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ABSTRACT. We study the alternating-time temporal logics ATL and ATL? extended with strategy
contexts: these make agents commit to their strategies during the evaluation of formulas, contrary to
plain ATL and ATL? where strategy quantifiers reset previously selected strategies.
We illustrate the important expressive power of strategy contexts by proving that they make the
extended logics, namely ATLsc and ATL?

sc, equally expressive: any formula in ATL?
sc can be trans-

lated into an equivalent, linear-size ATLsc formula. Despite the high expressiveness of these log-
ics, we prove that they remain decidable by designing a tree-automata-based algorithm for model-
checking ATL?

sc on the full class of n-player concurrent game structures.

1 Introduction
Temporal logics and model checking. Thirty years ago, temporal logics (LTL, CTL) have
been proposed for specifying properties of reactive systems, with the aim of automatically
checking that those properties hold for these systems [17, 10, 18]. This model-checking ap-
proach to formal verification has been widely studied, with powerful algorithms and im-
plementations, and successfully applied in many situations.

Alternating-time temporal logic (ATL). In the last ten years, temporal logics have been ex-
tended with the ability of specifying controllability properties of multi-agent systems: the evo-
lution of a multi-agent system depends on the concurrent actions of several agents, and
ATL extends CTL with strategy quantifiers [4]: it can express properties such as agent A has a
strategy to keep the system in a set of safe states, whatever the other agents do.

qB

Figure 1: Example of a two-player
turn-based game

Nesting strategy quantifiers. Assume that, in the for-
mula above, “safe states” are those from which agent B
has a strategy to reach her goal state qB infinitely often,
and consider the system depicted on Fig. 1, where the
circled states are controlled by player A (meaning that
Player A selects the transition to be fired from those
state) and the square state is controlled by player B. It is
easily seen that this game contains no “safe state”: after
each visit to qB, Player A can decide to take the system to the rightmost state, from which qB
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is not reachable. It obviously follows that Player A has no strategy to keep the system in
safe states.

Now, assume that Player A commits to always select the transition to the left, when
the system is in the initial (double-circled) state. Then under this strategy, it suffices for
Player B to always go to qB when the system is in the square state in order to achieve her
goal of visiting qB infinitely often. The difference with the previous case is that here, Player B
takes advantage of Player A’s strategy in order to achieve her goal.

Both interpretations of our original property can make sense, depending on the context.
However, the original semantics of ATL cannot capture the second interpretation: strategy
quantifications in ATL “reset” previous strategies. While this is very convenient algorith-
mically (and makes ATL model-checking polynomial-time), it prevents ATL from expressing
many interesting properties of games (especially non-zero-sum games).

In [7], we introduced an alternative semantics for ATL, where strategy quantifiers store
strategies in a context. Those strategies then apply for evaluating the whole subformula, un-
til they are explicitly removed from the context or replaced with a new strategy. We demon-
strated the high expressiveness of this new semantics by showing that it can express impor-
tant requirements, e.g. existence of equilibria or dominating strategies.

Our contribution. This work is a continuation of [7]. Our contribution in this paper is
twofold: on the one hand, we prove that ATL?

sc is not more expressive than ATLsc: this is a
theoretical argument witnessing the expressive power of strategy contexts; it complements
the more practical arguments presented in [7]. On the other hand, we develop an algorithm
for ATL?

sc model-checking, based on alternating tree automata. Our algorithm uses a novel
encoding of strategies into the execution tree of the underlying concurrent game structures.
This way, it is valid for the whole class of concurrent game structures and without restric-
tions on strategies, contrary to previously existing algorithms on related extensions of ATL.

Related work. In the last three years, several approaches have been proposed to increase
the expressiveness of ATL and ATL?.
• Strategy logic [8, 9] extends LTL with first-order quantification over strategies. This al-

lows for very expressive constructs: for instance, the property above would be written
as ∃σA. [G (∃σB. (G F qB) (σA, σB))] (σA).
This logic was only studied on two-player turn-based games in [8, 9], where a non-
elementary algorithm is given. The algorithm we propose in this paper could be
adapted to handle strategy logic in multi-player concurrent games.
• QDµ [16] is a second-order extension of the propositional µ-calculus augmented with

decision modalities. In terms of expressiveness, fixpoints allow for richer constructs
than CTL- or LTL-based approaches. Again, model-checking has been proved to be
decidable, but only over the class of alternating transition systems (as defined in [3]).
• Stochastic game logic [6] is an extension of ATL similar to ours, but in the stochastic case.

It is proved undecidable in the general case, and decidable when strategy quantifica-
tion is restricted to memoryless (randomized or deterministic) strategies.
• several other semantics of ATL, related to ours, are discussed in [1, 2]. A ∆P

2 -algorithm
is proposed there for a subclass of our logic (where strategies stored in the context are
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irrevocable and cannot be overwritten), but no proof of correctness is given. In [19], an
NP algorithm is proposed for the same subclass, but where strategy quantification is
restricted to memoryless strategies.

2 ATL with strategy contexts
Concurrent game structures. Concurrent game structures [4] are a multi-player extension
of classical Kripke structures. Their definition is as follows:

DEFINITION 1. A Concurrent Game Structure (CGS for short) C is an 7-tuple 〈Loc, Lab, δ,
Agt,M, Mov, Edg〉 where:
• 〈Loc, Lab, δ〉 is a (possibly infinite) Kripke structure, where Loc is the set of locations,

Lab : Loc→ 2AP is a labelling function, and δ ⊆ Loc× Loc is the set of transitions;
• Agt = {A1, ..., Ap} is a finite set of agents (or players);
• M is a finite, non-empty set of moves;
• Mov : Loc × Agt → P(M) r {∅} defines the (finite) set of possible moves of each

agent in each location.
• Edg : Loc×MAgt → δ is a transition table; with each location ` and each set of moves

of the agents, it associates the resulting transition, which is required to depart from `.

The size |C| of a CGS C is defined as |Loc|+ |Edg|, where |Edg| is the size of the transi-
tion table∗.

The intended behaviour is as follows [4]: in a location `, each player Ai in Agt chooses
one among her possible moves mi in Mov(`, Ai); the next transition to be fired is given by
Edg(`, (m1, ..., mp)). We write Next(`) for the set of all transitions corresponding to possible
moves from `, and Next(`, Aj, mj), with mj ∈ Mov(`, Aj), for the restriction of Next(`) to
possible transitions from ` when player Aj plays the move mj. We extend Mov and Next to
coalitions (i.e., sets of agents) in the natural way:
• given A ⊆ Agt and ` ∈ Loc, Mov(`, A) denotes the set of possible moves for coalition A

from `. Those moves m are composed of one single move per agent of the coalition,
i.e., m = (ma)a∈A.
• Given m = (ma)a∈A ∈ Mov(`, A), we let Next(`, A, m) denote the restriction of Next(`)

to locations reachable from ` when every player Aj ∈ A makes the move mAj .

