilibrium,
contrary to a claim in [2, 12]. The difference is that when shifting the payoffs, we did not
modify the payoff of the run that never reaches a terminal state: while this run was a positive
deviation for Player 1 in H, this is not the case in H′ anymore.

We now explain how we use the game H to impose a 0-optimality constraint on the
payoff. In the sequel, we restrict1 to games where maxs∈F φ0(s) = 1. Then:

I Lemma 10. Let G be a terminal-reward game. Then we can build a terminal-reward
game G′ (see Figure 5) such that G has a 0-optimal Nash equilibrium if, and only if, G′ has
a Nash equilibrium.

This lemma will be useful for extending the undecidability result from the constrained
existence to the existence problem (Corollary 14).
I Remark. Note that in the above construction, game H can be replaced by any game with
no Nash equilibria, such that Player 0 can secure a payoff 1−ε for every ε > 0. For instance,
one could use a game with limit-average payoff and nonnegative rewards only [13].

4 Updating values

Our undecidability proof will be based on an encoding of a two-counter machine. In this
section and in the next one, we present games that will be building blocks for our proof.

1 This is no loss of generality, since we can linearly rescale payoffs of each player without changing
profitable deviations.



8 Mixed Nash Equilibria in Concurrent Games

s0

sk

0, 4, 4

bS

0, 5 + k, 3− k

aS

1, 4 + k, 4− k

acc

acc

0, 5, 3

aS

0, 4, 4

bS

sl

1, 4 + l, 4− l

acc

0, 5 + l, 3− l

aS
0, 4, 4

bS

bcc

tk

bcc bcc

uk

0, 5, 3

0, 4, 4
·cs

·s·

·=k

·6=k

H

n : 1, 4 + x, 4− x ·cc

Figure 6 The rescale game Grk for k ∈ {1, 2, 3} and l = k − 1

Consider the game Grk depicted on Figure 6: in this game, Player 0 has two available
actions a and b from s0, sk and sl, while the other two players can either continue (action c),
or unilateraly decide to stop the game (action s) and go to a terminal state (where Player 0
will have payoff 0). In node tk, only players 1 and 2 have a choice: they can either continue
to the game H (when both of them play c), or decide to stop and go to a k-action matching-
pennies game (when one of them plays s). In Figure 6, we write S as a shorthand representing
any combination of moves of players 1 and 2 where at least one of them decides to stop
(action s). Node n is the initial node of a game H (which is unknown for the moment).

The interesting property of game Grk is that we can relate 0-optimal Nash equilibria
from s0 and those from n: (roughly) there is a Nash equilibrium from n of expected payoff
(1, 4 + x, 4 − x) if, and only if, there is a Nash equilibrium from s0 of expected payoff
(1, 4 + k · x, 4− k · x).

This is because, from s0 and sk, there is a threat for Player 0 that one of the players 1
and 2 stops the game immediately, leading to a state with payoff 0 for her. Hence, Player 0
is forced to “collaborate” with players 1 and 2 and help them be satisfied with their payoffs,
either by joining one of the interesting terminal states of Grk, or in the next game H after n.
Some technical calculations show that Player 0 has to play a with probability k ·x at s0, and
with probability x/(x + 1) at sk and sl. The gadget to the right of tk is just for ensuring
that 0 ≤ k · x ≤ 1 (this condition is required for having the above-mentioned equivalence
between Nash equilibria from s0 and Nash equilibria from n).

5 Comparing values

5.1 Testing game
We present in this section the construction of a game for comparing the expected payoffs
in different nodes. This will be useful in our reduction to encode the zero-tests of our
two-counter machine.

Consider the game Gt depicted on Figure 7. This game has the very interesting property
that if we assume there are 0-optimal Nash equilibria from n1 and n2 of respective payoffs
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s0

sa1

sb1

0, 4, 4

sa2

sb2

H2 H1

n2 : 1, 4− y, 4 + y n1 : 1, 4 + x, 4− x

·ab

·ba

·S

·S

·cc

·cc

·6=2

·6=2

·=2

·=2

·=2

Figure 7 The testing game Gt

(1, 4 + x, 4− x) and (1, 4− y, 4 + y), then there is a 0-optimal Nash equilibrium from s0 if,
and only if, x = y, and the payoff is then (1, 4+x/2, 4−x/2). Indeed, unless x = 0 or y = 0,
it should be the case that a 0-optimal Nash equilibrium activates all states sαj in the game,
and then, as players 1 and 2 have zero-sum objectives, the best way is to play uniformly at
random in all states where this makes sense (when actions a and b are available), and to
play deterministically action c in all states where c is available.

This gadget allows, by plugging in n2 a game with known payoffs (the games on the next
subsection), to check that the payoff at s0 has some particular value (which depends on that
after n1).

5.2 Counting modules
We now present games that generate a family of Nash equilibria with a particular expected
payoffs. These modules will later be plugged at node n2 of game Gt, and will ensure that
the payoff of an Nash equilibrium in Gt will have a predefined form.

I Lemma 11. Consider the games of Figure 8. For n ∈ N ∪ {+∞}, define

rk(n) =
(

1, 4− 1
kn
, 4 + 1

kn

)
s(n) =

(
1, 4− 1

n+ 1 , 4 + 1
n+ 1

)
Then the set of 0-optimal Nash equilibrium values is {s(n) | n ∈ N ∪ {∞}} in D, and
{rk(n) | n ∈ N ∪ {∞}} in Ck for all k ≥ 2.

s0

s21, 3, 5 1, 4, 4

s1

·aa ·ba
·ab

·bb
·6=k

·=k

game Ck: s0

s2 0, 3, 51, 3, 5 1, 4, 4

s1

·aa ·ba
·ab

·bb acc, bS
aS

bcc

game D:

Figure 8 The modules Ck (for k ≥ 2) and D. Notice that state s2 should be considered terminal,
as it only carries a self-loop. We could replace it by a two-state loop. We could also see it as a
terminal state with reward (0, 0, 0), but for the proof of Corollary 16, we want the terminal rewards
of players 1 and 2 to always sum to 8, which we could not achieve easily in this case.
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in

q0

0, 5, 3·S

·cc

(a) Input gadget G init
M

q s·6=

δ1

δ2 δ3

δ4

·δ1δ1

·δ2δ2

·δ4δ4

·δ3δ3

(b) Game GqM (where {δ1, ..., δn} is the
set ∆q of transitions leaving q)

δ

q′

1, 4, 4
·6=k+1

·=k+1

(c) Game GδM when
δ = (q, dec(k), q′)

δ

Grk+1

q′

s0

n

(d) Game GδM when
δ = (q, inc(k), q′)

δ

Gr2

s0

n

Gt

s0

n1 n2

q′ C4−k

(e) Game GδM when
δ = (q, zero(k), q′)

δ

Gr2

s0

n

Gt

s0

n1 n2

q′ D

1, 4, 4

·=k+1

·6=k+1

(f) Game GδM when
δ = (q, !zero(k), q′)

Figure 9 Description of the subgames GqM and GδM

6 Undecidability proof

We now turn to the global undecidability proof of the constrained-existence problem in
three-player games. The complete proof is given in Appendix D. The proof is a reduction
from the recurring problem of a two-counter machine. We encode the behaviour of a two-
counter machineM as a concurrent game GM, which connects the various subgames depicted
on Figures 9 (one initial gadget, one per state q, one per transition δ). Roughly, this
game will encode a configuration (q, c1, c2) of M using a Nash equilibrium σ ∈ S from q

such that Eσ(φ | s) =
(
1, 4 + 1

2c1 3c2 , 4− 1
2c1 3c2

)
(property P (q, c1, c2)). Using the various

constructions we have made previously, we can show that if P (q, c1, c2) is satisfied, then
there is a transition (q, c1, c2)→δ (q′, c′1, c′2) inM such that P (q′, c′1, c′2) is satisfied as well,
which allows to progress ‘along’ a Nash equilibrium while building a computation inM.

The correspondence betweenM and GM is made precise as follows:

I Proposition 12. The two-counter machine M has an infinite valid computation if, and
only if, there is a 0-optimal Nash equilibrium from state in in game GM.

This immediately entails:

I Theorem 13. We cannot decide whether there exists a 0-optimal Nash equilibrium in
three-player games with non-negative terminal-reward payoffs.

We now consider several extensions of this result. We first state two straightforward
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s (x, y, 8− y) s vx,y

x, 1, 0

x, 0, 1

My

My

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

=M3 =M4 =M5

Figure 10 Transformation of a terminal node (x, y, 8− y) with an intermediate node vx,y. The
table on the right gives the value of My for some values of y (notice that My ⊆My′ when y ≤ y′).

corollaries. First, applying Lemma 10, we can enforce the 0-optimality constraint in the
game by inserting an initial module. It follows:

I Corollary 14. We cannot decide whether there exists a Nash equilibrium in three-player
games with (possibly negative) terminal-reward payoffs.

Now we realize that in this reduction, there is a 0-optimal Nash equilibrium from in
if, and only if, there is a Nash equilibrium with social welfare larger than or equal to 9,
where the social welfare is defined as the sum of the expected payoffs of all players. As an
immediate corollary, we get:

I Corollary 15. We cannot decide whether there exists a Nash equilibrium with some lower
bound on the social welfare (or with optimal social welfare) in three-player terminal-reward
games with non-negative payoffs.

We now explain briefly how the main theorem can be extended to terminal-reachability
payoffs (the details are given in Appendix E). We indeed realize that the payoffs of players 1
and 2 always sum up to 8 in the reduction (the game between those two players is zero-sum).
The idea is then to replace each terminal state with a simple gadget in which the payoffs of
players 1 and 2 are (8, 0) or (0, 8), and to use an adequate set of actions which decomposes
runs into two sets with proportions mimicking the normal rewards of the terminal state.
For instance, for a reward (x, y, 8− y), the set of actions My = {·ij | ∃0 ≤ r < y. i− j = r

mod 8} will lead to (x, 8, 0) and its complement to (x, 0, 8), as illustrated on Figure 10. In
the game from vx,y, there is a unique Nash equilibrium which consists in playing uniformly
at random for both players, yielding a payoff of (x, y, 8 − y). It remains to normalize and
replace each (x, 8, 0) (resp. (x, 0, 8)) by (x, 1, 0) (resp. (x, 0, 1)).

I Corollary 16. We cannot decide whether there exists a 0-optimal Nash equilibrium in
three-player games with terminal-reachability payoffs.

Finally, (roughly) by dualizing reachability and safety conditions, we can prove that the
constrained existence of Nash equilibrium in safety games cannot be decided (details in
Appendix F). This result is interesting since [9] that there always exists a Nash equilibrium
in safety games (called stay-in-a-set games in [9]).

I Corollary 17. We cannot decide whether there exists a Nash equilibrium in three-player
safety games with payoff 0 assigned to Player 0.

7 Conclusion and future work

In this paper we have shown the undecidability of the existence of a constrained Nash equi-
librium in a three-player concurrent game with terminal-reachability objectives. We believe
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this result is surprising, since it applies to very simple payoff functions, and with very
few players. This result has to be compared with the undecidability result of [12], which
on one hand, applies to turn-based games, but requires 14 players and the full power of
terminal-reward payoffs. Furthermore, in turn-based games with terminal-reachability pay-
offs, constrained Nash equilibria can be computed (in polynomial time) through a reduction
to pure Nash equilibria [11] and algorithms for computing pure Nash equilibria [12]. We
have also mentioned a couple of interesting corollaries that we do not repeat here.

This work lets open the decidability status of the constrained-existence problem in two-
player games with terminal-reward and terminal-reachability payoffs. In fact, even the
existence of Nash equilibria in such games is an open problem: it was believed until recently
that there are two-player games with nonnegative terminal rewards having no Nash equilib-
rium [2, 12], but the proposed example was actually wrong (as we explained in Section 3.4).
If one can find such a game with no Nash equilibrium, then our Corollary 14 extends to non-
negative terminal-reward games, and possibly to terminal-reachability games. Notice that
two-player games have been studied quite a lot in the literature, and we know for instance
that (uniform) ε-Nash equilibria always exist in terminal-reward games [15, 16].
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A Complements for Section 3

A.1 Deterministic deviations
The proof of Proposition 6 requires a first lemma.

I Lemma 18. Let G be a terminal-reward game with non-negative rewards, and σ ∈ S. Let
i ∈ Agt, h be an enabled history, and ε > 0. There exists a deterministic deviation σ′′i of
Player i such that σ′ = σ[i/σ′′i ] satisfies Eσ′(φi | h) ≥ Eσ(φi | h)− ε.

Proof. LetN be the random variable representing the number of steps before reaching a final
state along an infinite outcome of σ from h. If Pσ(N < +∞ | h) = 0, then Eσ(φi | h) = 0,
and the result holds (any deterministic deviation will work).

Assume now that Pσ(N < +∞ | h) > 0. Since Pσ is a probability measure, it holds
1 = Pσ(N < +∞ | h,N < +∞) = supnPσ(N < n | h,N < +∞). For a fixed ε′ > 0, we
can choose n > 0 such that Pσ(N < n | h,N < +∞) ≥ 1− ε′. Hence,

Pσ(N ≥ n | h,N < +∞) ≤ ε′

and

0 ≤ Eσ(φi · 1N≥n | h,N < +∞) ≤ (max φi) · ε′ ≤
ε

Pσ(h,N < +∞)

by taking ε′ ≤ ε
(maxφi)·Pσ(N<+∞ | h) . Now we can decompose Eσ(φi · 1N≥n | h,N < +∞)

as follows:

Eσ(φi · 1N≥n | h) = Eσ(φi · 1N≥n | h,N < +∞) · Pσ(N < +∞ | h) ≤ ε

since all runs with N = +∞ have payoff 0.
For this fixed n, we have,

Eσ(φi ·1N<n | h) =
∑

f : hStates<n→Act

Eσ(φi ·1N<n | h, ∀h′. αi(h′) = f(h′))·Pσ(∀h′. αi(h′) = f(h′)).

which is an average sum over the finite set{
Eσ(φi · 1N<n | h,∀h′ αi(h′) = σ′i(h′)) | f : hStates<n → Act

}
.

Hence, one of the maximal value v is reached for some function f with Pσ(∀h′ αi(h′) =
f(h′)) > 0 so the following strategy is allowed: ∀h′ ∈ hStates<n σ′i(h′) = f(h′).

Let us complete σ′i by choosing an arbitrary deterministic action for any h′ ∈ hStates≥n

and then define σ′ = σ[i/σ′i]h. So

Eσ
′
(φi · 1N<n | h) ≥ Eσ(φi · 1N<n | h) ≥ Eσ(φi | h)−Eσ(φi · 1N≥n | h) ≥ Eσ(φi | h)− ε

In the case of φi ≥ 0, Eσ′(φi | h) ≥ Eσ′(φi · 1N<n | h) which concludes the proof. J

Proof of Proposition 6. If 〈σ, h〉 is not a Nash equilibrium, then there is a deviation σ′′i ∈ Si
for some Player i such that ε = Eσ[i/σ′′i ]h(φi | h)−Eσ(φi | h) > 0. Applying Lemma 18 with
ε/2, we get a deterministic deviation τ ′′i for Player i for which

Eσ[i/τ ′′i ]h(φi | h) ≥ Eσ[i/σ′′i ]h(φi | h)− ε/2 = Eσ(φi | h) + ε/2. J

I Remark. A similar result was proven in [14, Proposition 3.1] for turn-based games with
qualitative Borel objectives (the payoff is 1 if the run belongs to the designed objective and
0 otherwise).
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A.2 One-stage games
Proof of Lemma 7. For x ∈ R, we write x = 1 − x. Then 〈σ, s0〉 is a Nash equilibrium
if, and only if, it is resilient to deterministic deviations (Proposition 6). Considering the
deterministic deviation of Player 0 returning move m, we get (omitting to mention s0 in
σi(m)):

a0σ0(m)σ1(m) + b0σ0(n)σ1(m) + c0σ0(m)σ1(n) + d0σ0(n)σ1(n) ≥ a0σ1(m) + c0σ1(n).

As σ0(m)+σ0(n) = 1, we get b0σ0(n)σ1(m)+d0σ0(n)σ1(n) ≥ a0σ0(n)σ1(m)+c0σ0(n)σ1(n),
which, assuming σ0(n) > 0 (or, equivalently, σ0(m) < 1), gives

[(a0 − c0)− (b0 − d0)] · σ1(m) ≤ d0 − c0.

The other cases are similar. J

A.3 k-action matching-pennies games
Proof of Lemma 8. In the case where a0 = b0, Player 0 can never improve her payoff, and
for any strategy σ0 of Player 0, there is a strategy σ1 of Player 1 such that (σ0, σ1) is a Nash
equilibrium.

Applying the result of Lemma 7, we easily obtain that if ai 6= bi for i = 0, 1, then there
exists at most one non-pure Nash equilibrium, where both players play uniformly at random.
Conversely, playing uniformly at random for both players is an equilibrium, since a single
deviation would not modify the distribution of the outcomes.

Now if a0 > b0 and a1 > b1, then there is a pure Nash equilibrium which consists in
deterministically joining the best terminal state.

Now, assume that a0 > b0 and a1 < b1 (the symmetric case would be similar; in the
other cases, there is a pure Nash equilibrium), and consider a Nash equilibrium where
Player 1 does not play uniformly at random: then there is one action, say cn, receiving the
largest probability mass (possibly 1, if the strategy is deterministic). The best response
to this strategy for Player 0 is to play the same action cn purely, since a0 > b0, so this is
what Player 0 would play in a Nash equilibrium. Now, if Player 0 plays cn purely, then
Player 1 would better play an action different from cn deterministically, which contradicts
our assumption. Hence the only Nash equilibrium in such a case is uniform. J

A.4 Games without equilibrium
Proof of Lemma 9. Let us first consider the memoryless strategy for Player 0 where σ0(r |
sn0 ) = ε, where 0 < ε < 1. Then Player 1 can either play s, with expected payoff (1− ε, ε),
or play w, which either reaches the terminal state with payoff (1,−1) with probability ε,
or remains in a0. This indicates that Player 1 cannot secure a payoff larger than ε in this
case, so that the strategy of Player 0 secures a payoff of 1 − ε. This entails that any Nash
equilibrium can only have payoff (1,−1).