A (finite or infinite) path of C is a sequence ρ = `0`1 . . . of locations such that for any i,
`i+1 ∈ Next(`i). Finite paths are also called history. The length of a history ρ = `0`1 . . . `n
is n. We write ρi→j for the part of ρ between `i and `j (inclusive). In particular, ρi→j is empty
iff j < i. We simply write ρi for ρi→i, denoting the i + 1-st location `i of ρ. We also define
first(ρ) = ρ0, and, if ρ has finite length n, last(ρ) = ρn. Given a history π of length n and a
path ρ such that last(π) = first(ρ), the concatenation of π and ρ is the path τ = π · ρ such
that τ0→n = π and τn→∞ = ρ (notice that the last location of π and the first location of ρ are
“merged”).

A strategy for a player Ai ∈ Agt is a function fi that maps any history to a possible
move for Ai, i.e., satisfying fi(`0 . . . `m) ∈ Mov(`m, Ai). A strategy for a coalition A of agents

∗Our results would still hold (with the same complexity) if we consider symbolic CGSs [12], where the
transition table is encoded through boolean formulas.
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is a mapping assigning a strategy to each agent in the coalition. The set of strategies for A
is denoted Strat(A). The domain of FA ∈ Strat(A) (denoted dom(FA)) is A. Given a coali-
tion B, the strategy (FA)|B (resp. (FA)rB) denotes the restriction of FA to the coalition A ∩ B
(resp. A r B).

Let ρ be a history of length n. A strategy FA = ( f j)Aj∈A for some coalition A induces
a set of paths from ρ, called the outcomes of FA after (or from) ρ, and denoted Out(ρ, FA): a
path π = ρ · `1`2 . . . is in Out(ρ, FA) iff, writing `0 = last(ρ), for all i ≥ 0 there exists a set of
moves (mi

k)Ak∈Agt such that
• mi

k ∈ Mov(`i, Ak) for all Ak ∈ Agt,
• mi

k = fAk(π
0→n+i) if Ak ∈ A,

• `i+1 ∈ Next(`i, Agt, (mi
k)Ak∈Agt).

We write Out∞(ρ, FA) for the set of infinite outcomes of FA after ρ. Note that Out(ρ, FA) ⊆
Out(ρ, (FA)|B) for any two coalitions A and B, and that Out(ρ, F∅) represents the set of all
paths starting with ρ.

It is also possible to combine two strategies F ∈ Strat(A) and F′ ∈ Strat(B), resulting in
a strategy F ◦ F′ ∈ Strat(A ∪ B) defined as follows:

(F ◦ F′)|Aj
(ρ) =

{
F|Aj

(ρ) if Aj ∈ A

F′|Aj
(ρ) if Aj ∈ B r A.

Finally, given a strategy F and a history ρ, we define the strategy Fρ corresponding to
the behaviour of F after prefix ρ: it is defined, for any history π with last(ρ) = first(π), as
Fρ(π) = F(ρ · π).

Alternating-time temporal logics. The logics ATL and ATL? have been defined in [4] as
extensions of CTL and CTL? with strategy quantification. Following [7], we further extend
them with strategy contexts:

DEFINITION 2. The syntax of ATL?
sc is defined by the following grammar:

ATL?
sc 3 ϕs, ψs ::= p | ¬ϕs | ϕs ∨ ψs | 〈·A·〉 ϕp | ·〉A〈· ϕs

ϕp, ψp ::= ϕs | ¬ϕp | ϕp ∨ ψp | X ϕp | ϕp U ψp

with p ∈ AP and A ⊆ Agt. Formulas defined as ϕs are called state formulas, while ϕp
defines path formulas.

That a formula ϕ in ATL?
sc holds (initially) along a computation ρ of a CGS C under a

strategy context F (i.e., a preselected strategy for some of the players, hence belonging to
some Strat(A) for a coalition A), denoted C, ρ |=F ϕ, is defined as follows:

C, ρ |=F p iff p ∈ Lab(first(ρ)),

C, ρ |=F ¬ϕ iff C, ρ 6|=F ϕ,

C, ρ |=F ϕ ∨ ψ iff C, ρ |=F ϕ or C, ρ |=F ψ,

C, ρ |=F 〈·A·〉 ϕp iff ∃FA ∈ Strat(A). ∀ρ′ ∈ Out∞(first(ρ), FA ◦ F).
C, ρ′ |=FA ◦ F ϕp,
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C, ρ |=F ·〉A〈· ϕs iff C, ρ |=FrA ϕs,

C, ρ |=F X ϕp iff C, ρ1→∞ |=Fρ0→1 ϕp,

C, ρ |=F ϕp U ψp iff ∃i ≥ 0. C, ρi→∞ |=Fρ0→i ψp and

∀0 ≤ j < i. C, ρj→∞ |=
Fρ0→j ϕp.

As stated in the following lemma, the truth value of a state formula ϕs depends only on
the strategy context F and the first state of the computation ρ where it is interpreted (thus
we may simply write C, first(ρ) |=F ϕs when it raises no ambiguity):

LEMMA 3. Let C be a CGS, and F ∈ Strat(A) be a strategy context. For any state formula ϕs,
and for any two infinite paths ρ and ρ′ with first(ρ) = first(ρ′), it holds

C, ρ |=F ϕs ⇔ C, ρ′ |=F ϕs.

PROOF. The proof is by induction on the structure of ϕs: the result obviously holds for
atomic propositions, and it is clearly preserved by boolean combinations and by the ·〉A〈·
operator. Finally, if ϕs = 〈·A·〉ψs, the result is immediate as the semantics only involves the
first location of the path along which the formula is being evaluated. �

The logic ATLsc is obtained by restricting ATL?
sc to the following grammar:

ATLsc 3 ϕs, ψs ::= p | ¬ϕs | ϕs ∨ ψs | 〈·A·〉 ϕp | ·〉A〈· ϕs

ϕp, ψp ::= ¬ϕp | X ϕs | ϕs U ψs

We define the following shorthands, which will be useful in the sequel:

> def
= p ∨ ¬p F ϕ

def
= >U ϕ 〈·A·〉 ϕs

def
= 〈·A·〉 (⊥U ϕs)

⊥ def
= ¬> G ϕ

def
= ¬F¬ϕ 〈〈A〉〉 ϕ

def
= ·〉Agt〈· 〈·A·〉 ϕ

The last shorthand corresponds to ATL? strategy quantifier (provided that the subformula ϕ

is in ATL?). Thanks to the previous shorthand, strategy quantifiers can be followed by both
path and state quantifiers even in ATLsc. It follows that ATL and ATL? can be translated
into ATLsc and ATL?

sc, resp. However, it must be noted that contrary to ATL, it is not possible
to restrict to memoryless strategies (i.e. that only depend on the current state) for ATLsc
formulas. For example, the formula 〈·A·〉G ( 〈·∅·〉 F P∧ 〈·∅·〉 F P′) is equivalent in a standard
Kripke struture (seen as a CGS with one single player A) to the CTL? formula E(

∞
F P ∧

∞
F P′)

that may require strategies with memory. The next section provides more results on the
extra expressiveness brought in by strategy contexts.