Now, assume there exists a Nash equilibrium 〈σ, s0〉. Let n be the least index such that
σ0(r | sn0 ) > 0, assuming it exists. Then Player 1 has a strategy to exit to state (−1, 1)
with positive probability, which we proved cannot be the case of a Nash equilibrium. Hence
Player 0 has to always play h; then if Player 1 always plays w, the play stays in s0, with
payoff (0, 0), again a contradiction. It follows that H does not have a Nash equilibrium. J

Proof of Lemma 10. The game G′ is depicted on Figure 11, where Player 0 can decide
in s′0 whether to go to H or to G. Assume there is a Nash equilibrium in G′. Since H



P. Bouyer, N. Markey, D. Stan 15

has no Nash equilibrium, in any Nash equilibrium of G from s′0, Player 0 will play action
continue (with probability 1) in s′0. This entails that G has a Nash equilibrium (since the
payoffs are prefix-independent). Moreover, the payoff of Player 0 in this Nash equilibrium
must be 1, as otherwise Player 0 could secure a better payoff by going to H (see proof of
Lemma 9). Conversely, if there is a 0-optimal Nash equilibrium in G, then it gives rise to a
Nash equilibrium in G′ by letting Player 0 move to G in s′0. This is easily seen to be a Nash
equilibrium, in particular because deviating to H in s′0 cannot benefit to Player 0. J

s′0 GH
continue s0

stop

Figure 11 A game that has a Nash equilibrium if, and only if, G has a 0-optimal Nash equilibrium

A.5 Reduced game
We now present a technical construction that will be useful for our reduction: indeed, our
reduction is modular, and consists in plugging subgames at various nodes of other games.
When the same subgame can be reached via different histories, the moves returned in the
subgame by a strategy may depend on the path that led to the subgame. Our aim here is
to avoid this. Since this construction serves technical purposes only, we did not mention it
in the main part of the paper. Its role will be made clear at the end of Appendix B.

The basic idea is to transform a terminal-reward game G into a one-shot game G′ (where
all but one state are terminal) embedding all the histories in simple transitions. Intuitively,
the states of G′ will be the maximal runs of G, which we will assume to be finitely many.
We show that for action-visible games, this transformation preserves the payoffs of Nash
equilibria:

I Definition 19. A terminal-reward game G is action-visible if, for every non-final state
s ∈ States, if Tab(s,m1) = Tab(s,m2), then either m1 = m2, or Tab(s,m1) is terminal.

Let G be an a terminal-reward game, with A = 〈States,Agt,Act,Tab, (Allowi)i∈Agt〉 as
its underlying arena, and h ∈ States+ be a history. We denote by H(h) the set of the
finite possible continuations of h, that is H(h) = {h′ ∈ States+ | ∃σ ∈ S. Pσ(h′ | h) > 0},
by H(h) ⊆ H(h) the subset containing those continuations that do not reach a final state,
and by H∞(h) the set of infinite continuations of h.

Assume that H(h) is finite. This means that all continuations of h reach a final state
after finitely many steps, so that also H∞(h) is also finite. We define a new arena Ãh =
〈S̃tates,Agt, Ãct, T̃ab, Ãllow〉 as follows:

S̃tates = {h} ] F;
Ãct = {-} ] {f : H(h) → Act | f = (σi)|H(h), i ∈ Agt, σi ∈ Si} contains the (finetely
many) deterministic strategies of the players in G restricted to H(h), together with an
extra action -;
Ãllowi(h) = {f | f = (σi)|H(h), σi ∈ Si}, and Ãllowi(s) = {-} if s ∈ F;
T̃ab(h, (fi)i∈Agt) is defined as the unique state s ∈ F reached from h with the determin-
istic strategy profile (σi)i = (fi)i in G. We will also denote by Tab∗(h, (fi)i∈Agt) the
corresponding unique infinite run X∞ from h in G. When s 6= h, T̃ab(s, {-}n) = s.
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The game G̃h is defined from Ãh by taking h as initial state, and playing the whole game in
one round: final set of states and their associated payoffs φ = φ̃ remain unchanged.

I Proposition 20. For any action-visible game G and any history h ∈ States+ with finite
set H(h), the sets of average payoffs of Nash equilibria in G and in G̃ coincide.

Before proving this result, we begin with a lemma.

I Lemma 21. Let G be a terminal-reward game and σ ∈ S be a mixed strategy profile
in G, and σ̃ ∈ S̃ be a mixed strategy profile in G̃, such that for any player i and any
strategy f of Player i in G, it holds σ̃i(f | h) =

∏
h′∈H(h) σi(f(h′) | h′). Then for any s ∈ F,

Pσ(hStates∗s | h) = Pσ̃(h · s | h).

Proof. Denote by Xs =
{

(fi)i ∈ Ãct
n
∣∣∣T̃ab (h, (fi)i) = s

}
= (Tab∗ (h, ·))−1 ({hStates∗sω}).

We have the following sequence of equalities:

Pσ(hStates∗s | h) =
∑

(fi)i∈Xs

Pσ

 ∧
i∈Agt

∧
h′∈H(h)

αi(h′) = fi(h′)


=

∑
(fi)i∈Xs

∏
i∈Agt

∏
h′∈H(h)

Pσ (αi(h′) = fi(h′))

=
∑

(fi)i∈Xs

∏
i∈Agt

∏
h′∈H(h)

σi(fi(h′) | h′)

=
∑

(fi)i∈Xs

σ̃((fi)i | h)

= Pσ̃(h · s | h) J

Proof of Proposition 20. Let 〈σ, h〉 be a Nash equilibrium in G. We define the strategy
profile σ̃ in G̃ as in Lemma 21. Then Eσ̃(φ | h) = Eσ(φ | h). For any player i ∈ Agt and any
deterministic deviation σ̃′i ∈ S̃i, the associated deterministic deviation in G is σ̃′i(h) (seen
as a deterministic strategy). By letting, σ′ = σ[i/σ̃′i(h)]h and σ̃′ = σ̃[i/σ̃′i]h, we check that
Lemma 21 still applies to σ′ and σ̃′. It follows

Eσ̃
′
(φ | h) = Eσ

′
(φ | h) ≤ Eσ(φ | h) = Eσ̃(φ | h).

So 〈σ̃, h〉 is a Nash equilibrium with the same payoff as 〈σ, h〉.

Conversely, for any history h′ ∈ H(h), let ϕ(h′) indicate whether the chosen action
(αi(h))i is a strategy profile generating h′ in G (i.e., , h′ v Tab∗(h, (αi(h))i).) Let ϕi(h′)
indicate whether the action αi(h) of Player i allows h′ to occur (as an outcome in G). Since
the actions are visible, there exists a single sequence of actions that leads to h′, so that we
have ϕ(h′) = ∧i∈Agtϕi(h′).

Assume that 〈σ̃, h〉 is a Nash equilibrium. We define σ by

∀h′ ∈ H(h). ∀i ∈ Agt. ∀a ∈ Act. σi(a | h′) = Pσ̃
(
αi(h)(h′) = a

∣∣∣ ϕi(h′))
In other terms, σi(a | h′) is defined as the probability that the chosen strategy in G̃ returns
action a in h′, given that this strategy enables an outcome that reaches h′. Note that this
value does not depend on the strategies σ̃j for j 6= i and that αi(h)(h′) and ϕi(h′) do not
depend on the properties ϕj(h′) for j 6= i. Hence, we have for all h′ ∈ H(h),

Pσ
(
αi(h′) = a

)
= σi(a | h′) = Pσ̃

(
αi(h)(h′) = a

∣∣ ϕi(h′)) = Pσ̃
(
αi(h)(h′) = a

∣∣ ϕ(h′)
)
,
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and

∀A ∈ Actn. Pσ
(

(αi(h′))i = A
)

= Pσ̃
(

(αi(h)(h′))i = A
∣∣ ϕ(h′)

)
. (1)

We show by induction that Equation (1) implies that for all h′ ∈ H(h), Pσ(h′ | h) =
Pσ̃(ϕ(h′)):

If h′ = h, then the result is trivially true;
If h′ = h1s and last(h1) ∈ F, then s is the same terminal state;
If h′ = h1s and last(h1) /∈ F, then h1 ∈ H(h). Let us denote the unique joint action
A ∈ Actn such that Tab(last(h1), A) = s. We have,

Pσ(h′ | h) = Pσ(h1 | h)× Pσ((αi(h1))i = A)

= Pσ̃
(
ϕ(h1)

)
× Pσ̃

(
(αi(h)(h1))i = A | ϕ(h1)

)
(by (1) and by induction)

= Pσ̃
(
ϕ(h1) ∧ (αi(h)(h1))i = A

)
= Pσ̃(ϕ(h′))

We conclude finally that for all s ∈ F, it holds Pσ(hStates∗s | h) = Pσ̃(h · s | h) therefore
Eσ(φ | h) = Eσ̃(φ | h).