3 The expressive power of strategy contexts
As shown in [7], adding strategy contexts in formulas increases the expressive power of
logics: ATLsc (resp. ATL?

sc) is strictly more expressive than ATL (resp. ATL?). Game Logic
(see [4]) can also be translated into ATL?

sc (while the converse is not true). In this section, we
present some new results on the expressiveness of ATLsc.
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Alternating bisimulation. Strategy contexts also increase the distinguishing power of alter-
nating logics. Indeed, logics like ATL, ATL?, GL or AMC cannot distinguish between two
games that are alternating-bisimilar [5]. Formally this behavioral equivalence is defined as
follows: Given two CGSs C and C ′, a relation R ⊆ LocC × LocC ′ is an alternating bisimulation
when for any (`, `′) ∈ R, we have:
• LabA(`) = LabB(`′),
• for any coalition A ⊆ Agt, it holds

∀m1 ∈ MovA(`, A). ∃m′1 ∈ MovB(`′, A).

∀m′2 ∈ MovB(`′, Agt\A). ∃m2 ∈ MovA(`, Agt\A) s.t.

(Next(`, m1 ◦m2), Next(`′, m′1 ◦m′2)) ∈ R,

and symmetrically (from `′).
Two locations ` and `′ are said to be alternating-bisimilar when there exists an alternating-
bisimulation R containing (`, `′).

s0

s1 s2

s0

s1 s2

〈1.1〉,〈2.2〉 〈1.1〉,〈2.2〉,〈3.3〉

〈1.2〉 〈1.2〉,〈1.3〉,〈3.2〉〈2.1〉 〈2.1〉,〈2.3〉,〈3.1〉

C C ′

Figure 2: C and C ′ are alternating-bisimilar but can be distin-
guished by ATLsc

It turns out that ATLsc
and ATL?

sc can distinguish
alternating-bisimilar loca-
tions: consider the CGSs in
Figure 2; it can be seen that
s0 and s′0 are alternating-
bisimilar (the only differ-
ence between both struc-
tures is the third move in
C ′, but it can be simulated
by moves 1 or 2 in C since
every successor for these

two choices is also a successor of move 3 in C ′). But on the other hand, s′0 satisfies

Φ def
= 〈·A1·〉 ( 〈·A2·〉X ∧ 〈·A2·〉X ) (by letting Player A1 play move 3), while it is rapidly

checked that s0 fails to satisfy this property. In particular, ATL and ATL? cannot distinguish
between these two structures.

Relative expressiveness of ATLsc and ATL?
sc. We now prove that strategy contexts bring

ATLsc to the same expressiveness as ATL?
sc. This can already be observed in the following

simple example: consider the CTL? formula ϕ
def
= EG F a (expressing that a occurs infinitely

often along a run); it is well-known that ϕ cannot be expressed in CTL (where every tempo-
ral modality has to be in the immediate scope of a path quantifier). But ϕ is clearly equiv-
alent (over Kripke structures, i.e. one-player CGSs) to the ATLsc formula 〈·A·〉G 〈·∅·〉 F a:
indeed, as soon as the strategy context is fixed for Player A, the use of 〈·∅·〉 does not change
the choice of the underlying run where F a is interpreted. We can extend this approach to
any ATL?

sc formula: the idea is to
1. first use full strategy contexts (by adding universally quantified strategies) in order to

be able to insert the 〈·∅·〉 modality before every temporal modality, and
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2. ensure that for every nested strategy quantifier 〈·A·〉 , Coalition A cannot take advan-
tage of the added strategies. For this last point, we replace 〈·A·〉 ϕ with the subfor-
mula 〈·A·〉 ¬ 〈·Agt\(A ∪ B)·〉 ¬ϕ where B is the part of the context that A can rely on
to choose her strategy (i.e., A only “knows” the strategies chosen by agents in B). This
mechanism is formally described below.

Now we give the translation from ATL?
sc to ATLsc. Given an ATL?

sc formula Φ and a
coalition B, we define Φ̂[B] inductively as follows:

P̂[B] def
= P ¬̂ϕ[B] def

= ¬ϕ̂[B] ϕ̂ ∧ ψ
[B] def

= ϕ̂[B] ∧ ψ̂[B]

X̂ ϕ
[B] def

= 〈·∅·〉X ϕ̂[B] ϕ̂ U ψ
[B] def

= 〈·∅·〉 (ϕ̂
[B] U ψ̂[B])

〈̂·A·〉 ϕ
[B] def

= 〈·A·〉 ¬ 〈·Agt\(A ∪ B)·〉 ¬ϕ̂[A∪B] ·̂〉A〈· ϕ
[B] def

= ϕ̂[BrA]

Clearly, Φ̂[B] is an ATLsc formula. First, we have the folllowing lemma stating that the truth
value of a state formula ϕ̂A interpreted in a strategy context H depends only on H|A:

LEMMA 4. For any state formula ϕ, any strategy contexts F, G and G′ such that dom(F) ∩
dom(G′) = ∅, dom(G) ⊆ dom(G′) and G′|dom(G) = G, we have:

C, ` |=G ◦ F ϕ̂[dom(F)] ⇔ C, ` |=G′ ◦ F ϕ̂[dom(F)]

PROOF. The proof is done by structural induction over the formula. The cases of atomic
propositions and Boolean operators are straightforward.

Now consider ϕ
def
= 〈·A·〉ψ. Then C, ` |=G ◦ F 〈̂·A·〉ψ

[dom(F)]
entails C, ` |=G ◦ F 〈·A·〉

¬ 〈·Agt\A ∪ dom(F)·〉 ¬ψ̂[dom(F)∪A]. Thus there exists FA ∈ Strat(A) such that for any F′ ∈
Strat(Agt\dom(F) ∪ A), we have C, π |=F′ ◦ FA ◦G ◦ F ψ̂[dom(F)∪A] where π is the unique path
in Out(`, F′ ◦ FA ◦G ◦ F). Then we clearly have C, π |=F′ ◦ FA ◦G′ ◦ F ψ̂[dom(F)∪A] because F′ ◦ FA
overwrites G and G′. The converse direction follows the same steps.

Assume ϕ
def
= ·〉A〈·ψ. Then C, ` |=G ◦ F ϕ̂[dom(F)] entails C, ` |=G ◦ F ψ̂[dom(F)\A] and we

have C, ` |=G′ ◦ F ψ̂[dom(F)\A] by induction hypothesis (ψ is a state formula). Thus we have
C, ` |=G′ ◦ F ϕ̂[dom(F)]. �

Now we have the following lemma relating the truth value of ϕ and ϕ̂[B]:

LEMMA 5. Let C be a CGS, ` be one of its locations, and F be a strategy context. Then for
any ATL?

sc formula ϕ, for any strategy context F̄ s.t. dom(F̄) = Agt r dom(F), and for any
outcome π ∈ Out∞(`, F̄ ◦ F), it holds

C, π |=F ϕ ⇔ C, π |=F̄ ◦ F ϕ̂[dom(F)].