If we consider a deterministic deviation σ′i ∈ Si, we construct the corresponding deviation
σ̃′i ∈ S̃i in G̃ satisfying σ̃′i(h)(h′) = σ′i(h′) for all h′ ∈ H(h). Equation (1) still holds, so 〈σ, h〉
is a Nash equilibrium:

Eσ[i/σi]h(φi | h) = Eσ̃[i/σi]h(φi | h) ≤ Eσ̃(φi | h) = Eσ(φi | h) J

I Remark. Notice that the restriction to action-visible games is crucial in Proposition 20.
Indeed, consider the games depicted in Figure 12: in game C, there are only two possible
equilibria from s1: either both players agree on playing the same action, yielding payoff (2, 2),
or they both play uniformly at random, yielding payoff (1, 1). From state s0, the second
player always has an incentive to go to s1, whereas the first player is always better off with
payoff (3, 0). We conclude that C has two equilibria:(

2, 1
2
)
: σi(s0) is uniform and σ0(s1) = σ1(s1);( 5

2 , 1
)
: σi(s0) and σi(s1) are uniform.

Now, C′ is an unfolded version of C which has been made action-visible by annotating
state s1 with the actions from s0 that triggered the transition. The previous equilibria are
still possible in C′ but a new equilibrium arises: agents can play uniformly from sα1 and
agree on an action in the other state sβ1 (for β 6= α). Let us consider the case where sa1 is
played uniformly, the other case being symmetric. From state s0, game can now be seen as
a one-shot game as represented in Figure 13a. This game has a unique equilibrium, which
can be computed by Lemma 7 as seen in Figure 13b.

However, both reduced games have the same equilibrium payoffs. Indeed, from an equi-
librium in one of the reduced game, we can build an equilibrium in the other reduced game,
with the same payoff:

if 〈σ̃, s0〉 is a Nash equilibrium of C̃: for every f ′ : {s0, s0s
a
1 , s0s

b
1} → {a, b}, we define

f : {s0, s0s1} → {a, b}, by letting f(s0) = f ′(s0) and f(s0s1) = f ′(s0s
f ′(s0)
1 ), and for

all i, σ̃′i(f ′ | s0) = σ̃i(f | s0);
if 〈σ̃′, s0〉 is a Nash equilibrium of C̃′: for every f : {s0, s0s1} → {a, b}, we define
f ′ : {s0, s0s

a
1 , s0s

b
1} → {a, b}, by letting f ′(s0) = f(s0) and for all α, f ′(s0s

α
1 ) = f(s0s1).

and for all i, σ̃i(f | s0) = σ̃′i(f ′ | s0).
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3, 0 0, 0 2, 2

s1

s0

6=2

=2

6=2 =2

(a) C, with two equilibria

3, 0 0, 0 2, 2

sa1 sb1

s0

6=2

aa bb

6=2 =26=2
=2

(b) C′, with three equilibria

Figure 12 Two games with different equilibria, but whose reduced games have the same equilib-
rium payoffs.

a

b

a b0
1

1, 1 3, 0

3, 0 2, 2

(a) Matrix game from C′


σ0(a | s0) = 2

2 + 1 = 2
3 Eσ(φi | s0) =

(
7
3 ,

2
3

)
σ1(a | s0) = −1

−1− 2 = 1
3

(b) Associated equilibrium

Figure 13 The extra equilibrium in C′

One can check that these indeed gives rise to Nash equilibria in the respective games. We
conclude from this analysis that Property 20 does not apply to C.

Let G = (A, s, φ) be a terminal-reward game. A subarena H of G is defined as a subset
of states. The subarena H is said action-visible whenever for all s ∈ H and m1,m2 ∈ Act,
Tab(s,m1) = Tab(s,m2) implies m1 = m2 or Tab(s,m1) 6∈ H.

We define an equivalence relation ≡H on histories of G by

h ≡H h′ ⇔ ∃n. ∃w0 . . . wn−1 ∈ (States\H)∗H. ∃wn ∈ States+.

h and h′ are in w0H∗ · w1H∗ · · ·wn−1H∗ · wn.

That is to say, we enter in H from an entry point last(wi) (for i < n) and events that
occurred when staying in H are forgotten.

A strategy profile σ is said blind to H whenever it does not distinguish between histories
that are equivalent w.r.t. ≡H. The following corollary is an obvious consequence of the study
made in this section, and will be heavily used in the rest of the paper:

I Corollary 22. Assume G is a terminal-reward game, and H is a subarena of G, such that
H is action-visible and for all s ∈ H, H(s) ∩ H∗ is finite (where H(s) is the set of non-
terminal histories from s in G). We can construct a game G/H such that for every payoff
vector v = (vi)i∈Agt, the following two properties are equivalent:

there is a Nash equilibrium in G/H with payoff v;
there is a Nash equilibrium in G with payoff v, which is blind to H.



P. Bouyer, N. Markey, D. Stan 19

Proof. In order to build G/H, we keep the same set of agents and states but modify the
allowed actions and transition function in H. For Player i and state s ∈ H, we define:

Allow′i(s) = {f = (σi)|H(s)∩H | σi ∈ Si} the set of deterministic strategies from s when
staying in H (remember H(s) ∩H is finite). Act′ is updated accordingly.
Tab′(s, (fi)i) is defined as the first state s′ ∈ States\H that left the subgame when
applying the deterministic strategy (fi)i.

We now prove that this construction achieves our equivalence.
If 〈σ′, s0〉 is a Nash equilibrium in G/H, for every enabled history hs with s ∈ H, we can
apply Proposition 20 to construct an equilibrium σ for all histories equivalent to hs

w.r.t. ≡H. For every history h′ ≡H hs with s /∈ H, we define σ(h′) = σ′(h). Notice that
≡H is transitive so this definition is sound, and induces a strategy profile that is blind
to H.
Conversely, assume 〈σ, s0〉 is a Nash equilibrium in G, which is blind to H. Let hs be
a history of G/H. If s /∈ H, we define σ′i(h) = σi(h). Otherwise, s ∈ H and we define
σ′i(h) as the distribution over strategies induced by (σi(h′))h′∈H(s) (see Lemma 21 for
details.) J

I Remark. Notice that in the games that we will define in the sequel, the subgames H have
a state e that is the only predecessor of the others. The construction of G/H will then
totally avoid the ability of reaching states in H\{e}. This subset will thus be omitted in the
figures, and we will refer to H as a black-box with a unique entry state e and some possible
exit points in States\H.

B Details for Section 4

Consider the game Grk depicted on Figure 14: in this game, Player 0 has two available
actions a and b from s0, sk and sl, while the other two players can either continue (action c),
or unilateraly decide to stop the game (action s) and go to a terminal state (where Player 0
will have payoff 0). In node tk, only players 1 and 2 have a choice: they can either continue
to the game H (when both of them play c), or decide to stop and go to a k-action matching-
pennies game (when one of them plays s). In Figure 14, we write S as a shorthand to
represent any combination of moves of players 1 and 2 where at least one of them decides to
stop (action s). Node n is the initial node of a game H (which is unknown for the moment).

We relate 0-optimal Nash equilibria from s0 and those from n:

I Proposition 23. Consider the (action-visible) game Grk of Figure 14, with k ∈ {1, 2, 3}.
Assume that 0 ≤ k ·x ≤ 1 and that there is a Nash equilibrium in H from n with expected
payoff (1, 4 + x, 4 − x). Then there is a Nash equilibrium from s0 with expected payoff
(1, 4 + k · x, 4 − k · x): it consists for Player 0 in playing a with probability k · x at s0,
and a with probability x/(x + 1) at sk or sl; the other two players play c almost-surely
everywhere except in uk, where they both play uniformly at random; in H, they follow
the given 0-optimal Nash equilibrium.
Assume that, in H, all terminal states with reward 1 for Player 0 are such that the rewards
of players 1 and 2 sum up to 8. Assume that 〈σ, s0〉 is a 0-optimal Nash equilibrium such
that σ(s0sktk·) and σ(s0sk−1tk·) coincide (that is, the strategy after tk is indifferent of
whether the history went through sk or sk−1). Then:

states tk and n are activated by σ;
〈σ, s0sktk〉 and 〈σ, s0sktkn〉 (and equivalently 〈σ, s0sk−1tk〉 and 〈σ, s0sk−1tkn〉) are
0-optimal Nash equilibria of expected payoff (1, 4 + x, 4− x) for some 0 ≤ x ≤ 1/k;
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Eσ(φ | s0) = (1, 4 + k · x, 4− k · x).

The proof of this proposition requires a careful analysis of the game. We decompose the
proof into several intermediary lemmas, which all refer to the game Grk of Figure 14.

I Lemma 24. Assume that there is a Nash equilibrium from tk with payoff (1, 4 + x, 4− x).
If 〈σ, sk〉 is a 0-optimal Nash equilibrium from sk, then the state tk is activated by σ, and
the expected payoff of σ from sk is (1, 4 + (k + 1) · x

x+1 , 4 − (k + 1) · x
x+1 ). Furthermore

such a 0-optimal Nash equilibrium from sk exists and consists for player 0 in playing a with
probability x/(x + 1) and b with probability 1/(x + 1), and for the other two players, in
playing c almost-surely in sk, and then follow the given equilibrium from tk.