Moreover, if ϕ is a state formula, the above result extends to any strategy context F̄ s.t.
dom(F̄) ∩ dom(F) = ∅.

PROOF. We prove the result by induction on the structure of ϕ. The cases of atomic propo-
sitions and boolean connectives are straightforward.
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• If ϕ = X ψ: for any G s.t. dom(F̄) = Agt r dom(F), and for the corresponding out-
come π from `, we have the following equivalences:

C, π |=F ϕ ⇔ C, π1→∞ |=Fπ0→1 ψ

⇔ C, π1→∞ |=
(G ◦ F)π0→1 ψ̂[dom(F)] (by i.h.)

⇔ C, π |=G ◦ F X ψ̂[dom(F)]

⇔ C, π |=G ◦ F 〈·∅·〉X ψ̂[dom(F)]

(because Out∞(`, G ◦ F) = {π})

• If ϕ = ψ1 U ψ2: this case can be handled in a similar way as for the previous case, and
we omit it.
• If ϕ = 〈·A·〉ψ: we prove the second, more general statement. Let G be a strategy

context with dom(G) ∩ dom(F) = ∅, and π be an outcome of G ◦ F from `.

C, ` |=F ϕ ⇔ C, ` |=F 〈·A·〉ψ

⇔ ∃FA ∈ Strat(A). ∀π′ ∈ Out(`, FA ◦ F). C, π′ |=FA ◦ F ψ

⇔ ∃FA ∈ Strat(A). ∀F′ ∈ Strat(Agtr (dom(F) ∪ A)).

∀π′ ∈ Out(`, F′ ◦ FA ◦ F). C, π′ |=FA ◦ F ψ

⇔ ∃FA ∈ Strat(A). ∀F′ ∈ Strat(Agtr (dom(F) ∪ A)).

∀π′ ∈ Out(`, F′ ◦ FA ◦ F). C, π′ |=F′ ◦ FA ◦ F ψ̂[dom(F)∪A]

(by i.h.)

⇔ ∃FA ∈ Strat(A).∀F′ ∈ Strat(Agtr (dom(F) ∪ A)).

∀π′ ∈ Out(`, F′ ◦ FA ◦G ◦ F). C, π′ |=F′ ◦ FA ◦G ◦ F ψ̂[dom(F)∪A]

(because F′ ◦ FA ◦G ◦ F = F′ ◦ FA ◦ F)

⇔ ∃FA ∈ Strat(A).∀F′ ∈ Strat(Agtr (dom(F) ∪ A)).

∃π′ ∈ Out(`, F′ ◦ FA ◦G ◦ F). C, π′ |=F′ ◦ FA ◦G ◦ F ψ̂[dom(F)∪A]

(because |Out(`, F′ ◦ FA ◦G ◦ F)| = 1)

⇔ ∃FA ∈ Strat(A).C, ` |=FA ◦G ◦ F ¬ 〈·Agtr (dom(F) ∪ A)·〉 ¬ψ̂[dom(F)∪A]

⇔ C, ` |=G ◦ F 〈·A·〉 ¬ 〈·Agtr (dom(F) ∪ A)·〉 ¬ψ̂[dom(F)∪A]

⇔ C, ` |=G ◦ F ϕ̂[dom(F)]

• If ϕ = ·〉A〈·ψ: again, we prove the second statement. Let G be a strategy context with
dom(G) ∩ dom(F) = ∅, and π be an outcome of G ◦ F from `. We have:

C, ` |=F ϕ ⇔ C, ` |=F ·〉A〈·ψ
⇔ C, ` |=F\A ψ
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⇔ C, ` |=G ◦ F\A
ψ̂[dom(F)\A] (by i.h.)

⇔ C, ` |=G ◦ F|A ◦ F\A
ψ̂[dom(F)\A] (by Lemma 4)

⇔ C, ` |=G ◦ F ψ̂[dom(F)\A]

�

COROLLARY 6. Let ϕ be an ATL?
sc state-formula, and A be a subset of a given set Agt of

agents. Then ϕ is equivalent to ϕ̂[A] under any strategy context F with dom(F) = A for any
CGS based on Agt, i.e. for any CGS C using Agt as its set of players and for any computation
ρ, we have:

C, ρ |=F ϕ iff C, ρ |=F ϕ̂[dom(F)].

Since our transformation does not depend on the underlying CGS, we get:

THEOREM 7. Given a set of agents Agt, any ATL?
sc formula ϕ can be translated into an

equivalent (under the empty context) ATLsc formula ϕ̂ for any CGS based on Agt.

Another consequence of the previous result is that any ATL? state formula ϕ can be
translated into the equivalent ATLsc formula ϕ̂∅ in polynomial time. Thus we have the
following corollary:

COROLLARY 8. Model-checking ATLsc is 2EXPTIME-hard.

4 From ATLsc to alternating tree automata
The main result of this section is the following:

THEOREM 9. Model-checking ATLsc formulas with at most k nested strategy quantifiers can
be achieved in (k + 1)EXPTIME. The program complexity (i.e., the complexity of model-
checking a fixed ATLsc formula) is EXPTIME.

The proof mainly consists in building an alternating tree automaton from a formula and
a CGS. Similar approaches have already been proposed for strategy logic [9] or QDµ [16], but
they were only valid for subclasses of CGSs: strategy logic was only studied on turn-based
games, while the algorithm for QDµ was restricted to ATSs [3]. In both cases, the important
point is that strategies are directly encoded as trees, with as many successors of a node as
the number of possible moves from the corresponding node. With this representation, it is
required that two different successors of a node correspond to two different states (which
is the case for ATSs, hence for turn-based games): if this is not the case, the tree automaton
may accept strategies that do not only depend on the sequence of states visited in the history,
but also on the sequence of moves proposed by the players.

Our encoding is different: we work on the execution tree of the CGS under study, and
label each node with possible moves of the players. We then have to focus on branches that
correspond to outcomes of selected strategies, and check that they satisfy the requirement
specified by the formula.

Before presenting the detailed proof, we first introduce alternating tree automata and
fix notations.
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4.1 Trees and alternating tree automata

Let Σ and S be two finite sets. A Σ-labelled S-tree is a pair T = 〈T, l〉, where
• T ⊆ S∗ is a non-empty set of finite words on S satisfying the following constraints:

for any non-empty word n = m · s in T with m ∈ T and s ∈ S, the word m is also in T;
• l : T → Σ is a labeling function.

Given such a tree T = 〈T, l〉 and a node n ∈ T, the set of directions from n in T is the
set dirT(n) = {s ∈ S | n · s ∈ T}. The set of successors of n in T is succT(n) = {n · s | s ∈
dirT(n)}. We use Tn to denote the subtree rooted in n. An S-tree is complete if T = S∗, i.e., if
dirT(n) = S for all n ∈ T. We may omit the subscript T when it is clear from the context.