An analogous result applies from sl: if 〈σ, sl〉 is a 0-optimal Nash equilibrium from sl, then
the state tk is activated by σ, and the expected payoff of σ from sl is (1, 4+ l · x

x+1 , 4− l ·
x
x+1 ).

Furthermore such a 0-optimal Nash equilibrium from sl exists and consists for player 0 in
playing a with probability x/(x + 1) and b with probability 1/(x + 1), and for the other two
players, in playing c almost-surely in sl, and then follow the given equilibrium from tk.

Proof. Let 〈σ, sk〉 be a 0-optimal Nash equilibrium. Because the equilibrium is 0-optimal,
players 1 and 2 do not play action s: we have σ1(c | sk) = σ2(c | sk) = 1. Considering this
fixed action for Player 2, we can look at the 2-player game between players 0 and 1, which
is represented in matrix form in Table 1 (left).

Applying Lemma 7, using the fact that σ1(s | sk) < 1, we get that (x+1) ·σ0(a | sk) ≤ x.
The same argument applied to the projection to players 0 and 2 (see Table 1 (right)) gives
(x + 1) · σ0(a | sk) ≥ x. Hence (x + 1) · σ0(a | sk) = x. This entails that x 6= −1
(actually, x will be forced to be nonnegative in the sequel), so that the action vector bcc has
probability 1/(x + 1) in the Nash equilibrium 〈σ, sk〉. We conclude that tk is reached with
positive probability, and that

Eσ(φ | sk) =
(

1, (4 + k)x+ (4 + x)
x+ 1 ,

(4− k)x+ (4− x)
x+ 1

)
.

s0

sk

0, 4, 4

bS

0, 5 + k, 3− k

aS

1, 4 + k, 4− k

acc

acc

0, 5, 3

aS

0, 4, 4

bS

sl

1, 4 + l, 4− l

acc

0, 5 + l, 3− l

aS
0, 4, 4

bS

bcc

tk

bcc bcc

uk

0, 5, 3

0, 4, 4
·cs

·s·

·=k

·6=k

H

n : 1, 4 + x, 4− x ·cc

Figure 14 The rescale game Grk for k ∈ {1, 2, 3} with l = k − 1
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s

c

a b0
1

0, 5 + k 0, 4

1, 4 + k 1, 4 + x

s

c

a b0
2

0, 3− k 0, 4

1, 4− k 1, 4− x

Table 1 Two-player projections of Grk in sk assuming Player 2 (left), resp. Player 1 (right),
plays c almost-surely

s

c

a b0
1

0, 5 0, 4

1, 4 + yk 1, 4 + yl

s

c

a b0
2

0, 3 0, 4

1, 4− yk 1, 4− yl

Table 2 Two-player projections of Grk in s0 assuming Player 2 (left), resp. Player 1 (right), plays
c almost-surely

Finally it is not hard to realize that the strategy profile from sk where player 0 plays a
with probability x/(x+ 1) and b with probability 1/(x+ 1) in sk, and where the other two
players play c almost-surely, is a 0-optimal Nash equilibrium.

The same reasoning can be done from state sl. J

We now consider the game Grk from its initial state s0.

I Lemma 25. Assume that 0 ≤ k · x ≤ 1 and that there is a Nash equilibrium from tk with
expected payoff (1, 4 + x, 4 − x). If 〈σ, s0〉 is a 0-optimal Nash equilibrium from s0, then
the state tk is activated by σ, and the expected payoff of σ from s0 is (1, 4 + k · x, 4− k · x).
Furthermore such a 0-optimal Nash equilibrium from s0 exists and consists for player 0 in
playing a at s0 with probability k · x, and for the other two players, to play c almost-surely
at s0, and then in following the profile described in Lemma 24.

Proof. Since the equilibrium is 0-optimal, it holds σ1(c | s0) = σ2(c | s0) = 1. We first
consider the cases when only one of the states sk and sl is enabled:

if only sk is enabled, i.e., σ0(a | s0) = 1, then from the previous lemma, we have
Eσ(φ1) = 4 + (k + 1) · x

x+1 . This quantity should be greater than 5 (otherwise Player 1
would better deviate), so that k · x ≥ 1, and using our hypothesis, k · x = 1. It follows
that the payoff of σ from s0 is (1, 5, 3) in this case.
if only sl is enabled, i.e., σ0(a | s0) = 1, the value for Player 2 is 4 − (l + 1) · x

x+1 .
This must be greater than or equal to 4 (otherwise Player 2 has a profitable deviation).
We get x = 0, and the expected payoff of σ is (1, 4, 4).

We now consider the case where both states sk and sl are enabled, i.e., 0 < σ0(a | s0) < 1.
We again separately consider the strategies of players 1 and 2, as shown in Table 2. Let us
fix yi (for i ∈ {k, l}) and y such that Eσ(φ | s0si) = (1, 4 + yi, 4 − yi), and Eσ(φ | s0) =
(1, 4 + y, 4 − y). Applying Lemma 7 twice, we get (yl + 1 − yk) · σ0(a | s0) = yl. Then the
expected payoff for Player 1 is

Eσ(φ1 | s0) = 4 + y = σ0(a | s0) · (4 + yk) + (1− σ0(a | s0)) · (4 + yl).
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This simplifies as y = yl/(yl − yk + 1). Replacing yl and yk with their values (Lemma 24),
we end up with y = k · x. Now to reconstruct a 0-optimal Nash equilibrium from s0, it is
sufficient for Player 0 to play a at s0 with probability k · x, and for the other two players,
to play c almost-surely at s0, and then to follow the 0-optimal Nash equilibrium from sk
and sl. This yields a 0-optimal Nash equilibrium from s0. J

We now explain how the k-action matching-pennies game from uk allows to lift the
constraint that 0 ≤ k · x ≤ 1.

I Lemma 26. Assume that there is a Nash equilibrium from n with expected payoff (1, 4 +
x, 4− x) (with no constraints on x). There is a 0-optimal Nash equilibrium from tk if, and
only if, 0 ≤ k · x ≤ 1. Furthermore a strategy profile achieving that condition consists in
playing almost-surely c for both players in tk, and in playing uniformly at random in uk.
Then, the expected payoff of this equilibrium from tk is also (1, 4 + x, 4− x).

Proof. Assume that there is a 0-optimal Nash equilibrium from tk: since it is 0-optimal,
it goes to state n almost-surely (hence players 1 and 2 play action c almost-surely in tk).
Moreover, the expected payoff of Player 1 from n must then be larger than or equal to 4, as
otherwise in tk she could deviate and secure a payoff of 4. Hence 4 + x ≥ 4, so that x ≥ 0.
Finally, in uk, Player 2 can secure payoff 4−1/k by playing uniformly at random. Since this
should not give rise to a profitable deviation for Player 2 from tk, it must be 4−x ≥ 4−1/k,
so that k · x ≤ 1.

The converse is straightforward: players 1 and 2 should play c in tk and uk, and play
uniformly at random in vk. J

Proof of Proposition 23. The first property follows from Lemmas 25 and 26.
We now turn to the second property. Fix a 0-optimal Nash equilibrium 〈σ, s0〉 such that

σ(s0sktk·) = σ(s0, sk−1tk·). Then in Grk, only terminal states assigning reward 1 to player 0
are activated. Assume sk is visited with positive probability: from that state players 1 and 2
play c almost-surely (otherwise Player 0 would not have payoff 0). Then from sk, action b
has to be played with positive probability, otherwise Player 1 would better stop the game
and get payoff 5+k. The same reasoning applies to sk−1, and we deduce that tk is activated.
Now since the payoff of Player 0 after uk is 0, it means that uk is not activated by σ, and
therefore that n is activated. This implies in particular that 〈σ, s0sktk〉 and 〈σ, s0sktkn〉 are
Nash equilibrium, and they are 0-optimal.

Now, since the rewards of players 1 and 2 in terminal states of H sum up to 8 when
Player 0 has reward 0, it holds that Eσ(φ1 | s0sktkn) +Eσ(φ2 | s0sktkn) = 8, which we can
rewrite as: Eσ(φ1 | s0sktkn) = 4 + x and Eσ(φ2 | s0sktkn) = 4 − x for some x. Applying
Lemma 26, we get that 0 ≤ x ≤ 1/k, and then, applying Lemma 25, that the expected
payoff of 〈σ, s0〉 is (1, 4 + k · x, 4− k · x), which concludes the proof. J

I Remark. The condition in Proposition 23 that the strategy profile should not distinguish
between histories visiting states sk and sk−1 can be lifted by considering the reduced game
associated to Grk, after noticing that Grk is indeed action-visible, and applying Corollary 22.
Notice that in the main reduction (see Appendix D and in particular Figure 17), we indeed
use the reduced version G̃rk of Grk.
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C Details for Section 5

C.1 Testing game
We present in this section the construction of a game for comparing the expected payoffs
in different nodes. This will be useful in our reduction to encode the zero-tests of our
two-counter machine.

s0

sa1

sb1

0, 4, 4

sa2

sb2

H2 H1

n2 : 1, 4− y, 4 + y n1 : 1, 4 + x, 4− x

·ab

·ba

·S

·S

·cc

·cc

·6=2

·6=2

·=2

·=2

·=2

Figure 15 The testing game Gt

I Proposition 27. Consider the (action-visible) game Gt of Figure 15.
Assume that there is a Nash equilibrium in H1 from n1 with expected payoff (1, 4+x, 4−x),
and a Nash equilibrium in H2 from n2 with expected payoff (1, 4 − y, 4 + y), and that
x, y ≥ 0. Then there exists a 0-optimal Nash equilibrium from s0 if, and only if, x = y.
Moreover, when this condition is satisfied, there is a Nash equilibrium from s0 with
expected payoff (1, 4+x/2, 4−x/2): it consists for both players 1 and 2 in playing action c
almost-surely in sα1 , and in playing uniformly at random in s0 and sα2 (for α ∈ {a, b});
and then, they should follow the equilibria from n1 and n2.
Assume that in H1, all terminal states with reward 1 for Player 0 are such that the re-
wards of player 1 and 2 sum up to 8. Assume that 〈σ, s0〉 is a 0-optimal Nash equilibrium
with expected payoff (1, 4 + z, 4− z) with z > 0, such that σ is blind to subgame Gt. As-
sume furthermore that in H2, there are 0-optimal Nash equilibria, and that their expected
payoffs are all of the form (1, 4− y, 4 + y) with y ≥ 0. Then:

states n1 and n2 are activated by σ;
〈σ, s0 Gt n1〉 2 and 〈σ, s0 Gt n2〉 are 0-optimal Nash equilibria of expected payoff
(1, 4 + x, 4− x), respectively (1, 4− y, 4 + y) with x, y > 0, and x = y;
z = x/2, that is: Eσ(φ | s0) = (1, 4 + x/2, 4− x/2).

Proof. We prove both items separately.
We first prove the first item. We first assume x = y. We consider the strategy profile σ
where both players 1 and 2 play action c in sα1 , and where they play uniformly at random
in s0 and sα2 (for α ∈ {a, b}). Then,

Eσ(φ | sα1 ) = Eσ(φ | sα2 ) =
(

1, 4 + x− y
2 , 4− x− y

2

)
= (1, 4, 4)

so that none of the players have an incentive to deviate. Finally, we have in s0 the exact
situation of a matching pennies, so that the uniform strategy forms an equilibrium, with
payoff Eσ(φ | s0) =

(
1, 4 + x

2 , 4−
x
2
)
.

2 As σ is blind to subgame Gt, this is strategy 〈σ, h〉 after any path h in Gt from s0 to n1.



24 Mixed Nash Equilibria in Concurrent Games

s0

s21, 3, 5 1, 4, 4

s1

·aa ·ba
·ab

·bb
·6=k

·=k

game Ck: s0

s2 0, 3, 51, 3, 5 1, 4, 4

s1

·aa ·ba
·ab

·bb acc, bS
aS

bcc

game D:

Figure 16 The modules Ck (for k ≥ 2) and D. Notice that state s2 should be considered terminal,
as it only carries a self-loop. We could replace it by a two-state loop. We could also see it as a
terminal state with reward (0, 0, 0), but for the proof of Corollary 16, we want the terminal rewards
of players 1 and 2 to always sum to 8, which we could not achieve easily in this case.

Conversely, assume there is a 0-optimal Nash equilibrium from s0. The payoff of Player 1
(resp 2) is of the form 4 + z (resp 4− z) for some value z ∈ R.

if none of the transitions s0 → sα1 (α ∈ {a, b}) is enabled, then z = x. Moreover,
we must have x = 0, since otherwise Player 2 could deviate to sα1 and ensure payoff 4.
Similarly, y = 0, since otherwise Player 2 could improve her payoff by deviating to sα2
and then n2.
A similar reasoning holds if only one of the s0 → sα1 transition is enabled.
Finally, if all three transitions are enabled from s0, then action cc should be played
from sa1 and sb1, because the equilibrium is 0-optimal. From sα2 , actions should be
chosen uniformly (unless x = y = 0) to ensure equilibrium, and the expected payoff
will be

Eσ(φ | sα1 ) = Eσ(φ | sα2 ) =
(

1, 4 + x− y
2 , 4− x− y

2

)
.

By stability, and since (0, 4, 4) is not enabled, we must have 4 ≤ 4 + x−y
2 and 4 ≤

4 − x−y
2 , that is, x = y and Eσ(φ | sα1 ) = (1, 4, 4). It follows that in s0, both players

have to play uniformly to ensure equilibrium, with resulting payoff Eσ(φ | s0) =(
1, 4 + x

2 , 4−
x
2
)
.

Assume now that there is a 0-optimal Nash equilibrium σ from s0 with expected payoff
(1, 4 + z, 4 − z) with z > 0. Towards a contradiction, assume that n1 is not activated
by σ: then only one of the states sα1 is reached almost-surely, and in this case Player 2
has a profitable deviation to terminal state labelled by (0, 4, 4). Hence n1 is activated
by σ, and there should be a Nash equilibrium from n1 of expected payoff of the form
(1, 4 + x, 4− x) with x ∈ R. Now since z > 0, it should be the case that x > 0 (since all
Nash equilibria from n2 have a payoff (strictly) smaller than 4+z for Player 2). We next
realize that σ cannot go almost-surely to n1, otherwise Player 2 would have a profitable
deviation to terminal state labelled by (0, 4, 4) as well. Hence at least one of the states sα1
is activated by σ, and for Player 2 not to be willing to deviate to terminal state (0, 4, 4),
it should be the case that n2 is activated: there is a 0-optimal Nash equilibrium from n2.
We are now with the hypotheses of the first item, which allows to conclude the proof. J

C.2 Counting modules
Proof of Lemma 11. Consider the games of Figure 16.
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Fix k ≥ 2. We begin with proving that these values are indeed the payoffs of Nash
equilibria. For this, we define the witnessing strategy profiles. For all history h, we let

γ∞(hs0) = abb γ∞(hs1) = ac1c2 δ∞(hs0) = abb δ∞(hs1) = bss

One easily observes that 〈σ∞, s0〉 and (δ∞, s0) are Nash equilibria with payoff (1, 4, 4) in Ck
and in D, respectively.

For n ∈ N, we define γn and δn inductively. First, we let γ0(s0) = δ0(s0) = aaa, which
gives rise to Nash equilibria with payoff (1, 3, 5) from s0 both in Ck and in D.

Then, for n ∈ N, we define the strategies inductively on the length of the history.
The base cases are γn+1(s0) = δn+1(s0) = abb and

γn+1
0 (s0s1) = a ∀1 ≤ j ≤ k. γn+1

1 (cj | s0s1) = γn+1
2 (cj | s0s1) = 1/k

δn+1
0 (a | s0s1) = 1

n+ 2 δn+1
1 (s0s1) = δn+1

2 (s0s1) = c.

The inductive case is

γn+1
i (s0s1h) = γni (h) δn+1

i (s0s1h) = δni (h)

It is not difficult to check that these strategy profiles form Nash equilibria with the expected
payoffs.

Conversely, let us fix a 0-optimal Nash equilibrium 〈σ, s0〉, and let us show that the
expected payoff of that Nash equilibrium is one of the above values. By 0-optimality,
players 1 and 2 have to play deterministically the same actions after all histories ending up
in s0 (state s2 should not be enabled under 〈σ, s0〉). We can reason on the number of histories
enabled from s0. For that, we define Ns0(σ) = sup{|h| | h enabled by σ and last(h) = s0}
(this is somehow the maximal number of visits of s0 enabled by σ).

If Ns0(σ, s0) = +∞, then the transition ·aa from s0 is never taken (since it would then
be played deterministically and it would then stop the game immediately). Since (σ) is
0-optimal, it then means that the terminal state (1, 4, 4) is reached almost-surely (only
possibility for Player 0 to get payoff 1).
Otherwise, Ns0(σ) is finite and we reason by induction on this number:

first if Ns0(σ, s0) = 1, the game ends up immediately in (1, 3, 5).
if Ns0(σ, s0) > 1, then a transition to s1 occurs with probability 1. If the path
s0 · s1 · (1, 4, 4) has probability 1 under σ, then the results holds; otherwise s0s1s0
is enabled from s0, and 〈σ′, s0〉, with σ′ : h 7→ σ(s0s1h), is another 0-optimal Nash
equilibrium such that Ns0(σ′) < Ns0(σ). By induction, it has an expected payoff of
the form (1, 4 − x, 4 + x), with either x = 1

kn (for Ck) or x = 1
n+1 (for D) for some

n ∈ N∪{∞}. If x = 0, the results holds immediately, as the expected payoff of 〈σ, s0〉
is also (1, 4, 4). Now assume x > 0, and consider the game Ck, and the distributions
proposed by the strategies σ1 and σ2 after s0s1. For this to be a Nash equilibrium,
both distributions must be uniform; this leads to payoff (1, 4− x

k , 4+ x
k ), and proves the

result. For D, if it were σ0(s0s1) = b, then Player 1 would have a profitable deviation.
Hence σ0(a | s0s1) > 0, and the best response for players 1 and 2 is to play c. We can
then analyze the projections on agents 0, 1 and 0, 2 (as done in Section 4) and apply
Lemma 7, which yields (x+ 1)σ0(a | s0s1) ≥ x and (x+ 1)σ0(a | s0s1) ≤ x; it follows
σ0(a | s0s1) = 1

n+2 and Eσ(φ | s0s1) = (1, 4− 1
n+2 , 4 + 1

n+2 ). J
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D Complete undecidability reduction of Section 6

In this annex, we give the complete reduction to show the undecidability of the exsitence of
a 0-optimal Nash equilibrium in a three-player game.