The set of infinite paths of T is the set

PathT = {s0 · s1 · · · ∈ Sω | ∀i ∈N. s0 · s1 · · · si ∈ T}.

Given such an infinite path π = (si)i∈N, we write l(π) for the infinite sequence (l(si))i∈N ∈
Σω, and Inf(l(π)) for the set of letters in Σ that appear infintely often along l(π).

Assume that Σ = Σ1 × Σ2, and pick a Σ-labelled S-tree T = 〈T, l〉. For all n ∈ T,
we write l(n) = (l1(n), l2(n)) with li(n) ∈ Σi for i ∈ {1, 2}. Then for i ∈ {1, 2}, the projection
of T on Σi, denoted by projΣi

(T ), is the Σi-labelled S-tree 〈T, li〉. Two Σ-labelled S-trees are
Σi-equivalent if their projections on Σi are equal. These notions naturally extend to more
complex alphabets, of the form ∏i∈I Σi.

We now define alternating tree automata, which will be used in the proof. This requires
the following definition: the set of positive boolean formulas over a finite set P of propositional
variables is the set of formulas generated by:

PBF(P) 3 ζ ::= p | ζ ∧ ζ | ζ ∨ ζ | > | ⊥

where p ranges over P. That a valuation v : P → {>,⊥} satisfies a formula in PBF(P) is
defined in the natural way. We abusively say that a subset P′ of P satisfies a formula ϕ ∈
PBF(P) iff the valuation 1P′ (mapping the elements of P′ to > and te elements of P r P′

to ⊥) satisfies ϕ. Since negation is not allowed, if P′ |= ϕ and P′ ⊆ P′′, then also P′′ |= ϕ.

DEFINITION 10. Let S and Σ be two finite sets. An alternating S-tree automaton on Σ, or
〈S, Σ〉-ATA, is a 4-tuple A = 〈Q, q0, τ, Acc〉 where
• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• τ : Q× Σ→ PBF(S×Q) is the transition function;
• Acc : Qω → {>,⊥} is the acceptance function.
A non-deterministic S-tree automaton on Σ, or 〈S, Σ〉-NTA, is a 〈S, Σ〉-ATA in which

conjunctions are not allowed for defining the transition function. The size of A, denoted
by |A|, is the number of states in Q.

Let A = 〈Q, q0, τ, Acc〉 be an 〈S, Σ〉-ATA, and T = 〈T, l〉 be a Σ-labelled S-tree. An exe-
cution tree of A on T is a T ×Q-labelled S×Q-tree E = 〈E, p〉 such that
• p(ε) = (ε, q0)
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• for each node e ∈ E with p(e) = (t, q), the set dirE(e) = {(s0, q0), (s1, q1), ..., (sn, qn)} ⊆
S × Q satisfies τ(q, l(t)), and for all 0 ≤ i ≤ n, the node e · (si, qi) is labelled with
(t · si, qi). We write pS(e · (si, qi)) = t · si and pQ(e · (si, qi)) = qi for the two components
of the labelling function.

An execution tree is accepting if, for any infinite path π ∈ (S× Q)ω in PathE , it holds
Acc(pQ(π)) = >. A tree T is accepted by A iff there exists an accepting execution tree of A
on T .

In the sequel, we use parity acceptance condition, given as a function Ω : Q → {0, ..., k−
1}, from which Acc is defined as follows: Acc(pQ(π)) = > iff min{Ω(q) | q ∈ Inf(pQ(π))}
is even. 〈S, Σ〉-ATAs with such accepting conditions are called 〈S, Σ〉-APTs, and given an
〈S, Σ〉-APT A, the size of the image of Ω is called the index of A, and is denoted by idx(A).
Analogously, 〈S, Σ〉-NPTs are 〈S, Σ〉-NTAs with parity acceptance conditions.

4.2 Unwinding of a CGS

Let C = 〈Loc, Lab, δ, Agt,M, Mov, Edg〉 be an n-player CGS, in which we assume w.l.o.g.
that δ = Loc× Loc, and Mov(`, Ai) =M for any state ` and any player Ai. Let `0 be a state
of C.

For each location ` ∈ Loc, we define Σ(`) = {`} × {Lab(`)} × {Edg(`)}, and Σ+(`) =
Σ(`)× (M∪ {⊥})Agt × 2{po ,pl ,pr}, where ⊥ is a special symbol not inM and po, pl and pr
are three fresh propositions not in AP. We let† ΣC =

⋃
`∈Loc Σ(`), and Σ+

C =
⋃

`∈Loc Σ+(`).
The unwinding of C from `0 is the ΣC-labelled complete Loc-tree U = 〈U, v〉 where U =

Loc∗ and v(u) ∈ Σ(last(`0 · u)) for all u ∈ U. An extended unwinding of C from `0 is a Σ+
C -

labelled complete Loc-tree U ′ such that projΣC (U
′) = U . For each letter σ of Σ+

C , we write
σLoc, σAP, σEdg, σstr and σp for the five components, and extend this subscripting notation for
the labelling functions of trees.

In the sequel, we identify a node u of U (which is a finite word over Loc) with the finite
path `0 · u of C. Notice that this sequence of states of C may correspond to no real path of C,
in case it involves a transition that is not in the image of Edg.

With C and `0, we associate a (deterministic) 〈Loc, Σ+
C 〉-APT AC,`0 = 〈Loc, `0, τ, Ω〉 s.t.

• Loc = {` | ` ∈ Loc},
• `0 is the initial state;
• given a state ` ∈ Loc and a letter σ ∈ Σ+

C , we consider several cases:
– if σ ∈ Σ+(`), we let

τ(`, σ) =
∧

`′∈Loc

(`′, `′).

– otherwise, we let τ(`, σ) = ⊥
• Ω constantly equals 0 (hence any valid execution tree is accepting).

†Notice that |ΣC | = |Loc| and |Σ+
C | is linear in the size of the input, as we assume an explicit representation

of the Edg function [12].
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LEMMA 11. Let C be a CGS and `0 be a state of C. Let T = 〈T, l〉 be a Σ+
C -labelled Loc-tree.

Then AC,`0 accepts T iff projΣC (T ) is the unwinding of C from `0.

PROOF. Assume that T is accepted by AC,`0 . Since τ(`, σ) = ⊥ when σ /∈ Σ+(`), and
since the initial state of the automaton is `0, it must be the case that l(ε) ∈ Σ+(`0). Also, for
each ` ∈ Loc, any execution tree must contain the node (`, `), labelled with (`, `).

By induction, it is easily shown that any node n in any accepting execution tree is such
that n = (`i, `i)i, and that for each ` ∈ Loc, n · (`, `) is a successor of n. Hence each
node n in T has |Loc| successors, and is labelled with l(n) ∈ Σ+(last(`0 · n)). It follows
that projΣC (T ) is the unwinding of C from `0.

The converse direction is easily proved by explicitly building an accepting execution
tree. �

In the sequel, we also use automaton AC , which accepts the union of all L(AC,`0)
when `0 ranges over Loc. Such an automaton can easily be built, either directly or by apply-
ing Lemma 14.

4.3 Strategy quantification

Let T = 〈T, l〉 be a Σ+
C -labelled complete Loc-tree accepted by AC,`0 . Such a tree de-

fines partial strategies for each player: for A ∈ Agt, and for each node n ∈ T, we define
stratTA(`0 · n) = lstr(n)(A) ∈ M∪ {⊥}. For D ⊆ Agt, we write stratTD for the set of strategies
(stratTA)A∈D.

As a first step, for each D ⊆ Agt, we build a 〈Loc, Σ+
C 〉-APTAstrat(D) which will ensure

that for all A ∈ D, stratTA is really a strategy for player A, i.e., never returns ⊥. This au-
tomaton has only one state q0, with τ(q0, σ) =

∧
`∈Loc(`, q0) provided that σstr(A) 6= ⊥ for

all A ∈ D. Otherwise, τ(q0, σ) = ⊥. Finally, Astrat accepts all trees having a valid execution
tree (i.e., Ω constantly equals 0).

The following result is straightforward:

LEMMA 12. Let C be a CGS, `0 be a location of C, and D ⊆ Agt. Let T = 〈T, l〉 be a Σ+
C -

labelled complete Loc-tree accepted by AC,`0 . Then T is accepted by Astrat(D) iff for each
player A ∈ D, stratTA never equals ⊥.

We now build an automaton for checking that proposition po labels outcomes of T .
More precisely, let D ⊆ Agt be a set of players. The automaton Aout(D) will accept T iff
po labels exactly the outcomes of strategies stratTA for players A ∈ D.

This is achieved by the following two-state automaton Aout(D) = 〈Q, q∈, τ, Ω〉:
• Q = {q∈, q/∈},
• q∈ is the initial state,
• the transition function is defined as follows:

τ(q∈, σ) =
∧

`∈Next(σ,D)

(`, q∈) ∧
∧

`/∈Next(σ,D)

(`, q/∈) if po ∈ σ

= ⊥ otherwise
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τ(q/∈, σ) =
∧

`∈Loc

(`, q/∈) if po /∈ σ

= ⊥ otherwise

where

Next(σ, D) = {` ∈ Loc | ∃(mi)i ∈ MAgt s.t.

(σLoc, `) = σEdg(σLoc, (mi)i) and ∀Ai ∈ D. σstr(Ai) = mi.}

In other terms, Next(σ, D) returns the set of successor states of state σLoc if players in D
follow the strategies given by σstr, and according to the transition table σEdg. Notice
that Next(σ, D) is non-empty iff σstr(Ai) 6= ⊥ for all Ai ∈ D.
• Again, Ω constantly equals 0, so that any execution tree is accepted.
Automata Aout(D) have the following property:

LEMMA 13. Let C be a CGS, and `0 be one of its locations, and D ⊆ Agt. Let T = 〈T, l〉
be a Σ+

C -labelled complete Loc-tree accepted by AC,`0 and Astrat(D). Then T is accepted by
Aout(D) iff for any node n ∈ T, it holds po ∈ lp(n) iff the finite run `0 · n is an outcome of
stratTD from `0.

PROOF. Assume T is accepted by AC,`0 , Astrat(D) and Aout(D). We prove the equivalence
by induction on the depth of the node n. When n = ε, `0 · n is an outcome of any strat-
egy from `0. Also, since the initial state is q∈, it must be the case that po ∈ l(ε), because
τ(q∈, σ) = ⊥ if po /∈ σ.

Now, pick any node n = m · ` in T , different from the root, and assume that the
equivalence holds for the predecessor node m of n. First, assume that po ∈ lp(n). No-
tice that Aout(D) is a deterministic tree automaton. The execution tree of Aout(D) on T is
a tree U = 〈T, v〉 where v : T → T × {q∈, q/∈}. By construction of the transition function τ,
since po ∈ lp(n), it cannot be the case that v(n) = (n, q/∈), hence v(n) = (n, q∈). Then if
v(m) = (m, q/∈), then all successors of this node would be q/∈-nodes. Hence v(m) = (m, q∈).
By induction, this entails that the finite run `0 · m is an outcome of stratTD from `0. Also,
it must be the case that ` ∈ Next(l(m), D), which precisely entails that `0 · n is also an out-
come of stratTD from `0. Conversely, if po /∈ lp(n), then the execution tree must contain the
node (n, q/∈). We distinguish two cases, whether the predecessor node is (m, q∈) or (m, q/∈).
In the former case, we get that `0 ·m is an outcome, but that ` /∈ Next(l(m), D), which means
that `0 · n is not an outcome of the strategies for D encoded in T . In the latter case, `0 ·m is
already not an outcome, and neither is `0 · n.

We now prove the converse implication. Let T be a Σ+
C -labelled complete Loc-tree

accepted by AC,`0 and Astrat(D), and such that nodes labelled by po precisely describe the
outcomes of stratTD from `0. Consider the tree U = 〈U, v〉 where

U = {(ni, qi)i | (ni)i ∈ T and for all i, qi = q∈ if po ∈ lp((nj)j≤i) and qi = q/∈ otherwise}

and v((ni, qi)i≤m) = ((ni)i≤m, qm). We prove that this is a valid execution tree. Indeed,
it starts from the initial state q∈, since `0 is an outcome of any strategy from itself. Now, con-
sider some node n′ = (ni, qi)i in U, corresponding to the node n = (ni)i of T. If po ∈ lp(n),



14

then v(n′) is (n, q∈), and `0 · n is an outcome of stratTD from `0. By definition of Next(σ, D),
for all ` ∈ Loc, it holds po ∈ lp(n · `) iff ` ∈ Next(l(n), D). Then U contains n′ · (`, q∈) for
all ` ∈ Next(l(n), D), and n′ · (`, q/∈) for all ` /∈ Next(l(n), D). The transition function is
satisfied at this node. Now, if po /∈ lp(n), then v(n′) is (n, q/∈), and `0 · n is not an outcome,
thus for all ` ∈ Loc, `0 · n · ` is also not an outcome. It immediately follows that U contains
all the successors of n′ needed to satisfy the transition condition. �

4.4 Boolean operations, projection, non-determinization, ...

In this section, we review some classical results about alternating tree automata, which we
will use in our construction. The first three lemmas are classical results, and we only provide
a proof for the fourth one.

LEMMA 14.[14, 15] LetA and B be two 〈S, Σ〉-APTs that respectively accept the languages A
and B. We can build two 〈S, Σ〉-APTs C and D that respectively accept the languages A ∩ B
and A (the complement of A in the set of Σ-labelled S-trees). The size and index of C are at
most (|A|+ |B|) and max(idx(A), idx(B)) + 1, while those of D are |A| and idx(A).

LEMMA 15.[15] Let A be a 〈S, Σ〉-APT. We can build a 〈S, Σ〉-NPT N accepting the same
language as A, and such that |N | ∈ 2O(|A|idx(A)·log(|A|idx(A))) and idx(N ) ∈ O(|A|idx(A)).