We first recall the definition of a two-counter machine as a tupleM = 〈Q, q0,∆〉 where:
Q is a finite set of states,
q0 ∈ Q is an initial state,
∆ ⊆ Q×Γ×Q is the transition table with Γ = {inc(j), dec(j), zero(j), !zero(j) | j ∈ {1, 2}}
is the set of operations on counters.

W.l.o.g. we assume thatM never decreases a counter with value 0 (this can be enforced by
using non-zero tests !zero(·) before any dec(·) operation).

The semantics of M = 〈Q, q0,∆〉 is given as a transition system where configurations
are tuples C = 〈q, c1, c2〉 ∈ Q × N × N and for any two configurations C = 〈q, c1, c2〉 and
C ′ = 〈q′, c′1, c′2〉, for every δ = (q, γ, q′) ∈ ∆, there is a transition C →δ C

′ if, and only if:
c′k = ck + 1 and c′3−k = c3−k, if γ = inc(k);
c′k = ck − 1 and c′3−k = c3−k, if γ = dec(k);
ck = 0 and (c′1, c′2) = (c1, c2), if γ = zero(k);
ck > 0 and (c′1, c′2) = (c1, c2), if γ = !zero(k).

We fix for the rest of this section a two-counter machineM = 〈Q, q0,∆〉, and we build
a terminal-reward game GM as follows. For every state q ∈ Q (resp. every δ ∈ ∆) we have
a subgame GqM (resp. GδM), as depicted on Figure 17b (resp. Figures 17c to 17f), and an
initial subgame as depicted in Figure 17a. The subgames are connected in the obvious way.
We write φ for the terminal-reward payoff function that is given by GM.

The main nodes of game GM are Q ∪ ∆, and all other nodes (belonging to gadgets in
grey) are internal nodes. We will evaluate the existence of a 0-optimal Nash equilibrium
from all the main nodes of the game. The relation between M and GM is made explicit
thanks to the following predicate. Let s ∈ Q ∪∆, and c1, c2 ∈ N. We denote by P (s, c1, c2)
the predicate:

∃σ ∈ S.
[
σ is a Nash equilibrium from s and Eσ(φ | s) =

(
1, 4 + 1

2c13c2
, 4− 1

2c13c2

)]

I Lemma 28. Assume C = 〈q, c1, c2〉 is a configuration of M such that P (q, c1, c2) holds.
Then there are a transition δ and a configuration C ′ = 〈q′, c′1, c′2〉 such that (i) C →δ C

′ and
(ii) P (δ, c1, c2) and P (q′, c′1, c′2) hold.

Proof. Write σ for a 0-optimal Nash equilibrium witnessing the truth of predicate P (q, c1, c2).
In particular,

Eσ(φ | q) =
(

1, 4 + 1
2c13c2

, 4− 1
2c13c2

)
In GM (more precisely, in subgame GqM), only one state δ ∈ ∆q is activated, otherwise σ
would not be 0-optimal, as with positive probability the play would end up in state s of
Figure 17b. Hence P (δ, c1, c2) holds as well.

We write x = 1
2c1 3c2 , and we distinguish the different cases for δ.

First assume δ = (q, dec(k), q′). Since x > 0, the next state q′ has to be activated by σ,
and 〈σ, qδq′〉 needs to be a 0-optimal Nash equilibrium as well. Applying the analysis of
k-action matching-pennies games of Section 3.3, it must be the case that the payoff of σ
after qδq′ is (1, 4 + y, 4− y) with y = (k+ 1) ·x. If k = 1, it is the case that y = 1

2c1−13c2 ,
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Figure 17 Description of the subgames GqM and GδM

and if k = 2, it is the case that y = 1
2c1 3c2−1 . Writing c′k = ck − 1 and c′3−k = c3−k, we

get that (q, c1, c2)→δ (q′, c′1, c′2) and that P (q′, c′1, c′2).
Then assume δ = (q, inc(k), q′). Applying Proposition 23, we get that q′ is activated
by σ, and that there is a 0-optimal Nash equilibrium from q′ whose expected payoff is
(1, 4 + y, 4 − y) with y = x/(k + 1). As in the previous case, writing c′k = ck + 1 and
c′3−k = c3−k, we get that (q, c1, c2)→δ (q′, c′1, c′2) and that P (q′, c′1, c′2).
Assume δ = (q, zero(k), q′). Applying Proposition 23, we get that the first node s0 of Gt
in GδM is activated by σ, and that there is a 0-optimal Nash equilibrium from that node
whose payoff is (1, 4 + x/2, 4− x/2). Then, applying Proposition 27, we get that q′ and
the initial node of Ck+1 are activated, and that σ after q′ and σ after entering Ck+1 are
0-optimal Nash equilibrium. Furthermore, writing (1, 4 + z, 4 − z) and (1, 4 − y, 4 + y)
for the payoffs of those equilibria respectively, we should have z = y and x/2 = z/2. In
particular, P (q′, c1, c2) holds. Now thanks to Lemma 11, we know that there exists m
such that y = 1

(4−k)m . This implies that ck = 0: (q, c1, c2)→δ (q′, c1, c2).
Finally, assume that δ = (q, !zero(k), q′). Again applying Proposition 23, we get that the
first node of Gt in GδM is activated by σ, and that there is a 0-optimal Nash equilibrium
from that node whose payoff is (1, 4 + x/2, 4 − x/2). Then, applying Proposition 27,
we get that q′ and node m are activated, and that σ after q′ and σ after entering m are
0-optimal Nash equilibrium. Furthermore, writing (1, 4 + z, 4 − z) and (1, 4 − y, 4 + y)
for the payoffs of those equilibria respectively, we should have z = y and x/2 = z/2. In
particular, P (q′, c1, c2) holds.
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Note that there is a 0-optimal Nash equilibrium from m of payoff (1, 4 − y, 4 + y) with
y > 0 if, and only if, there is a 0-optimal Nash equilibrium in D of payoff (1, 4−y′, 4+y′)
with y′ = (k + 1) · y. Now, thanks to Lemma 11, we know that there exists h such that
y′ = 1

h+1 , hence y = 1
(k+1)·(h+1) . This implies that ck > 0: (q, c1, c2)→δ (q′, c1, c2). J

We can now show the following correspondence betweenM and GM:

I Proposition 29. The two-counter machine M has an infinite valid computation if, and
only if, there is a 0-optimal Nash equilibrium from state in in game GM.

Proof. We use the reduction from the non-halting problem of a two-counter machine we
have described. Given a two-counter machine M, we construct game GM as on Figure 9.
For technical reasons, we require that each incrementation is followed by a non-zero test:
since decrementations are preceded with a zero-test, this enforces infinitely many visits to
module G̃t in GM along any infinite run, so that infinite runs will have probability zero in
strategy profiles we will build (we will see that later).

Assume a 0-optimal Nash equilibrium exists from the initial state in. Then it must be
the case that its payoff is (1, 5, 3) (in terminal states where Player 0 has reward 1, the sum
of the rewards of Player 1 and Player 2 is 8), otherwise there would be a profitable deviation
for one of the players. Hence the predicate P (q0, 0, 0) is true. We can then inductively apply
Lemma 28 to build the corresponding valid infinite run of the counter machine.

Conversely assume that M has an infinite (valid) run C0 →δ0 C1 →δ1 . . . with Ci =
〈qi, ci1, ci2〉, and c0

1 = c0
2 = 0. We build a strategy profile σ inductively as follows:

in state in, players 1 and 2 should play c almost-surely;
we assume we have built σ for the prefix C0 →δ0 C1 →δ1 . . . Ci, and that the “main
stream” of σ traverses successively the gadgets G init

M Gq0
M Gδ0

M . . . Gδi−1
M and arrives

in state qi, from which we now need to define the strategy profile σ. In state qi, the
players should select transition δi almost-surely, and then enter gadget GδiM. We now
distinguish the possible cases for δi:

if δi = (qi−1, dec(k), qi), then players 1 and 2 should play uniformly at random among
the k + 1 actions;
if δi = (qi−1, inc(k), qi), then, in Grk+1, the players should follow the strategy described
in Proposition 23 with x = 1

(k+1)·2c
i−1
1 ·3c

i−1
2

;

if δi = (qi−1, zero(k), qi), then, in Gr2 , the players should follow the strategy described
in Proposition 23 with x = 1

2·2c
i−1
1 ·3c

i−1
2

; in Gt, the players should follow the strategy
described in Proposition 27, and in C4−k, they should follow the strategies described
in the proof Lemma 11, for the correct values of the counters;
if δi = (qi−1, !zero(k), qi), then we apply a strategy as described in the previous item
(except that we replace the strategy in C4−k by that in D).