LEMMA 16.[13] Let A be a 〈S, Σ〉-NPT, with Σ = Σ1 × Σ2. For all i ∈ {1, 2}, we can build a
〈S, Σ〉-NPT Bi such that, for any tree T , it holds

T ∈ L(Bi) ⇔ ∃T ′ ∈ L(A). projΣi
(T ) = projΣi

(T ′).

The size and index of Bi are those of A.

LEMMA 17. Let A be a 〈S, Σ× 2{p}〉-APT s.t. for any two Σ× 2{p}-labelled S-trees T and
T ′ with projΣ(T ) = projΣ(T ′), we have T ∈ L(A) iff T ′ ∈ L(A). Then we can build a
〈S, Σ× 2{p}〉-APT B s.t. for all Σ× 2{p}-labelled S-tree T = 〈T, l〉, it holds

T ∈ L(B) ⇔ ∀n ∈ T. (p ∈ l(n) iff Tn ∈ L(A)).

Then B has size O(|A|) and index idx(A) + 1.

PROOF. The construction of B is in two steps: first, applying Lemma 14, we build an au-
tomaton C accepting exactly the trees in (L(A) ∩ L(P)) ∪ (L(A) ∩ L(P)), where P is a
one-state automaton accepting exactly the trees whose root is labelled with p. Then C has
size O(|A|) and index idx(A) + 1.

Then B is obtained by forking an execution of C in all node: formally, writing C =
〈QC, qC, τC, ΩC〉, then B = 〈QC ∪ {qB}, qB, τB, ΩB〉 (assuming qB /∈ QC) where τB and ΩB
respectively coincide with τC and ΩC on QC, and τB(qB, σ) =

∧
`∈Loc(`, qB) ∧ τC(qC, σ) and

ΩB(qB) = 0 (or any even value).

If a Σ× 2{p}-labelled S-tree T is accepted by B, then for all node n ∈ T , any execution
tree contains a node labelled with (n, qB). From such a node, B forks new branches to qB-
nodes on the one hand, and mimicks the behaviour of C from qC on the other hand. The
latter implies that the subtree Tn is accepted by C, so that we have the required equivalence.



15

Conversely, let T be a Σ × 2{p}-labelled S-tree satisfying the right-hand-side equiva-
lence. Then for all node n of T , the subtree Tn is accepted by C, and thus admits an accept-
ing execution tree. Based on these execution trees, one easily comes up with an accepting
execution tree of B on T . �

4.5 Transforming an ATLsc formula into an alternating tree automaton

LEMMA 18. Let C be a CGS with finite state space Loc. Let ψ be an ATLsc-formula, and D ⊆
Agt be a coalition. We can build a 〈Loc, Σ+

C 〉-APT Aψ,D s.t.
• for any Σ+

C -labelled complete Loc-tree T accepted by AC and by Astrat(D), it holds

T ∈ L(Aψ,D) ⇔ C, lLoc(ε) |=stratTD
ψ;

• for any two Σ+
C -labelled complete Loc-tree T and T ′ s.t. projΣ′C (T ) = projΣ′C (T

′), with
Σ′C = ΣC × (M∪{⊥})Agt, we have

T ∈ L(Aψ,D) ⇔ T ′ ∈ L(Aψ,D).

The size of Aψ,D is at most d-exponential, where d is the number of (nested) strategy
quantifiers in ψ. Its index is d− 1-exponential.

PROOF. The proof proceeds by induction on the structure of formula ψ. The case of atomic
propositions is straightforward. Applying Lemma 14, we immediately get the result for the
case when ϕ is a boolean combination of subformulas.

We now turn to the case of ATLsc modalities 〈·A·〉X ϕ, 〈·A·〉 ϕ1 U ϕ2 and‡ 〈·A·〉 ϕ1 R ϕ2.
We give a detailed proof of the easier case of 〈·A·〉X ϕ, and then briefly explain how it can
be adapted to handle the other two modalities.

The general idea of the construction is as follows: we use automaton Aout(D ∪ A) to
label outcomes with po, Aϕ,D∪A to label nodes where ϕ holds, and build an intermediate
automaton A f to check that all the outcomes satisfy X ϕ. We then project out the strategy of
coalition A, in order to get our new automaton for 〈·A·〉X ϕ.

Assume that we have already built the automaton Aϕ,D∪A (inductively). Applying
Lemma 17 to Aϕ,D∪A with the extra proposition pr, we get an automaton Bpr ,ϕ,D∪A that
accepts a tree T iff the nodes labelled by pr are exactly the roots of subtrees accepted
by Aϕ,D∪A. Notice that acceptance by Aϕ,D∪A does not depend on the labelling with pr,
thanks to the second property of the Lemma. Applying the induction hypothesis, we get
that, given a tree T = 〈T, l〉 accepted by AC and Astrat(D ∪ A), it holds

T ∈ L(Bpr ,ϕ,D∪A) ⇔ ∀n ∈ T. (pr ∈ l(n)⇔ C, lLoc(n) |=stratTn
D∪A

ϕ). (1)

‡The “release” modality R is the dual of U . Notice that X is self-dual as we only evaluate formulas along
infinite outcomes.
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In order to check that all the outcome satisfy X ϕ, we simply have to build an automa-
ton A f for checking the CTL? property A(G po→X pr). We refer to [11] for this classi-
cal construction. This automaton A f has the following property: for any Σ+

C -labelled Loc-
tree T = 〈T, l〉, we have

T ∈ L(A f ) ⇔ T , ε |= A(G po→X pr). (2)

Now, let H be the product of Astrat(A), Aout(D ∪ A), A f and Bpr ,ϕ,D∪A, and let T be a
tree accepted by AC and Astrat(D). If T is accepted byH, then
• we have D ∪ A ⊆ dom(T ), and from Lemma 13, the branches whose nodes are la-

belled with po are exactly the outcomes of stratTD∪A from lLoc(ε);
• from (2), those outcomes satisfy X pr;
• from (1), any node n labelled with pr corresponds to a state where ϕ holds under

strategy stratTn
D∪A.

In other terms, if T is accepted by H, then D ∪ A ⊆ dom(T ) and all the outcomes of the
strategy stratTD∪A from lLoc(ε) satisfy X ϕ, which we can write as C, lLoc(ε) |= 〈·∅·〉X ϕ.