First, due to the hypothesis on (non-)zero-tests in every syntactic loop of the machine,
under the above strategy profile, the game ends up almost-surely in a terminal state, where
Player 0 has reward 1. This is because in any subgame GδM where δ is a test-to-zero, or
a test-to-nonzero, the game ends up in gadget C4−k or D with probability 1/2. For every
ε > 0, there is a length Nε that we can easily compute such that

Pσ(reach terminal in no more than Nε steps | in) ≥ 1− ε.

We write GM(Nε) the game GM(Nε) truncated after Nε computation steps ofM, in which
we replace any outgoing transitions by a terminal node with reward (1, 0, 0). We note σε
the truncated strategy profile.
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We have that

Eσε(φj | in) ≤ Eσ(φj | in) ≤ Eσε(φj | in) + 8ε

We can now show by induction on i ≤ Nε that Eσε(φ | in) is (1, uε1, uε2) with |5−uε1| ≤ 8ε
and |3 − uε2| ≤ 8ε, which entails that Eσ(φ | in) = (1, 5, 3). We can then show inductively
that for every i,

Eσ(φ | in G init
M q0 Gq0

M δ0Gδ0
M . . . δi−1 Gδi−1

M qi) =
(

1, 4 + 1
2ci13ci2

, 4− 1
2ci13ci2

)
In particular, in any subgame GδiM, these payoffs yield a local Nash equilibrium.

Assume that σ is not a Nash equilibrium, and pick σ′j a deviation of Player j (with j ∈
{1, 2}) which improves her payoff. By Lemma 18 we can assume that σ′j is deterministic.
Under σ′ = σ[σ′j ], we can first notice that the same gadgets are visited than under σ, since
Player j cannot improve her payoff by switching the choice of the transitions (gadgets GqM
with q ∈ Q). We also realize that in all states of the game, under σ, the choice of Player j
is either deterministic (play c) or she plays matching-pennies games uniformly at random
against Player 3 − j. Switching the choice of Player j in a matching-penny game does not
change the probabilities of the two output-edges. So only a switch from action c to action s
can possibly improve the payoff of Player j.

This is not the case, since by construction, we have a local Nash equilibrium in every
gadget. Hence, no deterministic deviation of Player j can improve her payoff. J

E Reachability games: Proof of Corollary 16

We now explain how to extend our main theorem to games with terminal-reachability ob-
jectives (in other terms, with terminal payoffs in {0, 1}). The crucial point to achieve this
is that in all our terminal states, the sum of the rewards of players 1 and 2 is 8. Our con-
struction amounts to replacing these terminal rewards with a simple module in which the
payoffs of players 1 and 2 are (8, 0) and (0, 8).

I Proposition 30. Let G = 〈A, s0, φ〉 be a 3-player terminal-reward game such that in any
final state s, the terminal payoff φ(s) = (x, y, z) satisfies the following conditions:

x ∈ {0, 1} y, z ∈ N y + z = 8

Then we can construct an arena A′, and sets of (final) states R0, R1, R2 such that 〈σ, s0〉
is a 0-optimal Nash equilibrium in G if, and only if, it is a 0-optimal Nash equilibrium in
G′ = 〈A′, s0, φ

′〉 where φ′ = (1R0 ,1R1 ,1R2).

Proof. We replace every final node (x, y, 8 − y) with a zero-sum game as depicted in Fig-
ure 18. In this figure, for all i ∈ {1, 2}, the set Allowi(vx,y) of allowed actions is the set
J0, 7K, and My = {·ij | ∃0 ≤ r < y. i− j = r mod 8} (see Figure 18).

By playing uniformly at random, Player 1 can ensure winning (i.e., reaching state (x, 8, 0))
with probability y/8, whatever Player 2 does. She then gets payoff y. Similarly, Player 2 can
ensure winning with probability 1−y/8 by playing uniformly. We conclude that (x, y, 8−y)
is the only equilibrium payoff.

We built this way a new game G′ where all final payoffs are of the form (x, 8, 0) or (x, 0, 8).
Every Nash equilibrium in G can be converted into a Nash equilibrium with the same payoff
(by playing uniformly in every new node vx,y) in G′.

Conversely, if 〈σ, s0〉 is a Nash equilibrium in G′, then for every hvx,y ∈ States+,
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s (x, y, 8− y) s vx,y

x, 8, 0

x, 0, 8
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Figure 18 Transformation of a terminal node (x, y, 8− y) with an intermediate node vx,y. The
table on the right gives the value of My for some values of y (notice that My ⊆ My′ when y ≤ y′,
so that for instance |M4| = 32).

If hvx,y is enabled by σ, we have Eσ(φ | hvx,y) = (x, y, 8− y);
Otherwise, hvx,y is not enabled and we can assume σi(hvx,y) is the uniform distribution
for both i ∈ {1, 2}. This assumption does not change the final reward of the game
(as hvx,y is not enabled) and preserves the equilibrium because a deviation of Player 1 in
this branch can already ensure a least payoff y (respectively at least 8− y for Player 2).

Finally, every branch ending up in vx,y has payoff (x, y, 8 − y) so 〈σ, s0〉 is in fact an equi-
librium in G with the same value.

To conclude, we can divide every terminal reward for players 1 and 2 by 8, so that every
final state satisfies φ(s) ∈ {0, 1}Agt. By linearity, every 0-optimal Nash equilibrium in the
original game is a Nash equilibrium in G′ with average payoffs for players 1 and 2 divided
by 8. J

F Safety games: Proof of Corollary 17

A safety game is described by 〈A, s0, (Gi)iAgt〉 where A is an arena, s0 an initial state and
(Gi)i ∈

(
2States)Agt is a family of goals for every player. An agent i wins the game if she

stays in the subset of states Gi, so we define the payoff function φsi = 1Gω
i
.

Proof of Corollary 17. Proposition 30 along with the reduction presented in Proposition 29
allows us to compute for every two-counter machine M a concurrent reachability game G,
with objectives R0, R1, R2 ⊆ F such thatM does not halt if, and only if, G has a 0-optimal
Nash equilibrium, with the reward function φr = (1R1 ,1R2 ,1R2).

We now define safety conditions for this arena by:

G0 = States\R0

∀i{1, 2}. Gi = States\F ]Ri

First remark that we defined all internal states as winning for all players so an infinite
run is a possible Nash equilibrium for the safety game. Let us now consider the constraint
Eσ(φs0 | s0) = 0. In the following, we will say that a 〈σ, s0〉 is an 0-unsafe Nash equilibrium
if it is a Nash equilibrium of the safety game which satisfies the above constraint.

Let us notice that φs0 ≡ 1−φr0 and for i ∈ {1, 2}, 1(States\F]Ri)ω ≡ 1States+Rω
i

+1(States\F)ω

The following analysis is mostly concerned with the term 1(States\F)ω that is the difference
between reachability objectives and safety objectives. Based on the reduction of Proposi-
tion 29, we will show that this term can be neglected.
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If σ is a 0-unsafe Nash equilibrium, we have Eσ(φr0 | s0) = 1 so σ is 0-optimal (for the
reachability objective). Moreover, R0 ⊂ F is reached with probability 1 so Eσ(1(States\F)ω |
s0) = 0. So ∀i ∈ {1, 2}, Eσ(φsi | s0) = Eσ(φri | s0)
For σ′i ∈ Si, let σ′ = σ[i/σ′i], then Eσ

′(φsi | s0) = Eσ
′(1States+Rω

i
| s0) + Eσ

′(1(States\F)ω |
s0) ≥ Eσ′(φri | s0). So Eσ′(φri | s0) ≤ Eσ′(φsi | s0) ≤ Eσ(φsi | s0) = Eσ(φri | s0).
Player 0 cannot ensure staying in safe states: any history before leaving to a terminal
state is safe, and the only possible deviations to an unsafe state for Player 0 occur in
games Grk and D. However players 1 and 2 are then forced to play cc for staying in their
own safe states.
Conversely, if there exists a 0-optimal Nash equilibrium, there exists one constructed from
an infinite run ofM. Without loss of generality, we can assume such run has infinitely
many counter tests, so that the underlying Nash equilibrium enables the testing module
G̃t infinitely often. This strategy profile σ makes both players 1 and 2 play uniformly
at random so even if one decides to deviate, there is still a fixed positive probability
1
4 to branch to submodules n2 and eventually reach a final state. We conclude from
this analysis, that for every deviation σi ∈ S, Eσ[i/σi](1(States\F)ω | s0) = 0. Hence σ is
resilient to deviations of 1 and 2 for safe objectives. Similarly to the other implication,
Player 0 cannot deviate unilateraly to a terminal safe state.
We conclude that there exists a strategy profile σ that is a 0-unsafe Nash equilibrium. J
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