The converse does not hold in general, but we prove a weaker form: from T = 〈T, l〉,
accepted byAC andAstrat(D), and such that D∪ A ⊆ dom(T ) and the outcomes of stratTD∪A
from lLoc(ε) satisfy X ϕ, we build T ′ = 〈T, l′〉 such that projΣ′C (T ) = projΣ′C (T

′), and T ′ is ac-
cepted byH. To do this, it suffices to modify the labelling of T with po and pr, in such a way
that T ′ is accepted by Aout(D ∪ A) and Bpr ,ϕ,D∪A. Since we don’t modify the “strategy”-
part of the labelling, it holds stratTAgt = stratT

′
Agt, we still have D ∪ A ⊆ dom(T ′), and

C, lLoc(ε) |=stratT ′D∪A
〈·∅·〉X ϕ. As a consequence, the outcomes of stratT

′
D∪A from lLoc(ε), which

we have labelled with po, all satisfy X ϕ, so that their second state is labelled with pr. It fol-
lows that T ′ is also accepted byA f . In the end, we have that for any tree T = 〈T, l〉 accepted
by AC and Astrat(D),

D ∪ A ⊆ dom(T ) and C, lLoc(ε) |=stratTD∪A
〈·∅·〉X ϕ ⇔

∃T ′ s.t. projΣ′C (T
′) = projΣ′C (T ) and T′ ∈ L(H). (3)

Now, applying Lemma 15, we get a 〈Σ+
C , Loc〉-NPTN such that L(N ) = L(H). We can

then apply Lemma 16 for Σ+
C = (ΣC × (M∪ {⊥})AgtrA) × ((M∪ {⊥})A × 2po ,pl ,pr) on

the NPT N ; the resulting 〈Σ+
C , Loc〉-NPT P accepts all trees T whose labelling on (M∪

{⊥})A × 2po ,pl ,pr can be modified in order to have the tree accepted by N . Then P sat-
isfies both properties of the Lemma: the second property directly follows from the use
Lemma 16. For the first one, pick T = 〈T, l〉 accepted by AC and by Astrat(D). If T is
accepted by P , then from Lemma 16, there exists a tree T ′ = 〈T, l′〉, with the same la-
belling as T on ΣC × (M∪ {⊥})AgtrA), and accepted by N . Since L(N ) = L(H), and
from (3), we get that D ∪ A ⊆ dom(T ′) and C, lLoc(ε) |=stratT ′D∪A

〈·∅·〉X ϕ. Thus stratT
′

A is
a strategy for coalition A, and it witnesses the fact that C, lLoc(ε) |=stratT ′D

〈·A·〉X ϕ, and we

get the desired result since stratTD = stratT
′

D . Conversely, if C, lLoc(ε) |=stratTD
〈·A·〉X ϕ, then

we can modify the labelling of T with a witnessing strategy for A, obtaining a tree T ′ such
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that C, lLoc(ε) |=stratT ′D∪A
〈·∅·〉X ϕ. From (3), T ′ can in turn be modified into a tree T ′′, with

projΣ′C (T
′′) = projΣ′C (T

′), in such a way that T ′′ ∈ L(H). Finally, since the projections of T ′′

and T coincide on (ΣC × (M∪{⊥})AgtrA), it holds that T is accepted by P .

The proofs for the “until” and “release” modalities follow the same lines, using pl
and pr as extra atmomic propositions for the left- and right-hand subformulas of these
modalities, and modifying automatonA f so that it accepts trees satisfying A(G po→ pl U pr)
and A(G po→ pl R pr), respectively.

Finally, we handle the case of ·〉A〈· ϕ formulas. For a coalition D, we let A ·〉A〈· ϕ,D =
Aϕ,DrA. From the induction hypothesis, this automaton satisfies the second condition.
Now, pick T accepted by AC and Astrat(D). Then T is also accepted by Astrat(D r A) (as a
consequence of Lemma 12). Then

T ∈ L(A ·〉A〈· ϕ,D) ⇔ T ∈ L(Aϕ,DrA) ⇔
C, l`(ε) |=stratTDrA

ϕ ⇔ C, l`(ε) |=stratTD
·〉A〈· ϕ.

Unless A = ∅, the construction of the automaton for 〈·A·〉X ϕ (or 〈·A·〉 ϕ1 U ϕ2 or
〈·A·〉 ϕ1 R ϕ2) involves an exponential blowup in the size and index of the automata for the
subformulas, and the index is bilinear in the size and index of these automata. In the end,
for a formula involving d nested non-empty strategy quantifiers, the automaton has size
d-exponential and index d− 1-exponential. �

COROLLARY 19. Given an ATLsc formula ϕ, a CGS C and a state `0 of C, we can built an
alternating parity tree automaton A s.t.

L(A) 6= ∅ ⇔ C, `0 |=∅ ϕ.

Moreover, A has size d-exponential and index d− 1-exponential, where d is the number of
nested non-empty strategy quantifiers.

PROOF. It suffices to take the product of the automaton Aϕ,∅ (given by Lemma 18) with
AC,`0 . In case this 〈Loc, Σ+

C 〉-APT accepts a tree T , Lemma 18 entails that C, `0 |=∅ ϕ.
Conversely, if C, `0 |= ϕ, then the extended unwinding tree T = 〈T, l〉 of C from `0 in
which lstr(n) = ⊥ for all n ∈ T is accepted by AC,`0 (and, trivially, by Astrat(∅)), and from
Lemma 18, it is also accepted by Aϕ,∅. �

PROOF (OF THEOREM 9). The first statement of Theorem 9 directly follows, since empti-
ness of alternating parity tree automata A can be checked in time exp(O(|A| × idx(A))).

For the second statement, notice that the size and index of Aϕ,∅ in the proof of Corol-
lary 19 do not depend on the CGS C. Hence the automaton A of Corollary 19 has size linear
in |C|, and can be computed in time exponential in |C| (because Aout(D) requires the com-
putation of Next(σ, D)). Non-emptiness is then checked in time exponential in |C|. �

Remarks: Our algorithm can easily be modified in order to handle ATL?
sc. One solution is to

rely on Theorem 7, but remember that our translation from ATL?
sc to ATLsc may double the
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number of nested non-empty strategy quantifiers. The algorithm would then be in (2k + 1)-
EXPTIME, where k is the number of nested strategy quantifications. Another solution is to
adapt our construction, by replacing each state subformula with a fresh atomic proposition,
and build the automaton A f for a more complex CTL? formula. This would result in a (k +
1)-EXPTIME algorithm. In both cases, the program complexity is unchanged, in EXPTIME.

Similarly, our algorithm could be modified to handle strategy logic [9]. One important
difference is that strategy logic may require to store several strategies per player in the tree,
while ATLsc only stores one strategy per player. This would then be reflected in a modified
version of the Next function we use when building Aout(D), where we should also indicate
which strategies we use for which player.

5 Conclusions
Strategy contexts provide a very expressive extension of the semantics of ATL, as we wit-
nessed by the fact that ATLsc and ATL?

sc are equally expressive. We also designed a tree-
automata-based algorithm for model-checking both logics on the whole class of CGSs, based
on a novel encoding of strategies as a tree.

Our algorithms involve a non-elementary blowup in the size of the formula, which
we currently don’t know if it can be avoided. Trying to establish lower-bounds on the
complexity of the problems is part of our future works. Regarding expressiveness, ATLsc can
distinguish between alternating-bisimilar CGSs, and we are also looking for a behavioural
equivalence that could characterize the distinguishing power of ATLsc.
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